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Abstract

This work is divided into three parts. The first part elucidates the conceptual
framework of Computer-Aided Molecular Design (CAMD) and its potential to facilitate
the early-stage development of specialty chemicals. Traditionally, the development of
specialty chemicals has primarily relied on researchers' experience, involving iterative
synthesis and characterization. Given the frequent discrepancies between new challenges
and researchers' past experiences, the early development phase often suffers from
directionless experimentation, leading to a waste of manpower, materials, and financial
resources. CAMD aims to enhance research efficiency by leveraging computational
methods to pre-identify a small pool of candidate chemicals for targeted synthesis and
characterization. In this study, we have established an atomically detailed CAMD
procedure. Users can input the desired physicochemical properties, and the system
employs optimization algorithms and iterative processes to design molecules that meet
these criteria. The molecular design process comprises three key components: the
MARS+ molecular data structure (MDS), property prediction models, and algorithms for
searching new molecules in chemical space.

In the molecular data structure component, we represent a molecular structure as a
mathematical graph. We predefine common atoms and certain functional groups,
specifying their available valence bonds and numbers as a base element library. When a
given molecular structure is converted into the MARS+ data structure, its constituent
atoms are parsed into our predefined basic elements. Their bonding status is described
using eight arrays, containing only zeros and positive integers, along with two string
arrays.

For property prediction, we use quantum calculation software to compute the
optoelectronic properties of substances, such as the HOMO-LUMO gap, adiabatic

vii
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ionization potential, adiabatic electron affinity, vertical ionization potential, vertical
electron affinity, chemical hardness, and electrophilicity index. Additionally, COSMO
solvation calculations are conducted to obtain the screening charge of molecules in
solvents, which is then input into the COSMO-SAC model to calculate activity
coefficients, applicable in phase equilibrium calculations.

The algorithm for searching new molecules is based on the Genetic Algorithm (GA),
which modifies molecular structures stored in the MARS+ data structure to generate new
molecules. Newly generated molecules undergo physicochemical property calculations
and are evaluated for fitness based on a fitness function, with those closely matching the
desired specifications receiving higher fitness scores. Finally, a selection algorithm
determines which new molecules advance to the next iteration. Our selection algorithms
include Roulette Wheel (RW), Simulated Annealing (SA), Fitness Monte Carlo (FMC),
and Non-dominated Sorting (NS). Repeated iterations of the "Genetic Algorithm -
Property Prediction - Selection Algorithm" cycle progressively yield molecules that
closely meet the specified physicochemical criteria.

The second part of this work demonstrates the application of our molecular design
framework to develop novel ionic liquids as CO2 adsorbents. In this section, we use the
COSMO-SAC model to predict the physical absorption solubility of COz2 in ionic liquids.
To validate the model's accuracy, we collected 4537 experimental data points for 96 ionic
liquids and compared them with the COSMO-SAC model predictions. The results show
sufficient accuracy for qualitative or semi-quantitative purposes. Among the 3500
designed ionic liquids, 80% exhibited CO2 capture performance comparable to those
reported in the literature, with a few significantly outperforming known ionic liquids. The
design results suggest that enhancing CO: solubility requires constraining the anionic
groups of the ionic liquids to fluoride, chloride, bromide, iodide, or hydroxide ions.

viii
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In the third part of this study, we utilized the GuacaMol and MolOpt benchmark
suites to assess the performance of MARS+ compared to other generative models in goal-
directed tasks. GuacaMol evaluates effectiveness, measuring how well property targets
are achieved over a sufficient number of iterations. MolOpt evaluates efficiency,
assessing the optimality of generated species within a limited number of iterations. In
GuacaMol, MARS+ ranked 2nd, closely behind the GRAPH GA model. In MolOpt,
MARS+ ranked 3rd, following the REINVENT model (1st) and GRAPH GA (2nd).
Generalizing the crossover operator in MARS+ significantly enhances its capability to
search for constitutional isomers, albeit at the cost of performance in single-objective
tasks. The ring crossover operator in GRAPH_ GA appears to be a significant factor
contributing to performance differences between MARS+ and GRAPH_GA.

There are four potential avenues for future research. First, extending CAMD
applications to other chemical systems where current MARS+ capabilities suffice or
require minor program modifications, such as pharmaceutical cocrystals, double-salt
ionic liquids (DSILs), deep eutectic solvents (DESs), optoelectronic materials,
biomolecules, and polymers. Second, further diversifying molecular operational
mechanisms, including integrating a ring crossover operator into MARS+. Third,
integrating molecular design with chemical process design to make the design tasks more
realistic. Fourth, conducting qualitative comparisons of various selection algorithms

within MARS+ to gain deeper insights into their behaviors.

Keywords: Computer-aided molecular design, molecular representation, chemical
screening, solvent, ionic liquid, carbon capture, comparisons among molecular generative

models.
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Chapter 1. Introduction

1.1. Chemical Products and Innovations

The chemical products can be roughly classified into three groups: fine chemicals,
specialty chemicals, and commodities.! Fine chemicals are high-purity substances
manufactured in small quantities (approximately 1000 tons per year) and sold at premium
prices (exceeding $10 per kilogram). High-purity electronic chemicals are examples for
fine chemicals. In the semiconductor industry, hydrofluoric acid is widely used for
cleaning or etching the wafer. If its purity does not meet the standard, the semiconductor
product would suffer from contamination issues and yield losses.

Commodities are produced in large volumes using highly standardized processes and
sold at low prices (< $1/kg). Plastics, petrochemicals, fibers, monomers, and other basic
chemicals (e.g. methanol, acetic acid, and sulfuric acid, etc.) are typical commodities. The
wide range of commodities covers the needs from chemical manufacturers to end
consumers. For instance, petrochemicals and monomers are important ingredients for
midstream and downstream chemical manufacturers. Many plastic products are sold to
end consumers, as we use them widely in our daily life.

Specialty chemicals are typically mixtures of various commodities and fine
chemicals, distinguished by their performance properties in specific applications. A
formulated drug, with active pharmaceutical ingredients (APIs) derived from fine
chemicals, serves as an example of a specialty chemical. In fact, it may not be feasible to
draw a clear dividing line between commodities and specialty chemicals. It is suggested
that a volume of 1000 tons/year and a price of $10/kg can be used as criteria, although

this is somewhat arbitrary.! On the other hand, whether a chemical is recognized by its
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performance properties may not provide a clear dividing line between fine chemicals and
specialty chemicals. In fact, a fine chemical might also be used for particular purposes if
its performance properties meet the requirements. Especially, the performance properties
of pure substances are often useful benchmarks in preliminary research and development
(R&D) studies.

When developing new organic compounds for use as semiconductor materials or
optoelectronic materials, exciton binding energy may be the key property for determining
their uses. Compounds with low exciton binding energy are relatively suitable for
photovoltaic cell applications, while those with a larger exciton binding energy are
suitable for light-emitting applications.?

In the cracking process of the petrochemical industry, various products can form an
azeotropic mixture under certain compositions. Since the vapor composition and the
liquid composition are identical for an azeotrope at thermal equilibrium, simple
distillation can no longer separate its components. A proper entrainer, which can be either
a pure substance or a mixture, can be a solution to this problem. Adding it to the azeotrope
can change the activity coefficients of components, leading to a variation of their relative
volatility. As a result, several light components can be separated from the azeotrope in
advance.?

When designing the chemical formulation for a battery, the choice of proper
additives for electrolytes can improve performance or safety. Many of the known
additives are organic compounds (e.g. vinylene and maleimide derivatives), and they
work based on their redox potential. For instance, some additives are able to form a film
on the electrode after being reduced, which minimizes the resistance for charge transfer.
A spontaneous reaction is anticipated when the redox potential of the additive exceeds

that of the electrolyte. Additionally, an additive with high electrochemical reversibility
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and a redox potential slightly higher than the cathode's maximum operating potential can
offer overcharge protection.*

Although both of specialty and fine chemicals are high-value, their market sizes are
out of proportion. Fine chemicals only take up around 4% of the global chemical market,
while the specialty chemical take up around 55%.! Specialty chemicals provide much
more value-added opportunities than fine chemicals in terms of the concept of chemical
space (elaborated in section 1.2). The full chemical space refers to the set that contains
all the theoretically possible chemicals. Fine chemicals are represented by a subset mostly
composed of pure substances, whereas specialty chemicals are represented by a subset
mostly composed of mixtures. The specialty chemicals have a wider coverage of the
chemical space than fine chemicals due to the variety of chemical compositions. It turns
out that specialty chemicals are often the focus of chemical innovations.

In recent years, the development of novel specialty chemicals, functional materials,
and drugs has gained increasing importance for the chemical industry, as evidenced by
the growing global revenue in these sectors.’ Aside from commercial considerations,
these innovations hold significant promise as solutions to some of humanity's most
pressing challenges in the 21st century. These include the discovery of medicines to
combat pandemics®, the development of efficient energy storage materials’, and
advancements in carbon capture and storage technologies®. Historically, the research and
development (R&D) of novel specialty chemicals has heavily relied on researchers'
expertise and existing chemical databases. To identify potential chemical candidates with
desired performance characteristics, researchers traditionally employed a trial-and-error
approach based on experience and chemical intuition. While conceptually straightforward,
this methodology suffers from significant drawbacks. It is inherently time-consuming and

labor-intensive, with efficiency often hampered by unclear strategic direction, budgetary
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constraints, and limitations in domain-specific knowledge. The lengthy
commercialization process for new specialty chemicals further underscores the
inefficiency of this traditional approach. Literature suggests timelines ranging from 6 to

20 years’ ', with product and technology development itself consuming 4 to 15 years”

10

1.2. Molecular Databases and Chemical Space

Molecular structure and property databases (summarized in Table A1) play a crucial
role in screening chemical candidates and constructing correlative models to understand
structure-property relationships. They can serve as a knowledge source complementing
the researcher’s experience. Based on the molecular properties provided in the databases,
one may pre-screen a set of chemicals and use them as chemical candidates or as the
precursors for formulating novel mixtures. However, access to some large molecular
databases may require a license fee. For instance, LOLI database!' and Beilstein
database'? fall under this category. LOLI database provides the regulatory data (e.g.
toxicological and pharmacological data) of more than 600 thousand species. Beilstein
database contains 9.8 million substances and 10.3 million chemical reactions. On the
other hand, ChemSpider'® and PubChem!* are free of charge. ChemSpider covers 123
million chemical structures, and PubChem contains 115 million validated compounds.
PubChem database also provides thermal chemical properties (e.g. vapor pressure,
Henry’s law constant, heat of vaporization) for many chemical species.

In general, most of the large molecular databases, such as those named above, offer
relatively complete information of experimental density, boiling point, melting point. As
for other properties, one might need to consult a specialized database. For example, the
GDB database'>"!¥, covering around 167 billion organic molecules, is specialized for

4
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providing ab-initio calculation results of electronic properties, such as the lowest
unoccupied orbital (LUMO), the highest occupied orbital (HOMO), dipole moment. The
Dortmund databank! 2° provides many types of thermodynamic experimental data,
including vapor-liquid equilibrium (VLE) data for about 44,000 mixtures and the liquid-
liquid equilibrium (LLE) data for about 41,000 mixtures. However, it is essential to
recognize that these existing databases likely represent only a small fraction of the vast
chemical space and the diverse range of molecular properties.?!->*

In the broadest context, chemical space refers to the collection of all theoretically
possible chemicals, including thermodynamic mixtures and composite materials.
Nevertheless, researchers in a particular scientific domain often narrow down the
chemical space to a subset they are interested in, e.g. organic chemical space and drug-
like chemical space.? Regarding to these two subsets, several studies?*° have provided
estimations of their size under different additional constraints (e.g. number of heavy
atoms, types of constituent atoms, and molecular weight, etc.), as summarized in Table
A2. In particular, the size of organic chemical space is reportedly up to 108% species®®
29, which is significantly larger than the chemical subspace covered by current databases
such as PubChem (123 million), Beilstein (10.3 million), and GDB-17 (167 billion).

Consequently, solely relying on existing data may not lead to the yield the optimal choices

for novel candidate chemicals.

1.3. Computer-Aided Molecular Design (CAMD)

In recent years, computational methods have become a promising avenue for

uncovering superior chemicals in unexplored regions of chemical and property space.

Computer-aided molecular design (CAMD) techniques®® 3!

refer to the algorithms
capable of finding promising (yet unknown) chemicals for particular uses, by continually

5
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generating novel chemical species and testing their performance properties. However, it
should be noted that the computational approach is by no means a thorough replacement
for experimentation at the current stage. Since a molecular model inevitably involves
simplifications, experimental validations are always irreplaceable. What it can do is
complement experimental approaches and provide additional strategic flexibility for the
development of new specialty chemicals. When trial-and-error experiments are too costly
and time-consuming, CAMD can be used for preliminary evaluations. Additionally,
customized databases can be built or expanded to accompany each CAMD task, which is
useful for exploring new chemical knowledge and complementing the data scarcity in
data-driven AI research. To demonstrate how CAMD works, we shall start with

illustrating the correlation between a molecular structure and its corresponding properties.

1.3.1. Bidirectional Relation: Molecular Structure and Properties

The understanding of how molecular structure dictates a molecule's properties has
been a cornerstone of molecular science. Traditionally, the focus has been on predicting
properties based on a known molecular structure. However, the development of new
chemicals is inherently driven by desired properties. In this context, candidate chemicals
are identified based on whether they meet these predefined property requirements. This
essentially represents a reverse engineering approach to property prediction, highlighting
the core purpose of Computer-Aided Molecular Design (CAMD).

The aforementioned bidirectional relationship between structure and properties is
depicted in Figure 1.3-1. In particular, property predictions for a given structure are
termed the forward algorithm, as elaborated in section 2.3.2. The subroutine for
generating new molecules and selecting better-suited ones from them is termed the

reverse algorithm, as elaborated in section 2.3.3 and 2.3.4. As mentioned in section 1.1,
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CAMD techniques can be invoked to complement the probably inefficiency in traditional

development process.

Computer-Aided Molecular Design (CAMD)

1
I Forward algorithm: property predictions

—

Input: Molecular Molecular Output:
property structure properties chemical
candidates

|
|
|
1
|
specifications : t '
|
|
|
|
1

Figure 1.3-1. The bidirectional relationships between molecular structure and molecular

properties: forward algorithm vs. reverse algorithm.

It should be emphasized that a CAMD task also involves predicting properties.
Therefore, knowledge about the advantages and disadvantages of various predicting
methods is as crucial as knowledge about the reverse algorithm. For optimization-based
CAMD, a collection of optimal chemical species is generated through alternating
iterations of forward algorithm and reverse algorithm stages. Specifically, a population
of chemical species is initialized, followed by property predictions for these species
(forward algorithm). The reverse algorithm then selects better-suited species from the
population and generates novel species by modifying the selected chemical structures.
The physicochemical properties of these novel species are evaluated using the forward
algorithm, and the better-suited novel species are selected by the reverse algorithm for

the next iteration. The process iterates until a sufficient number of chemical candidates
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have been found or specific termination criteria are satisfied.

Currently, there are two main methodologies in the field of molecular design:
traditional approaches®? and machine learning (ML)-based approaches®**. This work
focuses mainly on the traditional approaches, whereas in Chapter 6 several ML-based
approaches are reviewed and compared with traditional approaches. Depending on users’
objectives, models of both types the can be employed for either exploitation or
exploration tasks®> 3®. In general, an exploitation task involves the purposeful generation
of chemicals to meet predefined physicochemical property criteria, which is rightly the
primary objective of a CAMD program as described earlier. In contrast, an exploration
task generates chemicals without being bound by property requirements and other
constraints, which is more precisely referred to as “chemical space exploration” or

“molecular generation”.

1.3.2. Mathematical Formulation of a CAMD Problem

As mentioned in section 1.3.1, CAMD is the reverse engineering of property
predictions. Therefore, finding the inverse function of property models would be a direct
solution to a CAMD problem. Unfortunately, obtaining this inverse function in analytical
form can be challenging since many property prediction methods, such as quantum
mechanical calculations (QM) and molecular dynamics/Monte Carlo simulations
(MD/MC), only provide numerical functions in practice. Moreover, a property model can
exhibit high nonlinearity in relation to chemical structures. Since a structure is often
represented by multiple discrete variables (see section 2.3.1), finding the inverse function
of a property model can still be difficult even if the analytical form of the property model
is known. It turns out that one often needs to seek alternative ways to solve CAMD

problems.
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From a mathematical optimization perspective, CAMD problems are typically
classified as mixed-integer nonlinear programming (MINLP) problems®’. This
classification arises due to the combined presence of discrete representations for a
chemical structure and the nonlinearity of property models. A chemical structure is often
a structured data with some discrete properties. For instance, there should only be a few
reasonable bond order types (i.e. single, double, triple, etc.) in a usual chemical structure.
The theoretical details of MINLP problem are elaborated in section 2.1 and 2.2, and only

its generic mathematical form is mentioned here:

Problem MINLP
arg'rl‘:,lin Objfcen(u,w) (1.3-1)
subjected to
h(u,w) =0 (1.3-2)
guw) <0 (1.3-3)
uelUcirt (1.3-4)
weW cR™ (1.3-5)

Here, Objfcn(u,w) represents the objective function, u is a n-dimensional
column vector of integer variables, w is a m-dimensional vector of continuous variables,
h(u,w) = 0 is a vector representing p equality constraints, g(u,w) < 0 is a column
vector representing ¢ inequality constraints, and argmin indicates the arguments
(u*,w") that minimize the value of the objective function, Objfcn(u*, w"). By analogy
with a molecular design task, u represents molecular structures, w typically represents

thermodynamic state variables, such as pressure, temperature, and compositions. Each
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entry in h(u,w) or g(u,w) vector specifies certain molecular property (e.g. vapor
pressure, density, viscosity etc.) or an operating constraint of the process (e.g. total annual
cost, maximum allowable heat duty, etc.).

A pioneering research study on solving the practical CAMD problem was conducted
by R. Gani and E. A. Brignole in 19833%. They demonstrated the concept that a great
variety of new chemical structures can be assembled from a few molecular fragments,
and that multiple optimal chemicals can be found within the chemical space spanned by
these molecular fragments. In their study, a set of common functional group fragments,
such as -CH2-, -CH3-, -OH, -CH2CO-, -CH2COO-, and -CH2CN, was pre-defined as the
building blocks. They then used the exhaustive combinatorial enumeration to connect
these functional groups in all of the possible ways, resulting in numerous new molecules.
Next, they employed the UNIFAC model to predict the performance of these new
molecules in the separation of aromatic mixtures. Finally, a subset of molecules that
exhibit the highest performance was chosen as potential solvents for the extraction
process.

Such prototype has been consistently systematized, diversified, and generalized by
various research groups. To this day, the methodologies for CAMD have become a
knowledge system®*#*. Currently, the focus of molecular design research is primarily on
the development of novel organic solvents, specialized ionic liquids, small-molecule

drugs, and polymers, as summarized in Table A3.

1.4. The Purposes of This Work and an Outline

After reviewing the literature on Computer-Aided Molecular Design (CAMD), it
becomes evident that many studies, particularly early ones, present challenges for
outsiders aiming to apply these computational approaches directly to new applications.

10
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These difficulties arise from several factors:

® Limited transparency of computational toolkits
The majority of early studies on generative algorithms*-7 did not disclose their
computer program source code. In addition, the applicability window of property

prediction models may not be reported explicitly.*3

® Exclusiveness of computational toolkits for particular topics
Numerous studies focused heavily on designing small drug-like molecules, with
property prediction models emphasizing metabolic properties, toxicity, and binding
affinity to specific biological targets*® *5° For non-biological specialty chemicals,
these properties may not be the primary considerations. In addition, a correlative
property prediction model is typically only suitable for pure chemical species and

limited scope of chemical mixtures.

® Potential issues with molecular representation and complexity
In some early works employing group contribution (GC) methods or quantitative
structure-property relationships (QSPR) for property predictions, the frequency
distribution of intra-molecular features (rather than rigorous molecular connectivity)
is used to represent a molecular species in their CAMD task.*® >1-® However, a
specific frequency distribution of intra-molecular features can correspond to multiple
constitutional isomers, and the GC or QSPR models may not distinguish between
them.>* 3 57 To maintain the scale compatibility between chemical representation
with GC (or QSPR) models, molecular building blocks and structure modifications

are often restricted to functional groups recognizable by these models. The design at

11
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the functional group or more macroscopic level is often claimed as the “rational
design™*%! because it rules out some unexpected substructures causing by atomic-
level molecular modifications. However, it may limit the discovery of more optimal

chemical species.

To investigate the capability of CAMD techniques in the design of general chemical
mixtures, a customized program is built in this work for the computational mixture design
at miscellaneous (i.e. atomic and fragmental) levels. A comprehensive understanding of
the theoretical backgrounds of this work includes two aspects: (a) theory of mathematical
optimization and (b) possible methods for the implementation of a CAMD program.

The generic theory of the two aspects is presented in Chapter 2. In section 2.1 and
2.2, the discussions include the mathematical method to solve mixed-integer non-linear
programming problem (MINLP) and the difficulties for problems involving more
complicated discrete variables. In section 2.3, a literature review on the implementations
of a CAMD program is provided. In particular, there are four vital components in a
CAMD program: (bl) molecular representations, (b2) property prediction models
(forward algorithm), (b3) generative algorithm (reverse algorithm I), (b4) selection
algorithms (reverse algorithm II).

Following (bl) to (b4), the implementation details of our own CAMD program are
presented in Chapter 3. In particular, we develop a MARS+ package (Molecular
Assembling and Representation Suite - Plus), composed of a digital representation of
chemical mixtures (section 3.1) and a collection of genetic algorithm-based operators as
the generative algorithm (section 3.3). Any chemical species in the format of such digital
representation can be subjected to genetic operators to forming a new species. In section

3.2, the theories of the property prediction models in our program are introduced,

12
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including COSMO-SAC activity coefficient model, ionization potential, electron affinity,
chemical hardness, electrophilicity, descriptors in RDKit/OpenBabel, and so on. In
section 3.4, the molecular fitness function and selection algorithms, which are used to
identifying better chemical species, Multiple selection algorithms are implemented.
including roulette wheel (RW), simulated annealing (SA), fitness Monte Carlo (FITMC),
and non-dominated sorting genetic algorithm II (NSGA-II).

Chapter 4 provides a preliminary evaluation of the intrinsic performance of MARS+
based CAMD. In section 4.1 we demonstrate the possibility of applying genetic operators
to every allowable substructure in a molecular structure. In section 4.2 and 4.3, we
demonstrate the possibility that MARS+ can cover sufficiently large chemical space and
produce well-known molecules.

Chapter 5 exemplifies the MARS+ based CAMD in the design of novel ionic liquids
(ILs) as the carbon dioxide absorbents. Section 5.1 reviews the mechanistic studies on IL-
based carbon capture and storage (CCS) techniques. Section 5.2 and 5.3 presents the
thermodynamic modeling for predicting CO2 solubility in ILs and the accuracy of
prediction employing COSMO-SAC activity coefficient model. Section 5.4 and 5.6
present the results of designed ILs, which indicate that the component-screening method
can expand our knowledge scope from experimentally validated ILs, and that the CAMD
techniques can further improve the knowledge of component-screening method.

In Chapter 6 we use two tailor-made benchmarks, GuacalMol and MolOpt, to
compare the performance differences between our CAMD program and other baseline
models (including Al-based and conventional ones) in some specially-devised tasks.
Section 6.1 and Appendix F cover the theoretical backgrounds of some Al models.
Section 6.2 shows the results of comparisons. It verifies that the performance of our

program is better than many Al-based generative models and comparable to most of rule-

13
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based models.

Finally, we summarize the insights gained from the aforementioned works in
Chapter 7, and provides some prospects in Chapter 8. Several potential topics that can be
the extension of this work, including the design of special chemical systems such as co-
crystals, and the incorporation with process design techniques to form a computer-aided

molecular-process design (CAMPD) scheme.

14
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Chapter 2. Generic Theory

2.1. Mixed-Integer Non-Linear Programming (MINLP)

As revealed in section 1.3.2, a CAMD task can be framed as a MINLP problem. In
this section, more specifications are added to generic MINLP form (section 1.3.2) to adapt
it into the real implementation in this work. Based on Gibbs phase rule®?, the equilibrium
thermodynamic state s; of a C-component mixture system in a phase can be described
by s;(u;.w;), where u; isthe mixture species and w; are (C + 1) intensive variables.
In particular, it is common to let w; represent temperature, pressure and mole fractions
(i.e. w; =|[T;P;xq;...;X%e—1]), as many processes are carried out under isobaric-
isothermal condition. Therefore, w; is usually continuous. The mixture can be denoted
as w; = [w;q; ...; w;c], where each u;; is a pure chemical component. Since each u;; in
mixture is typically expressed in certain chemoinformatic format®® of chemical structure,
it usually exhibits discrete properties. For instances, the number of constituent atoms in a
molecule must be an integer, and the feasible bond orders must be one of a few discrete
options, e.g. single, double, triple bonds. In terms of these arguments, the CAMD task

formulated as the following form*? 37:

Problem CAMDMINLP
argmin Objfcn(u;, wi; th, t9) 2.1-1)
uj,wij
subjected to
h(z(u),w;) =0 (2.1-2)
g9(z(u),w;) <0 (2.1-3)

15
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e(u;)) =0 (2.1-4)
W EZYPcXCcU (2.1-5)

w; ERCHLwl<w; <w' (2.1-6)

Here, z stands for generic chemoinformatic software that can convert among
different chemoinformatic formats of molecular structure, e.g. RDKit* and OpenBabel®.
h(z(u;),w;) = f*(z(u;),w;) — t" = 0 represents p equality constraints on molecular
properties, where f*(z(w;),w;) = [fi(z(w,), wy); ...; fp(z(u;),w;)] are the models or
methodologies for property estimations, and th = [ty; ...; tp] are the target values of
properties for equality constraints. Similarly, g(z(u;),w;) =t9 — f9(z(u;),w;) <0
represents ¢ inequality constraints on molecular properties, where f9(z(u;),w;) =
[fp+1(Z(uy), wy); ...; friq(2(u;), w;)] are the models or methodologies for property
estimations, and 9 = [t,.q;..;ty44] are the target boundaries for the values of
property. e(u;) = 0 represents a filter function for chemical structure u;. It can be
devised to preserve particular molecular structural features, or to impose an intended bias,
during optimization process. It essentially belongs to one of the equality constraints
h(z(u;),w;) = 0, but is written explicitly here for introduction. Objfcn(u;, w;; th, t9)
is the objective function that determines the optimality of species u;. In this work, it is
replaced with a fitness function Fitfcn(u;, w;; th, t9) so as to align with the framework
of genetic algorithm. The maximization of Fitfcn(u; w;;th t9) is equivalent to the
minimization of Objf cn(ui, w;; th t9 )

25, 28

The U in eq (2.1-5) denotes the chemical space™ -°, a set of all the theoretically

66, 67

feasible chemicals typically subjected to the expanded octet rule and intrinsic

constraints from the chemical representation in use. For the numerical stability in
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optimization and the feasibility of chemical utilization, it is desirable that all the
temporary solutions (i.e. the chemical mixtures u; = [ujq, ..., W;c] ) during the
optimization process is a subset of the chemical space. The w¥ and w} in eq (2.1-6)
are the lower and the higher boundaries to define the feasible region of w;. Finally, the
overall optimality of a designed species u; at the associated thermodynamic state w; is
determined by objective function Objfcn(u;, w;; th, t9). After the optimization of the
objective function fulfills convergence criteria, a collection of optimal (u;, w;) sets will
be reported. It is noteworthy that, in practice, the optimization typically starts with
multiple initial solutions X = {uy, ..., uy}, also known as the “population” in genetic

algorithm. All the solutions are updated simultaneously in a single optimization step.

2.2. Mathematical Methods for Solving MINLP Problems

To make it simple, this section follows the problem and notations introduced in

Problem MINLP (section 1.3.2). The level of difficulty in solving a MINLP problem lies

in the characteristics of the involved functions, including Objfcn(u,w), h(u,w), and
g(u, w). In this section, two scenarios are discussed.

In the first scenario, u represents several independent integer variables, and all the
functions are continuously differentiable for every of the function arguments. In other
words, Objfcn(u,w), h(u,w), and g(u,w) are well-defined, continuous, and
differentiable at u even u isanon-integer real number. This case is presented in section
2.2.1.

In the second scenario, u represents complicated structured data, and all the
functions are well-defined only at particular discrete u € {1y, u,,...}. Such scenario

makes the problem difficult to solve for u by utilizing derivative and continuity. This
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case is presented in section 2.2.2.

2.2.1. Continuously Differentiable Problem with Integer Variables

This category of optimization problem can be tackled by using branch-and-bound
(BB) method®. Harnessed with the method, one can systemically decompose the original
optimization problem into several subproblems on different feasible regions. To start with,

let us consider a simple linear programming problem that is solvable by graphical method:

Problem CDMINLP-P1 (continuously differentiable MINLP, problem 1)

xmlgéj(xpxz) = 3x; + 4x, (2.2-1)
subjected to

7x, + 11x, < 88 (2.2-2)
3x1 —x, <12 (2.2-3)
X =20,x; EZ (2.2-4)
X, = 0,x, EZ (2.2-5)

In the first step, Problem CDMINLP-P1 is solved by treating x; and x, as

continuous variables. The optimal continuous solution is found to be xp; = [5.5,4.5]7
with f(xp,) = 34.5. Based on solution xp,, one can either branch x; = 6 and x; <
5 for variable x;, or x, =5 and x, < 4 for variable x,. Suppose x; is chosen for

branching, then Subproblem CDMINLP-P2 and Subproblem CDMINLP-P3 are

generated:

Subproblem CDMINLP-P2

18
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A duplicate of Problem CDMINLP-P1 with eq (2.2—4) changed into eq (2.2-6).

X1 <5x EZ (2.2-6)

Subproblem CDMINLP-P3

A duplicate of Problem CDMINLP-P1 with eq (2.2—4) changed into eq (2.2-7).

X, = 6,x, €T (2.2-7)

Again, Subproblem CDMINLP-P2 is solved by treating x; and X, as continuous
variables, and the optimal continuous solution is Xp, = [5,4.8]7 with f(xp,) = 34.3.

On the other hand, Subproblem CDMINLP-P3 has no feasible solution. Next, branching

X, =25 and x, <4 from Subproblem CDMINLP-P2 based on solution Xxp, .

Subproblem CDMINLP-P4 and Subproblem CDMINLP-P5 are generated.

Subproblem CDMINLP-P4

A duplicate of Problem CDMINLP-P1 with eq (2.2—4) and eq (2.2-5) changed into eq
(2.2-8) and eq (2.2-9).
x; <5x €EZ (2.2-8)

X, <4x, €L (2.2-9)

Subproblem CDMINLP-P5

A duplicate of Problem CDMINLP-P1 with eq (2.2—4) and eq (2.2-5) changed into eq

(2.2-10) and eq (2.2-11).
x, <5% €L (2.2-10)

X, >5,x, €T (2.2-11)
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Subproblem CDMINLP-P4 is solved by treating x; and x, as continuous variables,

and the optimal continuous solution is xp, = [5,4]T with f(xp,) = 31. Subproblem

CDMINLP-PS is solved in the same manner, resulting in xps = [0,8] with f(xpg) =

32. Since the solution to each of the two subproblems happens to be integers, one no

longer needs to examine integer solutions in the vicinity of the continuous solution.

Consequently, xps is determined as the optimal solution to Problem CDMINLP-PI.

This overall strategy can be represented by the following decision-tree diagram.

P1

xpy = [5.5,4.5]T
f(xp1) =345

X1£5
P2

X1 =6
P3

Xy = [5,4.8]
f(xpz) = 34.3

not feasible

X, < 4
P4 ’

P5

xpy = [5,4]"
f(xps) =31

Xps = [0,8]"

f(xps) = 32

Figure 2.2-1. The branch-and-bound process for solving CDMINLP-P1.

If eqs (2.2-1) to (2.2-3) are nonlinear functions, one can resort to nonlinear

optimization methods, such as sequential quadratic programming (SQP, see Appendix D).
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2.2.2. Nondifferentiable Problem with Complicated Discrete Variables

One of the most general methods to this category of problems is generalized benders
decomposition (GBD)?”-%% 7, Its theoretical formulation is provided in Appendix E. The
central idea of GBD is to decompose MINLP problem into a nonlinear programming
(NLP) task and an integer nonlinear programming (INLP) task. In particular, the former
one is known as the primal problem, and the latter known as the master problem.

Following the notation in Problem MINLP (section 1.3.2), the details of GBD is

introduced below. Let u; and w; denote the values of the discrete and continuous
variables, respectively, where the subscript i is meant to differentiate among the
discovered feasible solutions during optimization. GBD algorithm starts with substituting
initial-guess values u4 for discrete variables u, making the MINLP problem reduce to

a nonlinear programming (NLP) primal problem:

Problem GBD-P-NLP(u4) (GBD primal problem, nonlinear programming)

min Objfcn(uy, w) (2.2-12)
subjected to

h(u;,w) =0 (2.2-13)

gu,w) <0 (2.2-14)

weEW cR™ (2.2-15)

Set k =1 to indicate current subscript of u; and set counter v = 0 to counts the
infeasible optimal solution w* in the master problem (detailed in next paragraphs). By

solving the primal problem using nonlinear optimization methods (Appendix D), GBD
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algorithm obtains an optimal solution w for the continuous variables w, as well as the
Lagrange multiplier vectors ( A4,y ) corresponding to constraints -h(u,,wy) and
g(uq,wy), respectively. The value of objective function obtained at this stage,
Objfcn(uq,wq), is referred to as the upper bound Z; in GBD algorithm. With wy

known, the master problem is subsequently formulated.

Problem GBD-M-INLP(w,) (GBD master problem, integer nonlinear programming)

min « (2.2-16)

acRu

subjected to

p q
@ > Objfen(uw) + ) Qi wo) + ) (), wo),
i=1 j=1

(2.2-17)

t=1,..,k
uev (2.2-18)
n=0 (2.2-19)
AERP (2.2-20)
1 € RY (2.2-21)

with V = {u |h(u,w,) =0,g(u,w,) < 0forw,t=1,..,1r}

Solving the master problem yields optimal solutions u* and a*. Notably, a* is
designated as the lower bound Z; in GBD algorithm. This designation arises because
a* serves as a lower bound for the objective function, Objfcn(u,w), in the Problem
MINLP (see Appendix E.3). If Z; = Z;, then the solution (u*, wy, 4;, i;) corresponding

to a” isthe optimal solution (see Appendix C.6 and E.3). If not, solve the primal problem

with u fixed at u*. Obtain an optimal solution w* for the continuous variables w, as
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well as Lagrange multiplier vectors (4%, u*) corresponding to constraints h(u*,w*) and
g, w"), respectively. If optimal solution w* is infeasible, include w* in V.Set r =
r + 1, w, = w*. Return to the master problem.

If Objfen(u*,w*) < Z;, then the solution (u*,w*, A%, u*) is identified as the
optimal solution. Otherwise, set k=k+1, wy=w", and uy, =u*. Set Z, =
Objfen(u*,w*) if Objfcn(u*,w*) is less than current Z;. Return to the master
problem. A numerical example can be seen in reference®. The overall process is

illustrated in Figure 2.2-2.

Step 1: Initial guess: u = uy

L 4

Step 2: Solve Problem GBD-P-NLP(u, ) for w, obtaining w4 and Step 3: Set k = 1: current subscript of u;.
Lagrange multipliers (Ay, gt1) for h(uy, wy) and g(ug, wy), » Setr = 0: counter for infeasible w* cumulatively found in Problem
respectively. Upper bound Zy = Objfcn(uy, wy) GBD-M-INLP.
A A
Step 6(b): Include w* in V by setting Step 4: Consider all the w,, t = 1, ..., k. Solve Problem GBD-M-
r=r+1,w.=w" INLP for u and a, obtaining u* and a*. Upper bound Z; = a*
Step 5: Solve Problem GBD-P-NLP(u") for w, obtaining w* and Lagrange No
multipliers (4%, u*) for h(u*, w*) and g(u®, w"), respectively..
Yes

Is w* feasible for

Problem GBD-P-NLP(u") ?

The solution (u”, wy, 4, pt;) corresponding to «* is optimal.

The solution (w*, w*, A*, i*) is optimal.

Step 6(a): Setk=k+ 1, w, =w", andu, =u".
Set Z; = Objfen(u’, w") if Objfen(u’,w*) < Zy.

Figure 2.2-2. The flowchart of solving MINLP problem by GBD method.
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2.3. Components of Computer-Aided Molecular Design (CAMD)

In the framework of rule-based CAMD, there are four vital components: molecular
data structure (MDS), property prediction methods, generative algorithms, selection
algorithms. Figure 2.3-1, which is a detailed version of Figure 1.3-1, indicates the

mathematical relations and the roles of these components.

Input:

property
specifications t

Computer-Aided Molecular Design (CAMD)

r_ e §

e Forward algorithm f(u;, w,)

Estimate properties from structure.

o [ )

Molecular Molecular
data structure properties

U; f(uit wi)

CAMD: iteratively generate new structures and identify optimal structures.

o Generative algorithm:

u; + du; = upe”

Reverse algorithm
o Selection algorithm:

new new
P(uyuy, .., ui”™, uz™,..)

I Il IS I I I I S S S S S S S -
- - o o o e o e e o o e o e .

a EEE S S S S S S S DS e DS e S e . —-— e -

Output:
chemical candidates
argmax Fitfen(u;, wy; t) or
argmin Objfcen(u;, wy; t)

Figure 2.3-1. The four components of rule-based computer-aided molecular design.

24

doi:10.6342/NTU202403528



2.3.1. Molecular Data Structure: Chemical Representations

There are grossly four types of digital representation of a molecular structure®® 7! 72

X; : 1D string representation, 1D fingerprint representation, 2D graph (matrix)
representation, and 3D representation, and multi-dimensional latent space representation.
In particular, 1D string representation (e.g. SMILES’> 7 InChI”®, SMARTS",
SELFIES’® etc.) has the advantages of compactness and readability, though it is generally
not suitable for structure variations due to their syntactic complexity.

Molecular fingerprint”’"

1s an encoding system generally based on the specific traits
of 1D, 2D, 3D representation, or other descriptors. For example, the MACCS®® can track
the types and the quantities of neighboring atoms for each atom within a molecule.
Additionally, MACCS can record membership of atoms in specific substructures, such as
rings, aromatic bonds, and C=C bonds. The original molecular structure can be recovered
by putting together all the identified fingerprint features. Chemoinformatic toolkits, such
as OpenBabel®' and RDKit*?, are useful tools for providing the aforementioned rule-based
molecular representations.

2D graph representation’> ® has clear representation for molecular connectivity,
which facilitates substructure variations. However, it is usually not as readable as string
representation. Both 1D and 2D representation can contain information of constituent
atoms, bond orders, constitutional isomerism, cis-trans isomerism, enantiomerism, and
diasteriomerism, but they often lack conformational information.

When the design task is geometry-sensitive, 3D representation’” is usually the most
suitable. For example, the bioactivities of biomolecules often depend largely on their
geometric compatibility with binding sites of substrates, hence the structure-based drug

design are usually based on 3D representation.* %
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Table 2.3-1. Exemplary representations for methanol molecule.

Dimension Representation
C 1.09448 -0.07782 0.01634
O 2.49247 -0.04942 0.00891
3D H 0.71948 -0.33717 1.03013
H 0.71947 -0.80054 -0.74043
H 0.71310 0.93005 -0.24743
H 2.78485 -0.96681 0.24900
Adjecency matrix (A) Distance matrix (D) Connectivity matrix (C)
Al1|2(3]|4|5]6 D|1|2|3|4|5]6 cl1|2|3|4|5]6
1lof1[1]|1]1]o0 1jof[1|1]1[1]2 1]of(1|1]1[1]0
D 2(1]|0]ofo|o0]1 2(1]0f2|2]2]1 2|1]o0lo|o|o]1
3|1]/o0lofo|o]o 3|1]2fo0|2]|2]3 3|1]oflolo|o]o
4l1]|ojofo|o]o 4l1]|2]2]0|2]3 4l1|o0lofo|o]o
5/1(0/0fo|0]o0 5(/1(2[2|2]0]3 5/1/o0flo|o|o]o0
6|o|1]0|lo]|0]o0 6|2|1[3|3]|3]0 6|o|1|olo|o]o0
FP2 fingerprint (Open Babel) | 0816 <515>
FP4 fingerprint (Open Babel) | Alcohol C_ ONS bond
1D
SMILES C(0)
InChl InChI=1S/CH40/c1-2/h2H,1H3

2.3.2. Forward Algorithm: Property Predictions Methods

Numerous models and methodologies exist for predicting molecular properties for

chemical structures. These include group contribution models (GC), quantitative

structure-property relationships (QSPR), molecular dynamics simulations (MD), Monte

Carlo simulations (MC), and ab-initio quantum mechanical calculations (QM). Selecting

the appropriate method is crucial, considering the length and time scales of the

physicochemical phenomena involved, as depicted in Figure 2.3-2.
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Figure 2.3-2. Each methodology for property prediction is suitable for describing
physicochemical phenomena under specific scales of time and length. Reprinted with

permission from the reference®®. Copyright 2009 Elsevier Ltd.

Correlative models, such as GC and QSPR models, require substantial experimental
data to regress their numerous model parameters. GC models recognize a molecule as
many pre-defined functional groups in connection, and by regression, the value of a
molecular property is factorized into the contribution from each of the constituent
functional groups. On the other hand, the QSPR maps multiple molecular descriptors to
a molecular property. Common descriptors include physicochemical properties such as
the octanol/water partition coefficient (logP) and topological polar surface area (TPSA),
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along with structural features like the number of double bonds. Depending on the types
of regression datasets, GC and QSPR models can estimate melting point, boiling point,
density, viscosity, electrical conductivity, thermal conductivity, and activity coefficient.
In general, these models are the highly accurate when it is used for the molecular
structures similar to that in the regression datasets. However, it may be significantly
inaccurate for molecules beyond the scope of regression datasets. There are also further
limitations to their applicability. The group contribution model is only applicable to
molecules that are composed of pre-defined functional groups. As a result, its robustness
may be challenged by novel chemicals generated in computational molecular design. On
the other hand, the applicability of QSPR models is usually limited to specific conditions,
such as a fixed temperature.

Molecular dynamics simulations (MD) and Monte Carlo simulation (MC) are based
on the theory of statistical mechanics®’. The simulation system usually contains multiple
molecules, and the interaction energy among atoms should be well-described by a proper
force field. In the simulation, the system evolves continuously based on mechanical
principles or sampling algorithms. As a result, the system properties, such as pressure,
energy, and spatial distribution of particles, are also varying with simulation steps. After
the system is equilibrated, macroscopic properties can be derived from the evolution
trajectory of the system properties, via statistical mechanical interpretation. Literatures
have shown that MD/MC can estimate solubility®®, transport properties®®, surface

oL 92 "and free energy®” *3. However, the coarse

tension’’, melting and boiling points
graining of model® and parameterization of force fields”> may require significant time
and effort, Also, the computational cost of MD/MC simulation is usually higher than the

correlative models.

Quantum mechanical simulations (QM) treat a molecule as a system comprising
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electrons and nuclei of its constituent atoms. Utilizing the Born-Oppenheimer
approximation, the Schrédinger equation is formulated for the system. Once solved using
methods based on Hartree-Fock theory or density functional theory (DFT), various
molecular properties can be determined. These include the highest occupied molecular
orbital (HOMO), lowest unoccupied molecular orbital (LUMO), ionization potential (IP),
electron affinity (EA), bond order index”, dipole moment, chemical hardness”’,
electrophilicity index *7, exciton binding energy?, enthalpy and free energy of formation”®
%, and solvation free energy!?®1°2, The QM-based thermodynamic models, such as
PR+COSMOSAC and COSMO-SAC, are found useful for complementing the lack of
thermodynamic parameters in process design, although their overall accuracy of predicted
properties needs further improvements!®. The primary advantage of QM methods is their
reduced reliance on empirical parameters compared to correlative models and MD/MC
simulations. Additionally, QM methods are universally applicable to molecular systems.
However, a significant drawback is their computational cost, which escalates
exponentially with the size of the molecule.

While the fundamental nature of QM methods offers generality, correlative models
and coarse-grained MD/MC simulations are often more suitable choices for studying
macromolecules and drug molecules due to their computational efficiency relative to QM
methods. For instance, QSPR models are valuable tools in computer-aided drug design
(CADD) and have demonstrably contributed to the development of commercialized drugs
such as Captopril, Dorzolamide, Zanamivir, and Boceprevir.!®* MD/MC simulations find
frequent application in molecular docking research for drug and material design.'® These
simulations aid in the quantitative identification of the location and strength of

intermolecular interactions involving donor and acceptor sites.
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Table 2.3-2. A summary for the aforementioned methods for property predictions.

Method Advantages Disadvantages
QSPRs ® They require a substantial
® Awid iety of ert 4
Wwide vatiety ot property amount of data for regression of
models can be developed once
model parameters.
i ta i ilable. o e
regression data is available ® They may exhibit significant
® Their calculations are fast. . . .
GC eI caieuiatio inaccuracies for molecules outside
® Th typicall te .
models ¢y are typieally accura the scope of regression datasets.
fi lecules similar to th .
of mofecuies similar to those ® They may have fewer theoretical
f i i tasets. .
ound in regression datasets foundations than MD/MC and QM.
® They can compute a variety
of thermodynamic and transport
properties. ® Parameterization and coarse-
MD/MC ® They are grounded in the graining can require significant
. . principles of classical dynamics effort.
simulations ) )
and statistical mechanics. ® They may necessitate substantial
® They elucidate molecular computational resources.
mechanisms underlying
physicochemical phenomena.
® They can investigate kinetic,
electronic, and thermochemical
properties.
® They can serve as a ® They may require substantial
foundation for the development | computational resources.
QM of physicochemical models ® Computational cost scales
simulations | @ They require significantly exponentially with molecular size.
fewer empirical parameters than | This limits the applicability of QM
correlative models. methods to relatively small systems
® In principle, they are
applicable to any molecular
system.
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2.3.3. Reverse Algorithm, Part (I): Generative Algorithms

In fact, a significant focus of CAMD research has been the development of
generative algorithms, particularly those specialized for designing drug-like molecules*>-
47 These algorithms can be generally categorized into three main approaches!®: atom-
based modifications, fragment-based modifications and reaction-based modifications.
These approaches are illustrated in Table 2.3-3. Atom-based modifications excel in their
ability to explore extensive chemical space through a compact set of meticulously crafted
rules. Conversely, fragment-based modifications, while enhancing synthetic feasibility
and reducing combinatorial complexity, come at the cost of constraining the accessible
chemical space. Reaction-based modifications offer the advantages of well-established
synthetic feasibility and practical synthesis pathways. However, it is crucial to point out
that reaction-based modifications can introduce significant structural alterations.!'®’
Therefore, it is advisable to employ reaction-based modifications primarily for a rough
exploration of chemical space.'® Furthermore, the accessible chemical space from
reaction-based modifications is heavily dependent upon the scope of reaction templates
and the specific types of subject chemicals.

In the atom-based or fragment-based modifications, the molecular modification
operators and pre-defined molecular building blocks (i.e. fragments and atoms) are
repeatedly utilized to create new chemical structures in pursuit of property specifications.
During this process, the changes of subject chemical structures are typically not based on
the knowledge of realistic chemical reactions. Molpher'® 197 Spaceship'®,
MoleculeEvoluator'®, GraphGA''% "' GraphMCTS"% ! EvoMol''? are the generative
algorithms employing atom-based modifications, while CReM!%” LEADD!3,
BRADSHAW!'* OpenGrowth®, FOG!"®, LigBuilder v3!'® 17 MOARF'® PhDD!,
AutoGrow v3.0'2% 121" and Flux®® ¢! adopt fragment-based modifications. In contrast,
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reaction-based modifications are centered on templates derived from realistic chemical

reactions.!?? Recent applications!?31%7

of reaction-based modifications often make use of
RDKit*, where the reaction templates are encoded in "reaction SMARTS" format. When
provided with a chemical structure along with a reaction template, RDKit identifies the
substructures that align with the reactive site pattern defined in the template and execute

the specified chemical transformation. DOGS!? 2 AutoCouple'?®, LiGen'*’, and

SYNOPSIS!®! are the exemplary models for reaction-based molecular design.
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Table 2.3-3. The three types of the generative algorithms.

Type Starting chemical u; Operation du; New chemical uj®¥ = u; + éuy;

Atom-based w G
€.g. merge
jxla ¢ /
Fragment-based & J{
™)
9 ("
9 ¢

amide linker benzene

e.g. substitution

Example: a real reaction of nucleophilic substitution
(O-[CH2;D2;+0:1]-[C:2]-[C:3]=[C:4])>>([Br; HO;D1;+0]-[CH2;D2;+0:1]-[C:2]-[C:3]=[C:4])

Reaction-based
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2.3.4. Reverse Algorithm, Part (II): Selection Algorithms

Based on the categories of task specifications and solution methods, a review for
literatures of fragment-based molecular design is summarized in Table A3. It should be
noted that the brute force (BF) method, as adopted by R. Gani and E. A. Brignole (section
1.3.2), may experience combinatorial explosion when an enormous number of building
blocks are available. In this situation, solving the CAMD problem with limited
computational resources will be impractical. To address this issue, meta-heuristic
algorithms can be used in place of the brute force method. Although meta-heuristic
algorithms may not guarantee global optimality for solutions, they have reasonable trade-

off between computational costs and optimality of solutions.!*? These algorithms include

)133—138 )139, 140

the genetic algorithm (GA , simulated annealing algorithm (SA , genetic-

simulated annealing composite algorithm (GA-SA)'#!-144

, ant colony optimization
algorithm (ACO)''97 tabu search algorithm (TS)*: 48150 Monte Carlo tree search
(MCTS)!10: 151-154 “hranch-and-reduce algorithm (B&R)>* 155 1356 outer approximation
(OA)!33157-160 "and brutal-force (BF) search!¢!.

GA, SA, and ACO are inspired by the principles from nature. The main idea of GA
is to simulate a molecular world governed by Darwinian theory. Specifically, a molecular
structure is analogous to a chromosome. "Genetic operators" mimic genetic variations: a
mutation operator modifies substructures of a molecular structure, creating a new
molecular species, while a crossover operator exchanges the substructures between two
parent molecules, yielding two new molecular species. After evaluating properties of
these new molecules, a "selection algorithm" filters out undesirable species based on their
performance rankings. This iterative generation-and-selection process continues until a

collection of optimal species is identified.
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SA is based on the statistical mechanical interpretation of the annealing process. In
the canonical ensemble (NVT system), the probability distribution of states follows the

Boltzmann distribution:

(-7)
exp —T

P, = = (2.3-1)
Zstatesj exp _T>

Here, Ei = E;/kp represents the characteristic temperature for energy state Ej,
with kg being the Boltzmann constant. At high temperatures, it is equally probable for
a physical system to be at any available quantum state. In contrast, at low temperatures,

only the lowest-energy state is probable. The two cases show that the annealing (Tp;gp, —

Tiow) 1s a process that gradually distinguishes among different energy states. In the
context of an optimization task, this feature offers a wide range of potential solutions in
the early stages and ensures satisfactory convergence in the later stages. In algorithm

implementation, the E; and E;° should be replaced with the objective function, and a

suitable decaying rate a for temperature parameter T is necessary. A rapid decay in the
T may lead to premature optimization, leading to convergence at the local minima near
the initial guesses.

The concept of ACO is rooted in the foraging behavior exhibited by ants. Initially,
the ant colony embarks on a random exploration of the area surrounding their nest,
searching for a food source. Upon successful discovery, an ant returns to the nest carrying
a bite of food, while simultaneously laying down pheromone trails along its path. These
pheromone trails serve as a communication channel, attracting other ants to follow the

same route. Once back at the nest, the ant resumes the exploration cycle. The

35

doi:10.6342/NTU202403528



attractiveness of a particular path is directly influenced by the concentration of
pheromones deposited on it. However, this pheromone concentration naturally diminishes
over time. Shorter paths between the nest and the food source offer the advantage of
quicker travel times, leading to a higher concentration of pheromones remaining on these
paths due to the shorter travel time. Consequently, a positive feedback loop is established:
more ants are drawn to the shorter paths with higher pheromone concentrations,
ultimately enabling the colony to identify the optimal route.

Unlike the previously discussed nature-inspired algorithms, Tabu Search (TS)
employs a memory-based approach to navigate the search space for optimization
problems. The central principle of TS revolves around the creation and utilization of a
"tabu list." This list serves as a dynamic record of unfavorable moves or solutions
encountered during the search process. By incorporating these elements into the taboo list,

the algorithm prioritizes exploration of uncharted territories within the search space.
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Chapter 3. Constructing a Program for Conventional CAMD

In section 2.3, the diverse variety of each component in CAMD framework has been

reviewed. We now construct the four components based on our own specifications.

Input:

property
specifications ¢

Computer-Aided Molecular Design (CAMD)

— - S EE EE EE EE EE EE S EE EE EE S En

e Forward algorithm f(u;, w;)

Estimate properties from structure.

o [ )

Molecular Molecular
data structure properties
U; f(u;,wy)

CAMD: iteratively generate new structures and identify optimal structures.

new

o Generative algorithm:
u; + du; = uj

Reverse algorithm

o Selection algorithm:

new new
P(uyuy, ..., uy ", uz"",..)

_______________ _——

Output:
chemical candidates
argmax Fitfen(u;, wy; t) or
argmin Objfen(u;, w; t)

Figure 2.3-1. The four components in rule-based CAMD framework.

3.1. Chemical Representation: MARS+ Package

)162

MARS (Molecular Assembling and Representation Suite)'®” serves as a versatile
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toolbox for general-purpose molecular design. It demonstrates the feasibility in using five
arrays of integers to record the constituent elements along with their connectivity among
the within a molecule, thereby forming a digital representation of molecular structure.
Additionally, MARS provides a collection of operations that enable the permutation of
molecular substructures, resulting in the creation of novel molecular species. One can
experience this generative algorithm by inputting two (or more) chemical species and
subjecting them to these structure operations.

This work presents MARS+!% an extension of the original MARS software
specifically designed to handle complex molecular structures. MARS+ expands its
capabilities to encompass geometric isomers (cis-trans isomers), stereoisomers,
complicated polycyclic compounds, and ionic species. This extended coverage of the
chemical space allows MARS+ to explore a wider range of molecules with greater
chemical and physical diversity.

At the core of MARS+ lies the molecular data structure (MDS), detailed in section
3.1.2. This MDS is comprised of eight integer arrays and two string arrays, efficiently
storing information about atoms and fragments within a molecule. A key strength of
MARS+ is its ability to combine multiple single-component MDS objects into a
supermolecular MDS. This capability proves particularly valuable for handling complex
chemicals, such as ionic liquids, which consist of separate cationic and anionic
components. For the construction and manipulation of chemical structures, MARS+
offers a rich set of twelve operations. These operations can be categorized into three

primary groups, as described in section 3.3:

® 9 uni-molecular operations: These operations focus on modifying individual

molecules through addition, deletion, or insertion of atoms, bond changes, element
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substitutions, cis-trans inversion, chirality inversion, cyclization, and decyclization.

® 2 bi-molecular operations: These operations facilitate the redistribution of
molecular fragments between two molecules, enabling the creation of new molecules

through crossover and combination.

® 1 bi-supermolecular operation: This operation, component swap, allows for the

exchange of components between supermolecular entities.

To streamline molecule input and ensure the generation of canonical SMILES strings,
MARS+ incorporates wrappers around selected Open Babel API functions. Figure 3.1-1

provides a visual representation of the MARS+ architecture and its functionalities.
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p—(  canonical SMILES
SMILES input Open Babel
Open Babel raw SMILES output
. . —  Molecular 3D struct
smi2mds 1 des2sm| orecurar Structure
Atoms (with different .
hybridizations) Multi-component MDS (Supermolecule) Bl-superm_olecule
operations
Molecular Data Structure < component swap
(consisting of 8 integer arrays
- and 2 string array)
Bi-molecule
Molecular Data Structure . — C[OSSOVET
L . operations
(consisting of 8 integer arrays "
Molecular Fragments and 2 string array)
(functional groups) combination
Uni-molecule
operations
chirality inversion decyclization cyclization addition subtraction insertion bond change element change  cis-trans inversion

163

Figure 3.1-1. The architecture of MARS+ package. Reprinted with permission from the reference ®’. Copyright 2023 American Chemical Society.
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3.1.1. The Library of Base Elements

MARS+ utilizes a library of pre-defined base elements to represent the building
blocks of chemical structures. These base elements can encompass individual atoms (e.g.,
H, C, O), functional groups (e.g., CH3, OH, benzene), or even ionic groups (e.g., /,3-
dimethylimidazolium). The definition of these base elements is established within the
set_up() function in sre/ELEMENTS.cpp source file. Table A4 to Table A6 in  Appendix
A provides a comprehensive list of neutral, cationic, and anionic base elements for
reference. Each base element is characterized by a minimum of eight attributes, as

summarized in Table 3.1-1.

Table 3.1-1. The attributes of a base element.

Attribute Significance
name The SMILES representation of the base element
id A unique numerical identifier for the base element within the library
norder The total number of valence bonds
order An array storing the specific bond order for each valence bond
bd An array storing number of valence bonds per order
index The character index of the first bond in the name string.
suffspos The starting position of any optional suffix
chg The overall charge of the segment

It's important to note that not all attributes are utilized for every purpose. Here's a

breakdown of the attributes crucial for different functionalities:
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® MDS representation (section 3.1) and structural operations (section 3.3.1 to
3.3.3): These functionalities primarily rely on the id, norder, chg, order array, and bd

array for accurate representation and manipulation of the molecular data structure.

® Raw SMILES output from MDS (section 3.3.4): Generating raw SMILES strings
from the MDS necessitates the name, index, order, and suffspos (presumably a total

bond count) attributes.

The nomenclature of name string should follow the format of
“[core_atom][valences][suffix]”, where [core atom] represents the central atom,
[valences] indicates the available bond count, and [suffix] an optional component for
specifying functional groups. This suffix allows for the flexible introduction of diverse
functional groups into the base element library. Figure 3.1-2 provides an illustrative
example of the attribute settings for the base element /,3-dimethylimidazolium (ID=36).

The core concept behind MARS+ lies in representing each molecular input as a
connectivity network constructed from these pre-defined base elements. Consequently,
the comprehensiveness of the base element library directly influences the robustness and
versatility of the MDS representation. Expanding the library with new elements is
possible by following the instructions provided in the

inputs/element lists/element list.txt file.
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Cl-)(=)(= )([N+]%(99999)C CN(C)C=%(99999))

Suffix
(fragment) |

suffix (functional group-like)

The starting position of suffix = suffspos = 10

» Core atom, position = 0

A
w

L S e —-

The position of the 1st available valence = index = 2

Attributes:

id=36
name="C(-)(-)(-)(IN+]%(99999)C=CN(C)C=%(99999))";
order[0]=1; //Bond order of the 1st available valences
order[1]=1; //Bond order of the 2nd available valences
order[2]=1; //Bond order of the 3rd available valences
suffspos=10; //The starting position of suffix

index=2;  //The starting position of 1st available valence
norder=3; //The number of available valences

bd[0]=3; /[The number of single bonds

chg=1;

Figure 3.1-2. The attribute settings for the base element 7, 3-dimethylimidazolium (id=36).

The last carbon in suffix uses a double bond to connect with [N+], forming a ring with

99999 as its default ring number. Reprinted with permission from the reference'®?

Copyright 2023 American Chemical Society.

3.1.2. Molecular Data Structure (MDS)

In the MARS+ framework, the Molecular Data Structure (MDS) captures the

connectivity between the fundamental elements of a molecule, akin to a molecular graph

representation’?. The MDS for single molecule is defined in sre/MOLECULE.h source

code file while the specialized supermolecule MDS, as exemplified by ionic liquids, is

defined in src¢/IL.h source code file. The MDS consists of 10 data elements (see Table

3.1-2), each a one-dimensional array of size N. Here, N represents the total number of

base elements forming the molecule. There's one exception: the cyclic bond order array.
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The size of this particular array is dictated by the number of rings (N,) present in the
molecule, rather than the total number of base elements. In other words, the structure

variable u; is represented by,

(3.1-1)

Table 3.1-2 provides a detailed explanation of each data element within the MDS.
Each constituent element within a molecule is designated a unique integer ranging from
1 to N in the in the element indice array Cxy (variable: Cindex). The element type
array M.y (variable: Mindex) serves the purpose of recording the base element ID for
each corresponding element within the element indice array. This ID allows for the
retrieval of information such as charge, name, and valence of each element from the base
element library (see Table A4 to Table A6 in Appendix A). The parent indices array
Pi«n (variable: Pindex) stores the element index of the parent element within the
molecule to which the current element is connected. It is important to note that each
element within a molecule has exactly only one parent element, except for the first
element in MDS (it has no parent element). In contrast, an element can be connected to
two or more "descendant elements".

The bond order array R,y (variable: Rindex) stores the bond order between an

element and its parent element. The cyclic flag array Cyixn (variable: Cyindex)
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indicates cyclic substructures within the molecule. Each unique cyclic substructure is
assigned a non-zero number to two of its member elements, indicating that the two
elements are connected by a bond to form the ring. The bond order for this specific ring-

forming bond is stored in the separate cyclic bond order array Cybq.y_ (variable:

Cybnd), where N, represents the number of rings in the molecule. The cis-trans
front/end flags array Fcty.y/Ecti.y (variable: ctsisomer) specifies the “\” and ““/”
notation in front of or at the end of an element name to denote cis-trans isomerism. The
protection flag array Pri.y (variable: protect) identifies elements that are protected
from any structural modifications during subsequent manipulations.

The OpenSMILES specification™ incorporates the concept of "winding type" to
represent the chirality of centers within a molecule. For a chiral carbon atom,
“R1[C@](R2)(R3)(R4)” indicates that substituents R2, R3, and R4 are arranged in an
anti-clockwise order when viewed from R1 towards the chiral carbon. Conversely,
“R1I[C@@](R2)(R3)(R4)” signifies a clockwise arrangement. This anti-clockwise
winding ("@") is encoded as a value of 1, while clockwise winding ("@@") is encoded
as 2 within the chirality flag array, chirality flag Chi,.y (variable: chi).

As an example, Table 3.1-2 provides an illustrative example of the MDS
representation for an imidazolium cation, C[n+](cl)ccnl[C@H](F)/C=C/C. Here's a

breakdown of the information encoded within the data structure:

® Element Indexing and Parentage: Each atom in the cation is assigned a unique
serial number (1 to 11) representing its element index. The parent index for the first

element is always 0, signifying its position as the starting point in the data structure.
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Element Type and Base Element Library: The element type array and the base
element library (see Table A4 to Table A6 in Appendix A) work together to define
the properties of each element. For instance, the first entry in the element type array,
along with the base element library, identifies the first element (element index = 1)
as "C(-)(-)(-)(-)" (ID = 1). This notation indicates a charge-neutral carbon atom with
four single bonds. Similarly, the second element (element index = 2) is identified as
"IN+](=)(-)(-)" (ID = 16), representing a positively charged nitrogen atom with a
double bond and two single bonds. The parent element of the second element is the
first element (element index=1), as indicated by the second entry of parent indices

array.

Bond Orders: The bond order array stores the bond order between an element and
its parent. The second entry in this array indicates a single bond (value of 1) between
the second element (element index = 2, [N+](=)(-)(-), ID = 16) and its parent (¢lement
index = 1, C(-)(-)(-)(-), ID = 1). Note that the bond order index for the first element

is always zero, reflecting its status as the starting point.

Cyclic Substructures: The cyclic flag array and the cyclic bond order array work in
tandem to represent cyclic structures within the molecule. In this example, the sixth
element (element index = 6, N(-)(-)(-), ID = 7) and the third element (element index
= 3, C)()(-), ID = 2) form a single bond to create the imidazolium ring.
Consequently, both elements are assigned a value of 1 in the corresponding entry of
the cyclic flag array. The bond order for this ring closure is stored as a single bond

(value of 1) in the first entry of the cyclic bond order array.
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® Protection Flags: For the design of other imidazolium ionic liquids, the
protection flag array can be employed. Assigning a value of 1 to all members of the
imidazolium ring within this array protects them from modifications during operations

like crossover, decyclization, or subtraction.
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Table 3.1-2. The molecular data structure (MDS) in MARS+ package

Canonical SMILES: C[n+](c1)cen! [C@H](F)/C=C/C

Name Stored information
Molecular size: N =11
Element indices Serial numbering from 1 to N for each base element in the
1234567891011
Cixn molecule
Parent indices
The base element to connect with 012245677910
Pixn 5
6N
Element types \
The ID of the base elements (Table A4 to Table A6) 1162227111221 3 4
M N
Bond orders Bond order information for the connection determined by I
01212111121
Rixn (Cixns Pixns Mixn)
The numbers are the element
Chirality flags o
Chirality information of each base elements in the molecule] 00000010000 indices
C_hilxN

"In this example the imidazolium ring is protected.

"'The notation " " signifies a null string rather than a blank space.
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Table 3.1-2. The molecular data structure (MDS) in MARS+ package (continued)

Canonical SMILES: C[n+](c1)cen! [C@H](F)/C=C/C

Name Stored information
Molecular size: N=11
Cyclic flags Ring numbering: Two elements labeled with the same
‘ ' 00100100000
Cyixn number will be connected to form a ring.
Cyclic bond orders
The bond order for each cyclic flag 1
Cy b 1XN,

Protection flags’

Prixn

The elements labeled 1 will be free from genetic operations

01111110000

/
\A,
\

Cis-trans front flags'"

Fctyyn

Record “/” or “\” that should be put in front of the element

name

Cis-trans end flags'™

@MN

Record “/” or “\” that should be put at the end of element
name (before the first bond)

The numbers are the element

indices

—Z
N

TIn this example the imidazolium ring is protected.

" The notation "_" signifies a null string rather than a blank space.
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3.2.

Forward Algorithm: Property Prediction Models

In this section, we present theoretical foundations for several crucial property models

implemented in this work. All the models incorporated in this work are outlined in Table

3.2-1 and Table 3.2-2.

Table 3.2-1. The property estimation method incorporated in this work

Property

Computational toolkits

Activity coefficient, y;/s

Gaussian solvation calculations!®* + COSMO-

SAC model'®

Highest occupied molecular orbital

(HOMO), Enomo

Gaussian'®

Lowest unoccupied molecular

orbital (LUMO), E;ymo

Gaussian'®*

Tonization potential (IP)?, E;p

Gaussian'®*

Electron affinity (EA)?, Eg,

Gaussian'®*

Fundamental gap™ ', E,,, Derived from IP and EA, Ejq, = Ejp — Egya
Electronegativity®” ¢y, Derived from IP and EA, y,, = — E’}’;ﬂ
Chemical hardness””- 17, g Derived from IP and EA, 1 = E”Jgﬂ
Electrophilicity”” 7, w Derived from IP and EA, w = % = %
SAscore®* 168 RDKit
SCscore!®’ RDKit
NPscore$4 170 RDKit
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Table 3.2-2. The RDKit descriptors'’! incorporated in this work.

Type Descriptors

Molecular Connectivity Chi Indexes, y,, and y,
Tanimoto Similarity, 7,(mol,, mol,)

The number of atoms, Nyms

Perception of substructure The number of rotatable bonds Ngytpna
feature The number of rings Ng;p g

The number of aromatic rings Ngrorings

The number of spiro atoms Nspiaems

The number of bridge atoms Ng,;4¢ms, and so on

Averaged distance from plane of best fit, PBF
Principal moments of inertia, PM1,, PMI,, PMI;
Quantification of structure | Inertial shape factor, ISF

asymmetry Eccentricity, Eccent
Asphericity, Aspher

Spherocity Index, Sphero

1-octanol/water partition coefticient, logP
The number of hydrogen bond donors, Nygp
The number of hydrogen bond acceptors, Nygy

Estimation of physicochemical o
molecular refractive index, MR

properties
Labute's approximate surface area, ASA

Topological polar surface area, TPSA

Radius of gyration, R,
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3.2.1. COSMO-SAC Activity Coefficient Model

COSMO-SAC-2010 model'®- 72 serves as a reliable method for predicting activity
coefficients based on the principles of solvation thermodynamics!’> '’*, This model
requires only the chemical structure of the solute molecule as input. To understand the
connection between the solvation process and activity coefficients, let's establish some
key definitions. Firstly, the solvation is defined as an isothermal-isobaric process to
transfer the solute molecules from a fixed position in an ideal gas phase into a fixed
position within the solvent phase, without altering the solvent’s composition.!”* The

partial molar Gibbs free energy of a fixed solute molecule i in solvent S is denoted as
G; /s- This term represents the pseudo-chemical potential of the solute, essentially the
chemical potential G; /s excluding the contribution from molecular translational motion

(i.e. liberation free energy RTIn(x;CsA3)).
Ei/S(Tr P, z) = E:/S(T' P, K) + RT]D(XLCSAlg) (32—1)

Here, x; is the mole fraction of species i in the solvent S, Cs is the number density

of solvent molecules, A; = = denotes the thermal wavelength of solute i, h

A
J2mmk
represents the reduced Plank constant, m; represent the mass of a solute particle, and k
denotes the Boltzmann constant. The pseudo-chemical potential G; /s 1s the free energy

associated with intramolecular degrees of freedom (e.g. vibrational, rotational, electronic,
and nuclear contributions) and intermolecular interactions. On the other hand, the

liberation free energy RTIn(x;Cs/A3) gets its name as it can be interpreted as the required
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work to enable thermal translational motion of solute in solvent phase. With these

—x,501

definitions, we can now define the solvation free energy AG;;s . It represents the

difference between the pseudo-chemical potential of the solute in the solution state

— % . —x,IGM
Gi/S(T, P,g) and the ideal gas state G; /s (T, P,&).

—x,501 —* —x, IGM
AGi/S (T'Plz) = Gi/S(TJ P'E) - Gi/S (T)P;E)
Combining eq (5.2-1) and (5.2-2), we have:

—x,50l — —IGM P
AGiss (T,P,x) = Giys(T,P,x) — Gys (T,P,x) + RTn (CskT)

According to the definition of activity and eq (3.2-3):

Gys(T,P,x) = G;;(T,P)
RT

Inx;y;/s (T,P,x) =

—%,50

l N —IGM
AGiys (T,P,x) — MG (T,P) G5 (T,P,x) — GIS(T,P) |
= + +

—i/i

RT RT

Jiji

Cs

Ci

(3.2-2)

(3.2-3)

(3.2-4)

—IGM
Here, G;;; represents the molar free energy of pure fluid i. Given G/ (T, P, g) -

Q{/Gl (T, P) = RTInx;, the activity coefficient of the solute 7 in the solvent S is determined

—=xsol
from the free energy difference between the solvated solution state AG;;s and the

G SO 173,175

solvated pure fluid state AG; ;
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AGHO (T, P, x) — AGS°N(T, P) C
Iny,s(T,P,x) = G ( ‘;T — +1n£ (3.2-5)
L

The solvation of solute i into the implicit continuum solvent § can be decomposed
into 7 steps based on COSMO solvation theory!®"> 175 176: (a) the charge of the ideal-gas

solute is turned off. (b) cavity is created within the solvent S in order to accommodate the

—*cav
solute molecule, resulting in the cavity formation free energy AG;/s . (c) the charge-
neutral solute is transferred from the gas phase to the cavity in the solvent phase. (d) The
solvent S is transformed into a perfect conductor with dielectric constant of infinity. (¢)

the charge of the solute is turned on and is completely screened by the perfect conductor,

resulting in the free energy of ideal solvation AE: © = EFOSMO — EIG (f) the charge

density o, on each ideal screening surface segment n is averaged using eq. (3.2-6),

. . —*CC
resulting in the apparent charge density ¢,, and charge averaging correction term AG;

(g) the averaged screening charges are removed to restore the original solvent S, resulting

—*Tres
in the restoring free energy AG;/s .

2..2
% rmreff dnm
Zam mn%_l_resz p( fdecayrn%+r§ff

rnz"‘resz dpm
« ———>—eXp | — S 5
ng rT%l + resz p fdecay rnzl + resz

o, =

(3.2-6)

Here, d,,, is the distance (in A) between the ideal screening surface segments n

05 . : .
and m. 7pr = (aeff/n) is the effective radius of each surface segment, where
Aerr = 7.25 A? is the effective surface area of each segment. The unit conversion facto

faecay = 3.57 corrects the distance d,,, from A to Bohr radius.'”” If dispersive
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. . —+*dsp . .
interactions AG;,s are also considered'””'”, the overall solvation free energy can be

expressed as the sum of the five contributions.

—x*5o0l —*cav

— %] —x —x —x*d
NGy = AG;  +AGiys +AG; +AGy s +AG,s (3.2-7)

In particular, the sum of the first four terms is referred to as the solvation charging

—xch

g —*iS —x1es —xCC —*dsp i . .
free energy AG;;s = AG; +AG;s +AG; +AG;s , as it originates from (either
permanent or transient) charges and dipoles. On the other hand, the cavity formation

—*Ccav
energy AG;;s accounts for the molecular size and shape differences among components.

Since the free energy of ideal solvation AE: * and the charge averaging free energy

AE; “ are only dependent on solute species, they will be cancelled out in the calculation
—xd.

of eq. (3.2-5). The dispersion term AG; /SS P is assumed to be a weak function of solvent

—+d x . .
(i.e. AGi/;p ~ Agi/’?Sp) in COSMO-SAC-2010 model, therefore it also assumed to be

cancelled out in eq. (3.2-5). Nevertheless, the contribution of dispersion term to the
activity coefficient is explicitly considered in the later development.!”” From these

arguments, eq. (3.2-5) can be rewritten as eq. (3.2-8).

AG-*TeS _ AijT'_eS AG.*cav _ AijC.aV C
Ji/S /i + 1i/S /i + ln—S (3.2—8)

Inyis = RT RT ,

175, 180

In particular, Lin and Sandler suggest use Staverman-Guggenheim model'®!

182 to describe the cavity formation term along with the concentration term in eq. (3.2—

8).
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AG_*C(IU _ AG-*C‘aU C
In Yi/sSG == —/! +1ln—=
RT C;

o\ z 0, b;
=ln<—)+— -1n(—>+l-——§ il
X 21 bi o ; 71

(3.2-9)

Here, 0; = x;q;/ X x:q;, ¢ =xr/Xxiry, i =(z/2)(ri—q)—(i—1), ;=
VEOSMO 1y, q; = ASOSMO /g, x; is the mole fraction of species i, 7; is the normalized
volume of species i, 17, = 66.69 A3 is the reference volume, g; is the surface area
parameters for i, q, = 79.53 A? is the reference area, and z = 10 is the parameter of
coordination number. V%M and Af95MO are the volume and the surface area of

species i obtained from COSMO calculations, respectively.

On the other hand, the determination of restoring free energy AE:/T; > is based on
the screening charge surface obtained from COSMO solvation calculation. The total
surface area of a solute molecule i, denoted as A;, can be factored into three
contributions'®’: AN¥5 () from surface not involved in hydrogen bonding, A%7 (o)
from surface involved in OH-typed hydrogen-bonding, and A%T(o) from surface
involved in HF-typed, NH-typed, as well as other special hydrogen bonding such as O in
ketones and NOz in nitro compounds. The o-profile p;(0), i.e. the probability distribution
of finding a surface with charge density o, can be obtained after a reweighting by a

gaussian function p"? (o),

0.2
P (o) = 1— exp ( 202) (3:2-10)
o]
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AP (0) + AP (0)[1 — P ()]

plfP(0) = Y (3.2-11)
0

p0(o) =& H(thb (@) (3.2-12)

pfT (o) = A?T(athb(a) (3.2-13)

pi(0) = p{""*(a) + p?" (0) + p{" (o) (3.2-14)

Here, o, = 0.007 e/A. For a mixture system, its o-profile is superposed by the
surface area distribution of each pure component i, with their mole fraction x; as the

weighting factor.

i x;Aipi(0)

3.2-15
XixiA; ( )

ps(o) =

The o-profile is utilized to calculate the electrostatic interactions between segments
ol and o. Here, the subscript m (or n) refers to the particular surface segment m (or n),
and the superscript ¢ (or k) indicates the type of the segment, i.e. OH, OT, or NHB. It is
important to notice that, in COSMO-SAC model, the chemical species in the system are
regarded as a mixture of the charged surface segments. The probability for two surface
segments to form an interacting pair is modeled by Boltzmann distribution, as described
by eq. (3.2-16). Each possible segment pair is microstate assumed to be independent from

the other pairs.

Epair(o-%ro-rlf) - (.us(o-rl;L) + .us(o-ri))

3.2-16
T ( )

ps(op)ps(of) = exp |-
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Here, Epqir(0f,0x) is the self-energy of segment pair (6h,0r) , ps(ofh)
represents the segment chemical potential of fragment ¢f,. Self-energy can be factorized
into the misfit energy Ep, (o7, ok, T), hydrogen bonding interaction Ejj,(at,dX), and

non-electrostatic energy (mostly dispersion) E,,,.

Epair (O-rl;u O-‘I'Il{) = Emf(o-rtn' 0_1’16' T) + Ehb (O_rtn' O-rllc) + Ene

3.2-17
By ( )

F) (0-71;1 + O_r’lc 2 - Chb(o-rsﬁu o-rllc)(o-rtn - 0-111( 2+ Ene

= (AES +

To define the segment activity coefficient I3(o},) for segment o, the charge-
neutral ideal segment mixture (CNISM), where the partial molar free energy of fragment

ol is puSNISM(0) = u2(0) + kTnp,(at), is chosen as the reference system, as shown
ineq. (3.2-18). u2(0) = %Epair (0,0) is the chemical potential of a pure segment species

under charge-neutral condition.

us(at) — (u2(0) + kTnp,(ct)) (3.2-18)

Inf5(om) = T

Note that pg, pd(0), and Epg;, in eq (3.2-16) and eq (3.2-18) are known
information from COSMO calculation. Therefore, it is intuitive to solve eq (3.2—16) first
for the chemical potential terms, and then substitute the results into eq (3.2—-18) to
calculate Inls. However, this will lead to a large system of equations. To see this, let the

number of surface segments with charge density g, be ng, the total number of surface
segments be f =X},n,, and ng, =n,, = gps(aq)ps(a,,) be the number of pairs
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forming from segmentg andv. f and n, are also the known information obtained from
COSMO calculation. The ng, terms contribute f(f + 1)/2 unknown variables, and

the conservation law of segments provide f independent equations:

ng+ng+-o+ nlf =N
Nyq + Nyo + -4+ nzf =N,

(3.2-19)

In addition, there are f unknown chemical potential terms g (aq), and eq (3.2-16)
provides f(f + 1)/2 independent equations to relate them. It turns out that there are
f(f +3)/2 equations and f(f + 3)/2 unknowns are to be solved. The number of
surface segments for a medium-sized molecule can be up to 3000, therefore the system
of equations might be impractical to solve. An alternative mathematical form for (o))
is found to facilitate the calculation and enhance the robustness. The key idea is to
eliminate the chemical potential terms us(ol,) and ug(o}) while combining eq (3.2
16) with (3.2—18). Firstly, summing over all the ¥ in eq (3.2—16) can eliminate pg(c))

because of the relationship ). ok ps(af) = 1. This leads to an expression for us(at,):

E_ . O't,O'k _ O't
s(0t) = KTInps(0t) = kT1n| )" exp <_ i oy ) — s n))

o

(3.2-20)

Substituting eq (3.2-20) for the u(cl,) ineq (3.2-18), we have:
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(_ Epair(o-rgv 0-1’1() - ,LLS(O',D + ”2(0)> (3 2_21)

Inl3(cf,) = —In 2 exp T

o

Using eq (3.2-18) to eliminate us(of) term in (3.2-21), we finally arrive at eq.
(3.2-22). This equation enables us to determine Inli(c),) by successive iterations.
Specifically, I5(o)) isinitialized with 0 for every ¢, and then the formula on the right-

hand side is continually used to update (o).

AW (o, o) Uﬁ)) (3.2-22)

Infz(o,) = —In Zps 5o )exp(— T
B

Here, AW (0}, 0%) = Epair (0, 0%) — Epair(0,0) represents the exchange energy

t k
between fragments o, and oy .

Bgs
AW (o}, o) = (AES T2 ) (Op + 05)? = cnp (G5, 0) (05, — 0F)? (3.2-23)

Once the successive iterations in eq. (3.2-22) reach convergence, the restoring

energy AG*/TS?S can be expressed in terms of fragment contributions:

AG*T@S
RT - aeff

Z pi(op)Inls(oh) (3.2-24)

Finally, combining eq (3.2-8), eq (3.2-9) , and eq (3.2-24), we have:
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A;

Aerf =
m

Iny;/s = pi(or)Inl5 (o) — InL (5] + Iny;/s%¢ (3.2-25)

The electrostatic interaction parameters, namely Agg, Bgs, Cpp(0t, o), the value
0, in the Gaussian function for fragment classification, and the effective interaction area
a.rr between the two fragments, are the few parameters required by the COSMO-SAC

model and can be found in previous literature ' 175,

3.2.2. Electronic Properties from Quantum Simulations

The electron density p(r) is an important property in quantum mechanical
calculations, as it determines complete information of a ground state (including the
external field v(r) arisen from presence of nuclei) according to Hohenberg-Kohn

theorems.'®? Its mathematical form is expressed as eq (3.2-26).

p(r) = N|W(sq, 1y, ..., Sy, Iy) |2 (3.2-26)

N = f p(r)dr (3.2-27)

Here, N is the number of elections in the considered system, W is the normalized
wave function for the system, s; represents the spin state of electron i, r; is the
coordinate of electron i, dr = ds,dr --- dsydry. Based on density functional theory

(DFT)'®3, The total energy functional E[p(r)] is expressed as eq (3.2-43).
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E[p(®)] = T[o(] + Vo [p(®)] + Vao [p ()]
(3.2-28)
= T[p(] + Ve [p(®)] + f p(O)v(r)dr

Here, T[p(r)] is total kinetic energy of the electron system, V,.[p(r)] is the total
electron-electron repulsive energy, and v(r) is external field (in this case, electric field
produced by the nuclei). With the functional form v(r) fixed, we can use Lagrange

multiplier method to find the lowest total energy E[p(r)] subjected to eq (3.2-27).

LIp(0), n] = Elp()] = f p@dr - ) (3.2-29)

Here, L[p(r), x,n] is the Lagrangian, y,, is the Lagrange multiplier for condition

eq (3.2-27). The functional derivate'®* of L[p(T), x,,,] with respectto p(r) is:

SE[p(r)] ~
S f Ymdr = 0 (3.2-30)

On the other hand. we have from eq (3.2-28) that:

[p(r)]
6v(r) j (r)dr (3.2-31)

It turns out the total energy functional E[p(r), v(r)] can be recasted as'®®
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p(r),v(r)

E[p(r), v(0)] = j SE[p(1), v()]

p=0,v=0
B PIYE SE[p(r), v(r)] SE[p(r), v(D)]
- fp=0,v=0 5p(r) 8p(r) + 5v(r) sv(r)

(3.2-32)
= Ym f in(:cYp(r) dr + f p(r) Jv(r)c?v(r) dr

v=0

= 2N + f p)v(r)dr

Here, x,, = (0E/AN), is defined as electronegativity by R. S. Mulliken.'® In
analogy to thermodynamic depiction, x, bears the significance of “‘chemical potential”
for the electron system. Now use Taylor expansion to obtain expression for the energy

functional of anion state E[py,,(r)] and cation state E[py_;(r)]. Let py (1) =

pn(@) + Ap, (1) and py_1(1) = py(r) — Ap_(7), then,

Elpn+1(M] = E[pn(r) + Ap, (1)]

SE[pn ()]

— Elon)]+ | (W

Ap, (P)dsd
),, pe(r)dsdr (3.2-33)

1[( §%E[py ()]

+ = Ap_(r")Ap_(r'")ds'dr'ds" dr" + ---
2 6pN(r')6pN<r~)>v p-(rAp- ()

Elpy-1(M)] = Elpy(r) — Ap_(1)]

— Elon] - | (M) Mp_(r)dsdr

Spn (1) (3.2-34)

1]( §2E[py (1)]

+ = Ap_(r)Ap_(r'")ds'dr'ds" dr" + -
2 6PN(r’)6pN(r”)>v p-(r)hp-()

The mathematical forms for ionization potential (E;p = E [p No1 (r)] - E[p . (r)]) and
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electron affinity (Eg4 = E [pN "] -k [pN ) ()]) can be determined based on eq (3.2-33)

and (3.2-34), namely:

Egs = E[py()] — E[pN+1(r)]

= _f<6E[pN(r)]> Ap, (r)dsdr

o) (3.2-35)
1 8%E[py ()] , o
- Ef ((SPN(T’)SIDN(TH)>V Ap—(r )A,D_(T )dS dr ds dr + ---
Ep = E[py_, )] = E[p, (1]
__ M)
- f( Spy(r) VAP_(T)dsdr 250

1 j ( §°E[py ()]

2 5PN(T’)5pN(r")> Ap_(r )Ap_(r )dS dr ds dr + ---

v

2

The electronegativity y,, is determined as the arithmetic average of mean

SElow] ) )
(P20 ineq (3.2-35) and eq (3.2-36),

Ym = — (—) ~=(- - = P TTEA 35 37
N/, 2\ [ap,(r)dsdr [ Ap_(r)dsdr 2

Note that [Ap,(r)dsdr = [ Ap_(r)dsdr = 1. Similarly, the arithmetic average of

SEln®] ) _ 26 .
mean ( o )00m (’”"))v in eq (3.2-35) and eq (3.2-36) is defined as the chemical

hardness 7.
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(3.2-38)

1/02E\ 1 2Eg, 2E,p E;p — Egy

T 2\N?) T 2| g ap,(dsdr)’ | 2(] Ap_(rdsdr)’ 2

Now use the number of electrons in system, i.e. N, in place of density functional

pn (1), we have:

oE 1/(0%E
E(N) = E(Ny) + (ﬁ) (N — No) +E<W> (N — Ng)? + -

(3.2-39)

= E(Ng) = Xm(N — No) + n(N — Ny)? + ---

Here, N, represented the number of electrons in the unperturbed system. Systems
governed by eq (3.2-39) has a saturation threshold for gaining bound electrons. This is
because after saturation the addition of elections no longer influences energy E(N),
which implies that these excessive ones are free electrons.’’ To determine this threshold

N,,e, find the extremum of eq (3.2-39) with respect to N.

dE(N)
N = —xm + 2n(Nppe — No) =0 (3.2-40)
Nme
Xm
Nipe — No = P (3.2-41)

The energy to corresponding to the maximum number of elections (N,y,.) is

Xm | Xn
m m
E(Npe) = E(Np) — 21 + e (3.2-42)
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. Z E;p+Ega)?
In particular, w =2%% = Eip+Esa)
2n 4(E;p—Ega)

is defined as the electrophilicity index,
representing an approximate energy decrease with respect to the state of bound electron
saturation. The electronegativity y,,, hardness 7, and electrophilicity index w are
employed in studies on chemical reactivity, stability, reaction selectivity, reaction
mechanisms, and kinetic modeling. For example, electronegativity yx,, is utilized in
constructing kinetic models for radical polymerization.'86-1%® Hardness 7 itself serves as
a measure of chemical stability, characterizing the fundamental energy gap> '®.
Additionally, it forms the basis of HSAB theory'® (Hard and Soft Lewis Acid and Base),
which states “hard likes hard and soft likes soft” in acid-base reaction. The electrophilicity
index w measures chemical reactivity in electrophilic (i.e. electron-accepting) reactions

and is valuable in understanding aromaticity, superacidity, and spectral shifts in molecular

systems'®’.

3.2.3. Synthetic Accessibility Score (SAscore)

The synthetic accessibility score (SAscore)®® %% is a metric used to evaluate the
molecular structural complexity and non-usuality. From its definition, the synthetic
accessibility goes from high to low as SAscore goes from 1.0 to 10.0. It is established by
analyzing the molecular structural complexity and the occurrence of molecular fragments
in a subset (934,064 species) of PubChem database. To calculate SAscore(u;) for
molecular species u;, the raw fragment score Scorep(u;) and raw complexity score
Score-(u;) need to be calculated in advance.

Particularly, the evaluation of raw fragment score Scorep(u;) relies on a fragment
scoring dictionary Fragdict = {(Fragj,FragScorej),j = 1,2, }, which is given in
RDKit package.’* In this dictionary, high scores are assigned to the most common
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fragments encountered within the PubChem subset. Conversely, fragments not found in
this subset are assigned a default raw score of -4.0. The raw fragment score for molecular

species u;,i.e. Scorep(u;), is determined as the averaged raw score per fragment in u;.

n,(u;) FragScore
Scorey (uy) = 2 ) FragScore, (3.2-43)
X ue(uy)

Here, ny(u;) is the number of Frag, occurrences in u;, which can be
determined from the Morgan fingerprint calculated using RDKit. FragScore, = —4.0
if Fragdict[Frag,] = ® . On the other hand, complexity score Score.(u;) is
determined from the number of stereo-genic centers, cyclic substructures, constituent
atoms, and the number of feature types possessed by the molecular species. Here, the
treatment of Score-(u;) in RDKit is presented. This is slightly different from the

original implementation. '

SizePenalty(u;) = nAtom(u;)*°% — nAtom(u;) (3.2-44)
StereoPenalty(u;) = log(nStereoCenters(u;) + 1) (3.2-45)
SpiroPenalty(u;) = log(nSpiroAtoms(u;) + 1) (3.2-46)
MacroCyclePenalty(u;) = log[min(1,nMacroCycles(u;)) + 1] (3.2-47)
CorrectFgpDen(u;) = 0.51n lmax (1, nAtoms (u,) >l (3.2-48)
nFgpFeatureTypes(u;)

Score-(u;) = —SizePenalty(u;) — StereoPenalty(u;)

— SpiroPenalty(u;) — MacroCyclePenalty(u;) (3.2-49)

— CorrectFgpDen(u;)
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Raw SAscore is defined as eq (3.2-50). If rawSAscore(u;) > 8, smooth the 10-

end using natural log function, as (3.2-51) shows.

9.0
rawSAscore(u;) = 11.0 — oc [Scorep(u;) + Score-(u;) + 5.0] (3.2-50)

rawSAscore(u;) = 8.0 + In[rawSAscore(u;) — 8.0] (3.2-51)

Finally, scaling the rawSAscore(u;) to closed interval [1.0,10.0], obtain

SAscore(u;).
SAscore(u;) = max(min[10.0, rawSAscore(u;)], 1.0) (3.2-52)

It should be noted that SAscore does not explicitly evaluate the level of difficulty in
synthesizing a chemical through reactions. It is more like a metric to assess molecular
structural complexity and similarity with common chemicals. Also note that raw fragment
score Scorep(u;) will be —4.0 for a chemical not possessing any fragment in the

fragment scoring dictionary Fragdict. In this scenario. rawSAscore(u;) will be

greater than [11.0 - g(—él.o + 5.0)] = 4.08 according to (3.2-50). It is therefore

reasonable to consider SAscore(u;) = 4.0 to be a rough dividing line of synthetic

accessibility.

3.2.4. Synthetic Complexity Score (SCscore)

The synthetic complexity score (SCscore)!'®” is a metric used to evaluate the level of
difficulty in synthesizing a particular chemical. Specifically, the level of difficult is

quantified by the required number of reaction steps. From its definition, the synthetic
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complexity goes from low to high as SCscore goes from 1.0 to 5.0. It is established by

employing a 6-layer neural network model to learn 12 million reactions from Reaxy

database. Notably, during training, it is required that the product complexity should

always be greater than the complexity of any of the reactant. To calculate SCscore(u;)

for molecular species u;, it is necessary to prepare Morgan fingerprint MGFgp(u;) in

advance. The model details are presented in Table 3.2-3.

Table 3.2-3. The dimensions of every layer in SCscore model.

Normalized layer output s;

Layer j | Weight W; Bias b;

s; = Normalize(s;_4W; + bj)
j=1 1024 x 300 | 1x300
j=2 300 x 300 1 x 300

ReLU: let every negative entry in
j=3 300 x 300 1x 300

(S]-_IW]- + b]) be 0

j=4 300 x 300 1x 300
j=5 300 x 300 1x 300
j=6 300 x 300 1x1 Softmax: s; = 1.0 + 29

1.0 +exp[—(s]-_1Wl-+bj)]

tso = MGFgp(u;) is the fingerprint for species u; in 1 X 1024 dimensions.

T1The normalized output s¢ is the SCscore(u;) for species u;.

Since the SAscore and SCscore evaluate different aspects of synthetic feasibility,

combining them can provide more comprehensive insights. Consider a sequential reaction

in which the SAscore and SCscore are evaluated for every (intermediate) product. From

the perspective of SCscore, a practical sequential reaction should exhibit a monotonically

increasing SCscore curve with respect to reaction steps. Therefore, if a decline in the
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SCscore is observed, it suggests that the reverse reaction may be more practical.
Conversely, a surge in the SAscore curve indicates that rare and complex substructures,
such as rings, have been formed through the reaction steps. If the SAscore significantly
decreases while the SCscore significantly increases throughout the reaction steps, it is
advisable to directly purchase the end product (or its precursor) from chemical suppliers.
169

It should be emphasized that reaction steps associated with reasonable variations in
SAscore and SCscore curves are not necessarily practical. To identify the most realistic
reaction pathway, one may resort to computer-assisted synthesis planning (CASP)'?
software, such as AiZynthFinder'?® and ASKCOS'?®. When provided with a chemical,

CASP software plans practical reaction steps for synthesizing the chemical from common

precursors.

70

doi:10.6342/NTU202403528



3.3. Reverse Algorithm (I): MARS+ Package

3.3.1. Structure Manipulations — uni-molecular operations

The mutation operation modifies the based elements within a molecule within the
context of Myelodysplastic Syndromes (MDS) research. MARS+ offers 9 distinct
mutation methods: addition, subtraction, insertion, element change, bond change,
cyclization, decyclization, cis-trans inversion, and chirality inversion. Figure 3.3-1
illustrates each of these 9 operations. Notably, the addition, subtraction, bond change,
and cyclization operations have been refined from previous versions of MARS to enhance

capability, stability, and reliability. These operations are detailed below:

® Addition: This operation introduces a new element with a specified bond order to a
molecule. The introduced element must possess a free valence compatible with the
specified bond order. If either the existing molecule or the introduced element lacks
the necessary free valence, the addition is cancelled. Addition leads to a new branch

substructure, as the introduced element becomes an endpoint in the molecular graph.

® Subtraction: This operation removes a designated element from the molecule. The
removed element's parent and descendant elements are then connected with a user-
specified bond order, while preserving the remaining molecular connectivity.
However, the operation is cancelled if the resulting valences of the parent or

descendant elements are incompatible.

® Insertion: This operation introduces a new element between two connected elements

in a molecule. The insertion involves replacing the existing bond between them with
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a specified substructure containing a central element and its connecting bond orders,
i.e. “[bond I][element][bond II]”. Both originally connected elements must possess
free valences compatible with the specified substructure for the insertion to proceed.

Otherwise, the operation is cancelled.

Element Change: This operation modifies an element and its associated bond orders
with its parent and descendant elements. Essentially, it replaces a substructure of the
form "[bond I][element][bond II]" with a new element and its compatible bond
orders. Compatibility checks are performed to ensure the new element can connect

appropriately with the parent and descendant elements.

Bond Change: This operation modifies a bond order and the elements at its two ends,
effectively replacing a substructure of the form "[element I][bond][element II]"
with a different substructure of the same form. Similar to element change,
compatibility checks are performed to ensure the new substructure can connect

seamlessly with the surrounding elements.

Cyclization: This operation generates a cyclic substructure with at least five member
elements in the ring. This lower limit is set to avoid torsional hindrance issues
commonly encountered in smaller cyclic substructures, but it can be adjusted if
required. Cyclization involves labeling two designated elements with the same cyclic
flag (a unique identifier) and then connecting them with a specified bond order. If
either element lacks the necessary free valence for the specified bond order, the

cyclization is cancelled.
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® Decyclization: This operation breaks open a cyclic substructure identified by a
specific cyclic flag number. The cyclic bond order is reverted to regular bonds on the
two relevant atoms. Subsequently, the remaining cyclic flags are renumbered to

maintain consecutive numbering.

® Cis-Trans Inversion: This operation flips the cis-trans isomerism of a double bond.
It essentially changes the notation in the array of cis-trans front/end flags from "\" to

"/" (or vice versa).

® Chirality Inversion: This operation modifies the chirality of a chiral center. It flips
the chirality flag from 1 (representing anti-clockwise winding) to 2 (representing
clockwise winding) or vice versa. Notably, MARS+ assigns default isomerisms (trans
and clockwise winding) when a potentially isomeric substructure is formed during

other operations.

It is important to note that some operations may generate double-bond or triple-bond
free valences. For instance, the addition operation can introduce a C(=)(-)(-) element (ID
= 2) that forms a single bond with the molecule. In this scenario, the remaining (=)(-)
bonds become free valences, implicitly representing attachment points for three hydrogen

atoms. These free valences can be utilized in subsequent operations.
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11

C[n+](c1)cen1[C@H](F)/C=C/C

Figure 3.3-1. Illustration of the nine uni-molecular operations. Reprinted with permission from the reference

[1] Subtraction (F6) _ N N
C/C=C/Cn1cc[n+](c1)C - /N =/ /\.(~
[2] Addition (O(-)(-) to C4) . 3] \ . ” OH
C/C=C/[C@](n1cc[n+](c1)C)(F)O /N ]

[3] Element change (C2 with N(i)(')) <N -~ Né\N
CIN=C/[C@H](n1ccn+](c1)C)F - Nw \—/

[4] Bond change (C2=C3 to C2-C3)

cccic@Hl(n1ecn+lc)c)F  [5] [6]
[5] Cyclization (C4 & C9) N | N /\\N + ~ N&\N
S —

C1/C=C/[C@H](n2c1c[n+](c2)C)(F)

[6] Cis-trans inversion (C2or C3) [7] \ N [8]
C/C=C\[C@H](n1cc[n+](c1)C)F i </N]

[7] Chirality inversion (C4) ) N N
C/C=C/[C@@H](n1cc[n+](c1 )C)F I{s J

[8] Insertion (C7=C9 to C7-N= CQL

i
C/C=C/[C@H](N1CN=C[N+](= E
\
[9] Decyclization (C5-C8) J/
C/C=C/[C@H](NC=C[N+](=C)C)F

163

Chemical Society.
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3.3.2. Structure Manipulations — bi-molecular operations

In addition to mutation operations, MARS+ offers functionalities for generating new
molecules by combining fragments from two existing molecules or exchanging
substructures between them. These bi-molecular operations provide a powerful tool for
exploring chemical space. Here, we describe the two bi-molecular operations: crossover

and combination.

® Crossover: The crossover operation mimics the biological process of chromosome
crossover during meiosis. It generates new molecules by exchanging fragments
between two input molecules. This operation requires specifying a bond from each
of input molecule as the crossover point. If the bond orders of the designated
crossover points are identical, the operation exchanges the molecular fragments
based on those points. Figure 3.3-2 exemplifies the crossover operation between
[C4mim] and [P4,4,4,4], resulting in the generation of [C4C3im] and [P2,4,4,4]. If

crossover leads to unpaired cyclic flags in fragments, the ring will be destructed.

® Combination: The combination operation merges two input molecules
into a single new molecule by forming a bond between designated points on each
molecule. This operation involves selecting one element from each input molecule
and a free valence from each chosen element. If the bond orders of the selected free
valences are the same, the operation connects the two molecules through these free
valences. Figure 3.3-2 illustrates one possible combination product of [C4mim] and
[P4,4,4,4]. Notably, MARS+ allows for flexibility in choosing any single element
from each molecule for the combination operation.
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Combination Crossover

— 2\
o
e ™ NN J

— !/\/ [C4mim] [CAC3im]

[P4.4,4.4] [P24,4.4]

Figure 3.3-2. Illustration of the two bi-molecular operations. The crossover point is represented by the scissor symbol, while the combination

163

point is denoted by the brown arrow. Adapted with permission from the reference'®’. Copyright 2023 American Chemical Society.
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3.3.3. Structure Manipulations — bi-supermolecular operations

MARS+ introduces a distinctive operation known as component swap, which differs
from the uni-molecular and bi-molecular operations discussed earlier. Unlike these
operations, which are aimed at generating new molecular structures, component swap
delves into the combinatorial space spanned by existing chemical components, without
creating novel molecular entities. This operation is pivotal in exploring diverse chemical
formulations.

Essentially, component swap exchanges two specified components between two
separate supermolecules. For instance, in the context of Molecular Data Structure (MDS)
representation for ionic liquids, where a cation and an anion are distinct components,
component swap allows for the interchange of either the cation or the anion components.
Figure 3.3-3 provides an example demonstrating an anion swap operation applied to two

distinct ionic liquids.

77

doi:10.6342/NTU202403528



IL (a)

IL (b) X IL (b)

Figure 3.3-3. Illustration of the component swap operation. Reprinted with permission from the reference
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. Copyright 2023 American

Chemical Society.
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3.3.4. Transformation of SMILES into MDS (smi2mds)

In a CAMD task, the starting chemical species can be either generated randomly
from pre-defined libraries or user-specified. In particular, the latter scenario necessitates
robust descriptors for transforming other molecular input formats into the MDS
representation. MARS+ utilizes SMILES (Simplified Molecular Input Line Entry System)
strings as the standard input and output format in its applications in CAMD tasks. To
realize input transformation, MARS+ integrates functions from the OpenBabel C++ API.

Here's a breakdown of the process:

® SMILES Input and Conversion: The input SMILES string is stored in a variable
named SMILES stringstream. The smi2mds OBabel() function utilizes the
OpenBabel conversion object (OBConversion) to transform the SMILES string into

a 3D Open Babel Molecular object (OBMol).

® Enriching the OBMol Object: Initially, the OBMol object lacks hydrogen atoms
and atomic coordinates. The AddHydrogens() function adds implicit hydrogen atoms
to the molecule.The Build() function calculates 3D coordinates for each atom. These

steps are crucial for accurate isomerism perception.

® Isomerism Detection: The HasCisTransStereo() function checks for the presence of
cis/trans isomers in the molecule. The HasTetrahedralStereo() function checks for
the presence of tetrahedral stereocenters (potential chiral centers). If isomers are
detected, detailed information can be retrieved using GetCisTransStereo() and
GetTetrahedralStereo() functions.
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® Data Extraction and MDS Conversion: Loops like FOR_ BONDS OF MOL
and FOR ATOMS OF MOL iterate through the OBMol object to access
information about bonds, atom types, and detected isomerisms. The
smiZ2mds_OBabel() function, defined in the sre/MOLECULE.cpp file, utilizes

this extracted data to construct the corresponding MDS for the molecule.

For a more in-depth explanation of the technical details, refer to Algorithm 1 in

Appendix A.

3.3.5. Transformation of MDS into SMILES (mds2smi())

MARS+ ofters the mds2smi() function (defined in sre/MOLECULE.cpp) to convert
a MDS to a SMILES string. This conversion process relies on two helper matrices: Bindex
and atomsmi. Bindex is a two-dimensional matrix where each row Bindex/[i] corresponds
to the (i+1)-th element in the MDS. Initially, Bindex/[i] is a copy of the bond orders
defined for that element in the MDS (section 3.1.1). As the conversion progresses, for
each (j+1)-th valence of element i used to form a bond with another element within the
molecule, the corresponding entry in Bindex[i] (i.e., Bindex[i][j]) is set to O.
Consequently, the remaining non-zero values in Bindex/[i] represent the element's free
valences, which are assumed to be connected to implicit hydrogen atoms in the SMILES
output.

Similarly, atomsmi is a two-dimensional matrix where each row atomsmi[i] maps
the SMILES of the (i+1)-th element to proper output positions in the overall molecular
SMILES string, so as to form a valid SMILES. This mapping is determined by the
molecular connectivity specified by Bindex. For instance, in the case of ethane (canonical
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SMILES: CC), the positions of C characters in the output SMILES string depend on how
the carbons are connected, a process detailed in Algorithm 2 in Appendix A.

Once the raw SMILES representation is generated with the aid of atomsmi, it can be
canonicalized using the Open Babel API. Moreover, Open Babel supports the conversion
of SMILES into various other chemoinformatic formats such as MOLfile and GJFfile,

broadening the utility and compatibility of the output data.

3.4. Reverse Algorithm (II): Selection Algorithms

3.4.1. Fitness Function

As mentioned in section 2.1, the optimality of a designed species u; (at
thermodynamic state w;) is characterized from fitness function Fitfcn(u; wy;t) or
objective function Objfcn(u;, w;;t) in view of the mathematical framework. In this
work, we choose to use fitness function Fitfcn(u; w;; t), which by its significance
should give higher score as the molecular properties are closer to the target values. The
most straightforward way to formulate a fitness functions is to utilize the discrepancy
between predicted molecular properties f(z(u),w;) =
[f1(z(u), wy); ...; fprq(Z(u;),w;)] and the properties specifications & = [ty, ..., t,]
(see section 2.1 for notations). For convenience, the absolute deviation of molecular

property j from the corresponding target value is denoted as A;(u;w;t) =
| fiz(u), w;) — t; |- The averaged absolute deviation over the n properties is denoted as
(Aj(ug, wis t)) = X7 A (ug, wis t) /n.

Note that it is often difficult to predict whether there will be at least a designed
chemical species u; that makes A;(u;w;;t) go infinity during the optimization

process, as it depends on the nature of the chemical species u; and the property
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estimation method f; for each of the property j. For this robustness issue, it is the best
practice to devise a well-behaved and finite-bounded fitness function that can map
Aj(u;, wi; t) to a finite value even when A;(u;, wy; t) is infinite. For this purpose, the

mathematical form we use is:

B

—(4; (u;, wi; t))) (3.4-1)
D

Fitfcn(ui, Wi, t) =A4-

1.0 + Cexp(

Here, A, B, and C are positive coefficients that determine the higher bound (eq.
(3.4-2)) and lower bound (eq. (3.4-3)) of fitness, and D is a positive coefficient that

affects the decaying rate of fitness with respect to (A;(u;, w;; t)).

B

- 34-2
1.0+ C ( )

Fitfcnhbnd =A

Fitfcnlbnd =A-B (34—3)

These parameters are empirically setas A = 6.0, B =5.0, C = 4.0,and D = 3.0,
with Fitfcnppnqg = 5.0 and Fitfcng,,q = 1.0. The decay of fitness with respect to

(Aj(uy, wi; t)) is shown in Figure 3.4-1.
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5.0

4.0

3.0

2.0

Fitfcn (u;,w;; t)

1.0

OO A A A A L A A A A L A A A A L A A A A L
0.0 5.0 10.0 15.0 20.0 25.0

A (ujw;; t)

Figure 3.4-1. The relationship between fitness (eq. (3.4-1)) and the mean deviation of

properties from targets (A;(my, s;; t)) with parameter A=6, B=5, C=4, and D=3.

3.4.2. Selection Algorithms

Let N

popu D€ the number of chemical entities at the current iteration n, denoted by

the set Popu, = {(u’{, wi ,...,(u’,\',popu,wxpopu)} , where u represents chemical

structure and w represents thermodynamics state. A selection algorithm P is employed
to sample a specific number of entities from Popu,. This sample, denoted by the set
Sel,, may contain duplicates due to the possibility of repeated selections. Subsequently,
genetic operators are applied to the chemicals within Sel,, to generate new chemical
entities. The collection of these newly generated chemicals is denoted by Gen,,. We have
implemented several selection algorithms P to select chemicals from (Popu, U Gen,,)
as the subject chemicals in the next iteration. In other words, P(Popu, U Gen,) =

{(u:llr W:zl)l (u;)ll w;)l)r (u?, W?), } = Popun+1-
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® New-species Roulette Wheel (RW)
This scheme only selects from the newly generated chemicals, i.e. P(Gen,) =
{(ugz, wy), (up, wp), (ug,wg), ...} = Popu,,,. The probability for a chemical to be

selected to the next iteration is determined by the fraction of its fitness in Gen,,.

Fitfen(ul, wi; t)
Geny - n n.
X Fltfcn(uj,wj,t)

PRY (ul, wi; t) = (3.4-4)

® Linearly-scaled Individual Fitness (LSIF)

Similar to RW, this scheme only selects from the newly generated chemicals, i.e.
P(Geny,) = {(uy, wy), (uy, wy), (U, wg), ...} = Popu,,,; . The probability for a
chemical to be selected to the next iteration is determined solely by its normalized fitness.

The normalization constant is the higher bound of the fitness function, i.e. eq (3.4-2).

Fitfen(ul, wi; t)
PR G il ) = B (3.4-5)

A-To¥xc

® Simulated Annealing (SA)

We called it a child chemical when the chemical is generated from applying genetic
operators to its parent chemicals. This scheme compares a child chemical (x},y}) €
Gen, with its parent chemicals (uj,w}) € Popu,, and determines either of them to be
selected to the next iteration, i.e. P(Popu, U Gen,) = {(uly,wh), (x},¥5), .-} =
Popu, . The probability for a child chemical (x},y}) € Gen,, to be selected to the

next iteration is determined by a temperature parameter T and the difference of fitness
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between its parent (u}', w}) € Popu, and it.

(3.4-6)

Fitfen(ul, wi; t) — Fitfen(x?, y?; t))
T

PSA(xY, yi5t) = exp <—

In its execution, the temperature parameter T should be initialized with a

sufficiently high positive value. This makes Tll_rLlo PSA(x?,yt) =1 even child

chemical (x},y}") € Gen,, is much worse than its parent chemicals (ul',w}) € Popu,,
thereby encouraging the exploration of chemical space (feasible region). As iterations
proceed, the temperature is annealed using a programmed strategy, say, Tp,;1 = aT,, 0 <
a < 1. As the temperature gradually becomes lower, it becomes less likely to select a
worse child species over the its (relative better) parent species. This can be seen from the
fact that any nonzero positive differences [Fitfen(uf, wi;t) — Fitfen(xl, yi;t))]

makes lTi_r)r(l) PSA(x, yht) = 0.

® Fitness Monte Carlo (FMC)

This scheme compares a child chemical (x}, y}!") € Gen,, with its parent chemicals
(up, w}) € Popu,, and determines either of them to be selected to the next iteration, i.e.
P(Popu, U Gen,) = {(uy, wy), (x4, ¥3), ...} = Popu,,; . It resembles SA in
mechanism, but it has no temperature parameter. After sufficient iterations using FMC,
we expect the frequency distribution of all the chemicals (TotPopu, = {Popu, U
Popu, U ...U Popu,}) against property-target discrepancy A;(u;w;;t) should be

similar to Fitfcn(u;, w;;t). (Recall section 3.4.1)

85

doi:10.6342/NTU202403528



Fitfen(xl, yis t)
Fitfen(uy, wi; t)

PFMC (x?’ y?, t) = (34—7)

® Non-dominated Sorting (NS)

Non-dominated sorting, based on Pareto optimality '°°, is particularly useful for
multi-objective optimization problem. To illustrate the concept of Pareto optimality, let
us consider a population of only four chemical species Popu =
{(uy, wy), (uz, w3), (u3, w3), (g, wy)}. Each (u;, w;) has m properties f(u;,w;) =
[f1(uy, wy), ..., fn(u;, w)]T, where f; is the model used for predicting property j. Let
the fitness function evaluate every single property, i.e. Fitfen(u;,w;t) =
[Fitfcn,(u, wi t), ..., Fitfcen,, (u;, wi; £)]7, instead of lumping properties together.

For pair of chemicals (u;w;),(u;,w;) € Popu, we say (u;,w;) dominates

(uj, wj) if the two conditions are satisfied:

(I) Fitfen(u;w;;t) = Fitfen(u;, wy;t)

(IT) For at least a property k, Fitfcn,(u;w;;t) > Fitfcn, (uj, wij; t).

In other words, (u;,w;) dominates (u]-, w]-) by improving at least one of
(u]-, w]-)’s property without sacrificing (uj, w]-)’s optimality in any other property. This
is illustrated in Figure 3.4-2. When (u3,wsz) moves horizontally to the position of
(uq,wy) , it improves Fitfcn,(u;, w;;t) without sacrificing Fitfcen, (u;, wy;t) .
Therefore, (u3,wz) is dominated by (uq,w;). Moving (uq,wq) to the position of
point 2 improves property Fitfcn,(u; w;;t) at the sacrifice of Fitfcn,(u;,w;;t).

Therefore, there are not dominance relations between them.
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Fitfen,(u;, wi t)
4

(uy, wy)

(u31 w3) (uz, wz)

(u4r W4_)

Feasible region

>
Fitfeny(u;, wi; t)
Figure 3.4-2. Schematic diagram for Pareto frontier. The number of properties is reduced

to two (m = 2) for illustration.

After exhaustive comparisons between every pair of species in Popu, one may find
several species not dominated by any others. These species are optimal, and forms a set
called the first Pareto frontier, Front,. Picking out these species from Popu, the same
method can be applied to determine the second Pareto frontier, Front,, and so on. The
chemical species in the same Front are sorted in descending order of the crowded
distance.””’ The crowded distance quantifies the sparsity around a point in multi-
dimensional property space. The lesser crowded solutions are preferred due to its potential

for leading to wider exploration.
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The calculation of crowded distance is exemplified by Table 3.4-1. The crowded

distance uq in property i is determined by sorting the population in the ascending order

of property i, followed by calculating the difference of single-property fitness between

the two adjacent chemicals of u4. The crowded distance of each property sums up the

overall crowded distance.

Table 3.4-1. Calculation of crowded distance for chemical u;.

Sorted in ascending order | Crowded distance (CD) of u4 in property
Property
of f] (u;, wy) f] (u, wy)
CD;(uy, wy) = Fitfeny (uz, wi)
fi(u;, wy) U, Uy uy Us .
— Fitfen, (ug, wy)
CD,(uy, wy) = Fitfeny(ug, wy)
f2(ug, w;) U, Uy Uy Us .
— Fitfen,(up, wy)
CDy, (uq, wq) = Fitfcnm(qu w,)
Uy, wy) | uy Us uy U, )
— Fitfcn,, (uz, ws)
Overall crowded distance for uy, CD(uq,wq) = X%, CD;(uq, wq)

$This table illustrates the scenario of a 4-species population, Popu = {uq, Uy, U3, Uy}
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Chapter 4. Intrinsic Performance of MARS+ based CAMD

4.1. Exhaustive Structure Operations on Every Possible Point

A key advantage of MARS+ is its transparency in comprehensively generating all
possible new chemicals for each molecular operation. To illustrate this capability, we will
utilize two ionic liquids depicted in Figure 4.1-1 to exemplify the generation of all
possible new molecules for each of the twelve developed operations. It is important to
note that the protection mechanism is only activated for the charged atoms. For clarity in
the following text, the ionic liquid in Figure 4.1-1(a) will be designated as /L (a), with
its cation and anion components referred to as cation (a) and anion (a), respectively.

Similarly, IL (b), cation (b), and anion (b) will denote the ionic liquid presented in Figure

4.1-1(b).
IL (a) IL (b)
Cation (a) Anion (a) Cation (b) Anion (b)
17
] 16 18
15 23 5
|+ 2 %H 5 14N 12

12 9
Cyclic flag: C3 =1 Cyclic flag: C19 =1
NG =1 [N+]14 =1
Cyclic bond: 1 Cyclic bond: 2

Figure 4.1-1. Exemplary ionic liquids (a) and (b) used for demonstrating the test of
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2023 American Chemical Society.

4.1.1. Insertion

In the molecular data structure, any two connected elements must be linked by a bond.
We denote this substructure as “[element 1][bond][element 2]”. When an insertion
operation occurs, a new substructure ‘[bond_I][element][bond_II]’ replaces the existing
bond. Consequently, the resulting substructure becomes
“[element_1][bond I][element][bond II][element 2]”. Notably, the newly introduced
element (denoted as [element]) connects to [element 1] via [bond I] and to [element 2]
via [bond II]. For cation (a), 7 allowable bonds exist for insertion operations: C4=CS5,
C5-N6, N6-C7, C7-F8, C7-C9, C9=C10, and C10-C11. Figure 4.1-2 illustrates the 25

unique cations generated out of the 31 possible combinations.
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Figure 4.1-2. The 31 result cations produced from insertion operation on the double

bonds between the 4th and the 5th element of cation (a). (U) denotes a unique species

among the cations shown here. (Caption: element index of element I, element index of

element II, ID of the introduced element, bond order of the introduced element with the

parent element, bond order of the introduced element with the descendant element).
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Reprinted with permission from the reference!®. Copyright 2023 American Chemical

Society.

4.1.2. Cyclization

The cyclization operation in cation (a) involves pairing elements with single bond
free valences to form rings within the molecule. Among the 8 elements eligible (element
index =1, 3,4,5,7,9, 10, 11), the minimum ring size allowed is set to 5 members.
However, not all pairs of these elements can successfully form rings meeting this size
criterion. Despite the requirement for rings to be larger than 5 members, the generated
cations exhibit some smaller rings due to variations in ring perception algorithms. This

)92, smallest set of

includes the identification of the largest set of smallest rings (LSSR
smallest rings (SSSR)!**1% or other ring sets. It's noted that the rings perceived by
MARS's built-in algorithm often do not strictly adhere to LSSR or SSSR principles.

In future developments, enhancing algorithms for determining SSSR and

implementing minimum cycle basis (MCB)'**

methodologies would be beneficial. This
improvement would ensure more accurate and consistent identification of smallest ring

systems within generated cations, contributing to enhanced precision in molecular

structure analysis and design.
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Figure 4.1-3. The 13 result cations produced from cyclization operation on cation (a). (U)

means a unique species among the cations shown here. (Caption: element index of
element I, element index of element II, cyclic bond order in between). Reprinted with

permission from the reference!®*. Copyright 2023 American Chemical Society.
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4.1.3. Decyclization

The decyclization operation removes paired ring numbers and restores the cyclic
bond order to the two relevant atoms. As these cyclic bond orders become free valences,
they are assumed to connect with implicit hydrogen atoms. In the case of cation (a), the
only available point for this operation is C3-N6. The resulting cation is depicted in Figure

4.1-4.

|
N
N
Y L
N 2NN NN

[L(a)_cation(a) 1
Figure 4.1-4. The structure of cation (a) before and after the destruction of C3-N6
ring bond (cyclic flag = 1). Reprinted with permission from the reference'®*. Copyright

2023 American Chemical Society.

4.1.4. Cis-trans inversion

This operation applies to any element with either a cis-trans front flag or a cis-trans
end flag. Taking cation (a) as an example, if we invert the cis-trans front flag of the 9th
element (changing “/” to "\"), it results in a cis isomer, as depicted in Figure 4.1-5.
Interestingly, altering the cis-trans end flag of the 10th element (also from ““/”” to "\") leads

to the same structure.
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IL(a)_cation(a) 9,Fct./\
Figure 4.1-5. The structure of cation (a) before and after the inversion of cis-trans
isomerism of the 9th element (Caption: element index of the subject element, flag type of
the subject element, flag before inversion, flag after inversion) Reprinted with permission

from the reference'®®. Copyright 2023 American Chemical Society.

4.1.5. Chirality inversion

The chirality inversion operation can be applied to any chiral center within a
molecule. In the case of cation (a), only the 7th element (with ID=1, represented as
C(-)(-)(-)(-)) exhibits chirality. By performing the chirality inversion operation, the
chirality flag of the 7th element changes from 1 (anti-clockwise winding) to 2 (clockwise

winding).

! !
Y Y
L L
" N\_I
IL(a)_cation(a) 7,1,2
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Figure 4.1-6. The structure of cation (a) before and after the inversion of cis-trans
isomerism of the 7th element. (Caption: element index of chiral center, chirality flag
before operation, chirality flag after operation) Reprinted with permission from the

163

reference'®’. Copyright 2023 American Chemical Society.

4.1.6. Crossover

The crossover operation facilitates the creative combination of fragments from two
parent molecules to generate novel "child" molecules. This process entails the selection
of a bond (crossover point) from each parent molecule. Successful crossover hinges on
matching bond orders at both chosen points. When this condition is met, the molecular
fragments beyond those points undergo reciprocal exchange, resulting in the formation of
two structurally distinct offspring.

Since this work aims to design ionic liquids, viable crossover points are restricted to
those that will lead to two positively charged child molecules. Figure 4.1-7 demonstrates
the scenario where the double bond between the 4th and 5th elements of cation (a)
(C4=C5) serves as one of the designated crossover points. Cation (b) presents four
potential double bonds (C5=C6, C15=C16, C17=C18, and C22=C23) that can function
as the other crossover point. However, bonds such as C2=C3 and C12=C13 in cation (b)
are excluded as viable options since they will result in the formation of neutral species,
deviating from the desired outcome.

It is noteworthy that the ring bond, like [N+]14=C19 in cation (b), cannot be the
subject of crossover. This suggests limitations in their current handling by MARS+. The

110, 196

ring-open algorithm in during crossover is an ongoing development within MARS+

to address complex crossover scenarios involving cyclic structures.
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Figure 4.1-7. The 4 pairs of cations generated from applying crossover operation on the
cation (a) and cation (b), with crossover point of cation (a) fixed at the double bond
between its 4th and 5th element. (Caption: crossover point for cation (a), crossover point

163

for cation (b)) Reprinted with permission from the reference®. Copyright 2023 American

Chemical Society.

4.1.7. Combination

The combination of two molecules is feasible when compatible free valences exist
between them. In cation (a), eight elements possess free single bonds: those with element
index 1, 3,4, 5,7,9, 10, and 11. Cation (b) exhibits a higher number of elements with

single bond valences — eighteen in total. These elements correspond to indices 1, 2, 7, 8,
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9,11, 15,16,17, 18, 19, 20, 21, 22, 23, 24, and 25. Figure 4.1-8 illustrates results where

the third element of cation (a) is selected as one of the potential combination points.

=
Q2 re
N i O [
M 33%[ S i
|
w311 w321 w371 381 u)3s1
Q
v |
J (] o \ 0 N
o — J 9
“ /N-/
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</‘N
I =
N
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| f = .
(3,181 (U319.1 (3201 (U]},Zi.]. 3221

3,231 (U)3.24,1 (U3.251

Figure 4.1-8. The 18 cations generated from applying combination operation on cation
(a) and cation (b), with the 3rd element of cation (a) picked as the combination point. (U)
means a unique species among the cations shown here. (Caption: element index of the
combination point in cation (a), element index of the combination point in cation (b),
bond order in between). Reprinted with permission from the reference!®*. Copyright 2023

American Chemical Society.

4.1.8. Component Swap

The component swap operation achieves the generation of two novel ionic liquids
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through a straightforward exchange of the MDS between anion (a) and anion (b). This
process transforms /L(a) into [cation(a)][anion(b)] and IL(b) into [cation(b)][anion(a)].
It's important to note that while this operation yields distinct ionic liquids, it does not
introduce new molecular species. This is because the connectivity and elemental
composition of each molecule remain unaltered. Despite this, the component swap

operation holds potential value in the design of diverse molecular mixtures.

IL(a) IL(b)
Figure 4.1-9. The IL (a) and IL (b) after component swap operation. Reprinted with

permission from the reference'®*. Copyright 2023 American Chemical Society.

4.2. Chemical Space Exploration via Iterative Enumeration

A significant strength of MARS+ lies in its capability to perform all conceivable
molecular operations on every atom and bond within a given molecule. This is achieved
efficiently by employing nested for-loops to iterate through all operations on all potential
operation sites. Consider the addition operation as an illustrative example. The
Mol.addition(i,j,m) function adds a base element j to the free valence of the i-th element
in a molecule using a specific bond order m. To execute every possible addition operation,

a triple loop is required to traverse all elements 7 in the molecule, all base elements j in
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the library, and all permissible bond orders m = 1 to 3. Similar loops can be readily
developed for all the nine uni-molecular operations supported by MARS+.

To illustrate the power of exhaustive uni-molecular operations, we performed a five-
round iteration on methane. This initial round yielded eleven unique new species: CC,
CO, CN, CF, CCl, CBr, CI, CS, CP, C[PH4], and C[PH3]. Subsequently, each of these
newly generated species underwent another round of exhaustive uni-molecular operations.
This process was repeated five times, resulting in a total of 26,817,632 structures. The
canonical SMILES strings (determined using Open Babel®) for these structures were then
employed to identify unique species in each round, totaling 672,042 unique structures.
Figure 4.2-1 depicts the number of generated structures and unique species for each
round. As evident from the figure, both quantities exhibit exponential growth with the
number of exhaustive iterations.

Figure 4.2-2 visualizes the number of new structures generated by each operation.
This exercise reveals several noteworthy observations. The first five operations (addition,
insertion, subtraction, element change, and bond change) produce comparable numbers
of structures from the second to fifth rounds of iterations. A more detailed analysis
(Figure 4.2-3) indicates that addition and insertion are the primary operations responsible
for generating new unique species. As the maximum molecular size among the design
molecules increases with each iteration, the potential operation points for subtraction,
element change, and bond change operations also grow concomitantly. Cis-trans and
chirality inversions commence in the fourth iteration when the number of heavy atoms
potentially reaches four in round three. Cyclization initiates in round five because the
minimum permitted ring size is set to five. Notably, no decyclization operation was
performed in the first five rounds due to the absence of ring-containing compounds in the

initial four iterations.
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Figure 4.2-1. The number of successful operations and newly generated unique species
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per iteration. Reprinted with permission from the reference'®’. Copyright 2023 American

Chemical Society.
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Figure 4.2-2. The number of successful operations, factorized into the contribution from
each operation and each iteration. Reprinted with permission from the reference!®.

Copyright 2023 American Chemical Society.
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Figure 4.2-3. The number of novel unique molecules, factorized into the contribution

from each operation and each iteration. Every species is credited to the operation

responsible for its first appearance. Reprinted with permission from the reference'®.

Copyright 2023 American Chemical Society.

4.3. Can MARS+ Produce Well-known Chemicals?

In essence, each of the molecular operations can be considered as a form of virtual

elementary chemical reactions. Theoretically, there should be at least a virtual synthesis

pathway between any reactant species and any product species if the operations are

sufficiently “elementary”. This can be preliminarily assessed by determining if there is at

least a programmable sequence of molecular operations that can traverse all the species

in a real synthesis pathway. If such sequences exist, the scheme of molecular operations
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is elementary enough to account for this synthesis pathway, and the possibility to find the
involved species with computational design is justified. For this case study, we have
selected the total synthesis scheme of Oseltamivir (or Tamiflu), as drug molecule
syntheses are typically much more complex than ionic liquid syntheses. Figure 4.3-1
displays the intermediate products in the synthesis pathway proposed by E.J. Corey et

a'1.197, 198

, and the complete sequence of molecular operations we construct is shown in
Figure B1 (also see Tamiflu_Corey() function in src/CASES NEU.cpp). There are 7 types
of operations involved, including addition, element change, bond change, subtraction,
chirality inversion, cyclization, and decyclization.

To assess the chemical feasibility of all the involved chemical structures, we use
synthetic accessibility score (SAscore)® 1% and synthetic complexity score (SCscore)'®’.
SAscore assesses the synthetic accessibility based on the occurrences of molecular
fragments in PubChem database, while SCscore evaluates synthetic complexity based on
the number of required reaction steps inferred from the knowledge of Reaxys database.
Using these two scoring functions, we illustrate the variation in chemical feasibility
against the sequential reaction steps in Figure B2. A practical sequential reaction should
exhibit a monotonically increasing SCscore curve. Therefore, when a slump in SCscore
is observed (e.g. the 10th to 11th species in Figure B2), it suggests that the reverse
reaction may be more practical from a domain knowledge perspective. On the other hand,
a surge in SAscore curve (e.g. the 16th to 19th species in Figure B2) indicates that rare
and complex substructures, such as rings, have been formed through the reaction steps.

It should be emphasized that those reaction steps associated with reasonable
variations in SAscore and SCscore curves are not necessarily practical. To obtain the most
realistic reaction pathway, one may resort to computer-assisted synthesis planning

(CASP)!?¢ software, such as AiZynthFinder'?> and ASKCOS'?%. When provided with a
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chemical, CASP software attempts to identify common precursors and provide practical

reaction steps for synthesizing the chemical from these precursors.
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Figure 4.3-1. The intermediate products in the total synthesis scheme of Oseltamivir

proposed by E.J. Corey et al.”””- 1% The green numbers are element indices. Reprinted
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with permission from the reference'®”. Copyright 2023 American Chemical Society.
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Chapter 5. Design of Novel ILs for CO, Capture

5.1. A Review of Theoretical and Application Insights

The emission of carbon dioxide (CO2) has emerged as a significant contributor to
climate change, drawing increasing concerns in recent years.'*” Although the atmospheric
COz concentration surpassed the 400-ppm threshold in 2015,2% the utilization of fossil
fuels remains unavoidable in contemporary anthropogenic activities. Notably, the power
generation, as well as industrial processes, are responsible for approximately two-third of
36.8 billion tons of global CO2 emissions in 2022.2-2%2 In response to the urgent need to
mitigate CO2 emissions, various carbon capture and storage (CCS) techniques® 293298
have been under development and continuous improvement, including physical
absorption, chemical absorption, membrane-based separation, cryogenic distillation,
chemical looping combustion, hydrate-based separation, adsorption, and so on.2%%2%

There are essentially three schemes for the integration of these techniques into power
plants and industrial processes. The pre-combustion scheme aims to separate CO2 from
fossil fuels before combustion. In this scheme, the coal (or natural gas) feed undergoes
the high-temperature gasification reaction C + H2O — CO + Hz (or steam methane
reforming reaction CH4 + H20 — CO + 3 H»), followed by the water-gas shift reaction
CO + H20 — CO2 + H2 at around 40°C. 2%421% Subsequently, carbon capture techniques
are applied to the shifted syngas, leaving pure H2 as the fuel for combustion. As shifted
syngas typically contains a moderate level of CO2 (15-60 %% 2°%295 Pco, = 12-20 bar?!?),
physical absorption employing Selexol solvent is reportedly a suitable strategy for carbon

captures in pre-combustion scheme.?'” 2!! The post-combustion scheme is often

implemented in coal-fired power plants, where the flue gas typically contains a low level
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of CO2 (10-14 %).% 204295 Monoethanolamine (MEA)-based chemical absorption, which
utilizes acid-base neutralization, is a conventional approach for post-combustion scheme.
The oxyfuel-combustion scheme involves combusting fuel in an oxygen-rich
environment, resulting in a flue gas mainly containing water and a high level of CO2 (70-
98 %).% 204205 After the removal of impurities (e.g. sulfur dioxide, nitrogen oxides, and

fly ash), the CO2 can be captured by compressing the flue gas.

Table 5.1-1. Typical subject gas and operating condition for carbon capture.

Post-combustion?’”> | Pre-combustion?’”> | Oxy-combustion?'>
Schemes
212215 216221 222224
T and P of the
1 bar, 40-75 °C 20-60 bar, 35-40 °C 1 bar, 150 °C
subject gas
Mol% Flue gas Shifted gas Flue gas

CO; 0.150 0.300 0.700
CcoO 0.000 0.050 0.000

N2 0.650 0.000 0.150

0; 0.100 0.000 0.050

H» 0.000 0.450 0.000
HO 0.100 0.150 0.100
CH;, 0.000 0.050 0.000

Among these techniques and processes, MEA-based post-combustion scheme has the

203,225

highest technological maturity, as evidenced by its successful commercialization in

2013?26, However, the technique encounters challenges related to high solvent loss
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(volatilization, oxidative degradation, and thermal degradation), high energy demands for
solvent regeneration (3.2-4.2 GJ/tonne CO2 at >100°C), and solvent corrosivity.2%% 227228
The plantwide energy efficiency may be enhanced through process reconfigurations.”*:
228,229 Nevertheless, the issues of solvent mass loss and high regeneration energy persist
as challenges unless a different solvent is used, as these aspects are primarily governed
by the thermodynamic nature of solvent.

In the past two decades, ionic liquids (ILs) have emerged as a potential solution to
these issues.?? 230232 Several mechanistic studies have revealed theoretical feasibility to
using them as CO:z absorbents, although a few of their arguments are case-dependent.?*
Firstly, it has been proposed that the anion of IL serves as a Lewis base and interacts
weakly with Lewis-acid COz. Qualitatively, the CO:2 solubility is proportional to the
strength of acid-base interaction, and the basicity of the anion directly influences this
interaction.?** However, other studies also propose that it is the ether group (R1-O-R2)***
and primary amine group (R-NH2)>** in either cation or anion part can lead to the
nucleophilic reactions between ILs and COx. In this scenario, chemical absorption occurs,
and the measured COz solubility is usually significantly higher than the predicted value
from physical absorption models.?*¢

A suitable IL-based solvent is expected to have a weak interaction (typically van der
Waals force) with CO2, ensuring that the solvent regeneration will not be too difficult.??’
Secondly, the number of exposed binding sites per free volume is also the crucial
factors.”*> 23® The molar free volume of IL is influenced by both the cation-anion

interaction and the shape of the molecule. Based on different models for excluded volume,

the molar free volume, V7, is often calculated from either eq (5.1-1) or eq (5.1-2).28
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Vi=V —-13pveW (5.1-1)

f =y — ycosmo (5.1-2)

VvdW

Here, V is the molar volume of IL, 1s the molar van der Waals volume of IL,

and KCOSMO

is the molar COSMO volume of IL. Asymmetric molecular structures are
generally prone to creating more free volume with particular orientation.?** On the other
hand, when the gas-solvent binding interaction is not strong, a greater free volume
generally promote the gas diffusivity, allowing the solvent to accommodate more gas
within a finite time interval.>** When the gas-solvent binding interaction is strong (e.g.
hydrogen bonding), it is necessary to consider that, in addition to the promoting effect
mentioned above, a greater free volume may expose more binding sites of solvents,
leading to a retarded diffusion.?*! The permeability of gas, P;, which considers these two

competing effects, is suitable for evaluating solvent performance in finite-time absorption

process.?*

P = (5.1-3)

Here, D; represents the diffusivity of gas molecule i, and H;/s is the Henry’s
constant of gas molecule i in solution S. The mole fraction-based gas solubility is
inversely proportional to Henry’s constant.%? In a case study on imidazolium-based ILs
with various lengths of alkyl chains, a positive correlation is found between the mole
fraction-based solubility and the free volume of IL.%*® Additionally, CO2/CH4 and CO2/N2
selectivity also exhibit negative correlations with molar volume of IL.?*® These evidences

suggest that desirable performance may be achieved by pursuing ILs with low molar
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volume and high molar free volume.

ILs typically exhibit negligible vapor pressure, non-flammability, and high
thermochemical stability over a wide temperature range.?**>*> These characteristics are
partially ascribed to the Coulombic interaction between the cation and anion of the ILs.
Furthermore, studies have indicated that the energy consumption associated with the IL
solvents regeneration may be 30-50% lower than that required by conventional MEA .24
247 These attributes are favorable for applications in absorption processes, suggesting their
potential as substitutes for MEA. The structural and compositional tunability of ILs also
offer a wide spectrum of novel species and performance properties yet to be explored.?*®

242 and some of

It is suggested that at least a million of pure ILs are theoretically possible,
them have proven to be promising solvents for CO2 capture applications.?** 24" However,
certain ILs also exhibit high viscosity and high molar heat capacity, leading to increased

costs associated with solvent pumping and CO> desorption, respectively.>*’ Addressing

these challenges represents a key area for future research endeavors.

5.2. Thermodynamic Modeling

Considering a system of solute gas mixture and solvent at vapor-liquid phase

equilibrium (VLE)®? under temperature T and pressure P. the solubility of the solute i

v L —v —L
in the solvent could be determined by equilibrium criterion f;, = f,. Here, f, and f,

i
are the fugacity of component i in the gas phase and liquid phase, respectively. With ideal

mixture (IM) chosen as the reference system for each of the two phases, the equilibrium

criterion can be expressed as:

Yi¢; (T, P,y)P = x;vys(T, P, )f;(T, P) (5.2-1)
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Here, y and x are the equilibrium composition of the gas mixture and the liquid

mixture, y; and x; are the equilibrium mole fraction of component 7 in the vapor phase

and the liquid phase, P is the pressure of system, T is the temperature of system, y; /s

is the activity coefficient of component i in the solvent S, ¢; is the fugacity coefficient
of component 7 in the vapor phase, and f; represents the fugacity of component 7 in the
hypothetical liquid state at T and P. In the scenario of modest solubility, the infinitely

dilute solute in the solvent (i.e. x; — 0) is often set as the reference state of liquid phase.

fi = xiVi/s(T: P,x)f;(T,P) = xiV;/s(T; P;&)Hi/s(T,P) (5.2-2)

Here, H; is Henry’s constant of the gas solute, y;,s is the modified activity
coefficient using infinite dilute solute in liquid phase as reference state. From this

definition, y;,¢ will be unity at infinite dilution (lim y;,¢(T, P,x) = 1). Subsequently,
i/S y X0 i/S i

the mathematical form for Henry’s constant and a modified activity coefficient can be
derived from taking the infinite dilute limit of eq (5.2-2).

Here, H;/s represents the Henry's constant for carbon dioxide, and y;/s represents
the activity coefficient defined with the reference system of carbon dioxide present as an

infinitely dilute species in the ionic liquid. According to this definition,

—L
limoj% = H;ys(T, P, x; > 0) =y;5(T, P, x; > 0)fi(T, P) (5.2-3)
Xi— i

vis(T,P,x)
Yirs(T, P, x; > 0)

viys(T, P, x) = (5.2-4)
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Here, yf/"S(T, P,x; = 0) is the infinite dilute activity coefficient (IDAC) of solute
in solvent S, i.e. lirr}) Yiss(T, P,x) =viss(T, P, x; > 0). For region of low solubility, the
Xi—
activity coefficient y;;5 can be reasonably approximated by y;7s (or equivalently

Yiss (T, P, g) ~ 1). This is known as the Henry’s law:

venry  Yi®i(T.P,Y)P yi¢,(T, P, y)P

Henry _ S (5.2-5)
Hi/s(T,P,x; = 0)  vs(T,P,x; = 0)fi(T, P)

For region of higher solubility, Henry’s law may lead to nonnegligible error due to

large deviation of y;;s(T,P,x) from unity. In this situation, one should consider the
actual form of y;,s(T,P,x) when calculating solubility. This is equivalent to return to

eq (5.2-1) without further simplification. The solubility x; should be solved through

successive iterations using eq (5.2-6).

1 bar

VLE —
vis(T, P, x)fi(T, P)

Xi

(5.2-6)

In this work, the desirable equilibrium composition of the gas mixture Y, operating
temperature T, and operating pressure P are user-specified, while the solubility x is
the thermodynamic variable to be determined. From eq (5.2—6), the mathematical form
of distribution coefficient (B;), selectivity (S;;), performance index (PI;;), absorption-
desorption index (ADI;), and absorption-selectivity-desorption index (ASDI;;) can be
defined, 4> 2#-25! with the subscript i and j denoting different chemical components. High
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Bi, Sij, and PI;; imply the potential for desirable absorption performance. When
selectivity and desorption are also considered, low ADI; and ASDI;; indicate the

potential for desirable overall performance.

Xi _ alp
ﬁl B <yi)T,P,Z <]/l‘/5fi>T'P‘y (52—7)
o,
T\B ey L\Vushi/\ ;P p (5.2-8)
— 2
¢iP Y'/ f
Pliy = (BiSii)y ., = <Vi/sfi> (é}:) (5.2-9)
TPy
1 (ﬁi)Tdel yl/Sfl
ADI; = = |2
i I(ﬁi)Tad (B Toq Py (qb ) }/l/Sﬁ. (5.2-10)
— 1 1 (ﬁi)Tde . )/l/SfL
ASDI;; = (B 1eq (Sij)Tad (ﬁi)Tad] B < > (VUSE) Vl/sfl (5.2-11)
P,X p,y

Here, T,; and T,4, are the operating temperature of absorption and desorption
processes, respectively, and the subscripts in eqs (5.2-15) ~ (5.2—-11) indicate the
thermodynamic condition where the physical quantities are evaluated. Since high
pressure and low temperature favor the absorption of CO2, it is most desirable to operate
desorption process at low pressure and high temperature. In many studies on post-
combustion COz capture, the absorption performance of ILs is evaluated at 0.2 ~ 5.0 bar

and 293.2 ~ 333.2 K, while the desorption performance is typically evaluated at roughly
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the same pressure as in the absorption process and a 30.0 ~ 90.0 K higher temperature.?*"

247,252,253

abs

In addition to solubility-based indices, the Gibbs free energy AGj/s, enthalpy

Aﬂf}f’gs, and entropy A _{7;5 of the standard absorption process can provide more

physicochemical insights. In particular, AQ{}ZS characterizes the minimum required

work to carry out the absorption process, A _l-%s represents the heat associated with the

absorption, and A _{7_’95 roughly reflects the changed molecular ordering in solvent phase

due to the absorption process. These quantities are defined as eqs (3.2-8) ~ (3.2-10).%*

—ab — —o0,IGM i i
AGis (T, P,x) = Gys(T,P,x) = G; (T,P° x) = RTIn <y‘1§if‘> (5.2-12)
o [AGrs RT? (dy./sf
—abs i/S Yissli
AHipe (T,P,x) = -T2 —| —L5 | = ——<—> 5.2-13
iys (52 ar\ T vyshi\ oT ), (5.2-13)
Px -
AH W —AGlw  RT (9yysf f
ASEES(T, P, x) = — 15— 2US < Yifs ‘) —RIn <YL‘ZL> (5.2-14)
T vusfi\ oT ) p

In this study, the activity coefficient of carbon dioxide in the ionic liquid is predicted
using the COSMO-SAC (COnductor-like Screening Model - Segment Activity
Coefficient) model, specifically the 2010 version'®. The fugacity of pure liquid carbon
dioxide is obtained from the NIST DIPPR 101 database using the vapor pressure

equation®®, as shown in eq. (5.2-15):
vap Bi E;
fi(T, P) ~ P*™(T) = exp (Al- +2H+ GInT + DT ) (5.2-15)
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Here, A;, B;, C;, D;, and E; are empirical parameters, and the fugacity f;(T,P)

is expressed in Pa. The fugacity of pure liquid carbon dioxide at 298.15 K is 64.48 bar.

5.3. Validation of COSMO-SAC Predictions

The reliability of property prediction model is crucial in a CAMD task, as it directly
impacts the credibility of the reported optimal species. To assess the accuracy of the
COSMO-SAC-based method, predicted CO2 solubility in various IL systems is compared
with experimental data. A total of 620 Henry’s constant data points (105 IL species) and
4537 VLE solubility data points (96 IL species) are sourced from the ILThermo
database.?*® 257 However, chemical absorption is reported to occur in some CO2-IL
systems under experimental conditions. For example, ether group (Ri-O-R2)*** and
primary amine group (R-NH2) may react with CO2 through nucleophilic reactions.?*> In
chemical absorption, it is noted that vapor pressure is significantly lower than estimated

238 indicating that CO: solubility in IL due to chemical

by physical absorption models
absorption can be substantially higher than that from physical absorption?*® Notably, since
the COSMO-SAC-2010 model does not account for chemical reactions between solute
and solvent, such data points are excluded from this validation study.

These chemical absorbents include [C2mim][Ac]*®, [C4mim][Ac]>®,
[C6mim][eFAP]*®, [C4mim][PRO]*®¥, [C4mim][ISB]**®, [C4mim][Me3Ac]**®,
[C4mim][LEV]>®, [N0,0,0,2-OH][Ac]*>*, [N0,0,0,2-OH][LAC]*,
[(COC)mim][TFLA]**, [(COC)mim][TF2N]*4, [(COC)mim][DCA]*4,
[(COC)mim][PF6]**, and [(COC)mim][BF4]*** belong to this type. The experiments
were conducted by Sharma et al. (T=303.15~323.15 K, P=0.1~1.6 bar)***, Yokozeki et al.
(at T=298.15 K, P=0~20 bar)***, and Kurnia et al. (T=298.15~328.15 K, P=1.16~15.56
)59,

bar
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Based on the common operational conditions for pre-combustion scheme (Table
5.1-1), data points with temperatures exceeding 350 K or pressures exceeding 60 bar are
filtered out from both the VLE and Henry’s constant datasets. This filtering leaves 3004
VLE solubility data points and 546 Henry’s constant data points, serving as the validation
sets for COSMO-SAC prediction at post-combustion or pre-combustion operating
condition. Additionally, VLE data points with pressures below 5 bar are collected
separately to serve as another validation set for COSMO-SAC prediction at post-
combustion operating condition.

For these systems, we calculated the errors between COSMO-SAC predictions and
experimental values, including the average absolute deviation (AAD), average absolute
relative deviation (AARD), and the root mean square deviation (RMSD). Taking
solubility as an example, the three deviations are calculated by eq. (5.3—-1) to (5.3-3)

respectively, and the results are presented in Table 5.3-1.

1 Ns 1 Np,i (53—1)
AAD = _Z _Z ) |xC02,calc,j - xCOZ,expt,jl X 100 %
NS i Np,l ]
1 Ns 1 Npi|x =X i
AARD = _z z p | COy,calc,j COz,expt,]| % 100 % (5.3-2)
Ns i Np,i J Xc0,,expt,j
1 Ns 1 Np,i 2
RMSD = |- "= " (xco,cate — Xcopexpes) (5.3-3)
NS 1 Np,l ]

Here, N represents the number of ionic liquid species, and N, ; represents the

number of data points for ionic liquid species i. Furthermore, by comparing the scatter
plots (Figure 5.3-1 and Figure 5.3-3) with experimental data, we believe that COSMO-

SAC shows acceptable performance in terms of the errors in both solubility cases,
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although there is still room for improvement. It can be observed that the trends in

predicted values by the COSMO-SAC model are consistent with the experimental values.

Another study?®, which evaluates the accuracy of COSMO-RS in predicting the CO:

Henry’s constant within a distinct set of ILs not covered in this research, reports an AARD

of 64.5% for physical IL absorbents, which decreases to 29.4% after calibration.

Therefore, we posit that COSMO-SAC can serve as a qualitative or semi-quantitative

predictive tool within the operational range (i.e. P=1 bar, T=298.15 to 348.15 K) of this

study.

Table 5.3-1. The accuracy of COSMO-SAC prediction: Henry’s constant of CO: in ILs.

T Based on eq (5.2-5), x

CO,.expt

= 1/Hco, expe at 1 bar.
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All the Henry’s constant experimental data: 105 IL species, 620 data points
Property AAD AARD RMSD
Heo, 52.427 bar 11088 % 144.76 bar
Xeor™” at 1 bart 0.0632 46.61 % 0.2346
Subset 1 (T < 350 K): 96 IL species, 546 data points
Property AAD AARD RMSD
Heo, 41.393 bar 53.836 % 129.82 bar
Xeor™” at 1 barf 0.00791 42.848 % 0.0137
Henry
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Table 5.3-2. The accuracy of COSMO-SAC prediction: CO2 solubility in ILs.

All the VLE experimental data: 96 IL species, 4537 points

Property AAD AARD RMSD
P 1.248 bar 739.62 % 2.0900 bar
xgéf 0.0977 52.52% 0.1515
Subset 1: P < 60 bar, T < 350 K, 80 IL species, 3004 points
Property AAD AARD RMSD
P 0.820 bar 61.28 % 1.349 bar
xgéf 0.0547 40.83 % 0.0900
Subset 2: P < 5bar, T < 350K, 50 IL species, 612 points
Property AAD AARD RMSD
P 0.931 bar 5520 % 1.280 bar
xgéf 0.01392 58.60 % 0.0246
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Figure 5.3-1. Comparison of COSMO-SAC predicted COz2 solubility in ionic liquids (ILs)

with VLE experimental data.
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Figure 5.3-2. Comparison of COSMO-SAC predicted Henry’s constant of COz in ionic

liquids (ILs) with experimental data.
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Figure 5.3-3. Comparison of COSMO-SAC predicted Henry’s constant of CO2 in ionic

liquids (ILs) with experimental data.

5.4. 1L Screening Using Experimentally Validated Ions

Section 5.3 presents experimental data for COz capture in various ionic liquids (ILs)
under diverse conditions. To facilitate a more standardized comparison, COSMO-SAC
simulations are performed to evaluate their performance at a common point: T = 298.15

K and P =1 bar. This in silico approach also allowed us to explore the full cation-anion
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combinations represented by the experimental data. Identifying potentially superior ILs
within this unexplored space becomes a possibility. Essentially, this combined approach
functions as a computational component-screening method for designing novel ILs.
Figure 5.4-1 depicts a heatmap illustrating the predicted CO: solubility across all
screened ILs. ILs with at least an existing experimental data point are marked with dots.
Notably, the heatmap reveals a combinatorically optimal IL that appears to have been
missed by the experimental studies. These potentially promising ILs are listed in Table

5.4-1

Table 5.4-1. Some potentially promising ILs discovered from screening method.

Abbreviation SMILES xlEE
[C2TT][CI] CCSC(=[N+](C)C)N(C)C.[CI-] 0.0704
[C2TT][Br] CCSC(=[N+](C)C)N(C)C..[Br-] 0.0625

CCCCCCCCCCCCCCP+](CCCCCC)CCCCCC
[P6,6,6,14][IDA] 0.0669
)CCCCCC.[0-]C(=0)CNCC(=0)[0-]

CCSC(=[N+](C)C)N(C)C.[0-]C(=0)CNCC(=0)|

C2TT][IDA 0.0626
[C2TTI[DA] o]
[C1mim][Cl] Cnlcc[nt](c1)C.[CI-] 0.0589
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Figure 5.4-1. Solubility of CO2 in screened ILs. A dot in a cell indicates the presence of

at least one VLE experimental data point for the CO2-IL system.

Figure 5.4-2 and Figure 5.4-3 demonstrate the heatmaps of reciprocal SAscore and
reciprocal SCscore, respectively, for every screened ILs. As mentioned in section 3.2.3, a
chemical with its SAscore larger than 4.0 (or reciprocal SAscore < 0.25) is considered
a rare molecular structure. Based on this criterion, these results suggest that a practical IL

may not always be assessed as highly feasible according to these two indices. Note that
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the SAscores for the screened ILs range from 2.272 ([P6,6,6,14][Cl]) to 5.79 ([NO,0,2-

OH,2-OH][PF6]).
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Figure 5.4-2. Reciprocal SAscore of screened ILs. Red cells indicate high synthetic
accessibility (or low structural complexity). A dot in a cell indicates the presence of at

least one VLE experimental data point for the CO2-IL system.
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Figure 5.4-3. Reciprocal SCscore of screened ILs. Red cells indicate low synthetic
complexity. A dot in a cell indicates the presence of at least one VLE experimental data

point for the CO2-IL system

—ab —ab
The absorption free energy (AG?/;), absorption enthalpy (AH ?/Ss), and absorption

—ab
entropy (AS?/SS) of the screened ILs are presented in Figure 5.4-4, Figure 5.4-5, and

Figure 5.4-6. These represent the thermodynamic changes associated with the absorption
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of ideal-gas CO2 (balanced by inert gas) at standard pressure P° = 1 bar. A positive
value for Gibbs free energy indicates that the CO2 capture process will not occur
spontaneously, necessitating thermodynamic work to initiate the process. This is due to
the high vapor pressure of CO2 at 298.15 K (64.48 bar), where COz2 tends to favor the
vapor phase unless strongly interacted with by the IL, making it significantly non-ideal.
The negative enthalpy indicates an exothermic absorption process, albeit typically less
exothermic than conventional monoethanolamine (MEA )-based absorption processes.?>>
260 Absorption entropy characterizes the increase in the number of accessible states after
the absorption process. It is intuitive to expect that CO2 loses some configurational states

upon entering a liquid phase where the solvent exhibits attractive interactions.
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Figure 5.4-4. Absorption free energy (AG?/SS) of COz in the screened ILs. A dot in a cell

indicates the presence of at least one VLE experimental data point for the CO2-IL system.
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Figure 5.4-5. Absorption enthalpy (AH ?/Ss) of CO2 in the screened ILs. A dot in a cell

indicates the presence of at least one VLE experimental data point for the CO2-IL system.
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Figure 5.4-6. Absorption enthalpy (AS :1/;) of COz2 in the screened ILs. A dot in a cell

indicates the presence of at least one VLE experimental data point for the CO2-IL system.

Finally, the reciprocal of absorption-desorption index (ADI, see eq (5.2-10))
represents an overall ease of employing an ionic liquid (IL) for CO2 capture. Ideally, an
IL should readily absorb CO: at a lower temperature and then release it at a higher
temperature for regeneration. In this study, we evaluated ADI using absorption and

desorption temperatures of 298.15 K and 348.15 K, respectively. Interestingly, the
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optimal species identified in CO:z solubility calculations (Figure 5.4-1) coincide with
those found in this analysis. These species exhibit relative negative absorption enthalpy
(Figure 5.4-5). This suggests that the regeneration process, where CO: is desorbed from
the IL, might require additional energy input due to the exothermic nature of the
absorption process.

It is noteworthy that these optimal species also perform optimally among the
screened ILs in terms of absorption-selectivity-desorption indices (ASDI), exception for
the case that H2O is present. Please refer to Figure B3 to Figure B7 for further details.

Also see Figure B8 to Figure B13 for the IL’s selectivity of CO2 over other gas.
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Figure 5.4-7. Reciprocal absorption-desorption index (ADI) of COz in the screened ILs.
The darker red indicates the desirable performance. A dot in a cell indicates the presence

of at least one VLE experimental data point for the CO2-IL system.

5.5. Computational Details of IL Design Using CAMD

Figure 5.5-1 shows the detailed steps for the design of new ionic liquids with
desirable COz solubility. In this work, the target values of both Henry’s constant and VLE-
based CO: solubility are set as 1.0, while the molecular size for cation and anion are not
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restricted. Before starting a CAMD, a library of basic elements and associated occurrence
rate is prepared in MDS (section 3.1.1), and the generation of new species from genetic
operations and random constructions is subjected to this probability distribution.

The CAMD process initializes with a population of 40 ILs (in MDS format) created
either by user specification or by random combination of basic elements. Each IL in
population can be outputted as the simplified molecular-input line-entry system
(SMILES)**! format by mds2smi() subroutine in MARS-PLUS package, and
subsequently the SMILES is converted to 3D molecular structure with the aid of open-
source program OpenBabel.®! The 3D molecular structure is one of the proper input
format for quantum chemical calculations using Gaussian 09%%2. For each molecular or
ionic species, a molecular geometry optimizations in vacuum is performed on Gaussian,
followed by the COSMO solvation calculation in water solvent, with both of the steps are
at b3lyp/6-31g(d,p) level. After COSMO calculations, the activity, VLE-based solubility,
and Henry’s constant of CO2 in an IL solvent can be determined (see section 5.2).
Subsequently, the fitness Fitfcn(u;, w;; t) of each IL is determined based on eq. (3.4-1)
and the survival probability PRW (m;, s;;t) is calculated using eq. (3.4—4). Based on the
probability distribution over all the species in the initial population, 40 ILs are selected
using roulette wheel selection. It should be noted that the species composition of the
selected ILs are usually different from that of initial population.

Some of the selected ILs species are modified into other species by applying genetic
operators (section 3.3) to them. In this work, each operation is devised to manipulate a
particular  fraction of the selected species, namely, (P.., Pnu Pepr Prs) =
(0.8,0.3,0.15,0.15) for crossover, mutation, combination, and component swap,
respectively. After the property evaluations for newly generated species, a new generation

of population is then formally formed. The new population is subjected to next round of
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selection, genetic operations, and property evaluations, until the convergence or
termination criteria are satisfied. However, genetic algorithm cannot offer convergence
guarantees due to the stochastic nature.?%* Therefore, we set the 625th generation as the
termination criterion.

To prevent the optimization from being trapped in local extrema, the alienization of
population is carried out in population every 25 generations. In this operation, the ILs
with their fitness lower than the 34th percentile in the population will be replaced with
randomly generated chemicals. This help the optimizer discard the less-promising
temporary solutions and direct the search to different locations in the feasible region. The
redistribution of solutions in chemical space is found to be useful for practical design

tasks.2%
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Step 1: initialize a population of 40 ILs by user specifications or
random construction (using basic elements).

Get 3D structures using OpenBabel

Step 2: predict Henry’'s constant and VLE-based solubility of
CO, for each IL using COSMO-SAC.

Terminate CAMD. Report
the optimal species and their

|

chemical properties.

Step 3: calculate fitness and survival probability for each IL
species. Select 40 ILs using roulette wheel scheme.

|

Step 4: generate new IL species via genetic operators and
alienization mechanism.

Convergence?

lGet 3D structures using OpenBabel

Step 5: predict Henry’s constant and VLE-based solubility of
CO, for each newly generated ILs using COSMO-SAC.

|

Step 6: calculate fitness and survival probability for each IL
species. Select 40 ILs using roulette wheel scheme.

|

The population for a new generation is formed.

Figure 5.5-1. Flow diagram of the CAMD algorithm developed in this work.

The effect of the initial population on the result of CAMD is examined by comparing

two cases of CAMD. In one case, 40 ILs with the best CO2 solubility (0.0165 < x¢o, <

0.0402) are selected from the Henry’s constant data and specified as initial population.

In the other case, the initial population are generated from random connections of basic

elements.
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Table 5.5-1. Summary of the settings for the two CAMD tasks.

Task 1 Task 2
Target Henry’s constant
s o 1.00 1.00
(bar)
Target VLE-based
» 1.00 1.00
solubility
Population 40 40
Restriction of molecular
None None
size
40 ILs from the
. ‘ _ Randomly generated 40
Initial population experimental data of -
s
Henry’s constant
Maximum of GA
‘ 625 625
generations

5.6. CAMD Results

Figure 5.6-1 displays the evolution trajectory of CO: solubility, represented by
several statistical quantities for the population, including maximum, minimum, mean
value, and quartiles. For the iterations at which the alienization operator is not activated,
the variation of these statistical quantities with respect to the generation are usually small
(less than 0.03) in task 1. In contrast, the temporal variation observed in task 2 is relatively
larger than in task 1. Specifically, in task 2, the distribution of COz2 solubility across the
population appears more scattered compared to task 1. The stabilizing effect observed in
task 1 may be attributed to the similarity among the cations and anions present in the

population.
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It is noteworthy that, in both tasks, ILs with high CO2 solubility are primarily
generated through the alienization operator. This suggests that relying solely on crossover
and mutation operations may make it challenging to discover ILs with significantly
enhanced CO:z solubility. Alienization operator can mitigate the issue of CAMD becoming
trapped in local maxima, where an optimal species dominates the population. By
introducing new "genes" into the population, the alienization operator facilitates the
exchange of molecular fragments with heterogeneous species, potentially leading to a
wider variety of optimal candidates. Nevertheless, in task 2, the alienization operator
appears less effective in achieving substantial solubility improvements; for instance, few
ILs achieve solubility greater than 0.2 upon alienization."

Figure 5.6-2 illustrates the evolution of the number of cations, anions, and IL species
within the population. The trajectory indicates that the genetic algorithm does not exhibit
clear convergence under our parameter settings for both tasks. Sharp peaks in the
trajectory correspond to instances of the alienization operator. Specifically, in task 1, the
alienization operator effectively renews the entire population around the 175th generation,
suggesting that an optimal species dominates approximately two-thirds of the population
before alienization within that generation interval. Furthermore, the variety of anions
generally appears lower compared to that of cations. This suggests that reducing the

degree of freedom for anions contributes to achieving higher CO2 solubility.
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Figure 5.6-1. Evolution trajectory of population in terms of mean, quartiles, maximum, and minimum value of CO2 solubility for (a) task 1 and (b)

task 2.
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Figure 5.6-2. Evolution trajectory of the number of cation, anion, and IL species existing in population for (a) task 1 and (b) task 2.
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The comparison between Hi-derived COz solubility and VLE-based COz2 solubility
for task 1 (3507 IL species) and task 2 (3176 IL species) is shown by Figure 5.6-3.
Though the CAMD is capable of designing better ILs than specified ILs, most of the new
species would only have modest solubility for COz. In the regime of X¢p2 caicvie < 0.1,
the two methods show good agreement (with AADHenry-vLE=0.000431 and AARD#enry-
vLe=1.43%). However, in the regime of Xcozcaicvie > 0.1 the AADHenry-vie and
AARDumenry-vLE increase to 0.0631 and 41.2%, respectively. This implies that a minimum
AAD#Henry-vLE value of 0.631 might be inevitable for the regime of high CO: solubility
even though the target of Henry’s constant and VLE-based solubility are set 1.00
consistently. Note that the required calculation time for VLE-based method might be
significantly longer than that for Hi-based method because of the iterations for the
composition in IL phase. The use of Henry’s constant might be sufficient if lower

accuracy of CO2 solubility is acceptable.
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Figure 5.6-3. Comparison between Hi-derived and VLE-based CO: solubility in each of the designed IL species in (a) task 1 and (b) task 2. The

blue dots are the ILs specified in the initial population, and the orange dots are the designed ILs.
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Since the analysis by Figure 5.6-1 and Figure 5.6-2 only accounts for the
distribution of species in population, the analysis of IL species throughout all generation
would be more comprehensive. Figure 5.6-4 shows the distribution of the accumulated
number of IL species with respect to CO2 solubility per 100 generations, with the inset
figure for the regime of higher solution. Note that if an IL species has appeared in former
generation, it will no longer be counted in any generation later than its first appearance.
Even so, the genetic algorithm is able to produce new ILs species in late generations.

Of all the 3507 IL species generated in task 1, the CO2 solubility in the 70.34% of
the IL species have at least comparable performance with the initial ILs, i.e. higher than
the minimum solubility provided by ILs in the initial population,
CCCC[n+]lccecc . NHC[N-]ICHN  (xco, caicvie = 0.016487). However, only 1.11% of
all the 3507 IL species are better than the best IL species in the initial population,
CNO[N+]|(COYCO)C.[F-] (Xco, caicvie = 0.058486). Most of the optimal ILs have halide
as its anion part, which has good agreement with experimental findings.

Of all the 3176 IL species generated in task 1, the COz solubility in the 69.54% of
the IL species have at least comparable performance with the “lower bound”
benchmarking 1L, CCCC[n+]lcccecl . N#C[N-]CAN  (xco, caicvre = 0.016487) .
However, only 3.46% of all the 3176 IL species are better than the best benchmarking IL,

CNO[N+](CC)(C)C.[F-] (Xco, caicye = 0-058486).
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Figure 5.6-4. The distribution of accumulated new ILs species per 100 generations against the CO2 solubility provided by the ILs in (a) task 1 and

(b) task 2. The inset figure shows the regime of higher CO2 solubility.
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Table 5.6-1. The optimal species (x255 > 0.07) of task 1

IL SAscore SCscore xl5E
O=N[NH3+].[CI-] 6.459758 1.730161 7.15130E-01
[NH+]1=C(CC=0)COC1.[OH-] 5.663391 2.257299 6.73963E-01
C[N+](=0)O.[F-] 4.037967 1308444 | 4.98330E-01
C[N+]1=C(CO1)CC=0.[OH-] 5.112391 2.146881 4.20333E-01
C[N+](=0)0O.[OH-] 4.037967 1.306965 3.43853E-01
N#C[n+]1cccecl . [F-] 3.868907 1.409937 2.69921E-01
N#C[n+]1cccccl.[OH-] 3.868907 1.570812 2.27249E-01
[NH+]1=C(CC=0)COCCI1.[OH-] 5.344792 2.080685 1.97139E-01
C[n+]lcccecl.[F-] 2.89633 1.403133 1.63559E-01
C[n+]lcccccl.[OH-] 2.89633 1.560102 1.55642E-01
O[N+]1=C(CC=0)COCCI1.[OH-] 4.657605 2.056511 1.44625E-01
[NH+](=C(CO)CC=0)C.[OH-] | 5.808888 1.865491 1.22312E-01
CC(C1=[N+](OC1)C)C=0.[OH-] 5.443628 2.075878 1.08546E-01
O[n+]1cceecl . [F-] 3.376086 1.202416 9.85660E-02
C[P+]1(C)CHCCI1(C)C.[OH-] 5.715484 2.100247 9.13450E-02
CIC(=0)[n+]1ccece].[OH-] 3.367023 1.175276 | 8.56980E-02
OCHC[N+](=0)CH#CO.CC[PH-](

C(CO)CNCHCOYC)C 6.336244 2.574127 8.36600E-02
CC(IN+](=C)C)(CC=N)O.[F-] 6.423307 2.309639 8.01830E-02
COCC(=[NH+]C)CC=0.[OH-] | 5.333102 2207268 | 7.87510E-02

CC(=O)C(INH+](C)O)C.[F-] 5.379002 2.09177 7.68860E-02
O=CC1COCCI1=[NH+]C.[OH-] 5.989354 2.216406 7.65240E-02
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CC|[n+]lcceeel.[F-] 2.82999 1.423173 7.59730E-02

OC#C[N+](=0)C#CO.CC[PH-(
C(C)C)(CHCO)(C)C

6.14283 2.574661 7.25630E-02

CC(=0)C(C1=[N+](OC1)C)C.[O
H-]

4.945539 2.334749 7.20170E-02

CO[N+](00)(OC)C.[OH-] 4.886232 2.375703 7.13900E-02

Table 5.6-2. The optimal species (x/55 = 0.08) of task 2

IL SAscore SCscore xlEE
O=CC(C=[NH+]C)(C)C.[OH-] 5.840043 1.89082 8.00000E-02
CCC=[N+](OC)C.[F-] 5.185766 2.132104 8.02840E-02
Celee[n+](ce1)C.[F-] 2.886188 1773975 | 8.04050E-02

C=CC(=[N+](C(=N)C)C)C.[F-] 6.089354 2.360347 8.07740E-02

Cele[n+](C)e2e(c1)C2.[F-] 3.913382 2.152881 8.08520E-02

CCC=C([P+](C(=C=NF)0)(00)
0)C.CCC([PH2-](C)(C)C)N(C)C |  6.409714 3.059779 8.10000E-02
)C

Cclcee[nt](c1)C.[F-] 3.097125 1.643486 8.12980E-02

FN=C=C([P+](C(=C(N)C)C)(0O
)0)O.CCC1(CC[PH-]1(C)(C)CC) |  6.587133 4.110911 8.13040E-02
N(C)C

FN=C=C([P+](C(=CC)CC)(00)

0)0.CCC([PH-]1(C)(C)CCH(N( |  6.539413 3.548242 8.21360E-02
C)C)C(C)C
CCC(=0)C(=[N+](C)C)C.[OH-] | 3.909215 1.680957 8.27660E-02
CC(=0)[N+]1=CC#CCL.[OH-] | 5.870281 1.819372 8.37440E-02
C[N+](=CC=C)CCHC.[F-] 5.75616 2.064453 8.50460E-02
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C=CICN=N[P+]1(C)C.[F-] 5.836898 2.405142 8.69230E-02

FN=C=C([P+](C(=CF)C)(00)0)
0.CCC([PH-](C)(C)(C)C)(N(C)C |  6.623562 3.26906 8.69300E-02
)C

FN=C=C([P+](C(=C(C)C)C)(00

)0)0.CCC([PH2-J(C)(C)C)N(C) | 6.235303 3.294852 8.72020E-02
C)C(C)C
C[N+](=CC#C)C(=0)C.[OH-] 5.411162 1.430787 8.74800E-02
[NH+](N=NC)(CC=0)C.[OH-] 6.721646 1.997546 9.14330E-02
CC(=[N+]1C=CC1=C)C.[F-] 5.058266 2.131142 9.24060E-02
C#C[n+]1cceccl [F-] 4.162007 1.429662 9.49730E-02
C#C[n+]1cccce].[OH-] 4.162007 1.30316 9.50540E-02
Celc2cce([n+]1C)C2.[F-] 5.403497 2.823614 9.54300E-02
Br[N+](=C)C#C.[F-] 5.880827 1.651061 9.58300E-02

FN=C=C([P+](C(=C)CC)(00)0)
0.CCC([PH-J(C)(C)(C)O)N(C)C | 6.294364 3.208405 9.81460E-02

)CC
Celecee[n+]1C.[F-] 3.06133 1.597929 9.82020E-02
CC(=0)[n+]lcccec] . [F-] 3.072457 1.324428 9.90920E-02
C[P+]1(CCN=N1)C=C.[F-] 6.390823 2.106228 1.00680E-01
C[n+]1cc2Celec2.[F-] 5.874027 2.37717 1.01297E-01

C[N+]1=C(C=C)C#CCC1.[F-] 5.712546 2.395702 1.03652E-01

CO[N+]1=NC=CC1=C.[F-] 5.485177 2.148332 1.10217E-01
CO[N+](=0)CHC.[F-] 5.144282 1.5844 1.10712E-01
C=CC(=[N+](C=N)C)C.[F-] 6.508901 2.571599 1.19672E-01
CCHC[N+](=0)OC.[F-] 5.027521 1.69505 1.22925E-01
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C[n+]1ccecc].[OH-] 2.89633 1.560102 1.55649E-01
C[n+]1cceccl [F-] 2.89633 1.403133 1.63568E-01
[NH2+]=0.F[P-](F)(F)(F)(F)F 6.449028 1.389601 2.63303E-01
OC=C([PH3+])O.[F-] 5.763995 1.549239 5.43695E-01
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Chapter 6. Rule-based vs. Al-based CAMD

6.1. Al-based Generative Models for CAMD

The rapid advancement of artificial intelligence (Al) has witnessed a surge in the
development of machine learning (ML) models specifically designed for the field of
molecular design.>* 29526 Unlike conventional CAMD, Al-based generative models are
data-driven and thus require a large database of chemical structures and associated
properties. Besides, Al-based molecular design also differs from conventional molecular
design in its approaches for generation and representation of chemical structures. The
prevailing generative models for Computer-Aided Molecular Design (CAMD) include
the RNN-based chemical language model (Figure 6.1-1 and Appendix F.2)!33: 154, 270-280
and the VAE-based latent variable model (Figure 6.1-2 and Appendix F.3)?%2°2, Notably,
both these models require learning the inherent patterns of valid chemical representations
before functioning as generative tools. This stands in contrast to traditional CAMD
approaches, where chemical representation is typically predefined before model
development. Chemical syntactic models aim to learn the contextual relationships among
tokens (e.g. atomic symbols) in sequential data (e.g. SMILES” 7#) so that they can
generate new sequential data based on the acquired rules. On the other hand, latent
variable model aims to create a continuous latent space where a chemical species is
represented by a unique numerical vector. This vector encapsulates the abstract chemical
patterns of a species. New chemical species can be generated via sampling of points in
latent space and can be translated into readable format through decoder. Beyond these
prominent model categories, additional machine learning based models have been

specifically designed to act as decision-makers for conventional molecular
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modifications??!: 293-295

, with RDKit employed for the molecular representation and
execution of modifications.

Despite these remarkable progresses, both these types of models suffer from some
limitations. When these models are trained for exploration tasks, the properties
distribution in the generated chemicals, such as logP and SAscores, tends to resemble that
of the training data.?®* 2% It is only when these models are trained for exploitation tasks
that they exhibit a task-specific distribution. In other words, explorative chemical
syntactic models and explorative latent variable models may not be ideal for generating
structures with properties beyond the scope of the training dataset. For exploitation tasks,
it may be necessary to employ transfer learning®” **® to train additional models tailored
to different combinations of target properties. Furthermore, these two model types may
require additional effort to regularize and rationalize the modification behaviors, such as
constraining modifications to practical fragment-scale alterations.??*3%! It may also be
challenging for these two models to implement every possible modification at every
potential substructure. For example, when atomic symbols are sequentially appended to
an existing SMILES, opportunities to connect with inner substructures may be missed.
On the other hand, the numerical values in latent vector representation do not directly
reveal the actual modification points within a chemical structure, making regulation
difficult. In contrast, traditional CAMD approaches and ML-based decision-makers allow
for straightforward manipulations of the structure variables in a controllable fashion.
Changes to the structure can be realized at the desired resolution, whether it involves the
replacement of an atom, a functional group, or an entire structural fragment. The

generated molecules are not limited to any prespecified group of molecules.
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6.2. Benchmarks for Comparing Rule-based and Al-based CAMD

For both chemical syntactic models and latent variable Al models, their performance

35,36 111,302

in exploration tasks are often quantified by distribution-learning metrics such

as the validity, uniqueness, novelty, and internal diversity of generated chemicals. The
significance of these quantities are elaborated in Table 6.2-1. In addition, their

performance in exploitative design®> 3¢

of organic molecules is frequently evaluated by
goal-directed metrics.!!'!: 3% 304 These metrics indicate the optimality of the designed

molecules in terms of the target values of properties (e.g. logP, SAscore, CNS

305 306, 307

desirability”™”, and the similarity with specific drug-like molecules).

The reconstruction rate>®®

of chemicals (see Appendix F.2 and F.3), as indicated by
learning loss, is also a crucial metric for assessing the intrinsic accuracy of the model.
Both the reconstruction rate and validity from early VAE-based models are often around
50973 283, 287, 289, 309, 310 \while for RNN-based models these two metrics are 63.0 to
99.6%273 28 and 30.0 to 100.0%27% 275279, 280,29 respectively. Recent advancements in
techniques have led to significant improvements in both types of models. For VAE-based
models, the implementation of self-attention transformer®®%3!! (see Appendix F.4) has led
to increased chemical validity and reconstruction rates, reaching levels as high as 98.0%
to 99.99,280. 284, 291, 312, 313 " Eyrthermore, these advancements have also contributed to

higher levels of chemical novelty and uniqueness, both exceeding 80.0%2%% 284, On the

other hand, it has been suggested that replacing RNN-based models with transformers®!'*-

316 280

or introducing attention mechanism to RNN-based models®®” may enhance the

chemical validity.
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Table 6.2-1. The significance of the distribution-learning metrics.

Metric Significance
The fraction of the generated chemicals recognizable by RDKit,
Validity indicating how well the model adheres to rules for valid chemical
representations.
_ The proportion of the distinct chemicals among a set of valid structures,
Uniqueness S o )
highlighting diversity in generated chemicals.
| The proportion of the unique structures not represented in the training
Novelty
data, indicating the model's ability to avoid overfitting.
The proportion of the generated chemicals passing specific filters
| employed during training data curation (e.g., excluding halogen-
Filters
containing compounds), demonstrating adherence to additional user-
defined constraints.
The diversity of the generated chemicals measured by Tanimoto
Intemal . . . . . . . .
o similarity, reflecting exploration across different regions of chemical
diversity
space.

For rule-based generative models, both goal-directed metrics are also applicable,
whereas certain distribution-learning metrics may be less meaningful in some
comparisons.'!! Rule-based models are typically developed independently of training
datasets and are not designed to replicate the distribution of such datasets. Therefore, the
novelty metric, as well as filters metric, will be ill-defined for rule-based generative
models. Moreover, robust rule-based models generally ensure the near-perfect validity
metric of the generated chemicals for each rule-based model. Validity is often trivial in
differentiating the performance of multiple rule-based models.

Currently, numerous benchmark suites are available to facilitate the evaluation of

rule-based and Al-based models. Each suite typically includes reference datasets, baseline

152

doi:10.6342/NTU202403528



generative models (both Al-based and rule-based), distribution-learning metric, and a
variety of goal-directed tasks, as detailed in Table 6.2-2. These reference datasets serve
as training data for baseline models and as initial molecules in goal-directed tasks, aiming
to standardize the starting point for each task across different baseline models. This
standardization minimizes non-intrinsic differences among baseline models within the
same goal-directed task, allowing the intrinsic nature of these generative models to be
more clearly characterized by their performance in these tasks. However, achieving a
completely fair comparison can be challenging due to different nature of generative
algorithms. For example, the approach used by MARS+ to generate new chemicals differ
fundamentally from that of RNN-based chemical syntactic models. MARS+ iteratively
modifies a population of chemical species to generate new ones, whereas most RNN-
based models generate a new species from scratch in one go without modifying existing
species.

Two benchmark suites, GuacaMol!!'! and MolOpt®!”, provide extensive sets of goal-
directed tasks and baseline models (detailed in section 6.3 and 6.4), making them popular
choices for evaluating the capabilities of new generative models in the exploitative design
of organic drug-like molecules. In the following sections, the performance of MARS+-
based CAMD in different tasks is ranked with other baseline models based on the two

suites.
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Table 6.2-2. A survey of benchmark suites and the metrics provided.

Benchmark suite Benchmark types

20 goal-directed tasks: metrics include similarity

GuacaMol'!" with some drug-like molecules, logP, TPSA, and

ChEMBL 24 datasct constitutional isomers etc.

Distribution-learning metrics

23 goal-directed tasks: include most of the goal-
directed metrics in GuacaMol plus QED DRD?2,
GSK38, INK3.

MolOpt*!’

ZINC 250K dataset

Molecular Sets (MOSES)3??
Distribution-learning metrics
ZINC clean leads dataset

Tartarus>® 4 Goal-directed tasks: metrics include HOMO-

LUMO gap, dipole moment, electronic excitation

CEPDE & customized datasets o
energy, and activation energy.

SMINADockingBenchmark’'® | | Goal-directed task: docking affinities serve as

ChEMBL & ZINC datasets the metric

DeNovoBenchmarks®' 11 Goal-directed tasks: include a few metrics

GuacaMol & ZINC datasets | from GuacaMol and MolOpt such as logP, QED.

MolecularNet™20 Benchmark for property prediction models (e.g.,

solubility, solvation free energy, lipophilicity) and

QM9, FreeSolv, ete. molecular classification models.

6.3. GuacaMol: Effectiveness of MARS+ and Other Baseline Models

GuacaMol'"! primarily evaluates the effectiveness of generative models in each task.
For each goal-directed task, starting chemicals are initialized using the best-suited species
from the built-in ChEMBL dataset in GuacaMol. The population size (|Popu,|, see

section 3.4.2) is set to 100 and the offspring population size (|Gen,,|, see section 3.4.2) is
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set to 200. Roulette wheel scheme (section 3.4.2) is adopted for selecting the subject
chemical species from population Popu,, for crossover and mutation operations. The
probabilities of crossover and mutations are 1.0 and 0.5, respectively. Mutation occurs
following successful crossovers. After evaluating the properties of generated species, the
most optimal species from the union of the current population and offspring population
is selected for the next iteration, i.e. Popu, ., = find_optimal(Popu, U Gen,,).
Rule-based models like GRAPH GA'® "' can run up to a maximum of 1000
iterations unless an early-termination criterion is met (i.e. lack of progress in any species
within the population over 5 consecutive iterations). Typically, 1000 iterations are
sufficient for these tasks to find at least a local optimal species.’!” After the iterations
finish, the average score of the top-K species is calculated for particular values of K, e.g.
the average score of top-1, top-10, and top-100 species. The “score” here shares the same
significance with the single-property fitness function used in genetic algorithm based
generative models. The overall performance of the generative model in the goal-directed
task is quantified by an overall score, determined by the geometric or arithmetic average
of these top-K average scores. For instance, using the arithmetic average scheme, the

overall score for most goal-directed tasks is represented as:

1
Overall_score = 3 (Top1_avg + Top10_avg + Top100_avg) (6.3-1)

In this study, we utilize the 20 goal-directed tasks in GuacaMol benchmark suite'!!

to compare MARS+ with other baseline models. As mentioned earlier, only metrics
related to chemical diversity (i.e., uniqueness and internal diversity) remain well-defined

for rule-based models. Since chemical diversity is typically not the primary objective in
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practical molecular design tasks, this comparison excludes distribution-learning
metrics. The target properties for each of the goal-directed tasks are detailed in Table

6.3-1, and the baseline models are summarized in Table 6.3-2.

Table 6.3-1. Goal-directed tasks in GuacaMol.'!!

Task Target properties
Celecoxib rediscovery sim(Celecoxib, ECFC4) =1
Troglitazone rediscovery sim(Troglitazone, ECFC4) = 1
Thiothixene rediscovery sim(Thiothixene, ECFC4) = 1
Aripiprazole similarity sim(Aripiprazole, ECFC4) > 0.75
Albuterol similarity sim(Albuterol, FCFC4) > 0.75
Mestranol similarity sim(Mestranol, AP) > 0.75
C11H24 constitutional isomer isomer(C11H24) =1
CY9H10N202PF2Cl

o ) isomer(COH10N20O2PF2Cl) = 1
constitutional isomer

sim(camphor, ECFC4) =1
Median molecules 1

sim(menthol, ECFC4) = 1

sim(tadalafil, ECFC6) = 1
Median molecules 2

sim(sildenafil, ECFC6) =1

sim(osimertinib, FCFC4) = 1

sim(osimertinib, ECFC6) = 1

Osimertinib MPO
TPSA = 100
logP < 1
sim(fexofenadine, AP) > 0.8
Fexofenadine MPO

TPSA = 90
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logP < 4

Ranolazine MPO

sim(ranolazine, AP) > 0.7

logP = 7

TPSA = 95

number of fluorine atoms = 1

Perindopril MPO

sim(perindopril, ECFC4) = 1

number aromatic rings

Amlodipine MPO

sim(amlodipine, ECFC4)

number rings = 2

Sitagliptin MPO

sim(sitagliptin, ECFC4) =0

logP =2.0165
TPSA =77.04

isomer(C16H15F6N50) = 1

Zaleplon MPO

sim(zaleplon, ECFC4) =1

isomer(C19H17N302) = 1

Valsartan SMARTS

SMARTS(s;) =1
logP =2.0165
TPSA =77.04

Bertz = 896.38

deco hop

SMARTS(s,) = 1
SMARTS(s3) = 0
SMARTS(s,) = 0

sim(ss, PHCO) > 0.85

scaffold hop

SMARTS(s,) = 0

SMARTS(sg) = 1
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sim(ss, PHCO) > 0.75

ts, to sg are chemical patterns in reaction SMARTS format.

Sy: [#7]-cln[c;hl]nc2[c;hl]c(-[#8])[c;h0][c;h1]-c12

s3: [#7]-clcec2nesc2cel

s4: CS([#6])(=0)=0

s5: CCCOclec2nenc(Nce3ceeedncesc4c3)c2ec 1 S(=0)(=0)C-(C)(C)C

Se: [#6]-[#6]-[#6]-[#8]-[#0]~[#6]~[#O]~[#6]~[#06]-[#7]-clccc2nesc2el

Table 6.3-2. The five baseline models in GuacaMol.'!!

Baseline model Generative algorithm

BEST FROM DATASET | The best species screened from the built-in dataset.

Genetic algorithm-based optimization molecular graphs.

GRAPH GA
- It is similar to MARS+.

RNN-based chemical syntactic model based on SMILES

SMILES LSTM_HC
B B (Appendix F.2)

SMILES GA Genetic algorithm-based optimization on SMILES.

RNN-based chemical syntactic model (Appendix F.2)
GRAPH_MCTS based on SMILES, with Monte Carlo tree search

algorithm for species generation.

The comparison between our MARS+ based CAMD and other baseline models are
presented in Figure 6.3-1. Except for the search for constitutional isomers of C11H14
and COH10N20O2PF2Cl, MARS+ ranks the second, following GRAPH GA. In most
tasks, MARS+ shows slightly compromised performance compared to GRAPH GA,
although its overall performance (i.e., the sum of overall scores across tasks) is
comparable to GRAPH_ GA. The difference between MARS+ and GRAPH GA is

particularly notable in the task of searching for constitutional isomers of C11H14 and
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CI9H10N20O2PF2Cl. We suspect this discrepancy may stem from inefficient fragment
exchange in our crossover operation (see Figure 3.3-2). From the source code of
GRAPH_GA, it appears that all base elements in a fragment can connect with another
fragment in GRAPH_GA's crossover operation if their valences are compatible, whereas
in our crossover operation, a fragment can only connect with another one at the crossover
point. We attempted to align our crossover operation with GRAPH GA's implementation,
resulting in a revised version called MARS+ modcross. The performance of
MARS+ modcross is also shown in Figure 6.3-1. This revision significantly improves
MARS+'s performance in the tasks involving C11H14 and COH10N2O2PF2Cl. However,
it also leads to substantial performance sacrifices in some single-objective tasks such as
Celecoxib rediscovery and Troglitazone rediscovery, and a slightly compromised

performance in other tasks.
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6.4. MolOpt: Efficiency of MARS+ and Other Baseline Models

In contrast to GuacaMol, MolOpt3!”

assesses the efficiency of generative models in
achieving a goal-directed task. Each task begins with randomly selected chemicals from
the built-in ZINC 250K dataset. The population size (|Popu,| section 3.4.2) is set 120
and the offspring population size (|Gen,,| section 3.4.2) is set 70. Roulette wheel scheme
(section 3.4.2) is employed to choose chemical species from population Popu, for
crossover and mutation operations, with crossover and mutation probabilities set at 1.0
and 0.067, respectively. Mutation occurs subsequent to successful crossovers. Following
evaluation of the generated species' properties, the most optimal species from the union
of the current population and offspring population is selected for the subsequent iteration,
i.e. Popu,,, = find_optimal(Popu,, U Gen,,).

All hyperparameters of Al models and parameters of rule-based models are fine-
tuned to optimize the AUC-top10 metric (detailed in next paragraphs) in Zaleplon MPO
and Perindopril MPO tasks (see Table 6.3-1). Rule-based models such as GRAPH_GA!'%
11 are allowed to evaluate up to a maximum of 10,000 new unique species unless an
early-termination criterion is met (i.e. lack of progress in the average score of the
population over 5 consecutive iterations). Upon generating i-th new unique species and
evaluating its properties, the average score of the top-K species at this stage is computed,

as shown in eq (6.4-1).
1 K
TopK_avg(uq,uy, ..., u;) = EZ,~=1 scoring_func(u; ;) (6.4-1)

Here, u; represents the i-th generated species, and u;; is the j-th best species in
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the generated species {uq,uy,..,u;}. If K > i, then only the i available species,
{uq,u,, ..., u;}, are used in the calculation top-K average score. The overall efficiency of
the generative model in the goal-directed task is quantified using the area under top-K
curve (AUC-topK)*'7-32! described by eq (6.4-2). Given that each top-K average score
ranges between 0 and 1, the constant 1/10000 normalizes the AUC-topK to the closed

interval [0, 1].

AUC_topK =

1 N
10000 f1 TopK_average(uq, uy, ..., u;)di (6.4-2)

This study compares MARS+ with other baseline models across 18 goal-directed
tasks from the MolOpt benchmark suite®!’, namely, all the tasks in Table 6.3-1 with
exclusion of CI11H24 isomer searching and Aripiprazole rediscovery. Details of the

baseline models in MolOpt are summarized in Table 6.4-1.

Table 6.4-1. The 25 baseline models in MolOpt.3!’

Baseline model Generative algorithm

Rule-based and optimization-based genetic algorithm on
GRAPH _GA o
molecular graphs. It is similar to MARS+.

RNN-based chemical syntactic model based on SMILES
(Appendix F.2)

REINVENT

RNN-based chemical syntactic model based on SELFIES
REINVENT_ SELFIES

(Appendix F.2)
GP_BO GRAPH_GA with GP_BO optimization algorithm
STONED Genetic algorithm-based optimization on SELFIES.
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SMILES LSTM HC

RNN-based chemical syntactic model based on SMILES
(Appendix F.2)

SMILES GA Genetic algorithm-based optimization on SMILES.
Reaction-based optimization on molecular graph with
SYNNET
neural network model for decision making.
Reaction-based optimization on molecular graph with RNN
DOG_GEN o .
model for decision making.
DST Genetic algorithm-based optimization on GNN-based
molecular graph
Genetic algorithm-based optimization on GNN/MPNN-
MARS
based molecular graph
Genetic algorithm-based optimization on GNN-based
MIMOSA
molecular graph
MOL_PAL Property model-based (MPNN) screening method

SELFIES LSTM_HC

RNN-based chemical syntactic model based on SELFIES
(Appendix F.2)

Reaction-based optimization on molecular graph with RNN

DOG_AE model for decision making and autoencoder as an extra
molecular representation for new species generation.
Genetic algorithm-based optimization on GNN-based
GFLOWNET
molecular graph
SELFIES GA Genetic algorithm-based optimization on SELFIES.

SELFIES_VAE BO

VAE-based latent variable model based on SMILES
(Appendix F.3)

SCREENING

Randomly sampling from ZINC 250K reference dataset.

SMILES_VAE BO

VAE-based latent variable model based on SMILES
(Appendix F.3)

PASITHEA

Direct gradient-based molecule optimization employing
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DNN and SELFIES

GFLOWNET with extra property models included to
GFLOWNET-AL _ _
enhance sampling efficiency

VAE-based latent variable model based on SMILES

JT VAE BO
(Appendix F.3)

RNN-based chemical syntactic model (Appendix F.2) with
GRAPH_MCTS

Monte Carlo tree search

Reaction-based optimization on molecular graph with
MOLDQN o ‘
neural network model for decision making.

The comparison of our MARS+ with other baseline models is depicted in Figure
6.4-2. In terms of overall performance, measured by the sum of AUC top-K scores across
tasks, MARS+ modcross ranks 3rd, following REINVENT (1st) and GRAPH_GA (2nd).
Similar to the findings in GuacaMol, MARS+ modcross demonstrates performance
comparable to GRAPH_GA in most of the tasks, except for Celecoxib rediscovery and
the search for COH10N202PF2Cl isomers. In particularly, MARS+ modcross exhibits
apparent inefficiency in Celecoxib rediscovery. Upon examination of the generated
species, it appears that high-scoring species from GRAPH GA, such as
Cclcee(e2ec(N)e(=0)n(C(C)C(=O)NC3CCCCC3)n2)ol with a score of 0.868, typically
contain abundant cyclic substructures.

Our crossover operation appears to favor the disruption of cyclic substructures, as
mentioned in section 3.3.2 that rings will be destructed if unpaired cyclic flags arise
during the fragmentation process. In contrast, GRAPH GA has a ring crossover
mechanism (detailed in Figure 6.4-2), which exchanges ring components between two
molecules while ensuring that the number of rings in each molecule remains unchanged

after operation. This mechanism could be seen as an extension of our crossover approach,
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where the second cut is always on a ring bond in our current implementation. It would be
beneficial to generalize our crossover mechanism in future work to incorporate similar
ring-preserving strategies seen in GRAPH_ GA, potentially enhancing the efficiency of
cyclic structure preservation in molecule design tasks.

REINVENT emerges as the most effective model across a majority of tasks,
highlighting the superior efficiency of its reinforcement learning-based training algorithm
compared to other models utilizing similar working principle, such as
SMILES LSTM_HC.'” In contrast, methods that rely only on the incremental
construction of molecules from a single starting point using small building blocks (e.g.
tokens or atoms), such as MOLDQN and GRAPH MCTS, prove to be less efficient.
While these approaches have the potential to explore a broader chemical space, they are

more suited for explorative tasks rather than exploitative ones.
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Figure 6.4-1. The steps of (a-c) plain crossover and (d-f) ring crossover in GRAPH GA.
Ring crossover requires two cuts: one at a specified bond and another at adjacent bonds
or bonds separated by one bond. In step (f), the resulting ring fragments from step (e) are
paired and connected using ring bonds to ensure the number of rings in each molecule
remains unchanged after operation. This figure is reproduced from reference''’ with

permission from the Royal Society of Chemistry.
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Figure 6.4-2. Performance of 25 baseline models in MolOpt benchmark and MARS+ modcross.
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Chapter 7. Conclusions

The previously developed molecular design tool, MARS!?, is extended to handle
various types of chemicals, including linear, branched, cyclic compounds, ionic species,
cis-trans isomers, and optical isomers. The new program, MARS+, has the following

outstanding features:

(1) 12 reversible operations for molecular structure manipulation

(2) Each operation can be applied on all possible positions (atoms or bonds)
(3) Capable of handling isomers (enantiomers and cis-trans isomers)

(4) Capable of handling neutral and ionic species

(5) Most molecular structures can be generated with a series of available operations

As a traditional method, MARS+ can generate new chemical species without an
existing structural database, and the structure of generated chemicals can be very different
from any existing ones. traditional method also offer advantages of CAMD in that the
structure change can be applied to a desired position and in a desired fashion. This is
different from most RNN-based chemical syntactic models and VAE-based latent variable
models, where the learned molecular representation may not be sufficiently robust for
that. In addition, genetic algorithm-based CAMD has been demonstrated to be
comparable to, or even better than, ML-based models in certain well-studied tasks, such
as drug design. We illustrate that MARS+ is capable of generating very complex
structures by a combination of molecular operations. A very large database of chemicals
can be easily created by extensive and exhaustive repetitions of all operations on every

site of any existing molecule. Such a database with rich structure diversity and high
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resolution may also be useful for developing data-driven methods.

MARS+ is applied to the design of novel ILs as CO2 absorbents. The potential
advantages of ionic liquids over the conventional solvents in CO2 capture have drawn a
lot of attention. For the search of specialty ILs, the combinatorial screening of common
cations and anions is often used. Typically, such method can generate the ILs more
feasible for laboratory synthesis, though the pre-defined library of ions largely limits the
variety of IL candidates. In this work, we show that the atomic level CAMD can
compensate for the disadvantages of screening methods. The proposed CAMD
framework is able to automatically create numerous ions based on genetic algorithm,
though the feasibility of laboratory synthesis for ILs is not as satisfactory as that from
screening method. Under the given target values and parameter settings, the results show
that the specification of initial population has limited influence on the design of ILs with
high COz2 solubility (x¢o, > 0.1). However, it will help the design of ILs with better
similarity and comparable COz2 solubility.

Finally, MARS+ is benchmarked against other baseline models using the GuacaMol
and MolOpt suites. In the effectiveness test with GuacaMol, MARS+ ranks second among
5 models, just behind GRAPH_GA. Across most goal-directed tasks, MARS+ performs
comparably to GRAPH_GA, except in the search for constitutional isomers of C11H24
and CO9H10N20O2PF2Cl. Generalizing the crossover operation could potentially improve
performance in these tasks, but it may come at the cost of performance on other single-
objective tasks, such as Celecoxib and Troglitazone rediscovery. In the efficiency test
with MolOpt, MARS+ ranks third out of 26 models, following REINVENT (1st) and
GRAPH_GA (2nd). Notably, MARS+ exhibits particular inefficiency in Celecoxib
rediscovery compared to GRAPH GA, which may be attributed to the absence of a ring

crossover mechanism in MARS+.
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Chapter 8. Prospects and Future Work

8.1.  Applications to Other Chemical Mixture Systems

The current version of MARS+ demonstrates potential for handling various complex
systems with minimal or moderate modifications to its source code. These systems
encompass pharmaceutical cocrystals’??, double-salt ionic liquids (DSILs)®, deep
eutectic solvents (DESs)*?* 324 optoelectronic materials® 32> 326 biomolecules®?’, and
polymers?8-331,

Pharmaceutical cocrystals are crystalline materials typically composed of an active
pharmaceutical ingredient (API), either neutral or ionic, and a neutral coformer. The
coformer significantly influences key physicochemical properties of the cocrystal, such
as melting point, chemical stability, solubility, dissolution rate, and bioavailability. This
influence stems largely from hydrogen-bonding interactions between the API and the
coformer. Moreover, the coformer can potentially alter the structural integrity of the API,
thereby modifying its properties. Designing optimal conformers for drug delivery and
release would be a valuable area of research.

Double-salt ionic liquids (DSILs) and deep eutectic solvents (DESs) are natural
extensions of the current study. DSILs consist of two distinct ionic liquids (ILs),
[Catl][Anl] and [Cat2][An2], blended in a specific stoichiometric ratio. This mixture
system introduces additional combinatorial degrees of freedom in its components, making
it an ideal subject for demonstrating the capabilities of CAMD and screening methods.
DESs are often regarded as a specialized category within ILs. Their unique characteristic

lies in the hydrogen-bonding interactions among their components, which leads to

unexpectedly deep depression in their melting points.
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Our implementation of MARS+ based CAMD incorporates key performance
properties of optoelectronic materials, including fundamental gap, electron affinity,
ionization potential, and electronegativity (see section 3.2). Future enhancements may
involve integrating properties such as exciton binding energy?, which could serve as a
preliminary indicator for assessing a molecule's suitability for applications in
photovoltaic cells or light-emitting devices.

The design of biomolecules and polymers is theoretically achievable using MARS+.
However, efficient conformer enumeration and geometry optimization are often
necessary for these studies, as the physicochemical properties of macromolecules can be
highly dependent on their conformations. Performing force field-based atomic
optimization using RDKit and OpenBabel can be time-consuming for each
macromolecule. Fortunately, AlphaFold*** 333 can efficiently handle this task,

significantly reducing the computational time required.

8.2.  Enriching the Mechanisms for Molecular Manipulations

Up to this point, we should highlight the distinctions between MARS+ and the other
traditional atom-based and fragment-based algorithms. MoleculeEvoluator'®
(proprietary), Spaceship'®® (proprietary), Molpher!®:1%7 (open-source), EvoMol!'? (open-
source), and GraphGA!'% ! (open-source) are software for atom-based molecular design.
While MoleculeEvoluator'® and GraphGA!''% '!! bear some similarities with MARS+ in
terms of the overall scheme of crossover and mutation operators, they do not appear to
explicitly consider the operators for merging and isomerism inversions. MARS+ also
provides more flexibility for operators. For instance, MoleculeEvoluator'® only uses
single bond for “ring creation”, while MARS+ permits the use of single, double, and triple
bonds for that. The “uninsert atom” in MoleculeEvoluator'® is applicable only for the
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atoms exactly connecting with two heavy atoms, whereas MARS+ allows the subtraction
of any atom as long as the junction valences of the two remaining subgraphs are
compatible. On the other hand, as the atom-based modifications of GraphGA!''% ! are
implemented via reaction SMARTS, additional (yet trivial) reaction templates may be
required to extend the operator’s applicability to more substructures. For example, in an
exploration task using GraphGA''% ! one may need a template for each increment in
ring size to facilitate the formation of 7-membered and larger rings. However, the
formation of these large rings is naturally feasible in MARS+.

Molpher!'% 197 and EvoMol!'? also employ atom-based modifications, but they lack
mechanisms for ring formation/destruction, crossover, merging, and isomerism

inversions. Spaceship'®®

shares similarities with these two, yet it can introduce aromatic
rings through a mutation mechanism. These three software propose a “bond
rearrangement” (or “group moving”) mechanism that can relocate a side chain within a
chemical structure. The fragment-based LEADD!'® (open-source) also propose
interesting modification mechanisms such as “internal expansion” and “translation”. In
“internal expansion” operation, a subject atom/fragment in a chemical structure is self-
cloned to form a replica as its additional connecting neighbors, and then the subject
atom/fragment is replaced with another type of atom/fragment. Although MARS+ lacks
an "internal expansion" mechanism, it can still achieve similar modifications through
consecutive operations of addition and change element. On the other hand, the
"translation" operation is analogous to the "bond rearrangement" mentioned earlier but
emphasizes the explicit potential to rearrange atoms/fragments to the inner points of a
chemical graph via insertions and uninsertions. Given that "translation" could be

especially useful in exploring constitutional isomers, it is worth noting that MARS+

should consider its inclusion in future work.
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The majority of fragment-based algorithms have simpler connection rules and
modification mechanisms compared to atom-based algorithms. For instance, the available

valences of a fragment in LigBuilder''® "7

are restricted those originally bonded with a
hydrogen atom, and therefore the connection between two adjacent fragments is always
a single bond. CReM'® (open-source) provides addition of fragments to a molecule,
substitution of a substructure with a fragment, and merging of molecules with linkers.
They do not propose mechanism such as change element or subtraction, as these are
generally less necessary for their specific purposes. On the other hand, Flux®® ¢!

demonstrates the use of retrosynthesis techniques to enhance the synthetic feasibility of

generated molecules.

8.3. Integrated Computational Molecular-Process Design

Since the designed chemicals ultimately need to be applied to practical processes to
evaluate their impacts, it is advantageous to incorporate process objectives and constraints
into the molecular design task, forming the integrated computational molecular-process
design®*. Process objectives and constraints can be directly integrated into the equality
constraints h(u;,w;) = 0 and inequality constraints g(u; w;) <0 in the mixed-
integer nonlinear programming (MINLP) formulation, with process variables w;
optimized simultaneously with chemical species u;.>337 Alternatively, the integrated
molecular-process design can be divided into two stages: the first stage focuses on
computational molecular design, while the subsequent stage optimizes the process with
chemical species fixed to those identified as optimal in the first stage.’® 33° This
alternative approach is similar to the GBD method (see Appendix E) in solving MINLP

problem.
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8.4. Qualitative Comparisons for Implemented Selection Algorithms

In section 3.4, we have implemented several selection algorithms within MARS+
based CAMD. Conducting a qualitative comparison to analyze the behaviors of these
algorithms would provide valuable insights. Such comparisons could serve as a basis for
selecting appropriate algorithms for more complex goal-directed tasks encountered in
future application studies, and also guide improvements to these algorithms. We designed
two goal-directed tasks to characterize these selection algorithms: one simple and one
challenging.

In both tasks, logP is selected as the sole target property, with the initial population
consisting of molecules having logP values between 8.0 and 9.0. The simple task sets the
target logP to 4.0, while the challenging task sets it to -4.0. AUC top-K (see section 6.4)
may be utilized to measure the efficiency of each selection algorithm.

It is important to note that this comparison differs from the studies in sections 6.3
and 6.4. Here, the comparison is conducted with a fixed choice of molecular data structure
(MDS) and a fixed generative algorithm, specifically MARS+. Sections 6.3 and 6.4, in
contrast, compare interplaying effects across different combinations of MDSs, generative

algorithms, and selection algorithms.
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Appendix A. Supplementary Tables to the Main Texts

Table A1l. A survey of molecular and property databases. Reprinted with permission from

the reference!®?

. Copyright 2023 American Chemical Society.

Database/Research

Covered chemical subspace Properties
GDB-17'*18 ~ 1.7x10"
HOMO, LUMO, dipole,
NIST CCCBDB 2 1x10} IP, EA etc.
database*
ChemSpiderB ~7.1x107 MW, Tm, Tb, PV,
PubChem database'* ~2.5x108 toxicity etc.
NIST chemistry Thermophysical data,
~7.3x10*
Webbook?**!

MW, T, Tb, toxicity etc.

Dortmund databank!®-2°

Pure: ~ 8.7x10* species
VLE: ~ 4.4x10* mixtures

LLE: ~ 4.1x10* mixtures etc.

Thermophysical data
(e.g. P VLE, LLE,
etc.), MW, Tm, Tb

Beilstein database!?

~1.0x107

Reaction mechanisms

LOLI database
(ChemADVISOR)!!

More than 6.0x10° species

Regulatory data (e.g.
medical, toxicological,
pharmacological and

clinical data etc.)
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Table A2. A survey of chemical space exploration and size estimation research.

Estimated size of

Reference Conditions
chemical subspace
Organic molecules:
(1) Number of C atoms < 100 9
Drew, K. L. et 3.4x10
(2) Consists of C,N, O, F, P, S, Cl, Br, I )
al.?¢ Drug-like molecules:
and H ;
1.5x10
(1)) MW < 1000 g/mol
o (2) Consists of C, N, O, F, P, S, CI, Br, I
Weininger, D.?° 10180
and H
(3) Consider stereoisomers
(1) MW < 500 g/mol, heavy atoms <
Bohacek, R. S. et 30 63
29,342 . 10
al. = (2) Consists of C, N, O, F, S, Cl, Br, and
H
Walters, W. P. et Virtual screening based on the existing
building blocks in typical combinatorial 10100
a] 29343
libraries
‘ The number of organic and inorganic g
Lemonick, S.>** ‘ 10
substances in the CAS database
Ogata et al.”’ Consists of C, N, O, S, Cl and H 1()8 ~ 1()]9
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Table A3. A survey of work applying CAMD for chemical engineering problems*. Reprinted with permission from the reference?*4. Copyright

2018 American Chemical Society.

(GA)133-138

semiconductor encapsulation,

1993~1995328-330

e small molecules: alternative

refrigerant, 1995°%°

e solvent: LL extraction, 20004
e solvent: LL extraction, 2007346

e solvent: antioxidant solubilization,

2014347

Property Quantitative
Group Quantum Mechanics
estimation Structure-Property
Contribution based Method
MINLP Relationship
(GO) (QM-based)

solution (QSPR)
Genetic Algorithm e polymer: materials for esolvent: LL extraction, 1995°°! esolvent: LL extraction, 2017°°¢

e small molecules (for drug design):
lipophilicity, length, solvent
accessible surface, dipole moment,

200033

¢ polymer (enzyme inhibitor): AG of
RNA folding, RNA sequence length,
20023

epolymer: dielectric constant,

2016%!

esolvent: reaction rate constant,

2017%7
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e solvent: relative energy difference

and solubility parameters, 2014>*

e solvent: extractive reaction, 2016°%

e solvent: ab/desorption process,

2017°%

e IL: heat transfer, 2013%°

e IL: electrical conduction, 20133%°

e IL solvent: LL extraction, 20133

e IL solvent: Naphthalene

solubilization, 20133

e small molecules (for drug design):
number of H-bond donors/accepters,

docking geometry, 200533

e small molecules: enzyme-substrate
binding energy, structure similarity,

2008

Simulated Annealing

(SA)140, 358-362

e small molecules: log(Kow), 19963

e small molecules: alternative

refrigerants, 1998%%
e solvent: LL extraction, 19983

e small molecules: alternative

refrigerants, 1998363

e small molecules: molecular

compactness, 1996°%3
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e solvent: LL extraction, 19983
e solvent: LL extraction, 2002366367
HSTA

e solvent: LL extraction, 2006°%
Genetic Algorithm & o solvent: LL extraction, 2017°% oIL: LL extraction, 2017°™
Hmulated Anncaling eIL: LL extraction, 2017°"!
(GA-SA)™!
Ant Colony e solvent: LL extraction, 2015373

Optimization Algorithm

(ACO) 146, 372

EACO

Tabu Search

(TS)148

e metal-ligand complex:
electronegativity, density, toxicity and

oxidation state, 200537*

e IL: gas refrigerant separation, 20107
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Solver Package

¢ polymer: mechanical strength,

1996°’¢  GINO

e IL: azeotrope separation, 2012377

GAMS/CPLEX

e IL: gas refrigerant separation,

2010°”> GAMS/CPLEX

e metal-ligand complex:
electronegativity, density, toxicity and
oxidation state, 2005374

GAMS/DICOPT

e polymer: glass transition

temperature, density and heat

capacity, 1999378
GAMS/DICOPT++
Outer Approximation e solvent: extractive reaction, 200233
(OA)P7 13837 o solvent: LL extraction, 2002
e solvent: CO; absorption process,
2016%7
e small molecules: alternative
refrigerants, 1996°%!
Interval-based Global e polymer: mechanical strength,
376
Optimization Algorithm 1996
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(IBGO)**?

Branch-and-Reduce

Algorithm (B&R)*%3

e small molecules: alternative

refrigerants, 200
e solvent:

e solvent:

3384

LL extraction, 2013%%°

crystallization, 20133%

Brute Force
with Reduced
Combinatorial
Complexity

(BF)

e solvent:

e solvent:

e solvent:

e solvent:

e solvent:

19913%7

e solvent:

process,

LL extraction, 19833
LL extraction, 19863
LL extraction, 19913%7
1387

gas absorption, 199

extractive distillation,

extractive distillation

1994388

e solvents: extraction, 19993%°
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e solvent: extractive distillation,

1999°%

e solvents: extraction process,

19990
e solvent: crystallization, 2006>"!

e IL: applications on heat transfer,

201330
e IL: electrical conduction, 20133%°
e IL solvent: LL extraction, 20133%°

e IL solvent: dissolution of

Naphthalene, 20133>°

¢ polymer: density and glass

transition temperature, 20152

e surfactant: UV sunscreen, 20153
e solvent: LL extraction, 201532

e solvent: extraction, 1989%°

182

d0i:10.6342/NTU202403528



e small molecules: alternative

refrigerant, 1989%

¢ polymer: semiconductor

encapsulation, 1989°°

*the format of the content is (materials: properties or problem, year)rference
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Table A4. The attributes of neutral base elements. Reprinted with permission from the

reference!®?

. Copyright 2023 American Chemical Society.

ID [Name (SMILES representation) Bond order |charge
I [[CHOIG)()()C) 1111 0
2 ICEEE) 211 0
3 1CH0) 31 0
4 ICOHE 22 0
5 10()() 11 0
6 10(=) 2 0
7 NG 111 0
8 NG 21 0
9 NG 3 0
10 |O(-) 1 0
11 [F(-) 1 0
12 |CI(-) 1 0
13 Br(-) 1 0
1411(-) 1 0
19 1S¢)() 11 0
20 |S(=) 2 0
21 [P(-)(-)(-) 111 0
22 [P(=)(-) 21 0
23 |P(#) 3 0
31 [[PHO](-)(-)(-)(-)(-) 111110
32 [PHOI(=)(-)(-)(-) 2111 0
34 1SE)E)) 11 0
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61 [[SHO]J=)®(-)(-) 2211 0
62 |CI=)=)=)) 2221 0
66 [P(=)(-)(-) 211 0
67 [[CHO@@](-)(-)(-)(-) 1111 0
68 [CHO@](-)(-)(-)(-) 1111 0
69 |[PHO](-)(-)(-)(-) 1111 0
70 *(-) 1 0
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Table AS. The attributes of cation base elements. Reprinted with permission from the

reference!®?

. Copyright 2023 American Chemical Society.

ID [Name (SMILES representation) Bond order |charge
15 |[NHOH](-)(-)(-)(-) 1111 +1
16 |[NHO+](=)(-)(-) 211 +1
17 |[PHO+](-)(-)(-)(-) 1111 +1
18 |[PHO+](=)(-)(-) 211 +1
36 |[CHOJ(-)(-)(-)([N+]1C=CN(C)C=1) 111 +1
37 |[CHOJ(-)(-)(-)([N+]1C=CN(C)C(C)=1) 111 +1
38 |[CHO](-)(-)(-)(N1C=C[N+](C)=C1) 111 +1
39 |[[CHO](-)(-)(-)([N+]1=CC=CC(C)=C1) 111 +1
40 |[CHO](-)(-)(-)(C1=C[N+](C)=CC=C1) 111 +1
41 |C(-)(1=[NH+]C=CC=C1) 1 +1
42 |[NHO+](-)(1=CC=CC=Cl) 1 +1
57 |[In+3](-)()(-)(-) 1111 +3
64 [Gat+3](-)(-)(-)(-) 1111 +3
65 |[SHO+](-)(-)(-) 111 +1
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Table A6. The attributes of anion base elements. Reprinted with permission from the

reference'®. Copyright 2023 American Chemical Society.
ID [Name (SMILES representation) 2 charge
order
24 |[F-] 0 |1
25 |[Cl-] 0 |1
26 |[Br-] 0 |1
27 |[I] 0 |1
28 |[OHI-] 0 |1
29 |[OHO-](-) 1|1
30 ([PHO-]J()()C)H)) 1 11 11 -1
33 [S()(E0)=0)([O-]) I
35 |[NHO-](-)(-) 11 |1
43 |[NHO-](S(=0)(=0)C(F)(F)(F))(S(=0)(=0)C(F)(F)(F)) 0 |1
111
44 |[BHO-1()(-)()(-) | -1
45 |CH)EECEO0XO-]) 1111
46 |CEHN)([S-]) 0 |1
47 |C))()(OPEO)OC)[O-]) 1111
48 |CHN)(IN-]CHN) 0 |1
49 |[BHO-](CHN)(CHN)(C#N)(C#N) 0 |1
50 [S(OCCOCCOC)(=0)(=0)([0-]) 0 |1
51 [S(e(cel)eecl CY(=0)(=0)([O-]) U
52 |[PHO-](F)(F)(F)C(CE)E)F)E)F)C(CE)F)F)E)F)(C(CE)F)F)(F)F) 0 |
53 |[INHO-](S(=0)(=O)C(C(F)(F)F)(F)F)(S(=0)(=O)C(C(F)(F)F)(F)F) U
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54 |[CHO-(S(CE)E)E)(EO)=0)N(S(CENE)E)(EO)=0)(S(CENEFENEF)(EO)=0) 10 -1
55 |[[PHO-](F)(F)(F)(F)(F)(F) 0 -1
56 |[Int3]([CI-D(CI-DACI-D(CL-]) 0
58 |CI(=0)(=0)([O-])(=0) 0 |
59 |[CHO-](-)(-)(-) 1111
60 [[NHO+](=O)([O-]([O-]) 0 |1
63 |[SHO-(-) 1
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Algorithm 1. A code segment for converting SMILES into MARS+ MDS format.
Reprinted with permission from the reference!®. Copyright 2023 American Chemical
Society.

MDS consists of element index array (Cindex), parent index array (Pindex), element

type array (Mindex), bond order array (Rindex), cyclic flag array (Cyindex), cyclic bond
array (Cybnd), cis-tran front/end flag array (ctsisomer), and chirality flag array (chi).
Now we describe how to convert a SMILES into MDS with the aid of OpenBabel.

1. Openbabel: Convert a given SMILES to an OBMol object

OBMol mol; //Declare mol as an instance of OBMol object

OBConversion conv(&SMILES stringstream); //Input the given SMILES to
conv

conv.SetInFormat("SMI"); //Set SMILES to be the input format for conv
conv.Read(&mol) ; //Use conv to build the connectivity among heavy atoms
in mol

mol.AddHydrogens () ; //Add hydrogen atoms to the heavy atoms in mol
PerceiveStereo (&mol) ; //Perceive chiral centers from current mol
OBBuilder builder;

builder.Build(mol); //Create 3D coordinates for all the atoms in mol
PerceiveStereo (&mol); //Perceive chiral centers from 3D structure of

mol

2. Transcribe the structural information (atoms, bonding, and isomerisms) in mol to
MDS

OBStereoFacade facade (&mol); //Use facade to get isomerism information
of mol
FOR_BONDS_OF MOL(bond, mol) { //Traverse all the bonds in mol
//Access the two atoms connected by this bond
OBAtom* BeginAtom=bond->GetBeginAtom() ;
OBAtom* EndAtom=bond->GetEndAtom() ;
//Transcribe the information to bond order array (Rindex)
Rindex.at (EndAtom->GetId () ) =bond->GetBondOrder () ;

//Perceive cis-trans isomerisms in mol
if (bond->GetBondOrder () == && facade.HasCisTransStereo (bond-
>GetId())) {
OBCisTransStereo* ct=NULL;
ct=facade.GetCisTransStereo (bond->GetId()) ;
OBTetrahedralStereo: :Config A=tr->GetConfig (OBStereo: :ShapeU) ;
//Access the substituents in U-shape order (1234, 2341, 3412, or
4123) :
A.refs.at(0), A.refs.at(l), A.refs.at(2), and A.refs.at(3)
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3
2 SMILES: F(/C(=C/(Br) (I)) (C1))
//1t does not need to know what permutation is actually adopted.
//Generally, the 1st and 3rd accessed atoms are in trans

configuration.
//Assign “/” as the cis-trans front flag (Fct) for the beginning
atom (C)

Of the double bond.
//Assign “/” as the cis-trans end flag (Ect) for the ending atom
(C) of
the double bond.
OBAtom* BeginAtom=bond->GetBeginAtom() ;
OBAtom* EndAtom=bond->GetEndAtom() ;
ctsisomer.at(0) .at (BeginAtom->GetId())="/"; //Cis-trans front
flag
ctsisomer.at(1l) .at (EndAtom->GetId())="/"”; //Cis-trans end flag

FOR_ATOMS OF MOL(atom, mol) { //Traverse all the atoms in mol
//Transcribe information to element index array (Cindex)
Cindex.at (atom->GetId () )=atom->GetId () +1;
if (atom->GetAtomNum()==6) {
//Transcribe information to element type array (Mindex), based on
valences.
if (the atom has 4 single bonds) Mindex.at (atom->GetId())=1;
if (the atom has 2 single bonds and 1 double bond)

}
else if (atom->GetAtomNum()==7) ({

//Perceive optical isomerisms in mol

if (facade.HasTetrahedralStereo (atom->GetId())) {
OBTetrahedralStereo* tr=NULL;
tr=facade.GetTetrahedralStereo (atom->GetId()) ;
OBTetrahedralStereo: :Config A=tr-

>GetConfig (OBStereo: :Clockwise) ;
//Access the substituents in clockwise order (234, 342, or 423):
A.refs.at(0), A.refs.at(l), and A.refs.at(2)

2

3 SMILES: F([CQQ] (Cl) (Br) (I))
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//Access the chiral center: A.center
//Check if the order of these substituents in mol are consistent
with
the clockwise order.
If (consistent order) chi.at(A.center)=2; //Chirality flag
else chi.at(A.center)=1; //Chirality flag

}
unsigned int ringnum=1;
FOR_BONDS_OF MOL(bond, mol) { //Traverse all the bonds in mol
//Assign parent indices
OBAtom* BeginAtom=bond->GetBeginAtom() ;
OBAtom* EndAtom=bond->GetEndAtom() ;
if (BeginAtom is the 1lst parent of EndAtom) {
//Record the numbering of BeginAtom in parent indices array
Pindex.at (EndAtom->GetId () )=Cindex.at (BeginAtom->GetId()) ;
}
else if (BeginAtom is the 2nd parent of EndAtom) ({
//Record this bonding in cyclic flag array and cyclic bond order
array
Cyindex.at (BeginAtom->GetId()) .push_back (ringnum) ;
Cyindex.at (EndAtom->GetId()) .push back (ringnum) ;
Cybnd.resize (ringnum,0) ;
Cybnd.at (ringnum-1)=bond->GetBondOrder () ;
ringnum++;
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Algorithm 2. Steps to convert MARS+ MDS into SMILES. Reprinted with permission
from the reference'®. Copyright 2023 American Chemical Society.
Suppose we have ethane (raw SMILES: C(C)) in MDS format:

Parent indices (Pindex) 01
Element indices (Cindex) 12
Element types (Mindex) 11
Bond orders (Rindex) 01
Cyclic flag array (Cyindex) 00
Cyclic bond order array (Cybnd) Null

Cis-trans front flag array
(ctsisomer.at(0))

Cis-trans end flag array
(ctsisomer.at(1))

Chirality flag array 00

1. Create Bindex and atomsmi for the molecule
The first C atom:

//See main text sec 2.1 for the meaning of name, index, and suffspos.
name: C(-)(-)(-)(-)

index=2

suffspos=13

//Bindex[i] records the conectivity of the (i+l)th element

//Its lst bond is used to connect with the 2nd C atom.
//3 remaining single bonds are free (connect with H atoms)

Bindex[0] = [0, 1, 1, 1]

//For the (i+l)th element in the molecule, atomsmi[i] records the

output
positions for its name.
//Initialization of output positions for each of the charaters in

its name.
atomsmi[0]=1[0,1,2,3,4,5,6,7,8,9, 10, 11, 12]
The second C atom:
name: C(-)(-)(-)(-)
index=2
suffspos =13
//Its lst bond is used to connect with the 1lst C atom
Bindex[1]=1[0, 1, 1, 1]

//Initialization of output positions for each of the charaters in

its name.

atomsmi[1] =[0,1,2,3,4,5,6,7,8,9,10, 11, 12]

2. MDS: Shift the output position of characters
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//Adjust atomsmi[0] and atomsmi[l] so that the name of the two atoms
can be outputted as C(-C(-)(-)(-)(-))(-)(-)(-), where the blue
characters come from the 1lst C atom, and the brown characters come

from the 2nd C atom
The first C: For each character after position indexis: ¢, shift the output position by
nbondzng ¢

name: C(-)(-)(-)(-)

index=2

suffspos =13

Bindex[0] =0, 1, 1, 1]

atomsmi[0] =10, 1, 2, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] //Adjusted
The second C: Shift the output position by (1+indexis: ¢) for all the characters.

name: C(-)(-)(-)(-)

index=2

suffspos =13

Bindex[1] =0, 1, 1, 1]

atomsmi[1]=(3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15] //Adjusted

3. MDS: Erase redundant “(-)” and “-”.
//With the aid of Bindex[0] and Bindex[1l], one can erase the redundant

notations for single bonds “-” and free valences “(-)”. As a result,
the SMILES would be C(_C ) , where the underline
denotes white spaces.
The first C:

name: C()

Bindex[0] =0, 1, 1, 1]

atomsmi[0] = [0, 1,16] //Redundant bond notations erased.
The second C:

name: C

Bindex[1]=[0, 1, 1, 1]

atomsmi[1] = [3] //Redundant bond notations erased.

4. MDS: Re-numbers the output position of the remaining characters to form a SMILES

string.

//Now delete the white spaces of C(_C ) . Arrange
consecutive output positions for the remaining characters so that
reasonable SMILES C(C) can be generated.

The first C:

name: C()

Bindex[0] = [0, 1, 1, 1]

atomsmi[0] = [0, 1, 3] //Renumbered.
The second C:

193 doi:10.6342/NTU202403528



name: C
Bindex[1] =0, 1, 1, 1]
atomsmi[1] =[2] //Renumbered.

5. MDS: Output raw SMILES by writing the character namefi][j] to the atom[i][j]
position in a character array Rawsmi

Rawsmi[atomsmi[0][0]]=Rawsmi[0]="C"

Rawsmi[atomsmi[0][1]]=Rawsmi[1]="("

Rawsmi[atomsmi[1][0]]=Rawsmi[2]="C"

Rawsmi[atomsmi[0][3]]=Rawsmi[3]=")"

-> Rawsmi = C(C)

6. OpenBabel: Canonicalize the raw SMILES

//Specify Rawsmi in RAW _SMILES stringstream

//The canonical SMILES is outputted to CAN SMILES stringstream
OBConversion conv (&RAW _SMILES stringstream,&CAN SMILES stringstream) ;

//Canonicalize the raw SMILES

if (conv.SetInAndOutFormats ("SMI","SMI")) {
conv.AddOption ("canonical" ,OBConversion: : GENOPTIONS) ;
conv.Convert() ;
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Appendix B. Supplementary Figures to the Main Texts
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Figure B1. Constructing a programmatic sequence of molecular operations to mimic the

Oseltamivir synthesis pathway of E.J. Corey et al. The caption under a structure indicates

the operation to bring the previous structure to current one. Reprinted with permission

from the reference'®*. Copyright 2023 American Chemical Society.
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Figure B7. Reciprocal absorption-selectivity-desorption index (ASDI, see eq (5.2—11)) of CO2 over
O in the screened ILs. The darker red indicates the desirable performance. A dot in a cell indicates

the presence of at least one VLE experimental data point for the CO2-IL system.

201
doi:10.6342/NTU202403528



C4mim{ ® ] . ] . ] ] . ] . [} ] ] . ] ] ] . . . ] . ] (] .
1.0x10?2
Cc2TT =
cemim{ e | o] e | o | e . . = 9.0x 10!
P6,6,6,14 = . L
C2mim{ ® . . . [] (] . [] (] 75101
P4,4,4,4 .
NO,0,2-0OH,2-0OH (] (3
r6.0 x 10*
C4mpy o
(HOC2)mim{ ® (] ° .
N1,1,1,4 L4
L 1
C10mim = 45%10
csmim{ ® L3 O _
©
C9mim o | e o
o
-
N1,2,2-OH,2-OH = o o
5
CSmim ° L3ox10t ¥
DMFH. . . o
~
o
(Et0)2im o °
z
cemmim . Q
8
NO0,0,0,2-COH O = 5
dbim . Fo
=
=]
(HOC3)mim . @
[
Campyrr o | e 3 . . o 0
Ca8mpyrr . F1.5x 10!
Ccempyrr .
Cipy| ®
C3mpy L4
C5mpy .
N1,1,3,2-OH -
C7mpy .
P1,4,4,4 .
N1,4,4,4 .
Clmim . U]
(CoC)mim{ ® e | e . .
+ o 2 w L o Y < g Z2 J g O v 0O @ g g4 Q Mmoo MM > L& £ Q0 @ Y oo &
— < < g W Q < o o
EEfEEZgSgE Qg RERETIgERSRRES g dEBGEE T
T = [} T = o [ =
m 2 8
] T O
: (8]
U 8

Figure B8. Selectivity of CO2 over CHa (eq (5.2-8)) in the screened ILs. The darker red indicates
the desirable performance. A dot in a cell indicates the presence of at least one VLE experimental

data point for the CO2-IL system.
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Figure B9. Selectivity of CO2 over CO (eq (5.2-8)) in the screened ILs. The darker red indicates
the desirable performance. A dot in a cell indicates the presence of at least one VLE experimental

data point for the CO2-IL system.
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Figure B12. Selectivity of CO2 over N2 (eq (5.2-8)) in the screened ILs. The darker red indicates
the desirable performance. A dot in a cell indicates the presence of at least one VLE experimental

data point for the CO2-IL system.
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Figure B13. Selectivity of CO2 over O2 (eq (5.2-8)) in the screened ILs. The darker red indicates

the desirable performance. A dot in a cell indicates the presence of at least one VLE experimental

data point for the CO2-IL system.
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Appendix C. Optimality in Non-linear Programming

C.1. Optimality Conditions in Unconstrained Optimizations393

Problem Cl1
argmin Objfcn(w) (C.1-1)
w
weEW c R™ (C.1-2)

C.1.1. First-order Necessary Conditions

Let Objfcn(w) be at least once continuously differentiable in the neighborhood of

apoint w*. If w* is a local minimum solution of Objfcn(w), then

vV, 0bjfcn(w*) =0 (C.1-3)

C.1.2. Second-order Necessary Conditions

Let Objfcn(w) be at least twice continuously differentiable in the neighborhood of

apoint w*. If w* leads to a local minimum of Objfcn(w), then

(D) V,,0bjfcn(w*) =0 (C.1-4)

an wrv,V,0bjfcn(w*)]w = 0,Yyw € R™ (C.1-5)

Property (II) means that [V, V,,0bjfcn(w*)] matrix is positive semidefinite.

C.1.3. Second-order Sufficient Conditions

Let that Objfcn(w) is at least twice continuously differentiable in the

208

doi:10.6342/NTU202403528



neighborhood of a point w*. If

(D v, 0bjfecn(w*) =0 (C.1-6)

an wrv,v,0bjfcn(w*)]w = 0,vyw € R™ (C.1-7)

then w* is a local minimum. Note that if [V,,V,,0bjfcn(w*)] matrix in condition (II)
is positive definite (i.e. w'[V,V,,0bjfcn(w*)]w > 0 for all w € R™), then w* will

be a strict local minimum.

C.1.4. A Short Proof

These theorems can be examined by second-order Tyler expansion at local minimum

solution w* along a feasible direction (section C.3).

Objfcn(w™ + td)

= Objfcn(w*) + td"V,,0bjfcn(w*)

(C.1-8)
1
+3 t2d" [V, V,,Objfen(w*)]d + 0(t2)
C.2. Optimality Conditions in Constrained Optimizations37’ 394
Problem C2
argmin Objfcn(w) (C.2-1)
subjected to
h(w) =0 (C.2-2)
gw) <0 (C.2-3)
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wEW S R™ (C.2-4)

C.2.1. First-order Necessary Condition (Karush-Kuhn-Tucker, KKT)

Each of the inequality constraints in eq (C.2-3) can be transformed into an equality

one by introducing a slack variable sz > 0, that is,
giw) +s? =0 (C.2-5)

After such transformation, the original minimization Problem C2 can be

reformulated using Lagrange multiplier method. Let 4 = [/11, s AP]T be the multipliers
for p equality constraints h(w), p = [,ul, ...,,uq]T be the multipliers for g inequality

) T ) ) )
constraints g(w), ands © s = [512, e, sé] be the slacks variables for each inequality
constraints. Here, ® is the Hardamard product operator, meaning the element-wise
product of two matrices with the same dimensions. The Lagrange function L(w, 4, i, s)

1S:

p q
L(w, 4, 1,s) = 0bjfcn(w) + Z Aihiw) + > uilg;w) + s7] (C.2-6)
i1 =1

J

Suppose w* is a local minimum solution to the original Problem C2. There should
also be the solution (w*, 4%, u*,s*) to the minimization problem in Lagrange multiplier
formulation, i.e. eq (C.2-6). For (w*, A%, u*,s*) to be a local extremum, the necessary

conditions of eq (C.2-7) to eq (C.2—-10) should be satisfied:
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p
VLW, 25, u*,s*) = V,0bjfcn(w*) + z A Vwh;(w*) +
i=1 j

Vi Lw*, A%, u*,s*) = h(w) =0
VLW, 2,1, s") = gw) +s"Os =0

Vo LL(w", 25 u",s*) =20 Os* =0

q
KiVwgiw) =0
=1

(C.2-7)

(C.2-8)
(C.2-9)

(C.2-10)

Multiplying eq (C.2-10) by s with Hardamard operator and combining the

equation with eq (C.2-9), the eq (C.2-10) is equivalently:

Vo LW", 20", s) ]| Os* =20 Os"Os* =—2u Ogw) =0

(C.2-11)

The condition eq (C.2-11) means that, for each inequality constraint g;(w") at

w" with j = 1to g, either g;(w*) =0 or pu; = 0 holds true. If both of them are zero,

it should be the trivial case that inequality constraint ; is not presented in Problem C2.

The inequality constraints with equality sign g;(w*) = 0 are termed the active

constraints, denoted as Ay (w*) = {j |gj w)=0,j=1to q}. On the other hand,

pj =0 means g;(w)+s?=0 with s? >0 and g;(w*) <0. The inequality

constraints satisfied with strict inequality sign g;(w*) < 0, and these constraints belong

to inactive constraints Jo(W") = {j | giw") <0,j=1to q}. Following this definition,

every equality constraint h;(w*) is an active constraint, as eq (C.2-8) requires. To

differentiate them from inequality active constraints, let equality active constraints be

denoted as A (w*) = {i |h;(w*) = 0,i = 1 to p}. Based on eq (C.2-11), there are q

elements in Ay,(W*) U J,(w"). From egs (C.2-7), (C.2-8), (C.2-9), and (C.2-11), we

have (m + p + q) equations to solve for (m + p + q) unknown variables.
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Let A(w*) be the matrix whose rows are the gradients of the objective function

and active constraints at local minimum solution w*, i.e.

[VwObjfen(w)I™ ..
Aw) =|  [VwhWOIT i € Ap(W?) (C.2-12)
[ng(W*)]Tldqg(W*)lmej € ‘ﬂg (W*)

Now invoke Gordan’s theorem (section C.4). Since w* is a local minimum
solution and V,0bjfcn(w*)d = 0 for any feasible direction d (section C.3), the
equations AwHd <0 has no solution. Therefore, AT(w")p =
[VwObjfen(w™), Vi, h;(w*)V,,g;(w*)]p = 0 (with p > 0) has a solution. Clearly, p

refers to the Lagrange multipliers in column vector form, according to (C.2-7).

1
[/Yik]pxlri € C’qh(W*)

J € Ag(w")

p= >0 (C.2-13)

[“ﬂmg(w*nxl

Nota that, for each inactive inequality constraint, the multipliers are zero, i.e. uj =
0 for j&Ay;(w"). Also, all the equality constraints are active, i.e. Ap(W") =

{ili=1top}. Consequently, eq (C.2-13) implies that all the multipliers are

nonnegative., namely

7=>0 (C.2-14)

w=0 (C.2-15)

Finally, the first-order necessary conditions are presented as a system of conditions
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consisting of eq (C.2-7) to eq (C.2-9), eq (C.2—11), eq (C.2—-14), and eq (C.2—15). If the

active inequality constraints, A,(W"), are known, these conditions can also be expressed

in a more straightforward from:

q
UiVg; W) =0 (C.2-16)
j=1

P
Vo LW, 25, u*,s*) = V,0bjfcn(w*) + z A Vywh;(w*) +
i=1

(W) =0, Vi€ AW (C.2-17)
giw) =0,  VjEA; (W) (C.2-18)
=0, Vi€ AWw) (C.2-19)
W20, VjeAw) (C.2-20)
up=0, VjeJ,w" (C.2-21)

with active constraints A, (W*) and Agz(w").

Apw*) ={i |h;(w*) =0,i =1top} (C.2-22)

Ay;w*) ={j |g;(w) =0,j =1¢toq} (C.2-23)

C.2.2. First-order Sufficient Condition (Karush-Kuhn-Tucker, KKT)

*

Suppose that w* is a local minimum solution to Problem C2. Following the notation
in section C.2.1, let (w*, 4", u*,s*) satisfies the first-order KKT necessary condition
with linear independent constraint qualification. Let Ay (w*) = Ulg iw)=0,j=

1toq} to indicate the active inequality constraints at w*. Let Af(w",1%) =

{i|A;>0,i=1top} and A, (W, 2") ={i|4; <0,i =1top}. If

(I) Objfcn(w™) is pseudo-convex at w*,
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(D) g;(w*) with j € A,(W") are quasi-convex at w”,
(III) h;(w*) with i € A} (w*) are quasi-convex at w*, and

(IV) h;(w*) with i € A, (W*) are quasi-concave at w*.

then w* is a global optimal solution to Problem C2. If these convexity properties are

only restricted to a small domain, then w* is a local minimum.

C.2.3. Second-order Necessary Condition

Suppose that w* is a local minimum solution to Problem C2. Following the notation
in section C.2.1, let (w*, A%, u*,s*) satisfies the first-order KKT necessary condition

with linear independent constraint qualification. Then

d’'[v,v,L(w", 2%, u*,s))]d = 0,vd € F(w*) (C.2-24)

C.2.4. Second-order Sufficient Condition

Let w* be a local minimum solution to Problem C2. Following the notation in
section C.2.1, let (w*, A%, u*,s™) satisfies the first-order KKT necessary condition with

linear independent constraint qualification. Suppose

dT[v, Vv, L(w", A%, p*, s)]d > 0,vd € F(w*),d # 0 (C.2-25)

Then, w* is a local minimum solution.
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C.3. Tangent Cone and Feasible Directions>*3

Let w4 be a feasible point in a closed convex set S. A sequence [Zy, ..., Zy| With
Zy €S and z, —> wq for all sufficiently large k is defined as a feasible sequence
approaching wy. A tangent vector d at wy is defined as eq (C.3-1), provided that
there are a feasible sequence approaching w4 and a corresponding sequence of positive

scalars [ty, ..., t,] with t, = 0.

Zp —Wq

Lim
k—o0 tk

=d (C.3-1)

Let the active constraint set at wq be A(w;) = Ay (Wq) U A, (wq) (see section
C.2.1 for the definition of Ay;(wq) and Aj(wy)). The set of feasible directions F(wy)
for Problem C2, is defined as:

dTVh,(wy) = 0 Vi € Ay (wy) and} (C.3-2)

Fwy) = {d d"Vgj(wy) <0 Vj € Ay (wy)

The central ideal of this definition is to collect possible directions d along which
ensures an optimization step will not move wy out of feasible region. To see this, one
can utilize the definition of tangent vector (eq (C.3—1)) and regard z; as the point after

an optimization step is conducted to wy.

hi(zi) = hi(wq) + t,d"Vyh;(wy) + O(ty,) (C.3-3)
9;(zy) = g;(wq) + t,d"V, g;(wy) + 0(t,) (C.3-4)
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Here, O(t;) means that the order of the remaining terms is roughly t,, with

Ilim O(t,) = 0. Based on the constraints in Problem C2, we should require h;(z;) =

h;(wy) and g;(zx) < g;(wy). Therefore, we have from (C.3-3) and (C.3-4) that:

li hi(zy) — h;y(wy)
im

=d"V,h;(w;) =0 (C.3-5)
k—o0 tk

lim gj(Zk) - gj(W1)
k—oo tk

= dTV,,g;(wy) <0 (C.3-6)

The same treatment can be applied to the objective function, and we will have:

Objfcn(zy) = Objfcn(wy) + t,dTV,,0bjfcn(wy) + O () (C.3-7)

It should be noted that, from eq (C.3-2), the optimization of w, along a feasible
direction d does not guarantee further improvement of Objfcn(w;), as such property
is not imposed in the definition. If wy is away from any local minimum solution, it is
desirable to require Objfcn(zy) < 0Objfcn(wy), or equivalently dTV,0bjfcn(w,) <

0.

. Objfcen(zy) — Objfen(wy)
lim

) - =d"V,,0bjfcn(wy) <0 (C.3-8)
—00 Kk

From this, the set of usable feasible directions F,(wy), also called the set of

improving feasible directions, is defined as:
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Fu(wy) = F(wq) N {d |d"V,,0bjfcn(wy) < 0} (C.3-9)

Every improving feasible directions should be capable of minimizing Objfcn(w;)

*

if wy is not a local minimum solution. If w* is a local minimum solution to the
minimization problem, then for every d € F(w*) we have d'V,0bjfcn(w*) > 0.

This can be seen from eq (C.3-7).

C.4. Gordan’s Theorem3**

Let A be an m X n matrix. Then either of the following systems has a solution.
System 1: Ax< 0 for some x € R"

System 2: ATp =0 withp >0 for some nonzero p € R™

C.5. Lagrangian Duality Problem>**

Every nonlinear primal problem C5 has a Lagrangian dual Problem Dual(C5)

Problem C5
mvin Objfcn(w) (C.5-1)
subjected to
h(w) =0 (C.5-2)
gw) <0 (C.5-3)
weEW cR" (C.5-4)

Denote the Lagrange function for Problem C5 as 8(w,4,u) = Objfcn(w) +

le Ah;(w) + Z?zl 1jg;(w). (Note: slack variables are excluded)
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Problem Dual(C5)

ﬁg}é[igf O(w, 4, )] (C.5-5)
subjected to

nu=0 (C.5-6)

AERP (C.5-7)

ueRY (C.5-8)

C.6. Nonlinear Duality Theorem’”

Let w be a feasible solution to Problem C35, i.e. w € W € R™, g(w) <0, and

h(w) = 0. Also, let (4, u) be a feasible solution to Problem Dual(C5),i.e. = 0. Then

Objfcn(w) = sup [inf O(w, 4, u)] = inf 6(w, 4, w) (C.6-1)
Au=0 W w .

Since Yb_, Ah;(w) + Z?zl 1jgj(w) < 0 for all the feasible solution w, we have
ivrife(w, Ap) < igf Objfcn(w) < Objfcn(w) . In particular, igf Objfcn(w) =
Objfcn(w*), where w* is an optimal solution to Problem C5. Also note that

le Aihi(w*) + Z?:l I gj(w*) = 0 since KKT conditions are satisfied at w*. From

this, the minimum of Problem C5 at w* will be the same as the maximum of Problem

Dual(C5) at w*.

min Objfcn(w) = Objfen(w*) = sup [inf6(w, 4, u)] = 0(w", 2", ") (C.6-2)
w Apuz0 W '
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Appendix D. Solving Non-linear Programming Problems®®

Problem D
argyin Objfcn(w) (C.6-1)
subjected to
h(w) =0 (C.6-2)
gw) <0 (C.6-3)
weEW c R™ (C.6-4)

D.1. Sequential Quadratic Programming (SQP) Method

Recall the first-order necessary KKT conditions, eqs (D.1-1) to (D.1-4):

p q
VLW, 2%, 57) = Uy Objfen(w) + Y LiVhiW") + ) ii¥g;w) =0 (D.1-1)
i=1 =1

J

Vi, Lw*, A%, u*,s*) = h(w) =0 (D.1-2)
VLW 2,0, s") =g(w) +s"Os" =0 (D.1-3)
1 * * * * * *

EVSL(W,A,u,s)zu Os* =0 (D.1-4)

Sequential Quadratic Programming (SQP) employs the Newton method (or quasi-
Newton method, depending on the Hessian update scheme) to seek a solution
(w*, 2", 1", s*) satisfying the first-order necessary KKT conditions. To simplify the
formulation, let us introduce the variable ¥ and function F(Y) aseqs(D.1-5)and (D.1-

6), respectively.
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Ir[w]mxl-l
_ [A]pxl
V= | o -3

[S]qxl

V wlM)]mx1
[R(N)]px1
F(Y) = | [9(0) +5 O Sl (D.1-6)
| [2Oslpa

From egs (D.1-1) to (D.1-4), F(Y*) = 0 at an optimal solution ¥*. The Newton

iteration scheme is formulated as follows:

[WWF(Y)IAY = [VyF(Y)](Yiyq — Yy) = —F(Yy) (D.1-7)

Here, AY; = (Y341 —Yr). Yis1 is the feasible solution obtained from at the
(k+1)-th iteration, determined based on the function value F(Y,) and gradients
VyF(Y,) at the previous solution Yj. In particular, the gradients VyF(Y}) take the

form:

B C
[V, F(Y,)] = (ml;rp+q)><(m+p+q) (mEp+q)xq] (D.1-8)
gx(m+p+q) axq
The matrices B, C, D, and E are:
[VWVWL(Yk)]me [th(yk)]mxp [vwg(yk)]qu
B=| [Vwh@I" . 0 0 (D.1-9)
Vwg VI e 0 0
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0

C = o] (D.1-10)
2S

D=[0o o0 s"I] (D.1-11)

E=[u"I] (D.1-12)

Here, I denotes the identity matrix. Iterations proceed from Y, = ¥Y,,1 via eq
(D.1-7) continue until F(Yj,1) = 0 is satisfied. Alternatively, Problem D can be
reformulated into a sequence of a sequence of quadratic programming (QP) Problem D1

by linearizing of constraints.>*>

Problem D1 (Quadratic programming with linearized constraints)

1
argmin Ob]fcn(wk) + [VWOb]fCTl(Wk)]d + E dT[VWVWL(Wk)]AWk (D1—13)
Awy,
subjected to
gwy) + [Vug(wi)]Aw, < 0 (D.1-15)
Aw, € W € R™ (D.1-16)

From Lagrange multiplier formulation (eq (D.1-17)), one of the first-order necessary
KKT conditions for Problem D1 is eq (D.1-18), and it is equivalent to the first m rows of
[VyF(Y})]AY . This condition justifies that Problem D can be solved iteratively by

solving Problem D1 at each newly traversed wy,.
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E(Awk' ;{! ﬁ) = Objfcn(wk) + [VwObjfcn(Wk)]d + %dT [VWVWL(Wk)]Awk

P
+ Z B [hi(wie) + [Vogh; W) ] Awy ]

i=1

(D.1-17)

q

+ 2 9, W) + [Vwg; (Wi Awy]
j=1

VdZ(AWk, I;, ﬁ;)

P q
= VwObjfen(wy) + [Vy VW L(wi)|Awy + z A Vhi(wy) + z 1Vwgjwi)  (D.1-18)
i=1 j=1

=0
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Appendix E. Generalized Benders Decomposition37’ gy 70

Problem E
ar%r‘l;in Objfcn(u,w) (D.1-1)
subjected to
h(uw)=0 (D.1-2)
guw) <0 (D.1-3)
ueuycz (D.1-4)
weW cR™ (D.1-5)

E.1. Problem Projection

Problem E can be transformed into a u-space Problem Ey:

Problem E,
argtrpin v(u) (E.1-1)
subjected to
uev (E.1-2)
with V = {u |h(u,w) = 0, g(u,w) < 0 for somew € W}

Here, v(u) is named Problem Dual(Ey), signifying that it is the dual problem (see

section C.5) of Problem E,. Problem Dual(Ey) is a nonlinear programming problem where

w is the variable to be optimized and u is fixed at some value. This dual problem is

presented in the next section.
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E.2.  Dual Problems of the Projected Problems

Problem Dual(Eu)
v(u) = ingbjfcn(u, w) (E2-1)
subjected to
h(uw)=0 (E.2-2)
guw) <0 (E.2-3)
weW cR™ (E.2-4)

Formulate the dual problem of Problem Dual(Eu), denoted as Problem Dual*(Eu),

with u still fixed at the same wvalue. Let 6(u,w,4,u) = Objfcen(u,w) +

P A (u,w) + 2?=1 uigi(u,w).

Problem Dual*(Ey)
ASLIS) [igf O(u,w, A, n)] (E.2-5)
subjected to
p=0 (E.2-6)
uev (E.2-7)
AERP (E.2-8)
p € RY (E.2-9)

E.3. Formulation of GBD Form

Substituting Problem Dual®(Eu) back to Problem Ey, we have Problem GBD(E):

Problem GBD(E)
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sup [inf O(u,w, A, u)]l

argmin
Au=0*-w

u
subjected to
uev
u=0
AERP
u € R?

with V = {u |h(u,w) = 0, g(u,w) < 0 for somew € W}

(E.3-1)

(E.3-2)
(E.3-3)
(E.3-4)

(E.3-5)

Let @ = sup [inf O(u,w, A, u)] < infObjfcn(u,w) be a lower bound of Problem
w w

Au=0

E under the condition that u is fixed. Reformulate Problem GBD(E):

Problem GBD(E)-M-INLP(w,) (GBD master problem, integer nonlinear programming)

argmin o
ua

subjected to

a > infO(u,w, 4, u)
w

uev
u=0
AER?
u € R?

with V = {u |h(u,w) = 0,g(u,w) < 0 for somew € W}

(E.3-6)

(E.3-7)

(E.3-8)
(E.3-9)
(E.3-10)

(E.3-11)

Note that the inf 6(u,w, 4, ) in eq (E.3-7) represents Problem Dual(Eu), since
w
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infO(u,w, A, u) characterizes the lower bound of infObjfcn(u,w) in Problem
w w

Dual(Eu). This problem is also called the Problem GBD(E)-P-NLP(u).

Problem GBD(E)-P-NLP(u) (GBD primal problem, nonlinear programming)

v(u) = ingbjfcn(u, w) (E.3-12)
subjected to

h(u,w) = 0 (E.3-13)
glu,w) <0 (E.3-14)
weEW cR" (E.3-15)

E.4. GBD Algorithm

Step 1: Guess initial point u4, solve nonlinear programing problem Problem GBD(E)-

P-NLP(u) (i.e. Problem Dual(Eu), v(uq)). Obtain an optimal (or near-optimal) primal

solution w4 as well as the multiplier vectors (44, (1) Set the counter k = 1 if feasible,

r =1 if infeasible, and current upper bound Z; = v(uy) = infObjfcn(uy, w) of
w

Problem GBD(E)-P-NLP(u). Set the convergence tolerance € > 0.

Step 2: Solve Problem GBD(E)-M-INLP(w;), with w fixedateach w;, t =1,...,k.In

particular, a should be large than the value of Lagrangian for all the points of (w, 4, u)

that have been tried.

az= 0(u,wg, A, u,), foreveryt =1,..,k (E.4-1)

In addition, all the w’s that have been tried need to fulfill the requirements of V.
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Vw,witht =1, ..,r, QueV (E.4-2)

Let ( u*,a* ) be the optimal solution. Z;, =a* = sup inf@(u,w,l,u)]g
Appez0 LWt

infObjfen(u,w) is a lower bound of the Problem E. If Z; + € > Z;, terminate
w

iterations.

Step 3: Solve nonlinear programing problem Problem GBD(E)-P-NLP(u) with u fixed

at u* (i.e. Problem Dual(Eu), v(u*)). One of the following scenarios must occur:

(D) Z; =v(W") =infObjfcn(u*,w) is finite with an optimal solution (w*, A", u*). If
w

Z; + € = Zj;, terminate the iterations. Otherwise, set k = k + 1, w, = w" and u;, =

u'. If Z;; < Zy, set Zy = Zj;. Return to Step 2.

(IT) Problem v(u*) = infObjfcn(u*,w) is infeasible for u = u*. This means that
w

(w*, A%, u*) fails to fulfill the requirements of V at u*. Add (w*, A%, u*) into the
consideration in V, so in next iterations u is determined based w* on suchthat u € V.

Set r=r+1, w, =w", 4, =24% and u, = pu*. Return to Step 2.
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Appendix F. Theories of Some Al-based Generative Models

F.1. Neuron and Neural Network (NN)

A neural network (NN) consists of multiple layers of neurons, as illustrated by
Figure F1. Each of the neuron can receive input data x and transform them into an
output y through mathematical operations. Specifically, each input data x; in x is
associated with a weight W, in the neuron. Based on these weights and a bias b, all the
input data are lumped into a linear combination form X, as presented in eq. (F.1-1). Then,
the X is encoded by a non-linear activation function y = o(X) such as sigmoid
function, as presented in eq. (F.1-2). The purpose of activation function is to normalize
the X such that the output y is within desirable upper and lower bounds. Finally, the
output y serves as the input for the next-layer neurons. It should be noted that the non-
linearity of activation function plays a significant role in strengthening the applicability
of NNs. With that non-linearity, the NN will be a universal approximator for functions,

as stated in universal approximation theorem.*®

n
X=Wx+b=hb+ Z Wix; (F.1-1)
i=1
o) = — F.1-2
Y=o exp(=X) (F.1-2)

In the training process of a NN model, the optimizer iteratively adjusts the weights
and bias of each neuron such that the network can reproduce the input-output relation of
the training data. This is typically achieved by gradient-based minimization of loss

function L(y(x); 0), where 0 denotes all the adjustable weights and biases in the NN.
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There are many gradient-based algorithms for updating the parameters. For example, the
newton’s method is one of the simplest algorithms based on the first-order and second-

order derivatives (i.e. Hessian matrix H) of loss function.**’

AO = —H 1V, L(y(x);0) (F.1-3)

Since the gradients with respect to the parameters of layer j (i.e. ngL) depend on
the parameters of all its succeeding layers (i.e. 0j;), it is much efficient to calculate

gradients starting with the output layer and ending up with the input layer. This is known

as the back-propagation algorithm.*% 3%
Input Hidden Output
layer layers layer

Inputs x Ya

Neuron—--

Outputs y

Figure F1. The schematic diagram of a fully-connected neural network.
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Neuron: the unit of neural networks

o P
Inputs Weights Bias
xl —
e.g. sigmoid
xz —
Output
> Yy
.X3 —
. Summation Activation
. function function
X =YW,x,b) y=0d(X)
xn —
\ y

Figure F2. The components of a neuron: weights, bias and activation function.

F.2.  RNN-based Chemical Semantic Model

Recurrent neural networks (RNNs) are a family of neural networks specialized for
processing a sequential data. They are widely used in the context generation in response
to input texts, as known as the sequence-to-sequence tasks. The applications of RNN

400, 401 "' machine translation, chatbot, and

models include natural language processing
musical composition**2. An RNN network is composed of one or multiple unit. There are
two common units: long short-term memory units (LSTMs) and gated recurrent units
(GRUs)*”- 403 As shown by Figure F3, either type of the units has a past-memory cell
(LSTM: c; GRU: h), a new-memory cell (LSTM: & GRU: h), and several gates (LSTM:
i, o, and f; GRU: r and z). The overall hidden state of an RNN, denoted as h,,

depends on the information stored in memory cells and the states of gates within each

unit. The operation of an RNN can be illustrated by Figure F4. When the RNN is
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operating in free-running mode, or inference mode, it can be conceptualized as being
unfolded into a sequence of time steps that it has processed. In this scenario, the output
token generated in each time step serves as the input token for the subsequent time step.

In the training process, a non-numerical sequential data § is decomposed into T
tokens [sq,S3,...,S ..., Sp] before fed into an RNN, and the unique tokens are stored

into a library. Each token s; in the library is associated with a unique numerical feature

401, 404

vector e; through entity embedding or one-hot encoding?®®4°!, Based on this, the

tokenized data [sq,S,,...,S¢ ..., Sp] is transformed into a feature vector form
e, ez, ..., € ...,er] . Instead of token s,, it is the feature vector e; that the
mathematical operations in the RNN are conducted to. When a feature vector e; is
inputted to a unit, the state of gates will update through eq. (F.2-1) to (F.2-3), eq. (F.2—
7), and eq. (F.2—8). Subsequently, the feature vector e; is encoded into the new-memory
cell through eq. (F.2—4) and eq. (F.2-9). Then, the contents in the past-memory cell are
mixed with the those in the new-memory cell, thereby forming the hidden state h,, as

illustrated by eq. (F.2-5), eq. (F.2—6), and eq. (F.2-10).

® Long short-term memory unit (LSTM):

o,=cW,e, +U,h,_y +V,c, +b,) (F.2-1)
fe=0(Wsre,+ Ushy_y +Vsc,_q + by) (F.2-2)
ii=c(W,e, +Uhy_y+Vc,_1+ b)) (F.2-3)
¢; =tanh(W.e, + U.h,_; + b,) (F.2—4)
=[O 1+i;OFC; (F.2-5)
h; = o; © tanh(c,) (F.2-06)

where o is the activation functions for the gates. i;, 0,,and f; are the states of “input”,

“output”, and “forget” gates, respectively. The subscript # denotes time step. W,, Wy,
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W; W U,, Us, U;, U, V,, Vg, and V;, are the weights. h; is the hidden state. O

is the entry-wise multiplication operator.

® Gated recurrent unit (GRU):

r.=ocW,e,+U,h;_q +b,) (F.2-7)
z,=oc(W,e, +U,h;_1+b,) (F.2-8)
h, = tanh[We, + U,(r; © hy_1) + by] (F.2-9)
hh=1-2z)0Oh,_1+2z,0h, (F.2-10)

where o is the activation functions for the gates. r; and z, are the states of “reset” and
“update” gates, respectively. W,., W,, W, U,, U,, and U are the weights. h; is the
hidden state. (© 1is the entry-wise multiplication operator, as known as Hadamard

product.

Finally, as presented in eq. (F.2-12), a softmax layer is used to compute the
probability distribution p; = p(h; 0) = [Pe1, P2y -, Pen] for classifying the h, as a
certain feature vector in the [eq, ey, ...,ey], where N is the total number of unique
tokens in the library, and @ represents all of the involved weights and bias. Based on the
probability distribution p,, a feature vector is sampled from the library as the output
e;.1, whose corresponding token s;,q can be determined from the token-embedding

relations established before, as presented in eq. (F.2—13).

a,=Wih;+ b, = Wy h; + bsy; ...; Weyhy + by | (F.2-11)
exp(a,)
Pe = p(h ,9) = F.2-12
¢ ¢ ;-Vzl exp(Wsjht + by;) ( )
St+1 < Pt (F.2-13)
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* Long short-term memory unit * Gated recurrent unit

v

(LSTM) i (GRU)
et h St E et _ St
f '| \ % \
c E A
i } E T
f | r
i z
0 |
tanh % E .
a i
. J ! \ J

Figure F3. Two types of RNN units: LSTM and GRU. s, is the input token, e, is the
feature vector for s;, p; is the probability distribution for library tokens, e;,, is the
feature vector for the output token sampled from p;, and s;,; is the output token. ¢
and h are past-memory cells, ¢ and h are new-memory cells, i, f, o, r,and z are

gates, and a is softmax layer for classification.**
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Figure F4. The free-running mode of an RNN in a context-generating task.

Given that the training process is meant to reproduce the training data § =

[s1, 82, .-, St -, ST], the conditional probability for generating the expected contexts is
used to defined as loss function for the RNN. As shown by eq. (F.2—14), the minimization

of the loss function Lgzyy 1s equivalent to maximizing the probability to generate S

from s;.

T
(F.2-14)

Lpyy = —log[p(S; 0)] = _Zt_llog[p(stlst_l' e, S1;0)]

The work by M. Olivecrona et al. (2017)?° and M. H. S. Segler et al. (2018)*”” are
two examples for applying RNN to computational molecular design. Their framework of
RNN-based molecular design is depicted in Figure 6.1-1. In their work, the molecular
structures are represented by language-like SMILES (Simplified Molecular-Input Line-

Entry System) strings.”* The semantic significance of a SMILES string relies on the
correct arrangements of constituent characters under the grammatical rules.”* For
instances, “C(C(0))” is ethanol, “C(O(C))” is diethyl ether, and “C(C(C)” is an invalid
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SMILES string since the left and right round brackets need to be paired for the closure of
a chain. To construct a syntactic model capable of generating valid SMILES strings, both
research groups gathered approximately 1.5 million SMILES strings from the ChEMBL
database. These samples were then utilized to train an LSTM-based RNN model. In the
training process the RNN parameters @ are optimized such that the learning loss reached
its minimum value. Subsequently, the trained RNN model served as a generative model
for producing new molecules. To ensure the validity of the newly generated SMILES
strings, RDKit parsing was employed for examination. Valid SMILES strings were then
subjected to property models. The valid chemical species, along with their associated
properties, were appended to the training data. Then, a subset of the expanded training
data, comprising molecules exhibiting optimal performance properties, was used to
retrain the RNN model. This technique, referred to as transfer learning, aimed to enhance
the model's specialization for particular specifications in the molecular design task. The
iterative process of retraining the model and generating new molecular species is
performed until a chemical candidate satisfying the property specifications is identified.
Regarding the performance evaluation of their RNN model, approximately 94% to
98% of the generated SMILES strings are valid. Furthermore, approximately 90% of
these valid SMILES strings fall outside the scope of the training data, highlighting the
model's ability to generate novel chemical structures. Additionally, about 89% of the valid
SMILES strings correspond to unique chemical species. Despite of these promising
metrics, there are several limitations on the applicability of RNN. Firstly, it is important
to note that, due to architectural nature, training or running an RNN model can demand
much higher computational resources (e.g. memory bandwidth) compared to
convolutional and linear neural network layers.*”® Secondly, it may be difficult to train

LSTM-based and GRU-based RNN models due to the problem of exploding gradients.*%
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407 This problem is caused by the dynamical behavior of serial mathematical operations
by NN layers. Take LSTM-based RNN as the example. To see this issue, let us write down
the gradients of Lgyy(isTmy With respect to a particular weight W in the neural network,
as presented in eq. (F.2—15).4%® In this equation, a, is referred to eq. (F.2-11), and h; is

referred to eq. (F.2-6) .

Vo s B ZT 0log[p(s;|S¢-1, -, S1)] 0a, 0h, dc; Ocq
W™RNN(LSTM) = =1 da, dh, dc, dc, OW

(F.2-15)

In particular, the chain rule in eq. (F.2—15) involves the derivatives of memory states
from the time step 1 to t, as explicitly expressed by eq. (F.2—16). Substituting the
variables in eq. (F.2—16) with eq. (F.2-2), eq. (F.2-3), and eq. (F.2-5) results in the full

expression, as shown by eq. (F.2—17).

dc, dc; 0c,_q 0Jcy

= F.2-1
acl aCt_1 act_z acl ( 6)
dc t
B_Ci - Hk=2 [Fic+ Vylo'(Wyew+ Uphyes +Vyeros + by) O ca]
(F.2-17)

+Vilo'(Wiex + Uihy_y +Vicy_1 + by) O Z‘k]]

It should be noted that the activation function o is specified by user before training
and its mathematical form remains unchanged during the training process. Therefore, it
is relatively easy to regulate the derivative of activation function ¢’ and the state of
forget gate f) to avoid the exploding gradients. However, the optimal V; and V; are
undetermined until the training finishes successfully, hence they are typically the

predominant factors in eq. (F.2—17), especially when t > 1. Suppose V; term is more
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predominant than V term, then we have eq. (F.2—18).%% %

||6ct
acl

t
~ nk_zllvi””diag(o"(wiek +Uihy_q +Vicke1 +b) Ol (F2-18)

From eq. (F.2-2) and eq. (F.2-5), we know that V; wouldbea n X n square matrix
if both the ¢ vector and ¢ vector have dimension of n. The eigenvalues 44 = 1, >
-+ >, and the corresponding eigenvectors qq,qz,...,q, of matrix V; can be

obtained through eigen-decomposition**® 407,

V;=QDQ™" (F.2-19)
D = diag(Ay, A3, ..., 1) (F.2-20)
Q =1[q1.92 -, qn] (F.2-21)

If the largest eigenvalue A, is smaller than 1, the derivatives of memory states, i.e.

eq. (F.2-16), will vanish. Consequently, the gradient of loss function Vi Lpyysrary and

parameter update A@ also vanish based on eq. (F.2—15) and eq. (F.1-3) respectively. As
the reset gate r; in GRU and the forget gate f; in LSTM (see eq. (F.2-17)) will
contribute to the derivatives of memory states, both units are usually free from the
problem of vanishing gradients*’7- 408

On the other hand, if the value of A4, is greater than 1, the derivatives of memory
states will explode. Consequently, the gradient of loss function Vy Lgyysrmy and
parameter update A@ also explode. Additional mechanisms need to be employed for

improvement, though they would increase the architectural and technical complexity of

the model.*?”-4%° For example, the “teacher forcing” technique suggests that the exploding

237
doi:10.6342/NTU202403528



gradients in the training process can be prevented by always using the ground-truth token

as the input for the next time step®® **> #1° It has been found that the RNN-based

molecular design without “teacher forcing” would generate nearly 0% valid SMILES

strings.>*

* Free-running mode * Teacher forcing mode (training)
The ground-truth token serves as

The output token of the previous time
the input for current time step.

step serves as the input for current

time step.

» are boys are

Many x birds

¥ ¥

1
[
]
[}
1
1
1
]
1
1
1
]
]

ey e,
»
P1 ',":I P2 P2 Pe—1
biiis *'/ a‘rve "/l flying a‘rve runting

Figure F5. Comparison between the free-running mode and the teacher forcing mode of

RNN.

F.3. VAE-based Latent Variable Model

Plain autoencoders (AEs) and variational autoencoders (VAEs) are devised to
represent a high-dimension data by a lower-dimension vector, thereby compressing the
data into a more compact format. These autoencoders have been proven to be useful in

tasks such as translation, drug design, and image processing. The architectures for the two

types of autoencoders are shown by Figure F6.
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» Autoencoder (AE):

Latent space

Encoder V Decoder
neural @ m—————)  peural
network network
« Variational autoencoder (VAE):
Latent space
Encoder =P pu F z Decoder
neural @ el neural
network == g network
Pe<N(w;01)
z=u+o00O7v

Figure F6. The architectures of plain autoencoders (AEs) and variational autoencoders

(VAEs)

Both types of the autoencoders consists of an encoder and a decoder, each of which
is a neural network. The encoder extracts the feature patterns of the input data and maps
them to a relatively low-dimension vector space called latent space. The decoder recovers
a data to its original format from the limited features recorded in its latent space
representation. The primary mechanistic distinction between the two types of
autoencoders lies in their respective approaches to determining the latent space
representation. The VAEs map an encoder output to the mean value pu = [y, ..., ;) - |
and the standard deviation o = [gy, ..., 0;,..] of a multi-dimensional normal distribution,
i.e. eq. (F.3—-1). In other words, VAEs encode each input data point into a probability

distribution, thus exhibiting stochastic features. In contrast, plain AEs directly map an
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encoder output to a single fixed point in the latent space, making them deterministic in

nature.

1 /z; — pui\?
N (z;; iy 0f) = . exp [—E( l 'ul) l (F.3-1)

In VAEs, the latent space representation of, denoted as z = [zy,...,%;, ...], 18
determined by sampling from a modified distribution rather than eq. (F.3—1). In practice,
the values sampled by VAEs are actually standard scores v;, as depicted in eq. (F.3-2).
Moreover, the normal distribution of eq. (F.3—1) is approximated by the standard normal
distribution NV (v;; 0,1), as demonstrated in eq. (F.3-3).

The sampling process involves two steps. Firstly, a standard score ¥; is sampled
from N(v;0,1) , as illustrated by eq. (F.3-4). Next, multi-dimensional ¥ =
[D1, ..., Dj, ... ] are transformed into z using eq. (F.3-2), which can be rewritten as a
concise vector form using the entry-wise multiplication operator “(D”, as presented by eq.
(F.3-5). The approximation by eq. (F.3-3) decouples v; from pre-exponential g; and
facilitates the update of neural network parameters during the backpropagation step,
wherein the gradients of the loss function with respect to u and o, i.e. V,Ly 4 and
V,Ly 4, are computed. Since in eq. (F.3-5) the stochastic nature is factored out into the
VU term, the two aforementioned gradients become clearly-defined and computable as ¥

is treated as a constant per sample.*!!

Z; — U
v =M (F.3-2)
l
N(U" . 0-2) = 1 ex —v—lz :M'\*N(UO].) (F3—3)
l'uul’ 1 O'i\/ﬁ p 2 o_i 1Y .
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ﬁi &« N(vi; 0,1) (F3—4)

z=u+oQOv (F.3-5)

In training step, the optimizer seeks the best model parameters by minimization of
loss function. Therefore, the distinction between plain AEs and VAEs also characterized
by their loss function. Let x be the input data, D be the decoder function, £ be the
encoder function, KL be the Kullback-Leibler divergence, N (v; u, %) be the multi-
dimensional normal distribution, and z be the latent space representation for a data in
VAE. Then, the loss function for AEs is written as eq. (F.3—6), and the loss function for

VAEs is written as eq. (F.3-7).

Lag = |x —D(EM))I? (F.3-6)

Lyas = 1% = D@)|? + KLV (03 0, 1), N (v; pt, 02)] (F3-7)
v;—>®© . 2

KLV (v;0,1), N (v; t, 62)] = — j N(v;0,1) 1n%dv (F.3-8)

Both of the loss functions have a reconstruction loss as their first term in the right-
hand side, which characterizes the reconstruction rate of an autoencoder, i.e. the success
rate to restore input data x after it goes through encoder, latent space, and decoder. The
loss function of VAEs have an extra KL divergence term, which is a measure for the
dissimilarity between two probability distributions, as shown by eq. (F.3-8). By
incorporating the KL divergence term in the loss function, the learning process
encourages N (v; u,0%) to be progressively asymptotic to N (;0,1) during the
learning steps. Consequently, VAEs can form a relatively small-range and compact

distribution around the origin of latent space, as demonstrated by Figure F7.4!!
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Figure F7. A typical latent space distribution for variational autoencoders (VAEs).*!!

On the other hand, it has been pointed out that plain AEs may encounter robustness
issues when used as generative models. For a plain AE, the heterogeneous training data
tend to form different large-scale sparse clusters in the latent space, as demonstrated by
Figure F8.*!! As the plain AE-based generative models rely on the sampling in latent

space for new data, the unpopulated region in latent space can result in ineligible data.
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Figure F8. A typical latent space distribution for plain autoencoders (AEs).*!!

R. Gémez-Bombarelli et al. (2018)?%! and S. Mohammadi et al. (2019)* are two
pioneering works that utilize the VAEs for molecular design. As illustrated by Figure
6.1-2, the typical architecture of VAE-based molecular design consists of a VAE and
neural-network based (NN-based) property models. Their training data for the VAE are
chemical structures in SMILES’* format. In the training process, one feeds a vast number
of chemical structures to encoder and requires the decoder to reconstruct those structures
from their latent space representation. Meanwhile, the KL divergence term in the loss
function helps the encoder to create relatively continuous and smooth clusters in latent
space. As a chemical structure is encoded into a point in latent space, new chemical
species can be generated by a sampling of new points or a redistribution of existing points
in the latent space. These new points are then sent to NN-based QSPR models for

prediction of properties, and outputted into readable chemical structures by the decoder.

243 doi:10.6342/NTU202403528



F.4. Transformer Architecture with Self-Attention Mechanism

280,311 into

The integration of transformer architecture with self-attention mechanisms
VAE- and RNN-based generative models has significantly improved model performance.
Notably, chemical validity and reconstruction rates have been elevated to 98-99.9%,280: 284
291,312 "and chemical novelty and uniqueness have surpassed 80%2%" 284,

Key advantages of transformers over RNNs lie in the self-attention mechanism and
the presence of multiple “attention heads”. Attention heads capture different semantic
aspects of the input sequence, enabling the model to capture comprehensive information.
The self-attention mechanism effectively addresses the long-range dependency problem
inherent in RNNs, where correlations between distant tokens often diminish during
training due to the vanishing gradient issue (section F.2). The self-attention mechanism
transforms the input embedding matrix E,, into query Q;. key K;, and value V;

matrices. These matrices are subsequently employed to compute attention scores for each

head, head;. The heads are concatenated to determine the next output token.

E,, =[aq;ay; ...;a,,] (F.4-1)
E, = [by; by; ...; b,] (F.4-2)
Vi=[visv0i 5 Vmi] = EmWY (F.4-3)
K; = [kyi ki s kmi] = EnWE (F.4—4)
Qi =915 925 3 9] = EtW? (F.4-5)

. QK] + M
head; = attention(Q;, K;,V;; d;,) = softmax T V; (F.4-6)
k
0, = [04; 03; ...; 0,] = horizontal_concat(heady, ..., head,)W? (F.4-7)
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Figure F9. Transformer-based VAE: training mode.
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Figure F10. Transformer-based VAE: free running mode.
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