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Abstract

Nitrogen fixation is a fundamental trait of legumes. However, through evolutionary
processes, some legumes can engage in nitrogen fixation via rhizobia symbiosis, while
others cannot. Legumes employ flavonoids as signaling molecules to attract compatible
rhizobia. Observing the secretion of specific flavonoid compounds enables a better
understanding of interactions among legumes, rhizobia, and the environment. Therefore,
this study has two main objectives: firstly, to improve the extraction and analysis of root-
secreted flavonoid compounds; and secondly, to investigate the correlation between the
secretion of flavonoids by leguminous plants and their interaction with rhizobia. This was
achieved by planting both nitrogen-fixing and non-nitrogen-fixing leguminous plants and
inoculating them with various rhizobia strains.

In this study, 70% methanol with ultrasonic assistance was employed for the
extraction of compounds from the potting medium. The investigation focused on the
effects of alkaline hydrolysis on the extraction of flavonoids and their glycosides within
the medium. The findings indicated that alkaline hydrolysis extraction enhanced the yield
of specific compounds, particularly those associated with vitexin and isovitexin. However,
this method showed no significant impact on flavonoids such as daidzein, genistein, and
coumestrol. In addition, we explored the widely-used aluminum chloride colorimetric
method for determining the total flavonoid content. Traditionally, compounds like rutin,
quercetin, and catechin have been commonly used as equivalent standards for
quantification of total flavonoid content. However, our investigation revealed that
leguminous plant root exudates contain additional flavonoids closely associated with
rhizobia. Consequently, we introduced coumestrol, genistein, naringenin, and daidzein as
reference standards for the quantification analysis. The results demonstrated that different

flavonoid standards formed distinct complexes with aluminum, significantly influencing
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the absorption wavelength and peak intensity of the analysis; furthermore, it was noted
that daidzein failed to form a complex with aluminum. This observation highlights the
critical importance of selecting appropriate primary flavonoids in the sample as
equivalent standards to ensure the meaningful application of the aluminum chloride
colorimetric method.

For the study of legume root-exuded flavonoids, Senna tora and Vigna radiata
(mung bean) were selected as plant materials. These two plants belong to the categories
of non-nitrogen-fixing and nitrogen-fixing legumes, respectively. The results showed that
V. radiata can secrete nodule-related flavonoids such as genistein, coumestrol,
isoliquiritigenin, naringenin, and daidzein. However, S. fora secreted only small amounts
of apigenin, a flavonoid compound related to root nodules. LC-MS/MS qualitative
analysis further identified aglycone and glycoside forms of genistein, daidzein, and
coumestrol in the root exudate of V. radiata, along with the presence of biochanin A or
calycosin aglycone and glycosides, and luteolin or kaempferol glycosides. Intercropping
V. radiata and S. tora revealed that V. radiata hindered the growth of S. fora under high
nitrogen conditions, and the nitrogen-fixing ability of V. radiata did not promote the
growth of S. fora under low nitrogen conditions. Additionally, compared to planting each
species separately, more nodules were observed when V. radiata and S. tora were
interplanted.

To verify whether the interaction between different rhizobia and leguminous plants
was similar, experiments were conducted with five rhizobia strains (Ensifer fredii USDA
205, Bradyrhizobium diazoefficiens USDA 110, Bradyrhizobium arachidis CCBAU
051107, Bradyrhizobium elkanii USDA 76, and Bradyrhizobium japonicum USDA 6)
inoculated into V. radiata. Differences in nodule formation and flavonoids secretion were
observed. The findings indicated that V. radiata exhibited two distinct nodule patterns.

Specifically, inoculation with B. arachidis and B. japonicum led to the formation of
vi
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numerous small nodules, while inoculation with B. diazoefficiens and B. elkanii resulted
in larger and fewer nodules. Analysis of root exudates indicated that the group with small
and numerous nodules secreted a significantly higher amount of genistein than the group
with large and few nodules, suggesting that genistein might play a key role in the
formation of distinct nodule patterns induced by different rhizobia. Additionally, the
antioxidant capacity of root exudates, measured using the Folin-Ciocalteu reagent, was
significantly higher in the high nitrogen group than in the low nitrogen group. While
flavonoid compounds exhibited antioxidant capabilities, the concentration of naringenin
decreased with increasing nitrogen levels. This implied that naringenin may be a
determining factor in regulating nodule formation in V. radiata under varying nitrogen
conditions. In contrast, a low concentration of the nodule-inducing factor isoliquiritigenin
was observed, with no significant difference among the inoculation groups, indicating
that it had a limited association with V. radiata root nodule formation.

In summary, this study demonstrated the differences in the secretion of flavonoid
compounds by S. fora, which does not form nodules, and V. radiata, which does form
nodules, and the effects of intercropping on their respective growth. It was also observed
that V. radiata formed different nodule patterns with different rhizobia strains, and these
nodule patterns and numbers under different nitrogen conditions were associated with

specific flavonoid compounds.

Key words: mung bean (Vigna radiata), cassia seed (Senna tora), nodulation, flavonoids,

root exudate, aluminum chloride assay
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Microsymbiont switch hypotheses for the evolution of rhizobilal nodulation

SH1/SH2: One switch and multiple losses

SH3: Two switches and multiple losses
Character states

@ Rhizobial nitrogen-fixing nodulation

& Actinorhizal nitrogen-fixing nodulation

@ Lacking nitrogen-fixing nodulation |

® Unknown or uncertain

@ Rhizobial microsymbiont

Actinorhizal microsymbiont

10 Microsymbiont switch

#: Switch to rhizobial nedulation

#k Loss of rhizobial nodulation

millettioids (2,157 Spp.)
Tr. Indigofereae (808 Spp.)

NPAAA clade hologalegina (4,800 Spp.)
(9,546 Spp.) mirbalioids. (767 Spp.)
Hypocalyplus

Papilionoideae™
{14,000 Spp.)

@ Caesalpinia clade

Cassia clade r"E: Cassia
L—e Chamaecrista

SH3

Umtiza grade [—E:
Caesalpinioideae (4,400 Spp.) L m

Prerogyne
Gleditsia

Umtiza grade r{::m

Fabaceae SH1

Lo

® Duparquetioideas

—® Detaricideae
1 Corcidos
Fagales o Casuarina glauca

NFEI Origin of nodulation

-8 Quercus robur
Datisca glomerata
Bani hisnic

Cucurbitales

COMIMUNIS
RnsalL?E: mﬂrmdummﬁ'

B 2.0~ 8 f 4 AF £ 4 | i

Figure 2.1. An overview of proposed evolutionary histories of the rhizobial nitrogen-

fixing symbiosis in Fabaceae (Zhao et al., 2021)

Three slightly different hypotheses for switch(es) from actinorhizal to rhizobial

nodulation with subsequent multiple losses are marked as SH1, SH2, and SH3 next to the

affected nodes. NFN indicates the nitrogen-fixing clade. The origin of rhizobial

nodulation for the nitrogen-fixing clade and multiple losses of rhizobial nodulation are

marked with green and red asterisks, respectively.
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REGEERALA > B kS k%> R %S (Jain & Patil, 2010; Rambhau &
Ashok, 2020) « % 4 &8 § #2597 > GHNFM S THN LI 2T 0 TP T4
P RH4 3L i m A pH L 553 6.0 B4 L GRS 13 + 1
i X L FATRBE B (Mackeyetal, 1997)c AP fa+ € i x 2 RehE & ¢ mE
eHEGF AT TRAE ?fhg% TR KRR 0 0 E A R B KRR
Lenfd+ o ptaFd R HF e FF R Bk g (Bhattacharya & Saha, 1997) > ®
BogF T 2 i 2000 A - ¥ 14 8000 ¥ fE+ #c® (Mackey et al., 1997) >

R G- RA R R U e
5
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1
o

T

I

LRLFHEE O APt e (3 BT 430) B 5 BE

i

i

AR

R

FFA4AH R ;‘{%;}'i;}l\i‘frji if ;ﬁ__} £ +,§;;:;;1i,ﬁ; N ;éjﬁﬂi—ﬂ;ﬁ&ﬂ%, ngP 8

Rl
‘LE

f
fort i Bk D EARPF 7 St g A K KRR BA R EF ot B
Kt F Urdeg o 2o AP 2R Vo R R AR R B
BE A RT g L {eil B (Bhandirgeetal., 2016) o -7 s A A
& L EPR#p & (¢ 4&: cassiatorin~aurantio-obtusin ~ 1-desmethylaurantio-obtusin ~
chryso-obtusin ~ obtusin ~ chrysophanol ~ emodin ~ rhein §= euphol) (Telrandhe & Gunde,
2022) ~ % fr#g it & 4 (Khurmetal., 2021) f- % pE48 (Fengetal., 2018; Huang et al.,
2012) - FERF A AP F 5 G A Py s g L ‘};i“,f pd A ~AELE S F
S SR S PUR B S PO FF b Fuel s A (TR L U Spd P
B B B HELE MBS SR £ EEN S &R BT

(Bhandirge et al., 2016) °

¥ & (Vigna radiata)

%2 (8§ ¢ Vigna radiata > % < % mung bean » moong bean ~ golden gram v
green gram) = & #+ (Fabaceae) #77-1; # (Faboideae) gr.& % (Vigna) €4 > ¢
@ Wﬁ‘j]{'i cFlE e~ efrdE o By a s g e B (Phaseolus) > ™

5

Phaseolus aureus Roxb.sn & 5 5 A #1dv o A (§ o F 2 H B % HFT » 3F 5

Phaseolus =i b :c4 Vigna > % 25 &8 ¢ 2 - (Lambrides & Godwin, 2007)

-

BrLi-EAR At BRI RRLDEDPRIEL CFEEFFIILTMAE
AERHGET702 110 % ckF 2032 150 24 > AL AR SR> 5 E = £ 43
LEAAE 2 A ELZAHFE TCRARCFA  FTERRTER LK L #
R EAGERERfeR o F AR AN §F 103 25 K= fTp e
ek P iwmEAFHE aRFHE % T4 d 302 50 B &% > pRRE 3
12 2 14 R F i+ - FIS 2 i SR F T A F% > B2 g >y

2 HE iR F T (2frr 0 1993) -
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https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/phaseolus

s
Jeat

WX
/k‘l%

BB OHS T e Y FRY P AT FRMGES R AN R
SFGA ek KL B TR AR BRI T RL A 5T

4.

3

FE TR BB RS R TEGRASTEEE

IS

A EES T o iR R @A £ 2 B § pE{oiis (Houetal., 2019)°

&

S B C REM LG PE s P PO L PO~ PR B e ¥ i

* (Tang et al., 2014) -

2.3 135 ;?pf
i A S ’?ﬁ’%iﬁuéﬁﬁi’rﬂgﬁfi TR rﬂiﬁ’%/ﬁv’m@*ﬁ’f—' L

F_

B Ak = # o 3T & L H_ Bacillus radicicola (Beijerinck, 1888) » & ¥ { %

Rhizobium leguminosarum (Frank, 1889) o J&ZRpFA= » iy 43 2 £143 1 & 135w 7
A BEF - E 2 1982 & > 1345 Jordan (1982) % ?fg SR Y o ARET A R F
Fob- R B A B (Rhizobium) > £l 7 4 £ @ SRR REBEFHE
(Bradyrhizobium) - p j<i¢ * 16SrRNA A F|1 5 7|4 4715 » W H /B o # 4
B 4o P g 35100 % B4 480 & i & Allorhizobium~ Azorhizobium~ Bradyrhizobium~
Ensifer (14 # &_ Sinorhizobium) ~ Mesorhizobium Fv Rhizobium v #7 £] % e J§
Neorhizobium §v Pararhizobium - ¢* *+ > 21 & & A2 % iﬁux‘rmﬁﬁ;f%% 4~ R
FF AT AR ARBEFR ¢ 7 o-¥7 72 Aminobacter ~ Devosia ~
Methylobacterium ~ Microvirga ~ Ochrobactrum ~ Phyllobacterium §= Shinella 1 % (-
%2} 72 Burkholderia ~ Paraburkholderia (4 % &_ Burkholderia) = Cupriavidus

(Velazquez et al., 2017)

2.4 13557, a\mdﬁﬁ
Rz fHEFRL S RF ALY BT ORB AT (T A2
RELERNEE SE AR S SR TG ER - E A R TR

® VB FE £ o & 'Y (indeterminate nodule) ¥ 0 F A BRI e o A
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FA M AR A 3 "U% (determinate nodule) ¥ B 4 kA L dwie Koo (S
Flrwre k- H LA A5k A (nodule primordium) o g 4 358 B 3B R A T

ERBE RFIVERA 5 AT A AR U PR R AT TS - R

«Df

4 Xt 4 B TR AT SR 5w RERL L S

6 e
i
S

g

FUB B~ B A R o APt 2T 0§ U B A A 4 o Bk
R A eimre Ta’fi)* FrAp e 5 FE B (Fergusonetal., 2010) o & "4 che f4af 5
ATEREFE FRABOEF IR TR 2 EX e o 3 "IN KSE LS

FAGRRFELRY > RAMOER A B FE LB BB kg AR R

25 FEREETE £ 4 (KERER) A HF

B &E gt & 5 55 C6-C3-Co ¥ 2 ehit &4 - % % + chromene
chromane 7% %84 5 & A > 3,4-dihydro-2H-pyran 2 pyran 84 5% C> % C ¢
PR F A SR Bl B ey 4 5 28 R &R 9uER fr (flavonoids)
B % pr (isoflavonoids) fr#7#f & A+ (neoflavonoids) “ﬁ? gz ¢k B5 Co-C3-Co #
¥ 28 g fr 1Y & 4 & ¢ 35 aurones pterocarpans v coumestans (Rauter et al., 2018)>

HH A 2B 22 T o

2.6 F ERETIC & g i

e

RERAEC AP A AR FAEG AP AN TR e e ik b oo
H 4 £ & §j¢_phenylpropanoid pathway ¥ 4 & 21k » 4308 g F 0 H ¢ Rl
phenylalanine i¥ i phenylalanine ammonia lyase (PAL) #& i* 5 cinnamic acid ° 7% 15 »
cinnamate-4-hydroxylase (C4H) ##-cinnamic acid ¥ i* =8 4-coumaric acid > & - # 5
CoA ligase (4CL) i+ & = 4-coumaroyl-CoA ° % {s > = ~ <+ malonyl-CoA £ - 4
<+ CoA ester i€ i chalcone synthase &g & 7 = chalcone ° i i £ #f ~ 5 i % ~ ¥

B VEERE LEEE S I LN TE T e T R
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chalcone & ##42:F 9,000 f&¥ k% * & 4~ (Chouhan et al., 2017) -

Gl @AY B EREEIRETLALEFHT 2
Armvap@g@flswmeRmz Aimed 2B -Fishise N -R7 kaid
A e E o R E R9 [1 & F multidrug and toxin efflux (MATE)
transporters 2 ATP-binding cassette (ABC) transporters] ek 2+ *x-S-& 4% = (GST)
A BB (Zhao,2015) o p b > B 4 MARA F AT £ 4 g ARTETUE > X
EAL L G TR SRS 0 X T2 A et 'F 2 (Del Valle et al., 2020) ;

bl4o— I8 #8f daidzein BB A HawET 7 R 0 H X A AR A S B F K
B2 g¢m AP daidzein 02 BT a0 g F12 R A < < ' 1 (Okutani et
al.,2020) e F R AR B AT IR DT FF > U E TP AL P ARSI

vohdd o L SETHEFERFES B SR S 0 B e
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1. Flavonoids skeletons

flavylium

flavan-3-ols flavan-4-ones flavan-3,4-diols (anthocyanidins related)

3. Neoflavonoids skeletons 4. Rotenoids skeletons

1soflavans

isoflavones
rotenanes rotenenes
neoflavans neoflavones
. 7. Pterocarpans and their
5. Chalcones and dihydrochlocones skeletons ) o
@ 6. Aurones skeletons 3,4-didehydro derivatives (coumestans) skeletons

O 8]

/ |
- aurones
@ @ dihydrochalcones pterocarpans coumestrans

chalcones

Bl 22~ F@asgic &5 A% 2 Figure 2.2. Representative skeletons of flavonoids

10
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HO\QQ;JJ»\“ HO OH O
OH OH O
0

naringenin isoliquiritigenin

oo 1T
C o Dy
O
OH

(0]
liquiritigenin coumestrol

OH

OH O OH O

apigenin kaempferol

OH
OH on
o OH
8]
0
OH O "
quercetin OH

rutin (quercetin-3-O-rutinoside)

Bl 2.3~ 304 F ARFE T & Fenit §é€_*§_‘

Figure 2.3. Chemical structures of some

flavonoid compounds

myricetin
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TEYS
&
Y
ot
puil}
e

A+ S EEEREE RGP D AL S A DEE (B
cyclooxygenase ~ lipoxygenase » monooxygenase f- xanthine oxidase) 1 % /& it {2 4
X FRpy b fE o A RS L X wmeiE s L arig 2 (Mierziak et al., 2014;

Prochazkova et al., 2011; Shomali et al., 2022) -

2.8 % AT & 4 HHO L L

XS HPR R  E P OB PR iR ) 0 B P - 3 Rld 49
AP E AT REOF R AN SE A RN IR E LK
FITRE B~ b~ A H -~ ff 2 £ BGEFM 2 e B ehjp 3 8% (Sugiyama &

Yazaki, 2014) -

281 HEAFINE Fedp 3 iE

i\4

R4 %ﬁ FitEpw 'lvg%'%»*hﬁrﬁq [ﬂ;{?"' P’J;}E‘ﬂffﬁ] KA > SR ] ig%\:’]fgv

—
3
4

ReE s 5 (Larose et al., 2002; Singla & Garg, 2017) » & # ¥4 ¢ AR TS =

=l
2
5
wh
=
AN

i o 5 vRen S (Salloum et al, 2018) o g ¢ o x BE 56 L 5 B AT

VAL A MIGEE R AR AT IEE D B 4 2 03 B % (Pei et al, 2020) o < F
ﬂx

ST NS e PR ER R £ S

]

’F_k

B
J

P AR R G S B FER 4 (F* (Zhang et al,, 2018) © G
2 s g AR AR AT T DR M &5 blde3t 5 2 (Lupinus albus L))
& i % #4 pyranoisoflavones #r41] 5 3‘_ £ 'fr'];] Si4 & (Akiyama et al., 2010) o
2828 [ erp s v

FEFFIRATCEGIFE §EIIRY DR B &5 PR EKED

AP F A ST g frait s b4 kaempferol ¥ 12 #r 4| Radopholus similis

12
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fp it (Wuyts et al., 2006) o 430 % & 2 > F AT & 4 7 0 Bk R B 8 B

RFBEF L KA ERT GO A MR RV PR T P IR B

-

£ B ; bl4e > kaempferol ~ quercetin fr myricetin ¥ PRYF TR —th
Ap % Bend L R (Wuyts et al., 2006) » 12 %2 patuletin ~ patulitrin ~ quercetin fv
rutin it #7* Heterodera zeae 5% # (Faizi et al., 2011) »

R FEE LR T L F R E A R
e powm e AR S Ol 4 F isoflavonoids ~ pterocarpans (i 4 : coumesterol -
glyceollin~formononetin f- medicarpin) 1% % flavonols (>4 :kaempferol §= quercetin)
(Chin et al., 2018) » fE4» @ B~ SN =41 R enF M AT S 47 it § ' 4 78

A e ot bl kA PERGHSHE TS foREd > AR E R DERT
Foae F]Fata@d A5 4 { § gwpddt (Grundler et al., 1991) ©
283 & Aengp 3 iE %

%mﬁ“@%&ﬁ%ﬁﬁ%&@ﬁﬁﬁﬁﬁiﬂﬁiﬁﬁég0495%%
B R OB T e TR R %6 A2 R B F
RiLE&pry ERBEINR AT A EETF B (GAXRE S 5 D7 T
#) fofe Btz 5= (Dai et al,, 1996) o #- b » FFREF 1Y & 0 i S e
%ﬁﬁmwﬁmwﬁf’iiﬁﬂﬁiﬁﬁﬁﬁ%%%ﬁﬁﬁﬁﬁéﬁnmﬁﬁ%
TR RER S EREEA o R G B w2 g kR
SR £ 0 b s R % (Beckman, 2000) o % fib 3f 1Y & B0 vl B AT & o AR

B E g Bk B B s ] R AN 1 s BEeREE (Treutter, 2005)

o

B FE A ¥ A gl 8 T frF i F ¥ & (Blount et al., 1992) o

F g An AR P erdR A A RO IR O A Pk el & IR AE v P

4 (Naoumkina et al., 2010; Plaper et al., 2003) o #5;% }+ & Ak 5F i & 4= s B3 i 2

oo rr A N b > TR et e 4a (Haraguchi et al., 1998; Mishra et al., 2009) o g

GO R B RT LR PpRee AN S § g - HEFmEY DNA
13
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v RNA 724 & = > 2238 DNA gyrase & 12 (Wuetal, 2013) > ot 5 5 ik s I & 4

Pupd s Ad——7 B Frdlp 3 REFFa b S d P& 2 R

v 2 & (Zakaryanetal., 2017) °
2848 H Wit ingp 3 iEH

EFF Pt gl TREELA RIS EE A FOEE L S S
Figie o TR ALY UMER (1003 10°M) H 2 MGER (10°M) % Ao 2
RBERNAP RN ERBTIRE S AF T AL {oF T 2 o A 2w BN e
(Gniazdowska & Bogatek, 2005) > P # § R #f i & (5 it g o F eniv* ¢ F 3R
237 (Kato-Noguchi, 2022; Mehal et al., 2023; Nakabayashi et al., 2022) > {4+ ¥ ¢
L it Lo 4o & & 4 drsaponarin (- BATE R OE AT L)
Hao el & chiddf (Bouhaouel et al,, 2019) » R a1t &F h R fv ¥ oav § 243
R~ & b4e 0 R (flavonols) fo Ak (flavones) it g T % 440 5 A
* » R4 A e (Borda et al., 2022) -

WE R E R TR A R E I EAE R (TR AR LR
BooEm s B i Zenig * (Farooqetal., 2020) > &4 * coumarin j* > 3 3

E R £ EFA S p9E (Lupinietal, 2014) » &2 » Jb%rk (striga) 4 f8%t

FpgrEAfpTanF ey | BF T e et (Desmodium uncinatum) 17
WP TS AL YL R 4 (Khan et al., 2016) > D. uncinatum € # % fir %7 1
& ¥ uncinanone B g %r & p B T o I 4% uncinanone C fr A fa di-C-
glycosylflavones Fe it # 4% .75 2 43+ (Guchuetal., 2007) - {8 F#7 7 ¢ FRHH
C-glycosylflavone 2z vitexin e/t di-C-glycosylflavone 2 isoschaftoside 5 D.
uncinatum % &4 ¢ E E M i B & 4 (Hooper et al., 2010) o

PR TEH AR HORB R PR MBS TR IoF AL EX I ERR T
2 PRIy 4 KPP E O (Scavo et al., 2019) o Bw = E X (Trifolium
repens) A £ R > 3 E P VT U R DT 4 i e formononetin ~ medicarpin

14
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kaempferol o #-v = F LT 5 %W * P E P ch- T p > FEEIF ER D
kaempferol {r quercetin s > & d & 16 X 18 >~ S EF @A 54 LH ~ o
H¢e¢ > <& kaempferol A F &1 3 » H v F @& & 4 B4 '% f2 (Carlsen et al.,
2012) o o 0 B MR IEF doRfES A AR ERY F RO A AR Y (54-
dihydroxy-3',5'-dimethoxy-7-O-B-glucopyranosylflavone =~ f-  7,4'-dihydroxy-3',5'-
dimethoxy-5-O-B-glucopyranosylflavone) » — £ /% 1 » i*u gL H A5
RSFLHCA PR 0 Afen Y 2 B B E o A MR ST R e gk o
4o & (Kong et al., 2007) o

FERAT A AR T DR SFIN F R FAY FRs E 8 ATP 2
NI NI A ¥ 5| ﬁsﬁr"% j25 B B P B8 T 425 2% (Soln & Dolenc
Koce,2021)° ¥ § A7 3 305 R AT & i@ 3815 TR $RAZA L

e = blde Ak X B § (Centaurea maculosa) &3 cnd # b o BLE D4R AR 4 i

e Mg s AL R RN F R AR R DALY P A EE
LT A e e 3T T ¢ e pH 4 §Fm $ R e k= (Baisetal., 2003)e

2.9 #3RA S Ap M g FR AT £ P
EREFY AR SRR M P Rl M S AR RERY

er g ApM o RF G B PSR LS F ML S

—=\
i
(‘H}
\%;

B b KA TF S A R R Tl B A LTI E Y e R B B
THRPNAZEF NI RFLIFIBVIMNER - 2 b 2P HEF 2 R BA
MEmMagt &9 72 2k bldrx 8130 A B @ ehisoliquiritigenin~ liquiritigenin ~
apigenin ~ prunetin * amino-flavonoid - afrormosin - dihydrokaempferol ~ genkwanin ~

naringenin fr biochanin-A (Brechenmacher et al., 2010) -+ ™ 2 H {25 x4 ¢
daidzein ~ genistein ¥2 coumestrol (Schmidtetal., 1994); ¥ & (Phaseolus vulgaris) 12
A s 47 ¢ e genistein ~ daidzein ~ coumestrol -~ isoliquiritigenin - naringenin fr

liquiritigenin (Bolafnos-Vasquez & Werner, 1997) ; % -8 7% (Medicago sativa) 13 »
15
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# 4= ¥ cr1methoxychalcone ~ formononetin = medicarpin (Dakora et al., 1993) ; $T7-
Men & (Viciasativa) 134 i34 ¢ 1methoxychalcone ~ isoliquiritigenin ~ liquiritigenin ~
hesperitin ~ naringenin ~ 7,3'-dihydroxy-4'-methoxyflavanone - 7,4’-dihydroxy-3'-
methoxyflavanone § 5,7,4'-trihydroxy-3'-methoxyflavanone (Recourt et al., 1991) ; 3~
T = £ % (Trifolium subterraneum) 3% %4 ¥ 1 dihydroxyflavone (Lawson et al.,
1996) ; & & (Pisum sativum) 34 4 # npisatin (Novak et al., 2004) o

B 248 25 fr® 2.6 ~ % i 5 KEGG (Kyoto Encyclopedia of Genes and

Genomes) FHE? S oL FM R ME EMIcE ML & 2T Y %4

o]

CHEA e Y RH ARG Y BB AT Y ¥ E R hREE L
* (Subtr. Phaseolinae) (hE e~ 2 {IBpM Mgt &5 > FRY 7
% i genistein ~ daidzein ~ coumestrol ~ isoliquiritigenin ~ naringenin {fr liquiritigenin =
Ao et i d AT o S A AR M GRT 0 B K B R M g

AT LA R0 P RE G - BERPA R 0 RRREP 20 LA

SRR SI

16
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ISOFLAVONOD BIOSYNTHESIS
L 3,9-Dihydrox 59 T k
2-Hydroxydaidzein Pherocarpan F 6e, o yd.roxy 4'1]53(]?’&&1-
[(2H F»o{13151 =o—{1.141493 2515 o fs}»o Glyceolin
_Di CYRIELE? 2' H CYPI3A
) 39. D:hy:i.‘mxypmmcarpen o idzein Glyceocarpin
———— 00— ‘ i
D ihydnox - | 9-Derne thylmunduss rone O Glyceollin II
| —————0 o
Flavonoid biosynthesi 0 7-Hydroxy-
! ymihesis 'y l 23.[.115| o FDMM"‘ l 2',‘f,5‘-tril¥eﬂmxyisoﬂawne O Glyceollin III
| - O« & Bt I O ()-Festicl }mn
. . malonate
I SHLIA0%] 5 ¢ gty | Formononetin 7-O-glucoside 72-Diocy.
L f ™ 1soflavanohe | r e thoxy-isoflavanol 24117 3111 Mledic
po—== — { 1I2H J>—|13145]—DO—|1113‘8|—>O—[42_1.139|—>1—.&) . &o lumsnd.e 6-Ocmalonate
~vE2iELET 2-H -)-
I CYRSIEUET Z-Hydiony () Vestitone O-Medicarpin S Ream
| Rotenone
| r————-"o 3}Dﬂ1 Ko
I mefhylenedioxy- (+) fa- Hyd.mxy
[ 2. Dmyth'oxy F-methoxy- ; isoflavo (*)-Sophorol
I \-|1|414ss|—>$—11 141953|—bo—| 2H_*0—{13145»0 ”O—— O—E—'O (+)-Pisatin
I CVFZ1ES Calycosin CYPBIELET (O-Mhsckinin
I CYFTID? Deidzein o[ 241170 O_IWI_.
: 0 7-C- g:llgloosxgl; DT s : - - Y Meokin &-0 glumsyl 6"-Crmalonate
2,6,7,4-Tetrahyrdrox Daidzein 7-O-gluoside -)-Sophorol Mw: n I-
I is'oﬁa,van;ne > G]y:ltem e i -glucoside
I »0O [231115}»0 Ghritin
| o 6.1 . glucoside-6"-O-malonate
| &?,4-Trn:yd.rmy CYF93C yidroxydaidzein Gly:.llem T-Orglucoside
I :}—’OZ Hydroxyzeniste in
| @ CYFZ1EL/ET?
| 1 O Prunetin
: [13.1.46}—#0 2,3-Dikyrdzobioc hanin A
IL in& Biochanin & 7-O-glucoside
Bi
—————— 1 ; 2411701 »0—{ 23111510 PFIURE, (.0, aiomate
CYROIC 2 Hydoy.
2,3-dihydfogeristein 11414580 1.141963—™O 5-Hyrdroxypes udobaptigenin
CvPziED Prakensin
:—bo 2-Hydroxybiochanin &
(231115 OGBmsh e 6" Ol
Genistein 7-O-glucoside ghicos Talonate
00943 618121
{c) Kanehisa Labhoratories

B] 2.4 ~ Isoflavonoid biosynthesis - Vigna radiata (mung bean) (https://www.genome.jp/pathway/vra00943)

From KEGG (Kyoto Encyclopedia of Genes and Genomes) 17
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[ FLavoNOID BIOSYNTHESIS
—Ci 4-Coh Pinoce mbrin ¢ hal Pinoce rbrin Pirobanksin
mmm 23174 o {5516} 114119 - #O Pirohanksin -acetate
114206
| 141481
| ) OGulangin
| s,
| 231170 \ 114119} »0g © 5. Deoxylsucopslargorids
| Garbanzol
I L Isoflsvonoid biosynthesis 114148
I I
) | FRREIE] . .
| 3. *O 114115 »Og © 5.Deonyh 3
I Butin an‘m Dilyerofisetin
| i) pm:m
I Degmethyb SonEd. | “”P""“‘
I xantbolitol x»mnmm xant haznol | ‘,————v Heohesperidin
I 131117 o{ansEheo-fiaeleo | |
: 1 I 211231 O lsomburaretin L i
Misingenin chal L _ Il Nasingenin Dibrobaerglerol [ 315] Levegpelarg
{23074} > {5516} "c g {14119} - :
 fm— — [
"%mmh“ 211252 O Sakuranetin !
[LL1Z54 0 Apforc] O (4)-Afaelecin !
- \amroiarsa o 8 ronide Kumpforo] 2 i
nnu'can:il:‘i""(1 2.C-Glocosylnaringerin  Vitexin 114206 [ O—— ———->{ Flovone and flavonol biosymthess :
241 o |
hj_t_,m [ 1414zL[114142] :
! i
Caffen Ce
o cid D cpeinic 2eid l
|
231133 [23.1.133] 1 |
234-r 6 1
“chaléone 4‘?&;}\.0092 I
» 23174} |
Caffeoyl-Cok 7,344 6-Pentahydroxyehaloone It
1141936 | Luteotin 5
211104 |
s © Luteoforal :
) !
¥ I
23174 > speo |
Ferdloyl-Col i&lﬂ;m:y Homosriodictyol < Tricetin nidin Dielphinidin  ()-Exizallocatechin :
114119 114204] 131771 >0 H
Dilydrotrieetin Dibyrromyricstin, 11713 |
__________ 7
{+)-Gallocatschin
00941 621119 )
(=) Kanehisa Laboratoriss

B] 2.5 ~ Flavonoid biosynthesis - Vigna radiata (mung bean) (https://www.genome.jp/pathway/vra00941)

From KEGG (Kyoto Encyclopedia of Genes and Genomes)
18
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https://www.genome.jp/pathway/vra00941

I FLAVONE AND FLAVOMOL BIOSYNTHESIS

4-0-We thylapigenin

Kaempferin

. Flavonoid biosynthesis

| - —»0— 241 ™0 Kaempferol 3-O-tharanosids-7-C-glucoside

| . Kurﬁpf erol .

7 Cosmosin Apiin idle -D-sopho

Apigenin C Oa T K o]
He F‘g%'g]l -=2)- 6- malunyl aempfe erol
|3}11 (4—cou.m1 -
beta- -glucosyl-(1-=2)-
bete-D-glucosil-(1-=2)-
bete-D-glucoside

Trifolin
Kaempferol 3-O-beta-
241584 —»0— 241 |—#0 Keetaple e

Isovitexin Jeoritexin 20
o - »O lecratexin -
241106 heta-D-glucoside

Vitexin
o Vitexin 2°-0-
2 beta-D-glucoside

1141431
O Ayarin

Isoruercitrin

o Legredisin
1141481 [[11414%2 oin 77 o Quercetin O— 2.4.1 91 —»0— 231116} —*0 Querce
ot hamoside P8 B racdonst-p-D.Gke)
Luteoloside O Quicetn30. )
. O Scolymoside eta-D-xylosyl-(1-=2)-beta-Drglucosde]
v m O Quercetin _
Luteolin 1. 1. Ol ;;1]:1 o %(w-xﬁossﬂmtmds)
Luteolin Luteolin 7-O-[B-D- Luteolin 7-Cx D Gch )%1 =2 Quercetin
o 3-sophorotrioside

T-0-f-DGlech GleA-(1->2)p-DGleA] B-D-Gles]-4-
Quercitrin

- 241} 3 Q- rI\emms:de 7-C-glucoside

O
3-O-Methylluteolin
Querce tin
337 tisulfate
1141481 O Quercetin
34 T tisulfate
Myricetin O— 21 1267—»0— 2112670 Syingetin
Laricitrin
00944 71318
() Kanehisa Lah

B 2.6 ~ Flavone and flavonol biosynthesis - Vigna radiata (mung bean) (https://www.genome.jp/pathway/vra00944)

From KEGG (Kyoto Encyclopedia of Genes and Genomes) 19
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https://www.genome.jp/pathway/vra00944

3 =N
ﬂ»“&*’%m “‘%m

Daidzein (R=H Daidzin (R= H 6""-0-Malonyldaidzin (R=H)
Ge]m;fém((R C))H) o Genistin (R= 6"-0-Malonyldgenistin (R=0H)
1

ABC-type /‘ Accumulation in the vacuole Vacuole ™~

transporter HHIX\"/\}‘\,:P\“ \ l
N Hﬁ&,@ -
0, 0, OO
TN ) ’:llt y

oH on Rhizosphere
HO, OH
—_— ; HO, I
OH
Daidzein (R= Hg) Isoliquiritigenin (R=H) HO OH
Genistein (R=0H) Naringenin chalcone (R=0H) OH HO

| Degradation pathway ‘

(Sugiyama & Yazaki, 2014)
Bl 2.7 BFM k20 625 S n 4B

Figure 2.7. Schematic diagram of storage and metabolism of isoflavones in soybean
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2.10 s pr 7 & chip] 25 i

& it 481t ¢ ;2 (aluminum chloride assay) H_J§ 5% *tip| 248 4 5 Bt ¥ b iE
F@ iR £ AI(II) * 748 & A« 37 5% ¢ Christ and Miiller (1960)
Fedio AR ALID-3R A5 & 0 S Rl 2 X 22 7457 flavonol 474 4

hz B od WFEMEM LG 3755 A4 (oxogroup) ez ik (B 2.8 32— )

=ht
o)
==
B

:
-l_'
N
gt
w
1-\%7
%i“

g3 (o4 AL(IID)) & " g e Ard 5 1B - b -l
e LEMPA pH EX N SRIER EEFRE DI 0 R4 2GR
e e e & T gEZ W3l LAIERA o ARG TEL AR WA R R

Z R E 3 EH M (Barnum, 1977)) 24 = flavoniod-nitroxyl #72 4 (B 2.8> 2 2 = )

4

F A X 500 nm A AT TH o
# 2.1 % Shraimetal. (2021) A3 5 B g * & L4510 d 2 che }F*Je =8 -
G R AR EIER MBI T 5T quercetin  catechin e rutin 1T 3

5 e

PREEMERDF R RES @ e B AT A o RA 0 A

AT BT S RE G RE T AR SR R RS
RIS E AT AR nF R AR A R R &AT

T r AR nein

~m

| Z_ o ',\1;,1',]@%5.:; F’ gl & ﬁ'{%ﬁfx%\,:ﬁ_o
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https://www.sciencedirect.com/topics/food-science/sodium

OH

\"A\I(III)
(Shraim et al., 2021)
IR
OH
0]
+  NaNO, Oxidation (Orange
O
N AP*| HNO, (Nitrosylation
NaN02 —Hbv- HN02 2( ¢ )
@
O
_ \ ) = \ o
A|3+ —~f /’\\I
HN o\ NaOH N ©
| @]
Oe
(Pinkto red)

(Mekonnen & Desta, 2021)
Bl 28~ RAFRfh z BRI T ——F L 45 d Z RIE

Figure 2.8. Illustration of aluminum chloride colorimetric assay
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o 21~ F AVEEZ R E 2 E e }E&‘?*}EE (Shraim et al., 2021)

Table 2.1. Literatures on the determination of total flavonoid content using the aluminum

chloride method

Flavonoid 4, Use of other Solvent References

type nm reagents

Quercetin 415 CH;COOK MeOH-H,0 Aryal et al. (2019)

Quercetin 415 CH3COONa MeOH- H20 Ondua, Njoya,
Abdalla, and McGaw
(2019)

Quercetin 415 CH,COOK MeOH- H,0 Shah et al. (2019)

Quercetin 415 CH;COOK H,0 Ab Rahman et al.
(2018)

Quercetin 415 CH,COONa EtOH- H,0 Sembiring, Elya, and
Sauriasari (2017)

Quercetin 415 CH3COOK EtOH- H20 Chang et al. (2002)

Quercetin 440 CH;COONa EtOH- H,0 Dahech et al. (2013)

Quercetin 520 CH,COOK MeOH-EtOH- Engida et al. (2013)

H,0

Quercetin 415 - MeOH- H,0 Wang et al., (2019)

Quercetin 420 — MeOH-H»0 Chandra et al. (2014)

Quercetin 420 - EtOH-H:0 (Ordonez, Gomez,
Vattuone, & lsla,
2006)

Rutin 415 - MeOH Lazarova et al.
(2020)

Rutin 415 CH3COOK MeOH-H-0 Jaradat, Hussen, and
Al Ali (2015)

Rutin 415 CH3COOK MeOH-H-0 Madaan, Bansal,
Kumar, and Sharma
(2011)

Rutin 430 CH;COONa EtOH-H,0 Cimpoiu et al. (2011)

Rutin 410 CH;COOK EtOH-H,0 Zhang et al. (2013)

Catechin 415 - MeOH Ramamoorthy and
Bono (2007)

Catechin 510 NaNOs-NaOH H.0 Munekata et al.
(2020)

Quercetin 510 NaNQ,-NaOH MeOH-H,0 Phuyal et al. (2020)

Quercetin 425 NaNQ;-NaOH MeOH-H,0 Gomes et al. (2017)

Catechin 510 NaNQ,-NaOH H,0 Al-Rimawi et al.
(2017)

Catechin 510 NaNQ:-NaOH MeOH-H»0 Perez-Perez et al.
(2014)

Catechin 510 NaNQ;-NaOH MeOH-H,0 Jain Kassim et al. (2011)

Rutin 510 NaNQ,-NaOH MeOH-H,0 Yan et al. (2021)

Rutin 510 NaNQ,-NaOH MeOH-H,0 (Wang, Luo, Wu,
Liu, & Wu, 2018)

Rutin 450 NaNQ:-NaOH MeOH-H»0 Fu et al. (2010)

Rutin 510 NaNOs-NaOH EtOH-H:0 Chen et al. (2019)
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201 5 f #E 1§ A DR PR e i
R AR ATE G Z o eRF BRI ANER BE 2 R K
L E TR R AR AP Y TR R PR RE 0 X R T E R
STRCERERCFE N S EITNOE R 2 o oo R B g e X
B~ o R A B RS 3 B {odg 70 S48 3 B~ (Blicharski & Oniszezuk, 2017; Jurinjak
Tusek etal., 2022) « A FT 5 & * Az Bk 4 25 5B > 1 LR E Bk g b R i it
3¢ 1
TS T UMSRELAFT A R L F L E AT T AL vt B
Ao A REHY Y AR R SR RBOA MR EP T RS
B ie Hiﬁ?@ﬁg‘] CECLARR A PR A TR IOATR B s (Kytidou et al.,
2020) - 7 1 HEF B AL R R .%m%ﬁﬁﬁ’vﬁﬂ?ﬁ@ﬁ%m@»m
2 A fx b '8 2 (Wenetal., 2017) 3B #ric B D eng Rag it £ 4 % B E 538 0 -
4T EAEF B (Liu & Murray, 2016) © % & B e § i & 14 & e Bk s
LG R R RS N3 TR ¥R avkiEs 85 R dk oK fE o BRIE K 21
% p R pE (Kazlauskaiteetal,, 2021) > g 277 3 8 sfde K 282 7 oK 30 - it & fE
e JL R R A E PR S R e d A R ORI PR ok
oMM T ALY PR R AZF R B E R Y
B AR RE R 2 46K R0 cniE 2 > A %) %3 7 Rostagnoetal. (2004) *t & 2 X

F % » 1 % Kazlauskaite et al. (2021) >t o K ¥ enZ B 5k o
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[kt

3.1 ipE T4

(Senna tora) &+ pp £ 47 A X HARGL F P B5 > LE¥L b

3
N

NP2 AP AR A APHZARIIOEG6 4p 0 $EL5228 Ax 2 H

% = (Vigna radiata) 8+ MEp A7 %Fi}% FREE R LafFERMEA Y - FL2

hESE eI s XPHIARI0OET Y 23p > AHAFE

5 8% 21072200022 ©

SRIEBEEE (T VC38A) A ie B L EAS 2 T NEEATFR
Pk R EFETA R ZRAE R ET b REESE ARt AL T

Poodi gk VO2TS0A 0 B i A H - RPEZ RS BRI R AR R T

FP U Sk VC2T68A 5 A RS SR G RMR AR (S0 0 1992)

32 fafE 2
32.1 v B A%
22022 ERFRAEN LA RRESF Y FAE > HFFBfAE 2 AL ER
AP A EFBSEA R E AL 2% E L -tk BREES [Some YK 5§
3T BT} 3§ A e JR e J'lﬁi',% LEW g F L 40ngha énw&: e ok %L
B Bifet o Ry 32 S Al o AR REEEERFZE Scom
£ 60cm iF 10cm ek iFT3n s B E By A EY R RIET B A4 5
PR o e F15 A 2 3F 5 REAE (e ) R IR E AT -
BB 0T A R Fl S AV R B AN T TN H g g T
FRAGE X F = AR SRR BB RIIOR R & e g S
PR T R e s E g YRR FRERFA LR RS AT B A
T2 o mHFALE BT HE A PRNFNNERLR S DGO 0T RS

s s w2 i 0 A A S B T (0 2000) ¢
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322 2 £ 3%%

PEBRETR AR TSR R RAB EF R E TG RA 5000
x> B R 223 25°C AEPF OB T BRI 0 & 2 F 2P0 AR AE S
RpE s EATHEIS T o Bk A B = FFE pillowsystem ¥ - FEEC] A B AE IR R
32022 & 3% 24 p 3 2022 # 5% 1 piEi7 o pillow system % = FFEC K B AP R
3t 2022 F# 4% 8p 3 2022 F 5% 30 piEfT o et 23R 2022 &£ 10 19
P 32022 & 11 % 25 pigf7 o
Pillow system 2 #5335

&0 AV R TRE > E% Y pillow system (Hayashi etal., 2005) » % 7 5
TR ERIEFELIRERLES (6:1, v/v) MplE N - THEE > RS EES A
EAGLE R B ohP URES 2 BRI PSR R L AFES TF
g A ol WIS FRANNE TT A BA SRR L MFE L S KA B
TRE o B0 AipAlerEt i £ AT MR R4efe > # § § 9 Broughton and
Dilworth nutrient solution (% 3.1) » & %f ¢} 7 e v B F EuRRR 7T SmM
FERRAT » 05§ 2 BRI 3 F 10puM Ak o tf T - BRI AR B

SRS E I i A

tEFh T ROERAFRL o
Pillow system 2 &% 4 = = FFEC o
¥ - FE B % FE 5% 0 %7 1000 pL Thermo® QSP Mz & w5 ¢ < § (tip £) P &7
P eh P32 pillow system (07 (7422 % B A3B FFRE S E BTk o Ap&k Y o
= B tip £ 0 FAEAE ZHEE TR - BREBEFFRAS BERY - B tip £
BIEPFXRHFEMERY &% - 4~ 50mL &2 88 %4 o
FoMERLELHBRGE NS E AP BRI E N (CMI ] B4 ELE
RE AR HRREF AT o FF > ) 7 (B 3. R EP TR
2 BRE o TR AR S - R KT P FREE S R

2

EﬁLmﬁAﬁﬁﬁLm’Eﬁﬁiﬁ A% e BN 288 F PR P
PRge t-tho FEFBMGF BZ

FiRME 3 pAILL - £ T A K4
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> 50mL &R aFE L o
=g 2 HR%

‘% pillow system F£ = j&A F ¢ i AT RIR AT EF 18 TRIRE F b2
CBMAEA TSP RERE I Z R P E LIS X F 8L X KE 62D
A2 ERRER M ATSEFELRETRES (6L, V) B 5 =R
FIRCRE D F RIAUE B 0.5% & FRAMB R AE S 13 B kR o bR 20
WAZIHE o EN- R BRERARR BRERRZ X6 FFD R 0§ T A
- Fh o &k 7T * i {8 o0 Broughton and Dilworth nutrient solution (% 3.1) »
WE muE R g S mM AT MosE BuRZ 10 M A Rge > th T - B
2R EERRSY S BEE XA 25mL 2R IA LEE RS BEFIRNBRRICE
AN

BWF EWE Z A #%T;-f] ~ #&F4 B. arachidis CCBAU 051107 % #4& E. fredii
USDA205 > £ = AJZ » &7 £4 ¢

25§ wmwle 77 4% B B. diazoefficiens USDA 110~ #4& B. elkanii USDA
76 & $e4b B. japonicum USDA6 > 1w Bed@ e > 2 T £4F 5 12 B4d B. arachidis

CCBAU 051107 fr#2 48 E. fredii USDA 205 e A2 e s & 10 € 4F
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4030~ &

Table 3.1. Composition of nutrient solution

Concentration Volume of stock

Stock Components of solution per liter & ;
stock solution in final solution concentration
M) (uL) (M)
A CaClz 1 1000 1
B KH>PO4 1 500 0.5
C MgSO4 0.5 500 0.25
D K>S04 0.5 500 0.25
E Fe-citrate 0.01 1000 0.01
F MnSOq4 0.002 500 0.001
H3BO3 0.004 0.002
ZnSOq4 0.001 0.0005
CuSOg4 0.0004 0.0002
NaxMoO4 0.0002 0.0001
G Co(CH3COO0) 0.002 50 0.0001
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Vermiculite:perlite mix (6:1, v/v)
Pillow bags: polypropylene tea packs
Plastic tray (130 x 150 mm)
(242 cemx 15.1 emx 13.9 cm)

] ™N

Pillowcase 12 cm x 10 cm

Sterilize with bleach solution.

Autoclave

[g B&D nutrient solution (1250 g)
(Fully absorbed)

Added deionized water to a
total weight of 2000 g

‘ Each 50 mL of nutrient solution was added twice a
50gx6 week, and deionized water was added from time to

time to maintain a total system weight of 2000 g.
\

* Inoculated roots with bacteria culture
After 2 days ata cell density of 105 celly/mL.  /

Nutrient solution was added (10-15 mL) twice a week and
deionized water was added to a total weight of 2000 g.

Sowed the seedlings in between
individual pillows (two plants per row.)

Bl 3.1 - Pillow system #%it

Figure 3.1. Description of pillow system.
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3.3 1B F AR

A %Y IR Bradyrhizobium diazoefficiens USDA 110 »
Bradyrhizobium arachidis CCBAU 051107 ~ Bradyrhizobium elkanii USDA 76 ~
Bradyrhizobium japonicum USDA 6 v Ensifer fredii USDA 205 o } it = B 5 4 4
SEAPPREF TR EF IR E A BIR 2R EF PSS
THFREEFIHRTRIE -
L 1 ° F¥ Bradyrhizobium diazoefficiens USDA 110 &2 & & & Bradyrhizobium
Jjaponicum USDA 110 » fe 2; k. 2 32 & ~ A FA{fr A Fle X FHEp £ &
Bradyrhizobium japonicum USDA 6 % 1T % (PR o > zod & 3 = 3748 (Delamuta
etal., 2013) -
L2 A E % Bt P #rdp fieh B. diazoefficiens ~ B. arachidis ~ B. elkanii ~ B.
Jjaponicum v E. fredii > % & %] % & Bradyrhizobium diazoefficiens USDA 110 ~
Bradyrhizobium arachidis CCBAU 051107 ~ Bradyrhizobium elkanii USDA 76 -~
Bradyrhizobium japonicum USDA 6 fv Ensifer fredii USDA 205 -
L3 AL ETRE W E A 0 40%Y % &2 YEM (yeast extract medium)

REBEARR S el F e et < BT R E42203 3 -80°C kA o

198 FE-80°C k48 B~ 11 {42 YEM agar 28°C 3% » FFE 2,2 {8 » w2
2 KT 3mL i YEM eng g > #F R k& 600nm =k B 0.5 72 {5 > B~ 30

ML FiR s » AT E ¢ A o R EL P 0500 B B 05mL iR EH T K

o
.
E
(g
A
¥
F_L
S
A
o
S
S

=

3
-

(<) FRGEZ T E Rk Es FR M
k0 (SRR 10 B A IR 10 RR 0 & - R S0 20 uL jF

YEM agar 32 % ¢ (5 £45) 0 FS LML kA Elick Fx 3

<
B
>k
e
<
B

B &I FE P RS E CFU (colony-forming unit) » #-(77% fichy 27 v 5k (B 401t L fs
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Mok B G HETEE R (B 3.2) -

(Z)YEM £ % £ : NaCl0.1 g ~ MgS040.2 g ~ K;HPO4 0.5 g ~ Mannitol 10 g ~ Yeast
extract 1 g» 4c » 33+ K 1 L8> 12 KOH# % pH &3 6.8 F ks & AR e~
Agar15g-

B. diazoefficiens USDA 110
B. arachidis CCBAU 051107
B. elkanii USDA 76

B. japonicum USDA 6

E. fredii USDA 205

0 5 10 15 20 25 30
x 108 CFU/mL

Bl 3.2 ~ 3% 7 ODeoo = 1 F* HF &

Figure 3.2. Rhizobial counts when ODgoo = 1

3.5 & & 2% 7 £ p 7_(Senthilkumar et al., 2021)

47 ¢ REM B A S A 4 B RSULARN (Porter, 1983) 0 7 2
}I%pr e @ RE i (acetyiene reduction activity, ARA) fs B enE § friEft o €
"£% & & i v (leghemoglobin, LHb) fri3 #5454, ¥ A f 36 it b @ T ¥ » i
ARA 2 LHb 2 [ erdp B 12 5 3 #chf 02 7 228014 4 % (Becanaetal., 1986) » 47 3
LRI ARA K H o B R L FEFT LR o
Y/ JEL I

w fr B0 B dk ® E2eter (pyridine) A B4 S i F E 0 T 556 nm T RIE o
B

Frps B % ek 0 0.1 M sodium / potassium phosphate buffer (pH 7.4).

d e GE R 0 #-0.8 gNaOH 7% f2 & S0mL -k @ 04 %r > #& % 4c » 33.8mL

eleg > % ORFFE D 100 mL v gt PF NaOH & vieg ik B 4 B 5 02 M 2 4.2

M o

PR B 5
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HAMATHE A AL ISR REF Y - 3 2 SHATHRRE R L1
EERIF X EF o BRI 0 BRI 10000 g e T A4 BT EF Dt 4
ek o E S AT o
GRS Sk

Heil WA DR PR 2 R AR R e e GERRNR £ 0 e 02 e 4R
AR B ERE S 2 (80 M F R R AFRIA BEE o AR -
e oo e r 05gidc TAEEG (NaxS:Ox) MM ERL ¢ F 0 F B254&
0 " 556 nm kK F IR (Agse) 0 BT - AT 0 R 0580 F A
#pisr (K3[Fe(CN)]) Suffiri g itu ¢ % > A1 539 nm it £ T Bk ig
(As39) ©

Lien o2 kR

EY
P

25k jk A& (mM) = Gesetunl®D

D= % = ) BrerBe2 3§ MR /BoAn do » cBRL S BRR R AR
Ao TR RRREET V5 Cawlegs §F 556 nm E2 539 nm 0

i % %% 5 23.4mM ! em™! (Bergersen, 1980) ©

3.6 198 ¢ BE

A
Formalin-Aceto-Alcohol (FAA) 7% /% (Rajewski, 2018) * B~ 95%FpF 53 mL ~ 2
fe SmL ~ 7 fiz (37%~40%) A% 10mL ¥ 32mL 2 33+ -RiR & o

SRR aRR

FoA O BPRT g R FAA BT 0 FRH g b 4CHk e R
PG FAA B R BT e BH ¢ ROATEF R BTN o LS 0 R
0.05%:7 TBO (toluidine blue O) $3%*» #2874 d o == A d {5 f|* ¢ fE

fomipe B e d SRR > RS Y X RMBETRE -
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3.7 R &g w8 Foa

(-) TEEPREUR

1. B~ 15 g A B 4a255g P > e > 250 mL 70% 9 f3% % » & 60°C-Kkig T 12 40 kHz

ARH AT 30 44 -

M HRKREEFEHT 23 Bk KIEE B EA I 230 TREFH T4

2. 70 25%% F AR RAEFLN pHES 105 BF LI AT 44 -

3. R EEMAKFPHEL 57 ¢

4. A1 ki FIF s 0 #-F B 1 ADVANTEC® 2t ik A No. 2 iR @ = o

5. Bl e (TR RS SRS SOmML T g 0 302 1600 g de A4 4

%mﬂ#°

6. £ RFRIENE PAcRFPF o LB 15mL T R e

7. % 0.45um 3 jZ PTFE i /g 3 P~ 0 2 (8 P 3 3 30-20°C 0 i 18 0 47 -

PR E NP E S IR S Rl Y -

(=) Bz Rl

R
Agtkps 24 (Folin & Ciocalteus phenol reagent) € - fid Fi4ppe ™ -~ Fi4L e ™
frf @ FRARE S g LAY R I R ML SR
(gallic acid) F5 § 2R -« AR BIcE B SRt 45 1 > pFp It
BR (W fo Mo® A ulB R+ Mo™ e W) » A5 Féd ehiv 4 o h ¥ 548
WFHLE NREAFHEC LS L TVRE BHERRFTEFLF o FI
o fEARE IR B RA 4 o A BB S h B
(Everette et al., 2010) °

EE
20%45 Hhps 72 - B~ 10 mL A& +kf~ 3% /i (Folin & Ciocalteus phenol reagent
2M) M2 3ok 2 $ P S0mL e

RS
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F AL B 100 pL nEF B § 20 L5 mL shds F ¢ 0 4o 100 pl 20%4E
Friddl » 2 S 3R TRV ELFE 10 ~ 4 - &% > 12 10000 g 3 # 5
- Ad o Br b i 96 3V Y 0 RIS R Y LK 5 735 nm Sk H Rl Rk
o 0~5~10~20+~30~4050mgL"! 2z gallicacid $&# &4 iz i& = %5k
BT TER &Y R ip$ 7 € ogallicacid § £ 47 ©

(Z) BgR Mz LR T

A
30% I A L4k D B 15 g AV GE 2 2 g3 ok 28 7] 50 mL o
75%= % (“48347% 1 B~375g = % i“ 4513 &
20%% % 4 A% 1P~ 10gd & 4 d ok P 50mL e

B
H k0 B2 200 pL hFE B BT LS mL g F ¢ 0 4o 0 20 pl 30% 3 A k4

TR 1044 0 5% 0 b r 20 UL 7.5%=

> SR Lo 2 Wb ok 2
oo R @%)ngiz”% P RN R

~c

FaERR EIFFTAE T AZTETHEFE 104415 0 4 x 20 uL 20%4

-

OB ERETRL LT E TR 10 A4 2 1502 10000 g 4 -
Akd oo Bt ’F ERRIC DS 963L_p§ ¢ TRE TRk B T e

B2 A 350nm 3 600 nm 2. & g 2 nm 3 Bo— ek E 0 TR

:,@EL?)I%%“ 415nm % 510 nm F Bk i o BEFF A Z B E o7 23R
Ry A R A L FEIE ST LA Ao 0-5210220~30~40-

50 mg L' 9 quercetin ~ catechin + genistein ~ coumestrol ~ rutin - naringenin %
daidzein ek 3 RE 2R ER
MEPAEHIRS B o AR R » 20l ARG R R 20l = & TV 4ER R
B20puL & F Y403 s M 3 E - PIEET S R4 r 20pul ok ~ 20 pl = F T 4EVR

2 20 ul ok o

=t

ra
wht
]
=
£
i

51 &4 5 £ 41 (HPLC-DAD)

1. BB il 8 045 um R 0 Bk 1w B oik 49 K 17 &k (Reverse Phase
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High Performance Liquid Chromatography, RP-HPLC) ¢ ¥ = & & 'L 7| ik Bl %

(Diode array detector, DAD) it {7 4 47 -

2. A FTiE

(1) HPLC % %t : Pump (Hitachi L-2130, Japan) -~ Auto sampler (Hitachi L-2200) %

Diode array detector (Hitachi L-2455) » ¥ 2 & 47 ¢ {148 (SUPER CO-150 » & 20

PGP o R4 0 ) mEFFAE AR 35C

(2) ¢+ * Cl8 reverse phase column (5 um, 4.6 x 250 nm, Kanto Chemicals, Tokyo,

Japan) -

(3) &g pplIer & DY 2R 190 nm 3 900 nm T & i & e e R fe

T B R L AT R SR R P e BREF A A SRR S

Rl o T A T E LY &Pl £ 1 quercetin (A %) 370 nm -~ isoliquiritigenin

(£ 4 ¥ %)370 nm ~ myricetin (1§ ¥ & ft) 370 nm ~ kaempferol (L' 2 f~) (365 nm {v

370 nm) ~ coumestrol (% & ¥¢fi5) 342.5 nm ~ apigenin (f 3 %) 336 nm ~ genistein ( £
% £ F fF) (300 nm ~ 260 nm f= 250 nm) ~ liquiritigenin (4 % %) 275 nm % daidzein

(2R % pr)2750m -
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% 3.2~ HPLC A 45 8- & i
Table 3.2. HPLC gradient condition

Program 1. pH 3.3, 37.5 min gradient program (for pillow system)

Time Flow rate Solvent A! Solvent B2 Solvent C3
(min) (mL min™) (%) (%) (%)

0 1 70 30 0

25 1 30 0 70

30 1 30 0 70
32.5 1 70 30 0
37.5 1 70 30 0

!Solvent A: pH 3.3 aqueous acetic acid; *Solvent B: 100% methanol; *Solvent C: 100%
acetonitrile.

Program 2. pH 2.5, 60 min gradient program (for 3-inch pot experiment)

Time Flow rate Solvent A Solvent B? Solvent C?
(min) (mL min™) (%) (%) (%)
0 1 100 0 0
12.5 1 60 40 0
37.5 1 30 0 70
42.5 1 0 0 100
445 2 0 0 100
53 2 0 0 100
54.5 1 100 0 0
60 1 100 0 0

!Solvent A: pH 2.5 aqueous acetic acid (approximately equal to 2% aqueous acetic acid);

2Solvent B: 100% methanol; *Solvent C: 100% acetonitrile.
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(50 mg/L)
Bl 412 PR &5 g LR & 2T hgpd (Joid)

PR

ERP LA E R A 2 AR

(a) Coumestrol ~ (b) Genistein ~ (c¢) Naringenin ~ (d) Rutin ~ (¢) Quercetin ~ (f) Catechin % (g) Daidzein

Figure 4.1. Color of different flavonoid compounds under the aluminum chloride colorimetric method
In each figure, the tube on the right represents Method 1, while the tube on the left represents Method 2.

(a) Coumestrol, (b) Genistein, (c) Naringenin, (d) Rutin, (¢) Quercetin, (f) Catechin, and (g) Daidzein.
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Figure 4.2. Colors of different concentrations of flavonoid compounds under the aluminum

chloride colorimetric method
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Figure 4.3. Measurements of flavonoid compound absorbance taken at 2 nm

intervals, spanning wavelengths from 350 nm to 600 nm

The x-axis represents the absorbance wavelength, and the y-axis represents the

numerical values of sample absorbance minus the blank absorbance.
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% NAR (1) oCoU (1) +DAI (1)

Quercetin y=0.017191 x + 0.03628 R>=10.9989
Rutin y=0.007646 x + 0.04218 R?=0.9961
Catechin y =0.000457 x + 0.04931 R*=0.9913
Genistein y =0.000434 x + 0.04975 R?=0.9957
Naringenin y =0.000411 x +0.05310 R>=0.9922
Coumestrol y=10.000147 x + 0.05265 R?>=0.9229

Daidzein y =0.000039 x +0.05136 R*=10.9912

Bl 44 % 4t d 2232 AL 415nm T oK BEEF R £ 5k R DM G
Figure 4.4. Aluminum chloride colorimetric method, Method 1: Relationship between

absorbance values and concentrations of flavonoid compounds detecting at a wavelength

of 415 nm
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Figure 4.5. Aluminum chloride colorimetric method, Method 2: Relationship between
absorbance values and concentrations of flavonoid compounds detecting at a wavelength

of 415 nm
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Figure 4.6. Aluminum chloride colorimetric method, Method 1: Relationship between

absorbance values and concentrations of flavonoid compounds detecting at a wavelength

of 510 nm
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Figure 4.7. Aluminum chloride colorimetric method, Method 2: Relationship between
absorbance values and concentrations of flavonoid compounds detecting at a wavelength

of 510 nm
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4l ik kR SEMBEC L T E2

Table 4.1. Paired samples ¢ test of flavonoid content with and without alkaline hydrolysis

SER A R

Comparisons Mean (mg per 3-inch pot) Difference t value df P value (one-tail) PCCs
TFN un vs.TFN vaL 58.60 vs. 72.07 +13.47 (23%) -2.319 54 0.0121 0.777
TPG un vs.TPG uaL 56.65 vs. 96.79 +40.14 (71%) -8.937 54 1.56x107!2 0.822
Iliq un vs. Iliq uaL 0.03568 vs. 0.04128 +0.00556 (16%)  -4.800 53 6.68x10¢ 0.843
Cou un vs. Cou uaL 4.326 vs. 4.526 +0.199 (4.6%) -2.216 53 0.0155 0.945
Gen unvs. GenuaL 1.256 vs. 1.218 -0.038 (-3%) 1.661 53 0.0512 0.974
Nar un vs. Nar yar 0.2030 vs. 0.1819 -0.0211 (-10%) 2.835 52 0.00325 0.909

TFN: total flavonoid content (naringenin as chemical equivalent); TPG:

total phenolic content (gallic acid as chemical equivalent); Iliq:

isoliquiritigenin; Cou: coumestrol; Gen: genistein; Nar: naringenin; un: without hydrolysis; var: with alkaline hydrolysis; PCCs: Pearson's

correlation coefficient.
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Figure 4.8. Growth of mung beans in the preliminary inoculation experiment with various rhizobia strains.
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Figure 4.9. Effects of different rhizobia inoculation on the fresh weight of mung bean’s shoot and root.

Error bars represent standard deviation (n = 3) and bars with the same letter are not significantly

different (p < 0.05, LSD test).
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Figure 4.10. Effects of different rhizobia strain inoculation on the nodule numbers, average

weight per nodule, nodule weight and the nodule leghemoglobin content of mung bean.

Error bars represent standard deviation (n = 3) and bars with the same letter are not

significantly different (p < 0.05, LSD test).
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Figure 4.11. The rhizobial infection zone stained with Toluidine Blue O (TBO).
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Figure 4.12. Effects of different rhizobia inoculations on total flavonoid content in mung bean plants
The total flavonoid content was determined by the aluminum chloride assay Method 2.

Total flavonoid content expressed as ng QAE; QAE: quercetin equivalents.
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B o 7A@ > genistein v daidzein ¥ A & Fy* 4 2L > daidzein 7 £
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Figure 4.13. Growth conditions of mung beans and Senna fora in the pillow system at 21

days post B. arachidis inoculation
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Table 4.2 Plant fresh weight, nodule number and nodule weight in the mung bean and Senna fora under pillow system experiment

S. tora fresh weight (g) Mung bean fresh weight (g) Nodule (per plant)
Shoot Root Shoot Root Nodule number Nodule weight
(exclude nodule)

D P EF &EF 0.1733 + 0.0919 0.0566 * 0.0410 - -
@ AP EF 4 0.2462 + 0.0939 0.0681 = 0.0510 - -
@ P FFRE 33239 + 37149  0.6132 + 1.0094 ; _
@ *PBF4E 27749 £ 27314 0.5975 £ 0.8526 - -
® %2 ™F &HF 6.17 £ 2.39 0.81 + 0.41 23.0 + 11.1 0.1396 + 0.0976
® %35 ®KF 4 fF 7.03 + 1.88 0.84 + 0.22 46.1 + 10.9 0.3266 = 0.3405
@ %23 % &F 4.94 + 1.90 1.17 + 0.63 123 + 5.1 0.0383 + 0.0218
@ %2R F i 4.09 + 1.65 1.21 + 0.53 7.1 £+ 43 0.0182 + 0.0095
Q@ RAEEEF &F 0.1761 + 0.0977 0.0552 + 0.0170 4.30 + 1.80 0.69 + 0.32 221+ 73 0.1794 + 0.0962
RIBEE 4 7 0.2342 + 0.1403 0.0459 + 0.0214 10.14 + 5.15 1.35 £ 0.76 94.5 + 358 0.4121 + 0.1656
@) REBERF 02917 £ 0.1495 0.1048 + 0.0590 6.98 + 3.55 245 + 1.00 96 £ 7.6 0.0340 + 0.0304
®@ AR E 4 F 05252 £ 0.3453 0.0765 + 0.0374 7.28 + 1.36 2.08 + 0.75 112 + 5.6 0.0302 + 0.0207

Values are expressed as means + standard deviation. N = 10 for monocropped plant; N = 5 for intercropped plant. "-" means that S.zora did not

have any nodule.
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Table 4.3. Concentration of flavonoid compounds in the growing medium of the mung bean and Senna tora pillow system

TPG TFN 370 nm 370 nm 342.5 nm 336 nm 300 nm 287 nm 275 nm 275 nm

Iliq Que Cou Api Gen Nar Dai Liq

O P KE RF 1388 445 0.159 N.D. 18.99 5.613 N.D. N.D. N.D. N.D.
@ *-pKE e F 1019 862 0.280 N.D. 15.44 5.991 N.D. N.D. N.D. N.D.
@ AP RFEFA 2868 5550 0.215 N.D. 16.01 16.18 N.D. N.D. N.D. N.D.
@D AP REHE 2479 5237 0.093 N.D. 22.24 20.72 N.D. N.D. N.D. N.D.
® #%2X§ RHF 3356 3230 7.582 N.D. 1214 N.D. 63.85 N.D. 7.812 N.D.
® %2 H§ 4 5070 5077 21.36 N.D. 4097 N.D. 105.9 N.D. 18.78 N.D.
@D %2R § &EF 2773 2716 3.207 N.D. 978.7 N.D. 67.46 N.D. 3.845 N.D.
¥2BE4NH 2783 3556 5.020 N.D. 1895 N.D. 78.07 N.D. 5.658 N.D.
@ RAEME REF 1801 1542 11.88 N.D. 239.3 - 14.71 N.D. 1.305 N.D.
oy A% B 3127 2723 10.63 N.D. 2517 - 149.3 N.D. 17.42 N.D.
@ =3 §F RE 4322 6209 8.638 N.D. 2433 1.987 151.8 N.D. 16.40 N.D.
@ R#ERF 4 F 2310 2355 3.665 N.D. 604.1 3.973 38.21 N.D. 3.607 N.D.
“ERAFY ng GAE ng NE ng ng ng ng ng ng ng ng

ng: nanogram; N.D.: not detected; Iliq: isoliquiritigenin; Que: quercetin; Cou: coumestrol ; Api: apigenin; Gen: genistein; Nar: naringenin; Dai:
daidzein; Liq: liquiritigenin; TPG: total phenolic content expressed as ng GAE; GAE: gallic acid equivalents; TFN: total flavonoid content

expressed as ng NE; NE: naringenin equivalents; "-": trace amount.
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Bl 4.14 5 %2267 FAUBEAIL e S P am e o & 44 0%
2 SPAD i~ 1958 158 E 2 H BIREBE - 2 RB LT UL LA BE
B > # ¥ B arachidis §v B. japonicum >t @ % 0% 0 B. diazoefficiens v
B. elkanii &>t~ @ b 38 o B2 2R 30 pillow system FE 8% ¢ > E. fredii 355735 =
FRtoplthS%e 2 2RAFEKRY > T 20%2 P AN 4TE 0 on
B 4 3 T L% B U, & o Fogp R o

Bl 4.15~% 4.16~F 4.17-% 4.18 2 §] 4.10 » B E 75 /1 FE B4 ¢ s
isoliquiritigenin ~ coumestrol ~ genistein f= naringenin 7z & *» £ ¥ #icie & M3t 4 450
B2 7% & HPLC B3+ # 12 2 1| daidzein~kaempferol 2 apigenin 730 55 e §_{% ] »
@ liquiritigenin ~ myricetin % quercetin BiZ 3 B F] o

Genistein #2 coumestrol 2 & % & A 2 2 u|F M REiT > [1FK 0 § vl

St
34

genistein 4 ;& i [ 137 CenEul ] o BT E AR F R FF TR

= - e

naringenin 7k & #r4E ¥ ¥ JE R B e @ B0 0 B2 A {8 naringenin ¥

Loy
fat
L
e
3

A EALE R TRB ST E o
Genistein % % 7 7 ¢ 3 AR EH 5 3 % nod gene cE > & i@ ik en

WEFH k- f g~ &3 nod A Fa #5142 3 240 F (Yokoyama,2008)

‘

@ A F1 Y 4p ) prunetin (genistein 7 %L ¢ _hydroxyl group B~ % 5 methoxy group) &

Bradyrhizobium ® 4p4+% <% # Nod A F1:A H4 > » # % € % ¥ B. elkanii USDA

Jan

31 2 USDAT76 1 NodD (Yokoyama, 2008) » &7 7 && A % P| prunetin » i 3 %
P pIT < & cow BR4~ genistein s # 3 3 77 5 QTL A 47 > 4p 1! genistein ¥ it i
B. elkanii USDA 94 einod #k Fl#r+4]4 (Ramongolalaina et al., 2018) o 3% F i i
Fl4w iR > B.elkanii iy % S 2 A 2 <@ b iR ¥ o5 B2 % B O genistein 4 e p B o
Ra o £ AZTR E T % M %0 B. diazoefficiens USDA 110 & B. japonicum USDA
6 f genistein A R BB ED P FFHEF LR 5 i 2 [F‘Je ®  B. japonicum ik
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% fi—‘]”ﬁ\#? = USDA 110 @ 22 USDA 6 » @ & &% chg % P4k 2 USDA 110 ir g
B % 7oAk S LT T 0 B. japonicum FtR o

Coumestrol ¥ % — fate 4~ 3124 % o ¥ 54~ = 3| & B s & pF > coumestrol (78 ¢
HWAiv  HA<~2EP SRS EHFAEY F R Mun et al, 2021) > 3 5% = 7 o-
glucosidase /& 1 #r4] it # (Yuketal,2011) - & Leeetal. (2012) 735 ® > * B &
#A7F 2 coumestrol i1 B. diazoefficiens » € 3 4 13 g o F 7 + p &1 coumestrol
8 e PP -E R AR F-1% F= > £ 2 (Dong & Song, 2020) o &A42 % ##
coumestrol gk F k0 F REMY > EREAN AL AT E Y% 2 (Morandi et
al.,2009) & AFF ¢ VER IS E & % coumestrol © R BiEARY e dr 4 A L E 0
A2 SR PBLDAFATES AP "f i 2 % nod A Fleng pREE T & 42 0
FREARY AT FERORES R ZA M AP R BRI ES
Eoar# ghaEfd 22 a2 AP ERBFHGF > 23 - TE G nod A7
FEF T AL RN AR A F AE A R R GG B e
e F A FoenE B Blde A Rhizobium etli ¢ #ER_ ) gt F-v AL F] 0 BRS R
etli ¥t fir %8 1 & ¥ coumarate ~ naringenin ~ phaseollin §= phaseollidin {4 > & %
4 g A FRERE E B BFE Y (Gonzilez-Pasayo & Martinez-Romero, 2000) ;
# ks Bl japonicum 5 € @t v 2R (multidrug efflux pump) & 4 E < &

LRAHFAEPPE TS EAFAFLEEfrere ¢ Pl IR % (Lindemann

S

etal,,2010) 22 P 1B A SEFHE L RBEF L d g kil o

Naringenin A& 4R 5 Z ¥ sc X & 4p B » T &8 § s % f Ap B ¥ 5
(Bandyopadhyayetal.,1996) > 27 % ¢ EF%FE > H 43% F 27 Z £ HRM o 7
¥ 4ept > genistein/naringenin 57t & > 2 O~A~B~C~D~E~ O+~ B+fr E+& %]
(REL%4 £ 45) &K 5 5.64~330~837~346~7.32~385-~6.81~17.10 4 8.15
(= %%'E* 2 naringenin 4 4% 5 A% LR E g P F il (BD) #4 A
GASC) R BB EE M A A G PALE

Isoliquiritigenin Z 384~ F ks it 44 & cn? AP NE HLOMRAF > 5o
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ARG [ RS 0 1Y &4 B B. japonicum

nod # %3 7 34 H 1+ (Kape et al.,

f"ﬂ

1992) 4 7 At A i de @ A RBIT] (2% T 8 2.9) ARFTT S EREA R0
isoliquiritigenin Pk & M 0 ¥ 2 2R ) o d BF B AR B F Y
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(Mendoza-Suarez et al., 2021; Sachs et al., 2010) » 27 % - £ 4 chlk e ¢ > BLET|
B. arachidis §= B. japonicum - #c¥ 2 2 & i# R P &R B. diazoefficiens fv
B. elkanii » izt B or H E R FE A o HKm o 135_?, B. arachidis 4+ B. japonicum
-HNBY R EFPRERM P HRE L 2R T T B elkanii 1p1T 0 & i
2L ﬂiﬁl B. diazoefficiens fv B. elkanii > &% 5 B. arachidis §- B. japonicum 7t
FRSBRHEL N DRV LRAHEE Y 3 F LIRS YR AR
A RSB AR R R R FA T R LG R ERR X
Ao B R AUR LA R} IR 4 R BRI R T R 1 S R

W
P
<k
@
N
A

S F R mARIRA, K AT (Jietal., 2017) o Fpt > — BT e B
A ZRPEFLESF ARG 4 e B FIRFRBEFRY Gw 4 > f 2T g
#wo% ¥ B. arachidis {v B. japonicum & 3.1 <~ Rt By B PRk E

LR iES FHRE L ITE S a8 SHY Ei%ty?]ﬁﬂﬁ%éf‘ﬁ °
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REFHESRBHE SR 2 0 ¥t § BB FR A L7 DEk

SR iﬁ D ARt 2R 'H—ﬁ*%’ {24 P*‘]ﬁi*i WE A L P oS B
61
doi:10.6342/NTU202400120



Nk B feilid (Majetal, 2010) @ i57 5 £ A3 ¢ 73 1R AR A

RFI2 - oA BAE AT & B HUR D S RS s HH

s
ET
%“

¥ 3 1o {35 F7 7 o genistein 7 3% H USDA 110 ¢0 nod A Fl & > s

1&\‘\;\,

HLEmBEML IR R TetR FEEESHD I T i E > 3 FRAFOTMEFE &
¥ (4 daidzein) R EH S Hdrd) > N2 B 222 4 (Han et al., 2020;
Takeshima et al., 2013) ; %ﬁri BEEmE Lok R > VLT EEE AR & 40T

% nod AFFEH IS FaEE (T > BEALN T LAY 4 % PR

IR AR s BB GRS 4 o F > AT A R RBEREE A
¢1 genistein % coumestrol % § fREF i 4 At 4 LB > A i LB B R

BB FRL 4 PR F2 - o

A Liifg e
AT B S F7 7 o0 B. diazoefficiens ~ B. japonicum 3 B. elkanii> B. arachidis

FriEa 3 22y > o B oarachidis % Wang et al. (2013) #%& & 3T/ > @

B. arachidis CCBAU 051107 &P RiP & 4 v B nfcd 5 303 P ora gl m‘;%]”
4 ehk 4

thegiiigd s o AETL FRANE 0e SHEEEA R

P
5

ek o A4l @ § e > Al #E 103 B japonicum USDA 6 > % & 24 £ B3

=~ @ % eh B. diazoefficiens USDA 110 §r B. elkanii USDA 76 -
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% 44~ B2 EEIR AL SPAD i i 1B 1R Lo BRBIDE (21 23#%)

Table 4.4. SPAD readings, nodule numbers, total nodule weight, and average nodule weight of mung beans inoculated with rhizobium (3-inch pot

experiment)

Inoculation Nodulation rate SPAD meter value Nodule Weight of Average weight
(number of pots) ~ With nodules // Without nodules numbers nodules (mg) per single nodule (mg)

Non-inoculated 20% (1/5) 20.7 /I 82 + 1.7 2 96.6 48.3

B. diazoefficiens 80% (4/5) 163 +18 /9 45+ 1.7 102.4 + 44.9 22.62 + 2.33

B. arachidis 100% (10/10) 29.8 t 4.6 1242 + 30.1 1595 + 24.4 1.33 + 0.29

B. elkanii 80% (4/5) 278 +20 // 58 163 + 5.5 1493 + 47.2 9.94 + 2.07

B. japonicum 100% (5/5) 29.8 t 3.6 111.2 + 16.6 149.5 + 26.6 1.36 + 0.26

E. fredii 20% (2/10) #1294 82 // 68 t 1.1 #1371 "165.0 ™32  "12.69 32

Non-inoculated, high N 0% (0/5) 30.1 £ 5.5 - - -

B. arachidis 100% (5/5) 28.6 £ 2.2 96.6 + 22.3 70.2 + 36.2 0.69 + 0.22

E. fredii 0% (0/5) 269 t 1.6 - - -

Values are expressed as means + standard deviation. "-" means the treatment did not have any nodule.
p y

#1 and #2 means the first and second pot with nodules in this treatment, respectively.
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B 4.14d ~ % & $&44 Bradyrhizobium japonicum USDA 6
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/) X )
B 4.14 f~ % & 48 Ensifer fredii USDA 205 (£ 13 7%)
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Bl 4.14 ~ % B RB1UE HR% (201 285%) ImEnm s
Figure 4.14. Close-up images of mung bean roots inoculated with different strains of
rhizobia (3-inch pot experiment)
(a) #&4& Bradyrhizobium diazoefficiens USDA 110
Inoculated with Bradyrhizobium diazoefficiens USDA 110
(b) #&44 Bradyrhizobium arachidis CCBAU 051107
Inoculated with Bradyrhizobium arachidis CCBAU 051107
(c) #&4#4 Bradyrhizobium elkanii USDA 76
Inoculated with Bradyrhizobium elkanii USDA 76
(d) #4& Bradyrhizobium japonicum USDA 6
Inoculated with Bradyrhizobium japonicum USDA 6
(e) #&44 Ensifer fredii USDA 205 (3 127%)
Inoculated with Ensifer fredii USDA 205 (with nodules)
(f) 4&44 Ensifer fredii USDA 205 (£ 137%)
Inoculated with Ensifer fredii USDA 205 (without nodules)
(g) #44 Bradyrhizobium arachidis CCBAU 051107 % ¥ /2
Inoculated with Bradyrhizobium arachidis CCBAU 051107, high nitrogen treatment
(h) #&44 Ensifer fredii USDA 205 % ¥ /2
Inoculated with Ensifer fredii USDA 205, high nitrogen treatment
(i) ~ZFE1H R
Without inoculation of rhizobium
() *#RBEIVEF - F §F L

Without inoculation of rhizobium, high nitrogen treatment
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Figure 4.15. Total phenolic content in the potting media — three-inch pot experiment of
mung bean with inoculation
Error bars represent standard deviation (N = 10 for treatments with B & E. N = 5 for
treatments with O, A, C, D, O+, B+ and E+), and bars with the same letter are not
significantly different between treatments (p < 0.05, LSD test).
Treatments in the horizontal axis:

O: Non-inoculated

A: Inoculated with B. diazoefficiens USDA110

B: Inoculated with B. arachidis CCBAU 051107

C: Inoculated with B. elkanii USDA 76

D: Inoculated with B. japonicum USDA 6

E: Inoculated with E. fredii USDA 205

O+: Non-inoculated, high nitrogen treatment

B+: Inoculated with B. arachidis CCBAU 051107, high nitrogen treatment

E+: Inoculated with E. fredii USDA 205, high nitrogen treatment
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Figure 4.16. Isoliquiritigenin content in the potting media — three-inch pot experiment

of mung bean with inoculation
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Figure 4.17. Coumestrol content in the potting media — three-inch pot experiment of

mung bean with inoculation
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Figure 4.18. Genistein content in the potting media — three-inch pot experiment of mung

bean with inoculation
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Table 4.5. Flavonoid compound content in the potting media — three-inch pot experiment of mung bean with inoculation

(ng) Iliq Cou Gen Nar TPG

0. Non-inoculated 0.03203 bc 4.256 abc 1.193 abced 0.2114 ab 43.39 C
+ 0.00308 + 1.169 + 0.249 + 0.0145 + 441

A. Inoculated with B. diazoefficiens 0.02831 ac 3.596 bc 1.029 bed 0.1957 b 42.45 C
+ 0.00606 + 0.997 + 0.317 + 0.0521 + 9.39

B. Inoculated with B. arachidis 0.03717 abc 5.005 abc 1.743 ab 0.2083 ab 43.93 C
+ 0.00922 + 1.829 + 0.624 + 0.0555 4.94

C. Inoculated with B. elkanii 0.02968 bc 2.813 c 0.669 d 0.1643 bc 49.30 C
+ 0.00664 + 0.762 + 0.175 + 0.0415 + 2.27

D. Inoculated with B. japonicum 0.03311 abc 5.277 ab 1.496 abc 0.2044 b 42.87 C
+ 0.00580 + 2.178 + 0.622 + 0.0421 + 8.45

E. Inoculated with E. fiedii 0.02928 bc 4.112 abc 1.156 abed 0.2720 a 44.44 C
+ 0.00870 + 1.566 + 0.496 + 0.0589 + 6.22

O+. Non-inoculated, high N 0.04096 abc 3.205 bc 0.688 d 0.1010 c 78.35 a
+ 0.01607 + 1.225 + 0.416 + 0.0126 t 7.06

B-+. Inoculated with B. arachidis, high N 0.04234 ab 6.047 a 1.893 a 0.1107 c 62.29 b
+ 0.01014 + 2.907 + 1.005 + 0.0118 + 991

E-+. Inoculated with E. fredii, high N 0.04614 a 4.659 abc 0.803 cd 0.0986 c 75.94 a
+ 0.01310 + 0.772 + 0.114 + 0.0240 + 8.85

Values are the total amount of compounds per pot (ug) and expressed as means + standard deviation (N = 10 for treatments with B & E. N =5 for treatments

with O, A, C, D, O+, B+ and E+). Means in the same column followed by the same letter are not significantly different between treatments (p < 0.05, LSD test)
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4.7 LC-MS/MS # 47 5% %
470 F AT £ PR R

fAR i Senpf B4 T o A HPLC A 47 £ #2182 1% A e 4 ¥ 5 coumestrols
genistein ~ naringenin ~ isoliquiritigenin % daidzein SERH o om AR FARE

hiF 2T o B LC-MS/MS & 7 vt $ JTod W] e i > MR %71t & 4 enfiaf > 4o

Cifs

e

bR F R BRI E SR o T ¢ S A RE| B i £ e SRR
Bl I L RIA S ERBU S P AN O TR R TR
He B LR ? daidzein M EFE G e o A WA m/z 579.17 0
daidzein-4,7-diglucoside ~ m/z 417.12 ¢ daidzin (daidzein 7-O-glucoside) = puerarin
(daidzein-8-C-glucoside) % m/z 255.06 £ daidzein > # % - & 4+ ¥ & puerarin 5L
# 14 » daidzein diglucoside # daidzin Jﬁ" £7 daidzein 4ptt 2. TAMELB R AR Y o B E
1% & a4 ¢ &2 coumestrol 4p B 1t & 4+ F m/z 593.15 ~ 431.09 2 269.04 = F& it
L4 5 = JF'Y ¥2% coumestrol (7= =t MS &% F k> Jpdipl m/z 431.09 {- 269.04 ~
% & coumestrin (coumestrol 3-O-glucoside) f= coumestrol * @ m/z 593.15 ¥ i &

coumestrin + % — B#EAPR)(m/z+162) T K ﬂ,%??‘)l%i e ¥ A iy - =%

‘11

MS # 3+ m/z269.04 * £ 22 coumestrol 4p i enit & 47 o B2 F FIRLIP o
fe A A FEL A it B g o B e REL R Y & genistein 4p B Pt & 4 &
3 = f8 & % G m/z 595.17 ¢ genistein 7,4'-di-O-glucoside ~ m/z 433.11 7 genistin
(genistein 7-glucoside) % m/z 271.06 1 genistein °

%0 b LA HPLC A 479 “F L s i3 A Ap M et £ 42 b LC-
MS/MS » 5+ #FRE s § frag it &4 > ~ %5 apigenin C-glycosylated compound
luteolin / kaempferol 4g B i* & $= 12 % calycosin / biochanin A 4p i it & # - Apigenin
C-glycosylated compound *® isovitexin (apigenin-6-C-glucoside) ¥ vitexin (apigenin-
8-C-glucoside) == =t MS &% % % %4~ > K 17B ¢ vitexin # F P [ #& isovitexin

T F oY pRAp I BERE Y - X A RH S 5 R 7 0 2 C-glycosyle sugar
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=% o Al ESI #5477 5 [M+H-H2O]" 3+ & MS/MS Bl ¥ &8 F aus i i
PFooBE H A h 8 SRl 4R 0 B R T 6 5L = B (Ouedraogo et al., 2021) » iz #
% LC-MS/MS %% ¢ 8- %% 67 FRFEORLARHEE € B0 0 B T
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Figure 4.20. Chemical structures of isovitexin, vitexin and naringenin.
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Appendix 1. Experiment of mung bean inoculation with different rhizobia: principal
component analysis of root exudate composition, nodule numbers, nodule weight, and

rhizobial strains
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Loadings:
Comp.l Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
SPAD 0.4169 0.0918 0.5477 0.2128 0.0834 0.3039 0.0037 0.6108

TG 0.1899 0.5283 0.0477 0.3056 0.1925 0.3771 -0.2907 -0.5704
cou 0.4184 -0.1812 -0.4571 0.0944 -0.6321 0.4100 0.0804 0.0005
GEN 0.3602 -0.3443 -0.3590 -0.1251 0.4678 -0.0513 -0.6058 0.1367
noduleN 0.4176 -0.3377 0.0392 0.0890 0.4125 -0.0421 0.6441 -0.3397
nodulew 0.1985 -0.3951 0.5697 -0.0499 -0.3784 -0.2459 -0.3449 -0.3935
ILIQ 0.3774 0.3720 -0.1753 0.3516 -0.1485 -0.7292 0.0148 0.1041
NAR -0.3592 -0.3906 -0.0553 0.8383 0.0456 0.0272 -0.0895 0.0422

Comp.1 Comp.2 Comp.3 Comp.4 Comp.> Comp.6 Comp.7/ Comp. 8

0 -1.6101 -0.1937 -1.441 -0.58627 -0.0619 -0.0782 -0.0114 0.06235
A -2.08586 -1.1006 0.206 0.46688 -0.1244 0.1651 -0.2625 0.04427
B 1.9603 -1.9401 0.329 0.19394 0.2171 -0.3883 -0.0192 0.02513
C -1.0843 -0.1738 2.183 -0.40100 -0.1342 -0.0541 -0.0948 -0.05189
D 1.5537 -1.9653 0.476 -0.00836 -0.1645 0.2526 0.3217 0.02384
E -2.7667 -0.5574 -1.017 0.20306 0.1970 -0.0359 0.1745 -0.08040

0+ 0.0774 3.0811 0.753 0.02393 0.4653 0.1146 0.0557 0.03826
B+ 3.0918 -0.0864 -1.120 -0.13675 0.0791 0.1797 -0.2297 -0.053473
E+ 0.8666 2.9362 -0.369 0.24457 -0.4737 -0.1557 0.0658 -0.00683

Importance of components:

Comp.1 Comp. 2 Comp. 3 Comp. 4 Comp.5 Comp. 6 Comp.7 Comp. 8
standard deviation 1.8961405 1.7428539 1.0651593 0.31278180 0.257628784 0.189097960 0.174019578 0.0479697100
Proportion of Variance 0.4494186 0.3796925 0.1418205 0.01222906 0.008296574 0.004469755 0.003785352 0.0002876366
Cumulative Proportion 0.4494186 0.8291111 0.9709316 0.98316068 0.991457257 0.995927012 0.999712363 1.0000000000

SPAD: Chlorophyll Meter’s reading; TG: total phenolic contents; COU: coumestrol
contents; GEN: genistein contents; ILIQ: isoliquiritigenin contents; NAR: naringenin

contents; nodule: noduleN numbers; noduleW: nodule weight
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Appendix 2. Root-knot galls of the mung bean (field experiment)
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Appendix 3. Photos of pot experiments
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Appendix 4. Standard curves for determination of total phenolic content
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Appendix 5. Total flavonoid content in the media of the three-inch pot mung bean

inoculation experiment
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Total flavonoid contents (ug NE)
[\ ®)
e

bc

bed
bed
o e
0 |
0] A B C

cde
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Treatments

+ B+ E+

Determination of total flavonoid content

by aluminum chloride assay Method 2

Total flavonoid content (ug NE)

O. Non-inoculated

A. Inoculated with B. diazoefficiens

B. Inoculated with B. arachidis

C. Inoculated with B. elkanii

D. Inoculated with B. japonicum

E. Inoculated with E. fredii

O+. Non-inoculated, high N

B+. Inoculated with B. arachidis, high N

E+. Inoculated with E. fredii, high N

27.61

24.90

42.24

40.03

28.70

34.18

62.25

43.62

50.82

I+

I+

I+

I+

I+

I+

I+

t

t

5.53

10.24

14.19

7.90

6.47

10.42

15.70

8.00

8.46

Values are the total amount of compounds per pot (nug) and expressed as means +

standard deviation (N = 10 for B&E. N =5 for others). Means in the same column

followed by the same letter are not significantly different between treatments (p < 0.05,

LSD test). NE: naringenin equivalents.
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Appendix 6. Recovery rate of flavonoids under the extraction method of this study

140.0% A
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100.0%
80.0%
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40.0%
20.0%
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.\'Q
\-}o?
% Recovery
Without alkaline With alkaline hydrolysis
hydrolysis process (UN) process (UAL)
Liquiritigenin 1193 + 6.2 999 t 6.8
Genistein 91.8 + 5.1 859 + 114
Naringenin 67.2 + 9.1 832 + 43
Daidzein 327 £ 2.6 746 + 11.2
Coumestrol 76.4 + 12.9 723 £ 5.5
Isoliquiritigenin 394+ 19 926 + 3.1

Values are mean of three analysis (n = 3) and expressed as means * standard deviation.
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Appendix 7. HPLC-DAD spectrums of flavonoid standards
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Appendix 8. HPLC-DAD chromatogram of flavonoid standards under program 1
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Appendix 9. HPLC-DAD chromatograms of growing medium extracts from the mung bean and Senna tora pillow system experiments
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Appendix 11. HPLC-DAD chromatogram of flavonoid standards under program 2

Myricetin 21.79 - 21.91 min
Liquiritigenin ~ 22.90 - 23.05 min
Genistein 23.83 - 23.99 min
Quercetin 24.76 - 24.93 min
Naringenin 25.80 - 25.97 min
Daidzein 26.53 - 26.69 min

Wavelength (nm)

Apigenin 27.44 - 27.59 min
Coumestrol 27.67 - 27.81 min

Wavelength

Retention Time (min)

0.008

0.006
5
A

o 0.004
o
i
L
1%

g 0.002
Kol
&

0.000

-0.002

| T T T T 171 | LI B [ T T T | LI [ T T T | T T 1T I T T 171 | L I ) '| T T 17T ‘ L B '| T T 17T |
0 10 20 30 40 50 60
Reteir;);i:m Time (min) 275 nm
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Appendix 12. HPLC-DAD chromatograms of growing medium extracts from the 3-inch pot experiment

wavelength (nm)
Wavelength (nm)

24 26 28 3 3 3 0 2 d 1 6 2 22 24 26 28
Retention Time (min) Retention Time (min)

Non-inoculated, low N, with alkaline hydrolysis

Wavelength {nm)
Wavelength (nm)

22 24 26 2 3 3 3 36 3 b 26 28 30 32
Retention Time (min) Retention Time (min}

Non-inoculated, high N, without alkaline hydrolysis Non-inoculated, high N, with alkaline hydrolysis
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Wavelength (nm)

Wavelength (nm)

18 20 22 24 26
Retention Time (min)

Inoculated with B. diazoefficiens, low N, without alkaline hydrolysis

24 26

Retention Time (min)

2z 24 26 28 30
Retention Time (min}

Inoculated with B. elkanii, low N, without alkaline hydrolysis

Wavelength (nm)

Wavelength (nm)

Wavelength (nm}

14 16 18 20 22 24 26 28 30 32 34 36 38 40
Retention Time (min)

Inoculated with B. diazoefficiens, low N, with alkaline hydrolysis

18 20 22 249 26 28
Retention Time (min)

Inoculated with B.arachidis, low N, with alkaline hydrolysis

20 22 24 286 28
Retention Time (min)

Inoculated with B. elkanii, low N, with alkaline hydrolysis

a2z




(nm)

Wavelength

(nm)

Wavelength

(nm)

Wavelength

I ) I
6 8 10 12 14 16 18 20 22 24 26 28 30 3z 34 36 38 40 42 44
Retention Time (min)

A D
O d 4 D O O

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Wavelength {nm)

Retention Time (min)

O AlCd e O O dlKd C aro
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20

20

22 24
Retention Time

22 24
Retention Time

26
(min)

28

w
X

/]

38

40

02400

42

44

44
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Inoculated with E.fredii, high N, without alkaline hydrolysis Inoculated with E.fredii, hlgh N Wlth alkahne hydrolysis
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Appendix 13. HPLC chromatograms (275 nm) of growing medium extracts from the 3-inch pot experiment
X #ih 5 retention time (min) > y $ih % absorbance (AU) °

without alkaline hydrolysis with alkaline hydrolysis
A0l M |
:“-~
SGE:|\||||\[Il|||||l|||‘||||||||||||\l|||\|||Illl\llll\llll'\ll\l .o X T ] ) .
Non- 1n0culated low N
_:'ME__‘||||||||||||||||||||||||||||||||||||||||||||||\||||||||1||é\ OO'W
Inoculated with B. diazoefficiens, low N
0.000 ;JM LmMu 0.000 —:EJ
Inoculated with B. arabhic;’is, lowN S
_jl'I'I'I‘!'I'I'[‘I'|’I'I‘I'I'\'I'I'I'\’|'I'I'\'I'|'I'\'I'I'|'\'I'I'I'|'I'I'I'I'|'I'I'l'l'|‘|'\'I'I‘|'\'I'I'I'\'1'I T T T | T \ T | B | T | T | AL | T | T

10 15 20 25 30 35 a0 s 50 55 60 5@

Inoculated with B. elkamz, low N
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.DDE
\||||||||||\||\|||||2|0||||2|5||||3|D|||||||||||||||||||\||\|||||;|
Inoculated w1th B japonicum, low N
0.002 'uuz:
0.004 -0.004
Inoculated w1th E fredzz low N
oo Ju :.00_—:: LLMWJJV
I~
\|||||||||||||||||||\||||||||||||||||||||||||\|||\|||\||||||| b
) Non- 1noculated h1gh N
.0 030 =
JLNM/\J\N-NWAW o MLJ
o :.DOZ—E.-._/-J
l'"'I""l""I""l""I""I""I""l""I""l""l""l _|||I|lIIIlIIII|IIII|IIII|IIlI|IlII|IIII|IIlI|IIIIlIIIl|IIII|
Inoculated w1th B. arachzdzs h1gh N
5 H 1 15 ca :||||||\|||||||||||||||||||||||||||||||||||||||||||||||||||||

Inoculated with E fredzz h1gh N
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Appendix 14. LC-MS analysis parameters

MS parameter

Positive / Negative mode Positive mode

LC parameter

Mobile phase A 0.1% formic acid in H,O
Mobile phase B 100% acetonitrile
Guard column ZORBAX RRHD Eclipse Plus C18,

2.1 x 150 mm, 1.8 pm

Column ZORBAX Eclipse Plue C18,
2.1 x 150 mm, 1.8 um

Temperature 50°C

Gradient
min Flow Rate A (%) B (%)

(mL min™)

0 0.3 95 5
8 0.3 90 10
14 0.3 75 25
17 0.3 67 33
24 0.3 55 45
31 0.3 42 58
38 0.3 17 83
40 0.3 17 83
42 0.3 5 95
50 0.3 5 95
51 0.3 95 5
60 0.3 95 5
Total run time 60
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Appendix 15. LC-MS/MS compound identification

Retention  Precursor ) ) . .
. . . Fragment ions (m/z) Possible aglycones Suggested identity
time (min) = ion (m/z)
Flavonoids
1 6.55 579.17 255.06 > 417.12 >297.06 Daidzein Daidzein-4,7-diglucoside
2 11.20 417.12 255.06 > 199.07 Daidzein Daidzin (Daidzein 7-O-glucoside)
3 12.75 417.12 255.06 >297.07 > 199.07 Daidzein Puerarin (Daidzein-8-C-glucoside)
199.07 > 227.06 > 237.05 > Daidzein Daidzein
4 15.95 255.06
181.06 > 153.07
269.04>431.09 > 311.05 > Coumestrol Not found in literature
5 9.10 593.15
241.05
R1 13.20 269.04 213.04>197.05 > 241.04 Coumestrol Coumestrol-related fragement
269.04 > 241.04 > 197.05 > Coumestrol Coumestrin (Coumestrol 3-O-glucoside)
6 14.00 431.09

213.04 > 311.05 > 225.05

115
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R2

10

11

12-1

12-2

16.65

17.95

8.50

13.25

17.85

12.70

12.90

12.90

13.00

269.04

269.04

595.17

433.11

271.06

505.14

433.11

433.11

197.06 > 213.05 > 241.04

241.04>213.05>197.05 >

157.06 > 225.05

243.06 >271.06 > 215.06

215.06 >243.06 > 271.05

153.02 >243.06 > 215.06 >

197.05 > 213.05 > 241.05 >

225.04

295.05>427.10 > 325.06 >

409.08 > 349.06 > 379.07 >

391.08 > 296.05 > 445.10

313.07 > 283.06 > 397.09 >

415.10>337.07 > 379.08

283.06 > 313.07 > 337.07 >

Coumestrol

Coumestrol

Genistein

Genistein

Genistein

Apigenin

Apigenin

Apigenin

116

Coumestrol-related fragement

Coumestrol

Genistein diglucoside (Genistein 7,4'-di-O-
glucoside)
Genistin (Genistein 7-glucoside)

Genistein

Related to apigenin C-glycosylated
compound (van Dooren et al., 2018)
*UN only

Vitexin / [sovitexin

Vitexin / [sovitexin
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13

14

15

R3

R4

16

17

18

13.20

14.50

15.30

8.80

12.30

16.45

6.80

12.60

579.17

433.17

433.12

379.08

313.06 >433.11 > 415.10 >

295.05>379.08 > 337.06 >

367.08 > 283.05>397.09 >

325.06

313.07 > 283.05 > 337.07

313.07>397.09 > 283.06 >

415.09

Fragments in MS!

Fragments in MS!

285.07

611.18

639.17

270.05 > 253.04 > 225.05

287.05>449.10

449.10>431.09 > 329.06 >

383.07>413.08

Apigenin

Apigenin

Apigenin

Calycosin / Biochanin A
Calycosin / Biochanin A
Calycosin / Biochanin A

Luteolin / Kaempferol

Luteolin / Kaempferol

Isovitexin 2"-O-rhamnoside/
Vitexin 2"-O-rhamnoside

* Abundant in UAL

Vitexin / Isovitexin *only found in UAL

Isovitexin / Vitexin *only found in UAL

Biochanin A diglucoside

Biochanin A-7-O-glucoside

Biochanin A

Luteolin diglucoside / Kaempferol
diglucoside

Orientin (Luteolin-8-C-glucoside) related

coumpound

117

doi:10.6342/NTU202400120



Anthraquinones

229.04 >197.05>201.05 > Emodin
19 24.45 271.06
225.05>158.10 > 253.05
227.06 > 209.06 > 181.06 > Chrysophanol
20 28.40 255.06
237.05
Saponin
441.37 > 423.36 > 599.40 > Soyasapogenol B Soyasaponin I
21 20.65 943.56
309.11 > 323.09
Lipids
284.29>258.26 > 191.11 > 2,2'-(Tetradecylimino)diethanol
22 22.05 302.30
240.26 > 186.09
184.07 >207.09 >242.27 > LPC 18:3
23 24.60 518.32
189.09 >295.10 > 258.10
184.07 >258.11 > 500.32 > LPC 18:3
24 25.15 518.32

335.25

118

doi:10.6342/NTU202400120



25

26

27

28

29

30

31

32

33

25.75

26.50

27.00

27.60

28.30

28.60

29.25

30.80

31.30

494.32

520.37

520.34

496.36

496.34

522.35

522.36

536.37

536.37

184.07 > 494.32 > 476.31 >

258.10>311.25

184.07 > 285.21 > 258.11

184.07 > 258.10 > 502.33 >

337.27>270.31

184.07 > 407.27 > 391.26 >

258.10

184.07 > 478.33 >313.27 >

258.10

184.07 > 258.11 > 504.55 >

339.28

184.07

184.07 > 518.34 > 258.11 >

216.08

184.07>518.36 > 258.10 >
353.30

LPC 16:1

LPC 18:2

LPC 18:2

LPC 16:0

LPC 16:0

LPC 18:1

LPC 18:1

LPC 19:1

LPC 19:1
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Appendix 16. Tandem mass spectrometry and corresponding extracted ion

chromatograms of compounds related to daidzein

+MS2(579.77), 18eV, 6.4min #381

2_ 255.06 1

¥ &
x10 3 +MS2(417.11), 18eV, 11.3min #671
2.0; 255.06

93 o
X?O E +MS2(416.72), 18eV, 13.1min #781
54
3 255.06

297.07
A

x10Q: +MS2(255.28), 18eV, 17.1min #1019
] 255.06

199.07
227.06

1 153.07 181.06 l
04 ; NN 'An. NN W~ L L.
100 150 200 25

c

300 350 400 450 500 550 mz
] 230001_80840-10ul_pl RA3 01_54742d
%101 20

e

L

Cheome
230001_B1

i3 * 2:!!!;17B10\h;£m7§;jﬁ75474;.d

25 1 2 4

20 % 2 -d oK fE 5P

151

1,0% 3

05] J

u,n: ‘A‘M“._».a.q‘»ﬁ‘f‘»w\“ S S VOO W .SV, W I SRR S
5 10 15 2 25 35 Tare: rrin]

B m/z=255.06 MW m/z=417.12 MW m/z=579.17
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Appendix 17. Tandem mass spectrometry and

chromatograms of compounds related to coumestrol

corresponding extracted ion

'menss--' +MS2(593.69), 186V, 8.9min #531
x10°]
] 269.04
1.0 431.09
0.5 5
9% ]
x105 +MS2(431.09), 186V, 14.8min #880
1.0
1 269.04
0.5 6
] 241.04 ®
x?()q_- +MS2(269.04), 186V, 19.3min #1151
3 241.04
1.0 197.05213.05
b 269.04 7
0.5
] 157.06 225.05
0.0- T U, T T T T T T T T
150 200 250 300 350 400 450 500 550 mz
Intens. +MS2(270.04), 186V, 13.2min #1560| 3000 ] +\MS2(269.21), 186V, 16.5min #1956
3 213.05 ]
1000 3 213.05
750§ 2000 R2
500 144.08 157.07 197.05
E % 157.05 169.06 1000 - : : 241.05
250 136.03 22811 241.03 1 14509 175.11 21913
04 ol ulu.n.n.lluln.I YA VOO (O YO P WO S | P . 4
140 160 180 200 220 240 260 miz 140 160 180 200 220 240 260 miz
HBI;— 730001_80840-10u_pl RA3_01_54742d
x 107
3]
] PEN L
2,
14
] A I e
HBI;%; 5 730001 BIOUN 10U _pi RAT_01. 54740
x107
30
25]
] % B o &
203 6 7 S T & ’}\ ﬁﬁ;
15]
10]
05 Rl R2
] J L A Any AJL A 141 f\ s B R o " oo
*ﬁﬁ: 5 230001_BIOUAL 10ul pl RAZ 01_54741.d
x107
30
25
20 vy — i e
] 6 7 BB -k KRS B
15
10]
05 /A Rl R2 JL ﬁ |
001 SNV ;i VSV SRS W .AL ‘M.’\‘ﬁ ‘M f\MLAN.ﬂu SR P NPT, .0. W & PV A .
5 10 15 20 25 30 k7 40Time [min]
B m/z=26904 MW m/z=431.10 M m/z=593.15
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Appendix

18. Tandem mass

spectrometry and corresponding - extracted

chromatograms of compounds related to genistein

ion

Intens.

+MS2(595.16), 18eV, 5.1min #304

x1057
271.05
1.0
0.8
06+ 8
0.4
0.2 433.11
0.0 : : : : : : o
250 300 350 400 450 500 550 mz
+\MS2(433.27), 18eV, 13.8min #819
12507 2115+06 iy
. 243.06 "
10004 271.05
750
500
175.08 236.00 1+ 356.07 1+
250 163.03 187.04 300.08 34508 337.16 ’ 362.86 211.20 430.20
i Ll e T Y T Y 1 A T WY\ Y
150 200 250 300 350 400 mz
ntens. T T+ 4MS2(271.05), 186V, 17.7min #2092
271.05
*
6000 4
4000 -
2000 4
1+
1+ 1+
1+153.02 1or 05 506 1+ 241.05
137.09  148.11 165.12 ] 225.06 253.03 L
0 . TN TEPP MYV TR T T R AT NN I |.IJ.|‘;.||... VT N T adll . -
120 140 160 180 200 220 240 260 280 300 mz
nkens. 230001_80840-10u_pl RA3 D1_54742d
104
34 N 3
AP
2
14
.. -t _OXfL AL ,Jm Dy T SO TRY N o SRR e
wend - 230001_B1DUN-10ul pl RA1_D1_b740d
x104]
3
5 8
14
ienf
x104
3
2
14
o T T

B m/z=271.06

B m/z=433.11

B m/z=595.17

Note: Compound 9 & 13 share the same 433.11 m/z peak.
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Appendix 19. Tandem mass spectrometry and corresponding extracted ion chromatograms of compounds related to vitexin and isovitexin

Intens. | +MS2(505.14), 186V, 13 4min #797
x104 ]
295,
08 95.05
0.6
325.06 -
) 34906 409.08 42710 11-2
0.4+
024 379.07 391.08
E 283.05 313.05 341.07 #4310
00 21453 3 1l ' 3 L. 335.08 341. | 361.06 367.07 B T | »7 |, ' 434.09 . 4
275 300 325 350 375 400 425 450 475 mz
g +MS2(579.67), 186V, 13.8min #820
1 313.06
6000
1 510 433.11
5.
4000+ 337.06 13
) 379.07 397.09
2000 - 283.05 367.08
271.05 205.05 325.06 349.07 l 409.09 427,00 l
361.06 391.07 !
0 Jl + A “ N 30710 " W 'll. Y N J'l FURE TN T . ¥ 1 . 1 i " 1 445.10 . 46516 .
275 300 325 350 375 400 425 450 475 miz
intens 3 +MS2(433.44), 186V, 12.8min #1518
1041
X103 313.07
31
E 12-1
] 397.09
] 283.06 415.10
] !
] 523,08 337.07  343.08 367.08 379.08 433.11
] 295.05 - 351.08.355.08 l
ol 27106 . 1 [ 1 . A . [ . N ; 1. L fov |
280 300 320 340 360 380 400 420 miz
x104] +MS2(433.12), 186V, 13.0min #1543
E 283.06
57 313.07
43
33 337.07 12-2
23
E 12300 379.08
14 X 397.09
1 1o 205.06 309.06 l 349.07 361.07  367.08 w51
ol 1 . 1 . | A L L. L 'l | 1 - 3 . °
280 300 320 340 360 380 400 420 m/:
Intens. 4 +MS2(433.71), 186V, 14.5min #1720
2500 313.07
2000 7 283.05 14
1500 3
1000 3 337.07
389.18
500 265.14 361.06
149.04 176.98 185.16 202.99210.00 224.99 243.02 68, 298.10 327.06 i 343.08 | 379.10 417_11424.2043143
ol 1l | NN AT | TR Y TRTY TV NPT " il g e PR Y SRR (YO STV Y PN PVRTTYWOUT TN | [N IR A VY N b 11
150 200 250 300 350 400 miz
+MS2(433.12), 18eV, 15.3min #1815
2000 ] 313.07
1500 3 15-3
1000 4
283.06 397.09
5007 169.08 291.11 415.09
147.11 159.14 | 177.05 187.09 201.59 213.09 230.11 239.13 259.21  269.10 | 32311 331.15 351.17 367.08 382.08
ol e ind L Ll Y I T I O Y T W W YO 117 Y Wl POV T YT L 1] wean Lol ol b bl ol 1y ) ||.'. NI T Al
150 200 250 123 300 350 400 miz
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B m/z=433.12

M m/z=505.14 M m/z=579.16

htens. 230901 80840-10ul pl RA3 (1 _54742d
x 1044
6
| e
4
2 ] /\
X 1044 ] 230001 _B1OUN-10ul pl RA1_01_54740d
3
. o © -4 4k K [
15
4 i A e e g s e ]
x10 Bl 230901 _B10UAL-10ul pl RA2 01_H4iM1.d
31 12
] 151 % 2 ik 3 5 B
1 14 I 15-3
X102
47
3 § 2 -k iz 5
24
] 13 e
0- T T T T T T
10 12 14 16 18 2 Tame [mn]

Note: Compound 9 & 13 share the same 433.12 m/z peak.
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Appendix 20. Tandem mass

spectrometry and corresponding  extracted

ion

chromatograms of compounds related to calycosin or biochanin A

Intens.| I52(284.39), 18eV, 16.3min #1933
] 28507
4 +*
1 16
1500 1 270.05
1000 553,04
225.05
500 4 175.09
] 159.10 215.06
197.05
1 147.07 153.04 163210 170,00 | 182,00 19111 \ 20311 \ 24200 264.05 ]l
I NN 8 T YT 1 T T TPV O 111 S 1Y I T N | TR T I Al
160 180 200 220 240 260 280 mz
He:;;4 i 230901_80840-10u_pl RA3 01 _54742d
X 4
15]

B m/z=285.07
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b Mt sip sl A ool o
|| IAL-10u pl RAZ 01_54741.

24 Tme [min]

M m/z=447.12 M m/z=609.15
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Appendix 21. Tandem mass spectrometry and corresponding extracted ion

chromatograms of compounds related to luteolin or kaempferol

'ntenS‘i i 28705 +MS2(611.16), 18eV, 6.8min #406
x10 .
15
1.0
0.5
00.] 449.10 .
+MS2(639.16), 18eV, 13.0min #773
8000 449.10
6000
4000 18
329.06 431.09
2000
| 383.07 413.08
173.04 353.06 -
311.04
S N G /1L AVt ol WP WV PNV W WO — . 4
200 250 300 350 400 450 500 550 600 mz
m\;‘_ N 230001_80840-10ul_pl RA3 01_54742d
x104 |
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08 .
e
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l lf.-.n‘:-;r ﬁl .r,‘it‘-t‘ ;..\‘ nﬁ,s,‘.-.'.'-bm\ll!!-s}«j'-"'f‘. . ﬂ!@ﬂ'—t"ﬁ;\. nlf!:}““' -:“m ™ L

] 1 A\ 1 LAl
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m99|904 730001 B1OUA] 10U pl_ RAZ 01_54f41d
x10%

104

o8] % E -dk-K[EE P~

06 -

OO it A AR Ak

200 25 Tlrm lln'l'ﬂI

B m/z=499.10 M m/z=611.16 M m/z=639.17
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Appendix 22. Tandem mass spectrometry and corresponding extracted ion

chromatograms of anthraquinone compounds

Intens. ] +MS2(271.06), 18eV, 24.3min #2873
2500 2741,'06

2000 3

1500—2 19

1000 197.05 229.04

225.05
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Appendix 23. Tandem mass spectrometry and corresponding extracted ion

chromatograms of the saponin compound
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Appendix 24. Tandem mass spectrometry and corresponding extracted ion

chromatograms of lipid compounds
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+MS2(520.34), 186V, 28.4min #1692
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Appendix 25. Total ion chromatogram of S. fora media extract

AP E P g 2. LC-MS B3 K 17 W
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FRIAME L T MS R A & P

s [M+H'T* [M+NH4'T"

1 415.25 432.28 437.23
2 459.28 476.31 481.26
3 503.31 520.34 525.29
4 547.34 564.37 569.32
5 591.37 608.40 613.35
6 635.39 652.42 657.37
7 679.42 696.45 701.40
8 723.45 740.48 745.43
9 767.47 784.50 789.45
10 811.50 828.53 833.48
11 855.53 877.52 877.51
12 899.54 916.58 921.52
13 943.57 960.61 965.55
14 AR 18 1 p) 4 )

(m/z)

d AR F [~14 ch- = MS Blz#4ap) fAte AP «q /i T35 B4 ¢ retention time 12~16

B it & F ¥ iy A_spidamine # enit & F o
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Appendix 26. Total ion chromatograms of LC-MS analysis
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