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Abstract

The creeping flow of a viscous fluid around a soft colloidal sphere rotating about a
diameter normal to two planar walls at an arbitrary position between them is theoretically
investigated in the steady limit of small Reynolds numbers. The fluid velocity outside the
particle consists of the general solutions of the Stokes equation in circular cylindrical and
spherical coordinates, while the fluid velocity inside the porous surface layer of the
particle is expressed by the general solution of the Brinkman equation in spherical
coordinates. The boundary conditions are implemented first on the planar walls by means
of the Hankel transforms and then at the particle and hard-core surfaces by a collocation
technique. The torque exerted on the particle by the fluid is calculated as a function of the
ratio of the core-to-particle radii, ratio of the particle radius to the flow penetration length
of the porous layer, and relative particle-to-wall spacings over the entire range. The wall
effect on the rotating soft particle can be significant. The hydrodynamic torque exerted
on the confined soft sphere increases as the relative particle-to-wall spacings decrease
and stays finite even when the soft sphere contacts the plane walls. It is smaller than the
torque on a hard sphere (or soft one with a reduced thickness or penetration length of the
porous layer), holding the other parameters constant. For a given relative wall-to-wall

spacing, this torque is minimal when the particle is situated midway between the walls
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and rises as it locates closer to either wall.

Keywords: particle rotation, soft particle, boundary effect in slit, creeping flow,

hydrodynamic torque
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Chapter 1

Introduction

The low-Reynolds-number translational and rotational motions of colloidal particles
in incompressible Newtonian fluids have attracted wide attention from researchers in the
fields of chemical, biomedical, mechanical, civil, and environmental engineering. These
motions are practical and fundamental in numerous processes such as agglomeration,
sedimentation, centrifugation, microfluidics, aerosol technology, and rheology of
suspensions. The theoretical investigation of this topic began with Stokes’ studies [1,2]
on the creeping motions of hard spherical particles in unbounded viscous fluids.
Masliyah et al. [3] and Keh and Chou [4] extended this analysis to the translation and
rotation, respectively, of a soft sphere.

A soft particle of radius b has a hard core of radius a , covered by a permeable
porous layer of thickness b—a. Polystyrene latices with surface layers [5] and biological
cells with surface attachments [6] are examples of soft particles. To sterically stabilize
colloidal dispersions, polymers are deliberately adsorbed by particles to form permeable
layers [7]. When the porous layers of soft spheres disappear, the particles revert to hard
spheres. When the hard cores of soft spheres vanish, they become fully porous spheres

(like permeable colloid flocs and polymer coils) [8].

1
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The hydrodynamic torque on a soft sphere of radius b (a hard core of radius a
covered by a porous layer of thickness b—a) rotating with an angular velocity of Q

about a diameter in an unbounded fluid of viscosity 7 at low Reynolds numbers is [4]

8nnA bQR

T, = : , (1)
Aacosh(Ab — Aa) +sinh(ib — Aa)

where

R = (1%ab® —31b +34a) cosh(1b — Aa) + (1°b* —34%ab + 3)sinh(Ab— 1a), (2)

and 1/ is the penetration length (square root of permeability) of fluid flow within the

surface layer of the soft particle (T, and € are in opposite directions). In the limiting

case Ab — oo, Equation (1) degenerates to the Stokes result for a hard sphere of radius b .

In real situations of the rotation of particles, the surrounding fluid is bounded by

solid walls [9-12]. Thus, it is necessary to know whether the proximity of boundary walls

meaningfully affects particle rotation. The slow rotations of a hard sphere confined by

adjacent boundaries, such as in a spherical cavity [13—17], in a circular cylinder [18-20],

and near one or two planar walls [13,21-23], were analyzed. Alternatively, the low-

Reynolds-number rotations of a soft or porous spherical particle in a spherical cavity

[4,24-27] and in a cylinder [28] were also theoretically investigated. These studies show

that the effect of boundaries on the rotation of particles can be very substantial and

interesting.
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In the general theories of stirred vessels and rotational viscometers for highly viscous

liquids, it is important to understand the variation of torque as the confinement boundary

approaches. The objective of this thesis is to analyze the rotation of a soft colloidal sphere

(having a porous layer of arbitrary thickness and permeability) about its diameter normal

to one or two plane walls at an arbitrary position between them at a low Reynolds number.

The fluid velocity was found by solving the Stokes and Brinkman equations using the

boundary collocation method, and semianalytical results were obtained for the

hydrodynamic torque acting on the particle for various values of the relevant parameters

(the core-to-particle radius ratio, shielding parameter of the porous surface layer, and

relative separation distances from the walls), with excellent convergence over the entire

range.
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Chapter 2

Analysis

As illustrated in Figure 1, we studied the creeping flow of a constant-property fluid
around a soft spherical particle of radius b rotating steadily with a constant angular
velocity @ about a diameter perpendicular to two large planar walls whose distances
from the particle center are ¢ and d, respectively (c<d is taken without loss of
generality), and (r,0,¢) and (p,¢,Z) represent the spherical and cylindrical
coordinate systems, respectively, originating from the particle center. The soft sphere
comprises a permeable porous surface layer of thickness b—a. Thus, the radius of its
hard core is a. The fluid velocity inside the porous layer is finite, while the external fluid
far from the particle is at rest. The objective is to find the correction to Equation (1) for

the particle rotation caused by the confining plane walls.
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Figure 1. Geometrical sketch of a soft spherical particle rotating about a diameter normal

to two planar walls.
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2.1. Governing equation and boundary conditions
The creeping flow is governed by the Stokes and Brinkman equations, yielding
19 18

ov
R e s

v sin@)]-h(r)A%v, =0.(3
r? or rzaesmeae("’ N=h(DAY, )

Here V,(p,2) in cylindrical coordinates or V,(r,6) in spherical coordinates is the ¢
(only nontrivial) component of the fluid velocity distribution, the continuity equation is
satisfied, the dynamic pressure is constant everywhere, A is the penetration length
(square root of permeability) of fluid flow within the surface layer, and h(r) equals
unity as a<r <b and zero otherwise.

The boundary conditions require that the fluid is no slip at the hard-core surface and

plane walls, and that both velocity and stress are continuous at the particle surface. Thus,

r=a: v, =0, (4)
r=>b. V, and 7, are continuous, (%)
z=—Cd: v,=-Qp, (6)
p—oo and —c<z<d: v, =-Qp, (7)

where 7., is the nontrivial shear stress at the particle surface. Equations (3)-(7) take the

reference frame rotating with the particle.
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2.2. Solution for the fluid velocity

The fluid velocity can be expressed in the form [23,27]
v, =3 (Ar) 22[C, 1,1, (AX) + DK, (AN)P (GO ) if a<r<b, )
n-1
V,=—Qp+A~ J: [X (w)e” +Y (w)e " ]wd,(wp)dw+ nZ:: A, (Ar) " P! (cos )
if r>b and —c<z<d, 9)
where Pn1 is the associated Legendre function of the first kind of order N and degree
1, J, isthe Bessel function of the first kind of order N, 1, and K, are the modified
Bessel functions of the first and second kinds, respectively, of order n, X(w), Y(o),
A,, C ,and D, (all having the dimension of velocity) are the unknown functions and
constants, respectively, to be determined. The parts of v, involving Pn1 in the previous
equations are separable solutions to Equation (3) in spherical coordinates that represent
the disturbance generated by the particle and the part of Vv, involving J  in Equation
(9) 1s a Fourier-Bessel integral solution to Equation (3) in cylindrical coordinates
representing the disturbance produced by the planar walls. Note that Equation (9), which
is a superposition of the general solutions in cylindrical and spherical coordinates due to

the linearity of Equation (3), satisfies Equation (7) immediately.

Substitution of boundary condition (6) into Equation (9) leads to

[ IX (@)™ +Y (@)e*]wd,(@p)dw=-223 A, (p.~0). (10)
[ IX (@6 +Y (@) 10, (0p)dw = -A"3 Ag, (p,d). (1)
7
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where

— (12)

a,(p,2) =[A*(p* + ) "R ———7
(p°+77%)

The application of the Hankel transform on the variable p to Equations (10) and (11)

yields
X (@)e™ +Y (0)e™ =—-22D A, j: a, (p,—¢) pd,(wp)dp., (13)
n=1
X (@)e” +Y(@)e ™ =-2°Y A [ a,(0.0)pd,(@p)dp . (14)

The solution of Equations (13) and (14) leads to

X(@)=> AX, (), (15)
V(@)= AY, (@), (16)
where

e”’[-B, (@, —¢) +e”“* VB (w,d)]

X, (@) = 14 g2otcrd) > (17)
odrao(c+d)
_ e*["“" B (w,~¢) ~ B, (,d)]

Yn ((0) - 1+ e2w(c+d) ’ (18)
and

B, (e 2) e (w|z|)”*l (19)

®,2)= —)" .
" (n-1)!" Az

Substitution of Equations (15) and (16) back into Equation (9) results in

V,==Qp+> A7, (r,0)  if r=b and —c<z<d, (20)

-1
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where

7, (r,0)=21" J‘: [X, (@)e” ™ +Y. (w)e™ "’ ]wd,(ersin@)dw+(Ar) "'PX(cosd), (21)
in which the integral can be calculated numerically.

The remaining boundary conditions to be fulfilled are those at the particle and hard-

core surfaces. Substituting Equations (8) and (20) into Equations (4) and (5) yields

i[cn 1.2 (1) + DK, 4, (12)] (1) "*Py(cos ) =0, (22)

n=1

S HIC, 42 (A0) + D,K,. ., (AD)](2) P (cos 0) — A, (b, 0)} = ~Qbsin & o

nz::{[Cn{lbl wap(Ab)+ bl 5, (Ab) =3I, (Ab)}— D {1bK, ,,,(1b)
+ADK, 5, (A0) + 3K ., (AD)}] (Ab) ™2 P!(cos@)—2A 7. (b,0)}=0, (24)

where

7 (r,0)=r? g[w] = l’zr_[:{[xn (@)™ =Y (w)e "I, (wr sin ) cos &
X, (@)’ +Y, (@)e " ***"]J, (cr sin G)sin Fyw’dw— (n +2)(Ar) "' P(cos ), (25)

The satisfaction of boundary conditions (22)-(24) at the inner and outer surfaces of
the porous layer of the soft sphere requires solutions of the constants Aﬂ , Cn, and Dn.
The collocation technique [29] permits these boundary conditions to be imposed at N
points on the meridian semicircle of each surface (from #=0 to #=r) and the infinite

series in Equations (8) and (20) to be truncated after N terms, leading to 3N

simultaneous linear algebraic equations. These algebraic equations can be numerically
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solved for sufficiently large N to result in the 3N constants A,, C.,and D,. The
details of the boundary collocation scheme were given in an early paper [30] for a hard

sphere translating perpendicular to two parallel plane walls.

10
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2.3. Hydrodynamic torque on the soft particle

The hydrodynamic torque acting on the soft sphere is [27]

T =8nni?A, (26)
where 7 is the viscosity of the fluid and only the lowest-order constant A, makes a
contribution.

When the surface layer of the soft sphere vanishes, it degenerates to a hard sphere
of radius b=a, the constants C, = D, =0, Equations (5), (8), (22), (24), and (25) are
trivial, and just Equation (23) is required to be solved for the N constants A . When
the hard core vanishes, the soft sphere reduces to an entirely porous sphere of radius b,
the constants D, =0, Equations (4) and (22) become trivial, and only Equations (23)

and (24) need to be solved for the 2N constants A and C,.

11
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Chapter 3

Results and discussion

The numerical solutions for the hydrodynamic torque T acting on a soft spherical
particle rotating about its diameter perpendicular to two plane walls as a function of the
ratio of the particle radius to the porous layer penetration length b, ratio of the core-to-
particle radii a/b, particle-wall spacing parameter b/c, and relative position parameter
c/(c+d) obtained from the boundary collocation method, are provided in Tables Al
and A2 in Appendix A for the distinct case of a=0 (a fully porous sphere) and the
general case, respectively. The torque T,, given by Equation (1) for the soft sphere in the
unbounded fluid is used to normalize T . The accuracy and convergence behavior of the
collocation technique depends upon the relevant parameters. All the results obtained
converge to at least six significant figures. For the most difficult case, the number of
collocation points, N =46, is sufficiently large to achieve this convergence. These
results are the same as those obtained for a hard sphere [23] in the limiting case of
Ab—o or a=b. Obviously, T/T,=1 is the limit b/c=0, regardless of other

parameters. The wall effects on the rotational motion of the soft sphere can be significant.

12
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3.1. Torque on a porous particle

The normalized torque T /T, for a fully porous sphere rotating about its diameter
perpendicular to two planar walls is plotted against the parameters Ab, b/c, ¢/(c+d)
in Figures 2-4, respectively, over the entire range. For fixed values of b/c and
c/(c+d), as expected and shown in Table Al and Figures 2a, 2b, 3a, and 4b, T /T, is
a monotonically increasing function of the shielding parameter Ab (decreasing function
of the permeability) for the fluid in the porous particle from unity (with T=T,=0) at
Ab =0 to alarger finite value as Ab —>co. When Ab is smaller than unity, the variation
of T/T, with b/c and c/(c+d) is weak (<1.4%). T /T, of a porous sphere with
low permeability (say, Ab >100) in general is close to that of a hard one (with Ab — ),
though their difference can be noticeable when the particle is very close to a wall
(b/c—1).

For the given values of Ab and c/(c+d), as indicated in Table Al and Figures
2b, 3a, 3b, and 4a, the normalized torque T /T,, acting on the confined porous sphere, is
an increasing function of the particle-to-wall spacing parameter b/c from unity at
b/c=0 to a greater finite value at b/c=1 (note that T /T, is still finite even for the
limit that the particle touches the plane walls), since the hydrodynamic hindrance caused

by the plane walls is stronger when they locate closer to the particle. The dependence of

T/T, on b/c is robust when Ab is large but vanishes in the limit Ab=0. The

13
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supposition that the two-wall effect on the rotation of a particle can be viewed as a sum

of single-wall effects will overestimate the hydrodynamic torque exerted on the particle.

That is, the increase in T/T, from unity for the two-equidistant-wall case

c/(c+d)=1/2 is less than twice that for the corresponding single-wall case

c/(c+d) =0, which can be seen in Table Al and Figures 2a, 3b, 4a, and 4b.

For specified values of ib and b/c, the normalized torque T /T, of the porous

sphere increases with an increase in the parameter c/(c+d) (denoting the relative

position of the porous sphere between the walls) from a finite value at ¢/(c+d)=0

(the case of a single wall) to a greater one at ¢/(c+d)=1/2 (the case of two equally

distant walls). Namely, the nearness of a second wall will enhance the torque acting on

the particle close to the first wall. The variation of T /T, with c¢/(c+d) can be

significant when the value of Ab is large, though it disappears in the limits Ab=0 and

b/c=0. For a given value of 2b/(c+d) (the ratio of the particle diameter to the wall-

to-wall distance), as revealed by the dashed curves in Figure 4a, the torque is minimum

when the particle locates in the middle between the two walls [c/(c+d)=1/2] and

increases monotonically as the particle approaches either wall.

14
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Figure 2(a). Normalized torque T /T, for a porous sphere (a=0) rotating about a

diameter perpendicular to two planar walls with b/c=9/10 vs. the shielding parameter

Ab.

15

doi:10.6342/NTU202401699



1.4 —————r——r————m

13F
12+
T T
1.1k
10 h/c=0
10" 10 10' 10> 10’
Ab

Figure 2(b). Normalized torque T /T, for a porous sphere (a = 0) rotating about a

diameter perpendicular to two planar walls with ¢/ (c+d)=1/2 vs. the shielding

parameter Ab.
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Figure 3(a). Normalized torque T /T, for a porous sphere (a=0) rotating about a

diameter perpendicular to two planar walls with c/(c+d)=1/2 vs. the spacing

parameter b/c.
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Figure 3(b). Normalized torque T /T, for a porous sphere (a=0) with Ab=10

rotating about a diameter perpendicular to two planar walls vs. the spacing parameter

b/c.
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Figure 4(a). Normalized torque T /T, for a porous sphere (a=0) with Ab=10

rotating about a diameter perpendicular to two planar walls vs. the relative position

parameter c/(c+d).
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Figure 4(b). Normalized torque T /T, for a porous sphere (a=0) rotating about a

diameter perpendicular to two planar walls with b/c=9/10 vs. the relative position

parameter c/(c+d).
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3.2 Torque on a soft particle

After understanding the hydrodynamic effect of two parallel plane walls on the
axially symmetric rotation of a porous particle, we study the general case of that on a
rotating soft particle. The results of the normalized torque T /T, on a soft sphere
rotating about its diameter perpendicular to two planar walls for different values of the
core-to-particle radius ratio a/b , shielding parameter in the porous layer Ab ,
dimensionless spacing parameter b/c, and relative position parameter c/(c+d) are
presented in Figures 5-8 (together with Table A2), respectively, over the entire ranges.
Again, T /T, increases as b/c increases from unity at b/c=0 to a finite value at
b/c=1 andincreases as c/(c+d) increases from a finite valueat c¢/(c+d)=0 to
another at c/(c+d)=1/2, keeping the other parameters unchanged. Also, T /T, isa
mono-tonic increasing function of Ab from a constant (equal to zero for the entirely
porous limit a/b=0) at Ab=0 (the porous surface layer is completely permeable) to
a great one as Ab — oo (the surface layer is impermeable).

For fixed values of Ab, b/c,and c/(c+d), Table A2 and Figures 5-8 show that
the normalized torque T /T, for the confined soft spherical particle undergoing rotation
increases monotonically with an increase in the ratio of the core-to-particle radii a/b,
where the limits a/b=0 and a/b=1 denote a porous sphere and an impermeable

sphere, respectively. That is, if the porous layer is thicker for specified permeability,
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particle size, and separation from walls, the torque exerted on the particle will be less. All

results for the soft spherical particle fall between the upper and lower bounds of a/b=1

and a/b=0, respectively. For the circumstance where the surface layer has low to

mediate permeability (e.g., Ab>10), as shown in Figures 5aand 8, T /T, on the particle

with a/b smaller than about 0.8 can be well approximated by that for a fully porous

particle of the same size, permeability, and distances from walls. In this case, the relative

motion of the fluid is barely felt by the hard core of the soft sphere, and its hindrance to

the flow is negligible. However, this approximation is not valid for the porous layer with

high permeability.

Recently, collocation results were obtained for the normalized hydrodynamic torque

T /T, of a soft sphere of radius b rotating about a diameter on the axis of a circular

cylinder of radius ¢ [28]. Similar to the currently considered case of axisymmetric

rotation of the particle perpendicular to two equidistant plane walls (i.e., at the center of

aslit), T /T,is a monotonically growing function of the shielding parameter Ab (from

a value at Ab=0 to a higher one at Ab— o), particle-wall spacing parameter b/c

(from unity at b/c=0 to a greater constant at b/c=1), and core-to-particle radius

ratio a/b, holding other parameters constant. The particle in the circular cylinder bears

much more torque than the particle in the slit does. This result manifests that the

retardation to the particle rotation caused by the confinement walls is freed in both
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principal lateral directions of the slit, though only in an axial direction of the cylinder.
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Figure 5(a). Normalized torque T /T, for a soft sphere rotating about a diameter

perpendicular to two planar walls with b/c=9/10 vs. the ratio of the core-to-particle
radii a/b . The solid and dashed curves denote cases of c/(c+d)=1/2 and

c/(c+d) =0, respectively.
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Figure 5(b). Normalized torque T /T, for a soft sphere with Ab =1 rotating about a

diameter perpendicular to two planar walls vs. the ratio of the core-to-particle radii a/b.

The solid and dashed curves denote cases of c¢/(c+d)=1/2 and c/(c+d)=0,

respectively.
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Figure 6. Normalized torque T /T, for a soft sphere rotating about a diameter

perpendicular to two planar walls vs. the shielding parameter Ab with b/c=9/10. The

solid and dashed curves denote cases of c/(c+d)=1/2 and c/(c+d)=0,

respectively.
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Figure 7. Normalized torque T /T, for a soft sphere rotating about a diameter
perpendicular to two planar walls vs. the spacing parameter b/c with c¢/(c+d)=1/2.

The solid and dashed curves denote cases of Ab=1 and Ab=3, respectively.
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Figure 8. Normalized torque T /T, for a soft sphere rotating about a diameter
perpendicular to two planar walls vs. the relative position parameter c/(c+d) with
Ab=1. The solid and dashed curves denote cases of b/c=7/10 and b/c=9/10,

respectively.
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Chapter 4

Conclusions

The slow rotational motion of a soft spherical particle in a viscous fluid about its
diameter perpendicular to one or two planar walls is semianalytically studied using the
method of boundary collocation. Convergent numerical results for the torque exerted on
the particle by the fluid were obtained for various values of the ratio of the particle radius
to the flow penetration length of the porous layer Ab, the ratio of the core-to-particle
radii a/b, particle-wall spacing parameter b/c, and relative position parameter
c/(c+d). The wall effect on the rotating soft particle can be significant. The normalized
torque, T /T,, acting on the confined particle increases with an increase in b/c from
unityas b/c=0 (the particle is far from the walls) and remains finite even at the contact
limit b/c=1. This torque is smaller than that on a hard sphere (or soft one with larger
al/b or Ab), keeping the other parameters’ constant. For a given ratio of the particle
diameter to the wall-to-wall distance 2b/(c+d), T /T, is minimal when the particle is
midway between the two walls [c/(c+d)=1/2] and increases as it locates closer to
either wall [the value of c/(c+d) decreases]. Experimental data of the normalized
torque for the slow rotation of a soft particle near one or two plane walls would be needed

to confirm the validity of our semianalytical collocation results at various ranges of Ab,
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al/b, b/c,and c/(c+d).Therelationship between the four dimensionless parameters

(Ab, b/c, c/(c+d), and a/b) and the normalized torque T /T, is depicted in

Figure 9.
T
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Figure 9. The relationship between the dimensionless parameters Ab, b/c, c/(c+d),

a/b and the normalized torque T /T,.
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Chapter 3 provides results for a resistance problem, where the hydrodynamic torque
T on a particle rotating normal to two planar walls is considered for a given angular
velocity @ [equalto (T,/8nnA *bR)[Aacosh(ib—Aa)+sinh(1b—Aa)] accordingto
Equation (1)]. In a mobility problem, the torque, T  (equal to
8rnnA*bQ,R /[Aacosh(Ab - Aa) +sinh(Ab—Aa)]), imposed to the particle is assumed
and the boundary-corrected angular velocity, €, is considered. For a soft sphere rotating
normal to two plane walls dealt with here, the normalized angular velocity 2/, for
the mobility problem is equal to (T /T,)™, as given in Tables A1 and A2 and Figures 2-8

for the resistance problem.
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List of symbols

a the radius of hard core, m

A.C.,D, unknow coefficients in Eq. (8) and Eq. (9), m-s™

b the radius of a soft spherical particle, m

B,(@,2) a function defined by Eq. (19), -

c,d the distances of the planar walls from the soft particle center, m

h(r) step function equals unity as a<r <b and zero otherwise, -

I the modified Bessel function of the first kind of order n, -

Jn the Bessel function of the first kind of order n, -

Kh the modified Bessel function of the second kind of order n, -

Pnl the associated Legendre function of the first kind of order n and
degree 1, -

r,o,p spherical coordinates, m, -, -

R a constant defined by Eq. (2), -

T the torque exerted by the fluid on the soft particle, N-m

T, the torque exerted by the fluid on the soft particle in an

unbounded fluid, N-m

v, the fluid velocity distribution, m-s™
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X ()Y (@)
Xy (@)Y, ()
Greek letters
a,(p,7)
7,(r,0)

7,(r,6)

0,9,z

re

functions defined by Eq. (9), m-s™*

functions defined by Eq. (15) and Eq. (16), -

a function defined by Eq. (12), -

a function defined by Eq. (21), -

a function defined by Eq. (25), -

the viscosity of the fluid, kg-m™-s™

the penetration length (square root of permeability) of fluid flow
within the surface layer of the soft particle, m

circular cylindrical coordinates, m,-, m

the nontrivial shear stress at the particle surface, N- m

the transform variable in Eq. (9), m™

the angular velocity exerted by the fluid on the soft particle, s
the angular velocity exerted by the fluid on the soft particle in an

unbounded fluid, s™
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Appendix A

A.1. Tables of collocation solutions for the normalized torque

The collocation solutions for the normalized torque T /T, acting on a soft sphere
rotating about its diameter perpendicular to two plane walls as a function of the ratio of
the particle radius to the porous layer penetration length Ab, ratio of the core-to-particle
radii a/b, particle-wall spacing parameter b/c, and relative position parameter
c/(c+d) are presented in Tables Al and A2 for the limiting case of a=0 (a fully

porous sphere) and general case, respectively.
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Table Al. Normalized torque T/T, for a porous sphere (a=0) rotating about a

diameter perpendicular to two parallel planar walls.

c/(c+d) blc T/,
Ab=1 Ab=10 Ab=100  Ab=600
0 0.1 1.00001 1.00009 1.00012  1.00012
0.3 1.00021 1.00247 1.00329  1.00337
0.5 1.00095 1.01156 1.01544  1.01585
0.6 1.00165 1.02021 1.02714  1.02786
0.7 1.00262 1.03270 1.04432  1.04554
0.8 1.00392 1.05031 1.06937  1.07144
0.9 1.00559 1.07526 1.10766  1.11143
0.95 1.00659 1.09183 1.13641  1.14210
0.99 1.00746 1.10804 1.17065  1.18075
0.995 1.00758 1.11031 1.17647  1.18807
0.999 1.00767 1.11218 1.18165  1.19516
1/4 0.1 1.00001 1.00009 1.00012  1.00013
0.3 1.00021 1.00251 1.00333  1.00342
0.5 1.00097 1.01173 1.01567  1.01607
0.6 1.00167 1.02050 1.02753  1.02826
0.7 1.00266 1.03317 1.04495  1.04619
0.8 1.00397 1.05103 1.07034  1.07243
0.9 1.00567 1.07631 1.10907  1.11289
0.95 1.00668 1.09307 1.13811  1.14386
0.99 1.00757 1.10946 1.17261  1.18280
0.995 1.00769 1.11175 1.17849  1.19017
0.999 1.00778 1.11363 1.18371  1.19734
1/2 0.1 1.00001 1.00016 1.00022  1.00022
0.3 1.00037 1.00446 1.00594  1.00609
0.5 1.00172 1.02101 1.02813  1.02886
0.6 1.00297 1.03690 1.04972  1.05106
0.7 1.00473 1.06007 1.08180  1.08410
0.8 1.00708 1.09308 1.12918  1.13312
0.9 1.01011 1.14040 120263 1.20992
0.95 1.01192 1.17212 1.25847  1.26959
0.99 1.01352 1.20337 1.32558  1.34554
0.995 1.01373 1.20775 1.33710  1.36004
0.999 1.01389 1.21135 1.34733  1.37420
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Table A2. Normalized torque T /T, for a soft sphere with Ab=1 rotating about a

diameter perpendicular to two parallel planar walls.

c/(c+d) bic T,
a/b=05 a/b=0.8 a/b=0.95

0 0.1 1.00002 1.00006 1.00011
0.3 1.00055 1.00175 1.00290

0.5 1.00253 1.00816 1.01362

0.6 1.00438 1.01420 1.02387

0.7 1.00698 1.02282 1.03880

0.8 1.01046 1.03469 1.06020

0.9 1.01498 1.05079 1.09159

0.95 1.01769 1.06088 1.11354

0.99 1.02009 1.07019 1.13645

0.995 1.02041 1.07145 1.13982

0.999 1.02066 1.07246 1.14263

1/4 0.1 1.00002 1.00007 1.00011
0.3 1.00055 1.00177 1.00294

0.5 1.00256 1.00827 1.01381

0.6 1.00444 1.01440 1.02421

0.7 1.00708 1.02315 1.03935

0.8 1.01061 1.03519 1.06104

0.9 1.01520 1.05151 1.09283

0.95 1.01794 1.06173 1.11501

0.99 1.02038 1.07117 1.13814

0.995 1.02070 1.07244 1.14154

0.999 1.02096 1.07347 1.14437

1/2 0.1 1.00004 1.00012 1.00019
0.3 1.00098 1.00316 1.00525

0.5 1.00457 1.01479 1.02477

0.6 1.00792 1.02584 1.04365

0.7 1.01264 1.04172 1.07145

0.8 1.01899 1.06378 1.11175

0.9 1.02727 1.09397 1.17167

0.95 1.03225 1.11304 1.21400

0.99 1.03667 1.13074 1.25853

0.995 1.03725 1.13313 1.26511

0.999 1.03772 1.13507 1.27059
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A.2. Approach to boundary collocation technique
To prevent divergence in numerical calculations, it's recommended to avoid
choosing the points with @ =0, 90°, and 180" when using the boundary collocation

technique. But these points are also crucial, so values of & are chosen very close to

these points, such as 0'+o, 90°— o, 90+, 180°— &, where 6=001. If we take the

number of collocation points N =10, incorporating it into the following Equation (A1)

yields the A@=22.5". This is meant to substitute values for every 22.5° in Equations (22),
(23), and (24). Figure Al depicts a schematic diagram for selecting 10 points on the

meridian semicircle surface.

90
Ag= —
= (N2-1): (A

0.01° 9225-
45°
67.5°
89.99 -
"""""" 90.01 -
112.5°
135°
179.99 157.5°

Figure A1. The schematic diagram for picking out 10 points on the meridian semicircle

surface.
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A.3. Procedure of boundary collocation calculations

The initial step is to enter the parameters Ab, b/c, c/(c+d), and a/b into
MATLAB. Apply N angles (collocation points) for computation to determine the
normalized torque T/T,. The normalized torque T /T, is obtained when the relative
error between the current T /T, and previous T/T, is less than 10° when compared.

If the error exceeds 10°, we repeat the calculation with N +2 angles until convergent

T/T, is obtained.

Give parameters : T
a b c b = Apply N angles == Solve the equations to get T
0

b ¢ c+d’

Apply N+2 angles

Yes No Check the relative error between

Output

! dold
Relative error < 10-5 1€W - andoldone

Figure A2. Flow diagram.
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