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摘要

這篇論文的主要目標是研究射影對偶的退化。我們證明在特定條件下，一個

向量叢截面的零點集構成的光滑族的平坦極限可以描述為額外法叢截面的零點

集。作為應用，我們探討 Shinder-Zhang的五次橢圓曲線，並證明它們會退化為

Mori-Mukai連結中，三維二次曲面中的一條橢圓曲線。

關鍵字：退化、額外法叢、相交、齊性多樣體、代數幾何
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Abstract

The primary aim of this note is to initiate the study of the degenerations of projective

dualities. We prove that, under certain conditions, the flat limit of a smooth family of

zero loci of general sections of a vector bundle can be described as the zero locus of a

section of the excess normal bundle. As an application, we examine the case of Shinder-

Zhang’s degree-five elliptic curves and show that they degenerate to the elliptic curve on

the quadric 3-fold, appearing in the Mori-Mukai link of Fano 3-fold.

Keywords: Degeneration, ExcessNormal Bundle, Intersection, HomogeneousVariety, Al-

gebraic Geometry
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Chapter 1 Introduction

Let X be a smooth projective variety. We denote by Db(X) := Db(Coh(X)) the

bounded derived category of coherent sheaves ofX . We say that a pair of smooth projec-

tive varieties X and Y are D-equivalent if Db(X) ' Db(Y ).

For example, let X be a 3-dimensional smooth linear section of the Grassmannian

X = Gr(2, 7) ∩ P13 ⊆ P20

in the Plücker embedding. It is a Calabi-Yau 3-fold. The classical projective dual of

Gr(2, 7) is the Pfaffian variety Pf(4, 7). Let Y the intersection of the projective dual of

Gr(2, 7) and P13 in P20, which is smooth. Y is also a Calabi-Yai 3-fold. It has been proved

by L. Borisov and A. Căldăraru that X and Y are D-equivalent [BC09]. We usually call

(X,Y ) a Pfaffian-Grassmannian CY3 pair.

Recently, L. Borisov first solved the problem of whether the class L of affine line

is a zero-divisor in the Grothendieck ring of varieties using the Pfaffian-Grassmannian

CY3 pair [Bor18]. The result was refined by N. Martin. He proved, in [Mar16], that for a

Pfaffian-Grassmannian CY3 pair (X,Y ),

L6 ·([X]− [Y ]) = 0.

1
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We say a pair of smooth projective varieties X and X are L-equivalent if

Lk ·([X]− [Y ]) = 0

in theGrothendieck ring of varietyK0(Var/C) for some k ≥ 0. The Pfaffian-Grassmannian

CY3 pair (X,Y ) gives an example of an L-equivalent pair.

In [KS18], A. Kuznetsov and E. Shinder conjectured that for a pair of smooth projec-

tive simply connected varieties, D-equivalence implies L-equivalence. The assumption

of simple connectedness is necessary, as A. Efimov constructed a D-equivalent pair of

abelian varieties that is not L-equivalent [Efi18, Theorem 3.1].

The pair (X,Y ) above is an example of a D-equivalent pair that is also L-equivalent.

In [Ito+19], A. Ito, M. Miura, S. Okawa, and K. Ueda constructed a pair of L-equivalent

Calabi-Yau 3-fold (X ′, Y ′), which is the zero locus of a general section of vector bundles

over the G2-Grassmannian pair. They showed that

L ·([X ′]− [Y ′]) = 0.

Later, A. Kuznetsov proved that the pair (X ′, Y ′) is also D-equivalent [Kuz18].

In [Ito+19] it was mentioned that the pair (X ′, Y ′) is a degeneration of the Pfaffian-

Grassmannian CY3 pair (X,Y ). It is natural to ask whether there are other examples of

D-equivalent and L-equivalent pairs (X,Y ) that degenerate to another D-equivalent and

L-equivalent pair.

In [SZ20], E. Shinder and Z. Zhang proved that if (C1, C2) is a pair of genus 1 curves

of degree 5, which are the linear sections of the Grassmannian Gr(2, 5) and its projective

2
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dual (also isomorphic to Gr(2, 5)), then

L4 ·([C1]− [C2]) = 0.

The pair (C1, C2) is also D-equivalent (see, e.g. [Kuz06, Section 6.1]). On the other

hand, we have a pair of genus 1 curves (C ′
1, C

′
2) in the Mori-Mukai link between P3 and

Q3 [LS24, Proposition 3.6]. H.-Y. Lin and E. Shinder proved that the pair (C ′
1, C

′
2) is

L-equivalent and satisfies

L ·([C ′
1]− [C ′

2]) = 0.

In Corollary 4.4.2, we will prove that one of the genus 1 curvesC2 degenerate to the genus

1 curve C ′
2 in the quadric 3-fold.

Moreover, M. Rampazzo proved that the pair (C ′
1, C

′
2) is D-equivalent [Ram21, Lemma

A.1]. We expect that the pairs (C1, C2) and (C ′
1, C

′
2) give another example of degener-

ation of DL-equivalent pairs. This thesis aims to establish some first steps toward this

statement.

The paper is organized as follows. We review some necessary backgrounds in Section

2. We prove a general theorem about degeneration (Theorem 3.2.1) in Section 3. Finally,

we prove the degeneration of the elliptic curve for the Q3 side in Section 4.

We work over the complex numbers C.

3

http://dx.doi.org/10.6342/NTU202500514


doi:10.6342/NTU2025005144

http://dx.doi.org/10.6342/NTU202500514


doi:10.6342/NTU202500514

Chapter 2 Preliminaries

2.1 Algebraic Groups

We begin by reviewing some basic facts about algebraic groups. The details can be

found in most classical textbooks, such as [Bor66]. We also use some results from a note

written by Ottaviani on rational homogeneous varieties [Ott95].

Let G be a semisimple, simply connected, connected algebraic group. Semisimple

means thatG has no nontrivial (closed) normal connected solvable subgroups. It is known

that any semisimple algebraic group is a direct sum of simple algebraic groups [Ott95,

Theorem 6.13]. An algebraic group is simple if it has no nontrivial (closed) normal con-

nected subgroups. The assumption of simple connectedness is natural, as the Lie algebra

of an algebraic group is isomorphic to the Lie algebra of its universal cover.

By the classification of semisimple connected algebraic groups, there exists a bijec-

tion between simply connected semisimple algebraic groups and Dynkin diagrams. We

typically use the Dynkin diagram to name the algebraic group. For instance, for a sim-

ply connected algebraic group of type C2, we mean the algebraic group whose associated

Dynkin diagram is of type C2.

A subgroup B is called a Borel subgroup if it is maximal among all connected solv-

5
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able subgroups. A subgroup P is called a parabolic subgroup if it is closed and G/P is

projective. A closed subgroup P is parabolic if and only if P contains a Borel subgroup

[Bor66, 11.2, Corollary]. By definition, a Borel subgroup is parabolic.

For a simple, simply-connected, connected algebraic group G with Dynkin diagram

∆, there is a bijection between non-empty finite subsets Σ ⊆ ∆ and the parabolic sub-

groups P (Σ) of G, up to conjugation [Ott95, Theorem 7.8].

2.2 Homogeneous Varieties

Definition 2.2.1. A varietyX is called a homogeneous variety if there exists a transitive

algebraic group action on X .

Many varieties are homogeneous. For instance, the projective spaces Pn, Grassman-

nians Gr(k, n), abelian varieties, quadric hypersurfaces, etc. A well-known decomposi-

tion theorem, given by Borel and Remmert [Ott95, Theorem 1.5], states that any projective

homogeneous variety can be decomposed into a product of an abelian variety and a rational

homogeneous variety. Therefore, it is natural to consider rational homogeneous varieties.

Moreover, another theorem by Borel and Remmert [Ott95, Theorem 1.6] states that

any rational homogeneous variety X can be decomposed as

X ' G1/P1 × · · · ×Gn/Pn,

where Gi are simple algebraic groups and Pi are parabolic subgroups. Hence, we can

focus on rational homogeneous varieties of the form G/P .

In the previous section, we mentioned that parabolic subgroups of a given simple,

6
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simply connected, connected algebraic groupGwith the Dynkin diagram∆ are classified.

As a consequence, rational homogeneous varieties of the form G/P (Σ) are in one-to-one

correspondence with the crossed Dynkin diagrams, where Σ ⊆ ∆ is the set of crossed

nodes.

For example, a Borel subgroup of G is the minimal parabolic subgroup, so the cor-

responding crossed Dynkin diagram is fully crossed out. More explicitly, letG be of type

An. Then G ' SL(n,C), and all Borel subgroups B are conjugate to the group of upper

triangular matrices. The corresponding homogeneous variety G/B is the complete flag

variety.

Let X = G/P (Σ) be the homogeneous variety corresponding to the crossed nodes

Σ = {i1, . . . , ik} of∆. By [Ott95, Proposition 10.4], the Picard group Pic(X) ' Z⊕k. In

particular, X has Picard rank 1 if and only if |Σ| = 1.

2.3 Flat Limit

Definition 2.3.1. A flat family is a flat surjective morphism π : X → C of schemes. We

denote the fiber over t ∈ C by Xt ⊆ X .

Obviously, not all families are flat. Let π : Y → C be a family over a curve, and

let 0 ∈ C be a regular point. Suppose π is not flat over 0. In some situations, we can

replace the fiber Y0 so that the resulting family becomes flat. The intuition is to take the

complement of Y0 and then take the closure. We recall the definition of flat limit following

[Vak, Section 24.3.13]. One can also find it in the classical textbook [Har77, III Section

9]

7
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Proposition-Definition 2.3.2. Let C be a 1-dimensional Noetherian scheme, 0 a regular

closed point of C, X a locally Noetherian scheme, and π : X → C a morphism. Suppose

Y is a closed subscheme of π−1(C \ {0}) and is flat over C \ {0}. If Y ′ is the scheme-

theoretic closure of Y in X , then Y ′ is flat over C. The fiber of 0 of Y ′, denoted Y ′
0 , is

called the flat limit of Y .

We first prove the following lemma.

Lemma 2.3.3 ([Vak, Exercise 24.3.J],[Har77, III Proposition 9.7]). Let π : X → C be a

morphism from a locally Noetherian scheme to a regular curve. Then π is flat if and only

if π sends all the associated points of X to a generic point of C.

Proof. Suppose π is flat. Let x ∈ X be such that π(x) = y is a closed point. Since C is

a regular curve, OC,y is a DVR with maximal ideal my = (t) and uniformizer t. t is not

a zerodivisor. Since π is flat, the pullback of t to the maximal ideal mx of OX,x is not a

zerodivisor. Hence, x is not an associated point.

Conversely, suppose that π is not flat. That is, there exists x ∈ X such that y = π(x)

is a closed point and OX,x is not a flat OC,y-module. We still denote t as the uniformizer

for the DVR OC,y. Since OC,y is a DVR, it is, in particular, a PID. It is known that over a

PID, a module is flat if and only if it is torsion-free. Therefore, OX,x is not a torsion-free

OC,y-module, i.e., the pullback of the uniformizer π∗t toOX,x is a zerodivisor, so π∗tmust

be contained in an associated point. Hence, we found an associated point that is sent to a

generic point. This completes the proof.

Proof of Proposition-Definition 2.3.2. Wemay assumeC = SpecAwhereA is a discrete

valuation ring. Let 0 ∈ SpecA be the closed point and η ∈ SpecA be the generic point,

8
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X be a locally Noetherian scheme over A, and Y ⊆ Xη is a closed subscheme that is flat

over A. Finally, let Y ′ be the scheme-theoretic closure of Y in X .

By our assumption that Y ⊆ Xη is flat overA, Y has no associated point. It is known

that the associated points of the scheme-theoretic closure Y ′ are the associated points of

Y , so Y ′ has no associated point. Therefore, by Lemma 2.3.3, Y ′ is flat over A.

2.4 Zero Locus of a General Section

Let X be a smooth variety, E be a rank r vector bundle, and σ ∈ H0(X,E ).

Definition 2.4.1. The zero locus of σ is defined as

Z(σ) = {x ∈ X | σ(x) = 0}.

Let OX → E be the morphism of multiplying by σ. The ideal sheaf of Z := Z(σ) is

the image of the morphism E ∨ → OX . It is a closed subscheme of X with the expected

codimension r = rank(E ).

Lemma 2.4.2 ([EH16, Proposition-Definition 6.15(c)]). Let X be a smooth variety and

E be a vector bundle of rank r. Suppose Z = Z(σ) is the zero locus of a section of E of

codimension r, which we assume to be smooth. Then

N Z/X ' E |Z ,

where N Z/X = (I Z /I 2
Z)

∨ is the normal bundle of Z in X .

Proof. Let E be the total space of E . We may view σ as a morphism σ : X → E. The

9
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tangent bundle of E restricting to the zero section X ⊆ E has the splitting T E |X '

T X ⊕E . The derivative Dσ restricting to the zero locus Z ⊆ σ(X) is zero, so we get

T Z → T X |Z
Dσ−−→ T X |Z ⊕ E |Z → E |Z

is zero. For any z ∈ Z, the image of T X,z inside T X,z ⊕E z is the tangent space σ(X).

Since Z is smooth of codimension r, σ(X) ∩X transversely. That is, the projection

T X,z → E z is surjective. Therefore, the composition

T X |Z
Dσ−−→ T X |Z ⊕ E |Z → E |Z

is surjective. Computing rank, the sequence

0 → T Z → T X |Z → E |Z → 0

is exact. Thus, N Z/X ' E |Z .

10
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Chapter 3 Main Result

3.1 Setup for the Main Theorem

Let i : X ↪→ Y be a closed embedding between smooth varieties with dimY = n.

Let G be a vector bundle of rank r on Y which is a direct sum of r very ample line bundles.

Let σ ∈ H0(Y,G ) be a general regular section. Let Z = Z(σ) ⊆ Y be the zero locus of σ.

DefineW = X ∩Z, which we also assume to be smooth as a scheme. We do not assume

the intersection is transverse (i.e., the intersection W may have higher dimension). The

following Cartesian diagram represents the setup:

W X

Z Y

f

j
⌜

i

g

(3.1)

Note thatW = Z(i∗σ). We have morphism of exact sequences given by tangent bundles

of the diagram (3.1)

0 T W T X |W N W/X 0

0 T Z |W T Y |W N Z/Y |W 0.

f∗

j∗

p

i∗|W
g∗|W q

(3.2)

The vertical arrow on the right of the diagram (3.2) is defined by the composition q◦i∗|W ◦

p−1 and it is well-defined because the square on the left is commutative.

11
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Definition 3.1.1 ([Ful98, Section 6.3]). Let the notation be as above. We define

EW :=
j∗NZ/Y

NW/X

to be the excess normal bundle of the diagram (3.1).

One may view E W as a way of measuring the non-transversality of the diagram (3.1).

When the intersection is transverse, for any w ∈ W , we have

T W,w = T X,w ∩T Z,w, and T Y,w = T X,w +T Z,w .

Using the isomorphism theorem,

T X,w

T W,w

' T X,w

T X,w ∩T Z,w

' T X,w +T Z,w

T Z,w

' T Y,w

T Z,w

.

Thus, the excess normal bundle is trivial.

3.2 Main Theorem

Let the notation be as in Section 3.1. Let τ ∈ H0(Y,G ) be another general section.

Let C := A1
C denote the affine line, and set C× := A1

C \{0}. Let π1 : X × C → X be the

first projection. Define the section s ∈ H0(X × C, π∗
1i

∗ G ) by

s(x, t) := t(π∗
1i

∗τ)(x) + (π∗
1i

∗σ)(x).

We assume that, in a neighborhood D of 0 ∈ C with t 6= 0, s(x, t) is a regular section for

every t. Let M := Z(s(x, t)) ⊆ X × C be the zero locus of s. By construction, M is a

closed subscheme of X × C. Under the assumption that s is a regular section, the fiber

12
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Z(s(x, t)) over t ∈ D \ {0} has the expected codimension.

Let π : M → C be the restriction of the second projectionπ2 : X×C → C toM. We

use the notationMt := π−1(t) ⊆ M for the fiber over t. Note that π : π−1(C×) → C× is

a submersion, so π is smooth overC×. In particular, π is flat overC×, and by Proposition-

Definition 2.3.2, we can define

M′ := M\M0 ⊆ X × C,

andM′ is flat over C. Let π′ : M′ → C be the restriction of π toM′. By definition, the

fiberM′
0 := π′−1(0) is the flat limit ofM\M0.

The image of τ ∈ H0(Y,G ) under the composition

H0(Y,G ) → H0(W,G |W ) → H0(W,E W ) (3.3)

is denoted by τ ′. The zero locus of τ ′ in W is denoted by Z(τ ′). We now prove the

following result, which is the main theorem of this note.

Theorem 3.2.1. Let the notation be the same as above. Then M′
0 = Z(τ ′). In other

words, the familyMt degenerate to Z(τ ′).

Proof. Using implicit function theorem, for any p ∈ W , there exists an analytic neigh-

borhood of p on which the diagram (3.1) is of the form

V × {p} V ×X ′

V × Z ′ V × Y ′

⌜ (3.4)

with all the morphisms restricting to V are identity.

13
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Therefore, we may assume that in (3.1),W is a point {p}, and let

{p} X ′

Z ′ Y ′

⌜ (3.5)

be the corresponding commutative diagram. Here,X ′, Y ′, and Z ′ are smooth. We assume

that dimY ′ = n, dimX ′ = m and dimZ ′ = `. Recall that Z ′ is the zero locus of a general

section of a rank r vector bundle G , so ` = n− r.

Since Z ′ and Y ′ are smooth, using implicit function theorem, we can choose U ⊆ Y ′

a local trivialization of G such that G |U ' U × Cr and for y ∈ U , the section σ(y) =

(yℓ+1, . . . , yn), the projection of the last r-components of y. That is, viewingZ ′ = Z(σ) as

a closed subvariety of Y ′, the coordinates of z ∈ Z ′ ∩U is given by (z1, . . . , zℓ, 0, . . . , 0).

Note that we have the closed embeddingsX ′ ↪→ Y ′. We choose the coordinates near

p ↪→ X ′ such that p maps to 0, and X ′ ↪→ Y ′ is given by

(x1, . . . , xm) 7→ (0, . . . , 0︸ ︷︷ ︸
ℓ

, x1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
n−ℓ−m

)

In conclusion, on U , the coordinates are given by

(z1, . . . , zℓ, x1, . . . , xm, yℓ+m+1, . . . , yn).

In this case,

σ|X′∩U(x) = (x1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
n−ℓ−m

).

Hence, {p} = Z(σ|X′∩U) = {x1 = · · · = xm = 0}.

By assumption, τ ∈ H0(Y,G ) is a regular section. Wewrite τ(y) = (τℓ+1(y), . . . , τn(y))
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to match up the index of y. On (X ′ ∩ U)× C, the section s(x, t) is given by

s(x, t) = (x1 + tτℓ+1(x), . . . , xm + tτℓ+m(x), tτℓ+m+1(x), . . . , tτn(x)).

When t = 0, we have s(x, 0) = (x1, . . . , xm, 0, . . . , 0) and Z(s(x, 0)) = {x1 = · · · =

xm = 0} = {p}.

We apply the coordinates that we choose to the diagram (3.4) and we claim that on

V × {p},

Z(τ ′) = {τℓ+m+1 = · · · = τn = 0}

where τ ′ is the image of τ under the composition (3.3). Indeed, the fiber of the normal

bundle N V×{p}/V×X′ , which is actually the tangent bundle T X′ , at any (v, p) ∈ V ×{p}

has basis {
∂

∂x1

∣∣∣∣
(v,p)

, . . . ,
∂

∂xm

∣∣∣∣
(v,p)

}
.

Also, the fiber of the normal bundle N V×Z′/V×Y ′ |V×{p} at (v, p) has basis

{
∂

∂x1

∣∣∣∣
(v,p)

, . . . ,
∂

∂xm

∣∣∣∣
(v,p)

,
∂

∂yℓ+m+1

∣∣∣∣
(v,p)

, . . . ,
∂

∂yn

∣∣∣∣
(v,p)

}
.

Hence, the fiber of the excess bundle E V×{p} =
N V ×Z′/V ×Y ′ |V ×{p}

N V ×{p}/V ×X′
at (v, p) has basis

{
∂

∂yℓ+m+1

∣∣∣∣
(v,p)

, . . . ,
∂

∂yn

∣∣∣∣
(v,p)

}
.

The trivialization on E is induced by the trivialization U on G . Therefore, the section τ ′

under the coordinates is of the form τ ′ = (τℓ+m+1, . . . , τn) and the result follows.

Finally, we show that onW ∩ U , Z(τ ′) = M′
0. On one hand, for t near but not 0, if
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(x, t) ∈ M\M0, then

(x, t) ∈ {(x, t) ∈ (X ∩ U)× C | t 6= 0, τℓ+m−1(x) = · · · = τn(x) = 0}.

by the coordinates we choose for s(x, t). Then by taking closure and restricting to t = 0,

we haveM′
0 ⊆ Z(τ ′).

On the other hand, the fiber M′
0 and Z(τ ′) are both irreducible. By flatness of the

familyM′ → C, the dimension ofM′
0 is the same as the dimension of Z(τ ′). Hence, we

obtain the equalityM′
0 = Z(τ ′).
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Chapter 4 Application

The main goal of this section is to apply Theorem 3.2.1 to the family of Shinder-

Zhang’s elliptic curves (Corollary 4.4.2).

4.1 Canonical bundle of Gr(k, n)

We begin with the computation of the canonical bundle of the Grassmannain. We

will constantly use it in the following subsections.

Let V be a vector space of dimension n. Let Gr(k, V ) be the Grassmannian, i.e., the

set of k-dimensional vector subspaces of V . Sometimes, we write Gr(k, n) if the vector

space V is clear. It is well-known that the Grassmannian is a projective variety and we

have the Plücker embedding Gr(k, n) ↪→ P where P = P(∧kV ).

Let U and Q be the tautological subbundle and tautological quotient bundle of

Gr(k, V ), respectively. They satisfy the tautological exact sequence

0 → U → O⊕n
Gr(k,V ) → Q → 0. (4.1)

From the exact sequence (4.1), we see that detO⊕n
Gr(k,V ) ' det(U )⊗det(Q). As detO⊕n

Gr(k,V ) '

OGr(k,n), we know that det(U ) ' det(Q)∨.
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It is well-known that the tangent bundle of Gr(k, V ) is T Gr(k,V ) ' H om(U ,Q) '

U ∨ ⊗ Q. The cotangent bundle Ω1
Gr(k,V ) ' U ⊗ Q∨. The canonical bundle is

ωGr(k,V ) = det(Ω1
Gr(k,V )) ' ∧k(U ⊗ Q∨) ' det(U )⊗(n−k) ⊗ det(Q)⊗k ' det(U )⊗n.

As det(U ) ' OGr(k,V )(−1) := OP(−1)|Gr(k,V ) from the Plücker embedding, we conclude

that

ωGr(k,V ) ' OGr(k,V )(−n) (4.2)

4.2 Shinder-Zhang’s Elliptic Curves of Degree 5

In [SZ20], they constructed a pair of elliptic curves of degree 5 as the linear sec-

tion of the Grassmannian Gr(2, 5) ∩ P4 ⊆ P9 in the Plücker embedding. We review the

construction.

Let V be a vector space of dimension 5. Consider the Grassmannian Gr(2, V ). We

have the Plücker embedding Gr(2, V ) → P(∧2V ) ' P9. Let A ⊆ ∧2V ∨ be a general

5-dimensional subspace. By generality, the intersection C := Gr(2, V ) ∩ P(A⊥) in P9 is

transverse, which is an elliptic curve of degree 5. That is, it is a smooth projective curve

of genus 1 equipped with a line bundle L of degree 5. Indeed, by adjunction formula,

ωC = ωGr(2,V )|C ⊗ det(NC/Gr(2,V ))

Here, ωGr(2,V ) ' O(−5) by (4.2). For NC/Gr(2,V ), we may view C as a zero locus of

general section of O(1)⊕5 on Gr(2, V ). Then NC/Gr(2,V ) = O(1)⊕5|C . It follows that
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det(O(1)⊕5) = O(5)|C . Therefore, by the previous computation,

ωC ' OGr(2,V )(−5)|C ⊗ OGr(2,V )(5)|C ' OC

is trivial. The degree 5 line bundle L is simply the determinant of the normal bundle

NC/Gr(2,V ).

In fact, according to [SZ20, Lemma 2.6], the converse also holds, i.e., every elliptic

quintic is a transverse intersection of Gr(2, 5)with a linear subspace of dimension 4 in P9.

The projective dual of Gr(2, V ) is non-canonically isomorphic to itself. Indeed, the

projective dual of Gr(2, V ) is Pf(2, V ∨) = P{ω ∈ ∧2V ∨ | rank(ω) ≤ 2} = Gr(2, V ∨).

Let A be as above. By [Kuz06, Proposition 2.24], Gr(2, V ) ∩ P(A⊥) is smooth if

and only if Gr(2, V ∨) ∩ P(A) is. Using similar arguments, we know that the transverse

intersection C2 := Gr(2, V ∨) ∩ P(A) is also an elliptic curve of degree 5.

4.3 Non-transverse Intersection

The intersection will become non-transverse if we choose the linear subspace P(A⊥)

in a special position. In fact, we can find linear subspaceP(A⊥) such that the linear section

is the isotropic Grassmannian, which is also a quadric 3-fold.

4.3.1 Isotropic Grassmannian

Let W be a vector space of dimension 2m and ω ∈ ∧2W∨ be a symplectic form

onW . The isotropic Grassmannian IGr(k, V ) parametrizes the k-dimensional isotropic

subspace of W , i.e., subspace of W on which ω vanishes. Note that if k = 1 , then
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IGr(1,W ) = Gr(1,W ) ' P(W ) since every line is isotropic.

We can describe IGr(k,W ) as the zero locus of a general global section (induced

by ω) of ∧2 U ∨ ' OGr(k,W )(1) in Gr(k,W ), where U is the tautological subbundle of

Gr(k,W ). More explicitly, since we have the natural inclusion of vector bundles U ↪→

W⊗OGr(k,W ), by taking the dual and wedge power, we get (∧2W∨)⊗OGr(k,W ) → ∧2 U ∨.

We can view ω as a global section of (∧2W∨) ⊗ OGr(k,W ). By pushing ω to ∧2 U ∨, we

get a section whose zero locus is IGr(k,W ).

4.3.2 Non-transverse intersection

Recall that V is a 5-dimensional vector space. Fix a decomposition V = W ⊕ L

with dimW = 4 and dimL = 1. We also fix a symplectic form ω ∈
∧2W∨ onW , i.e., a

non-degenerate alternating bilinear form.

We try to find a subspace A ⊆ ∧2V such that IGr(2,W ) = P(A) ∩ Gr(2, V ) in the

projective space P(∧2V ) ' P9. Notice that we have the direct sum decomposition

∧2V '
(
∧2W

)
⊕ (W ⊗ L)

and its dual

∧2V ∨ '
(
∧2W∨)⊕ (W∨ ⊗ L∨).

We may regard ω as ω + 0 ∈ ∧2V ∨ and define

A(ω) := {λ · ω + α ∈
(
∧2W∨)⊕ (W∨ ⊗ L∨) | λ ∈ C, α ∈ W∨ ⊗ L∨} ⊆ ∧2V ∨.

Then A(ω)⊥ ⊆ ∧2V consists of points that are killed by ω as well as all linear forms
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α ∈ W∨ ⊗ L∨. Therefore, we have the non-transverse intersection

IGr(2,W ) = Gr(2, V ) ∩ P(A(ω)⊥) ⊆ P(∧2V ).

Note that IGr(2,W ) is the zero locus of a general section of OGr(2,W )(1) in Gr(2,W ), and

Gr(2,W ) is also the zero locus of a section of U ∨
V , the dual of the tautological subbundle,

in Gr(2, V ) (we will give the detail in the proof of Corollary 4.4.2), so the intersection is

an intersection as a scheme.

We put it into a Cartesian diagram

IGr(2,W ) Gr(2, V )

P(A(ω)⊥) P(∧2V )

(4.3)

Aswementioned earlier, IGr(2,W ) is a quadric hypersurface insideP4, and IGr(2,W )

is also the quadric 3-fold obtained by the hyperplane section of Gr(2,W ).

On the other side, for such ω, the intersection P := Gr(2, V ∨)∩P(A(ω)) ⊆ P(∧2V ∨)

is not transverse, either. Here, we can think of Gr(2, V ∨) as Pf(2, V ∨), the space of de-

generate 2-forms. In this way, we see that for [λω + α] ∈ P, λ must be zero since ω is

non-degenerate. Therefore, we have the following commutative diagram

P(W ) Gr(2, V ∨)

P(A(ω)) P(∧2V ∨)

Actually, P = P(W∨ ⊗ L∨). Indeed, let {e1, . . . , e4} be a basis of W and {e5} be a

basis of L. Then we can write α ∈ P as α = γ ∧ e∨5 where γ ∈ W∨ and e∨5 is the dual

basis of e5. Therefore, [α] ∈ P(W∨ ⊗ L∨).
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Conversely, for [α] ∈ P(W∨ ⊗L∨) ' P(Hom(L,W∨)), the plane α(L)⊕L∨ in V ∨

gives an element in Gr(2, V ∨). Thus, P = P(W∨ ⊗ L∨) ' P(Hom(W,L∨)) ' P(W ).

Remark 4.3.1. In [MM83, page 117], Mori and Mukai prove that for Fano 3-fold with

b2 = 2 (which, in this case, is the same as the Picard rank) of type (E1 − E1), there are 6

deformation types. Our case is exactly type 2) in the list.

4.4 Calabi-Yau pair of Homogeneous Roof of Type C2

4.4.1 Quadric 3-folds and spinor bundles

Before we start, we review some basic properties of quadric 3-folds and spinor bun-

dles. Let Q3 be a smooth quadric 3-fold, meaning a smooth variety Q that admits a

closed embedding ι : Q3 ↪→ P4, such that Q3 is a quadric hypersurface. We denote

OQ3(1) := ι∗OP4(1).

Suppose the quadric 3-fold Q3 is a linear section of a quadric 4-fold Gr(2, 4) ' Q4.

On Q3, recall that the spinor bundle is the pull-back of the tautological subbundle on

Gr(2, 4). It is also the pullback of the dual of the tautological quotient bundle on Gr(2, 4)

[Ott88, Theorem 1.4 (i)]. The following is classical and we will use it in the proof of

Corollary 4.4.2.

Proposition 4.4.1. There exists an exact sequence

0 → S → O⊕4
Q3 → S ∨ → 0, (4.4)

and S ∨ ' S (1), where S (1) := S ⊗OQ3(1).
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Proof. The exact sequence (4.4) follows from the tautological exact sequence (4.1) on

Grassmannian Gr(2, 4) and the fact that the spinor bundle is the pullback of the dual of

the tautological quotient bundle.

For S ∨, since it is of rank 2 and it is, by definition, the pullback of tautological

subbundle on Gr(2, 4), we have

S ' S ∨ ⊗ ∧2 S ' S ∨ ⊗OQ3(−1).

4.4.2 Degeneration

Recall the setting in Section 4.3.2. Let

IFl(1, 2;W ) := {L ⊆ P ⊆ W | dimL = 1, dimP = 2, P is isotropic}

be the partial isotropic flag variety, IGr(2,W ) be the isotropic Grassmannian ofW . Con-

sider the following diagram

IFl(1, 2;W )

P(W ) IGr(2,W )

p1 p2 (4.5)

Here, p1 and p2 are the canonical projections.

In fact, these three varieties can be described as homogeneous varieties. Let G be a

simple simply connected algebraic group of type C2. The Dynkin diagram of G is .

Using the crossed Dynkin diagram, IFl(1, 2;W ) corresponds to , P(W ) corresponds

to , and IGr(2,W ) corresponds to . The diagram (4.5) is sometimes called the ho-
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mogeneous roof of typeC2 (see [Kan22, Section 5]). We will use the fact that IFl(1, 2;W )

is a projective bundle over both P(W ) and IGr(2,W ).

Both P(W ) and IGr(2,W ) are Fano varieties of Picard rank 1. The ample generator

for P(W ) is OP(W )(1) and the ample generator for IGr(2,W ) is O IGr(2,W )(1) := detS ∨,

where S is the spinor bundle on IGr(2,W ). By Borel-Weil Theorem [Ott95, Theorem

10.6], the ample line bundles OP(W )(1) and O IGr(2,W )(1) are very ample.

Consider the ample line bundle L := p∗1 OP(W )(1) ⊗ p∗2 O IGr(2,W )(1), which is also

very ample. Take s ∈ H0(IFl(1, 2;W ),L ) be a general section and let

C ′
1 := Z(p1∗s) ⊆ P(W )

C ′
2 := Z(p2∗s) ⊆ IGr(2,W ).

(We use the notation C ′
i to align with the notation introduced in Section ??.) Since L is a

very ample line bundle, it is globally generated. By [Muk92, Theorem 1.8], pi∗ L are also

globally generated. By generality of s, C ′
i are smooth schemes [Muk92, Theorem 1.10].

With Theorem 3.2.1, we can prove the following.

Corollary 4.4.2. The Shinder-Zhang’s elliptic curves degenerate to the elliptic curveC ′
2 =

Z(p2∗s).

Proof of Corollary 4.4.2. Recall the diagram (4.3). P(A(ω)⊥) is the zero locus of a section

σ of O(1)⊕5 in P(∧2V ). The non-transverse intersection IGr(2,W ) = Z(σ|Gr(2,V )) is

smooth. Also, recall that the Shinder-Zhang’s elliptic curve is the smooth zero locus of a

general section of OGr(2,V )(1)
⊕5 in the Grassmannian Gr(2, V ) (Section 4.2).

Let C = A1 be the affine line and π1 : Gr(2, V ) × C → Gr(2, V ) be the first pro-
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jection. We choose another general section τ ∈ H0(P(∧2V ),O(1)⊕5) such that M ⊆

Gr(2, V )× C is defined to be the zero locus of the section

s = σ + tτ ∈ H0(Gr(2, V )× C, π∗
1 OGr(2,V )(1)

⊕5)

and for t 6= 0, the fiber Mt over t ∈ C is the Shinder-Zhang’s elliptic curve. The

flat limit of M\M0 is, by Theorem 3.2.1, the zero locus Z(τ ′) ⊆ IGr(2,W ) of τ ′ ∈

H0(IGr(2,W ),E W ), where τ ′ is the image under the composition

H0(P(∧2),O(1)⊕5) → H0(IGr(2,W ),O(1)⊕5|IGr(2,W )) → H0(IGr(2,W ),E IGr(2,W )).

Since the flat limit can be described as the zero locus of the section τ ′ of the excess

bundle E IGr(2,W ), our goal is to show that E IGr(2,W ) is isomorphic to the bundle p2∗ L .

Then the desired result follows.

First we show that the excess normal bundle E IGr(2,W ) is S ∨(1), where S is the

spinor bundle of the quadric 3-fold IGr(2,W ). As P(A(ω)⊥) ' P4 is the zero locus of a

section in H0(P(∧2V ),O(1)⊕5), the normal bundle

N P(A(ω)⊥)/P(∧2V ) ' O(1)⊕5|P(A(ω)⊥) ' OP(A(ω)⊥)(1)
⊕5.

By the definition of excess normal bundle (Definition 3.1.1),

E IGr(2,W ) =
N P(A(ω)⊥)/P(∧2V ) |IGr(2,W )

N IGr(2,W )/Gr(2,V )

'
O IGr(2,W )(1)

⊕5

N IGr(2,W )/Gr(2,V )

.

Consider the embedding

IGr(2,W ) ↪→ Gr(2,W ) ↪→ Gr(2, V ).

25

http://dx.doi.org/10.6342/NTU202500514


doi:10.6342/NTU202500514

Since these three varieties are all smooth, we have the normal bundle exact sequence

0 → NIGr(2,W )/Gr(2,W ) → NIGr(2,W )/Gr(2,V ) → NGr(2,W )/Gr(2,V )|IGr(2,W ) → 0. (4.6)

To compute the normal bundleNIGr(2,W )/Gr(2,W ), we notice that IGr(2,W ) ⊆ Gr(2,W )

is the zero locus of a global section of OGr(2,W )(1) given by the sympletic form ω as de-

scribed in Section 4.3.1. Thus, NIGr(2,W )/Gr(2,W ) ' O IGr(2,W )(1).

On the other hand, the Grassmannian Gr(2,W ) is the zero locus of a section of

H0(Gr(2, V ),U ∨
V ), where U ∨

V is the dual of tautological subbundle of Gr(2, V ). In-

deed, consider the canonical exact sequence 0 → W → V → L → 0. Then any 2-plane

P lies in W if and only if the projection V → L ' C restricts to P is 0. The pro-

jection gives a section of U ∨
V via the canonical inclusion U → V ⊗ OGr(2,V ). Thus,

NGr(2,W )/Gr(2,V ) ' U ∨
V |Gr(2,W ) ' U ∨

W , where U ∨
W is the dual of tautological subbundle

ofGr(2,W ). Note that if we view IGr(2,W ) as a quadric 3-fold, thenU ∨
W |IGr(2,W ) ' S ∨,

where S is the spinor bundle on IGr(2,W ).

Therefore, by (4.6),

E IGr(2,W ) =
O IGr(2,W )(1)

⊕5

N IGr(2,W )/Gr(2,V )

'
O IGr(2,W )(1)

⊕5/O IGr(2,W )(1)

N IGr(2,W )/Gr(2,V ) /O IGr(2,W )(1)
'

O IGr(2,W )(1)
⊕4

S ∨ .

(4.7)

Notice that in the first isomorphism, we use the fact that OGr(2,V )(1) restricts to Gr(2,W )

is exactly OGr(2,W )(1) given by the Plücker embedding. This is because P(∧2W ) ↪→

P(∧2V ) is a linear embedding.
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The inclusion

S ∨ ' N IGr(2,W )/Gr(2,V ) /O IGr(2,W )(1) ↪→ W ⊗ O IGr(2,W )(1) ' O IGr(2,W )(1)
⊕4

inducing (4.7) is obtained from the natural inclusion of the normal bundle

N IGr(2,W )/Gr(2,V ) ↪→ N P(A(ω)⊥)/P(∧2V ) |IGr(2,W ) ' V ⊗ O IGr(2,W )(1) ' O IGr(2,W )(1)
⊕5

modding out O(1).

On the other hand, we have the spinor bundle exact sequence (4.4)

0 → S → O⊕4
IGr(2,W ) → S ∨ → 0

on the quadric 3-fold IGr(2,W ). It is the restriction of the tautological exact sequence on

Gr(2,W ) to IGr(2,W ). Tensoring by O(1) and using the isomorphism S ∨ ' S (1), we

have

0 → S ∨ → O IGr(2,W )(1)
⊕4 → S ∨(1) → 0.

These two inclusions coincide. Therefore, combining (4.7), we conclude that

E IGr(2,W ) ' S ∨(1).

Next, we show that on IGr(2,W ), we have p2∗L ' S ∨(1). By the projection

formula, p2∗ L = p2∗(p
∗
1 O(1) ⊗ p∗2 O(1)) ' p2∗p

∗
1 O(1) ⊗ O(1). By [Ott88, (2)],

p2∗p
∗
1 O(1) ' S ∨. Therefore,

p2∗p
∗
1 O(1)⊗ O(1) ' S ∨(1) ' E IGr(2,W ) .
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Thus, the flat limit of M\M0 is C ′
2, which is the zero locus of p2∗ L ' E IGr(2,W ).

Remark 4.4.3. We expect that the P3 side also holds, but we are not able to prove it yet.

Remark 4.4.4. In [IIM19, Proposition 5.1], they show that the Calabi-Yau 3-fold in G2-

Grassmannian X defined by the zero locus of the bundle S ∨ ⊗ ∧2Q is the degeneration

of Calabi-Yau 3-folds obtained by linear section in Gr(2, 7). Apart from this, in [KK16,

Proposition 7.1], they show that the family of linear sections of Pfaffian degenerates to

the Calabi-Yai 3-fold in the other G2-Grassmannian, which is a quadric 5-fold.

Remark 4.4.5. Recently in [Ram24, Proposition 3.3], M. Rampazzo proved that all Calabi-

Yau pairs associated to a homogeneous roof are L-equivalent.
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