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摘要 

 

本文探討一個軟質球形粒子於充滿不可壓縮的牛頓流體之兩平行平板間任意

位置，以其垂直於平板之直徑為轉軸，所進行的穩態低雷諾數轉動。粒子外部的流

體速度透過 Stokes 方程式在圓柱坐標系統和球坐標系統的個別通解相加獲得流速

通解，而粒子多孔表面層內的流體速度則透過 Brinkman 方程式在球坐標系統下

獲得流速通解。首先帶入平板的邊界條件並透過 Hankel 轉換法解析計算，接著帶

入粒子表面的邊界條件，最後使用邊界取點法數值計算，獲得流體施加於粒子之力

矩。吾人探討正規化力矩與各相關無因次參數（硬質核心半徑與粒子半徑之比值、

粒子半徑與單板間距之比值、粒子在平板間的相對位置、粒子半徑與流體於多孔層

穿透長度之比值）之關係。平板對粒子轉動之邊界效應影響相當明顯，當固定粒子

直徑與平板間距之比值時，粒子位於兩平板中間的正規化力矩最小，正規化力矩會

隨粒子與任一平板的相對間距減小而增加（當粒子靠近任一平板時正規化力矩上

升），即使粒子碰觸平板時正規化力矩仍然是有限的。在保持其他參數不變的情況

下，軟質粒子的正規化力矩小於實心粒子（或具有較小厚度或穿透長度的多孔層之

軟質粒子）。 

 

關鍵詞：粒子旋轉、軟質粒子、平板間之邊界效應、蠕動流、力矩 
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Abstract 

 

The creeping flow of a viscous fluid around a soft colloidal sphere rotating about a 

diameter normal to two planar walls at an arbitrary position between them is theoretically 

investigated in the steady limit of small Reynolds numbers. The fluid velocity outside the 

particle consists of the general solutions of the Stokes equation in circular cylindrical and 

spherical coordinates, while the fluid velocity inside the porous surface layer of the 

particle is expressed by the general solution of the Brinkman equation in spherical 

coordinates. The boundary conditions are implemented first on the planar walls by means 

of the Hankel transforms and then at the particle and hard-core surfaces by a collocation 

technique. The torque exerted on the particle by the fluid is calculated as a function of the 

ratio of the core-to-particle radii, ratio of the particle radius to the flow penetration length 

of the porous layer, and relative particle-to-wall spacings over the entire range. The wall 

effect on the rotating soft particle can be significant. The hydrodynamic torque exerted 

on the confined soft sphere increases as the relative particle-to-wall spacings decrease 

and stays finite even when the soft sphere contacts the plane walls. It is smaller than the 

torque on a hard sphere (or soft one with a reduced thickness or penetration length of the 

porous layer), holding the other parameters constant. For a given relative wall-to-wall 

spacing, this torque is minimal when the particle is situated midway between the walls 
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and rises as it locates closer to either wall. 

Keywords: particle rotation, soft particle, boundary effect in slit, creeping flow, 

hydrodynamic torque 
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Chapter 1 

Introduction 

 

The low-Reynolds-number translational and rotational motions of colloidal particles 

in incompressible Newtonian fluids have attracted wide attention from researchers in the 

fields of chemical, biomedical, mechanical, civil, and environmental engineering. These 

motions are practical and fundamental in numerous processes such as agglomeration, 

sedimentation, centrifugation, microfluidics, aerosol technology, and rheology of 

suspensions. The theoretical investigation of this topic began with Stokes’ studies [1,2] 

on the creeping motions of hard spherical particles in unbounded viscous fluids.  

Masliyah et al. [3] and Keh and Chou [4] extended this analysis to the translation and 

rotation, respectively, of a soft sphere. 

A soft particle of radius b  has a hard core of radius a  , covered by a permeable 

porous layer of thickness b a . Polystyrene latices with surface layers [5] and biological 

cells with surface attachments [6] are examples of soft particles. To sterically stabilize 

colloidal dispersions, polymers are deliberately adsorbed by particles to form permeable 

layers [7]. When the porous layers of soft spheres disappear, the particles revert to hard 

spheres. When the hard cores of soft spheres vanish, they become fully porous spheres 

(like permeable colloid flocs and polymer coils) [8].  
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The hydrodynamic torque on a soft sphere of radius b  (a hard core of radius a  

covered by a porous layer of thickness b a ) rotating with an angular velocity of Ω  

about a diameter in an unbounded fluid of viscosity   at low Reynolds numbers is [4] 

2

0

8π

cosh( ) sinh( )

bΩR
T

a b a b a



    




  

,                                     (1) 

where  

3 2 2 2 2( 3 3 )cosh( ) ( 3 3)sinh( )R ab b a b a b ab b a                ,         (2)  

and 1/   is the penetration length (square root of permeability) of fluid flow within the 

surface layer of the soft particle ( 0T  and Ω  are in opposite directions). In the limiting 

case b  , Equation (1) degenerates to the Stokes result for a hard sphere of radius b . 

In real situations of the rotation of particles, the surrounding fluid is bounded by 

solid walls [9–12]. Thus, it is necessary to know whether the proximity of boundary walls 

meaningfully affects particle rotation. The slow rotations of a hard sphere confined by 

adjacent boundaries, such as in a spherical cavity [13–17], in a circular cylinder [18–20], 

and near one or two planar walls [13,21–23], were analyzed. Alternatively, the low-

Reynolds-number rotations of a soft or porous spherical particle in a spherical cavity 

[4,24–27] and in a cylinder [28] were also theoretically investigated. These studies show 

that the effect of boundaries on the rotation of particles can be very substantial and 

interesting.  
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In the general theories of stirred vessels and rotational viscometers for highly viscous 

liquids, it is important to understand the variation of torque as the confinement boundary 

approaches. The objective of this thesis is to analyze the rotation of a soft colloidal sphere 

(having a porous layer of arbitrary thickness and permeability) about its diameter normal 

to one or two plane walls at an arbitrary position between them at a low Reynolds number. 

The fluid velocity was found by solving the Stokes and Brinkman equations using the 

boundary collocation method, and semianalytical results were obtained for the 

hydrodynamic torque acting on the particle for various values of the relevant parameters 

(the core-to-particle radius ratio, shielding parameter of the porous surface layer, and 

relative separation distances from the walls), with excellent convergence over the entire 

range. 
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Chapter 2 

Analysis 

 

As illustrated in Figure 1, we studied the creeping flow of a constant-property fluid 

around a soft spherical particle of radius b   rotating steadily with a constant angular 

velocity Ω  about a diameter perpendicular to two large planar walls whose distances 

from the particle center are c   and d  , respectively ( c d   is taken without loss of 

generality), and ),,( r   and ),,( z   represent the spherical and cylindrical 

coordinate systems, respectively, originating from the particle center. The soft sphere 

comprises a permeable porous surface layer of thickness ab  . Thus, the radius of its 

hard core is a . The fluid velocity inside the porous layer is finite, while the external fluid 

far from the particle is at rest. The objective is to find the correction to Equation (1) for 

the particle rotation caused by the confining plane walls. 
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Figure 1. Geometrical sketch of a soft spherical particle rotating about a diameter normal 

to two planar walls. 
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2.1. Governing equation and boundary conditions 

The creeping flow is governed by the Stokes and Brinkman equations, yielding 

2 2 2 2 2

2 2

1 1 1
[ ( ) ] ( ) [ ( sin )] ( ) 0

sin

v
h r v r v h r v

r r r r



     
  


  

      
   

. (3)  

Here ( , )v z    in cylindrical coordinates or ( , )v r    in spherical coordinates is the   

(only nontrivial) component of the fluid velocity distribution, the continuity equation is 

satisfied, the dynamic pressure is constant everywhere, 1   is the penetration length 

(square root of permeability) of fluid flow within the surface layer, and ( )h r   equals 

unity as a r b   and zero otherwise.  

The boundary conditions require that the fluid is no slip at the hard-core surface and 

plane walls, and that both velocity and stress are continuous at the particle surface. Thus, 

r a :      0v  ,                                                (4) 

r b :      v  and r  are continuous,                              (5) 

dcz  , :   v Ω   ,                                       (6) 

  and c z d   : v Ω   ,                              (7) 

where r  is the nontrivial shear stress at the particle surface. Equations (3)-(7) take the 

reference frame rotating with the particle.  
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2.2. Solution for the fluid velocity 

The fluid velocity can be expressed in the form [23,27] 

1/2 1

1/2 1/2

1

= ( ) [ ( ) ( )] (cos )n n n n n

n

v r C I r D K r P    




 



       if a r b  ,      (8) 

2 1 1

1
0

1

[ ( )e ( )e ] ( )d ( ) (cos )z z n

n n

n

v Ω X Y J A r P 

         


   



       

if r b  and c z d   ,     (9)  

where 
1

nP  is the associated Legendre function of the first kind of order n  and degree 

1, nJ  is the Bessel function of the first kind of order n , nI  and nK  are the modified 

Bessel functions of the first and second kinds, respectively, of order n , ( )X  , ( )Y  , 

nA , nC , and nD  (all having the dimension of velocity) are the unknown functions and 

constants, respectively, to be determined. The parts of v  involving 
1

nP  in the previous 

equations are separable solutions to Equation (3) in spherical coordinates that represent 

the disturbance generated by the particle and the part of v  involving nJ  in Equation 

(9) is a Fourier-Bessel integral solution to Equation (3) in cylindrical coordinates 

representing the disturbance produced by the planar walls. Note that Equation (9), which 

is a superposition of the general solutions in cylindrical and spherical coordinates due to 

the linearity of Equation (3), satisfies Equation (7) immediately. 

Substitution of boundary condition (6) into Equation (9) leads to  

2

1
0

1

[ ( )e ( )e ] ( )d ( , )c c

n n

n

X Y J A c        






    ,           (10)  

2

1
0

1

[ ( )e ( )e ] ( )d ( , )d d

n n

n

X Y J A d        






    ,            (11)  
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where  

2 2 2 ( 1)/2 1

2 2 1/2
( , ) [ ( )] [ ]

( )

n

n n

z
z z P

z
   



  


.                   (12)  

The application of the Hankel transform on the variable   to Equations (10) and (11) 

yields  

2

1
0

1

( )e ( )e ( , ) ( )dc c

n n

n

X Y A c J        
 





     ,           (13)  

2

1
0

1

( )e ( )e ( , ) ( )dd d

n n

n

X Y A d J        
 





     ,             (14)  

The solution of Equations (13) and (14) leads to  

1

( ) ( )n n

n

X A X 




 ,                                          (15)  

1

( ) ( )n n

n

Y A Y 




 ,                                            (16)  

where  

( )

2 ( )

e [ ( , ) e ( , )]
( )

1 e

c c d

n n
n c d

B c B d
X

 



 






  


 
,                       (17)  

( )

2 ( )

e [e ( , ) ( , )]
( )

1 e

d c d

n n
n c d

B c B d
Y

 



 






 


 
,                         (18)  

and  

 
 

1e
, = ( )

1 !

z

n

n

z
B z

n z

 









.                                      (19)  

Substitution of Equations (15) and (16) back into Equation (9) results in  

1

( , )n n

n

v Ω A r   




       if r b  and c z d   ,              (20)  
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where  

2 cos cos 1 1

1
0

( , ) [ ( )e ( )e ] ( sin )d ( ) (cos )r r n

n n n nr X Y J r r P             


      , (21)  

in which the integral can be calculated numerically.  

The remaining boundary conditions to be fulfilled are those at the particle and hard-

core surfaces. Substituting Equations (8) and (20) into Equations (4) and (5) yields  

1/2 1

1/2 1/2

1

[ ( ) ( )] ( ) (cos ) 0n n n n n

n

C I a D K a a P   




 



  ,                    (22)  

1/2 1

1/2 1/2

1

{[ ( ) ( )]( ) (cos ) ( , )} sinn n n n n n n

n

C I b D K b b P A b Ωb      




 



   
, (23) 

1/2 3/2 1/2 1/2

1

{[ { ( ) ( ) 3 ( )} { ( )n n n n n n

n

C bI b bI b I b D bK b      


   



  
  

1/2 1 *

3/2 1/2( ) 3 ( )}]( ) (cos ) 2 ( , )} 0n n n n nbK b K b b P A b      

     ,     (24)  

where  

* 2 2 cos cos

1
0

( , )
( , ) [ ] {[ ( )e ( )e ] ( sin )cosr rn

n n n

r
r r r X Y J r

r r

    
       


 

  
    

cos cos 2 1 1

2[ ( )e + ( )e ] ( sin )sin } d (n 2)( ) (cos )r r n

n n nX Y J r r P                 ,    (25)  

The satisfaction of boundary conditions (22)-(24) at the inner and outer surfaces of 

the porous layer of the soft sphere requires solutions of the constants nA , nC , and nD . 

The collocation technique [29] permits these boundary conditions to be imposed at N  

points on the meridian semicircle of each surface (from  = 0  to  =   ) and the infinite 

series in Equations (8) and (20) to be truncated after N   terms, leading to 3N  

simultaneous linear algebraic equations. These algebraic equations can be numerically 



doi:10.6342/NTU202401699

10 

 

solved for sufficiently large N  to result in the 3N  constants nA , nC , and nD . The 

details of the boundary collocation scheme were given in an early paper [30] for a hard 

sphere translating perpendicular to two parallel plane walls. 
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2.3. Hydrodynamic torque on the soft particle 

The hydrodynamic torque acting on the soft sphere is [27] 

2

18πT A  ,                                               (26)  

where   is the viscosity of the fluid and only the lowest-order constant 1A  makes a 

contribution.  

When the surface layer of the soft sphere vanishes, it degenerates to a hard sphere 

of radius b a , the constants 0n nC D  , Equations (5), (8), (22), (24), and (25) are 

trivial, and just Equation (23) is required to be solved for the N  constants nA . When 

the hard core vanishes, the soft sphere reduces to an entirely porous sphere of radius b , 

the constants 0nD  , Equations (4) and (22) become trivial, and only Equations (23) 

and (24) need to be solved for the 2N  constants nA  and nC .   
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Chapter 3 

Results and discussion 

 

The numerical solutions for the hydrodynamic torque T  acting on a soft spherical 

particle rotating about its diameter perpendicular to two plane walls as a function of the 

ratio of the particle radius to the porous layer penetration length b , ratio of the core-to-

particle radii ba / , particle-wall spacing parameter /b c , and relative position parameter 

/ ( )c c d  obtained from the boundary collocation method, are provided in Tables A1 

and A2 in Appendix A for the distinct case of 0a    (a fully porous sphere) and the 

general case, respectively. The torque 0T , given by Equation (1) for the soft sphere in the 

unbounded fluid is used to normalize T . The accuracy and convergence behavior of the 

collocation technique depends upon the relevant parameters. All the results obtained 

converge to at least six significant figures. For the most difficult case, the number of 

collocation points, 46N   , is sufficiently large to achieve this convergence. These 

results are the same as those obtained for a hard sphere [23] in the limiting case of 

b    or a b  . bbviously, 0/ =1T T   is the limit / 0b c   , regardless of other 

parameters. The wall effects on the rotational motion of the soft sphere can be significant. 
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3.1. Torque on a porous particle 

The normalized torque 0/TT  for a fully porous sphere rotating about its diameter 

perpendicular to two planar walls is plotted against the parameters b , /b c , / ( )c c d  

in Figures 2-4, respectively, over the entire range. For fixed values of /b c   and 

/ ( )c c d , as expected and shown in Table A1 and Figures 2a, 2b, 3a, and 4b, 0/TT is 

a monotonically increasing function of the shielding parameter b  (decreasing function 

of the permeability) for the fluid in the porous particle from unity (with 0= =0T T ) at 

0b   to a larger finite value as b  . When b  is smaller than unity, the variation 

of 0/TT  with /b c  and / ( )c c d  is weak (<1.4%). 0/TT  of a porous sphere with 

low permeability (say, 100b  ) in general is close to that of a hard one (with b  ), 

though their difference can be noticeable when the particle is very close to a wall 

( / 1b c ). 

For the given values of b  and / ( )c c d , as indicated in Table A1 and Figures 

2b, 3a, 3b, and 4a, the normalized torque 0/TT , acting on the confined porous sphere, is 

an increasing function of the particle-to-wall spacing parameter /b c   from unity at 

/ 0b c   to a greater finite value at / 1b c   (note that 0/TT  is still finite even for the 

limit that the particle touches the plane walls), since the hydrodynamic hindrance caused 

by the plane walls is stronger when they locate closer to the particle. The dependence of 

0/TT   on /b c   is robust when b   is large but vanishes in the limit 0b   . The 
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supposition that the two-wall effect on the rotation of a particle can be viewed as a sum 

of single-wall effects will overestimate the hydrodynamic torque exerted on the particle. 

That is, the increase in 0/TT   from unity for the two-equidistant-wall case 

/ ( ) 1/ 2c c d    is less than twice that for the corresponding single-wall case 

/ ( ) 0c c d  , which can be seen in Table A1 and Figures 2a, 3b, 4a, and 4b. 

For specified values of b  and /b c , the normalized torque 0/TT  of the porous 

sphere increases with an increase in the parameter / ( )c c d   (denoting the relative 

position of the porous sphere between the walls) from a finite value at / ( ) 0c c d   

(the case of a single wall) to a greater one at / ( ) 1/ 2c c d   (the case of two equally 

distant walls). Namely, the nearness of a second wall will enhance the torque acting on 

the particle close to the first wall. The variation of 0/TT   with / ( )c c d   can be 

significant when the value of b  is large, though it disappears in the limits 0b   and 

/ 0b c  . For a given value of 2 / ( )b c d  (the ratio of the particle diameter to the wall-

to-wall distance), as revealed by the dashed curves in Figure 4a, the torque is minimum 

when the particle locates in the middle between the two walls [ / ( ) 1/ 2c c d   ] and 

increases monotonically as the particle approaches either wall. 
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Figure 2(a). Normalized torque 0/TT   for a porous sphere ( 0a   ) rotating about a 

diameter perpendicular to two planar walls with / 9 /10b c   vs. the shielding parameter 

b .  
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Figure 2(b). Normalized torque 0/TT  for a porous sphere ( 0a  ) rotating about a 

diameter perpendicular to two planar walls with / ( ) 1/ 2c c d   vs. the shielding 

parameter b .
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Figure 3(a). Normalized torque 0/TT   for a porous sphere ( 0a   ) rotating about a 

diameter perpendicular to two planar walls with / ( ) 1/ 2c c d    vs. the spacing 

parameter /b c .  
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Figure 3(b). Normalized torque 0/TT   for a porous sphere ( 0a   ) with 10b   

rotating about a diameter perpendicular to two planar walls vs. the spacing parameter 

/b c . 
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Figure 4(a). Normalized torque 0/TT   for a porous sphere ( 0a   ) with 10b   

rotating about a diameter perpendicular to two planar walls vs. the relative position 

parameter )/( dcc  . 
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Figure 4(b). Normalized torque 0/TT   for a porous sphere ( 0a   ) rotating about a 

diameter perpendicular to two planar walls with / 9 /10b c    vs. the relative position 

parameter )/( dcc  .  
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3.2 Torque on a soft particle 

After understanding the hydrodynamic effect of two parallel plane walls on the 

axially symmetric rotation of a porous particle, we study the general case of that on a 

rotating soft particle. The results of the normalized torque 0/TT   on a soft sphere 

rotating about its diameter perpendicular to two planar walls for different values of the 

core-to-particle radius ratio ba /  , shielding parameter in the porous layer b  , 

dimensionless spacing parameter /b c , and relative position parameter / ( )c c d  are 

presented in Figures 5-8 (together with Table A2), respectively, over the entire ranges. 

Again, 0/TT  increases as /b c  increases from unity at / 0b c   to a finite value at 

/ 1b c   and increases as / ( )c c d  increases from a finite value at / ( ) 0c c d   to 

another at / ( ) 1/ 2c c d  , keeping the other parameters unchanged. Also, 0/TT  is a 

mono-tonic increasing function of b  from a constant (equal to zero for the entirely 

porous limit / 0a b  ) at 0b   (the porous surface layer is completely permeable) to 

a great one as b   (the surface layer is impermeable). 

For fixed values of b , /b c , and / ( )c c d , Table A2 and Figures 5-8 show that 

the normalized torque 0/TT  for the confined soft spherical particle undergoing rotation 

increases monotonically with an increase in the ratio of the core-to-particle radii /a b , 

where the limits / 0a b    and / 1a b    denote a porous sphere and an impermeable 

sphere, respectively. That is, if the porous layer is thicker for specified permeability, 
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particle size, and separation from walls, the torque exerted on the particle will be less. All 

results for the soft spherical particle fall between the upper and lower bounds of / 1a b   

and / 0a b   , respectively. For the circumstance where the surface layer has low to 

mediate permeability (e.g., 10b  ), as shown in Figures 5a and 8, 0/TT on the particle 

with /a b  smaller than about 0.8 can be well approximated by that for a fully porous 

particle of the same size, permeability, and distances from walls. In this case, the relative 

motion of the fluid is barely felt by the hard core of the soft sphere, and its hindrance to 

the flow is negligible. However, this approximation is not valid for the porous layer with 

high permeability. 

Recently, collocation results were obtained for the normalized hydrodynamic torque 

0/TT  of a soft sphere of radius b  rotating about a diameter on the axis of a circular 

cylinder of radius c   [28]. Similar to the currently considered case of axisymmetric 

rotation of the particle perpendicular to two equidistant plane walls (i.e., at the center of 

a slit), 0/TT is a monotonically growing function of the shielding parameter b  (from 

a value at 0b    to a higher one at b   ), particle-wall spacing parameter /b c  

(from unity at / 0b c    to a greater constant at / 1b c   ), and core-to-particle radius 

ratio /a b , holding other parameters constant. The particle in the circular cylinder bears 

much more torque than the particle in the slit does. This result manifests that the 

retardation to the particle rotation caused by the confinement walls is freed in both 
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principal lateral directions of the slit, though only in an axial direction of the cylinder. 
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Figure 5(a). Normalized torque 0/TT   for a soft sphere rotating about a diameter 

perpendicular to two planar walls with / 9 /10b c   vs. the ratio of the core-to-particle 

radii /a b  . The solid and dashed curves denote cases of / ( ) 1/ 2c c d    and 

/ ( ) 0c c d  , respectively. 
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Figure 5(b). Normalized torque 0/TT  for a soft sphere with 1b   rotating about a 

diameter perpendicular to two planar walls vs. the ratio of the core-to-particle radii /a b . 

The solid and dashed curves denote cases of / ( ) 1/ 2c c d    and / ( ) 0c c d   , 

respectively. 
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Figure 6. Normalized torque 0/TT   for a soft sphere rotating about a diameter 

perpendicular to two planar walls vs. the shielding parameter b  with / 9 /10b c  . The 

solid and dashed curves denote cases of / ( ) 1/ 2c c d    and / ( ) 0c c d   , 

respectively. 
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Figure 7. Normalized torque 0/TT   for a soft sphere rotating about a diameter 

perpendicular to two planar walls vs. the spacing parameter /b c  with / ( ) 1/ 2c c d  . 

The solid and dashed curves denote cases of 1b    and 3b   , respectively. 
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Figure 8. Normalized torque 0/TT   for a soft sphere rotating about a diameter 

perpendicular to two planar walls vs. the relative position parameter )/( dcc    with 

1b   . The solid and dashed curves denote cases of / 7 /10b c    and / 9 /10b c   , 

respectively.  
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Chapter 4 

Conclusions 

 

The slow rotational motion of a soft spherical particle in a viscous fluid about its 

diameter perpendicular to one or two planar walls is semianalytically studied using the 

method of boundary collocation. Convergent numerical results for the torque exerted on 

the particle by the fluid were obtained for various values of the ratio of the particle radius 

to the flow penetration length of the porous layer b , the ratio of the core-to-particle 

radii /a b  , particle-wall spacing parameter /b c  , and relative position parameter 

/ ( )c c d . The wall effect on the rotating soft particle can be significant. The normalized 

torque, 0/TT , acting on the confined particle increases with an increase in /b c  from 

unity as / 0b c   (the particle is far from the walls) and remains finite even at the contact 

limit / 1b c  . This torque is smaller than that on a hard sphere (or soft one with larger 

/a b  or b ), keeping the other parameters’ constant. For a given ratio of the particle 

diameter to the wall-to-wall distance 2 / ( )b c d , 0/TT  is minimal when the particle is 

midway between the two walls [ / ( ) 1/ 2c c d  ] and increases as it locates closer to 

either wall [the value of / ( )c c d   decreases]. Experimental data of the normalized 

torque for the slow rotation of a soft particle near one or two plane walls would be needed 

to confirm the validity of our semianalytical collocation results at various ranges of b , 



doi:10.6342/NTU202401699

30 

 

/a b , /b c , and / ( )c c d . The relationship between the four dimensionless parameters 

( b  , /b c  , / ( )c c d  , and /a b  ) and the normalized torque 0/TT   is depicted in 

Figure 9.  

 

 

Figure 9. The relationship between the dimensionless parameters b , /b c , / ( )c c d ,  

/a b  and the normalized torque 0/TT . 
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Chapter 3 provides results for a resistance problem, where the hydrodynamic torque 

T  on a particle rotating normal to two planar walls is considered for a given angular 

velocity Ω  [equal to 
2

0( / 8π )[ cosh( ) sinh( )]T bR a b a b a          according to 

Equation (1)]. In a mobility problem, the torque, T   (equal to 

2

08π / [ cosh( ) sinh( )]bΩ R a b a b a         ), imposed to the particle is assumed 

and the boundary-corrected angular velocity, Ω , is considered. For a soft sphere rotating 

normal to two plane walls dealt with here, the normalized angular velocity 0/ΩΩ  for 

the mobility problem is equal to 
1

0 )/( TT , as given in Tables A1 and A2 and Figures 2-8 

for the resistance problem. 
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List of symbols 

 

 a  the radius of hard core, m  

 , ,n n nA C D  unknow coefficients in Eq. (8) and Eq. (9), 1m s  

 b  the radius of a soft spherical particle, m  

( , )nB z  a function defined by Eq. (19), - 

 ,c d   the distances of the planar walls from the soft particle center, m  

 ( )h r  step function equals unity as a r b   and zero otherwise, -  

 nI  the modified Bessel function of the first kind of order n, -  

 nJ  the Bessel function of the first kind of order n, - 

 nK  the modified Bessel function of the second kind of order n, - 

 
1

nP   the associated Legendre function of the first kind of order n and 

 degree 1, - 

 , ,r    spherical coordinates, m , -, - 

 R  a constant defined by Eq. (2), - 

 T  the torque exerted by the fluid on the soft particle, N m  

 0T   the torque exerted by the fluid on the soft particle in an

 unbounded fluid, N m  

 v  the fluid velocity distribution, 1m s  
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 ( ), ( )X Y   functions defined by Eq. (9), 1m s  

( ), ( )n nX Y   functions defined by Eq. (15) and Eq. (16), - 

 Greek letters 

 ( , )n z   a function defined by Eq. (12), - 

( , )n r   a function defined by Eq. (21), - 

*( , )n r   a function defined by Eq. (25), - 

    the viscosity of the fluid, 
1 1kg m s     

 1   the penetration length (square root of permeability) of fluid flow

 within the surface layer of the soft particle, m  

 , , z   circular cylindrical coordinates, m , -, m  

 r   the nontrivial shear stress at the particle surface, 
2N m  

   the transform variable in Eq. (9), 1m  

Ω  the angular velocity exerted by the fluid on the soft particle, 1s  

0Ω   the angular velocity exerted by the fluid on the soft particle in an

 unbounded fluid, 1s  
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Appendix A 

 

A.1. Tables of collocation solutions for the normalized torque  

The collocation solutions for the normalized torque 0/TT  acting on a soft sphere 

rotating about its diameter perpendicular to two plane walls as a function of the ratio of 

the particle radius to the porous layer penetration length b , ratio of the core-to-particle 

radii ba /  , particle-wall spacing parameter /b c  , and relative position parameter 

/ ( )c c d  are presented in Tables A1 and A2 for the limiting case of 0a   (a fully 

porous sphere) and general case, respectively. 
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Table A1. Normalized torque 0/TT   for a porous sphere ( 0a   ) rotating about a 

diameter perpendicular to two parallel planar walls. 

 

)/( dcc   /b c  
  

0/T T   

1b   10b   100b   600b   

0 0.1 1.00001 1.00009 1.00012 1.00012 

 0.3 1.00021 1.00247 1.00329 1.00337 

 0.5 1.00095 1.01156 1.01544 1.01585 

 0.6 1.00165 1.02021 1.02714 1.02786 

 0.7 1.00262 1.03270 1.04432 1.04554 

 0.8 1.00392 1.05031 1.06937 1.07144 

 0.9 1.00559 1.07526 1.10766 1.11143 

 0.95 1.00659 1.09183 1.13641 1.14210 

 0.99 1.00746 1.10804 1.17065 1.18075 

 0.995 1.00758 1.11031 1.17647 1.18807 

 0.999 1.00767 1.11218 1.18165 1.19516 

1/4 0.1 1.00001 1.00009 1.00012 1.00013 

 0.3 1.00021 1.00251 1.00333 1.00342 

 0.5 1.00097 1.01173 1.01567 1.01607 

 0.6 1.00167 1.02050 1.02753 1.02826 

 0.7 1.00266 1.03317 1.04495 1.04619 

 0.8 1.00397 1.05103 1.07034 1.07243 

 0.9 1.00567 1.07631 1.10907 1.11289 

 0.95 1.00668 1.09307 1.13811 1.14386 

 0.99 1.00757 1.10946 1.17261 1.18280 

 0.995 1.00769 1.11175 1.17849 1.19017 

 0.999 1.00778 1.11363 1.18371 1.19734 

1/2 0.1 1.00001 1.00016 1.00022 1.00022 

 0.3 1.00037 1.00446 1.00594 1.00609 

 0.5 1.00172 1.02101 1.02813 1.02886 

 0.6 1.00297 1.03690 1.04972 1.05106 

 0.7 1.00473 1.06007 1.08180 1.08410 

 0.8 1.00708 1.09308 1.12918 1.13312 

 0.9 1.01011 1.14040 1.20263 1.20992 

 0.95 1.01192 1.17212 1.25847 1.26959 

 0.99 1.01352 1.20337 1.32558 1.34554 

 0.995 1.01373 1.20775 1.33710 1.36004 

 0.999 1.01389 1.21135 1.34733 1.37420 
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Table A2. Normalized torque 0/TT   for a soft sphere with 1b    rotating about a 

diameter perpendicular to two parallel planar walls. 

 

)/( dcc   /b c  
 0/T T   

/ 0.5a b   / 0.8a b   / 0.95a b   

0 0.1 1.00002 1.00006 1.00011 

 0.3 1.00055 1.00175 1.00290 

 0.5 1.00253 1.00816 1.01362 

 0.6 1.00438 1.01420 1.02387 

 0.7 1.00698 1.02282 1.03880 

 0.8 1.01046 1.03469 1.06020 

  0.9 1.01498 1.05079 1.09159 

 0.95 1.01769 1.06088 1.11354 

 0.99 1.02009 1.07019 1.13645 

 0.995 1.02041 1.07145 1.13982 

 0.999 1.02066 1.07246 1.14263 

1/4 0.1 1.00002 1.00007 1.00011 

 0.3 1.00055 1.00177 1.00294 

 0.5 1.00256 1.00827 1.01381 

 0.6 1.00444 1.01440 1.02421 

 0.7 1.00708 1.02315 1.03935 

 0.8 1.01061 1.03519 1.06104 

 0.9 1.01520 1.05151 1.09283 

 0.95 1.01794 1.06173 1.11501 

 0.99 1.02038 1.07117 1.13814 

 0.995 1.02070 1.07244 1.14154 

 0.999 1.02096 1.07347 1.14437 

1/2 0.1 1.00004 1.00012 1.00019 

 0.3 1.00098 1.00316 1.00525 

 0.5 1.00457 1.01479 1.02477 

 0.6 1.00792 1.02584 1.04365 

 0.7 1.01264 1.04172 1.07145 

 0.8 1.01899 1.06378 1.11175 

 0.9 1.02727 1.09397 1.17167 

 0.95 1.03225 1.11304 1.21400 

 0.99 1.03667 1.13074 1.25853 

 0.995 1.03725 1.13313 1.26511 

 0.999 1.03772 1.13507 1.27059 
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A.2. Approach to boundary collocation technique  

To prevent divergence in numerical calculations, it's recommended to avoid 

choosing the points with  = 0 , 90 , and 180  when using the boundary collocation 

technique. But these points are also crucial, so values of   are chosen very close to 

these points, such as 0 +   , 90    , 90 +   , 180   , where  = 0.01  . If we take the 

number of collocation points  = 10N , incorporating it into the following Equation (A1) 

yields the  = 22.5 . This is meant to substitute values for every 22.5  in Equations (22), 

(23), and (24). Figure A1 depicts a schematic diagram for selecting 10 points on the 

meridian semicircle surface. 

90
 = 

( /2 1 )N



,                                          (A1)  

 

 

Figure A1. The schematic diagram for picking out 10 points on the meridian semicircle 

surface. 
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A.3. Procedure of boundary collocation calculations 

The initial step is to enter the parameters b  , /b c  , / ( )c c d  , and /a b   into 

MATLAB. Apply  N   angles (collocation points) for computation to determine the 

normalized torque 0/TT  . The normalized torque 0/TT   is obtained when the relative 

error between the current 0/TT  and previous 0/TT  is less than 
-510  when compared. 

If the error exceeds 
-510 , we repeat the calculation with  + 2N  angles until convergent 

0/TT  is obtained. 

 

 

Figure A2. Flow diagram.  




