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Abstract

With the proliferation of deep learning, mobile applications integrating robust deep
neural networks, particularly in Augmented Reality (AR), Mixed Reality (MR), and Vir-
tual Reality (VR), are on the rise. However, the computational demands of these mod-
els often exceed the capabilities of commodity mobile devices, necessitating offloading
to edge servers. Yet, this approach introduces latency and network challenges, crucial
for real-time performance in edge-assisted Mobile Augmented Reality (MAR), especially

when uplink bandwidth is a scarce resource for most users.

To mitigate bandwidth constraints, this study proposes transmitting low-quality (LQ)
videos, augmented with super-resolution (SR) techniques to enhance object detection.
Drawing upon prior research on image quality’s impact on object detection and the effi-
cacy of SR in video enhancement, we explore various SR methods and video compression
rates’ effects on object detection in a MAR scenario. Our contributions include delineat-

ing the trade-offs between video bitrate and object detection performance across different
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quality and resolution levels and assessing the effectiveness of SR methods on LQ videos.

Keywords: Super-Resolution, Video Quality, Video Coding

viil doi:10.6342/NTU202501744


http://dx.doi.org/10.6342/NTU202501744

Contents

Page

Verification Letter from the Oral Examination Committee i
Acknowledgements iii
W v
Abstract vii
Contents ix
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Related Work 3
2.1 Super-Resolution . . . . . ... ... ... ... L 3

2.1.1 Single Image Super-Resolution . . . . . . ... ... ........ 4

2.1.2 Video Super-Resolution . . . . . . ... ... ... ......... 5

2.1.3  Super-Resolution with Object Detection as Downstream Task . . . . 6

2.2 Video Streaming . . . . . . . . . ... 6

2.2.1 H.264/AVC Coding Scheme . . ... ... ............. 7

2.2.2 Quantization Parameter . . . . . . . ... ... ... ... 7

2.2.3 Video Delivery System with Super Resolution . . . . . .. ... .. 8

X

doi:10.6342/NTU202501744


http://dx.doi.org/10.6342/NTU202501744

23

Chapter 3
3.1
3.2
33
3.3.1
332
34

3.5

Chapter 4
4.1
4.2
4.3
4.4

Chapter 5
5.1

5.2

References

Object Detection . . . . . . ... ... .. ... ... .. ... 9
Experiment Design 11
VideoCodec . . . ... ... ... . ... ... 11
Evaluation Metrics . . . . . . . .. . ... Lo 13
Video Enhancement . . . . ... ... ... ... L 14
Video Super-Resolution . . . . . ... ... ... .. ........ 15
Video Interpolation . . . . . .. ... ... L 15
Object Detection . . . . . . . . . . ... ... ... .. .. ..., 16
Dataset . . . . . . . . . .. 16
Experiment Results 19
Resolution and bitrate . . . . . . . ... ... ... 19
Results of Different Super-Resolution . . . . . . ... ... ... .. 20
CQPandCRF . . ... . .. . . .. 22
Evaluationof PSNR . . . . . ... .. .. . oo 24
Conclusions 27
ConcClusions . . . . . . . . . 27
Future Works . . . . . . . . . Lo 28
31

X doi:10.6342/NTU202501744


http://dx.doi.org/10.6342/NTU202501744

3.1
3.2

4.1
4.2
4.3

4.4

4.5

4.6

4.7

List of Figures

Experiment process pipeline . . . . . .. ... 12

Object class and size distribution for tested videos in two different reso-

lutions. . . . .. 17
Image samples of different CRF and corresponding bitrates. . . . . . . . 20
mAP@50 of low-quality frames, SR-enhanced low-quality frames. . . . 21

mAP@50 of low-quality frames, SR-enhanced low-quality frames and

high-quality frames. . . . . . . . . .. . ... ... ... ... ..., 21
Sample bounding box results on video frames of different qualities. . . . 23
Object detection results of CRF comparedto CQP. . . . . . . ... ... 24

PSNR of low-quality frames, SR-enhanced low-quality frames and high-
quality frames. . . . . . . . . ... 25

Examples of different high-quality and low-quality frames. . . . . . . . . 25

X1 doi:10.6342/NTU202501744


http://dx.doi.org/10.6342/NTU202501744

doi:10.6342/NTU202501744



http://dx.doi.org/10.6342/NTU202501744

3.1
3.2
3.3
34

4.1

List of Tables

FFmpeg flags with corresponding input values. . . . . .. ... ... .. 12
Encoding runtime and bitrate for different ”preset” options. . . . . . . . . 13
Encoding runtime and bitrate for different video qualities. . . . . . . . . . 13

The time it takes to process one 480x270 video frame with a single Nvidia

[3] RTX 3080 GPU and the parameter count of the models. . . . . . . .. 16

Video bitrate (Mb/s) of different qualities with percentages of low resolu-

tion compared to high resolution of the same CRF values. . . . . . .. .. 19

Xiil doi:10.6342/NTU202501744


http://dx.doi.org/10.6342/NTU202501744

doi:10.6342/NTU202501744



http://dx.doi.org/10.6342/NTU202501744

Chapter 1 Introduction

With the rapid growth of deep learning, applications that rely on robust deep learn-
ing models are booming, particularly in domains like Augmented Reality (AR), Mixed
Reality (MR), and Virtual Reality (VR). Naturally, there’s a growing interest in deploying
these applications on mobile devices. However, the resources of commodity mobile de-
vices may not be sufficient to handle the heavy computational load of modern deep neural

networks, even with proper optimization [16].

A common strategy in Mobile Augmented Reality (MAR) is to offload the inten-
sive computation part of the system to edge servers [26]. However, the bottleneck in this
method becomes evident in terms of latency and network conditions. Therefore, ensuring
good downstream task performance with limited bandwidth and low delay is always criti-
cal for such edge-assisted MAR frameworks. One of the major downstream tasks in MAR
is object detection. When offloading object detection computation, there’s a significant
demand for uplink bandwidth since we typically send images to the servers while only
receiving labels or other critical information in return. Unfortunately, network traffic is

often asymmetric, and uplink bandwidth tends to be particularly scarce.

So, we came up with one simple and naive idea that we can send low-quality (LQ)

videos to save bandwidth at the cost of object detection performance. Additionally, by
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leveraging super-resolution, we can potentially enhance the video quality and recover ob-
ject detection results. Some research has been conducted on how image and video quality
affect object detection results [5, 7]. Other prior works [11, 17, 30] have indicated that
machine learning super-resolution (SR) can improve user experience in a live-streaming
system by enhancing video quality. In our research, we aim to provide a comparison of
how different super-resolution methods and video compression rates specifically affect
object detection results in edge-assisted MAR solutions. More specifically, we transcode
videos into lower resolution and adjust the Constant Rate Factors (CRF) and Quantization
Parameters (QP). Then, we directly apply SR to LQ videos and observe the quality differ-
ence and performance changes of object detection. In this study, the major contribution
is: (1) we present a trade-off between video average bitrate and object detection perfor-
mance across different video quality and resolution (2) we present the (in)effectiveness of

applying well-performed SR methods on LQ videos.

The remaining chapters of this thesis are arranged as follows: background knowl-
edge, including super-resolution, object detection, and video codec, as well as closely
related prior works, will be covered in Chapter 2. Chapter 3 will detail the complete
methodology, including data, tools, and experiment design. Chapter 4 will focus on the
experiment results, along with additional analysis of the results. Finally, Chapter 5 will

present a summary of the thesis and discuss future works.
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Chapter 2 Related Work

In our study, our objective is to apply super-resolution (SR) to videos before uti-
lizing them as input for object detection inference, aiming to investigate the extent to
which object detection can benefit from SR. Furthermore, the potential bandwidth savings
achievable through the application of SR in video delivery scenarios remain unclear. To
elucidate the primary contribution of this thesis, we will first delve into some background
knowledge and related works in this chapter, focusing on two main aspects. Firstly, it is
unsurprising that object detectors can be significantly influenced by image or video qual-
ity [5, 7]. As SR is essentially one of the many image enhancement methods, we will
discuss prior studies [ 15, 21, 28] that address object detection tasks with the assistance of
SR. Secondly, SR presents itself as a potential solution for video streaming services with
limited uplink bandwidth. Therefore, it is crucial to explore efforts [11, 17, 30] that utilize

SR to enhance the live streaming viewer experience.

2.1 Super-Resolution

Super-resolution (SR) generally refers to methods that recover high-resolution (HR)
images from their corresponding low-resolution (LR) versions. Super-resolution has been
applied to different targets such as satellite images, surveillance images, and medical im-
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ages. When the effectiveness of an SR algorithm is being tested, the process of generating

LR samples from HR images is often formulated as follows:

I = f,(I" xK) + n,

where HR images I undergo convolution with some blurry kernels k and are scale down
using interpolation f, with a specified scaling ratio s, resulting in LR samples I*. Some
random sampled noise n might also be added in the process. Conversely, in reality, videos
are encoded into various resolutions within video codecs, which is how we naturally gen-

erate LR videos. This will be discussed more in a later section.

Plenty of different super-resolution techniques have been developed throughout the
past decade. For example, probability-based SR, reconstruction-based SR, and learning-
based SR. In particular, neural networks in learning-based SR have consistently shown
supreme results in the past few years. Therefore, we are interested in what these SR neural
network models can deliver in terms of video quality. Super-resolution methods can be
further categorized based on the number of LR images used to produce one HR image into

Single Image Super-Resolution (SISR) and Video Super-Resolution (VSR).

2.1.1 Single Image Super-Resolution

SISR leverages various algorithms and models to learn the mapping between LR
and HR image pairs. Deep learning-based approaches, particularly convolutional neural
networks (CNNs), have gained prominence in recent years for their ability to effectively

learn complex mappings and produce high-quality super-resolved images.

SRCNN [12, 13] is one of the earlier and more successful CNNs that learns the
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mapping between HR and LR images end-to-end with minimal preprocessing and post-
processing. FSRCNN [14] was later proposed to expedite the process by eliminating the
interpolation at the beginning of SRCNN and incorporating a deconvolution layer to learn
the upsampling mapping at the end. Shi et al. [25] also proposed a famous sub-pixel con-
volutional neural network (i.e. pixel-shuffle) that efficiently upscales the image in the last
layer. The sub-pixel convolutional neural network is then widely adopted by later SISR

and VSR models.

2.1.2 Video Super-Resolution

Unlike SISR, VSR utilizes both temporal and spatial information as input. Existing
deep-learning-based VSR approaches can be broadly categorized into two frameworks:
sliding-window and recurrent. In the sliding-window framework, a fixed-size temporal
window is usually used to select neighboring frames. Each frame undergoes multiple pro-
cessing iterations, resulting in inefficient utilization of features and heightened computa-
tional costs. In the recurrent approach, models primarily leverage previously reconstructed
high-quality frames to aid in the reconstruction of subsequent frames. Recurrent models
usually adopt more sophisticated alignment methods to efficiently utilize the benefits from

prior high-quality frames.

Chan et al. [8] compared different components in modern VSR approaches and pro-
posed BasicVSR by leveraging common existing components (propagation, alignment,
aggregation, and upsampling) and incorporating minor redesigns as needed. BasicVSR+
+ [9] was later proposed to further improve performance by implementing second-order
grid propagation and flow-guided deformable alignment, allowing for more efficient and
robust feature alignment.
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2.1.3 Super-Resolution with Object Detection as Downstream Task

While super-resolution is primarily used to enhance user experience in terms of visual
quality, cascading super-resolution before object detection isn’t uncommon. The main
idea is to compensate for the drop in object detection performance resulting from less-

than-ideal image quality.

Haris et al. [15] proposed Task-Driven Super Resolution and trained SR explicitly
together with object detection. They trained the entire system end-to-end with compound
loss of detection loss and reconstruction loss to optimize the SR network, further fitting
SR specifically to object detection. Other works [21, 28] implement SR explicitly prior
to smaller object detection such as satellite images in remote sensing to resolve the multi-
scale nature of those tasks. These models fit perfectly into specific image datasets; how-
ever, we consider these works to be too specialized for a mobile-AR case. In our work,

SR models are tested without fine-tuning and optimization on the targeted dataset.

2.2 Video Streaming

Video streaming is essential for an edge-assisted mobile-AR solution. In this process,
video codecs are utilized to encode and decode videos, preventing the waste of network
resources. In addition to examining bandwidth consumption with video codecs, as men-
tioned in Section 2.1, we also utilize video codecs to efficiently and naturally generate
low-quality videos. In reality, video streaming protocols and container formats can also
impact network resource consumption due to overhead and other internal mechanisms.

For simplicity, we ignore them in our study.
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Several major video codecs dominate the video delivery market. For example, MPEG-
4 Part 10, also known as Advanced Video Coding or H.264 [23, 31], and MPEG-H Part
2, also known as High Efficiency Video Coding or H.265. Other common:video codecs
include VP9 and AV1. While H.264 may have lower compression efficiency compared
to the other codecs mentioned, it remains the most popular due to its widespread compat-
ibility. Most widely used desktop and mobile operating systems, along with the majority

of popular content delivery networks and web browsers, offer support for H.264.

2.2.1 H.264/AVC Coding Scheme

H.264 is implemented with hybrid video coding, in which each input image is di-
vided into macroblocks. There are two modes to encode these macroblocks, intra pre-
diction mode and inter prediction mode. In intra-prediction, the prediction of target mac-
roblocks relies solely on information from previously transmitted macroblocks within the
same image. In inter-prediction, macroblocks are predicted based on the previously trans-
mitted reference images. For each block (macroblocks’ partition), a displacement vector
is estimated and transmitted, indicating each block’s corresponding position within the

previously transmitted reference images.

2.2.2 Quantization Parameter

For further compression during encoding, quantization is performed in H.264 [ 19][10].
To be more specific, Quantization Parameter (QP) is utilized to determine the level of
compression applied to each video frame. FFmpeg [ 1] offers two adjustable parameters

for utilizing QP to compress an entire video: Constant Rate Factor (CRF) and Constant
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Quantization Parameter (CQP).

CRF adjusts QP to fluctuate among frames based on the level of motion within each
frame while ensuring consistent overall quality across different videos. On the otherhand,
CQP maintains an identical QP value across all frames in a video. To clarify, both higher
CRF and CQP values lead to increased compression rates, resulting in lower video quality

and bitrate. It’s important to note that these parameters cannot be adjusted simultaneously.

Other works [5] have discussed the influence of CRF on images’ object detection
results. They have shown that compressing videos with CRF can severely influence object
detection accuracy regardless of the object detection model used. In this thesis, we aim to
further investigate the influence of CRF and CQP by combining them with SR to evaluate
the performance of SR methods across various quality levels of the same videos. We
also aim to compare the bandwidth efficiency between CRF compression and resizing by

resolution which have not yet been discussed in any other works.

2.2.3 Video Delivery System with Super Resolution

The idea of introducing SR to assist video delivery systems, especially live streaming,
has sparked much discussion in recent years. Many prior works aim to deliver high-quality
video streams with low latency by utilizing super-resolution neural networks, referred to

as SR-enhanced live streaming.

Kim et al. [17] proposed LiveNAS that addresses limited uplink bandwidth by lever-
aging pre-trained SR deep neural networks (DNNs) on ingest servers with online training
to improve performance. Chen et al. [11] proposed LiveSRVC, which addresses similar

issues by applying SR alternately only on key frames. This approach greatly decreases the
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computational overhead of SR DNNs, while still allowing most frames to benefit from the
SR-enhanced key frames. Wang et al. [30] investigated the bandwidth and quality gain
in an SR-enhanced live streaming system across three aspects: different resolution pairs,

model update frequency, and patch selection method where patches are used for training.

These works perform well in optimizing the trade-off among parameters such as the
scaling ratio of SR, frequency of applying SR, uplink bandwidth conditions, and server
computing power. However, they usually overlook video quality in terms of compression
rate. In our study, our primary focus is on presenting the trade-off between video com-
pression rate, resolution, and object detection performance, as both video compression

rate and resolution significantly affect video quality and size.

2.3 Object Detection

Object detection is a computer vision task that involves identifying and localizing ob-
jects within an image or a video frame. The primary goal of object detection algorithms is
to not only classify the objects present in the scene but also provide their precise locations
through bounding boxes. Object detection finds applications in various fields, including

autonomous driving, surveillance, image retrieval, and medical imaging.

In recent years, machine learning has achieved significant milestones in this field
with the help of deep neural networks (DNNs), primarily convolutional neural networks
(CNNs). Redmon et al. [24] proposed the famous object detector YOLO. YOLO is a
single-stage detector that views detection problems as regression problems. It is extremely
fast and proficient at learning generalizable representations of objects. Even today, YOLO

and its successors are still considered state-of-the-art in object detection tasks.
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Chapter 3 Experiment Design

The primary goal of the experiment is to investigate the extent to which object detec-
tion benefits from different qualities of SR-enhanced videos. As mentioned in Chapter 2,
many SR problems are currently formulated with low-resolution images as blurry, inter-
polated versions of high-resolution images, which differs from how videos are transmitted
over the internet. In this chapter, we will discuss the necessary tools and provide a detailed

overview of the experiment process.

The process pipeline is briefly depicted in Figure 4.1. We utilize FFmpeg [1] to
pre-process the raw videos into videos with the desired resolution and CQP/CRF settings.
Next, the low-quality (LQ) video frames undergo processing through our selected SR net-
works. Depending on the SR networks chosen, the video frames may be processed into
RGB or YCbCr channels beforehand. Subsequently, we provide YOLO [24] with both
origianl high-quality (HQ) frames (set as groundtruth) and SR-enhanced HQ frames and

calculate mAP@50 based on the bounding box results of the object detector.

3.1 Video Codec

To simulate the scenario of sending a video, we make use of a multimedia frame-
work called FFmpeg [ 1]. FFmpeg provides libraries for encoding, decoding, transcoding,
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‘ Video }—» FFmpeg

~>| HR (1440p) / YOLO /L> Ground Truth
mAP calculation
4,{ LR (360p) }—» SR +—>| HR (1440p) H YOLO /L> Test Results

Figure 3.1: Experiment process pipeline

Flags | Values

i <path to input videos>
c:v libx264

preset | medium

vf scale=<width>:<height>
crf <a desired CRF value>
qp <a desired CQP value>

Table 3.1: FFmpeg flags with corresponding input values.

streaming, and playing videos. It is also a command-line tool, making it highly flexi-
ble and scriptable for various multimedia processing tasks. In particular, we set FFmpeg

Linux command flags as shown in Table 4.1 to transcode original 4K videos.

The flag ”’preset” controls the trade-oft between the speed of encoding and compres-
sion efficiency. For example, setting “preset” to ’slow” results in slower encoding but
better quality at the same bitrate compared to setting ’preset” to “fast”. In other words,
“preset” also affects quality while fixing CRF, CQR, or bitrate; therefore, we fix it as ”
medium”. For other flags, we select an exhaustive combination of CRF and CQP values
0, 2,5,7,10, 15, 20, 25, 30, 35, 40) to thoroughly investigate the results of the exper-
iment. Regarding resolution pairs, we choose 1440p (1440x960) and 360p (360x240) to

evaluate 4x super-resolution methods.

As mentioned above, the "preset” flag is another trade-off you can make during en-
coding. Although we used the default setting and did not explore this further, Table 3.2

12 doi:10.6342/NTU202501744
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Preset Quality Runtime (ms) Bitrate (Mb/s)
ultrafast CRF=0, 1440p 4.68 520
fast CRF=0, 1440p 13.91 393
medium CRF=0, 1440p 15.96 390
slow CRF=0, 1440p 20.32 388

Table 3.2: Encoding runtime and bitrate for different “preset” options.

Quality Runtime (ms) Bitrate (Mb/s)
CRF=0, 1440p 15.96 390

CRF=0, 1080p 9.92 236

CRF=0, 720p 5.77 122

CRF=0, 540p 4.18 74

CRF=23, 1440p | 9.6 12.52
CRF=23,1080p | 6.23 8.23
CRF=23, 720p 4.3 4.25
CRF=23, 540p 3.34 2.66

Table 3.3: Encoding runtime and bitrate for different video qualities.

shows the average execution time per frame and the average bitrate per video using differ-
ent ”preset” options. The encoding was performed using a standard 6-core Intel i15-12400
CPU. About the complexity of video transcoding, I also provide a simple comparison of
the time required to transcode videos into different qualities, shown in Table 3.3. Un-
surprisingly, transcoding videos into both higher resolution and lower compression levels
results in longer processing times. Since delay is not the focus of my thesis, the details
will not be discussed here. However, it is important to note the significant time differences

when encoding videos into different qualities with my current overall settings.

3.2 Evaluation Metrics

Since our goal is to understand the trade-off between bandwidth and object detection

results, mean Average Precision (mAP) is calculated for the evaluation of object detection.

Average Precision (AP) is a measure used to evaluate the precision-recall curve of a
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model. It is calculated by taking the average precision at different recall levels. The area
under the precision-recall curve (PR curve) represents the AP. mAP extends the concept
of AP to multiple queries or categories. It computes the AP for each query or category and
then takes the mean of these individual APs. This provides an overall assessment of the
model’s performance across all queries or categories. mAP is a widely used performance
metric in information retrieval and object detection tasks. To be more precise, in our study,
we use mAP@50, where a true positive case (correct label prediction) is counted if the
intersection over union (IOU) of a predicted bounding box and the ground truth bounding

box exceeds 50 percent.

We also evaluate the Peak signal-to-noise ratio (PSNR) of SR-enhanced HR frames
to assess whether the results of PSNR align with mAP. PSNR is calculated using the fol-

lowing formula:

PSNR = 10 * log(MAX?/MSE),

where MSE stands for Mean Square Error and MAX is set to 255 for 24 bits RGB.

3.3 Video Enhancement

As mentioned earlier, we utilize FFmpeg to obtain LQ videos. These videos are then
extracted into individual frames using OpenCV [4] before proceeding to the SR meth-
ods. In Chapter 2.1, we briefly introduce different types of SR methods. For this ex-
periment, we select FSRCNN [ 14] to represent single-image super-resolution (SISR) and
BasicVSR++ [9] to represent video super-resolution (VSR). Additionally, bicubic inter-
polation is tested for comparison with more advanced SR methods.
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3.3.1 Video Super-Resolution

For video super-resolution, we utilize the official BasicVSR++ pre-trained weights
due to the complexity and lack of resources to train the model ourselves. The model has
been trained and tested on the REDS [22] dataset, achieving a testing PSNR of approxi-
mately 32.4. It is fully open source and available on MMEditing [20]. While our experi-
ment primarily focuses on other aspects rather than latency, it’s essential to note that we
are not pushing the model to its maximum capacity without any time limitation. Given
that BasicVSR++ is not designed for real-time VSR solutions, we limit the maximum se-
quence length to 5 frames. This ensures that the model cannot utilize information much
beyond the neighboring frames. For FSRCNN, the model is trained on the T91 image
dataset and tested on Set5 [0], achieving a PSNR of approximately 30.55. The training

settings closely follow those described in the original paper.

3.3.2 Video Interpolation

Bicubic interpolation is often used to enlarge images and usually performs better
among other common interpolation methods such as bilinear or nearest-neighbor interpo-
lation. In bicubic interpolation, a bicubic polynomial is fitted to a 4x4 grid of neighboring
points. This allows for smoother and more accurate interpolation, particularly useful for

scaling images.

The complexity of bicubic interpolation compared to previous SR methods is shown
in Table 3.4. Since these three video enhancements differ significantly in complexity, we
believe they provide a good scope for roughly understanding the time and computational
resources required, in addition to considering the trade-offs between bandwidth and object
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Methods Parameters Runtime (ms)
Bicubic 0.05
FSRCNN 12809 5
BasicVSR++ 7.7M 180

Table 3.4: The time it takes to process one 480x270 video frame with a single Nvidia {3]
RTX 3080 GPU and the parameter count of the models.

detection performance.

3.4 Object Detection

After obtaining SR-enhanced HQ frames, both the original HQ frames and SR-enhanced
HQ frames are directly fed into YOLO [24] for object detection. Specifically, YOLOv5x6
is utilized for maximum object detection accuracy. The results of the original HQ frames
transcoded with CRF set to 0 (no compression, maximum quality) are considered as ground
truth. Conversely, the results of SR-enhanced HQ frames are used in mean Average Pre-
cision (mAP) calculation, based on the ground truth labels from the zero compression

original HQ frames.

3.5 Dataset

The purpose of selecting an appropriate dataset for our experiment is to simulate a
mobile AR use case. We chose the Inter4K dataset [27], which consists of 1000 ultra-
high-resolution (4K) 60 fps clips, each lasting 5 seconds, as our primary dataset. Inter4K
is primarily utilized for video super-resolution, offering 4K resolution, which enables users
to generate various lower-resolution videos. Additionally, Inter4K categorizes its videos
into six different categories, providing a diverse range of scenes. Furthermore, part of

the dataset is captured with mobile phones across different locations, aligning with the
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Figure 3.2: Object class and size distribution for tested videos in two different resolutions.

scenario of a mobile AR system. For our experiment, we tested 100 videos from the
Inter4K dataset. The videos are considered dynamic, where the objects and backgrounds

move along with the camera. Conversely, static videos are devoid of camera movement.

From the videos we tested, Figure 3.2(c, d) shows the frequency distribution of the
sizes of detected objects. The standard for differentiating the size of an object is referenced
from the MS COCO dataset [ | 8], where small objects are defined as those occupying less
than 0.3% of the entire image, and medium objects occupy less than 3%. The objects
are quite balanced in terms of size, with large objects being the least common, appearing
about 20% of the time. On the other hand, as shown in Figure 3.2(a, b), the ’person” class
appears significantly more often than others. Other frequently appearing classes include
”car,” ”boat,” and ”chair.” While the class distribution isn’t balanced, it is considered
reasonable and natural. Notably, the classes detected by the object detector are the same
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as those in the MS COCO dataset.
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Chapter 4 Experiment Results

In this chapter, we follow the experiment design and settings from the previous chap-
ter and evaluate the results from different aspects. We will demonstrate the impact of
SR methods compared to interpolation and further investigate the effectiveness of saving

bandwidth by sending low-quality videos.

4.1 Resolution and bitrate

Our original intention is to reduce the video quality to decrease the bitrate. By reduc-
ing the resolution from 1440p to 360p and from 1080p to 270p, we shrink the height and
width of the video by a factor of 4, leaving only 1/16 of the pixels. As shown in Table 5.1,
despite having only 1/16 (6.25%) of the pixels, the bitrate remains between 8% and 12%
under the same CRF values. Figure 5.1 illustrates an uncompressed video frame alongside

its compressed variations.

360p/ 270p/
CRF | 1440p | 360p 1440p 1080p | 270p 1080p
0 390.07| 36.08 | 9% 235.751 2091 | 9%

20 1833 [ 2.02 | 11% | 12.10 | 1.21 10%
40 1.81 | 0.14 | 8% 1.10 | 0.09 | 8%
Table 4.1: Video bitrate (Mb/s) of different qualities with percentages of low resolution
compared to high resolution of the same CRF values.
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(a) CRF=0, 235.8Mb/s (b) CRF=10, 41.2Mb/s (c) CRF=20, 12.1Mb/s
1 ' P g

(d) CRF=30, 3.4Mb/2 (e) CRF=40, 1.1Mbl/s

Figure 4.1: Image samples of different CRF and corresponding bitrates.
4.2 Results of Different Super-Resolution

In this section, we evaluate the mAP@50 of different SR-enhanced high-quality
videos. In Figure 5.2(a), four lines represent the results of low resolution (no enhance-
ment), bicubic interpolation, FSRCNN (SISR), and BasicVSR++ (VSR) correspondingly.
As mentioned in Chapter 4, we selected a set of CRF values (0, 2, 5, 7, 10, 15, 20, 25, 30,
35, 40). The rightmost point of each line represents mAP@50 when CRF=0. Moving from
right to left, CRF gradually increases and the quality decreases accordingly. It’s important
to note that the bitrates are identical for all four methods at the same CREF, as the bitrate is
the original transcoded bitrate of the low-quality videos. The enhancement does not affect
the bitrate, as it is performed on the server side after the videos are uploaded. The x-axis
represents the bitrate ratios compared to the ground truth, uncompressed high-resolution
(1080p,1440p) videos. For example, the average bitrate of a 270p, CRF=2 video is only

20 doi:10.6342/NTU202501744


http://dx.doi.org/10.6342/NTU202501744

bitrate vs mAP@50 w/o FHD bitrate vs mAP@50 w/o QHD

100 100
Vo \ —e— MAP@50-NoSR | —e— MAP@50-NoSR
. H —e— mMAP@50-BICUBIE —e— mMAP@50-BICUBIC
. H —e— MAP@50-FSRCNI —e— MAP@50-FSRCNN
80 1 b ' —e— MAP@50-BASICVSR++ 80 1 —e— MAP@50-BASICVSR++
Lo i i
CRF=7 |  |CRF=5 |CRF=2 |CRF=0
60 . ] H 60
2 o i | 2
o i
< H 1 < s |
€ 40 ! ! € 40
[ i
o i
+
— 4 \
R A |
201 b : : 201
o i |
o i |
o i |
o i |
o i |
0 v e . . : 0 v . . .
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
Bitrate Ratio Bitrate Ratio
(a) 270p and 1080p (b) 360p and 1440p

Figure 4.2: mAP@50 of low-quality frames, SR-enhanced low-quality frames.
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Figure 4.3: mAP@50 of low-quality frames, SR-enhanced low-quality frames and high-
quality frames.

about 4.8% compared to the ground truth (1080p, CRF=0) videos. This means that we
can potentially save 95% of bandwidth by sending 270p, CRF=2 videos. The same way

of interpretation applies to Figure 5.2(b).

Next, we evaluate the object detection performance boost of SR methods. In both
figures of Figure 5.2, bicubic interpolation shows little to no benefit when applied to low-
quality video frames. In contrast, FSRCNN achieves a performance increase of 7% to
15% when the bitrate ratio is above 1%, while BasicVSR++ performs slightly better with
a performance increase of 7% to 20%.
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What if we simply compress the video without degrading the resolution? Figure
5.3(a) shows the same four lines as Figure 5.2(a), with an additional line representing
high-resolution videos. Surprisingly, compressing the video with only CRE can be much
more effective than using SR on low-quality videos, resulting in more than a 20% increase
in mAP across most of the bitrate range. For example, as seen in Figure 5.3(a), videos of
360p with CRF=7 have a similar average bitrate to videos of 1080p with CRF=25, while

the latter outperforms the second-best BasicVSR++ enhancement by over 20% in mAP.

Figure 5.4 presents visual examples corresponding to those depicted in Figure 5.3.
In Figure 5.4(a), the ground truth is represented, while Figure 5.4(b) corresponds to the
rightmost point of the blue line in Figure 5.3. Notably, Figure 5.4(b) displays the worst
result, featuring multiple labels on the fire hydrant” and a misprediction of a yellow
motorcycle in the background. Moving on, Figure 5.4(c) showcases the result of videos
processed with FSRCNN, reflecting the rightmost point of the red line in Figure 5.3. While
Figure 5.4(c) shows an improvement over Figure 5.4(b) with a correct single “fire hydrant”
prediction, the misprediction of the yellow motorcycle persists in the background. Finally,
Figure 5.4(d) corresponds to the rightmost point of the purple line in Figure 5.3, exhibiting
a similar but slightly lower bitrate and better mAP. The visual examples align with the
results, displaying higher confidence in the correct “fire hydrant” prediction and the

correct pink bicycle prediction in the background.

43 CQP and CRF

Although the two modes utilize QP in different ways, Figure 5.5 indicates that when
the overall bitrate is tuned to the same level, both PSNR and mAP show no significant
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(b) 360p, CRF=0

(c) 360p, CRF=0, SR=FSRCNN (d) 1440p, CRF=15

Figure 4.4: Sample bounding box results on video frames of different qualities.
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Figure 4.5: Object detection results of CRF compared to CQP.
difference between the two modes. This is why we primarily use only CRF in most of the

experiments.

4.4 Evaluation of PSNR

To examine the relationship between PSNR and mAP@50 for object detection, we
also recorded the PSNR of the SR-enhanced high-quality frames. In Figure 5.6, we can
observe that the PSNR of compressed high-resolution videos surpasses other SR methods
by a large margin, which aligns with the results shown in Section 5.2: higher PSNR corre-
sponds to higher mAP. However, the PSNR of both SR deep neural networks shows little

difference, approximately 1 dB, compared to the PSNR of bicubic interpolation.

This indicates that while SR models might perform as poorly as interpolation in terms

of'video quality without specific fine-tuning or learning, they can still be beneficial in cases
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Figure 4.7: Examples of different high-quality and low-quality frames.
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where object detection is the downstream task. However, in our experiment,; compressing
the video without degrading the resolution still appears to be more effective than using SR

methods.

Figure 5.7 displays sample frames at 270p, CRF=7 after interpolation and SR, along-
side a frame at 1440p, CRF=25, which has nearly the same bitrate as the previous three.
It’s evident that frame (d) exhibits the best results, while frames (c) and (b) are slightly

better than (a).
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Chapter S Conclusions

5.1 Conclusions

The demand for high-quality video delivery, coupled with applications requiring high
computation, is growing and will continue to do so in the foreseeable future. Therefore,
smoothly transferring videos with limited bandwidth remains a critical factor. In this re-
search, we conducted a quantitative analysis to gain a better understanding of how VSR
performs in an edge-assisted object detection scenario. Both SISR and VSR demonstrate
a non-negligible performance boost in terms of mAP. However, the results also indicate
that scaling down the resolution solely to save bandwidth might not be a great tradeoff,
especially considering the additional processing time required for applying SR methods.
Nevertheless, in scenarios where high-quality frames are unattainable, SR could prove

useful.

Another critical result highlighted in the thesis is the significant role of quantitative
parameters in video encoding and rate control. We often become distracted by the notion
that resolution is the most critical factor when compressing videos, as many major video
delivery platforms offer multiple options only for resolution. However, comparing the
impact of CRF with SR, it’s evident that working with these built-in functionalities of

video codecs can be as impactful, if not more so, than directly using state-of-the-art SR
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neural networks.

The results raise questions about why state-of-the-art SR techniques, while highly
prominent, underperformed in our experiments. One evident issue in our studyis reflected
in the PSNR of SR-enhanced frames. These models did not perform well, possibly due to
differences between our dataset and how low-resolution videos are typically generated for
their training data. Typically, SR models are trained on low-resolution images originally
derived from high-resolution images degraded with blurry filters and downsampled using

methods like MATLAB'’s imresize [2, 32] function.

This discrepancy may explain why in related works [11, 17, 30] focusing on SR-
enhanced live streaming, researchers heavily optimize SR model performance. For ex-
ample, they might send low-resolution videos with occasional high-resolution segments
for online training or seek a balance between using SR and directly transmitting high-
resolution content. Moreover, in live streaming or mobile AR scenarios, video super-
resolution (VSR) models must operate in real-time and often cannot utilize future frames

for SR, imposing significant constraints on many state-of-the-art VSR models.

5.2 Future Works

We conducted tests across different levels of compression and complexities of SR
methods, with the SR ratio fixed at 4 in this study, ignoring other common ratios like 2
and 3. We speculate that the results will remain consistent with ratios like 2 and 3, as
SR deep neural models, interpolation, and quantization in video codecs work on the same
principle despite having different scaling ratios. However, this is not something we can

immediately confirm without further experimentation. In the future, we aim to incorporate
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scaling ratios into our measurements to extend the generality of this study.

Furthermore, it’s worth noting that the SR methods perform poorly considering PSNR
for approximately a 1 dB increase, far from the capacity shown by these state-of-the-art
models. Since we tested the models with datasets and videos that they were not trained on,
as mentioned in Chapter 2, and the way we generate low-resolution videos differs from
how they are trained also, the performance degradation is much as expected. However,
other works [11, 17, 30] have shown performance increases by methods like utilizing
online training to provide the model with more information on the target dataset. In the
future, we also aim to focus on optimizing SR models to potentially improve their ability
without directly fitting the model to specific datasets, which is not what we aim to do due

to the variety of scenes that might appear on users’ mobile devices.

In addition, since this thesis focuses purely on experimental analysis, it is important
to discuss future directions that could extend the implications of this work. Based on the
discussions and results above, future implications fall into two directions: (a) Develop-
ing algorithms or protocols to optimize compression decisions based on current network
conditions and SR models on edge servers. While not a new idea, working with Con-
stant Rate Factor (CRF) introduces challenges because CRF aims for consistent quality,
yet resulting bitrates vary significantly with video content. Selecting the CRF value with-
out adequate content knowledge can lead to suboptimal compression. Algorithms must
consider both bandwidth consumption and video content to make informed decisions. (b)
One of the distinguishing features of this thesis is the integration of compression and SR
for analysis. Recent work has explored developing Video Super-Resolution (VSR) mod-
els specifically for compressed videos [29], as traditional VSR models are often trained

on ideal low-resolution images or videos, which may not perform well with highly com-
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pressed content. As shown in my thesis, model performance deteriorates significantly
with higher compression levels. Further research could involve testing models under sim-

ilar frameworks to identify which VSR characteristics are most effective for compressed

videos.
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