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ABSTRACT

Algal-bacterial granular sludge (ABGS) integrates the advantages of both algae and
aerobic granular sludge, exhibiting rapid settling properties and the capability to
simultaneously remove organic matter, nitrogen, and phosphorus. However, this system
relies on appropriate illumination to maintain algal activity and the symbiotic relationship
between algae and bacteria. Natural light sources may inhibit algal nitrogen and
phosphorus removal functions during nighttime, while continuous artificial illumination
can promote excessive filamentous algae growth, deteriorating sludge settling properties
and affecting effluent quality. To investigate the effects of illumination conditions and
operational modes on system performance and microbial composition, this study
established three sequencing batch reactors (SBR): (1) Reactor A: continuous 24-hour
illumination with continuous operation; (2) Reactor B: 12-hour illumination with
continuous operation; (3) Reactor C: 12-hour illumination with nighttime idle periods.

Results demonstrated that extended illumination facilitated granule enlargement and
enhanced total nitrogen removal efficiency; however, excessive filamentous algae growth
deteriorated settling properties. Shorter illumination conditions maintained good settling
performance. Total nitrogen removal during illumination periods was superior to dark

periods, indicating photosynthesis benefits. Microbial community analysis revealed that
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different operational modes resulted in variations in bacterial and microalgal

compositions, affecting overall system performance. Reactor C demonstrated optimal

performance in organic matter and nutrient removal efficiency as well as settling

properties, achieving SCOD removal of 97.4%, total nitrogen removal of 84.5%, total

phosphorus removal of 71.4%, and SVI30 of 56.5 mL/g, representing the most effective

operational mode.

Keywords:

Algal-bacterial granular sludge, illumination conditions, operational modes, microbial

composition, nutrient removal, sludge settling properties
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R IR A R E MR B R R AR M F A2
BBEZENRE ERERH P ASP f B Tel A ARS o P LR R A

RELRF R F GRS RS SRS M - B R e e

\v

F i HFE TR PR A R ISR TR R o e BT R MR A L i

Edm g e BEFEEX AR AT 0 JERT R RIE kS (B dodF

“3
=
=0
(7

PRI R S F PRI R)FIE B R R RS T F B d

P

ek TR R

$t

ISR IR o R MR PR ) PR e s M D B R
s VRILIIAR o FIL 0§ H R 3 LB ASP B AR U]

P 0 AT R K IR P R

2.2 SBRi& {£714

AT E 2 Fe FPARARS R SR 4k SBRIE{TH 1T o SBR & — AR BN 4k 0T
A e B K B MR SRR PR R L - B AV R R ARR & B AE (T
Flot & F i HE R ) 2 TEE S BE (Irvine et al., 1989; Wang & Li,
2009) o e pFRRAT R kS otk SBR (7R T > 4 F] At SBR L& B AT
SN FEEA TR A E BB o A AR R E .

Am o SBR »F HFFY g

AN\

U]« F & 0 SBR =4k 1€ AH Ap i
R R HE TR B BRI R RRF o A H T ] L E
B2 PFREER oo AL LK TRF 2 IUKPFRET > 7 i R EIE i T "F (Irvine et
al., 1989; Wang & Li, 2009) -

peb s SBR RBFERE AengF > Vi W T FE A R Mg g R4 R

SR T DI - BRI E W | e VR S - R S L L o

n\#«:

E e s S o B v sl g R 2 K2 2 L ##(Irvine et al., 1989) ©
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FHS 5 > SBR FlHARd ff B &k vl > 5 ¢ L AlS K ARIERE F IR
TR 2 1 L ARFB DT [FER > R g T o ok iz ] 2 o

TSRO JAEd HFEZ B 1 AR R R AR R SR BB g

2.3 REF05 IR o
231 RRF REHRIF R

FRE AR R P - BB PURE BORRSTHN A et FRE AT
1 ARt o HRRAEF TR B SR VRE 5 R K F B % (Upflow Anaerobic Sludge

Blanket, UASB) =% & (Lettinga et al., 1980) o % UASB 44 4% 112 % » JRF i iv % 12

= _i we p B /}J i ’F‘% - B /F' r':l' 3 /f"' J\ i = ’Eﬁ- 1i_ 7}4 4 ’/% ? EE E&(Hydraulic
Retention Time, HRT) ™ K% 3 3 # £ j7 » 3R & tisciy £ *Y(Lettinga et al., 1980) o
UASB & st b stk 4 ke g ARSI WEREME IR B F

FEEP p#F TR T F T Y O RRE A FEL B ER
Biedik G4 HE 0 F AL HRT 2 45 3 4 4 f 72 5 (Lim & Kim, 2014) © 7]
pt o UASB HRRF SpRid ik Fgise 1 F 1L g% ond & Fogiv> B 72 sk di4is ik
% (Expanded Granular Sludge Bed reactor, EGSB) % #* i % k5 /& /& (Static Granular
Bed Reactor, SGBR) % & v » 35 A3 40 fr cndp it 978 E » X (Lim & Kim,
2014) -

AR O RFIEFAEF EHRSPREA RIS A 13 mm A B
- SRR R 0 BB 243 gy s (4 (Lettinga et al., 1980) o $pkp IRE AP Ag e
Mt Bt MR AR SORIBERT Q¥ AU RAT G B oBUk T £ P
B P )A R et g R Y BERIRE AL F2 A B # VFA

g‘gﬂ;gﬁ?,ﬁaﬁg;ﬁp%ﬁlj,u‘19~{%ﬁ;i,g‘;{;ﬁ:‘z—gﬁ?; L pRiE- Tt STz

10
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(Lim & Kim, 2014) « iz~ & SR 4 Fd b h & B B> 252 5 40 %% f2 g f
RA % i Ao b b TR F R 3t 2 0T i BliE - 48 2 (4o VEA) ~
# W(e CO2~ CHa 2 R 3fe B cngp ke i > <" Il 4 o s & fied
PR T o 0 FHRE F R4afE Tk 7 (Lim & Kim, 2014) -

P8R hins: o REIRIFE DS BH T A L BB PR (Lim & Kim,

2014) :

1L AreRifav sy RFRAFRTE gt lia > A @y
SR AT G F -

2. FPVHAF I FMAFEELRL FLIHFRE DR LA REDRES
(Extracellular Polymeric Substances, EPS){é » rif 2 7 ¥ i 3L% » Mkl
REDRTUGF LML -

3. EPSHEGERE ‘EPS(d 5P~ v B~ PRZ T 25 e assig
Ao TR IVEAE o I A ;fraéﬂia?] °

4. FHBHEIHFERE S H YT 4o Ca¥ s Mg* ~ Fe/Fe¥ $3pk 2 = 5 &

-

WA F R ARG we ke TR EMBTRS R ume B RS

FRAETY cB@PI T frme d e f T - HROFTRTA X

i EPS ¥ enZp Al R AR f R A A A2 pe A BT MR 0 RS

EPS [ én M4esk ;3 ( EPS 2 5 » it~ % 3 (* 374 H(Lim & Kim,

2014) o B EE AP LT AR B HFHE B FeS

P RpR R R g R 0 B HRFIPRDFREFELUE

TR P FE o F R L R TR 0 RS R

B Rk kst (Lettinga et al., 1980) o

Riﬁﬁﬁ%ﬁ%ié%%@%ﬁaﬁ%aAﬁ’*thm#?®ﬁ{3
adE B iy ok 4E(Lim & Kim, 2014) o *h K FE#4g s 5 85 R fgie v & eh

VFA & Bt e PR AT BRI 0 AR AR LT B F R @
11
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% VFA &k fal e > drgl4 pH i g chd 7 = Fis b o SR $8e03
P2 RO g an g e 0 A T8 F Wl B ED SR BATERE o A AR
B3P g e F R p £ AR INA S hIVRAR S e o o
WEGE R H B TR B A AL R o BRI M- F 0 AR i PR
W rE R RE 3RS R B 3 B T R EF nend TR i 4 (Lim & Kim,
2014) -

a2 > UASB &2 H 474 2 EGSB ~ SGBR % )k %t > EJRF 345 ik HjiFs
P RA B RA AT SRR TRE AT A B RAFT R
FMcA G e R RS G Rt R FRERS DR RN R LA RFEE

FARE D ART RS B A K SE B

232 4 § RIS

VRS R A EATE D R R BS DCR RS RS E R S
oA B ORIVRF AL g et A A BRIR A TR T W 2
PR RLAL A0 o B EAEY 0 WmF R0 B A RSEG A< & EPS A EPS b
%ok o R AR RS SRR DA

PTG EEALE R 0 AGS BB R BT VR FFERIERT 0 2
@ E RS K 3t g A 7 fo(de Kreuk et al., 2007) o BAERIE AR b 0 € BER T

PORAT SRR UG E BB S FE e

B RHER B AR R
LR R ALY TL AR L aPe s 2 Bt R P o3 R AR
K % % (de Kreuk et al., 2007) o

AGS ©3lfE 53300 BiEs o £ /2 ¥ F 0.3-5mm 2 & (Tohetal,
2003) - Pronk etal. (2023)45 1 > £ /S AL 200 pm 2 B 5 & ~ F R farenis R
FRTT L&A

BT BT 0 AGS P INEILA K it o K 2 EF A 0 N SRIRF §F
12
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B e AN Ak F BERE MRB  aEwm s A2 B F 2 & (Chiu et al., 2007a;
Dawen & Nabi, 2024) « s+ 2 K #1£1& AGS & # I P4 %% § 54 ~ § 2 Bherf
MREEF REFF B AROM ST REFRAEY D FERE RAG J13082
K,% °

Toh et al. (2003)3% & £ #= & 7 & #F 4 & il & (Confocal Laser Scanning
Microscopy, CLSM) ¥ ‘m*s 4 ¢ L% > & Zh%pd = -] o $p?t £ %) 600+ 50 pm A
Rrd B S R FFRRN O FF §EATT RO FE e Gl AT
RPiBd = RkRme 2 A VB o b s B R ST
4mm 2 F P A ABER P RFF B YR BRSSP IGLL F - TR
HEEPNIVEPS AREBHFRATHIHAL MG WG AR FREFLL S
T o 4 i SAE 45 R E (Toh etal., 2003) © Chiu et al. (2007b)ie— # 1273 ¥
Hew Her CLSM BRI 3 e sURSE R anE § 00 % S0 3 s 5 R & 2308
FFF@FERNDS 200um > & MFEREL S AURE R G 375 um o XN {FR A F 8

¥ YRY MRB

BAEA S 0 AGS B - BAEME RS LB BRI R
S R RS AR 1 R B RO B S R SR
KR AT CE LB FE A AR 2R - BERB A

RN SR G

2.3.3 FFRERIT A

BFIES R - AR L AR R B MR DRI RTR K IR o %
BB F IR AR BAR S IF R4 3 RS Dl B G L S en A 12 (Oruganti
etal, 2022) - 2@ AGS Ak » % Lk & B EGL ¥ 5 SBR) > FFd f AT 1
FRFALT A > P EFRTEPFRA ERRS WG FERE DA SR

T e HEARITE TR PERE > 8 R0 0 $ TR w ff o0 F R(de Kreuk et al.,
13
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2007) -

PL O RER N IRTFF F OB R A R4 F SR MEB R TR - LY T
R A AT SRR 2 F b F ook S B F A2 4 > (Chiu et al,
2007a; Dawen & Nabi, 2024) = g8 4 1 4] » @345 7 7 Wic ot 7 14
PomEEBRROFERL LS

AN BRERE O RRIFEE MELAE IR AERFAE AN B

BRI o RSB & e BRSF CREALF 0 SR B Y mE#R

o

EF R FRESER T RcE ~BEE F & B(Mengetal, 2019; Zhang et al., 2018)
Btk s ke EPS T ik AR BHEaR L 0 - AT ket R R
f 7 &% i 4 (Orugantietal.,2022) - #7 3 ™ dp 3} » Je R o b L2 § 2 3 4
FOEGEF W A f2iE A7 3 38 B8 T sx 5 (Liu et al., 2018; Oruganti et al., 2022)-

B R R R RS R T R R b R i o 304 MR A S
FRM AR TR R A FTEY ERL A A2 A (Mata et al, 2010;
Purba et al., 2023) » # 3% & 3L { & BORAJZE W RW B E 2R E 0 B E R EAY
TRAREE R PP

Seeh o B BORATER G R RA S R LR R R ERDF N
B3 b e faerE e  § #8(Drewnowski et al,, 2019) » & FERA L LY o Bk
FTHEEL T e §F LRI BN F AR AR SR B HE AT
0 ()i, 2022) 0 B R AOCE F OB TP AT B -

e RRERERIS R RS S T F AR5 R enF i E B R eh
RRIFHERG A L AL R ATR IR BE R R PEE e
AR fr w BRI

2.3.3.1 AR RIT R e P

T EPIARS L FLRAT S 0 o SRR S SR f AT £ 5 2 6
14

doi:10.6342/NTU202502549



CEBLDEFALR o T Ry kg op BT REP

LEPS § 21
S HHIFRIT R B HE § £ R AGS ¢ m A i EPS(ded-v e 5 pE)
A R MRS S A & ABGS ¥ w$@ﬁ%%wfw”ﬁ*?4ﬁ&5%£ﬂ“

AR O ¥ A 4 EPS ¥ 22 e = § it (Jinetal.,2023) - 7 1 ip e
Tl EPS 4 i » R34 EPS 7 242 » T H éf?f% %t # (Jinetal., 2023) -
2. SRR

R R EPS Siph 7 40 M o AGS MR R IFiF 2 T ¥ ¥ MdF L fE
THoRE R T o d FEFT R DIREMI % (Ahmad et al., 2017)-
Mmsﬂ%ﬁ%?ﬂf éi?,ﬁkﬁﬁ?wri%%ﬁJﬂi%%wL
R AR A PR k2 AR R 2248 TP (Ahmad et al., 2017) ot Fin
WP > RFAMOEG TR L RE T adFfE v (Ahmad et al, 2017) ; R A 0 F R
A= o it EPS B RIS ERIPLYR A F FFEFT TV RELFL
1 IR % (Jiangetal., 2022) - A % > EHF A £V a0 i ABGS R R E T A 4
T R E G B T TR E PR £ ragE A4 ek BE (T o
. REARFF R

B F 5 AGS & kueni & 5t 42 K R(Strubbe et al., 2024) - ABGS 7 i i & 5§ £
EiE* Z2 F § &40 F WA~ &0 B0 RR F HF f(Jiang et al., 2022) o

7 BT > ABGS 5 SLend F st 427 JRIB ALE F R K LR 0 K 30-50% (Chen et al.,

2025) o $NAF L { H B N ERF B RS RS TR R R ok
72 = ;% (Jiang et al., 2022) o
4&1#@%ﬂ%%$iﬁﬁﬂ

Feapent 4 @ ABGS k SLenii B2 S AGS { 4r S 4Fse o "f wF R

AN

Breb > ABGS iR PFE A Rip2L kLT 25 2 F PRAATZE FABRCE

£ S 3H841(Chenetal., 2025) » s 2 m FF A, % CO/02 3 Ap H B EH > ¥ F %
15
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FA A 2xF # %5 R F F F# 2 (Chenetal., 2025) f * m > ABGS
RS I T Fid 80%4 o 1 R EFFPVHUEN NS K MR B2 RF S
A AR PN RAL 2 FE R F ERE RE G JIA R R R R

R U AL S I I R LS e SR R 2

_L,et

FRRBRLF RGO BEWEET AR SRR RCORT B 2 4
(Chenetal.,2025) » &3 £ = & > ABGS 2 *£ 5 7 i£ 70-95% > H 4]¢ 7 3 p
TR RA L PRE MR 0 F PR F RS PR T R B EUR T
WAFF N R LT EF RS TER B e A %“ﬁ%@iﬁﬁi%(Chen et al.,
2025) 0 ek o AT L T 4R RR pH o F o BAY RGBT S 42 R & B K
Foo H A RAPITICR AR o AT B R LB TS 2 KT 0 Z AR
LRIE R EFAMA LRI L LS Z I EHS frﬂ%@‘ % i (Chen et al., 2025) -

ootk ABGS 5 5L§ ;g_,ti SREARONIRIT ) BF WP § 2 g %45

RO )% £ PR R N T v o AL RSB B

A

B
1% 3k & M(Chenetal., 2025)° & 2k d o Heiedgd B ETEY A4 F 5
REWFF oA AT E O S B E A wARSES R B CO L Rk L
% 902 R > 2@ 253 02/CO20 % (Chen etal., 2025) o 4+ #F > F84 fm it 43 &
PHcERE DAL et F(3rR2 E BBy Bu) 0§ Bt R MRS £ &
 3#(Croft et al., 2005; Gongalves et al., 2017) o Ap $+c53 > flcife 7™ € A s F B4 3t fm A 2
£ %2 ¢b 5 847 (Gongalves etal., 2017)  fe BF > fici fm e B 2. EPS ¥ 1 1% 2 lw fFeh
BAE > Bt mEED f]2 ¢ AIRB I # (Gongalves et al., 2017) °

Ra o BRI AT i MIREL S Pl Er o blde WA MR § A R E AR

1 B R BEP  Frdlle 2 & o Kokou et al. (2012) 4+ T 48 ik % (Chlorella
16

doi:10.6342/NTU202502549



minutissima ~ Tetraselmis chui ~ Nannochloropsis sp. ~ Arthrospira platensis % Isochrysis
sp.)it [FRIE > FIE H Vibrio Bl Fa L F iFEE > P AH AT KB Y A2
A B AR E e I8 T kG A T (o R ) BT e e B
5% kw2 5 = (Jiaetal., 2014; Meyer et al., 2017) -

EHA T RASLAARFIES Fod Lo R RS AR T A2

Prglies > F T REEF B TEEEF S AR AR BFREAG T §

2.4 FEPRERIB RS R R B
2413 B¥2%
241145 mE R ¥ S8

WERY mE A PRI ,uc‘éf i3 4 ehi & i k4 P (Tran et al.,
2013) - MRS KT Py B By BRE S COHO0 B2 I
i B EHcA 4 R 2 dE k Buf 208 (7(Zhang et al, 2022) o d 25k 4
FRER RIS R T T I BMEIARC SR FT Y o
FRED - LI R Y BT BHET AR LI F s B A2 R
(Zhang et al., 2024) -
(D5 & ¥ S HHRAMFER

WERYAHTALLZBARFE R fE e KRB R B
B BT A R BT LSRR o R B EAE S
Fow? BN HE > i~ v s B S 2 (Yang et al., 2019) o

BRI K RIFE > 455 B e e b e R R (4o Fed iR Ry

ki

ARG LS I ORE RN R S N L REE L EE A

w®

S P REEE o I AN {8 4P~ % (Wang et al., 2022) -

17

doi:10.6342/NTU202502549



RN AT AR A R AT AT EEE - NSRS R
¢ A $ 38~ = % pL P TR (tricarboxylic acid cycle, TCA cycle) - * TCAcycle ¥ - 2
fedfps A 23 523 P XS 25+ 11 NADH (reduced
nicotinamide adenine dinucleotide)¥2 FADH; (reduced flavin adenine dinucleotide) (Tran
etal., 2013) -

B fé o i £ 0 NADH & FADH2:E » 7 F @ ifbd > 7 3 55— 4 7
TIPMBEE S RRT F 5ok o TF DBEAY U3 DTS ARG T R

i (oxidative phosphorylation) » & = « & ATP > Z ‘mPe & N8 4 £ 972 2 4%

e

(Zhang et al., 2024) -
BERE R AT e
erbokfr - e AT RS o P/ fRif A > TCA ik — 5 Bifea
B F LPip s — ATP 4 &
Q& B eanitSEFER L

BokP i E LS AR AR AT ERRRLE R F N
P~ e & B S (Yang et al., 2019) o
® k&P

FORP R E PSRRI -CER RO RAZEIMIEMmoF LI
Mg RfERRCIR I SRR R AR R R H PR o o e BP0 B R MEE N B R
RIE > AfREpMpT 2 558 ATP 2 NADH frAE S SR A2 & fedf &
RRHE i S oo gl ps A i TCA PhokiE (7= 2§ it (Dashty, 2013)
F J&ik i ¢ Glucose — Pyruvate — Acetyl-CoA — TCA
® v FHORAR:

Foo Fgre R R PRNEfE G OMRAMSE » e b R e MRALTRG I IRIEY 4 ip
A 1 5 HEZ o-fik i (a-Keto Acid) 18 i& » TCA # % (Yangetal.,2019) % 2
wiCFE e 4

18
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® 7 '&ff(alanine) — [ AR A&

® X ® % 3ich%(aspartate) — ¥ gt fik(oxaloacetate)

®  #Liihs (glutamate) — a-fik ~ = f&(a-ketoglutarate)

F Jgi# /% ¢ Amino Acid — a-Keto Acid — TCA

preb o s g 4 2 5 §F (NHa') 5 (8 F A - 2o § 423 & § R (Ladd & Jackson,

1982) -
® 7y 'FT? LM s);gg: :

Z e 0 fg g g s KR G Y b 28 & 487, 95 L (long-chain fatty acids, LCFA) o
H bR BERE LD K AP SRR S E B-F T4 0B 2 T Rl AT A (Acetyl-

CoA) ~ NADH £ FADH: (Tranetal.,2013) o o >t g s » H§ it 7 & 4 %

Ik

e B 0 F EEANE R M AL TR R R F 8 47 (Qiao et al., 2020) o

-~

F Jiik 12 ¢ LCFA — B-oxidation — Acetyl-CoA — TCA
® g Py ikE (volatile fatty acid, VFA) :

VFA 4ro fe~ e~ 7 e % > ¥ LAVRF FAILE & K o ¢ fRiT e plpE &
 fLppE AL e RS PR A T G oL Rl iR A i TCA A%k o R PGHET A)
(el e A 2 gLoa Rl pF A 0 8- a2~ TCA %8 % £ (Tan et al,, 2021) °
® Ry

LG efEd iprs Lo ld e AT B LR REMLEL
e fs A 1538 » TCA 757k (Kennes-Veiga et al., 2021) -
® FH¥ELP

FAEF WP GG F pFRCB RSP e catechol > BT 5 Bk fh ik T
i L Rl AT A B giaapl o &M ik~ TCA 5%k(Berry et al., 1987) -

AP RRIL FRY o HF R A E R RS DR R AT 1
AETS RIS LS E T LS BY LR S A R N A

WA 4 % £ BB IO 0T RS BRI RS o fRiF RS A)ie ~ TCA 75
19
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RopETIBEmAES NE XA BRGBN -

2.4.1.2 B2 F AL S BHS H]

M N R 7 B REE BRI E ERIEE TR A SRR
(photoautotrophy) ~ £ % (heterotrophy) # & 3 (mixotrophy) = #f (Abreu et al., 2022;
Nirmalakhandan etal., 2019; Shan et al., 2023) = F]* » ficigk A B R EJL P 7 7 i i 7
YR T R ST L L
(1) p F = #(Photoautotrophy)

Bk Y RHT o e COxE AR Td kL TFY 2 K F RFFE L & ATP
22 NADPH (Nicotinamide adenine dinucleotide phosphate) > i& - # Sgd- a5 & & & = fF
e de Fleelelp kw2 £ 84 55 7 (Abreuetal., 2022)-
(2)% ¥ + #f(Heterotrophy)

sk BB A QE\‘E ,,,, £y ,ﬁ'rs,é,\/ﬁ:tlgg pgﬂ ,«\’gj—g‘b 4 Bbﬂ} | # ;g,} J\é Z_* R
TR CY B R 2)IF L EURE & £ %R (Chojnacka & Marquez-Rocha,
2004) o H S FELT R E B F mEAR 0t hR G BARE » mre il 0 F R GHEfRTE
* (glycolysis) #& ™ Z P fr fs > &£ - 5 d P A2 I 5 4F & W (pyruvate
dehydrogenase complex)?) = ¢ fipf iz A » g & » = 2 i 5T (TCA cycle)® © +
Bifahie T CRERL T o T B B inrr 2 K ¥ (N EEE 4 (Cao et al., 2023) o
(3)® ¥ # #H(Mixotrophy)

Mo PeET PREFTED FER Y S8 A2 R Y S B (Caoetal., 2023)
PR R T RIEET R COE R AR E R T BEE S
g RS REFRELREME R - HRAAF FRALE RS2 4
3z % (Cao et al., 2023)

BRI L BBFLETY ER B oA NsBRY N ZMET R
HAIH R WRAMGE AL R BRI F WS LSS ",% % 3.(Zhang et al.,

20
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2021) &~ Zoag dpts 0§ o PPIR B RERE T L P IRERUR (Aol s & g T )iE et
SRR L APFA AR AR R 2R SRR FEE Y R
WAL A RS i  RiR(Park et al, 2021) o ez By Ry 4 e B gk

FHEARERY BAER & N AR R

242 % 4 'ﬁ
2.4.2.1 @& i« i¥* (Nitrification)

A v 5% (Nitrification) L & f F 4Bk ® hg § § L S EMB - £ 58 f2m
RIEY JETFHLF o A By AT FRT RS LS B
£ 5§ e apis - (Madigan, 2018) ©
(1)% § i* (Ammonia Oxidation)

EF U RAER hE - pRE S S NHAEH S NOy o 2 HHA B 5 § 1w
#(AOB)#r z % i v F(ammonia-oxidizing archaea, AOA)3{ 7 » # @ 1 AOB(4r
Nitrosomonas ¥2 Nitrosospira )% 5 ¥ % (Madigan, 2018; Wendeborn, 2020) - # &
B EART Jm /e 5 0T 3R

FAONHSE N mfe (3» ST T fride 5 NHa» X rpE R B0 5 o § 8
v ¥ f*(ammonia monooxygenase) . # # NHs% it & NH2OH (Madigan, 2018; Ren et
al., 2020) » £ fgdheT

NH3 + Oz +2¢” + 2H" — NH2OH + H.O
BEis > NHOH fzgiei i 8 j f# (hydroxylamine oxidoreductase) fgLit * i&— # % i
% NO2 (Madigan, 2018) :
NH,OH + H,0 — NOy + 5H* + 4¢”
AR TG R Bl o mE IS T IR oo b
= ATP » sz 4 £ 88 (2 3pir 7 i £ (Madigan, 2018; Ren et al., 2020) °

Q)L A gk § * (Nitrite Oxidation)
21
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TR ey SRV IER chg 2 PP BNO2:E- H F 14 5 NOs o 3%iEA2 4
d LA E U o F(nitrite-oxidizing bacteria, NOB) #7 ittt » % L g/ ¢ Z Nitrobacter,
Nitrospira, Nitrococcus (Madigan, 2018; Ren et al., 2020) o * i 740+ :
NOz +0.502 — NO3

H¥ » TR fed i fe(nitrite oxidoreductase) = 1 & @it i3 o 225 § i 42 » NOB

mEET T BEMRER L £ L 5% ATP. %@ o fpfi>t AOB > NOB 2 # £ i & 2
RREPOCFRK D HRREE RS T kR S EAZ pHEE)E G L F

& 14(Ding et al., 2021) °

A VAP REH M BRANT A

-~

0

NH4" + 202 — NOs™ + 2H" + H,0
UL TER L - B RBIEIRF o P EAR FAFREY 23 F RAE REFR

2 EMHE T3 BE k sz ¢ F iF i7(Madigan, 2018; Ren et al., 2020) -

2.4.2.2 % 1% * (Denitrification)

SR LA PR AR P AR d B A A
WERURET R F 2> M BB R S & F (Madigan, 2018; Zumft, 1997) - fdx 3
BRTOMAPUHERAE BRRAS FLEETIRLE O RF FEC LT AT
(N5 4§ ¢ B F F i cnd oho H R T &AL PR RIE
(Madigan, 2018; Zumft, 1997) « F e*T 5 2 R F & EH L ¥ 5 5 BaR > doo -
AH B Gy R Ry £ S B R F ke 7 (Madigan, 2018) -
¥ AL % ;;«z] ¥ & 7 Paracoccus ~ Pseudomonas ~ Thauera ~ Achromobacter %
Alcaligenes % (Di Capua et al., 2019) »

WA GHERRRER ¢ Fe BALRRRAAI  F-FERAEd B - R
it (Madigan, 2018; Zumft, 1997) » %740 # 2-1 -

2 2-1mpiEr LR RERF RS HERE
22
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HIEPE R

BRE
NO;™ — NO:2~ A fa 1B J pF (Nitrate reductase)
NO:- — NO T A e 1 R fiF (Nitrite reductase)
NO — N0 - % it § ® & p¥ (Nitric oxide reductase)
N20 — N - 3 it = % B pF(Nitrous oxide reductase)

i

I

IR
<

BORAEARY o A e AR BRI N e N ST S BERIEY A
iz % i 2 TCAcycle i£{7 A2~ #f > 22 NADH 2 FADH 5B & ¢ & o 34
REBFERF K- Hier o} enT 3 Bifas K58 K75 A2

ATP (Yang et al., 2020) o ¢ B ivplif 5 ] > BEWF BT i &7 40T
5CH3COO + 8 NOs™ + 8H" — 10CO; + 4N, + 14H,0

2.4.23 k¥ % ¥ i* (Anaerobic ammonium oxidation, ANAMMOX)

ANAMMOX & - f&d ¥ % ) (Planctomycetes) 'w F 3} 7 e A
% 4ede+ (NHa) (P52 T+ > Z LA BNO,)IF L &

P
FoRRFFETERET AELF AT N L 4§ ¢ (Strousetal,, 1999) -
Hatr Bignve 245

NH4+t + NO2~ — N2 + 2H.0

AR R P N TAHBBRE- HRF o A2 P EARBITS AR

<r

(Kartal etal., 2013) = &2 it 4]+ > ANAMMOX F i%E—- @ ¢ 5 :BRF BYE
e+ 4x-3 it (NO):

RFHE > FA TARD AR R DR T R
NO; +2H"+ e — NO + H,O

i > NO & NH." &3 & = fs(hydrazine synthase) g it T 2 & » A5 ¢ & 4

%5 & (NoHa)
23
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NH4" + NO — NyHs + H,0O
B4 > B g (9 g % & pr(hydrazine dehydrogenase) (£ % T4 % 5 F 4 (N2) 0 & §#
e BESFOC
NoHs — No +4H' + 4e”

- B

4y
7

B i _{Fﬂﬁ& 1%5’%}9?’E%EIB‘?;E'JTL}@%&%%.@%\

FR o == R R S 4 LS (Kartal et al., 2013; Kartal et al., 2011) o d *t Bz & 3

—%:kﬂ;’ E"\;ig I JE:]- :@gj’?é F\ I[jg\;._ %ﬁ%};ﬁﬁjgi?‘: oL {g
(Anammoxosome) > 11 F IR AEF LB B9 F Z ERPA T B 5 A0 F
A 48R (Kartaletal ,2013) c RF 4 § CFA L@ FER 0 2 LB PRI BERH

et = o B e grineniziE ¢ 2 Candidatus Brocadia ~ Candidatus Kuenenia »
Candidatus Scalindua - Candidatus Anammoxoglobus 2 %2 Candidatus Jettenia % > &
BOEFE S RFRNITORAJE MR LR ARBY > T AR SEF SR ED

(Kartal et al., 2013) -

2424 prile i it §

RV SeaR R G E ZAEIEFRAFORILFER
WA P Bd ¥ 2 %4 $ AT hd £ & (Hellebust & Ahmad, 1989; Sanz-
Luqueetal,2015)c A K@ * © > e B2 &l P S jT-R4 Y 2 @48 F >

LR FE AR FABA T RELZ P DRt E AL RAE

B
g

G
Ny

48+ (NHe) ~ R BINO )E LA e B(NO2 ) » T kg7 I § AAI L > Fxd 40
z_fix BB ¥ H Tk ST (7 8 dH(Hellebust & Ahmad, 1989; Sanz-Luque etal., 2015)
1. 433 (NHH)F i~

A A CERBE D R 1Y 2§ RAIGE o NHO¥ 5 d Mo Wb 2 4siid
#-v (ammonium transporters):i # Eﬁalwﬁi »mre BN e B daf {5 0 NHa B 4538 »

F AR B 0 A R S B R RRAE & -8R & 2 fF 75 7k (glutamine
24
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synthetase—glutamate synthase cycle, GS-GOGAT cycle) = = 7] % & #& i* (Hellebust &
Ahmad, 1989; Qin et al., 2022) -

B A A fERAL & = 5 (glutamine synthetase, GS) L1t T » NHa" 22 g e fil
(glutamate).& & # = $5fig =& (glutamine) :
NH4" + Glutamate + ATP — Glutamine + ADP + Pi
BE {6 B gk VRpk & = fiF(glutamate synthase, GOGAT) # (v & » $XFpiefs 87 o-fik ~ = i
(o-ketoglutarate) & i 4 = & & F gk Iwpk -

Glutamine + a-ketoglutarate + NADPH — 2 Glutamate + NADP*
BMAA2 FORBE-HITLF AR FE L AR B9 T2 e o RE
mred Koo d 3 NHa7 B 1% > @R bR RAI > e 25 o
fi it 32 % 7* § F (Fernandez et al., 2009; Hellebust & Ahmad, 1989) - pt # E 0 2
ATP 22 NADPH > iz st E 2B R4 Kiad L& 1% 24 > Elced Fit»eF 3 R
ey RN e E A
2. HEBNO)F v

FA T ER D ES 2 S A EVIICARBTLIFAF R AERAT L
Ao PPk 8 §-d (nitrate transporters, NRTS)i& i i » fm s o3& » 'm#e {5 > AL

e hprRaB R EF B et 5 ¥ B it 2 NHs' (Sanz-Luque et al., 2015) -

B & sl e & R p# (nitrate reductase, NR) it T » NOs i & 2 NOz -
NOs; +2e¢ +2 H" — NO2 + H20
Mg 18 By ) ph iR R % (nitrite reductase, NiR) L1 T » NO 4 :B 7 5 NH4*:
NOz +6e¢ +8 H — NH4" + 2 H20
A2 2 NHa'£ i& » GS-GOGAT g /it — # fe i 5 5 oifibod AR R 2 3
EERRFR ZHEAPEATFIERN E il ¥ WhddF T L bl il Bflr i

/& (Sanz-Luque et al., 2015) -
25
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3. LAEANONF

TR 7 (%5 384 ek 2 § /R(Pozzobonetal.,2021) > NO2 i » fm¥e {8 »
PRSTARKRRRprEE S NHS

NO2 +6¢ +8 H" — NHs" + 2 H20

“ 1 NHe'E i& »~ GS-GOGAT R =2+ AE - T AMAL T Bhadlt > Fhw
e R ARG E S S F TV RS B AR E ] 0 e E NO2 2 I W R
Poif Bof ~ B B R 2B R ] 0 AL S 12 % 4 (Pozzobon et al., 2021) -

BEHT R F R P A BER . %A S NHe>NOy >NO» » § 546§ i &
P fmie £ AN A > T E BT AR REFL R Pyl B2 5 4
(Perez-Garciaetal., 2011) o § NHa 2B » pl R R e B Pl ik % 2 g m ) #
NOs (Weidner & Kiefer, 1981) o st if ot 8 3428 424 050 Ao & 980 TR @ 0% 3
sk o F e flr i 4 o

SELREY FERIOONAMELSEF FRE B RILT FRELF

g AR AR T HE 25 A3 W g RS LFLJI* o LT R

BN R F mie N § T §F s dF L 2 K & 8 HE 14 (Liang et al., 2023) -
243843 %
2.4.3.1 BB 2 BB 4]

hd g ",f@”& GEY > REAFA(PAOs)S B R F ok B 453 iE 2 I3 v
o R Pee RS EIL & ¢ dRa £k sURTI Y 2 BB B s (Rittmann, 2001)-

WRF FFE 0 PR L T3 4% K (40 02~ NO2 ~ NO3) » PAOs 3 7 3~ 83
“TE AR gk fRmre N R AR B (poly-P) > % & PO I R HE Y o e R
d R gL gcpe (polyphosphate kinase, PPK) igLit » #-gifk A4 4 2 2 4 ATP (He &
McMahon, 2011; Rittmann, 2001; Welles et al., 2017) = k¢ pF > #2 p 4% (glycogen) 7= ¥

he s f3 o HEHEfRRIE A 4 NADH - 5 18 5 B 25 AL 75 %4 & B (polyhydroxyalkanoates,
26
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PHAs) & = F Jg#% & % + % /& (Rittmann, 2001; Welles et al., 2017) ¢ 4* FF > PAOs 7/
* RBEEATOKEA 4 2 ATP 1 doex ik ? Mg M st 0 doe BB R T
Hgg v 5 PHAs 1 v 2 27 £ 65150 2 ¢ PHA tha & 4558 5 oz L7 fefia(poly-
p-hydroxybutyrate, PHB) (He & McMahon, 2011; Rittmann, 2001) - @ % 3] i ¢ ¥
# PHA & > b4 fF 41 PHB R4 » 3 Bt P i8ie B sw & ~ i (poly-p-
hydroxyvalerate, PHV) 724 = (Acevedoetal.,2012) - = = k% FFf<is » PAOs i{ RE &
TR ARRE N E 0 R RO ’ﬁ P o

475 P E 0 PAOs gvﬁ L5 245 PHA A4 ATP 2 NADH » #% &
e A £ SRR B R HEP- 2 R A 47 F s £ (He & McMahon, 2011; Rittmann,
2001; Wellesetal.,2017) = 2 ¢ » &P~ f K48 ¢ e B & BAhRL s (PPK) 17 % =
SRR A AT G w2 ) > @ BB ¥ (exopolyphosphatase) B -2 B gk
fa @ chds i5 T 73 & (He & McMahon, 2011; Rittmann, 2001; Welles et al., 2017) °
FFoMERAFFIEET AELITE S U ERE G EFT - BRI IFER
#7Z G NADH % /& (Rittmann, 2001; Welles et al., 2017) o

BB RE AR F TR NP0 PAOs & b FFE B L R
oo T d PEATF R BR P A ",% A F R “,% e71p F(He & McMahon,

2011; Welles et al., 2017) -

2432 F GRS
et 2 *,f oK BRI TS SR AR EIE e R G A PR

MRS LRI A PFIT UL R T 60 0 AR B okawE ko F iAok g
FRERLGRAPOMFE T F LS EF T T 2w 26 F 1 7 a0k
R ST SN RS S ERLAL s Sk = ANEEE S L
% F(Yuetal,2024) o 227 - £ 5 ity £ 0 FF S BB KT gL R BT

iF imre b & - iE ﬁ%] 3ov T EREY 2 A ﬁa@ﬁ]ﬁwd o MRS B B Ao kLY
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3E F-v (4o PHTI 72%) 1 & -7 iR Vi@iﬁ‘ﬁﬁﬁﬁl% » Rz o JLiEAR T ) FEdm e A £
TR p kR B TIAE et AR SR BT e B g
T W E WP A 4 T (Mao etal, 2021) ¢ gt b 0 FRABCE T JE A FT 1
Fo 38 % SLEN A AR BRds 2l S s E k MiE - b 3 pbeR o ¥ (Linetal., 2024) -

AN BHHBAP)L RS A EABRTEFY c H- 5 B R
AR AR A IR 2 Pk ATP S BRR B A LR TS B o
% R Bk L B (polyphosphate, Poly-P) &% 5 3t % R > 10 & P 18 97 F o % 4o
Chlamydomonas reinhardtii % & VTC 4§ & %8 (vacuolar transporter chaperone) i it
Fif4 & = (Bossa et al., 2024) ; @ E& FR L & ] FEE kpF (PPK)E 7 & =
(Sanz-Luque et al., 2020) - FpAf @ R 25>k ~wme A T 8pm? > 27
Blmre B RE SEBEMERF S E kRS R FLBER LR
(Solovchenko et al., 2024) o b e & s & kL5 B4 3048 lw e o pa-T i add N F
£ T 1 (Yuetal,2024) o o “b > jieike £ 5 A2 £ #P~(luxury uptake)siie 4 0 i R EPE
Fp S Eofc X sm s R B § RERAHER ™ " p > L 2 L A3
7 F(Mao et al., 2021) -

e R ] oh o BV ORSEEEITK (T e e B kS IEH EaR
BOPE o e e COX 2% OH v @ Tkt pH = v i @ 11 4T ~ 4% 21 B9 =
TR (s TR AR W) 0 F 2 % KR8 ¢ R 3 Mgk (Larsdotter et al.,
2007) - i * 3 E A f TR B

Moz Al PRER FE A F AR ABHR T LB e p IR €A
FxAretk B (phosphate starvation response, PSR) » H ¥ ## 4% %]+ PSRI1 2 H £ R iR
45 SPX B BT o A WA R MArd BHEE By~ BERAIY S ROBHRL SR 2 A
Fld iE o B mre g w ot B £ % i 4 (Slocombe et al., 2023) o pt #b 5 Sk R IEE X

* 22 ATP {v NADPH > 5 gkehd 38 i 22 i 1 v £ 0 Bk BT BRenvi e

»x 3 L % (Wuetal., 2021) ©
28
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31 R%KERERA

311 2% % 5

FoF HEESE

AT AR O 2 B R Aok 3-1 75 o

% 3-1Fmr #F5gH
B LH g s o
# oK p g CH;COONa SHOWA
KR CsH1206 SIGMA
F 4% NH4Cl Honeywell Fluka
i & 4 KHzPO. Honeywell Fluka
F L 4m-kEF CaCl>-2H20 Thermo Scientific
Fipiss - R E P MgSO.-7H.0 fosk B F L F R g AL
FRpedli - ok & 4 FeSO47H20 kI S S
PR H;BO; EI B EHRN €A
% v & ZnCl, Panreac Quimica
IR e P CuCl, -2H,0 HHE 1 FHR €A
FefidE- K& MnSO4-H>O Acros Organics

sppe4ee K & H

(NH4)sM07024-4H>0

Thermo Scientific

% Y4E2 k&P AlICI3-6H20 Alfa Aesar
FithR ok CoClz'6H20 FEEFRS g A
V4 kEP NiCl2-6H20 Thermo Scientific
r bk CH3COCH; Macron Fine Chemicals
29
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E3 CsHsOH Nacalai Tesque
T il H2SO4 Aencore
B2 HRFEKA
AT R 2 REBER G 40T L A5
e 32 R RBERY
FHRK A 35 B
SN ECE & Synergy UV Merck Millipore
WERTE G-560 Scientific Industries
PR B s D1008 DLAB
Hed e 8 1236V Centronix
B 8 Universal320 Hettich
oo 48 Megafuge 8R Thermo Fisher Scientific
RHhEER CPX5800H Branson
COD F &1 CR25 Rocker
Q701 B-461 Buchi
Ak Sk R 2t DR3900 Hach
B+ R TR Eco IC Metrohm
R DO45 DENG YNG
%R JH-6 TE
30

doi:10.6342/NTU202502549



wENRTE RN

OSI-500R TKS
Nanodrop ND-1000 Thermo Fisher Scientific
TN TR TN-38KD SERF R ANF
THN AR TU-AT2 =W & P
EZ R 300 Rocker
AR ATX224 Shimadzu
I B R A 934-AH Whatman
pH/i% ¥ 3+ HQ2200 Hach
Y LX130 Microtech
Y iCam Plus Microtech
2 P B T i MicroCam V5 Microtech
fE 3] B AL SZX16 Olympus
LED &% ] #
PR 3 1339P e
G AL100 Alita
B F AL200 Alita
LEd JF ST 600S Gamma
=8 S 7553-71 Masterflex
31

doi:10.6342/NTU202502549



32 HEw

SHFEEREDEFT TR RAMLS L AL PE AP R B2

F & (TH;8 2 SBR » 4 B[40 !

® A iRt 24 kR Y 24 | FAFECRN TR EPEFER
Z_mH e

® Bt 12 |EAB, DNLBRPLIRY L FFET L2 ARG
Hp oo SAEIERBRPLE ) kB 2 g i end ok A W B4k 0 3 5 BD
(day)£2 BN (night) °

® CHf:FH&FE* 12/ kR B EARPBZLETBLETERF > 20
BRAFE LB ERNEART IR P RIEEBENEF R w24 )

PR 3R et AT RIE T ¥ - A RASTRRHRE A F L E

FiT> MFRDP ARG IL NP eho

j‘ i«’ﬁﬁA B~C:= IF’}'g_}‘1ELf—r|/—L‘ Lbﬁ/&y}ié\*%

LW R e g ) 05 2 R FPA RIS R 8 T i 2 B (A T vs. B )

2. FHEXBE P2 R FH T LD RFEF T2 LIS £ B (BD
vs. BN)

3. AHTF R EH T 2 FESHEAE A TR DA AT AR

2 MBI (A vs. B, vs. C H) o

33 F Bk g i

Fp 4Rt SBR T L 4R 1E % 5 4o 31 Bl 32 407 o F R A A L
120cm > P& Sem > v K B ATEER A 50cm e i T K OTEEHR K 10 cm e
B OCREAE S 181 X B vk Nin§ 0.8L » $HRMAE L 5 44% ¢ 53k AR R

32
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Py ke FOBH HEEGYES JF 6000 K v Sk LED Eif - kg R (EEFH T
®RE)% 120 pmol'm™2s7' o
SBR ¥ 6 /] FF L - R @ T > A G TIFE DB S g~ 2R F
FEEL 55 Ak~ B F PEE 285-202 A dl ~ SRR REE 3-10 Ak 0 R URREEL S A
motE i BRI B G U RS iR RS DA SR AN
EEAATRS Alenpe ¥ R R SR F SRR - R AT B8
EBH AR PR R RS o N EE R T R 2

i 17 (de Kreuk et al., 2007) o & F7 § &34 ) =0 22 0 R o PR EL S B0 PR R Y

FHELERRA R ERRALZ FE BRI A R A 10 2 4T
pWSAssges SA4 4 p W2042i8- HH5es 3 a4 o FRE R 350 %

Birdg e fF SR F AR > FEtk SBR ¥ B FAEiE 0F o 1R ETRF T LR 2 %

._;)“'é’l';g_'; ) , uu\ HRT = 135 Jﬂé’:

B F R AR F A2 T 4 LA S MbEo AL R S S

cm 2 B EATF P RINRF > mE3Lmin' > ¥ 2R 254 em s BN EE

33
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Light Light

<~ Influent
= Effluent
- Air
C B A
Timer
—— > >
— <>,
Peristaltic
Pump
o
Peristaltic
Pump >
Synthetic Peristaltic

Wastewater G

Bl 3-1 F Bthpet B

[ 1Effluent

Influent

| Air diffuser

B 3-2 {4 SBR

34 A 1 Bg-REs
*Ey %4 Mengetal. 2019)F 3 i * 2. A 1 gkl > dodk 3-3 9751 o

F 33 A1 gkl
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Component Concentration
CH3COONa 385 mg/L
Glucose 280 mg/L
NH4C1 50 mg NH4"™-N/L
KH>PO4 10 mg PO4*-P/L
CaCly-2H,0 10 mg Ca*'/L
MgS0O4:7H20 5 mg Mg?'/L
FeSO4-7H20 5mg Fe*'/L

Trace Element Solution (iflt 4e® 1mL/10L)

Component Concentration (mg/L)
H3BO3 500
ZnCly 500
CuCl2 -H20 300
MnSO4-H>0 500
(NH4)sM07024-4H>0 500
AlICl3-6H20 500
CoCl2-6H20 500
NiCl2-6H20 500

35
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A EE 1284 1 AR S B EE KA B4 B KT Sl T

3 34 41 RKKF

A3 Brokok r%rr
COD NH4™-N NOy-N NOs3-N TN TP
(mg/L) (mg-N/L) (mg-N/L) (mg-N/L) (mg-N/L)  (mg-PO4>/L)
573 452 0.04 0.57 4581 25.3
+ 14 +4.4 +0.10 +0.23 +4.50 +0.4
35S R

AT R ZEBFEPD ST R ERAIERRF R AE SR

B & 3ER 8RR E F48 (Mixed Liquor Suspended Solids, MLSS) ~ 78 & % 3% ¢4

R % 7148 (Mixed Liquor Volatile Suspended Solids, MLVSS) ~ i3 /% % # 4p 1%(Sludge

Volume Index, SVI) ~ 14 2 SVI30/SVIs > 4 3-5 977 c g5 /L K3 R E > &

WA LSL I &K B ? > ETaes SBR e T HHETERE o F R

TBALA G R > Y O SR Y AR el ALk BB E b

-
% 3518805 IR Bedy
MLSS MLVSS SVIs SVIzo
SVI50/SVIs

(g/L) (g/L) (mL/g) (mL/g)
Seed

3.45 2.70 237.7 130.4 0.55
Sludge

36
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3.6 i35 & 1= g (Sludge Retention Time, SRT)$ 41

AR A A A L REPERA R TR AR p R 140
Aie 7 SRT 4] o P2 B F Joth 2 3R 2 6 2 ABRR 2 R £ A% g o i
Toa it EAH AR UK o SRT 43 T s 21 2 > (73 34 5 F S do s %
AT TR o F PR &R AR 0 22— o JE LR SRT ddUH ks

FE R AUl 2 B o

3.7 KEHAIRKA

d3 B 12 kBRI 0P AR Y EHFET L F LG HEITiEL.
KLY T LED RP KA TA 2 2 A g F B KB - ikagap ok
Eéﬂoéﬁi*ﬁ%“$éﬁ%%é%ﬁ$ﬁﬁil%ﬂi’éﬁm&kmi

At B R BTl R KRR E (o) T Mk R 2 KR AR

<

W LM o™ DR RO WG R AR 55°C) 0 £ up B BT B
ORI ALK EY  SEFFF TR RES RS BE R B
@%@*ﬁ%%ﬁﬁ@’@@%@%ﬁﬂﬁﬁﬁ$ﬁogé&@ﬁﬁ%%ﬁ’@u
R B A RITRRP2ZFITER o kO b A 47 (Mann-Whitney U #
)R B EE 2 Ak s mERFRE S R kR LFERFLE &

=

AEERE S S RPFF 0 REEAAITT BAT R F R 2 P

H

37
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Thermostatic Reactor

Water Bath G

Silicone Tubing

()

Peristaltic
Pump

Bl 3-3 @ RITFIAE

38 477 P
3.8.1 T 3o 1= pl £

TR RPEERS T RFEAL ALY BARER AP GFEGFS
R Ptk Fop FRSY EEY 57 RRUTE Y~ PELAIG T W 2 R FPRRRE TR
£ o @ * Microtech iCam Plus #5451 45 fie &g ficdt € R 0 88 MicroCam V5 & {74245

RIE - %5 sy Apst S B & o F{o iR apRi aeqR 2 S 4tk

3.8.2 MLSS £ MLVSS 4 ¥+

AEHEF RIS TRFE AL FEAHF B M MLSS &2 MLVSS:
A ATk S TRk R 2 2 (NIEA W210.58A) » 3 5 h Zrde™ -
1. B BRAR T E W RpEE Y  FEPFEE > 19 20mL 2 3 kiFx3

E

38

doi:10.6342/NTU202502549



e
Ep

Wi

2. BPTOR T EONAEL Y 5 M 105°C R Bl BEER AP T AT o 2k
vEE WO0o

TEZ gt R WA 0 @RI IMMAL WIS PR RS

w
-»\

4, #p R BT RN RAREAG Y o

|m)
e

B, 5 105°C W fa® Wil o 1] B A Aris g o EATRIEE T
FiEAXERELB ] 05mg b B THEE L W

6. 2+ MLSS o 2+ 8 = {do ¢

C ERH
7. 4R~ 5S0°C BiE% Y YD S 1L pE s AP BIR G AT o EA R

*
8. 28 MLVSS o 3+35 3 ;44T @

P B IS X ERLR N 05mE s B THER L W2

1““%

W1-w2
B W

MLVSS =

3.83SVI &7

23 RFPER R L AP LRI RS A4 30 A 4T E (2 SVD
> %2 SVIs 22 SVIzp % 7% o SVIs F pri5 R 3 EpE P 8 B T aum i 4F > i e
BRI R PR T R 4 S @ SV R 5 f g * AN iE R R 2 dp ik e
b SVLo/SVIs it @7 i 5 5 R Bl s ok i 2 ¥ Adpfh > # EARRT 1 &
Fe 75 A ARIU AR GE )00 AR L o R T FpAe T
1. 1LReB23 25§ r 2 F P #E S -
2. WERE SAEEEs Y RBEFRT 25 R > w5 SVs(mL/L)

3. #FE 30 A E A = jekiE A A 0 32 5 SV (mL/L) ©

B

4 MLSS (g/L)3* % SVI(mL/g) » 3+ & & X 4c ¢
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SVI30 = SV30/MLSS

384EHF aX B ALY
LEGE AR AERBEA LR AT E A A RS B R a )

B oo 2477 R R B R R TR S 2 (NIEA E509.00C) » H (870 4240

R T T

1 R LIS B R A R R S A AR A

2. MR E EY 4o r SmLO0%P b 0 M BIGHE A AT R o
o

3. FERZURE A SmLI0%p A 0 BRI AT DR a ki~ g
Foxingimg o
4, MR LRV ALCEASFE DS 2P @AE 24 ) HFI L

BT - MREEZBE LA o
5. FE-rF i Ry 0 $ 02 6000 pm Fe 10 A4

6. B,‘], /'Q—Ly,bgﬁt‘ ’%&E%}f@\x@f’?l}%%}igl/}*%c’

4

I~ AR RIFRIE

% 90%p A (T sz 9 &t > & 750nm ~ 664nm ~ 647 nm ~ 630 nm & {7
PlE_o T iedkex K E(OD) > 2P 664 nm 2% % {5 (ODgss) & 4 >+ 0.1-1.0 2. & » &
PR AR B -
FoRvY E%E a kAT E
X =0Degs4 - OD750 5 Y = ODg47 - OD750 5 Z = ODs30 - OD750

FPon? £%2% a2z k& (mg/L) = 11.85X — 1.54Y — 0.08Z

B )k & (mg/L) X % B~ 484 (mL)
SR A (L) X & % £ (cm)/1(cm)

HE? E¥E a2 kk(ug/l) =
B SES R a kR (Wg/L)% RS- MLVSS (mg/L)» 38 7 8 =4 5
i

Fo% az E(mg/gvss) MTE ke REAFEL LR

40
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3.8.5COD 4~ #

PR EEEAS R FSEG PRS2 "f TRy 0 AL FORT, A
KA 7 1Y 8 2 £ § (Total Chemical Oxygen Demand, TCOD) 2 3 f2 1+ 1* £ % %
(Soluble Chemical Oxygen Demand, SCOD):i& {7 4 47 o TCOD 12 & i g 2. 1 7K i
FRlE > & Z A kP R EA ; SCOD R 207 0.45um jg i g fs 2. d1 ki
7447 o

COD ] # * Lovibond COD Vario Tube Test 0-150 mg/L &4 &€& = COD ip|
> 312 HACH DR3900 /& 6 6 B 3+ Fe 230 18 {7 4 47 o 3 (79 Fdo™
1. BFRHEX AR L R R 2 £ # F(0-150mg/L)p - 122 5 -k (DI water) 7 &

S L

]

o

2. & u#-2mLDIR(Z 6 )EFFR SRS 2 AT BHF BREE Y }:?f?

Rl

Fisr 4Lk NmERHEFEELARE o

3. ttr COD 4e#iyp® » 11 150°C 4c#t 2 /] p* o

4 hBERBLEEFLIIDER

5. Bl 4 4r T R4 > & * HACH DR3900 4 sk % B 3+ » fc# COD LR 42
o F AN REEFFERE  LPE- PR HELREE 0 d 4250 p

# 4% 5 7 A COD kR %% (mg/L) »

3.8.6 % A 47
LR T R N SLIR AR R TR LA RS PR U S R
kP R FERNE RS L F AERBFELARBE o LA T

L) R e

3.8.6.1 % ¥ A7
41
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PF A AT HACH k¥ § § A 45 A e ik d

2 > Nessler Method)i& 7 & % k& Bl T # e HACHDR3900 /~ 3k & & 3+ 22 35 3% 42

v
1= Y Se

SEEESIREE L Tt
[l =

1. B-Fpkk im £ R4 0.02-2.50 mg-NHs-N /L p » & 12 DI -k iF &

G o
2. AP 25mLDI k&l st 25mL 3 7

Stabilizer ¥ /& &£ 323 » L j§ 4v 3 /j# Polyvinyl Alcohol Dispersing Agent I £ =t

2§ #r 3 j§ Mineral

REEY
3. Z 9 ¥ FpH S L e~ 1 mLNessler Reagent » JR £353 {8 5 > s B 1 A

G AEd o
fx#» HACH DR3900 4 3k sk B 2+ 2. 380 N Ammonia Ness. %25 (;
BBk iE o A2 p B

£ 425 nm) o

5. Mzl REREFER O LERASITERES - RE

BT BT % § kR (@mgNHs-N/L)

3862 BRAF AL AKAE A7
fEdvnok e g e > A Y & * Metrohm Eco IC 3+ k& 47 R 45 fe

Metrosep A Supp 17 - 150/4.0 1o+ g A B F S LA A F 247

AYTRIZG CHEAP S B IR HS LA B a LR A
AT R R TR e RS~ 18 R

B Bodp 5 B T AN RGN ik o
v NO» ~ NOs & # o 4p ¢ 2 AL+ (HCOs /COs* s ¢ 417 o

KB AR e (F COR i B dp B 45 0 £ 7iem s
£$+(SO47\NO37)T;$T?§(;\ o '(” »l«f”ﬂ? @*Lpﬁ;]quy s ;‘z‘
4 '#Eﬁﬂéiﬁ%?}iﬁéﬁ’ L fﬁ?g;%%u,*g_ﬁ‘.]%%}i%ﬁ/? 1E—f‘?’}7ﬁ

T B

Bl o B IEAET 1R T PR A R ’%%'E* SRV ER o TV RET L

=
i

% g_§ % $7(Cummins et al., 2017) °
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3.8.7 BAA L
;g%%ﬁﬁﬁﬁﬁﬁﬁ%mﬁ%%ﬁ;%ﬁﬁ,ipfﬁ?Hmmnml

Phosphorus Test N Tube™ 0.06-3.50 mg L™ PO 3# & fe (FA M Al i it 72 )i (7 4%

Biip) € > 12 HACH DR3900 A % 5k & 34 e £2 58 117 A 47 o J 159) BT

1 #-EFRIR SR 0.06-3.50 mg L' POS 2 £RIFFIN -

2. A % T 150°C

3. N ELIFERHZF BE Y A r SmL &

§

—X,

4. & L3 g ¢ 4 1 ¢ Potassium Persulfate Powder Pillow » # % 5 "o &~ 45 & i@

/

H ;bbjx_»;gg;o

)}

5. Mikd B A R AP 0 12 150°C i 1+ 30 min ¢

6. Wit FEBNEE > FEAIT TR o EF 4> 2mL 1.54 NNaOH ;3 ;% ¢

i

frpitt» TR EH3 -

7. Fx# DR390 z. 536 P Total/AH PV TNT #&;¢ ©

8. Po— e P frz Ry chEM4RIE B A4 > K ZEROGFE -

9. e @{TRkEFE & F 4 » 1 & PhosVer 3 Powder Pillow > :{i’f%i
20-30 ) 0 B A4 R

10. % # 2min B £ oo R RS GRE Rk RERD B3 E LT 08
R (mg L PO/ » 1% ZF > §min b 2% o

11. 15 4% 5 47 % 2 8-10 -

3.8.8 EPS 4 7
EPS 53k sk 2 ) F r i feadt > B3 &% &¢§T$$ £ 4] EPS
(Tightly Bound EPS, TB-EPS)¥ £:4¢ %] EPS (Loosely Bound EPS, LB-EPS) - ’

THHS&*@%%&i?@%%%@?%’mLBHSEQ“*#@ BHAR Y
43
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AT~ % B M (Yanetal, 2019; Zhang etal., 2019) o 2 F 4B Gk AL RET
P REE TR L REMAAAG 1 EPS Bd2 i AT A WEREE
AREE 19 T R 2R SR FEFAMELS R AZE EPS 0 ¥ AR

(polysaccharide, PS)¥ F-v ' (protein, PN)e = o

3.8.8.1 EPS %3~
AT T R o2 (Heat Method) % B~j3 )k » (1 EPS » 1 12 Wang et al. (2021)2
Foo i A AAEEAE o R EH AT
1 5k sk
i, B 50mL 5 Rt A o
ii. 72 4000%g ~ 4°C gt 10 A 48 > A 3EEH o
lii. 4c > DI-RZ R4s884% 0 2 4000%g ~ 4°C 3w 10 4 45 -
iv. 3 "%j Bk e
2. LB-EPS %5
i, #eTih 1 0.05% NaCl i3 % B s & 25 2 30mL G4 615 53 %) -
ii. 2 vortex i R 3 A4
i, 72 40kHz A2 B 27 20 »48(° LR & 1 =)o
iv. 12 5000%g ~ 4°C L. 20 A 48 o
V. JcB F &% > 7% LB-EPS -
3. TB-EPS ¥ B~
I Rglepi A =t 0.05% NaCl iz % i3 R84 S0mL -
i, 2 A0KHz G B BIF 10 AP kiR E 1)
i, i B 2 80°C ARiE ¥ 4o dt 30 A4 o
V. 4c# s 12 8000%g ~ 4°C & 20 A 4d o

V. i ER > i TB-EPS-
44
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4. 15 I iR
i, #r4 FPoori@2 LB-EPS #2 TB-EPS i3 /% o % % ™2 0.45 um jfh 48 i 1
LA GRITAN -

i iR A KE20°C AR RE KSR TEBEFZ EAHTRY o

3882 mEEE A7

% @8 EPS ¥ chfgEsg 7 £ » 28 37 & * ¥ s -Fe fai2 (Phenol-Sulfuric Acid
Method) (DuBois et al., 1956)i& T pE#g € & A 47 o 3% i 5 - AGL » RiLg* 2
Wd e B RIZ A I kAR Y S pERR L EpE X ok 4

FAEFERE Y & o deT BLPEA 2 BEFE(furfural) ) > BLAER] A 4 5-72 7 L ERE(S-HMF)-

\‘“‘

GRRKAFTEFEFAGLF o 2 A ELAHF I F I W 2k £ 490 nm
Jiol F OB BT o R St LR T e K [ (ODavo) &2 H BFEE R &AM R
FEEA LR TR o R ITH BT

1. MD-FEmirifgEr,mpg0-10-30~50-70- 100mg/L @ T & 5%

BorlgE Rk @Ak R B R oo

2. Fefl 5% (W) KSRk 0 Tk s o
3. B-ImL -k amgd o

4, 4 ImLS%FEmAR -

5. ¥4 r SmL R LB IRBD o

REENI044 0 RELI D 3R NIRRT I I AP -
% & 2Rl 2 490 nm % € B (ODaso) I 1% ODaoo 22 153 50k B 2 1

BT ESY DRPEER -

3883 kv FE L7

T EPS*? 2 3 Fz & A7 it* 3 &2 SMART BCA Protein Assay Kit
45
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EETEANT c HREANERHFEF (Cu) el BB HEBR Z - Vs

(Cu®) » i& @ ¥ Bicinchoninic Acid (BCA)?; & % d # & o L 8gd F R A 24 2 ki3

Mpe it &4 562 nm kel §oEt BT o Bk B (ODse2) ! F-v R AR B OUAF

MR o i DR AR R G 20-2000 pg/mL o F-v B eivdrsgd g g R pE A A

(4 cysteine ~ cystine ~ tryptophan - tyrosine) & F B & s 4 o & WaE4F A B R T %

B¢ sk o AFF Y 1A R F e F-v (Bovine Serum Albumin, BSA) i¥ 3 52 54 &

T R RS 0 TR o AT

1. mBSA FZ#%R > p@EkR S 0~25~50~75~100 200 ~ 300 ~ 400 -
500mg/L + 9 ek B TS5 E M o

2. #-% w2 p i Solution A ¥ Solution B i 50:1 2. v iR & » T L8 F BT 2
Working Solution (WS) ¢ WS &% § B jd 3t {208 527 2 ipl 4k S8 o

3. E AEE Y s 00 mL RS FRE S £ hor 2mLWS > A AR A
¥y .

4 HEF R ITOCEEHY F B30 Ao F R  RAEE LD R
2 -

5. @ % A kRt 562nm R E %k 8 (ODse) © 302 DICKEFE o d 304 4r 2
FREFRVEFEF PELTETFRAEE 04GRRSR

CHAAIREL AR F o F o AP IZREAEIOABRREP AP R

Hs s

6. “73 tk&2 ODse2 3 :}r",f 0 mg/L #% & 5-2_ ODsg & {7 I

T
T
<k
P

7. Alr B Rk R E R 2 ODso Wik ER > TRk E A% Y
w2 dv FER o

3.8.9 ficd ¥ A L A7

P AR AR AR LR TR R L R PR R R e g i o ot
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N S EES REZ DS S E AL R T SR R s

TEHMAAAEF 21 SR FHELD R AEFT AT -

3.8.9.1 DNA %3~
FRCACRCR ¥ deaE CELY - DAL LRI S ol gt - S L P AN S R - Y.

6000 rpm .o 10 4 48 0 2 f Bikis o 2 W20°C 4k 5 o DNA Z B %

DNeasy PowerSoil Pro Kit (QIAGEN, Germany) + i P& 1 7 4 ¥+ P & {7 » 5 484 %

4

1 ARRANARFHEHHA NERR R OIS RN L T G
S HE S LAV R

2. #-PowerBead Pro Tube ‘44 » # IR E ¥ 30 ¢ K o 4o » & 5 250 mg
73 iF % &£ 800 uL Solution CD1 » #8 £353 o

3. #-PowerBead Pro Tube -k - ¥ 2_% Vortex Adapter + > % & B F 10 »
4 o

4. 12 15000xg s 1 A 48 o

5. BYIERRIAD2ImL G F o

6. 4v > 200 uL SolutionCD2 > B # S #j48R 3 -

7. 72 15000xg #res 1 A48 o WA RBTIITHRY 0 B § 700 Ul FER A I AT
12mL g e

8. “4r > 600 uL SolutionCD3 » & F 5 #4883 -

9. #-650uL 3% 4 » MB Spin Column ¥ > 12 15000xg . 1 4~ 45 o

10. Z R ik £AFH A IEHTH Bk #%3f i MB Spin Column °

11. /] «<# MB Spin Column *z » jzi# 2 ml e § 7 o Fd g T kR I MB
Spin Column + -

12. 4c » 500 uL 1 BA ;3 ;% 2 MB Spin Column ¥ » 12 15000xg #ft.< 1 4 4 o
47
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13. Z H k4% » # MB Spin Column % fr - £ 2ml Jc & & ¢ -

14. 4c » 500 uL 57 C5 7% ;% 2 MB Spin Column ¢ » 12 15000xg & 1 A 48 o

15. Z R g% > % MB Spin Column 3z » Rei2ml jc g ¢ o

16. 145 16000xg #t 2 & 4 o |« #-MB Spin Column 4 I #7¢h1 1.5 ml 7% %
? ? o

17. 4c» 50-100 L 1 C6 i3 ik & 6 J Jpien® w o

18. 12 15000xg = 1 4 4 > #2715 % $ MB Spin Column -

19. # DNA & &4 ik %13 %7-20°C -

3.8.9.2 R E A A4

BRI E Z RREANEGEF R T AE e LR > N2
SRAFEIR ALY 2 f PF BB AFT T AR LB FR G D
718 {7 16SrDNA > & i}?’f.é??ﬁﬁ&ﬁ °

16S tDNA 5 {2 Pt TAY 3 RFT2Z A% LR 1500 bp >

IBEFRAFEMZ FRB(VIVI) > TR TG EFPEF FiEdz £ 8 o d 3

FEFr R4 16SIDNA & RS N im A2 2 S8 #F o
T_F i #24 * PacBio Sequel Ile % & % 34 i HiFi %_A (High-Fidelity Circular
Consensus Sequencing)’ 1 &2~ 8 # & & 3§ & (HiFiReads)o 43 #7% * 2 351+ $ 5 ¢
27F: 5’-AGRGTTYGATYMTGGCTCAG-3’
1492R: 5’-RGYTACCTTGTTACGACTT-3"
BB FEE VI VO 2Fi 0 (710247 3 1 f(Species) B & » &2 & 574 &
BLATFER -

T_F #7118 2. HiFireads & 2 QIIME2 fic2 # 2/ A 7L S FH e 470 4

RN

troiAz? % & DADA2 $ole it (7 S F 48 B 7 il S-S N

J:'
F"

/\
3 f At
W R 2 TR i",lf PCR 4 pe 74 24 2 g;gggg, 7 ff{j\a wdm—
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F2Z B2 AN SEF2ZHE T A 7% 32 (Amplicon Sequence Variant, ASV) -

=

QIIME 2 #t 48 % 2 SILVA ribosomal RNA gene database, release 138 it 5 %% 7 #
B dAe s AR AT 29 F HEPE I ® L 0 11iE = Naive Bayes 4 25 B iT 5 3~
fhdp iz kg e Bod oV HT R R AR RPN LR L HE R

3 5 M F R TS R T A kil ML 52 R o

3.8.9.3 M S A ¥
PR ERS E R A RANARS A F B e L8 AP
ZERFTREAFFHLGF LD 727 I8SSIDNA A 2 (4 F 4 a2 A5
I8STDNA Z B2 ¥ Pt LAY 3R FT L 8HAT RS 1800
bp' M ZOBREFRB(VI-VY) -  AFIRHEEFRFTZFRIMLL 1 ¢
BRAu® R4 b AREREHEE SHEA 1T o AFT T £% 18S IDNA 1 V4
VR R 2315 5
528F : 5°-GCGGTAATTCCAGCTCCAA-3’
706R : 5°-AATCCRAGAATTTCACCTCT-3’
oty d1en B ECAE {6 2 [llumina MiSeq &+ & i& {7 {4 @R (paired-end sequencing, 2 X
301bp) > f DNA ¥ £ =44 ] B A 7] o %5 91 (@ e 45 7425 46 QIIME2 ¥
1 DADA2 W 'k & 1A 5B 71 > (5 M fEsh A7 & 8 5 B - R SR )

",% F] PCR 4% fic & # 24 & %8 & 7| (chimeric sequences) > 1 & 1 & & F 2 F 2B 71 o

3 %R - o I L ASV o 2 SILVA 18S rRNA gene database (release 138) 1
ER 4 Pﬁ# ﬁéiﬁn\o BBH LAY 2 ASVZ P e R » iz 4
FORsth 2 e dis e o 175 BT ‘r—'ﬁ‘kb SNy

3.9 st 47
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RIEE ALY PR REHRL R DR R R B R ok
FrhEZ B AFTHRY SRR A E O NFR AN L EBRTLEIE G H
FAR @A AEFFATESEEERA - SETELE T RE K17 25
BWEEARM AT E 2 2 U BRI PR TR kR 2 B
TR EPPEBET R .

AT 2B ATIARE A G BA R I CLAABRR R 2¥E
APHE 3TN 5 LR AR E AT o iAo B 3-4 91T o r A3t

& 47 %% 12 Excel Real Statistics £ 23 {7 > AL T2 B F LB X 25 0=0.05-

W
B

ANOVA LSD Test

%R —

Shapiro-Wilk
Y & \
Levene’s Test Gt &R 54

Kruskal-Wallis

I HESH Dunn's Test

& Test
¥ RHR T - >
Mann-Whitney U
Test
B] 3-4 2zt o 47 AR )
391 L F tp M iLa 47

AFAtpBi s 3P s Rz Bl MEieR » 2 4ph hlic r £
T EE AL I o r>0 & m 2 ARM 0 F >0 AT Rl Fr AP M
iiil;' r<0pF > P i [5 mE =0 B'J%%\ﬁﬁ'ﬁrﬁgﬁ ° j‘pfﬁéq’rﬁb" FFER AR
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"5 1 (SVIs)¥ & st m MLVSS 2. fF enfd Bif |4 > & iz 45 Schober et al. (2018):& {7 iz
o0 G EfRET

® 1<0.10: &4pht

® 0.10<r<040: MA 4k

® 040<r<0.70: " R4ipH

® (0.70<r<090: B & 4p i

® >090: % 24ph

ST - R G A RY mER RSB RR Bk A M o TS RS

kR R A & g

3.9.2 Shapiro-Wilk ¥ & |24 2_

Shapiro-Wilk t& T 5 i= G k& THATE # & ¥ A T ¥ * 3035202 o 24k T

Fed

IEEBELIEALK FEAFT A D ERTLEL p EA T KE@P>0.05)
PP LEABEFEAT o

AR EFLCFERGE AT R kB ETHBEF AT R
S Bk T 2 0 e T3 $ R B $5(ANOVA); £ 7 4 4 0 plecdr 2t S 8icis 25 32
(4 Kruskal-Wallis & 2) o 77  ** 0 i & i3 %44 1p»e 538 > ¢ 432 {7 Shapiro-

Wilk ¥ B 2 MAERAFANT S 2L R E AR TR -

3.9.3 Levene’s Test

Levene’sTest » # € % et 2 £ F E 3 PR R (TR LA - )2 § * 2

E oG T2 RAEBES TR ERAL R R FRAES D E A Y
KB(P>0.05) PIFAL L F R HA - 0 % N7 ANOVA 2 s 4R 1512 o AT g3

{7 ANOVA & 2 > % £ 124 Levene’s Test S & oy 2 % 2 L F 40 % > JE 0

a—FI\}ﬂ’\?’ \E £ :jpj‘? Kﬁ'{ fu;J'_” /‘z‘\ 3@-?‘?&\‘%% o
51
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3.9.4 % £ B~ +5 (Analysis of Variance, ANOVA)
% £ ¥~ 47 (Analysis of Variance, ANOVA) 5 — fAL R L& * cndfichizt = 2 »

AFEHET HFFRAELSIT PRI BN PR AL TOELT LT R

FAR AR TR
L &R FRALA ¥ EA T+ H(7 58 Shapiro-Wilk # %) ;
2. raFHEG REHA- (T B E Levene’s Test & D) 5

3. ERATESBE
AT RAE TR A A i AP A ok i T i FUR L R R
SRR SRS S IR L E Y R RS S s

TR ETHEARFLR o3 RS F Dp B/ WA F K (a=0.05)pF > B4

AFTE i ANOVA i A B C Z 2 a4 %ot LE R T AL -
B AR E R FLE(P<0.05)pF #i8- # F * LSD (Least Significant Difference)

T HHEEFEF S R B FTHEFLRZ KR

3.9.5 Kruskal-Wallis # =_

Kruskal-Wallis & € 5 - fE2- 58tz 272 > A R ¥ 302 = w8 b b2 4k
Az ¢ EATFAREFAR OGN THEIPEALA T AR EE - LK
PRenfis o AR L s ANOVA 2 283 8cf i3 2 - A Bk 2 T e A kp F
- AT AR F AR FRAEE p B F LE(P <005 BT IES
BEBX 273 7 - 2R ALEs 2T G AEFLE o

AR TR & ¥ &4 T (358 Shapiro-Wilk & T) 2% % £ ok - (4
1 Levene’s Test #& %) > # * Kruskal-Wallis & T2 #% A~BD ~BN~C & &3

;{L%é“,!féii?:iiﬂ'bi"?%ﬁ{ 5B F o ¥ % % Dunn’s Test i& {7 22 fF 2.
52
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AR oA e

3.9.6 3--) 8¢ ¥ £ 2 # T (Least Significant Difference, LSD)
& ANOVA S5 8T L eR salis L,
o LSD ¥ %5 ANOVA f& % *

,«,, B - ﬂ}%
Yoz ¥ g o 1Y

EALIA U R

= 2
|2 izh w2 £ 8 87

B2 AR R
LSD # % #% K %

SRR ERCI R
45 2L

HPHER
DR A
RURECE I SIS S oy TR
¥ 518 ANOVA i

,F']""A'#‘ QA\'#F ’Eg%—ﬂ&@#‘r}o
E)—iﬁiﬁ&’fﬁﬁ;'§r’i 0% 2F

o TiofabiE LR o
K ® 5S> LSD & 711357 3% 4 (Mean Square Error, MSE)
PEP SRR B EOT RSP EE I HFLRE TR A TLEA BT 0gL R
LR E 2 6 %
K BRI R

T2 A EANLSDRSE ) PR EE 2L p E)T
¥ IES W &

BE BRI EA BT OERT S LEFLR -
AFTF Y ANOVA # 2.8 % 2 F kB

E 2SO JE P A

BEE R mRET

»it- H 4" LSD Rt &

BT L 2
R P RIZIEE T o F LR I T E N FN I35
j;‘7 ?~)J-|;%

3.9.7 Dunn’s Test

Dunn’s Test 5 Kruskal-Wallis & %_& ¥ *

S & K
P AL B RFASA Y il WL B Ao
B R k-

1 S
WA ZERFTTFHRBETEAT
B °
Dunn’s Test 1 & B3k &
p iE-

T AP PHcEEFALR -

AEF L P
R E K E(DP<005) PIVIESG R & ER > 270 2 A2 ? =iHcs B
PIEFALAR
d 3BT A BpE € 3 8 % - 345 3%(Typel Error)2 % i b
AEFL YRR AN N L

v R, T
2 GBS AT
53
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# * Bonferroni ot j2 34 "5 Bg K I i¢ B K B o Bt 0 K Type I Error
FARF N AFLZVREFBRY > X FZ2FABD-BN-Crz 2 ed ad s
£ 6 TR S F KR TS 0a=0.05+6=0.00833 -

% Kruskal-Wallis & 287 F¥ e s b FL B Ay Tie- H 2
Dunn’s Test i& {7 S $tvt g MR FHF LR KR XT3 2477 & TRV % 5L

S s BLER 5 4k 2L
FeldB iy B B8 2 Mg &Py o

3.9.8 Mann-Whitney U # Z_

Mann-Whitney U # T_5 % * 2. 2L S ¥ szt 2 % > i ¥ 30 i d b= kA 2
Fend AT FIAEFAR S PEFVLATTREFIHLRPF2Z 5 2Ty
R Aot A THE AT AREHA - B 0 AR BB
SRAFHLBELSFHERE G FABELE - AR RBEXRS TS iR kR
AE(T AR EFLR)  FRTEFZ p B EELE(P <005 BT IE
BEREBEX  AAS BHEAZ T HARIS I EETLE -

ARy ¢ B & @ % Dunn’s Test 34 {7 % S/ & v o E3% 2 2 ¥

Bonferroni & it P¥ ¥ it >0 - 0 3 40 % = 345 %(Type [l Error)2- b * > & T #-F

Fr R F TR AN HE L A FOGRIEEE R ERIAF R G hhd
£ AT o SRS TR R B R S AT Y R IL2 L RY(BD)

22 g (BN)I -k & o & Dunn’s Test # T 5% % 7 & FH L Bigeh BpF > %
- & * Mann-Whitney U f& Z5& (74 2o vt d 0 10 A 2 756 o 3 3P 54 3% 30

BRI £ 8 AP HEFRBE

3]
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WO

Fri BRAHw
4.1 75 ik s

411 FFPERF AL LR

41L1L1TA IR LS ERE

s

IS

S

ARE* 24 | PEFEFFEEY FHLROT TR L FRBEFL I
B AR RGO 2 RR T BB B

2 A1TARFREA LR
% 4 PR

Seed

Y 1;_i|n|;1m=|mh
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W2

700 pm

W3

W4

W5

100 pm
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W8

Wil

200 pm
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w14

Q’*"*‘

e

®

W16 * w kel o
1 DIV =0.1mm " °
W19
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W0-W8 R SRR A

CRA
3 EAH(WI-W3) > EHFEH B2 £ > BRI RAH B ER % - Wl &

3

Mgz FACREHAEL 24 R R E S ECEE 3 W2 P A
WGBS E o W3 BF o Resf a3 L8 A s g o] 3
0.15mm ik F R ER > AL RFPEIL T o

3 W43 E AR E MR < 2 030mm > B 4sE B $ER 4 o 245 Pronk
ctal. (2023)° 3 /4246 200 um T SHEF %~ orend i BT K B AR
B AEE S R A o

W5z i prid 10 #8557 e5 5 a4 RS ERRS o PR ITRG R
#5 Livand Tay (2015) %73t » &t § i@ ix i " ML i3 > 18— ) MBI o
BRrHMETRZ2IN S0 L £E S Imm> 2 P30 HFRAREN > &

T s AT ) L MR ek o

S|

3 WS R A £ Tkt e i 1.69mm (22 4.12 Tk r)
MR R FPAORLR b 2 RS
W9 F Rt Fieis 2 i

W8 2 WO B3 i5 7 il 307 - g 1B F S (s AT £ Sk R

W FIERA G o S SRR R E RS PR AR T - KA
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Tiop s R EF A o SRR S 3.20 mm - Xietal (2022) 451 0 K PERFER S
BaEs Rk EEA K o e BREM - ¥ - 2 @ > Caoetal. (2022)3% 5 Siok Eap ¥
Tt P REFE > RAGFELYE EPS & 0 7 LB RE -

BOWO Az AR ERS R B S P RE K Y X SR S H L R FEA
i o B ke R 2HERLRAMLSR LR
WI10-W13 : 3 o3 & 18 5

R Bk A m d Lt 2 L kb g 5 T i'ff”é’ FHoFERRARS
SR o R UEER T o T AER R IR E > 2 WI3 i 460 mm o
W14-W21 : SRT #5417 2 spR d i % 1t

pWI4 4 s rig » H 2 SRT (21 %) 1T - Wi § FHRIFLBAIR G > T35
FUZ'E D 3.70mm > T IR A B R F TR SR RAER A > NIRRT R o
Yangetal. (2018) 45 1 4 SRT 3% 17 % % 8¢ S 4 (- Oscillatoriasp.)« £ 2 &
JLRICE SRT #2404 5 B2 SRT ol 1665 2 9 1 > 8 % SR Fapa £ ol > 2 a
PR AT TR -

G At 0 p WIOAS R RIT L T+ & > 2 W21 Tt 6.10mm >

Bop B - T p ABREREDELA o Re > WIAW2L H & v & LD
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Bl 4-1A R 2 £ 2 Sk g

4.112B~CHi5& 4 £k

BH & CHE® 5 p 12/ prkp > H? BRUCRBEHFFE T CHIRE
MR GEE oA F2 TR A KRR 22 A B 24 PREE R PR IE T 91
S22 FRFEP R od T L KRR L EPRELL B B e
Thfice T E BCHIFES ERRZ BB

£ 42BCHFR A LR

52 % 5 PR BB PR

WO
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W21

WO-W8 : 3 FMRi® i) 4 13 B
hE A BECHTHEED 12/ LR - Wl TR E5EEE
A RAATEB c W2 BE I IRAH g4 £ AR NI BRIR G o R
e LA o 3 W3 Bl F MB BB F N 4 > BRI AR D BT
vooW4 P R FRCE MR B 40 304 2 421 0.2 mm> i 3 Pronk etal. (2023)
STE 2 MORT R AR o W5 AT L4 B R Fanemdpr ) A o Aokt g e 2o
BT A R AF R i AR o SR 0 3 W8 R T dai T F I 4o > 195 R4 T R R
R 2 E IR E o
W9 F R eis 2 g1
ORFH B CHEFHEFL N2 HFRFIRALRTER «
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fos o wiE L10mm & 1.02mm > 3 B oo Y < SR ¢ @ Er?zi\ﬁ; e
FIREAR F R > p WOA = 2 5 RpFdiAis ik 5o
W10-W13 : 3% b & [§ &K

MIEE B & C i A nan ik e @i L RFPOE  BELELE R RA i
SRR L - AT A 0307 mm B enZ 4 LAk BBR S V- M A
At Imm s h3Re fo & LGP P APER o L PR S S FR G
MIFI>ImmZ KR iR d L EER S A o
W14-W21 © SRT 4] ™ 2 3p 6 i % 1

B WI442> B~CHi 7 SRT #741(47 4] SRT 3 21 %) et J iTif it ™ » 2
§ o] REA AT S TR b 2 AR S A T AR B Y cCH P BB TSk RN A

EEP BB HIpRinEsck s FU S B o

4.1.2 X 3o &

SERAREEHS T RAELL R BSRRR AP A RRGES
KBtk oo A RS E B 57 SRS Y~ PRI T ¥ 2 R FIERE TR
Bo0FL kY ApE A RER R AR IT AR e AR S iR 42 &

Rz EF B SRR SR R kg o
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Average Granule Size (mm)
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B R Rt 2 AT R AR R 4L AR R L LR
TSR ARG A LA BEER o % - B (WO-WB) 2 AT S 8 aR o i
BrECE o RUTAR R A 0 B D PR (WOW2D A MR L o A 3NA TR e i G
R 0 ~ fE T L D AR o

B A TR R SR AT £ L Y R EPS M F g
Foetod TREDITRA G USRS E A 0 BB W21 A AT o
L2 6.10£0.65mme fp2 T - B & CHH A WO S E = L 485 - 58t W21 0
kT ekt o w5 172+ 021 mm 2 148 £0.21 mm -

B R WS WO WI2S WIS WIS & W2I i (7 £ Rl i » 712 4 1
B AT R R A 6 2 L o T e EPS 2
S0 % B B £ UTB-EPS) > § 50902 S i3 4 F 0% 8 4 > 125 2537
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ﬂ‘fi?f % & (Liu et al., 2022; Zhou et al., 2022) - d B ¥ L > & W5 &2 WO 7 F 1
FR O RO ERD B TEF R RA S RER - REEFH A &
Wk AR o

prh o R LR ER L - L R RA D ERER S 10 440 3 WS H
‘5544 W20ie- HEE5 344 o 1395 Liu and Tay (2015) > $5Eim s & 7
FRAERRA PR UL E R - ) BRI S 7T R WS T
REFH AP g o

FHMAZ ANALEFTERIGAFHETT P LERAP R B & C
o8B CHEFHN G LEBHRFLFTE  CHAFFE) &k

WELAERRAG > RLEER 5 B PFAITLL £ 2 L & S0

4.1.3 5% % i p H(SVD)
SRR RFPRER St AP ERIZ ) SVI 2 SVIo/SVIs SRR 2

$i s 4oB) 43 0 o
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AR FSEx B2 ERESVIEARRS > FANSLMI e BHE CH -
ST 92 Xietal (2022)F7 § S5 Ap 7 0 32T dg RE Ak B B LR SR
RERA E A FITEMEG SR IR

W14 12t B dedrd] SRT » A H 5k i s f g i » SVI BfF » Ra ~ 80
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® NEILHEINBH VAL R T EEIIR R B S RS F

A
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S A 4BPE i REAE(SVs) 0 Fla B2 SVI3/SVIs it E e
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Bl 4-5) RARA R BHL 2 THFIRE > I B0 L ERER P TE AT
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PR A F R oF PPN A SHERSFLEIITRIE I H P FH A5

=

BHRER T i EREW SVI/SVIs vt BT E o Fpt o KN R & G B HEiAE

feie & G T 5 g ¥ SVI/SVIs ik § ha F] o

i

Bl 4-4 W14-B(%) ~ W16-C(+)

-y

B 4-5W21-B(%) ~ W21-C(+)

a2 o WO uis2 SVI;A~B~C 4~ % 5 857+£352-414+£13.7~565+
19.5mL/ge B~ CHf tek 2% 2 HLT R S Al BAMEHETET AN A

o
’% o

4.1.4 MLVSS ik B % 1
AT 2l AR EH AP o E % A4 AF R Z MLVSS ER &1 o %5
BT A H Y RS > TmA N L C AN 3452211 gL B 4.68+2.16g/L -

C # 2.61 £1.05 g/L - MLVSS % i* 4c ] 4-6 #7171 °
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6 4
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Bl 4-6 MLVSS % it B

d 3 MLVSS ERV e X i mLA 2 3T naindfaedmw
MR- HIEHS "F,*‘L R enff B4 > A AT 3 020 MLVSS 2 SVIs &7 4
FAPM AT o AR (Aot E DA 0 A 2 B 2 MLVSS & SVIs 4a b
T W 5-0.60 2 -0.560 £ I¢ R § 4p B (Schoberetal.,2018) o st S % &7 - % i3
it E IV (SVIs F 2)EE o A FE B EEAN R4 > EIk MLVSS JER T % o
F2 T o C 2 A AL 021 BRI 0 BEos B MLVSS k& % it
MCHE 2 R ERBE B A BB o ] 4-7 ZORZ A F B, MLVSS £ SVIs chpE i

ARE o V- U RE Fhog R EARR - R
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Chlorophyll a Content
in Sludge

mg/g-vss

0 2 4 6 8 10 12 14 16 18 20 22
Week

B 48 %2 a kR %

AT ESFaz£p WOI WIL 35 2484 B REIELS K
Y PG ARIRGBIE 2 oo ARA o WI2 BF A Su? MLVSS R 2R 4 gt 2 faipl 55k
Prigd ErRon R LEFHHER O FRZFECFTRE?P LS E a7 EEl
TR o O EFSLEAVYAMSET  FEFazE g o

pWI4de o 5@y FHESRT 5 21 2 > AR BB X FA R EHE £ -
LA A S A IR o SRR A B ROk seenSiih e B A 0
mfE Bkl P R F AL G R CEBE R TR E- HIFIERR
A BRI R o Ft o p WA AR ESF a7 R R MRS TG E 0
TRz ARE BT SR EARER L KRR EFOHE L DRFAL Lo BT

2T OoBECH A WOI WIORFESZ2 az 2482 73 WI
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B BT AN RARHEAEITE: WITMBESE a BT T 0 J
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Foo Fl AT L WO IF L RFR A 2 s B Ehe 3 WO 2 BEH ES A

azE SRR ARTIHEL 889+2.8Img/g-vss B ¥ % >t B H#(6.92+ 1.26 mg/g-
vss)E C H#(7.86 + 1.97 mg/g-vss) ° A #e % cksp 7 £ 4R 2 24 | pF 2k RiE

BB T EGERATR S (T B K S SR RN £ OTF koenid 2t

LRG0 TR LB ERER L
4.2 KA 4
AEFREZ AL BHABC) AN A bz KRB HN AR

4l pEkRr @ HE T BE CHEHRI2 LR LY BRURFEFE
CHRPRERE « SHFHEBRENHT S L 50F P Pl B h»
PRACCRD)E B (2 ad)s Bl F ki o 4 Blikiz i BD (day)® BN

(night) °

4.2.1 pH
4w F i chpH Edrk 43 517

% 43 & F it pH &

Group Max. Min. AVG
A 8.39 6.01 7.61 +£0.68
BD 8.20 6.01 7.34+0.51
BN 7.70 6.23 7.13+£0.44
C 8.66 6.01 7.76 £ 0.61

¢ e pH %1t 4§ 4 %% 6.01-8.66 - A~ BD & C e chp| E FRII5E >0 p B LR
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ook & IFH FE O ER GPN COMtY 42 > pH F]t + 2 (Zerveasetal.,, 2021) o 4p

2T BN & R R KEE TRE > L kS (Fr > H T pH @ AT K4

42288 ~ %%

% 4-4 5 WO-W21 & w2 Tioig B 2173 § Bl

Temperature DO
Group
(°C) (ppm)

A 288+ 1.9 6.08 £ 0.44
BD 271.7+2.8 6.14+ 041
BN 21.8+1.8 6.94 + 0.51

C 283+ 25 6.16 £ 0.45

EERE DO GE R G A0 5-8ppmo B3t 4R 5 e F B Z 2 i F ER o ABD
CaeF»xmipplE LED B A2 crfii @ -KE 2> PR35 " BN 28]
FIRBFELR BT IR E R RF iR o

B ficiFit ki 2 T s 442 “ﬁ%?ﬁ:é‘é AR LWL BHAKELE
FEREFLF I thor R F 0 p $ 20 ¥4 BN e B (vpfer g £ %

i 7R E ] o BN 35 w1 ch T B lOR #2 § e T

Temperature DO
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BN-z 78

20.3°C 7.25ppm
(W9-W19)
BN-#328

23.4°C 6.73ppm
(W20-W21)

BD

26.0°C 6.39ppm

(W9-W21)

=7 BN R R4l 5 2287 329 208 B TR A 0 10 %
FARLAF AR EY & AFF 7 H* Mann-Whitney U # T (o = 0.05)3& {7 323+~ 45 »
Aot d 2 % A 3

BACEEBN B R S arREER Y e F o B RETORE LR R
B¥(=0020)d %% ERAPZIEF =005 ErRARAZHERFFTEE

FRBNEE T S AB W i o frdis TR 2 153%  maE ERTREY

7.2% o

B> v iy 62 BN e p R BD e b RiE&EBF P end B> N RIHE
AFFoaif P RFAR - BEHTRALBF AR T LHFL(P=0076p=
0.171) > Br i@ KEF joxifp L RA 2 hp Rig £ o

46 KIEEH F e 4

KR Z R %3 £33 AR N

¥ BITHF
BN #7:8 % vs.. BN #2208 14 Bk B E

p=0.026 p=0.051
*EE * R E A N b

BN #7784 vs.. BD
p=0.076 p=0.171 fae e ok
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PALTKE R LT WA AL oS o k- A% BN b e g i
(W9-19)¢2 /8 5 i (W20-21)F 15 & 4 3 f s 77 g % Mann-Whitney U #& @_e
éé‘%'&f’% 4-7 5"?"]:]‘. o

F 47 KRS 4‘47';%\_\{: —,‘:’K ?_ F e At

Significant Effect
p-value
(a=10.05)
SCOD 0.513 No
N 0.923 No
TP 0.923 No

F% 87 BN 2 REHHIHEFL5 2 f T S ﬁ%ﬁfg"%fg% éﬁ(?;}é&%‘,‘ﬁ}i}é%%

EBNFZLy 2 “,ﬁ%%&:é‘é ¥ o

B

Jem

Frerik o BD 2R ts2 BN B B3 § &

‘E\*

HFAB BTG

J

O

.
N7
W 1

o

REALCETIPROERERE VR 2 BN 75 &40 4 it @ 4 F
AR od 1 AET o B R YRS %L#%év,éff:;:é‘; s F] > i ts A 47 BD &2

BN # 4 K,ért%ﬁ:;i:gﬂp.i: VHR-ERLE P AN RBIE TR kS £ R o

43 FpFL 4 ¥
AT g AR BF RN RE AR vk FASTAR c P LA 0 A
B-CzF Bth2 B fApis « 28a > p Wode » S mBF R » %W 7

BRI A SR hER L FAMANLE AP LR WO TL F R I &
83
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P~ R TR E A T B0 154K T A 4T 1L WO 2 5 enlicdhal (7 1A 5 -

AR el B TEFRELIA LS f PRI R B2
T £ R A5 e 5 & 0 12 Shapiro-Wilk # Tazsn t BB 2T FEF A S » T
v Levene’s Test f A 2.3 H &R B BA - - FFHRPEFTRATE P LR &K
- RlEE* ANOVA 27 FHA R KR T > XU LSD i TEF IR FF
B2 B EF AT 2 $RHA- ol & B B e Kruskal-Wallis # % & (7 &
£ 4 47 > ¥ 5 Dunn’s Test i {7 5 & b di o

g k> Dunn’s Test 4 {7 5 2 [ = $+* #pF ¢ 3% * Bonferroni & & > ' i 4782
¥ 13 2% tE 4 Type I Error(#-A 8 % 2| 2 5 A % )emf 5 > e FL ¥ a0 d@»t iR =
F w34 Type I Error(#-38 F 1| 2 5 2 B F)2 b ' > FRFWAFE 3 LR X
Mo SR ATt RE Bl S AT T Y Rkl R (BD)E 2
g5 HP(BN)d1 -k & > & Dunn’s Test #& 2% % 7 E g F M4 e BTl EpF > K-
# & * Mann-Whitney U & T_i& (748 “v vt i > 70 o Fr 2 sk o iE 3 ﬁﬁﬁ?}gﬁ i
PREIE TR AE R G AR FMRE o PR IRAR T BN R 2 U2 i

FEM

[ S AR 2

4.3.1 COD 4 'ﬁ% B
4.3.1.1 TCOD 3 ft"\

B 4-9 B & e r H ik ? TCOD 2 ",f SRERE R 2 L ABE - WO 11 i
s 2 f—r SR FEAird 4891w R A 3 BD A RE G L5 “%’—?"_@90.4
+£7.8%;C 22 (84.7£12.9%)> BN 25 740+19.0%: A e & RE&Z ¥ 2 2>

W 43.6 +33.8% °
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100%

80% -

60%

TCOD Removal

40% A

20% -
O(,)/() T T T T T T T T T
0 9 4 6 8 100 12 14 16 18 20 22
Week
B 4-9 TCOD 2 “,% Foghi
% 4-8 W9-W21 L = TCOD 2 “,ﬁzt &
TCOD Removal Effluent TCOD
Group
(%) (mg/L)

A 43.6 +33.8 394 + 325
BD 904+7.8 55+ 44
BN 74.0 £ 19.0 149 + 109

C 84.7+12.9 88+ 74

Influent COD: 573 £+ 14 mg/L

AFE 3 2. TCOD # 5 A Sijp w8 ¢ Vav & 30— Hgdagis ko
# 2% i 714 (Suspended Solids, SS)¥f TCOD ik & & § 4 F jt > @ dik-k ¥ SS
DERX B E R e AT B B R PR (3-10 4 4R) 1T 5 g 1F ek
FE 505 1 AT IR 2 B E Rk TR R E T 2 RIFIF IR o g e B g Bt
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RSB RFPRARA) S > T S ERICA AR D RFFAME AL
ARFTCOD 4 f 3 AR SR A QB HFRFA -
Alep WOARBISGR R~ £ 2 > ERFAUELPET &0 5gd)

/‘H'“;)-\ ’ S:é‘:i\'.,|/n J\é TCOD %)if r—g ’ Ké(: fﬁf}%%ﬁ"ﬁ ’5&*;”}%@/@—_7: Tt °€ B’t’—ﬁls

TCOD 4 % % H 2% 5 0% B diin-ke SS 2 #i#8 » H3k 4L TCOD kR %

‘—h

LA DK e IR F PR PR KPR RE I SR 4 o SR R
TCOD 4 % & 2 3 fI3:4 » & Xi etal. (2022) 7k 1 el % — K » 7 & B i (2 2
340 5 P TCOD 4 % rcdk 2 MiEF -
2T o BD BN # C 22 TCOD 4 % % % RAgFE > T2 S s ol
AR T A T o BN B M - R evESEana o o 4 Rk 543 BD & C
C BT AL CRRIERT > WA MIRR F RS R EAY -
B4t o (et A 5 A& 6~ 't 7~ %4 8) > Shapiro-Wilk ¥ i+
W EEE T OAEZBNEGESEF AT pEs w5 0.159 22 0.055° + »+ 0.05¢
Hepeu P2 @8 &% A > f&dr* 248k Kruskal-Wallis Test i& {7 £ i o %
% Hi7 0 £ TCOD 4 % % %5 &8 ¥ £ 8 (p < 0.001) - &~ % 14 Dunn’s 5 £t
Pt e A 47 0 $3* Bonferroni 12 1 (33 & {8 8 F K E a, = 0.00833)18 &
LR L
® Aw#BD-Clz % al¥Ls(p<000833) #¢ Ak TCOD 4 % %
L B A 27 TCOD 3 f & BD~C 24 o gt é—%?ﬁfy‘?ﬂ"‘A’}éi,
HEAEAL S ERFEHLDNIH AN RRBIFAMER > 2 ' X TCOD
3 ﬂért%;;:f%: °
®@ BD¥ BN ¥z A Dunn’s 2T AE&F LR » w¥ & Bonferroni 1% i+ ¥
it # 3% Type Il error (% 1£44) » i — 35 12 Mann-Whitney U & 24 45 > % % &
7 BD # BN 2 TCOD # % % % &8 % £ & (p=0007 <0.05) * #* % % RH %

PRif 4 TCOD 4 % R B F B35 LW B (BD)2 4 e ¥ B 2oy
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¥ (BN) -
® Cw¥BD-BNE2mRAEREFLEMDP=0263/p=0.153)" %+ C =

TCOD 2 % »cii 238 & 4piT < ¢ ¢ » BD ~ BN # C ‘22 TCOD 2 % % i #>

FERAREEC) o BT H K AE RO AR -
FElERET Ao ARFEATEELIERTCOD 25557 &> a B C
57 TCOD < ",ﬁiéiﬁ#ﬂﬁ o - it g BD &7 BN & —*ﬁ'v’@‘lﬁu » kR 2. TCOD
3 Kﬁz ZOLPEAT R o bk foth H T o ABUE PR A B BT I R A
Pl > R R RIS NH TCOD 2 Rl F £ L

A4 E R oo pteb s R ERIE 45 K it 22 TCOD 2 f

4 s
gk Sk Eap < £ A

BN SR N ONTE ST SAEIE S

4.3.1.2 SCOD = '%:‘}‘L\'ﬁ
B 4-10 &1 & ek B> 7 &2 SCOD 2 “/T‘ AR WO-W2I enT

34 g F g gk ? SCOD k& R Fdwd 4-9 9o o
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100%

99%

98%

SCOD Removal
Nl
2

92% - BN
91% - ——C
9006 T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22
Week
B 4-10 SCOD 2 ",% Fogq
% 4-9 W9-W21 L 5 SCOD 4 “ﬁv‘. &
SCOD Removal Effluent SCOD
Group
(%) (mg/L)
A 96.4+1.7 20.8+9.5
BD 97.6+1.0 13.5+5.5
BN 98.1+£0.8 10.8 £4.7
C 97.4+0.7 14.8+£3.9

Influent COD: 573 £+ 14 mg/L

d 35245 SCOD 2 4 547 0.45um Bk » % SCOD 4 % 57 % 5 i
PG L Akl 0 2 R SSEF - FMA T bR Ry AR B
CEOR SRS N 2k R SR RS RS E

% # A mSCOD 4 ' FApshes i # %45 h 505§ ik 964% « # - M &
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TR AR PEIERIEEG M AEFFERBT 0 RSB FHKA
gz b A 2 > EROTURY B 2 2 0 A 5 SCOD 2
“ﬁrfi'?:i?‘ cEEA AR ERNBAETEBRE L JITAR o

Z¥s% L 2R SCOD 2 "f FRF s s LR 0 F 4i8 (7 Shapiro-Wilk ¥ i
M o 5T T AZEBNEREFEAT pEAS S 0905L 0563 32
AR F KR 0=0.05- g A2 g B A A B8 F A 178 Kruskal-
Wallis 25 % #icth T 38 (7 R o 2% B or e 2/ SCOD 2 K/T‘;k LT HFLE(p=
0.01228 < 0.05)

-2 Dunn’s % £ TIETS S R i > ¥ i 7 Bonferroni K&
(Fe I 14 B8 % K o, = 0.00833) o M gt % B 7 > (A 2 BN &2 B 9 SCOD 2
LB L RE(p=0.002<0.00833) Hépe £ T F ARBEIHFLE
(P A D sz o) 37 R A AR5 AR £ 8 > e S dcle w2 mAn ¥
i -

probs LiE- HIEFERREAZRERANL AL P52 “ﬁ% » #-%F BD(Gk R
#)¢ BN(2 % #)5 2ie {7 Mann-WhitneyU e %o % Mrs ¥ F 2 ¥ L & (p
=0.26421 > 0.05) » Af7m 6 f 22 T $ SCOD 4 %% F & P AR R FPHRTT A 4 28
fy 22 RALY N AR BB PP LGS o EmA AT R e A
O~td 10~ 2 11~ 4 129557 o

ST s g A rdpdt A e BN B2 P Al F AR 0 e FHA S
“tF F Jt SCOD o4 % 24 B4 - 2 kSR L 0 2 AERILE B EH

SRS R T L B R AT R o

4.3.2 .ﬁ,i_i:ﬁggg,}ﬁ
Bl 4-11 87 & ik § e i o 40 A EB T (NOs-N) & 4 & A
37:'3,@.\ ’ %?7?3?'— L2 fgg '&;5 3 ?_? mfﬁ,‘?ﬁi’r—‘]%
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35 - 100%
F 90%
30 -
F 80%
25 1 - 70% —
2
L 0,
ﬁ 20 60% E
f.n s 50%;
E 15 4 F 40% e
10 - F 30%
F 20%
5 4
F 10%
0 - 0%
0 2 4 6 8 10 12 14 16 18 20
Week

s NH3-N s NO2-N s NO3-N  —@=—TN removal

BD
35 100%
L 90%
30 -
L 80%
25 A i
70%7;
[}
=20 L 60% g
%ﬂ i 50%:
E 15 - | 400 &
10 4 L 30%
L 20%
5 -
L 10%
0 L 0%
0 2 4 6 8 10 12 14 16 18 20
Week

s NH3-N s NO2-N e NO3-N —@=—TN removal
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BN

100%
F 90%
- 80%
70%
60%

50%

TN Removal

40%
30%
20%
10%

0%

2 4 6 8

10 12
Week

14 16

s NH3-N s NO2-N mmsm NO3-N —@=—TN removal

C
35 - - 100%
v L 90%
30 -
L 80%
25 A i
70% —
o B
= 20 L 60% g
%ﬂ L 50%‘3Z=
E 15 - L 400
10 L 30%
L 20%
5 -
L 10%
0 L 09
0 2 4 6 8 10 12 14 16 18 20
Week

Lok KR 412 R D] R e RN E AR SRR R R TR AR

B0 B KN (P R

s NH3-N s NO2-N s NO3-N —@=—TN removal

—_

o EmBcp R FheE 410 #5F o
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100%

80% A

= 60% A
»
=]
=
W
=
7z
= 40% A+
——A
BD
20% A BN
_‘_C
O“/U T T T T T T T T T T

0 2 4 6 8 10 12 14 16 18 20 22
Week

B 4-12TN 4 14 g

% 4-10 WO-W21 T35 TN 4 %4 %

TN Removal Effluent TN
Group
(%) (mg-N/L)
A 90.5+9.1 44+42
BD 749 +6.2 11.6 £3.0
BN 66.6 +6.5 154+32
C 84.5+10.0 7.1+4.7

Influent TN: 45.8 £ 4.5 mg-N/L

Shapiro-Wilk # f& {2 2 (L% 13)k 7> EBNE CEFHBEFEL F(
#

\\Xr

AW L 0101 22 0308) Hepw w2 4 & F LA H B o Flpb v a2
Kruskal-Wallis 1k €& 7 & 2B F 2 % F ML B AT - o LR * (L4

14)8E 7 » & s hAF L P (p=2.09x10°<0.05) > &~ % 2 Dunn’s Test i& {7 &
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gl 15 M e B AL ML R > BRAeT

1. A2 B2 W#(Avs..BD/Avs..BN):

ARRFE p WO 2 T4 0 % 5 90.5 % 9.1% » AL F > BD (74.9 + 6.2%)
27 BN (66.6+6.5%) » p @4 %] 5 0.002 22<0.001 - 82 A 22 B A % 5 24 ] prid i
EIE o e A3 24 PR > B & 12 [ Rk Bon L PFF kR GuE (TR
FT R RE & g o

- HURAEZBDBEXEHT) ALRE IR IHFRE AT AL

BIM o RBEELZ aERAATGELAISESZa ) AL
BBEGAP R R ARBIEE TS LT STEF BoiES AT
)k B (Thomasetal., 1976; Wangetal., 2023) = j* b > J2p| A ¥ 2 £ & § 2 Sk
Pepegtd s Bz F e ER A Y #k
- BRI RF L EkS BN BB RIRE Y RILLE ST o RAR R D
T FRA TN A GFHFN AL L@y AREFFIERLT 3%
WAL I o
2. Ce&2 B2 W (Cvs..BD/Cyvs..BN):

Clep WO d T34 %5 % 84.5+10.0% » 4% %2 BD (74.9 + 6.2%) &
BN (66.6 + 6.5%) ° 3% Dunn’s Test & 2% % > C &2 BN P £ B 2 A ¥ kK (p <
0.001); @ C ¢ BD Bz A % €t e {62 p<0.0083 i & p g v 3
005 %7 mE 3 - T/RL LA

BHECHFH 12 P FERiER » REF TRk 1B 5 24 prud 38
fTom CHRPRAFFRES - FREFHT CERFIFINHRF KT it
R 2 g iF3ag f oootie 9 8 Rl A F 4o o 0t b JEAE A 1
TR A F BRAHGEABIAH YRR 4207 50 C Hi5 R ¢ A

Ao AR YRS » - H A HE ART L% HERLBE AR
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3. BD# BN 2§ @

Dunn’s Test ' % #2178 ¥ F % (p=0.06) > 5 L P Azteifld X H R /L 4 3 >
- #H* Mann-Whitney U 4 #_i& {7 BD # BN 2z ' (L4 16) > B % Hr
BD % % &> BN (p=10.007 <0.05) » 3P FF*ATFT R LA EZ P RIFH24 )
P TN Y > kR hF 4 ok i Roag e £33 & FFPY R
v T brdg sk & 0 v A 4 2 50 £ 7 3 (Thomasetal., 1976) » Bk BT Eiw
L rechfegips > WaEF 20f o
4, Axg Cr2ZIVR

A#Cabf§4 %5 REFLE@Q=0358>00083) 7 brs ] if

ﬁw,a%@%%mﬁmﬁQWWﬁmmmﬁﬁ%F%%’@ﬁﬁﬁﬁﬂﬁié%

FEAI G RET TS REIIAS R S RF ot B HER

()
A

PR R PR (e A )i BEF RS LE S kg

® RFME K ARAFHEAAHERRT > FEONRE 2 p SRS

® LpHIEIT LAY RRIDAT LRI FEIHY

AET LR KRR E RS S R R AR R B E 2

JER L

I
=K

2

433 RBHE G F AT
Bl 4-13 B L e KBRS AP T R L AR A S ey ]
WEBr A A B B AE TR E R E R R otk iy A &

4-11 557 o
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100%

80% A

60%

TP Removal

40% 4\ \

20% A

0% -

0 2 4 6 x |I0 1'2 114 llo llx zlo 29
Week
B 4-13 TP 2 B,% Foghi
% 4-11 W9-W21 T =5 TP 2 ",ﬁ% &
TP Removal Effluent TP
Group
(%) (mg-PO4>/L)
A 56.8+£16.0 10.9+4.1
BD 58.8+£16.5 104+£42
BN 497+ 14.6 12.7+3.7
C 71.4+12.2 72+3.1

Influent TP: 25.3 + 0.4 mg-PO4*/L

BB R A R Clep WO B ehiimd e hfie s B2

71.4+122% > P EF >3 © % u] o 4pfz T > A~ BD ¥ BN chT ¥ gid 4 & Ao

—

Bl % 56.8+£16.0%58.8+16.5%49.7£14.6% > 22 C ‘22 FF 15 - TARR T £ o

SOERBT BT 12 SN E S CF R Ay X B L R
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AR RS

SRR R ERE AT AEK 0 § L8 Shapiro-Wilk ¥ 14
WE(L2d 17) 2581 L eFTR2 pEy <3005 # &% KA TER--H
T #k* Levene's Test Fazudicdp .3 & Sl — (L4 18) %% %7 p i+
005 RERBEBA- Mo FEN I ARMI LY RMTRBREYESAGFE &

FRERE- o TP T ANOVA £ {7 ficdpt e

ANOVA 5% (A% 19871 > 2 F F B2 B “f FeELR(p=
0.005<0.05) 272" F - 2FPLBENF LK 8- HBFLBE R £
P4 LSD th e 7 6 A T(L A 20) 0 B% AT 0 C 2 A 2(p=
0.016) ~ BD % (p = 0.037)%2 BN &(p <0.001)2. 3o 3% £ B (p <0.05)» &+ C
AR Sk F B H U2 o5 ANBDE BN RS RRIAERFT L
AZ2Baf Y24 PR FEE TLBERT B d Bad FEABME o
BTk PRE R AP B E . T hBD & BN A U A LR 2 0 )
ZAko A FRRRARFLL BT EREN T BPABE L I TG
GAPTEET 0 KRG Fon AHFLE

a2 o CHEREE N E2 f Ao PV B H R R ATAE ek

e

)

):r >
%‘31
%

&
H
s
I

PRRE TRB G M - ARE FET 0 R € 4 R T L RUR
Afcd BRRE e BT R RBEARI BH A gk B R A S
REAFL BT G5 mre P > KA BB A3 ",% »x 5 (Welles et al., 2017) o 23 7~
T A SR A FGEL 451 FEA) C Y TRRIE § KRG SR
BRI E R > 4 Rhodocyclaceae #0 3%4Lp ¢ 2 S M wHAmMEE LA
’éﬁ@,(Carvalho et al., 2024; Petriglieri et al., 2021; Ren et al., 2021) « F]* » A7 %

Sdn U BREPERIT R KA R o i 7 R VR ER RN A T

. S Tt
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4.4 EPS & ¥7

EPS B35k cn?) S 2 by righetdd » 2 & d ?j%‘%,f%@i‘] EPS

(tightly bound EPS, TB-EPS)# £:47 3] EPS (loosely bound EPS, LB-EPS)## = (Zhang

etal.,2019) e TB-EPS =*t w2 48 % 5 > ¥ ‘mP2 )E%?f %% & @ LB-EPS » i# *t TB-

EPS #F 30 > SHE#c s 24T~ B & 7 (Yan et al,, 2019) - H ¢ > TB-EPS 3 4r i3 ik

fore ihde G T mAeiiokit o ARGEme AR S R E 5 £ R ??/F*J%(Cao et al.,

2022; Wang et al., 2021) o

EPS i & & A 5 3% F(PN)2&2 5 pE(PS)» # ¢ PN 4% i EPS sfgn k2 » £

EHA P Ak A 2 $osenhd 4 714 (TIorhemen et al., 2020) 5 PS B 5 84302 S 4f

Fenlg B 5 (Adav et al., 2008) o ¥ /ﬁ%#ﬁ S0 PN st 489 28 2 pokiby

ERFH o HH T RIS ﬁ;t}_m’g‘[;kr’g > PS (Peng et al., 2022; Yan et al.,

2019) o #- 7k > PN/PS v AR 5 3 S Lt endpth > FIPS { 3 % Xikd ¥ 4

f% 0 f B e PN/PS v& ¥ 3 2SR iR fR A 4 0 B IR E el fﬁﬁ% Z_{+ (Torhemen et

al., 2020; Na et al., 2019) -

» P R FPR A R iE A2 EPS ch® i > AT P FES RS

(Seed)2 % 19iF A~B~C = # ¥ P~ » » % 5 B~ LB-EPS & TB-EPS & 4 {7 # PN

BPSZE - Bhick 412 5757 o

% 4-12EPS » 7% %

LB-PN LB-PS TB-PN TB-PS

Total EPS

(mg/g-vss) (mg/g-vss) (mg/g-vss) (mg/g-vss) (mg/g-vss)

Seed 7.0 1.4 40.4 11.7 60.5
W19_A 36.7 7.1 66.7 16.7 127.3
W19_B 45.0 7.5 78.1 21.9 152.4
w19 _C 76.2 12.9 70.9 16.0 176.0
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¢ LB-EPS £ TB-EPS 7PN ¢ PS %.{r¥ {# %, EPS £ (mg/g-vss)> £ & % 4]
4-14 #5757 o 8144248 F8(60.5 mg/g-vss)4p 1t > % 19 F A~ B~ C 2 i EPS & %3
40X 127.3~ 1524 £2 176.0 mg/g-vss » B 77 e FAE AT Ik BApf i B 427 3% EPS &F
FRE M- RPEIPRFEFRERY 0 LB RS HEEETE EPS A E

H 4v AR % 4p 2 (Adav et al., 2008) ©

200
m TB-EPS

160 4
— LB-EPS
w
7
L0
g0 120 A
=]
p—
—
=
-]
—
g 80 A
@)
[ ]
(=T
=

o 89.1

438 223
0
A B C

B 4-14 EPS = = (LB/TB)

- 447 EPS 2= > 4o 4-15° FERAB-CH# A2 PN PS 7 £
FREASKE AU PN Z ER LRGP R IR iEARY PN/PS B D
36# =3 AH43 B 422 CH 5127 CH,PNPS ks v diF
mﬁ%4%oCﬁgﬁgﬁﬁﬂﬁm’mmﬁg%#gky’ﬁ4#§iQﬁPS

TaAREM FHA PNPS iz v o g CHya R ,;éﬁﬁaﬁ Z_t3f # (Iorhemen

etal., 2020; Na et al., 2019) -
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mPS

160 28.9
— PN
‘?’* 293
L0
oD 120 - a
g 23.8
S
-
=]
-]
A
3 80
@] 147.1
7))
- 123.1
= 13.1 103.5

40 A

474
0
Seed A B C

B 4-15 EPS & = (PN/PS)

%

ki

B R Ao REPERS R RARR T A 0 EPS RERFRS L
PN/PS 1t it 2 o CH, FIH R BA Y cngf (112 > 8- 43k F PN ikt » § B4t

A8 AR o

4.5 gt P oS o7
4.5.1 FE A 5

SAR EEPEARS R S B A P ET A E A E L8 fIr 168
DNA 2 £ T/ i & 60 PR (R 4-16)22 #2 & (B 4-17)i8 7 e 2 4 & 5 2
Vo PR BAITERIPHERF N 1% e 5 E A BRI RELE R

AEE R S ptu] 0 B R R A Y §F 4 Others
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Phylum-Level Relative Abundance (>1%)

100% Phylum
Bl Planctomycetota
- mmm  Chloroflexi
Bacteroidota
_ Patescibacteria
80% B Proteobacteria
- mmm Verrucomicrobiota
= Myxococcota
; Actinobacteriota
é 60% | | Hrr.'mcutes
Re] B Spirochaetota
5 Nitrospirota
ff«_ Bdellovibrionota
0>J mmm Acidobacteriota
z 40% mmm Desulfobacterota
) Hm Cyanobacteria
e H Others
20% |
0%

Seed A
Sample

Bl 4-16 F* f 5 A3 e =
B R sRET R AEREF B R RFAAS R DERY
Planctomycetota ~ Chloroflexi ~ Patescibacteria ~ Myxococcota ~ Spirochaetota ~
Bdellovibrionota # Acidobacteriota 14p ¥+ % & 8 % T " (M AZE L HE - BHEREL

AITUTIRYR) BT B L F A PRERRS A LRIV ETARERNG S

T

#p 4> Cyanobacteria( EF )X L BB L 2 AB-C=Z 7 =5+ E# 4
FIBELE T 225§ BHREF FAFTRPTRoAEF FEHAL - F
L BRI 7 i % B (7 £ & 18 % (Subashchandrabose et al., 2011) » 25 = & = chs 2
BT et FHRFRLE REDOF BRI A 0 RS cE 18 B A (Caille et al,
2024; Wang et al., 2023) » 7 B43275 4 4 3 ‘ﬁ% c ERARE AN FEFpHE

Bhd > ST AP AETREINAN S BIREFS L o
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Family-Level Relative Abundance (Top 10)

Rhodocyclaceae

Comamonadaceae

Haliangiaceae

Phycisphaeraceae

Gemmataceae

Saprospiraceae

Competibacteraceae
o__Chitinophagales;f__uncultured
c__Anaerolineae;o_ SBR1031;f SBR1031
¢__Anaerolineae;o__C10-SB1A;f__C10-SB1A
o__Oxyphotobacteria_lncertae_Sedis;f__Unknown_Family
Nitrospiraceae

Chitinophagaceae

Rhodobacteraceae

Paraspirulinaceae

Spirosomaceae

c__Cyanobacteriia;__;
Propionibacteriaceae

Microscillaceae

Leptolyngbyaceae

Streptococcaceae

Phormidiaceae

Moraxellaceae

Others

100

80

60

40

Relative Abundance (%)
PRRnnnnnnnnnnnnennnnnnnl

20¢F

Seed A B C
Samples

Bl 4-17 f K o e e

Atk LY 5485 R 0 Others & v i 60% > 8r B AR ARG F R

o

i ASB-CH® RIZREF PHBEY B Br AREAR Y o M2

. C# ¢ »Rhodocyclaceae 1 cifp L AP R H 4 Hax RagF i &

PR AR A i im0 2 C BRI RE R RF 2 5 L] weH

7 %Al # i (Huangetal,, 2015) > @ Dechloromonas %% Thauera § { & % £ s b
22 F F4 e #e e (Petriglieri et al., 2021; Ren et al., 2021) o #* ¢t » Candidatus
Accumulibacter 7 & 5 2 4] PAOs » 7= & & f* k@A 4 2 ATP & {7 B F R
it 4 (Carvalho et al., 2024) » A7 F hk RIRH Y > 7 L& - LS fox

B,
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Rhodocyclaceae

uncultured 0.07% [
Denitratisoma 0% D
o% []
Azospira 1% [
..... o% [
Uliginosibacterium 0% |
_ox [l
D 0.05% [l
Azovibrio 0% [
Propionivibrio 0.1% [I]
Candidatus_Accumulibacter 0.3% [1]
Methy s 0.09% [
Azoarcus 0.6% .

® 4-18 C #, Rhodocyclaceae * & =

A

Comamonadaceae 1 ¢ ¢ 3 % f& 8 wml Hit 7> 4= Comamonas (Gumaelius
etal.,2001)¥2 Pelomonas (Wuetal.,2024) 5 5% iy 4 o & 47 7 ¥ »Comamonadaceae
Pt ANBCH a2 R A 65 5.6%2.9%% 9.0% > H ¢ B eh% B B F R
Mo BRRF SR NDE AR

Competibacteraceae §* & £ %] GAO (glycogen-accumulating organisms)*% ¥ » &
PAOs 5 gk > ¥ i ¥Hakend f;,a = #r$](Mcllroy etal., 2014) - 47 7 ¢ > C 1}
VRRREFE R E R RO R B PAOs ch2 £ By A iR A GRS “ﬁ% °

LA

W

i\4

% 4p % & Competibacteraceae #Le7= B iy dx ¥ 4+ 3 L Fix it T AR

F

(NO) & ZAFBMNO) Z T+ X Fit TR R = § 4510 & § Ay
i# (Mcllroy et al., 2014) -

Nitrospiraceae 1 ¥ & & % % (L 5 Nitrospira> * &5 2 % &R e f > 4
sl i o adNOB . it 57 % NOx § 1 5 NOs o b b s p7 3 B » 3%
% Nitrospira B & % % 2> A {* (comammox) st # » it B % NHa'# i* 5 NOs » B 7

wE AR 23 L 20 R BHE4 (Daims, 2014) - AT P C A & B ¥
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Nitrospiraceae #Lefp ¥+ % & A B 5 2.5%% 4.6% ;@ & C &5k 7 -
Nitrospiraceae L ci4p ¥+ & B 4 W] & 0.8% 1.2% > & 7 » i - & FL 8] o 3 g3t
A ﬁfﬁ » Others -

Rhodobacteraceae 4 7 3% 5 = f £ 5 it &% 45 4 (Gui et al., 2024; Pujalte et
al,2014) > & F fth? cnF LB R ER &4 o ) B AT SRS T
BEEIIE AN G BEAFERGA N WBAREC B T R RE

Bl oAl AR ERES FY R & (Pujalteetal,, 2014)
EAFE P ow Bk Ay P Rhodobacteraceae 442 A& i+ HApHER A~ 4
158 0.6% At 2.5% B H 45% ~CH 7.3% - afgEfais k¢ o AP
PREM XA rw A ful Bon B A R RIS RS B R TR T iR by
e

Moraxellaceae #* e fad C # ¢ > I HE R » B i 0.9%E 3.5% > 27 » =
LA BEREHA A AAZBRYBRAS B LA BREM DT RRIHYA
A u A 0.5%% 1.0% - F"f,_f‘i F(A~B~C H)? > Moraxellaceae it~ &
100%¢d  Acinetobacter J§ 2. » % F/H & ¢l F it~ wpl B Bk 4 e i
AR HERE F R A gk “,% AT F ?ﬁ}g%(Chen et al., 2021; Xia et al., 2020) -
R oo fefhi5 k¢ Moraxellaceae £ e < B ¥ 7 > A~B~C > 4§ 4-19>

H ® Acinetobacter & 1% BARZ A Ry aP AT BT L § S8

—i",%ﬁ‘i" o

103

doi:10.6342/NTU202502549



Moraxellaceae

Bl 4-19 £ 4875 & ¢ Moraxellaceae #* % =

Oxyphotobacteria P ~Paraspirulinaceae #* - Cyanobacteriia §* ~ Leptolyngbyaceae
#* ~ Phormidiaceae #*#2/** Cyanobacteria(§ % F)® » 7 515 % & (7% H-ok iy g 4
A ENAATHY DRI F AP LA B CZH{HPM k5T B fp
YR > A ulh 45.0%~24.8%~ 19.5% > @ {54875k ¢ % 0.48% 0 BEor KPR E %

EHHAIRTRF B R EMaE L s - F A FRET G k& vy

iﬁ’/z’\; ’ /’;P'rl/:u f’fﬁ’? ﬁw? i%;gﬁﬁi%—’f#d”%’ 2B gLtk _51:. 'L’ 15_@
A BB N ERPCESET SRR B RY & B xl$
(Zhang et al., 2023) - G2 KPR LR 5 AT L85 i 02 E 7S

ﬁ%iﬁ%?ﬁﬁw%"piﬁﬁﬁﬁtutkﬁ’ﬁMﬁ*#ﬁ°

- H A B AREME S LR A RE RS MR
ﬁ4*i%W’iﬂ%ﬁ%ﬁ$i%ﬁ@’ §ELR R FE 2 S BI(R 420)0 2 4

A EE D2 Eﬁ #g " Others °
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Genus-Level Relative Abundance (Top 10)
100} Genus

Haliangium
SM1A02
Candidatus_Competibacter
SBR1031

80 Kapabacteriales
C10-SB1A
Leptolyngbya_ANT.L52.2
Nitrospira

60 kL Planktothrix_NIVA-CYA_15
Thauera
Runella
Limnothrix
Zoogloea

40t ] Micropruina

Dechloromonas

Terrimonas

Comamonas

Lactococcus

Relative Abundance (%)

20 - I
Acinetobacter
Others

Seed A B Cc
Sample

B 420 Bk & FE e
FefgRadEhms 2 A HEY 0 BRESHDR ¢ 45 Lepolyngbya
ANT.L52.2(fm i 3% & ) ~ Planktothrix NIVA-CYA 15(:% 5% % &) ~ Limnothrix(# 2. &
SRR FRTIRES A L ESE AL L RS PP HE R FR e 4413 4
H2 AW DIRES AR S £ PET kB L Sk AT H 4 o

g > 22 Xietal (2022)%7 § - R o

2413 pHRET L X BEdd 2 FRE
B

Seed A C

Leptolyngbya ANT.L52.2 0.0% 193% 15.7% 1.0%
Planktothrix NIVA-CYA 15  0.0% 2.0% 0.0% 4.1%

Limnothrix 0.0% 1.7% 0.0% 0.0%

total 0.0% 23.0% 15.7% 5.2%

R B AF BN S AR RM LS RFEES AT

KEGG (Kyoto Encyclopedia of Genes and Genomes) 7 # & &2 £ 5 < 1;& ¥He FE 2z
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FUBRE A R C dr b2 § B 1R R R
LR APEE RSP A 2 F R AEER USRS KA

X F o AL E 421

% 4-14 § 73 ’%iéﬂb ERSE T

Nitrospira (Daims, 2014)
Nitrosomonas (Wendeborn, 2020)
LR e I T
Acinetobacter (Chen et al., 2021; Xia et al., 2020)
C10-SB1A (Fu et al., 2025)

Diaphorobacter (Khardenavis et al., 2007)

Dechloromonas (Petriglieri et al., 2021)
Haliangium (Huang et al., 2022)
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Functional Composition of Microbial Communities
Based on Genus-Level Classification
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Diaphorobacter 0.1% 0.0% 0.0% 0.0%

Thauera 0.0% 1.8% 02%  0.7%

Bradyrhizobium 0.0% 0.1% 0.0% 0.0%

Shinella 0.0% 0.0% 02% 0.1%

Acinetobacter 0.1% 05% 1.0% 3.5%

Aquabacterium 0.6% 0.0% 0.0% 0.0%

Pseudomonas 0.0% 0.1% 0.1% 0.4%

Azospira 02% 02% 0.0% 0.1%

C10-SB1A 4.1% 0.0% 0.0% 0.0%

Halomonas 0.7%  0.0% 0.0% 0.0%

Azoarcus 0.0% 0.0% 0.0% 0.1%
total 184% 9.2% 10.3% 19.2%

Dechloromonas 1.2% 03% 0.1% 3.7%

Haliangium 25% 02% 0.8% 0.2%

Tetrasphaera 0.1% 0.0% 0.0% 0.0%

Thauera 0.0% 1.8% 02% 0.7%

£ B R
Acinetobacter 0.1% 05% 1.0% 3.5%
it 2 A%

Candidatus Accumulibacter 0.0% 0.0% 0.1% 0.0%

Gemmatimonas 0.1% 02% 0.1% 0.0%

Pseudomonas 0.0% 0.1% 0.1% 0.4%

total 3.8% 32% 23% 8.5%

F¥% R Leptolyngbya ANT.L52.2 0.0% 19.3% 15.7% 1.0%
(% % #BF  Microseira Carmichael-Alabama  0.0% 1.0% 0.0%  0.0%
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¥ B 4) Planktothrix NIVA-CYA 15 0.0% 2.0% 0.0% 4.1%

Leptolyngbya PCC-6306 0.0% 03% 0.0% @ 0.0%
Sericytochromatia 03% 0.0% 0.0%  0.0%
JSC-12 0.0% 0.0% 02% 0.0%
Vampirovibrionales 0.1% 0.0% 0.0% 0.0%

Candidatus Obscuribacter 0.1% 0.0% 0.0% 0.0%

Pantalinema 0.0% 0.0% 0.0% 0.1%
Limnothrix 0.0% 1.7% 0.0% 0.0%
total 0.5% 24.3% 15.9% 5.3%
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