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摘要

作業系統（OS）如 Linux藉由系統呼叫介面向用戶提供服務，但其龐大的程

式碼基礎（幾乎是使用不安全的程式語言撰寫）使其易於受到攻擊。2014至 2024

年七月十三日，Linux核心報告了 1,866個新的 CVE，顯示了保護這些系統的挑

戰。由於大部分作業系統核心採用單體式架構，一個漏洞即可危及整個系統。核

心區隔化藉由執行最小特權原則，將核心分隔成不同區隔，限制每個元件僅能存

取其功能所需要的資料跟程式碼，以減少風險。

過去的區隔化工具，如 μSCOPE和 TyPM，雖嘗試自動化此過程，但仍存在

局限性。這些工具要麼因不完整的動態程式碼分析導致區隔特權不足，要麼因基

於資料型別授權導致區隔特權過多，使攻擊者得以利用漏洞去攻擊與該漏洞無關

的系統元件。此外，這些工具仍需手動實作區隔化政策，導致採用過程費時且容

易出錯。

此論文提出的框架，能自動將 Linux核心元件進行細緻的區隔化。此框架支

持針對特定程式路徑（如系統呼叫處理路徑）進行自訂區隔，並透過函式呼叫關

係圖分析自動生成區隔化策略。框架定義了共享資料抽象 API，包括：(1)用於分

配資料至區隔的共享資料指派 API，以及 (2)控制資料存取的共享資料存取 API

（getter和 setter）。自動化將記憶體操作的指令轉換為 API呼叫，使監控器能夠強

制執行共享資料存取的權限。
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我們的實作基於 MLTA 型別分析工具和 LLVM，能自動識別和修改 Linux

v5.15 中的程式路徑上的程式碼。我們評估了此框架在多個系統呼叫（如

KVM_CREATE_VM）中的應用，證明其在減少手動修改的量之外，也能提升了

核心安全性。

關鍵字：系統呼叫、靜態分析、系統可用性、核心區隔
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Abstract

Operating system (OS) kernels, such as Linux, expose a system call interface to users,

but their extensive codebases—often written in unsafe languages—leave them vulnerable

to exploitation. Between 2014 and July 13, 2024, 1,866 new CVEs were reported in the

Linux kernel, illustrating the challenge of securing such systems. As most OS kernels

are monolithic, a single vulnerability can compromise the entire system. Kernel com-

partmentalization, which conducts the principle of least privilege, mitigates this risk by

dividing the kernel into isolated compartments, restricting access to only the data and code

necessary for each component’s function.

Past compartmentalization efforts, including μSCOPE and TyPM, have attempted

to automate the process but remain limited. These tools either under-privilege compart-

ments due to incomplete runtime analysis or over-privilege them by granting unnecessary

access based on data types, which still allows attackers to exploit vulnerabilities to target

parts of the system that are unrelated to the original vulnerabilities. Furthermore, they
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require manual implementation of the compartmentalization policies, making adoption

time-consuming and error-prone.

This thesis introduces a framework for automatically compartmentalizing Linux ker-

nel components with fine granularity. It supports custom compartmentalization of code

paths, such as those handling system calls, using call graph analysis to generate compart-

mentalization policies. The framework defines a shared data abstraction API comprising:

(1) shared data assignment APIs to allocate data to compartments, and (2) shared data

access APIs (getters and setters) to enforce controlled data interaction. Automatic instru-

mentation transforms memory operations into API calls, enabling a monitor to enforce

permissions on shared data access.

Our implementation, based on the type analysis tool MLTA and LLVM, automates

the identification and instrumentation of code paths in Linux v5.15. The framework was

evaluated by compartmentalizing several system calls, including KVM_CREATE_VM,

demonstrating its effectiveness in reducingmanual effort while enhancing kernel security.

Keywords: System Call, Static Analysis, System Availability, Kernel Compartmental-

ization
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Chapter 1 Introduction

Operating system (OS) kernels provide services to users by exposing the system call

interface. However, due to its extensive codebase, often written in unsafe languages, the

system is constantly exposed to new vulnerabilities, making it susceptible to exploitation

or paralysis by attackers who discover weaknesses in system calls. For instance, between

2014 and July 13, 2024, 1,866 new CVEs were reported in the Linux kernel over the

decade [35]. While eliminating all vulnerabilities is unlikely, limiting their impact is crit-

ical for security. Most OS kernels, including Linux, are monolithic. This means a single

vulnerability can compromise the entire system due to the lack of fault isolation among

kernel components.

One effective method to address this issue is kernel compartmentalization [24, 33],

which systematically enhances security by enforcing the principle of least privilege (PoLP)

[34]. This approach divides the kernel into separate compartments, permitting each com-

partment to access only the data and execute the code essential to its specific function,

thereby restricting unnecessary access and control flow. Compartmentalization reduces

the attack surface to confine exploitation and the resulting damage across the system.

Past systems [6, 23, 24, 26, 27, 32, 36–38] attempted to compartmentalize compo-

nents in the monolithic Linux. Some of them [26, 27, 37, 38], incorporate a monitor to
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enforce the isolation mechanism across compartments. The compartment needs to access

shared data, such as variables in the data and heap sections, to ensure that changes to

system-wide data are visible to multiple kernel components, including system calls, de-

vice drivers, and kernel modules. In the monitor-based compartmentalization mechanism,

compartments must access shared data through the Monitor to ensure controlled, secure

access, preventing unauthorized or arbitrary interactions with shared data. However, those

works require manual effort to retrofit the system to achieve compartmentalization. In the

Linux kernel, even a single system call like KVM_CREATE_VM, requires the developers to

analyze around 2133 lines of code and 330 object fields. This makes compartmentalizing

a large system difficult and requires significant developer effort because the compartments

have to communicate with each other by accessing a large number of shared data.

To efficiently compartmentalize a large codebase like the Linux kernel, it is crucial to

automatically analyze both the subjects—such as specific functions or lines of code—and

the objects, which refer to shared data, that belong to each compartment. Additionally,

we must automatically determine the permissions granted to subjects for operations on

objects, such as load or store. We define the set comprising objects, subjects, and permis-

sions as a compartmentalization policy. Moreover, we also have to provide a set of APIs

to express what shared data should be assigned to the compartment and abstract access to

different types of shared data, allowing us to express the compartmentalization policy in

the system, restricting compartments to access shared data via the predefined shared data

access API. We also have to transform the memory operations to shared data access API,

allowing the monitor to enforce the read-write permission when compartment access the

shared data. For instance, the monitor can verify whether a compartment is permitted to

perform read or write operations on certain memory address ranges.
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Defining the compartmentalization policy for complex systems software like Linux

requires high expertise, and it is time-consuming, error-prone, and lacks scalability. This

can lead to inconsistent policies, where some compartments either lack access to neces-

sary data or have unnecessary access to unrelated data, increasing the risk of overlooking

critical data flows or dependencies. Therefore, automating the generation of the com-

partmentalization policy is critical. This enables developers to determine what code or

shared data should be placed inside the compartment without manual effort. Recent works

such as µSCOPE [33] and TyPM [21] focus on generating compartmentalization policies.

However, they only provide analyses to determine which code and shared data should

be included in each compartment. However, developers must manually modify Linux to

implement the desired compartmentalization (e.g., creating APIs, enforcing isolation, and

managing synchronization). This significantly limits the adoption of these tools.

The compartmentalization policies provided by existing tools like μSCOPE and

TyPM are often imprecise. μSCOPE can lead to under-privileged compartments because it

relies on dynamic analysis, which may not capture all possible data flows during runtime,

resulting in compartments lacking necessary data access and causing execution errors.

Conversely, TyPM can lead to over-privileged compartments because it grants permis-

sions based on data types accessed by the compartment, potentially including all data of

that type, which increases the risk of data misuse. Both challenges highlight the difficulty

of achieving precise compartmentalization in real-world systems.

KSplit [8] compartmentalizes untrusted device drivers to isolate them from the rest

of Linux. It provides an automated method for partitioning the kernel and driver, making

significant progress towards effortless compartmentalization of a large codebase. This ap-

proach eliminates manual efforts from programmers to modify the isolation target. How-
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ever, KSplit focuses on isolating device drivers from the rest of Linux. It provides a

coarse-grained and inflexible compartmentalization policy. KSplit does not support com-

partmentalizing components with custom granularity within the kernel, such as functions

used in a code path to handle system calls.

This thesis presents a framework for automatically compartmentalizing components

in the Linux kernel at fine-grained granularity. Because system calls serve as the interface

for the OS to provide its service to the users, they often become the target of the attacker

to conduct the attack toward the OS, such as denial of service, privilege escalation, and

so on. Therefore, we choose system calls as the primary target for automatic compart-

mentalization. This work supports compartmentalizing custom kernel components used

by a selected call path of the system calls. The framework performs call graph analysis to

automatically generate compartmentalization policies defining boundaries for individual

compartments. Additionally, this framework provides a compartmentalization abstraction

API, which defines the primitives governing the interaction between compartments and

shared data. The compartmentalization abstraction API consists of two components: the

shared data assign API, which defines the shared data belonging to the compartment, and

the shared data access API in the form of getter and setter functions, allowing compart-

ments to read from (getter) and write to (setter) various types of shared data. Further,

the framework supports automatic instrumentation of compartments’ code that accesses

shared data. Our approach enables amonitor-based compartment system tomonitor shared

data accesses made by compartments.

Our implementation leverages the type-based analysis tool MLTA [22] to track all

the functions used within a system call, as the LLVM [13] does not analyze the callees

of indirect calls, which are prevalent in Linux. This approach eliminates the need for de-
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velopers to manually check the boundaries of the functions used in a code path to handle

system calls. The current work implemented an LLVM Pass in LLVM version 14.0.6 to

generate compartmentalization policies that define which shared data should belong to a

compartment and instrument the memory operations for those shared data with shared data

access APIs (getter and setter). The system leverages the compartmentalization mecha-

nism through these APIs to enforce compartment policies. The current implementation

includes a record-replay-based Monitor, designed to support crash recovery for Linux

compartments [38].

The KVM hypervisor integrates the Linux kernel to leverage its operating system

functionality for building the hypervisor. However, this integration increases the complex-

ity of the KVM, potentially introducing more bugs and vulnerabilities [28–30]. Therefore,

we used the prototype framework to compartmentalize several KVM system calls in Linux

v5.15: KVM_CREATE_VM for creating a virtual machine, KVM_CREATE_VCPU for creating a

virtual CPU, and KVM_SET_GSI_ROUTING for configuring the Global System Interrupt

(GSI) routing table. Moreover, we implement a system call to demonstrate typical sys-

tem call patterns and apply compartmentalization. Additionally, we compartmentalize

the network packet transmit system call provided by the nullnet driver, which emulates

a network adapter for packet transmission. Our prototype demonstrates the capability to

automatically identify functions within a code path, define compartment boundaries, and

compartmentalize components in Linux kernel v5.15 effectively.

In this thesis, we first introduced the background of compartmentalization, call graph

analysis, and KVM in chapter 2. Then, we elaborated on the design of the automatic anal-

ysis and instrumentation framework in chapter 3. Afterward, we presented the implemen-

tation details in chapter 4. In the end, we show the evaluation of the KVM system calls
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after the automatic compartmentalization in chapter 5 and discuss the related works in

chapter 6. The summary of the thesis is in chapter 7.

The primary contributions of this thesis are:

• We proposed the design of automatic analysis and instrumentation of system com-

partmentalization at fine-grained granularity.

• We proposed the API to allow the monitor-based compartmentalization system to

monitor the access of the shared data made by the compartment.

• We implemented the framework of the automatic analysis and instrumentation based

on existing LLVM compiler infrastructure.

• We demonstrated applicability by compartmentalizing the components in the code

path of system calls in Linux kernel v5.15.

• We reduce the manual effort for compartmentalizing the components inside the

Linux kernel.
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Chapter 2 Background

In this chapter, we will explain the concept of kernel compartmentalization, the tech-

nology of the call graph analysis, and the background of the KVM. The compartmental-

ization can allow the system to be executed following the PoLP. The call graph analysis

can assist us in automatically identifying the component used on the call path of the sys-

tem call. Our study treats KVM as the starting point for automatic compartmentalization

because failures in other kernel components might only impact a single operating system,

a failure in KVM can affect multiple virtual machines running on it. This makes KVM

a critical component that requires compartmentalization even more than the other kernel

components.
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2.1 Compartmentalization

Figure 2.1: Compartmentalization System

Compartmentalization [14] is a security technique that divides a program into isolated

parts, limiting each part to access only the shared data it needs, thereby enforcing the PoLP

on large codebases like Linux.

Due to the Linux kernel’s monolithic structure, a single vulnerability can compromise

the entire system, and its large codebase makes manual compartmentalization impractical.

Therefore, automating compartmentalization for the Linux kernel is essential.
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Compartmentalizing the Linux kernel involves addressing three key questions:

(1) How to determine which lines of code and shared data should be grouped together,

and what access permissions (e.g., read or write) for divided code group to access the

shared data. This question is addressed by the compartmentalization policy.

(2) How to express the defined policy in the program. This question is addressed by

the compartmentalization abstraction.

(3) How to enforce the policy during runtime. This question is addressed by the

compartmentalization mechanism.

2.1.1 Compartmentalization Policy

Before defining the compartmentalization policy, we first define the subject, object,

and permission from Saltzer and Schroeder [34] and Miller [25]. The subject defines

which lines of the code should be compartmentalized. The object defines the data, such

as global variables or dynamically allocated variables, with which the subject is allowed to

interact. The permission defines what actions that subject can perform on the object(eg.,

read, write).

The compartment is a set of the code (subject) that has the same permission to access

the object. The compartmentalization policy is a concept of determining the subject, the

object, and the permission for the compartment.

9 doi:10.6342/NTU202500063
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2.1.2 Compartmentalization Abstraction

A compartmentalization abstraction defines the basic primitives to implement for ex-

pressing the separation policy in a program. Assigning the shared data to the compartment

and allowing the compartment access to the shared data in the predefined permission, like

reading and writing, need to be performed under the defined policy. Consider figure 2.1,

this can prevent the compartment from arbitrarily obtaining ownership of the shared data

and accessing them without control.

2.1.3 Compartmentalization Mechanism

A compartmentalization mechanism is a technique to enforce the compartmentaliza-

tion policy at runtime through the implementation of a compartmentalization abstraction.

Notably, numerous past works [26, 27, 37, 38] have introduced an independent trusted

component, referred to as theMonitor, as shown in figure 2.1.

The monitor is responsible for managing the metadata required to maintain the com-

partment execution. For instance, the monitor of the BULKHEAD [37] will maintain the

metadata about what shared data should be assigned to the compartment and what permis-

sion, such as read or write, is allowed the compartment to perform on the shared data.

The monitor is responsible for enforcing the defined compartmentalization policy for

the compartment when assigning the shared data to it and accessing the shared data. This is

achieved through two fundamental methods: message passing and shared memory. Using

message passing[26, 27], the monitor facilitates the assignment of shared data by trans-

mitting it over a communication channel (e.g., pipes or POSIX sockets) under the defined
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permissions. For shared memory[37], the monitor ensures that only shared data explicitly

permitted under the compartmentalization policy is accessible to the compartment. This

process is supported by hardware features such as PKS[9]. The monitor will leverage this

hardware feature to verify whether the shared data should be assigned to the compartment

and to determine the access permissions, such as read or write, that the compartment can

use when accessing the shared data.

2.2 Call Graph Analysis

The call graph is a graph that embodies the calling relationships among subroutines

or functions in a computer program. Each node in the graph represents a function and the

edge between the nodes represents a calling relationship among them.

The construction of the call graphs can help developers enforce the control flow in-

tegrity and detect the vulnerabilities of the large code base, like privilege escalation, buffer

overflows, etc.

2.2.1 LLVM Call Graph Analysis

The LLVM compiler infrastructure [13] can construct the call graph[16] itself. The

LLVM constructs a call graph to aid in interprocedural optimization by mapping out the

calling relationships between functions within a module. In the graph, each function is

represented as a node, which tracks the functions it calls. A call graph includes nodes for

functions that are null, termed “external nodes”, to account for control flows that are not

analyzable within the module. These external nodes serve two primary purposes. First,

they represent functions without internal linkage or those whose addresses are used for
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indirect calls, indicating potential invocations by external functions. Second, they capture

outgoing calls from functions that are external or contain indirect calls, reflecting their

ability to call any function without internal linkage or those with taken addresses.

This structure ensures that the call graph encompasses a conservative superset of all

possible caller-callee relationships, which is essential for various compiler optimizations

[17–19]. However, if the module contains an indirect call instruction, this callee of the

indirect call will be mapped to an external node. Therefore, the target of the indirect call

is missing and the call graph is incomplete.

2.2.2 First-Layer Type Analysis

To address the problem that indirect calls hinder the construction of a precise call

graph, the type-based matching method, first-layer type analysis [5], collects all indi-

rect calls and recognizes the function-pointer type of them. Then, it analyzes the entire

program to gather address-taken functions containing the identical type as indirect calls’

function-pointer type.

Although first-layer type analysis is computationally efficient and straightforward to

implement, it frequently results in a high number of false positives—indirect calls that use

generic parameters, such as void (*)(char *), often correspond to numerous unrelated func-

tion targets. This occurs because it does not consider the layered context in which function

pointers are stored and utilized, leading to many irrelevant functions being included as po-

tential targets. Consequently, first-layer type analysis offers only a basic level of precision

due to its lack of accuracy. This limitation underscores the need for more sophisticated

analysis techniques that can account for the full context of function pointer usage.
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2.2.3 Multi-Layer Type Analysis

1 struct kvm_pgtable_mm_ops {

2 void* (*zalloc_page)(void *arg);

3 ...

4 };

5

6 struct stage2_map_data {

7 ...

8 struct kvm_pgtable_mm_ops *mm_ops;

9 };

10

11 struct hyp_map_data {

12 ...

13 struct kvm_pgtable_mm_ops *mm_ops;

14 };

15

16 static void *kvm_hyp_zalloc_page(void *arg)

17 {

18 return (void *)get_zeroed_page(GFP_KERNEL);

19 }

20

21 static void *stage2_memcache_zalloc_page(void *arg)

22 {

23 struct kvm_mmu_memory_cache *mc = arg;

24

25 /* Allocated with __GFP_ZERO , so no need to zero */

26 return kvm_mmu_memory_cache_alloc(mc);

27 }

28

29 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {

30 .zalloc_page = kvm_hyp_zalloc_page ,

31 ...

32 };

33

34 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
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35 .zalloc_page = stage2_memcache_zalloc_page ,

36 ....

37 };

38

39 struct hyp_map_data map_data = {

40 .mm_ops = &kvm_hyp_mm_ops ,

41 ....

42 };

43

44 struct stage2_map_data map_data = {

45 .mm_ops = &kvm_s2_mm_ops ,

46 ...

47 };

48

49 static int stage2_map_walk_leaf( ..., struct stage2_map_data *data)

50 {

51 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;

52 kvm_pte_t *childp = mm_ops->zalloc_page(...);

53 ...

54 return 0;

55 }

Listing 2.1: Type Analysis based Code Example

To obtain a more precise indirect call target function, Multi-Layer Type Analysis

(MLTA) [22] operates by utilizing the layered storage of types in system software to iden-

tify indirect call targets more accurately. The core insight of MLTA is that function point-

ers are commonly stored in instances with multi-layer type hierarchies, and before an in-

direct call is made, these pointers are loaded through multiple layers of types. Therefore,

when the MLTA encounters the indirect, it perform the following operations.

(1) It identifies all the address-taken functions that are the same type as the indi-

rect call’s function pointer. Consider listing 2.1, stage2_memcache_zalloc_page and
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kvm_hyp_zalloc_page both are the address-taken functions because both of their address

is assigned to the global variable. It compares their function type with the indirect call’s

function pointer type in line 52. It concludes that both of them are the possible callees for

this function pointer.

(2) It refines possible callees by comparing the type of instance that holds the function

with the type of instance that holds the function pointer layer by layer. Consider listing 2.1.

It found the instance that holds stage2_memcache_zalloc_page with the layer of type,

struct kvm_pgtable_mm_ops and struct stage2_map_data. Then, It compares it

with the type of instance that holds the function pointer at line 52 layer by layer. It found

that their types are consistent. It concludes that stage2_memcache_zalloc_page is the

callee of the indirect call in line 52. In contrast, the instance holding kvm_hyp_zalloc

_page does not have the same layer of type as the indirect call in line 52. As a result, this

function can be excluded as a possible callee.

MLTA offers two notable advantages. First, multi-layer types impose stricter con-

straints compared to single-layer types, effectively reducing false positives. The target set

identified by single-layer analysis represents a broader collection than the refined set ob-

tained through multi-layer analysis, as the latter narrows down the possibilities. Second,

multi-layer type analysis provides flexibility to mitigate possible false negatives. While a

type containing additional layers offers greater precision in limiting indirect call targets,

MLTA can adapt by falling back to more general sub-types when detailed type information

is unavailable, ensuring accurate results without increasing false negatives.
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2.3 Kernel-based Virtual Machine

Kernel-basedVirtualMachine (KVM) is a type-2 hypervisor integrated into themain-

line Linux kernel in 2007, enabling the kernel to serve as a hypervisor. By leveraging

existing kernel components, such as memory management, scheduling, and so on, KVM

can efficiently run multiple virtual machines on a single physical host.

On x86 platforms, KVM leverages hardware virtualization features such as Intel

VMX to partition CPU operations into two distinct modes: root mode for the host and

non-root mode for virtual machines. Single instructions like VM Entry and VM Exit

handle the saving and restoring of the processor’s state directly in hardware, enabling effi-

cient transitions between the host and VMs. In contrast, KVM on ARM must address the

limitation that the host OS cannot operate in EL2, the privilege level designated for vir-

tualization. To overcome this, KVM ARM employs split-mode virtualization [4], placing

most hypervisor functionality in EL1 alongside the host kernel while maintaining a mini-

mal lowvisor at EL2. Since ARM does not provide a single hardware mechanism to save

and restore the full CPU state, KVM ARM must manually switch contexts in software,

which introduces additional overhead compared to the virtualization hardware support on

x86.

Recently, KVM ARM introduced VHE mode, which allows the Linux kernel to run

entirely in EL2. VHE mode eliminates the need to separate KVM ARM into different

CPU privilege levels. By operating the Linux kernel fully in EL2, guest EL1 states do not

need to be restored during VM entry or exit, thereby reducing overhead. KVMARM now

supports both VHE mode and continues to maintain split-mode virtualization as NVHE

mode.
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Chapter 3 Design

Modifying a large codebase like Linux to integrate a compartmentalization system

is a complex undertaking that demands significant engineering effort. This framework

aims to automate the compartmentalization of components within Linux, minimizing the

need for developer effort. In this section, we first define the essential elements that con-

stitute compartmentalization for this framework. Based on this definition, this framework

demonstrates how to analyze these elements within the kernel component targeted for

compartmentalization and then automatically instrument the component to achieve com-

partmentalization.

3.1 Compartmentalization Policy of the Framework

The compartmentalization policy can be defined with variety according to the de-

mand or the goal of the developer. we will first define the compartmentalization policy

for this framework by specifying the subject, the permissions, and the objects to be ana-

lyzed.

The granularity of the subject can be a function, a system call, a c file, or a system

call. Most of the past works [8, 24, 27, 37] choose coarse-grained granularity, driver, or

c files, as their subject’s granularity because this granularity can be easily defined by the
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developer without further analysis. For instance, if the developer defines the driver as

the subject to compartmentalize, they can simply select the c file related to the driver to

instrument. However, if they defined the subject as the more fine-grained level, such as

system level, they have to identify the functions that are called during the system call ex-

ecution through either manual analysis or static analysis method [5, 7, 16, 22]. Moreover,

the coarse-grained granularity of the subject only stretches the surface of the PoLP. There-

fore, although this framework can compartmentalize Linux in any granularity, it chooses

functions used in a code path to handle system calls as the granularity of the subject to

demonstrate its ability to analyze and instrument kernel at a more fine-grained level. The

analysis methods will be detailed in section 3.4.1

The shared data are system-wide visible to the components in Linux, such as kernel

modules, device drivers, and system calls, etc. In the Linux kernel, per-CPU data is de-

signed to provide each CPU with its own private copy of the data. This design eliminates

the need for synchronization primitives when a processor accesses its own copy, thereby

avoiding performance degradation caused by synchronization overhead. Although PER-

CPU data are not shared directly across processors, they remain system-wide visible in

the Linux kernel. As a result, it is still classified as shared data within the system. In this

framework, the object is defined as the shared data that a subject interacts with. The per-

mission for the subject to access the object is defined by whether the subject has the load

or store instructions that operate on the object. The analysis in section 3.4.2 will detail

how to determine which shared data the compartment is allowed to access precisely and

what permission, write or read, is given to the compartment for access to the shared data.
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Table 3.1: Shared Data Assign API

Shared Data Assign API Description

int new_shared_data(void *var_addr, u64 size)
var_addr: the address of shared data
size : bytes of shared data

3.2 Compartmentalization Abstraction API

The compartmentalization abstraction API is a set of APIs that express the com-

partmentalization policy in the program. The compartmentalization abstraction API here

comprises two types of the API. The Shared Data Assign API defines the shared data that

should be assigned to the compartment and the Shared Data Access API defines the access

permission, read or write, that the compartment can perform on these shared data.

3.2.1 Shared Data Assign API

In the design of a monitor-based compartmentalization mechanism, The monitor is

responsible for assigning shared data to the compartment. This allows the monitor to

restrict the data the compartment can access, ensuring that compartments only have privi-

leges for objects explicitly assigned to them. This framework defines Shared Data Assign

API in table 3.1 to define which shared data should belong to the compartment.

The new_shared_data provides the interface for instructing the monitor to assign

the shared data to the compartment. The first argument provides the monitor with the ad-

dress of the original shared data, and the second argument specifies the number of bytes

of shared data to be assigned. Using this information, the monitor can retrieve the data

value from the shared data address within the defined size and then allocate it to the com-

partment.
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Table 3.2: Shared Data Access API

Shared Data Access API
void set_shared_data(void *shared_data_addr, u64 value)
u64 get_shared_data(void *shared_data_addr)

This API interface supports a variety of shared data. For primitive types, it simply

assigns the entire variable to the compartment. For composite types, it allows defining

the granularity of the shared data to be assigned to the compartment. Specifically, it can

assign a field of a composite variable to the compartment by using the field’s address as

the var_addr argument and the field’s byte size as the size.

3.2.2 Shared Data Access API

Once the shared data is assigned to the compartment, the compartment should access

it under themonitor’s control. This framework provides SharedData Access API table 3.2,

getter, and setter APIs, for the compartment to get and set the shared data managed by

the monitor. set_shared_data serves as the setter to allow the compartment to set the

shared data. The first argument, shared_data_addr, specifies the address of the shared

data the compartment intends to write, and the second argument specifies the value the

compartment intends to write to the shared data. The get_shared_data serves as the

getter to authorize the compartment to read the value of shared data. The first argument

specifies the address of the shared data the compartment intends to read.

3.3 Support for Monitor-Based Mechanism

In our framework, we aim to provide an automated analysis and modification method

for integrating a monitor-based compartmentalization mechanism into the system, elimi-
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nating the need for manual code modifications in the components the developer seeks to

compartmentalize. The monitor-based mechanism [26, 27, 37, 38] can leverage the ab-

straction API to regulate the compartments’ access to shared data under the predefined

compartmentalization policy. The monitor determines which shared data should be as-

signed to a compartment using the Shared Data Assign API. When the compartment at-

tempts to access the shared data, the monitor controls access through the Shared Data

Access API. The framework also provides the analysis and instrumentation to support the

monitor-based compartmentalization mechanism.

3.4 CompartmentalizationAnalysis and Instrumentation

Kernel Code Subject Analysis

Object and

Permission

Analysis

Instrumentation

Abstraction API

Compartmentalized

System

Figure 3.1: Compartmentalization Analysis and Instrumentation Workflow

This section begins by analyzing the subject, object, and permission that defines the

compartment. We then instrument components within Linux to transform them into the

compartment. Consider figure 3.1, the framework first analyzes the subject of the com-

partment, followed by analyzing the object and the permissions associated with it. Finally,

it instruments the API into the kernel code, transforming it into a compartmentalization

system.

1 struct B {
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2 int status;

3 int flag;

4 };

5

6 int counter = 0;

7

8 int sys_call(unsigned int type)

9 {

10 struct B* b;

11 int r = 0;

12

13 counter++;

14

15 b = kzalloc(sizeof(*b), GFP_KERNEL_ACCOUNT);

16 if (!b){

17 return -1;

18 }

19

20 b->flag = 2;

21 r=b->flag;

22

23 ....

24 return r;

25 }

26

27 int instrumented_sys_call(unsigned int type)

28 {

29 struct B* b;

30 int r = 0;

31 new_shared_data(&counter, sizeof(counter));

32 //counter++;

33 int tmp = get_shared_data(&counter);

34 set_shared_data(&counter, tmp + 1);

35

36 b = kzalloc(sizeof(*b), GFP_KERNEL_ACCOUNT);

37 if (!b){
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38 return -1;

39 }

40 new_shared_data(&b->flag, sizeof(b->flag));

41 //b->flag = 2;

42 set_shared_data(&b->flag, 2);

43 //r=b->flag;

44 r = get_shared_data(&b->flag);

45 ....

46 return r;

47 }

Listing 3.1: Instrumentation Code Example

3.4.1 Compartmentalization Subject Analysis

According to the discussion in section 3.1, we define the granularity of the subject as

the functions used in a code path to handle system calls. To compartmentalize a system

call, the first step is to identify the functions that are used by the target system call. To

achieve this, we need to generate a comprehensive control flow graph (CFG) of the Linux

kernel. LLVM can automatically generate a program’s CFG. However, because Linux

developers emphasize code reusability and aim to leverage object-oriented programming

principles within the kernel to increase the flexibility of the kernel code [31], they fre-

quently use function pointers to create callback functions, resulting in many indirect calls.

For instance, the KVM hypervisor code that walks the hypervisor’s page table often in-

volves callbacks to trigger different functionalities during the page table walk.

In our framework, we utilize indirect call target analysis to identify the subjects of

the compartment, showcasing a novel use case for this analysis.

Because the limitation of LLVM is its inability, by default, to infer the set of target

23 doi:10.6342/NTU202500063

http://dx.doi.org/10.6342/NTU202500063


functions for these indirect calls, when we encounter an indirect call, we perform a type-

based analysis in section 2.2.3 to infer the callee of an indirect call.

After finishing the analysis process, we obtain a comprehensive control flow graph of

the Linux kernel. Starting from the function that invokes the system call, we traverse the

control flow graph to identify all functions called along this path. The functions collected

through this traversal are then considered as the subjects of the compartment.

3.4.2 Compartmentalization Object and Permission Analysis

After analyzing the subject of the compartment at the compartmentalization subject

analysis phase in section 3.4.1, we obtain the set of the functions used in a code path to

handle system calls as the subject of the compartment. In the analysis phase, we identify

the field of shared data that must be assigned to the compartment, defining it as the com-

partment’s object. Additionally, we analyze the permissions—either read or write—that

the compartment is allowed to operate on for each assigned object.

The first step is to iterate through each load and store instructions within the subject

of the compartment because those memory operation instructions can potentially access

the shared data.

In the second step, we analyze those memory operation instructions through the fol-

lowing static analysis to identify whether they access the shared data. We perform the

following steps:

(1)We build a working list and select variables used inmemory operation instructions

as the initial variable for analysis. For load instructions, we choose the variables from

which they load, and for store instructions, we select the variables to which they store to.
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(2) We pop the working list to obtain the variable to analyze and set it as the current

variable. We add all the variables used to define the current variable into the working list

and add the current variable to the use define chain set.

(3) If the current variable is a function argument, we use the call graph to locate the

caller of this function, add the corresponding argument of the caller to the working list,

and then proceed to step 2.

(4) The algorithm will finish until all the variables in the working list finish analysis.

(5) We check the use define chain set to find whether the variable inside it has the

global variable or the variable allocated by the kernel allocation function. If so, we con-

sider these shared data variables as the object of the compartment. Thememory operations

identified in our analysis are defined as the permissions, read or write, the compartment

is allowed to perform on those objects.

Consider listing 3.1. In line 20, this line of code is to store a value to the variable.

After the analysis process, we found that this line of code performs the store action on the

allocated heap data defined at line 15. We define that the field, flag, of the variable, b,

should be the object of the compartment, and the compartment has the permission to write

the field, flag, of the variable, b.

3.4.3 Compartmentalization Instrumentation

After the previous analysis phase in section 3.4.2, we automatically instrument with

the compartmentalization abstraction API defined in section 3.2. For the objects we ana-

lyze in the section 3.4.2, we instrument Shared data Assign API before the object is used

to notify the monitor to assign the shared data to the compartment. For instance, con-
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sider listing 3.1, before writing the global variable, counter, in line 13, and the field of

the dynamically allocated memory object that the pointer b points to, we instrument the

new_shared_data API to instruct the monitor to assign the whole shared data or a field

of shared data to the compartment.

According to the section 3.4.2 phase, we replace the load and store operations with the

getter and setter APIs, as detailed in table 3.1. Consider listing 3.1, after this replacement,

the compartment can only access shared data through the predefined API, ensuring the

Monitor can strictly control all shared data usage. For instance, line 20 and the line 21

would be replaced as the set_shared_data and the get_shared_data respectively. The

instrumented_sys_call in listing 3.1 is the result of the code after instrumentation.
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Chapter 4 Implementation

We implement the framework based on the design. The framework comprises the

static analysis toolMLTA [22] to analyze the subject of the compartment, and the extended

LLVM of version 14.0.6 to compartmentalize the functions on the code path to handle the

system call inside the Linux kernel automatically, which consists of 1840 LOC. LLVM

version leveraged to build MLTA analysis tool [12] is version 14.0.6. LLVM version

14.0.6 is compatible with the existing build process of Linux kernel [15] to produce LLVM

IR from the Linux kernel source for our framework. We select the record-replay-based

monitor [38] as the compartmentalization mechanism of this framework. Therefore, this

framework also provides the customized shared data access API in section 4.1.3 for the

record-replay-based monitor [38] to support its record and replay functionality.

4.1 Customized Compartmentalization Abstraction API

We will first present the compartmentalization mechanism provided by the record-

replay-based monitor [38]. Following this, we will introduce the customized shared data

assign API specifically designed for the record-replay-based monitor, enabling seamless

integration with this framework.
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4.1.1 Record-Replay-Based Monitor

Figure 4.1: Record-Replay-Based Monitor Workflow

The monitor [38] provides the mechanism to allow the shared data that the compart-

ment used inside to remain unmodified until the compartment finishes execution. Consider

the workflow in figure 4.1, when the compartment starts to execute, the monitor allocates

the private shared data for the compartment according to the shared data assigned to it.

Then, the monitor copies the value of an original shared data to private shared data. The

monitor will handle all access to the private shared data requested from a compartment.

Once the compartment finishes execution without any errors that cause the compartment

to crash, such as the null pointer dereference or Use-after-free, the monitor will copy the

value on the private shared data back to the original shared data.
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Table 4.1: Shared Data Assign API

Shared Data Assign API
int new_global(void *var_addr, u64 size)
int set_mem_obj(void *obj_addr)
int free_mem_obj(void *obj_addr);
int new_field(void *base_addr, void *field_addr, u64 size)

4.1.2 Concurrency Model

Regarding the concurrency model, our design leverages existing critical sections

within the kernel to ensure that the getter and setter operations on shared data are exe-

cuted within a critical section. For atomic read and atomic write operations, the getter and

setter disable interrupts during execution to guarantee atomicity.

However, from the perspective of our monitor implementation, to support record and

replay functionality, all modifications to shared data are written back only after the com-

partment finishes execution. This imposes certain implementation constraints: the system

must operate in a non-preemptive configuration to prevent scenarios where a compart-

ment exits a critical section but gets preempted before its modifications to shared data are

written back. Additionally, a single-core environment is required to avoid race conditions

arising from tasks on different cores competing for the same critical section. For instance,

if one compartment exits a critical section without writing back its shared data changes

and another task on a different core acquires the same critical section, it could lead to

inconsistent shared data and race conditions.

4.1.3 Customized Shared Data Assign API

According to the mechanism of the record-replay-based monitor, when shared data

is allocated in the heap section, the following scenarios may occur:
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(1) The shared data is allocated outside the compartment, and be deallocated inside

the compartment.

(2) The shared data is allocated inside the compartment, and the shared data is then

assigned back to the core kernel.

Therefore, the monitor must be aware of the lifetime of the shared data; otherwise, it

risks reassigning deallocated shared data back to the core kernel or failing to assign newly

created shared data to the core kernel after the compartment completes execution. This

framework provides the Object Lifetime API to allow the monitor to track the lifetime

of the shared data. The set_obj_mem will inform the monitor that new shared data are

allocated. The free_obj_mem will inform the monitor that the shared data is deallocated.

A type of shared data is composite, containing fields of varying sizes to store different

values. To handle this, the framework provides a new_field API, enabling the monitor

to assign shared data to a compartment at the field level rather than as an entire one.

The new_field includes an additional argument, base_addr, which specifies the starting

address of the shared data containing the field. This information allows the monitor to

track the field＇s lifetime, ensuring it does not reassign a deallocated field back to the core

kernel after the compartment completes execution.

Since the lifetime of a global variable persists until the system shuts down, the mon-

itor does not need to manage its lifetime. For shared data that is a global variable, we pro-

vide the new_global API. This API informs the monitor that the shared data is a global

variable, so the monitor does not need to manage its lifetime.
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4.2 CompartmentalizationAnalysis and Instrumentation

Framework

Figure 4.2: Compartmentalization Analysis and Instrumentation Architecture

This framework in figure 4.2 comprises three components. The first component is

the static analysis tool MTLA [22], which is responsible for analyzing the subject of the

compartment as discussed in section 3.4.1. The second component is the monitor API
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interface, which provides the API for the compartment to interact with the monitor as the

discussion in section 4.1.3 and section 3.2. The third component is our self-implemented

LLVM pass, called the memory monitor pass. This LLVM pass is in charge of compart-

mentalization analysis and instrumentation section 3.4. We integrate the memory monitor

pass into the middle end of the LLVM 14.0.6, which will perform the analysis and the in-

strumentation on LLVM intermediate representation[20]. The following section explains

how the components interact and outlines the workflow of the framework.

4.2.1 Workflow of the Framework

In the first step, subject analysis constructs a call graph of the entire Linux kernel

source. Starting from the function that invokes the target system call, we traverse the

call graph to identify the set of functions along the code path handling the system call.

This set of functions is defined as the subject. In the second step, we input the subject

and the function name of the monitor API interface, as we defined in section 4.1.3 and

table 3.2, to our self-implemented memory monitor pass. The memory monitor pass will

have information about the subject to be analyzed and the monitor API interface to be

instrumented. In the fourth step, before performing the analysis and instrumentation, the

memory monitor pass will first perform the local variables elimination to improve the

efficiency of the following analysis. The detail will be explained in section 4.2.2. In the

fifth step, the memory monitor pass analyzes the shared data used by the subject, referred

to as the object, and determines the permissions (read or write) that a subject is allowed

to perform on the shared data according to the algorithm in section 3.4.2. In the sixth

step, the memory monitor pass will instrument the subject with the customized shared

data assign API in section 4.1.3. The customized shared data assign API will define the

32 doi:10.6342/NTU202500063

http://dx.doi.org/10.6342/NTU202500063


object(shared data) that should be assigned to the compartment. Thememorymonitor pass

will also instrument the shared data access API(getter and setter) in table 3.2 to define what

permission the compartment can perform on the object. In the final step, the executable

Linux kernel with a compartmentalized system call will be the output.

4.2.2 Local Variables Elimination

1 struct A {

2 int cnt;

3 int flag;

4 };

5

6 struct A a;

7

8 int sys_call_before() {

9 struct A *tmp = &a;

10 int i = 0;

11 i = 3;

12 tmp->cnt = 1;

13 tmp->flag = 3;

14 return tmp->cnt;

15

16 }

17

18 int sys_call_after() {

19 a.cnt = 1;

20 a.flag = 3;

21 return a.cnt;

22 }

Listing 4.1: Local Variables Elimination C Example

In the Linux kernel, developers may declare local variables to store the address of

shared data. When leveraging the analysis in the section 3.4.2 to determine whether load
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Algorithm 1: Local variable Elimination Algorithm.
1 Function elimiateLocalVariable(AllocaInst):
2 Stores = {};
3 foreach Users of AllocaInst do
4 if User is StoreInst then
5 add User to Stores;
6 end
7 if User is LoadInst then
8 store = Find the nearest preceding StoreInst in Stores;
9 Value = the value that StoreInst store;
10 replace the use of LoadInst with Value;
11 delete LoadInst;
12 end
13 end
14 delete all the StoreInst in stores;
15 delete the AllocaInst;

or store instructions operate on shared data, wewould encounter instructions that reference

shared data via local variables in the CFG. Consequently, we must also analyze where the

definition of these local variables comes from by analyzing the store instructions that store

the address of shared data to local variables, which increase the analysis overhead in the

section 3.4.2 because the more local variables are used to propagate the address of shared

data, the more local variables are needed to be analyzed to find where their definition from.

For example, consider listing 4.1, when we leverage the analysis in the section 3.4.2

to analyze whether the store operation in line 12 stores a value to the shared data, we will

encounter the local variable in line 9 first according to the CFG. Therefore, we also need

to analyze where the definition of the local variable in line 9 comes from. In contrast, the

store operation in line 19 of sys_call_after would not encounter the local variable and

does not need to analyze where the definition of the local variable from because all the

local variables in sys_call_after are all eliminated. Therefore, the overhead of analysis

in section 3.4.2 decreases when analyzing the store operation inside the sys_call_after

in line 19. Thus, we apply the algorithm 1 to eliminate local variables ahead of the analysis
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phase in section 3.4.2.

The algorithm 1 collects all store instructions that write values to the allocated local

variable. For each load instruction, it first finds the nearest preceding store instruction,

extracts the value stored by that instruction, and replaces all instances where the loaded

value is used with the extracted value. The load instruction is then deleted. Once all

load instructions are processed, the function deletes all store instructions and the original

allocation. In the listing 4.1, the function sys_call_before represents the code before

erasing local variables, while sys_call_after shows the function after processing with

the algorithm 1.
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Chapter 5 Evaluation and Discussion

5.1 Performance Evaluation

We evaluated system calls in Linux v5.15, configured for the arm64 architecture.

The host Linux system runs on the Raspberry Pi 4 Model B board, featuring the Broad-

com BCM2711 system-on-chip with a quad-core Cortex-A72 (Armv8-A) processor and

4GiB of RAM. The system calls were executed in a tightly controlled setup, confined to a

single CPU core to eliminate the potential impact of parallel processing. Furthermore, pre-

emption was disabled to maintain consistent timing and prevent context switches during

execution. This configuration ensured that we could precisely measure the performance

and behavior of each system call in isolation, free from interference caused by multitask-

ing or other system activities. The configuration is included in chapter 7. For the monitor

that provides the compartmentalization mechanism, we leverage a monitor that can dy-

namically allocate memory for compartments, allowing the compartment to maintain its

copy of the shared data.

We selected four system calls in the Linux kernel that frequently interact with shared

variables, utilizing common C patterns to read from or write to various data types. These

include primitive types (integer) and fields within composite data structures (like struct).

For the time measurement, we utilize the timer functionality from the C standard library
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Table 5.1: System Call Performance Evaluation

System Call Before After
Demo_sys_call 0.000021s 0.000067s (3.19x)

KVM_CREATE_VM 0.000695s 0.002935s (4.62x)
KVM_CREATE_VCPU 0.000068s 0.001329s (19.54x)

KVM_SET_GSI_ROUTING 0.000385s 0.029363s (76.26x)

The table shows system calls’ execution time before and after instrumentation.

Table 5.2: LOC Increment

System Call Before After
Demo_sys_call 37 74 (2x)

KVM_CREATE_VM 2133 5050 (2.37x)
KVM_CREATE_VCPU 1487 2716 (2.37x)

KVM_SET_GSI_ROUTING 330 611 (1.8x)

The table shows the increase in lines of code before and after the instrumentation.

to measure the execution time of system calls both with and without instrumentation. The

system calls’ execution time, with and without instrumentation, are presented in table 5.1.

5.1.1 Demo system call

1 DEFINE_MUTEX(global_mutex);

2 DEFINE_SPINLOCK(global_spin_lock);

3 struct a_struct {

4 int first, second;

5 };

6

7 struct a_struct var_a = { 1, 1 };

8 int global_var1 = -234;

9

10 noinline long doSomethingDemo(void) // normal syscall

11 {

12 int i;

13 int *lll;

14 for (i = 0; i < 3; i++) {

15 mutex_lock(&global_mutex);
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16

17 global_var1 = global_var1 + 1;

18 var_a.first = var_a.first + 1;

19

20 mutex_unlock(&global_mutex);;

21 }

22 lll = kzalloc(sizeof(int), GFP_KERNEL);

23

24 if (!lll) {

25 pr_err("!!![%d][demo_syscall_a] kzalloc failed!!!\n", current->pid)

;

26 }

27 spin_lock(&global_spin_lock);

28 spin_unlock(&global_spin_lock);

29

30 kvfree(lll);

31

32 return 5;

33 }

34

35 SYSCALL_DEFINE0(demo_syscall) {

36 doSomethingDemo();

37 return 0;

38 }

Listing 5.1: Demo system call

The Demo system call in listing 5.1 is a custom-designed system call that we imple-

mented to emulate the behavior and patterns of conventional system calls within an oper-

ating system. This system call is specifically designed to simulate the core functionalities

of standard system calls, particularly in terms of how they interact with and manipulate

shared data. In practice, the Demo system call performs both write and read operations on

a variable, which can be allocated either in the heap section or the data section of mem-

ory. This design allows us to closely mirror the memory management strategies typically
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employed by real system calls.

The overhead after instrumentation primarily arises from the additional instructions

inserted to support the execution of compartmentalization. These extra instructions in-

clude generating the necessary arguments for getter and setter functions, loading the val-

ues of shared variables for the Monitor to record, and inserting APIs to collect information

regarding the allocation status of these variables. As shown in Table , these additional in-

structions significantly contribute to doubling the lines of code.

Additionally, the overhead is further compounded by the internal functionality of the

APIs provided by the Monitor. These APIs are responsible for several critical operations,

such as allocating compartmentalized memory for shared variables, searching the hash

table to either retrieve or modify data stored in the compartmentalized memory and, at

the end of the execution of the compartmentalized system call, writing the updated values

of shared variables from the compartmentalized memory back to their original memory

locations.

The combined effect of these two factors—the increased number of instructions and

the internal operations of the compartmentalization abstraction APIs result in a 319% in-

crease in overhead, as shown in Table .

5.1.2 KVM Virtual Machine Creation System Call

This system call is responsible for creating virtual machine instances and initializ-

ing the metadata necessary for its operation. In general, most of the code patterns within

this system call are focused on loading and storing values in the fields of composite-type

shared variables. After instrumentation, the increase in overhead is largely attributed
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to the additional inserted instructions, similar to the overhead factors discussed in the

Demo_System_Call. However, this system call introduces added complexity, as it in-

volves iterative and recursive patterns.

For instance, during the initialization of the virtual machine＇s memory slots, a for

loop is used to allocate and initialize each instance of a memory slot. This pattern intro-

duces an iterative approach to memory initialization, which inherently increases overhead.

In addition, the system call includes functions designed to create mappings for the hyper-

visor to access EL1 data, such as instances of the KVM structure. These functions are

implemented as recursive algorithms to traverse the hypervisor’s page table and initialize

each page table entry accordingly.

The overhead introduced by these iterative and recursive patterns is amplified be-

cause both patterns repeatedly invoke getter and setter functions within the loops and re-

cursive calls. Consequently, as shown in table 5.1, the performance overhead for this

system call is significantly higher than that of the Demo_System_Call, which primarily

involves simple memory operations.

5.1.3 Cases of Significant Performance Overhead

In our evaluation, we found the overhead of the KVM_CREATE_VCPU, and KVM_SET_

GSI_ROUTING are relatively higher than the Demo_System_Call and KVM_CREATE_KVM.

The KVM_CREATE_VCPU system call is responsible for creating a virtual CPU (VCPU)

instance, allowing the virtual machine to execute tasks. On the other hand, KVM_SET_

GSI_ROUTING configures the Global System Interrupt (GSI) routing table, managing and

replacing the routing table entries for interrupts.
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Both system calls involve shared variables structured as arrays and make extensive

use of loops to modify the entries within these arrays. For instance, the KVM_CREATE_VCPU

system call contains structures like the Virtual Performance Monitor Unit (PMU) and the

Virtual Generic Interrupt Controller (VGIC), both of which rely on array-like data struc-

tures. Similarly, KVM_SET_GSI_ROUTING uses an Interrupt Request (IRQ) table for the

virtual machine, which is also an array structure. In both cases, the system modifies or

initializes these array entries by iterating through each element in the array.

Although the increase in code size for these system calls, as shown in table 5.2, is

similar to or even smaller than the previously discussed system call, the frequent use of

iteration patterns results in much higher overhead. This is because the getter and setter

functions, which incur high overhead, are repeatedly called within these loops. Conse-

quently, the performance overhead is significantly higher, as shown in table 5.1.

The performance overhead for KVM_SET_GSI_ROUTING is particularly greater than

for KVM_CREATE_VCPU due to its use of multidimensional arrays, which are modified

through nested loops. The higher number of array entries and the deeper level of iteration

in KVM_SET_GSI_ROUTING result in a more substantial performance increase. From this,

we can conclude that the increase in code size is not the primary factor causing the perfor-

mance degradation. Rather, iterative and recursive patterns, which amplify overhead by

repeatedly invoking high-overhead getter and setter functions, are the main contributors

to the increased performance overhead.
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5.2 Discussion

5.2.1 Generalization

Most components within the Linux kernel can be compartmentalized using our au-

tomation framework. We will discuss the situation that our automation framework can not

analyze and instrument.

5.2.1.1 Analysis Limitation

In the KVM module, certain system calls utilize a hypercall, implemented in assem-

bly code, to invoke functions of the lowvisor. However, since our subject analysis pro-

cess analyzes the intermediate representation of the Linux kernel, we cannot determine the

callee for functions invoked through assembly. Consequently, if a system call involves a

hypercall, we are unable to analyze the complete set of functions associated with handling

that system call.

Even if we manually identify the functions invoked by the hypercall, the arguments

passed to these functions via registers using inline assembly make the analysis relies on

intermediate representation impossible. The object and permission analysis process sec-

tion 3.4.2 relies on a complete caller-callee relationship. Without this relationship, the

algorithm fails to determine whether these memory operations, such as load or store in-

structions, access the shared data, leaving the analysis incomplete.
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5.2.1.2 Instrumentation Limitation

Linux provides memory manipulation functions like memcpy, memset, and others,

which are implemented in assembly code and cannot be instrumented directly by our

framework. For example, the KVM_GET_DIRTY_LOG system call, which captures a snap-

shot of the dirty page, uses memset to clear the dirty bitmap to zero. In such cases, we can

simply rewrite memset as a for loop to clear each entry in the dirty bitmap individually.

This allows our prototype compiler to modify the operation with a setter.

Similarly, atomic primitives are low-level operations used in concurrent program-

ming to ensure that updates to shared data are performed atomically. In modern device

drivers, atomic primitives such as atomic_inc() and atomic_set() are commonly used

to update shared state safely in a multi-CPU environment. These atomic primitives are im-

plemented as inline assembly, which makes it challenging to track the data flow through

them for automated modification. For example, the packet transmit system call provided

by the nullnet driver includes atomic primitives when updating the net device structure’s

statistical data. In this scenario, we can simply replace these atomic operations with the

getter and setter APIs provided by our framework. Since there are only two atomic prim-

itives that need to be replaced, the manual effort required is minimal.

5.2.2 Concurrency Bug Discussion

In this framework, we reuse the concurrency primitives, such as the spin lock, mutex,

etc., so the getter and setter in our framework would also be instrumented in the critical

section and wouldn’t incur any concurrency bugs.

Atomic operations, e.g., atomic_inc() require three steps: read, modify, and write,
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to be performed atomically. However, our framework does not support atomic operations

because it provides only the getter and setter APIs separately and lacks an API to exe-

cute these steps as a single atomic action. As a result, we cannot ensure that a series of

instructions accessing shared data (such as atomic_inc, which involves both load and

store steps) are executed atomically. In the future, we will provide a set of APIs in charge

of atomic operations, ensuring that compartments can safely perform atomic accesses to

shared data.

However, other types of concurrency bugs, such as forgetting to use lock primitives

or a deadlock, cannot be prevented by our framework.

5.2.3 How to ensure the code after instrumentation works as it should

be?

We evaluate whether the system calls after instrumentation functions correctly in two

ways. First, we identify which load and store instructions need to be converted into getter

and setter functions, then verify that every targeted instruction is indeed transformed by

our framework. If all relevant instructions are successfully converted, we conclude that

the instrumented code can execute as intended. Second, we test the system call after

instrumentation at runtime by leveraging the user space program. For instance, for the

compartmentalized system calls in KVM, we spawn a VM via QEMU [3] to trigger them.

We found that VM boots and functions correctly without crashing.
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5.2.4 Effect of Memory Ordering

A weakly-ordered memory [11] model enhances performance by allowing memory

operations to be executed, observed, and finalized in a sequence that does not necessar-

ily match the program’s defined order. The Armv8-A is an example of implementing a

weakly-ordered memory model. At runtime, reordering may occur if, for example, the

CPU encounters a cache miss and then attempts to execute a subsequent memory oper-

ation ahead of schedule. Nevertheless, because all memory operations are replaced with

function calls, these calls are not affected by runtime memory ordering during execution.

Consequently, runtime memory ordering would not happen.

5.2.5 Effect of Compiler Optimization

LLVM usually performs code-transforming optimizations such as function inlining

or dead argument elimination in the middle-end optimization phase. Additionally, LLVM

also can perform Link Time Optimization. Link Time Optimization in LLVM process that

merges multiple object files into a single, unified program representation during the link-

ing phase. By gathering all modules at once, LLVM can perform advanced cross-module

optimizations, such as dead-code elimination, and constant merging, which ultimately im-

proves runtime performance and may reduce the overall code size.

Our framework begins instrumenting the LLVM IR generated after LLVM’s middle-

end optimization phase, so the IR it receives has already been optimized and will not be

transformed further. Therefore, the LLVM IR after being instrumented by our framework

wouldn’t be inadvertently removed by LLVM.
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Chapter 6 Related Work

6.1 Related Work

6.1.1 Driver Automated Isolation

KSplit[8] primarily focuses on isolating device drivers from the rest of the Linux ker-

nel, offering a coarse-grained and inflexible compartmentalization policy. It lacks support

for compartmentalizing components with custom granularity, such as isolating individual

functions involved in handling system calls. Additionally, KSplit computes shared data by

performing data-flow analysis on both the driver and kernel sides. This approach, how-

ever, is time-consuming and struggles to scale effectively to gigantic kernel codebases,

limiting KSplit’s ability to analyze the entire kernel. Instead, it can only analyze a subset

of the code, which requires manual selection.

Moreover, KSplit lacks a standardized method for accessing different types of shared

data, complicating its ability to handle certain low-level C idioms. For example, sentinel-

terminated arrays, which are terminated by a NULL value, present challenges for KSplit,

as it cannot automatically infer the size of such arrays or determine if a structure is indeed

an array. This makes it difficult for KSplit to handle these constructs accurately.

46 doi:10.6342/NTU202500063

http://dx.doi.org/10.6342/NTU202500063


6.1.2 Compartmentalization Policy Analysis

Compartmentalization policy analysis works such as μSCOPE[33] and TyPM[21]

often produce imprecise policies, which limits their practicality in real-world systems.

μSCOPE relies on dynamic analysis, which can lead to under-privileged compartments.

Since dynamic analysis only captures data flows during the runtime scenarios that are

actually executed, certain potential interactions may be missed. For example, a driver

handling both read and write operations may only execute read paths during analysis,

resulting in the compartment lacking the necessary access to shared data for untested write

operations. This incomplete analysis can cause execution errors and restrict the correct

functioning of compartments to only those scenarios that were observed during runtime

analysis.

On the other hand, TyPM can lead to over-privileged compartments. TyPM bases its

compartmentalization on the types of data accessed by the compartment, often resulting

in broad permissions that include all instances of a given data type. For instance, if a com-

partment only needs access to a specific configuration parameter, TyPMmay grant access

to all instances of that parameter type, leading to unintended modifications to unrelated

system-wide data. This over-granting of permissions increases the risk of data misuse,

compromising system security and reducing the effectiveness of the compartmentaliza-

tion.

Both under-privileged and over-privileged compartments present significant chal-

lenges for achieving precise compartmentalization in large systems like the Linux kernel.

While μSCOPE and TyPM represent advances in compartmentalization policy analysis,

their limitations underscore the need for more precise, automated solutions that can dy-
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namically adapt to the varying requirements of different system components while main-

taining effective security and isolation boundaries.

6.1.3 Manual Compartmentalization Approaches

Past systems[6, 23, 24, 26, 27, 32, 36–38] have made substantial efforts to compart-

mentalize components within the monolithic Linux kernel. The primary goal of these

strategies is to isolate subsystems, particularly device drivers, which are often developed

by third-party vendors prone to introducing vulnerabilities. Nooks, for example, isolate

drivers using protection domains but require extensive manual setup. VirtuOS uses virtu-

alization to create service domains, but this method adds significant complexity, requiring

developers to manually modify the code into compartments. LXFI isolates kernel mod-

ules through API integrity, but its reliance on developer annotations makes it cumbersome

and limits scalability. These software compartmentalization approaches introduce signifi-

cant performance overhead primarily due to frequent context switching and cross-domain

communication, which increase latency and reduce efficiency.

Recent efforts like BULKHEAD, LVD, and HAKC utilize hardware features[1, 2, 9,

10] to reduce performance overhead while enforcing compartmentalization. Nevertheless,

these solutions still require manual intervention for setup, policy definition, and code par-

titioning, making them error-prone and difficult to maintain. As the Linux kernel evolves

rapidly, this lack of automation hinders the effectiveness and adaptability of these strate-

gies. Our research addresses this limitation by automating kernel compartmentalization.

By generating compartment boundaries and modifying code automatically.
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Chapter 7 Conclusions

In conclusion, we present a comprehensive approach for automatically compartmen-

talizing components within the Linux kernel at a fine-grain granularity. This framework

leverages type-based analysis to identify functions involved in the call path of system calls,

thus enabling precise and effective isolation of kernel components. By utilizing call graph

analysis, the framework automatically generates compartmentalization policies, defining

boundaries for each compartment while minimizing the need for manual intervention.

The framework enforces these compartment boundaries using the getter and setter

API to manage shared data access. Additionally, the implementation includes automatic

instrumentation of the compartment code, replacing memory operations such as load and

store instructions with corresponding API invocations. This enables a monitor-based sys-

tem that consistently supervises shared data access, enhancing the integrity and security

of the system.

In our framework, we define a compartment by identifying the functions that handle

a given system call. However, shared data may also be used by other system calls or func-

tions outside the compartment, leading to frequent data transfers and increased overhead.

In the future, we can partition the kernel according to whether components access shared

data, thus reducing the overhead of data transfers [33].
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Appendix A — Configuration

1 CONFIG_PREEMPT_NONE=y

2 # CONFIG_PREEMPT_VOLUNTARY is not set

3 # CONFIG_PREEMPT is not set

Listing A.1: Linux Kernel Configuration
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