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中文摘要 

本文分為三部分。第一部分闡述電腦輔助分子設計（computer-aided molecular 

design, CAMD）之概念框架，以及其能如何幫助特用化學品的早期研發。傳統上，

特用化學品的研發主要依賴研究人員對問題的經驗，依其化學直覺（chemical 

intuition）反覆地進行試誤性（trial-and-error）實驗合成與鑑定。由於新課題常與研

究員過去經驗有一定差距，在早期研發階段研究方向不明確時，常因冗餘的試驗而

造成人力、物力、財力的浪費。電腦輔助分子設計即是想透過電算的方式作為輔助，

以改善研發效率。此技術能讓研究者預先得知一小批候選化學物，再鎖定此範圍進

行合成與鑑定。在本研究中，我們建立了原子級精細度的電腦輔助分子設計程序。

使用者只須給定物化性規格，即可透過最佳化演算法與迭代來設計符合條件的分

子。分子設計程序由三要件組成：MARS+分子資料結構（molecular data structure, 

MDS）、性質預測模型方法、在化學空間（chemical space）搜尋新分子之演算法。 

在分子資料結構部分，我們以數學上的圖（graph）來表示一個分子結構。我

們預定義了常見原子與一些基團，並指明它們可用的價鍵種類與數目，作為基本元

素庫（base element library）。一給定的分子結構轉換成MARS+資料結構時，其組

成原子會被解析為我們預定義的基本元素，並透過八個只包含零與正整數的陣列

與兩個字串陣列來描述它們之間的鍵結狀況。其中，元素編號陣列（element indices 

array）與母元素編號陣列（parent indices array）決定分子內各元素間相對連接關係，

鍵級陣列（bond order array）描述上述連接關係之鍵級。元素型別陣列（element type 

array）記錄各組成原子的種類。元素的異構性（isomerism）則由手性標記陣列

（chirality flag array）與兩個順反標記陣列（cis-trans flag array）標示。環號標記陣

列（cyclic flag array）與成環鍵結陣列（cyclic bond order array）紀錄分子中之環狀

結構。 

在性質預測方面，我們基於量化計算軟體，可以算得物質的光電性質，例如

HOMO-LUMO能隙、絕熱游離能（adiabatic ionization potential）、絕熱電子親和力

（adiabatic electron affinity），垂直游離能（vertical ionization potential）、垂直電子

親和力（adiabatic electron affinity）、化學硬度（chemical hardness）、親電性指標

（electrophilicity index）。此外，也可進行 COSMO溶合計算，得到分子於溶劑中產
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生之屏蔽電荷（screening charge），並輸入至 COSMO-SAC 模型計算活性係數

（activity coefficient），應用於相平衡計算。 

在搜尋新分子之演算法方面，我們以基因演算法（genetic algorithm, GA）為基

底，來對存於MARS+資料結構中的分子結構做修飾，以產生新分子。其模式主要

分為添加（addition）、減去（subtraction）、插入（insertion）、元素改變（element change）、

鍵級改變（bond change）、成環（cyclization）、開環（decyclization）、手性反轉（chirality 

inversion）、順反異構性反轉（cis-trans inversion）、片段交換（crossover）、接合

（combination）、成分交換（component switch）。產生的新分子會先進行物化性之

計算，並依照適應度函數（fitness function），賦予接近物化性規格要求者較高的適

應度（fitness）。最後，以天擇演算法（selection algorithm）決定新分子何者可留存

至下一迭代。本研究建立的天擇演算法包含輪轉法（roulette wheel, RW）、模擬退

火（simulated annealing, SA）、適應度蒙地卡羅（fitness Monte Carlo, FMC）、非支

配排序演算法（non-dominated sorting, NS）。反覆進行「基因演算法-性質預測-天擇

演算法」迭代，即可逐步設計出接近物化性規格要求之分子。 

本作第二部分以設計新型離子液體作為二氧化碳吸附劑作為範例，展示我們

自建的分子設計能因應任務特異性（task-specific）進行設計。在此部份我們使用

COSMO-SAC 模型預測二氧化碳於離子液體的物理吸附溶解度。為了驗證模型的

準確度，我們蒐集了 96種離子液體共 4537筆實驗數據，並比對其與 COSMO-SAC

模型預測結果的一致性，結果顯示其精確度足夠作為定性或半定量之用。設計出的

3500種離子液體，有 80 %其碳捕捉的表現與已被文獻報告者相當，而有少數比已

知離子液體好許多。分子設計的結果顯示若要將二氧化碳溶解度提高，則離子液體

的陰離子基團需要限縮至氟、氯、溴、碘，或者氫氧根離子。 

本作第三部分使用 GuacaMol 與 MolOpt 兩套基準套件（benchmark suite）平

臺來比較 MARS+與其他生成式模型用於有機分子設計任務時的表現差異。

GuacaMol 平臺主要評估效度（effectiveness），亦即足夠長的迭代數下，生成式模

型能否達成目標。而 MolOpt 平臺主要評估效率（efficiency），亦即制定非常有限

的化學物產生數額度，觀察在額度內所產生的化學物之優選性（optimality）。在

GuacaMol 平臺的比較結果顯示 MARS+的表現位列第二，僅次於 GRAPH_GA 模

型。在多數任務中，MARS+和 GRAPH_GA 表現相匹敵，但在搜尋結構異構物
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（constitutional isomers）方面明顯比 GRAPH_GA 表現不好。MARS+的片段交換

（crossover）操作子經過泛化（generalization）後，可顯著提昇結構異構物的搜尋

能力，但同時也會大幅犧牲其在一些單目標任務（single-objective tasks）的表現。

在 MolOpt 平臺的比較結果顯示 MARS+的表現位列第三，僅次於第一的

REINVENT 模型與第二的 GRAPH_GA 模型。在多數任務中，MARS+和

GRAPH_GA 表現相匹敵，但在搜尋希樂葆（Celecoxib）藥物分子方面明顯比

GRAPH_GA表現不好。主因可能在於 GRAPH_GA有環片段交換（ring crossover）

操作子來確保操作前後環的數量未減少。 

在展望與未來工作方面主要有四點。第一點是運用 CAMD 於其他化學系統的

設計。一些化學系統的設計任務是現行的MARS+可以做到，或者僅須經由小幅度

修改程式即可做到。例如：藥物共晶（pharmaceutical cocrystals）、雙鹽類離子液體

（double-salt ionic liquids, DSILs）、深共熔溶劑（deep eutectic solvents, DESs）、光

電材料、生物巨分子、高分子聚合物等。第二點是進一步多樣化分子的操作機制在，

例如在MARS+增加環片段交換（ring crossover）操作子。第三點是將分子設計與

化工程序設計整合，形成整體的設計方法。第四點是定性比較 MARS+內的各種選

擇演算法（selection algorithm），以幫助我們進一步釐清這些演算法的行為。 
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Abstract 

This work is divided into three parts. The first part elucidates the conceptual 

framework of Computer-Aided Molecular Design (CAMD) and its potential to facilitate 

the early-stage development of specialty chemicals. Traditionally, the development of 

specialty chemicals has primarily relied on researchers' experience, involving iterative 

synthesis and characterization. Given the frequent discrepancies between new challenges 

and researchers' past experiences, the early development phase often suffers from 

directionless experimentation, leading to a waste of manpower, materials, and financial 

resources. CAMD aims to enhance research efficiency by leveraging computational 

methods to pre-identify a small pool of candidate chemicals for targeted synthesis and 

characterization. In this study, we have established an atomically detailed CAMD 

procedure. Users can input the desired physicochemical properties, and the system 

employs optimization algorithms and iterative processes to design molecules that meet 

these criteria. The molecular design process comprises three key components: the 

MARS+ molecular data structure (MDS), property prediction models, and algorithms for 

searching new molecules in chemical space. 

In the molecular data structure component, we represent a molecular structure as a 

mathematical graph. We predefine common atoms and certain functional groups, 

specifying their available valence bonds and numbers as a base element library. When a 

given molecular structure is converted into the MARS+ data structure, its constituent 

atoms are parsed into our predefined basic elements. Their bonding status is described 

using eight arrays, containing only zeros and positive integers, along with two string 

arrays.  

For property prediction, we use quantum calculation software to compute the 

optoelectronic properties of substances, such as the HOMO-LUMO gap, adiabatic 
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ionization potential, adiabatic electron affinity, vertical ionization potential, vertical 

electron affinity, chemical hardness, and electrophilicity index. Additionally, COSMO 

solvation calculations are conducted to obtain the screening charge of molecules in 

solvents, which is then input into the COSMO-SAC model to calculate activity 

coefficients, applicable in phase equilibrium calculations. 

The algorithm for searching new molecules is based on the Genetic Algorithm (GA), 

which modifies molecular structures stored in the MARS+ data structure to generate new 

molecules. Newly generated molecules undergo physicochemical property calculations 

and are evaluated for fitness based on a fitness function, with those closely matching the 

desired specifications receiving higher fitness scores. Finally, a selection algorithm 

determines which new molecules advance to the next iteration. Our selection algorithms 

include Roulette Wheel (RW), Simulated Annealing (SA), Fitness Monte Carlo (FMC), 

and Non-dominated Sorting (NS). Repeated iterations of the "Genetic Algorithm - 

Property Prediction - Selection Algorithm" cycle progressively yield molecules that 

closely meet the specified physicochemical criteria. 

The second part of this work demonstrates the application of our molecular design 

framework to develop novel ionic liquids as CO2 adsorbents. In this section, we use the 

COSMO-SAC model to predict the physical absorption solubility of CO2 in ionic liquids. 

To validate the model's accuracy, we collected 4537 experimental data points for 96 ionic 

liquids and compared them with the COSMO-SAC model predictions. The results show 

sufficient accuracy for qualitative or semi-quantitative purposes. Among the 3500 

designed ionic liquids, 80% exhibited CO2 capture performance comparable to those 

reported in the literature, with a few significantly outperforming known ionic liquids. The 

design results suggest that enhancing CO2 solubility requires constraining the anionic 

groups of the ionic liquids to fluoride, chloride, bromide, iodide, or hydroxide ions. 
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In the third part of this study, we utilized the GuacaMol and MolOpt benchmark 

suites to assess the performance of MARS+ compared to other generative models in goal-

directed tasks. GuacaMol evaluates effectiveness, measuring how well property targets 

are achieved over a sufficient number of iterations. MolOpt evaluates efficiency, 

assessing the optimality of generated species within a limited number of iterations. In 

GuacaMol, MARS+ ranked 2nd, closely behind the GRAPH_GA model. In MolOpt, 

MARS+ ranked 3rd, following the REINVENT model (1st) and GRAPH_GA (2nd). 

Generalizing the crossover operator in MARS+ significantly enhances its capability to 

search for constitutional isomers, albeit at the cost of performance in single-objective 

tasks. The ring crossover operator in GRAPH_GA appears to be a significant factor 

contributing to performance differences between MARS+ and GRAPH_GA. 

There are four potential avenues for future research. First, extending CAMD 

applications to other chemical systems where current MARS+ capabilities suffice or 

require minor program modifications, such as pharmaceutical cocrystals, double-salt 

ionic liquids (DSILs), deep eutectic solvents (DESs), optoelectronic materials, 

biomolecules, and polymers. Second, further diversifying molecular operational 

mechanisms, including integrating a ring crossover operator into MARS+. Third, 

integrating molecular design with chemical process design to make the design tasks more 

realistic. Fourth, conducting qualitative comparisons of various selection algorithms 

within MARS+ to gain deeper insights into their behaviors. 

 

 

Keywords: Computer-aided molecular design, molecular representation, chemical 

screening, solvent, ionic liquid, carbon capture, comparisons among molecular generative 

models. 
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Chapter 1. Introduction 

 

1.1. Chemical Products and Innovations 

The chemical products can be roughly classified into three groups: fine chemicals, 

specialty chemicals, and commodities.1 Fine chemicals are high-purity substances 

manufactured in small quantities (approximately 1000 tons per year) and sold at premium 

prices (exceeding $10 per kilogram). High-purity electronic chemicals are examples for 

fine chemicals. In the semiconductor industry, hydrofluoric acid is widely used for 

cleaning or etching the wafer. If its purity does not meet the standard, the semiconductor 

product would suffer from contamination issues and yield losses. 

Commodities are produced in large volumes using highly standardized processes and 

sold at low prices (< $1/kg). Plastics, petrochemicals, fibers, monomers, and other basic 

chemicals (e.g. methanol, acetic acid, and sulfuric acid, etc.) are typical commodities. The 

wide range of commodities covers the needs from chemical manufacturers to end 

consumers. For instance, petrochemicals and monomers are important ingredients for 

midstream and downstream chemical manufacturers. Many plastic products are sold to 

end consumers, as we use them widely in our daily life. 

Specialty chemicals are typically mixtures of various commodities and fine 

chemicals, distinguished by their performance properties in specific applications. A 

formulated drug, with active pharmaceutical ingredients (APIs) derived from fine 

chemicals, serves as an example of a specialty chemical. In fact, it may not be feasible to 

draw a clear dividing line between commodities and specialty chemicals. It is suggested 

that a volume of 1000 tons/year and a price of $10/kg can be used as criteria, although 

this is somewhat arbitrary.1 On the other hand, whether a chemical is recognized by its 
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performance properties may not provide a clear dividing line between fine chemicals and 

specialty chemicals. In fact, a fine chemical might also be used for particular purposes if 

its performance properties meet the requirements. Especially, the performance properties 

of pure substances are often useful benchmarks in preliminary research and development 

(R&D) studies.  

When developing new organic compounds for use as semiconductor materials or 

optoelectronic materials, exciton binding energy may be the key property for determining 

their uses. Compounds with low exciton binding energy are relatively suitable for 

photovoltaic cell applications, while those with a larger exciton binding energy are 

suitable for light-emitting applications.2  

In the cracking process of the petrochemical industry, various products can form an 

azeotropic mixture under certain compositions. Since the vapor composition and the 

liquid composition are identical for an azeotrope at thermal equilibrium, simple 

distillation can no longer separate its components. A proper entrainer, which can be either 

a pure substance or a mixture, can be a solution to this problem. Adding it to the azeotrope 

can change the activity coefficients of components, leading to a variation of their relative 

volatility. As a result, several light components can be separated from the azeotrope in 

advance.3  

When designing the chemical formulation for a battery, the choice of proper 

additives for electrolytes can improve performance or safety. Many of the known 

additives are organic compounds (e.g. vinylene and maleimide derivatives), and they 

work based on their redox potential. For instance, some additives are able to form a film 

on the electrode after being reduced, which minimizes the resistance for charge transfer. 

A spontaneous reaction is anticipated when the redox potential of the additive exceeds 

that of the electrolyte. Additionally, an additive with high electrochemical reversibility 
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and a redox potential slightly higher than the cathode's maximum operating potential can 

offer overcharge protection.4 

Although both of specialty and fine chemicals are high-value, their market sizes are 

out of proportion. Fine chemicals only take up around 4% of the global chemical market, 

while the specialty chemical take up around 55%.1 Specialty chemicals provide much 

more value-added opportunities than fine chemicals in terms of the concept of chemical 

space (elaborated in section 1.2). The full chemical space refers to the set that contains 

all the theoretically possible chemicals. Fine chemicals are represented by a subset mostly 

composed of pure substances, whereas specialty chemicals are represented by a subset 

mostly composed of mixtures. The specialty chemicals have a wider coverage of the 

chemical space than fine chemicals due to the variety of chemical compositions. It turns 

out that specialty chemicals are often the focus of chemical innovations.  

In recent years, the development of novel specialty chemicals, functional materials, 

and drugs has gained increasing importance for the chemical industry, as evidenced by 

the growing global revenue in these sectors.5 Aside from commercial considerations, 

these innovations hold significant promise as solutions to some of humanity's most 

pressing challenges in the 21st century. These include the discovery of medicines to 

combat pandemics6, the development of efficient energy storage materials7, and 

advancements in carbon capture and storage technologies8. Historically, the research and 

development (R&D) of novel specialty chemicals has heavily relied on researchers' 

expertise and existing chemical databases. To identify potential chemical candidates with 

desired performance characteristics, researchers traditionally employed a trial-and-error 

approach based on experience and chemical intuition. While conceptually straightforward, 

this methodology suffers from significant drawbacks. It is inherently time-consuming and 

labor-intensive, with efficiency often hampered by unclear strategic direction, budgetary 
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constraints, and limitations in domain-specific knowledge. The lengthy 

commercialization process for new specialty chemicals further underscores the 

inefficiency of this traditional approach. Literature suggests timelines ranging from 6 to 

20 years9, 10, with product and technology development itself consuming 4 to 15 years9, 

10. 

 

1.2. Molecular Databases and Chemical Space 

Molecular structure and property databases (summarized in Table A1) play a crucial 

role in screening chemical candidates and constructing correlative models to understand 

structure-property relationships. They can serve as a knowledge source complementing 

the researcher’s experience. Based on the molecular properties provided in the databases, 

one may pre-screen a set of chemicals and use them as chemical candidates or as the 

precursors for formulating novel mixtures. However, access to some large molecular 

databases may require a license fee. For instance, LOLI database11 and Beilstein 

database12 fall under this category. LOLI database provides the regulatory data (e.g. 

toxicological and pharmacological data) of more than 600 thousand species. Beilstein 

database contains 9.8 million substances and 10.3 million chemical reactions. On the 

other hand, ChemSpider13 and PubChem14 are free of charge. ChemSpider covers 123 

million chemical structures, and PubChem contains 115 million validated compounds. 

PubChem database also provides thermal chemical properties (e.g. vapor pressure, 

Henry’s law constant, heat of vaporization) for many chemical species.  

In general, most of the large molecular databases, such as those named above, offer 

relatively complete information of experimental density, boiling point, melting point. As 

for other properties, one might need to consult a specialized database. For example, the 

GDB database15-18, covering around 167 billion organic molecules, is specialized for 
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providing ab-initio calculation results of electronic properties, such as the lowest 

unoccupied orbital (LUMO), the highest occupied orbital (HOMO), dipole moment. The 

Dortmund databank19, 20 provides many types of thermodynamic experimental data, 

including vapor-liquid equilibrium (VLE) data for about 44,000 mixtures and the liquid-

liquid equilibrium (LLE) data for about 41,000 mixtures. However, it is essential to 

recognize that these existing databases likely represent only a small fraction of the vast 

chemical space and the diverse range of molecular properties.21-24 

In the broadest context, chemical space refers to the collection of all theoretically 

possible chemicals, including thermodynamic mixtures and composite materials. 

Nevertheless, researchers in a particular scientific domain often narrow down the 

chemical space to a subset they are interested in, e.g. organic chemical space and drug-

like chemical space.25 Regarding to these two subsets, several studies26-29 have provided 

estimations of their size under different additional constraints (e.g. number of heavy 

atoms, types of constituent atoms, and molecular weight, etc.), as summarized in Table 

A2. In particular, the size of organic chemical space is reportedly up to 10180 species28, 

29, which is significantly larger than the chemical subspace covered by current databases 

such as PubChem (123 million), Beilstein (10.3 million), and GDB-17 (167 billion). 

Consequently, solely relying on existing data may not lead to the yield the optimal choices 

for novel candidate chemicals. 

 

1.3. Computer-Aided Molecular Design (CAMD) 

In recent years, computational methods have become a promising avenue for 

uncovering superior chemicals in unexplored regions of chemical and property space. 

Computer-aided molecular design (CAMD) techniques30, 31 refer to the algorithms 

capable of finding promising (yet unknown) chemicals for particular uses, by continually 
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generating novel chemical species and testing their performance properties. However, it 

should be noted that the computational approach is by no means a thorough replacement 

for experimentation at the current stage. Since a molecular model inevitably involves 

simplifications, experimental validations are always irreplaceable. What it can do is 

complement experimental approaches and provide additional strategic flexibility for the 

development of new specialty chemicals. When trial-and-error experiments are too costly 

and time-consuming, CAMD can be used for preliminary evaluations. Additionally, 

customized databases can be built or expanded to accompany each CAMD task, which is 

useful for exploring new chemical knowledge and complementing the data scarcity in 

data-driven AI research. To demonstrate how CAMD works, we shall start with 

illustrating the correlation between a molecular structure and its corresponding properties. 

 

1.3.1. Bidirectional Relation: Molecular Structure and Properties 

The understanding of how molecular structure dictates a molecule's properties has 

been a cornerstone of molecular science. Traditionally, the focus has been on predicting 

properties based on a known molecular structure. However, the development of new 

chemicals is inherently driven by desired properties. In this context, candidate chemicals 

are identified based on whether they meet these predefined property requirements. This 

essentially represents a reverse engineering approach to property prediction, highlighting 

the core purpose of Computer-Aided Molecular Design (CAMD). 

The aforementioned bidirectional relationship between structure and properties is 

depicted in Figure 1.3-1. In particular, property predictions for a given structure are 

termed the forward algorithm, as elaborated in section 2.3.2. The subroutine for 

generating new molecules and selecting better-suited ones from them is termed the 

reverse algorithm, as elaborated in section 2.3.3 and 2.3.4. As mentioned in section 1.1, 
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CAMD techniques can be invoked to complement the probably inefficiency in traditional 

development process. 

 

 

Figure 1.3-1. The bidirectional relationships between molecular structure and molecular 

properties: forward algorithm vs. reverse algorithm. 

 

It should be emphasized that a CAMD task also involves predicting properties. 

Therefore, knowledge about the advantages and disadvantages of various predicting 

methods is as crucial as knowledge about the reverse algorithm. For optimization-based 

CAMD, a collection of optimal chemical species is generated through alternating 

iterations of forward algorithm and reverse algorithm stages. Specifically, a population 

of chemical species is initialized, followed by property predictions for these species 

(forward algorithm). The reverse algorithm then selects better-suited species from the 

population and generates novel species by modifying the selected chemical structures. 

The physicochemical properties of these novel species are evaluated using the forward 

algorithm, and the better-suited novel species are selected by the reverse algorithm for 

the next iteration. The process iterates until a sufficient number of chemical candidates 
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have been found or specific termination criteria are satisfied. 

Currently, there are two main methodologies in the field of molecular design: 

traditional approaches32 and machine learning (ML)-based approaches33, 34. This work 

focuses mainly on the traditional approaches, whereas in Chapter 6 several ML-based 

approaches are reviewed and compared with traditional approaches. Depending on users’ 

objectives, models of both types the can be employed for either exploitation or 

exploration tasks35, 36. In general, an exploitation task involves the purposeful generation 

of chemicals to meet predefined physicochemical property criteria, which is rightly the 

primary objective of a CAMD program as described earlier. In contrast, an exploration 

task generates chemicals without being bound by property requirements and other 

constraints, which is more precisely referred to as “chemical space exploration” or 

“molecular generation”. 

 

1.3.2. Mathematical Formulation of a CAMD Problem 

As mentioned in section 1.3.1, CAMD is the reverse engineering of property 

predictions. Therefore, finding the inverse function of property models would be a direct 

solution to a CAMD problem. Unfortunately, obtaining this inverse function in analytical 

form can be challenging since many property prediction methods, such as quantum 

mechanical calculations (QM) and molecular dynamics/Monte Carlo simulations 

(MD/MC), only provide numerical functions in practice. Moreover, a property model can 

exhibit high nonlinearity in relation to chemical structures. Since a structure is often 

represented by multiple discrete variables (see section 2.3.1), finding the inverse function 

of a property model can still be difficult even if the analytical form of the property model 

is known. It turns out that one often needs to seek alternative ways to solve CAMD 

problems. 
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From a mathematical optimization perspective, CAMD problems are typically 

classified as mixed-integer nonlinear programming (MINLP) problems37. This 

classification arises due to the combined presence of discrete representations for a 

chemical structure and the nonlinearity of property models. A chemical structure is often 

a structured data with some discrete properties. For instance, there should only be a few 

reasonable bond order types (i.e. single, double, triple, etc.) in a usual chemical structure. 

The theoretical details of MINLP problem are elaborated in section 2.1 and 2.2, and only 

its generic mathematical form is mentioned here: 

 

Problem MINLP 

argmin
𝒖,𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘) (1.3–1) 

subjected to 

𝒉(𝒖,𝒘) = 0 (1.3–2) 

𝒈(𝒖,𝒘) ≤ 0 (1.3–3) 

𝒖 ∈ 𝑈 ⊆ ℤ𝑛 (1.3–4) 

𝒘 ∈ 𝑊 ⊆ ℝ𝑚 (1.3–5) 

 

 

Here, 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘)  represents the objective function, 𝒖  is a n-dimensional 

column vector of integer variables, 𝒘 is a m-dimensional vector of continuous variables, 

𝒉(𝒖,𝒘) = 0 is a vector representing p equality constraints, 𝒈(𝒖,𝒘) ≤ 0 is a column 

vector representing q inequality constraints, and argmin  indicates the arguments 

(𝒖∗, 𝒘∗) that minimize the value of the objective function, 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖∗, 𝒘∗). By analogy 

with a molecular design task, 𝒖 represents molecular structures, 𝒘 typically represents 

thermodynamic state variables, such as pressure, temperature, and compositions. Each 
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entry in 𝒉(𝒖,𝒘)  or 𝒈(𝒖,𝒘)  vector specifies certain molecular property (e.g. vapor 

pressure, density, viscosity etc.) or an operating constraint of the process (e.g. total annual 

cost, maximum allowable heat duty, etc.). 

A pioneering research study on solving the practical CAMD problem was conducted 

by R. Gani and E. A. Brignole in 198338. They demonstrated the concept that a great 

variety of new chemical structures can be assembled from a few molecular fragments, 

and that multiple optimal chemicals can be found within the chemical space spanned by 

these molecular fragments. In their study, a set of common functional group fragments, 

such as -CH2-, -CH3-, -OH, -CH2CO-, -CH2COO-, and -CH2CN, was pre-defined as the 

building blocks. They then used the exhaustive combinatorial enumeration to connect 

these functional groups in all of the possible ways, resulting in numerous new molecules. 

Next, they employed the UNIFAC model to predict the performance of these new 

molecules in the separation of aromatic mixtures. Finally, a subset of molecules that 

exhibit the highest performance was chosen as potential solvents for the extraction 

process. 

Such prototype has been consistently systematized, diversified, and generalized by 

various research groups. To this day, the methodologies for CAMD have become a 

knowledge system39-44. Currently, the focus of molecular design research is primarily on 

the development of novel organic solvents, specialized ionic liquids, small-molecule 

drugs, and polymers, as summarized in Table A3.  

 

1.4. The Purposes of This Work and an Outline 

After reviewing the literature on Computer-Aided Molecular Design (CAMD), it 

becomes evident that many studies, particularly early ones, present challenges for 

outsiders aiming to apply these computational approaches directly to new applications. 
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These difficulties arise from several factors: 

 

⚫ Limited transparency of computational toolkits 

The majority of early studies on generative algorithms45-47 did not disclose their 

computer program source code. In addition, the applicability window of property 

prediction models may not be reported explicitly.48 

 

⚫ Exclusiveness of computational toolkits for particular topics 

Numerous studies focused heavily on designing small drug-like molecules, with 

property prediction models emphasizing metabolic properties, toxicity, and binding 

affinity to specific biological targets46, 49, 50 For non-biological specialty chemicals, 

these properties may not be the primary considerations. In addition, a correlative 

property prediction model is typically only suitable for pure chemical species and 

limited scope of chemical mixtures. 

 

⚫ Potential issues with molecular representation and complexity 

In some early works employing group contribution (GC) methods or quantitative 

structure-property relationships (QSPR) for property predictions, the frequency 

distribution of intra-molecular features (rather than rigorous molecular connectivity) 

is used to represent a molecular species in their CAMD task.38, 51-56 However, a 

specific frequency distribution of intra-molecular features can correspond to multiple 

constitutional isomers, and the GC or QSPR models may not distinguish between 

them.54, 56, 57 To maintain the scale compatibility between chemical representation 

with GC (or QSPR) models, molecular building blocks and structure modifications 

are often restricted to functional groups recognizable by these models. The design at 
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the functional group or more macroscopic level is often claimed as the “rational 

design”58-61 because it rules out some unexpected substructures causing by atomic-

level molecular modifications. However, it may limit the discovery of more optimal 

chemical species.  

 

To investigate the capability of CAMD techniques in the design of general chemical 

mixtures, a customized program is built in this work for the computational mixture design 

at miscellaneous (i.e. atomic and fragmental) levels. A comprehensive understanding of 

the theoretical backgrounds of this work includes two aspects: (a) theory of mathematical 

optimization and (b) possible methods for the implementation of a CAMD program.  

The generic theory of the two aspects is presented in Chapter 2. In section 2.1 and 

2.2, the discussions include the mathematical method to solve mixed-integer non-linear 

programming problem (MINLP) and the difficulties for problems involving more 

complicated discrete variables. In section 2.3, a literature review on the implementations 

of a CAMD program is provided. In particular, there are four vital components in a 

CAMD program: (b1) molecular representations, (b2) property prediction models 

(forward algorithm), (b3) generative algorithm (reverse algorithm I), (b4) selection 

algorithms (reverse algorithm II). 

Following (b1) to (b4), the implementation details of our own CAMD program are 

presented in Chapter 3. In particular, we develop a MARS+ package (Molecular 

Assembling and Representation Suite - Plus), composed of a digital representation of 

chemical mixtures (section 3.1) and a collection of genetic algorithm-based operators as 

the generative algorithm (section 3.3). Any chemical species in the format of such digital 

representation can be subjected to genetic operators to forming a new species. In section 

3.2, the theories of the property prediction models in our program are introduced, 
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including COSMO-SAC activity coefficient model, ionization potential, electron affinity, 

chemical hardness, electrophilicity, descriptors in RDKit/OpenBabel, and so on. In 

section 3.4, the molecular fitness function and selection algorithms, which are used to 

identifying better chemical species, Multiple selection algorithms are implemented. 

including roulette wheel (RW), simulated annealing (SA), fitness Monte Carlo (FITMC), 

and non-dominated sorting genetic algorithm II (NSGA-II).  

Chapter 4 provides a preliminary evaluation of the intrinsic performance of MARS+ 

based CAMD. In section 4.1 we demonstrate the possibility of applying genetic operators 

to every allowable substructure in a molecular structure. In section 4.2 and 4.3, we 

demonstrate the possibility that MARS+ can cover sufficiently large chemical space and 

produce well-known molecules. 

Chapter 5 exemplifies the MARS+ based CAMD in the design of novel ionic liquids 

(ILs) as the carbon dioxide absorbents. Section 5.1 reviews the mechanistic studies on IL-

based carbon capture and storage (CCS) techniques. Section 5.2 and 5.3 presents the 

thermodynamic modeling for predicting CO2 solubility in ILs and the accuracy of 

prediction employing COSMO-SAC activity coefficient model. Section 5.4 and 5.6 

present the results of designed ILs, which indicate that the component-screening method 

can expand our knowledge scope from experimentally validated ILs, and that the CAMD 

techniques can further improve the knowledge of component-screening method. 

In Chapter 6 we use two tailor-made benchmarks, GuacalMol and MolOpt, to 

compare the performance differences between our CAMD program and other baseline 

models (including AI-based and conventional ones) in some specially-devised tasks. 

Section 6.1 and Appendix F cover the theoretical backgrounds of some AI models. 

Section 6.2 shows the results of comparisons. It verifies that the performance of our 

program is better than many AI-based generative models and comparable to most of rule-
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based models. 

Finally, we summarize the insights gained from the aforementioned works in 

Chapter 7, and provides some prospects in Chapter 8. Several potential topics that can be 

the extension of this work, including the design of special chemical systems such as co-

crystals, and the incorporation with process design techniques to form a computer-aided 

molecular-process design (CAMPD) scheme. 
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Chapter 2. Generic Theory 

 

2.1. Mixed-Integer Non-Linear Programming (MINLP) 

As revealed in section 1.3.2, a CAMD task can be framed as a MINLP problem. In 

this section, more specifications are added to generic MINLP form (section 1.3.2) to adapt 

it into the real implementation in this work. Based on Gibbs phase rule62, the equilibrium 

thermodynamic state 𝒔𝒊 of a 𝒞-component mixture system in a phase can be described 

by 𝒔𝒊(𝒖𝒊. 𝒘𝒊), where 𝒖𝒊 is the mixture species and 𝒘𝒊 are (𝒞 + 1) intensive variables. 

In particular, it is common to let 𝒘𝒊 represent temperature, pressure and mole fractions 

(i.e. 𝒘𝒊 = [𝑇; 𝑃; 𝑥1; … ; 𝑥𝒞−1] ), as many processes are carried out under isobaric-

isothermal condition. Therefore, 𝒘𝒊 is usually continuous. The mixture can be denoted 

as 𝒖𝒊 = [𝒖𝒊𝟏; … ; 𝒖𝒊𝒄], where each 𝒖𝒊𝒋 is a pure chemical component. Since each 𝒖𝒊𝒋 in 

mixture is typically expressed in certain chemoinformatic format63 of chemical structure, 

it usually exhibits discrete properties. For instances, the number of constituent atoms in a 

molecule must be an integer, and the feasible bond orders must be one of a few discrete 

options, e.g. single, double, triple bonds. In terms of these arguments, the CAMD task 

formulated as the following form32, 37:  

 

Problem CAMDMINLP 

argmin
𝐮𝐢,𝐰𝐢

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖𝒊, 𝒘𝒊; 𝒕
𝒉, 𝒕𝒈) (2.1–1) 

subjected to 

𝒉(𝒛(𝒖𝒊), 𝒘𝒊) = 0 (2.1–2) 

𝒈(𝒛(𝒖𝒊), 𝒘𝒊) ≤ 0 (2.1–3) 
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𝒆(𝒖𝒊) = 0 (2.1–4) 

𝐮𝐢 ∈ ℤ𝑎×𝑏 ⊆ 𝐗 ⊆ 𝕌 (2.1–5) 

𝐰𝐢 ∈ ℝ𝒞+1, 𝐰𝐢
𝐋 ≤ 𝐰𝐢 ≤ 𝐰𝐢

𝐔 (2.1–6) 

 

 

Here, 𝒛  stands for generic chemoinformatic software that can convert among 

different chemoinformatic formats of molecular structure, e.g. RDKit64 and OpenBabel65. 

𝒉(𝒛(𝒖𝒊), 𝒘𝒊) = 𝒇𝒉(𝒛(𝒖𝒊), 𝒘𝒊) − 𝒕𝒉 = 0 represents p equality constraints on molecular 

properties, where 𝒇𝒉(𝒛(𝒖𝒊), 𝒘𝒊) = [𝑓1(𝒛(𝒖𝒊), 𝒘𝒊);… ; 𝑓𝑝(𝒛(𝒖𝒊), 𝒘𝒊)] are the models or 

methodologies for property estimations, and 𝒕𝒉 = [𝑡1; … ; 𝑡𝑝]  are the target values of 

properties for equality constraints. Similarly, 𝒈(𝒛(𝒖𝒊), 𝒘𝒊) = 𝒕𝒈 − 𝒇𝒈(𝒛(𝒖𝒊), 𝒘𝒊) ≤ 0 

represents q inequality constraints on molecular properties, where 𝒇𝒈(𝒛(𝒖𝒊), 𝒘𝒊) =

[𝑓𝑝+1(𝒛(𝒖𝒊), 𝒘𝒊);… ; 𝑓𝑝+𝑞(𝒛(𝒖𝒊), 𝒘𝒊)]  are the models or methodologies for property 

estimations, and 𝒕𝒈 = [𝑡𝑝+1; … ; 𝑡𝑝+𝑞]  are the target boundaries for the values of 

property. 𝒆(𝒖𝒊) = 0  represents a filter function for chemical structure 𝒖𝒊 . It can be 

devised to preserve particular molecular structural features, or to impose an intended bias, 

during optimization process. It essentially belongs to one of the equality constraints 

𝒉(𝒛(𝒖𝒊), 𝒘𝒊) = 0, but is written explicitly here for introduction. 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖𝒊, 𝒘𝒊; 𝒕
𝒉, 𝒕𝒈) 

is the objective function that determines the optimality of species 𝒖𝒊. In this work, it is 

replaced with a fitness function 𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒊, 𝒘𝒊; 𝒕
𝒉, 𝒕𝒈) so as to align with the framework 

of genetic algorithm. The maximization of 𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒊, 𝒘𝒊; 𝒕
𝒉, 𝒕𝒈)  is equivalent to the 

minimization of 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖𝒊, 𝒘𝒊; 𝒕
𝒉, 𝒕𝒈). 

The 𝕌 in eq (2.1–5) denotes the chemical space25, 28, a set of all the theoretically 

feasible chemicals typically subjected to the expanded octet rule66, 67 and intrinsic 

constraints from the chemical representation in use. For the numerical stability in 
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optimization and the feasibility of chemical utilization, it is desirable that all the 

temporary solutions (i.e. the chemical mixtures 𝒖𝒊 = [𝐮𝐢𝟏, … , 𝐮𝐢𝐜] ) during the 

optimization process is a subset of the chemical space. The 𝒘𝒊
𝑳 and 𝒘𝒊

𝑼 in eq (2.1–6) 

are the lower and the higher boundaries to define the feasible region of 𝒘𝒊. Finally, the 

overall optimality of a designed species 𝐮𝐢 at the associated thermodynamic state 𝒘𝒊 is 

determined by objective function 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖𝒊, 𝒘𝒊; 𝒕
𝒉, 𝒕𝒈). After the optimization of the 

objective function fulfills convergence criteria, a collection of optimal (𝒖𝒊, 𝒘𝒊) sets will 

be reported. It is noteworthy that, in practice, the optimization typically starts with 

multiple initial solutions 𝐗 = {𝐮𝟏, … , 𝐮𝐍} , also known as the “population” in genetic 

algorithm. All the solutions are updated simultaneously in a single optimization step. 

 

2.2. Mathematical Methods for Solving MINLP Problems 

To make it simple, this section follows the problem and notations introduced in 

Problem MINLP (section 1.3.2). The level of difficulty in solving a MINLP problem lies 

in the characteristics of the involved functions, including 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘), 𝒉(𝒖,𝒘), and 

𝒈(𝒖,𝒘). In this section, two scenarios are discussed.  

In the first scenario, 𝒖 represents several independent integer variables, and all the 

functions are continuously differentiable for every of the function arguments. In other 

words, 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘) , 𝒉(𝒖,𝒘) , and 𝒈(𝒖,𝒘)  are well-defined, continuous, and 

differentiable at 𝒖 even 𝒖 is a non-integer real number. This case is presented in section 

2.2.1.  

In the second scenario, 𝒖  represents complicated structured data, and all the 

functions are well-defined only at particular discrete 𝒖 ∈ {𝒖𝟏, 𝒖𝟐, … } . Such scenario 

makes the problem difficult to solve for 𝒖 by utilizing derivative and continuity. This 
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case is presented in section 2.2.2.  

 

2.2.1. Continuously Differentiable Problem with Integer Variables 

This category of optimization problem can be tackled by using branch-and-bound 

(BB) method68. Harnessed with the method, one can systemically decompose the original 

optimization problem into several subproblems on different feasible regions. To start with, 

let us consider a simple linear programming problem that is solvable by graphical method: 

 

Problem CDMINLP-P1 (continuously differentiable MINLP, problem 1) 

max
𝑥1,𝑥2

𝑗(𝑥1, 𝑥2) = 3𝑥1 + 4𝑥2 (2.2–1) 

subjected to 

7𝑥1 + 11𝑥2 ≤ 88 (2.2–2) 

3𝑥1 − 𝑥2 ≤ 12 (2.2–3) 

𝑥1 ≥ 0, 𝑥1 ∈ ℤ (2.2–4) 

𝑥2 ≥ 0, 𝑥2 ∈ ℤ (2.2–5) 

 

 

In the first step, Problem CDMINLP-P1 is solved by treating 𝑥1  and 𝑥2  as 

continuous variables. The optimal continuous solution is found to be 𝒙𝑷𝟏
∗ = [5.5, 4.5]𝑻 

with 𝑓(𝒙𝑷𝟏
∗ ) = 34.5. Based on solution 𝒙𝑷𝟏

∗ , one can either branch 𝑥1 ≥ 6 and 𝑥1 ≤

5  for variable 𝑥1 , or 𝑥2 ≥ 5  and 𝑥2 ≤ 4  for variable 𝑥2 . Suppose 𝑥1  is chosen for 

branching, then Subproblem CDMINLP-P2 and Subproblem CDMINLP-P3 are 

generated: 

 

Subproblem CDMINLP-P2 
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A duplicate of Problem CDMINLP-P1 with eq (2.2–4) changed into eq (2.2–6). 

𝑥1 ≤ 5, 𝑥1 ∈ ℤ (2.2–6) 

 

 

Subproblem CDMINLP-P3 

A duplicate of Problem CDMINLP-P1 with eq (2.2–4) changed into eq (2.2–7). 

𝑥1 ≥ 6, 𝑥1 ∈ ℤ (2.2–7) 

 

 

Again, Subproblem CDMINLP-P2 is solved by treating 𝑥1 and 𝑥2 as continuous 

variables, and the optimal continuous solution is 𝒙𝑷𝟐
∗ = [5, 4.8]𝑻 with 𝑓(𝒙𝑷𝟐

∗ ) = 34.3. 

On the other hand, Subproblem CDMINLP-P3 has no feasible solution. Next, branching 

𝑥2 ≥ 5  and 𝑥2 ≤ 4  from Subproblem CDMINLP-P2 based on solution 𝒙𝑷𝟐
∗  . 

Subproblem CDMINLP-P4 and Subproblem CDMINLP-P5 are generated. 

 

Subproblem CDMINLP-P4 

A duplicate of Problem CDMINLP-P1 with eq (2.2–4) and eq (2.2–5) changed into eq 

(2.2–8) and eq (2.2–9). 

𝑥1 ≤ 5, 𝑥1 ∈ ℤ (2.2–8) 

𝑥2 ≤ 4, 𝑥2 ∈ ℤ (2.2–9) 

 

 

Subproblem CDMINLP-P5 

A duplicate of Problem CDMINLP-P1 with eq (2.2–4) and eq (2.2–5) changed into eq 

(2.2–10) and eq (2.2–11). 

𝑥1 ≤ 5, 𝑥1 ∈ ℤ (2.2–10) 

𝑥2 ≥ 5, 𝑥2 ∈ ℤ (2.2–11) 
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Subproblem CDMINLP-P4 is solved by treating 𝑥1  and 𝑥2  as continuous variables, 

and the optimal continuous solution is 𝒙𝑷𝟒
∗ = [5, 4]𝑻 with 𝑓(𝒙𝑷𝟒

∗ ) = 31. Subproblem 

CDMINLP-P5 is solved in the same manner, resulting in 𝒙𝑷𝟓
∗ = [0, 8] with 𝑓(𝒙𝑷𝟓

∗ ) =

32. Since the solution to each of the two subproblems happens to be integers, one no 

longer needs to examine integer solutions in the vicinity of the continuous solution. 

Consequently, 𝒙𝑷𝟓
∗   is determined as the optimal solution to Problem CDMINLP-P1. 

This overall strategy can be represented by the following decision-tree diagram. 

 

 

Figure 2.2-1. The branch-and-bound process for solving CDMINLP-P1. 

 

If eqs (2.2–1) to (2.2–3) are nonlinear functions, one can resort to nonlinear 

optimization methods, such as sequential quadratic programming (SQP, see Appendix D). 
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2.2.2. Nondifferentiable Problem with Complicated Discrete Variables 

One of the most general methods to this category of problems is generalized benders 

decomposition (GBD)37, 69, 70. Its theoretical formulation is provided in Appendix E. The 

central idea of GBD is to decompose MINLP problem into a nonlinear programming 

(NLP) task and an integer nonlinear programming (INLP) task. In particular, the former 

one is known as the primal problem, and the latter known as the master problem. 

Following the notation in Problem MINLP (section 1.3.2), the details of GBD is 

introduced below. Let 𝒖𝒊  and 𝒘𝒊  denote the values of the discrete and continuous 

variables, respectively, where the subscript i is meant to differentiate among the 

discovered feasible solutions during optimization. GBD algorithm starts with substituting 

initial-guess values 𝒖𝟏 for discrete variables 𝒖, making the MINLP problem reduce to 

a nonlinear programming (NLP) primal problem:  

 

Problem GBD-P-NLP(𝒖𝟏) (GBD primal problem, nonlinear programming) 

min
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖𝟏, 𝒘) (2.2–12) 

subjected to 

𝒉(𝒖𝟏, 𝒘) = 0 (2.2–13) 

𝒈(𝒖𝟏, 𝒘) ≤ 0 (2.2–14) 

𝒘 ∈ 𝑊 ⊆ ℝ𝑚 (2.2–15) 

 

 

Set 𝑘 = 1 to indicate current subscript of 𝒖𝟏 and set counter 𝑟 = 0 to counts the 

infeasible optimal solution 𝒘∗ in the master problem (detailed in next paragraphs). By 

solving the primal problem using nonlinear optimization methods (Appendix D), GBD 
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algorithm obtains an optimal solution 𝒘𝟏 for the continuous variables 𝒘, as well as the 

Lagrange multiplier vectors ( 𝝀𝟏, 𝝁𝟏 ) corresponding to constraints 𝒉(𝒖𝟏, 𝒘𝟏)  and 

𝒈(𝒖𝟏, 𝒘𝟏) , respectively. The value of objective function obtained at this stage, 

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖𝟏, 𝒘𝟏) , is referred to as the upper bound 𝑍𝑈  in GBD algorithm. With 𝒘𝟏 

known, the master problem is subsequently formulated.  

 

Problem GBD-M-INLP(𝒘𝒕) (GBD master problem, integer nonlinear programming) 

min
𝜶∈ℝ,𝒖

 𝛼 (2.2–16) 

subjected to 

𝛼 ≥ 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘𝒕) + ∑(𝜆𝑡)𝑖ℎ𝑖(𝒖,𝒘𝒕)

𝑝

𝑖=1

+ ∑(𝜇𝑡)𝑗𝑔𝑗(𝒖,𝒘𝒕)

𝑞

𝑗=1

,

𝑡 = 1,… , 𝑘 

(2.2–17) 

𝒖 ∈ 𝑉  (2.2–18) 

𝝁 ≥ 𝟎 (2.2–19) 

𝝀 ∈ ℝ𝑝 (2.2–20) 

𝝁 ∈ ℝ𝑞 (2.2–21) 

with 𝑉 = {𝒖 |𝒉(𝒖,𝒘𝒕) = 0, 𝒈(𝒖,𝒘𝒕) ≤ 0 for 𝒘𝒕, 𝑡 = 1,… , 𝑟} 

 

Solving the master problem yields optimal solutions 𝒖∗  and 𝛼∗ . Notably, 𝛼∗  is 

designated as the lower bound 𝑍𝐿 in GBD algorithm. This designation arises because 

𝛼∗ serves as a lower bound for the objective function, 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘), in the Problem 

MINLP (see Appendix E.3). If 𝑍𝐿 ≥ 𝑍𝑈, then the solution (𝒖∗, 𝒘𝐭, 𝝀𝒕, 𝝁𝒕) corresponding 

to 𝛼∗ is the optimal solution (see Appendix C.6 and E.3). If not, solve the primal problem 

with 𝒖 fixed at 𝒖∗. Obtain an optimal solution 𝒘∗ for the continuous variables 𝒘, as 
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well as Lagrange multiplier vectors (𝝀∗, 𝝁∗) corresponding to constraints 𝒉(𝒖∗, 𝒘∗) and 

𝒈(𝒖∗, 𝒘∗), respectively. If optimal solution 𝒘∗ is infeasible, include 𝒘∗ in 𝑉. Set 𝑟 =

𝑟 + 1, 𝒘𝒓 = 𝒘∗. Return to the master problem. 

If 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖∗, 𝒘∗) ≤ 𝑍𝐿 , then the solution ( 𝒖∗, 𝒘∗, 𝝀∗, 𝝁∗ ) is identified as the 

optimal solution. Otherwise, set 𝑘 = 𝑘 + 1 , 𝒘𝒌 = 𝒘∗ , and 𝒖𝒌 = 𝒖∗ . Set 𝑍𝑈 =

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖∗, 𝒘∗)  if 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖∗, 𝒘∗)  is less than current 𝑍𝑈 . Return to the master 

problem. A numerical example can be seen in reference69. The overall process is 

illustrated in Figure 2.2-2. 

 

 

Figure 2.2-2. The flowchart of solving MINLP problem by GBD method. 
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2.3. Components of Computer-Aided Molecular Design (CAMD) 

In the framework of rule-based CAMD, there are four vital components: molecular 

data structure (MDS), property prediction methods, generative algorithms, selection 

algorithms. Figure 2.3-1, which is a detailed version of Figure 1.3-1, indicates the 

mathematical relations and the roles of these components. 

 

 

Figure 2.3-1. The four components of rule-based computer-aided molecular design. 
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2.3.1. Molecular Data Structure: Chemical Representations 

There are grossly four types of digital representation of a molecular structure63, 71, 72 

𝐱𝐢 : 1D string representation, 1D fingerprint representation, 2D graph (matrix) 

representation, and 3D representation, and multi-dimensional latent space representation. 

In particular, 1D string representation (e.g. SMILES73, 74, InChI75, SMARTS73, 

SELFIES76 etc.) has the advantages of compactness and readability, though it is generally 

not suitable for structure variations due to their syntactic complexity.  

Molecular fingerprint77-79 is an encoding system generally based on the specific traits 

of 1D, 2D, 3D representation, or other descriptors. For example, the MACCS80 can track 

the types and the quantities of neighboring atoms for each atom within a molecule. 

Additionally, MACCS can record membership of atoms in specific substructures, such as 

rings, aromatic bonds, and C=C bonds. The original molecular structure can be recovered 

by putting together all the identified fingerprint features. Chemoinformatic toolkits, such 

as OpenBabel81 and RDKit82, are useful tools for providing the aforementioned rule-based 

molecular representations.  

2D graph representation72, 83 has clear representation for molecular connectivity, 

which facilitates substructure variations. However, it is usually not as readable as string 

representation. Both 1D and 2D representation can contain information of constituent 

atoms, bond orders, constitutional isomerism, cis-trans isomerism, enantiomerism, and 

diasteriomerism, but they often lack conformational information. 

When the design task is geometry-sensitive, 3D representation72 is usually the most 

suitable. For example, the bioactivities of biomolecules often depend largely on their 

geometric compatibility with binding sites of substrates, hence the structure-based drug 

design are usually based on 3D representation.84, 85  
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Table 2.3-1. Exemplary representations for methanol molecule. 

Dimension Representation 

3D 

 

2D 

 

1D 

FP2 fingerprint (Open Babel) 0 8 1 6 <515> 

FP4 fingerprint (Open Babel) Alcohol C_ONS_bond 

SMILES C(O) 

InChI InChI=1S/CH4O/c1-2/h2H,1H3 

 

2.3.2. Forward Algorithm: Property Predictions Methods 

Numerous models and methodologies exist for predicting molecular properties for 

chemical structures. These include group contribution models (GC), quantitative 

structure-property relationships (QSPR), molecular dynamics simulations (MD), Monte 

Carlo simulations (MC), and ab-initio quantum mechanical calculations (QM). Selecting 

the appropriate method is crucial, considering the length and time scales of the 

physicochemical phenomena involved, as depicted in Figure 2.3-2. 
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Figure 2.3-2. Each methodology for property prediction is suitable for describing 

physicochemical phenomena under specific scales of time and length. Reprinted with 

permission from the reference86. Copyright 2009 Elsevier Ltd. 

 

Correlative models, such as GC and QSPR models, require substantial experimental 

data to regress their numerous model parameters. GC models recognize a molecule as 

many pre-defined functional groups in connection, and by regression, the value of a 

molecular property is factorized into the contribution from each of the constituent 

functional groups. On the other hand, the QSPR maps multiple molecular descriptors to 

a molecular property. Common descriptors include physicochemical properties such as 

the octanol/water partition coefficient (logP) and topological polar surface area (TPSA), 
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along with structural features like the number of double bonds. Depending on the types 

of regression datasets, GC and QSPR models can estimate melting point, boiling point, 

density, viscosity, electrical conductivity, thermal conductivity, and activity coefficient. 

In general, these models are the highly accurate when it is used for the molecular 

structures similar to that in the regression datasets. However, it may be significantly 

inaccurate for molecules beyond the scope of regression datasets. There are also further 

limitations to their applicability. The group contribution model is only applicable to 

molecules that are composed of pre-defined functional groups. As a result, its robustness 

may be challenged by novel chemicals generated in computational molecular design. On 

the other hand, the applicability of QSPR models is usually limited to specific conditions, 

such as a fixed temperature. 

Molecular dynamics simulations (MD) and Monte Carlo simulation (MC) are based 

on the theory of statistical mechanics87. The simulation system usually contains multiple 

molecules, and the interaction energy among atoms should be well-described by a proper 

force field. In the simulation, the system evolves continuously based on mechanical 

principles or sampling algorithms. As a result, the system properties, such as pressure, 

energy, and spatial distribution of particles, are also varying with simulation steps. After 

the system is equilibrated, macroscopic properties can be derived from the evolution 

trajectory of the system properties, via statistical mechanical interpretation. Literatures 

have shown that MD/MC can estimate solubility88, transport properties89, surface 

tension90, melting and boiling points91, 92, and free energy87, 93. However, the coarse 

graining of model94 and parameterization of force fields95 may require significant time 

and effort, Also, the computational cost of MD/MC simulation is usually higher than the 

correlative models. 

Quantum mechanical simulations (QM) treat a molecule as a system comprising 
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electrons and nuclei of its constituent atoms. Utilizing the Born-Oppenheimer 

approximation, the Schrödinger equation is formulated for the system. Once solved using 

methods based on Hartree-Fock theory or density functional theory (DFT), various 

molecular properties can be determined. These include the highest occupied molecular 

orbital (HOMO), lowest unoccupied molecular orbital (LUMO), ionization potential (IP), 

electron affinity (EA), bond order index96, dipole moment, chemical hardness97, 

electrophilicity index 97, exciton binding energy2, enthalpy and free energy of formation98, 

99, and solvation free energy100-102. The QM-based thermodynamic models, such as 

PR+COSMOSAC and COSMO-SAC, are found useful for complementing the lack of 

thermodynamic parameters in process design, although their overall accuracy of predicted 

properties needs further improvements103. The primary advantage of QM methods is their 

reduced reliance on empirical parameters compared to correlative models and MD/MC 

simulations. Additionally, QM methods are universally applicable to molecular systems. 

However, a significant drawback is their computational cost, which escalates 

exponentially with the size of the molecule. 

While the fundamental nature of QM methods offers generality, correlative models 

and coarse-grained MD/MC simulations are often more suitable choices for studying 

macromolecules and drug molecules due to their computational efficiency relative to QM 

methods. For instance, QSPR models are valuable tools in computer-aided drug design 

(CADD) and have demonstrably contributed to the development of commercialized drugs 

such as Captopril, Dorzolamide, Zanamivir, and Boceprevir.104 MD/MC simulations find 

frequent application in molecular docking research for drug and material design.104 These 

simulations aid in the quantitative identification of the location and strength of 

intermolecular interactions involving donor and acceptor sites.   
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Table 2.3-2. A summary for the aforementioned methods for property predictions. 

Method Advantages Disadvantages 

QSPRs 
⚫ A wide variety of property 

models can be developed once 

regression data is available. 

⚫ Their calculations are fast. 

⚫ They are typically accurate 

for molecules similar to those 

found in regression datasets. 

⚫ They require a substantial 

amount of data for regression of 

model parameters. 

⚫ They may exhibit significant 

inaccuracies for molecules outside 

the scope of regression datasets. 

⚫ They may have fewer theoretical 

foundations than MD/MC and QM. 

GC 

models 

MD/MC 

simulations 

⚫ They can compute a variety 

of thermodynamic and transport 

properties. 

⚫ They are grounded in the 

principles of classical dynamics 

and statistical mechanics. 

⚫ They elucidate molecular 

mechanisms underlying 

physicochemical phenomena. 

⚫ Parameterization and coarse-

graining can require significant 

effort. 

⚫ They may necessitate substantial 

computational resources. 

QM 

simulations 

⚫ They can investigate kinetic, 

electronic, and thermochemical 

properties. 

⚫ They can serve as a 

foundation for the development 

of physicochemical models 

⚫ They require significantly 

fewer empirical parameters than 

correlative models. 

⚫ In principle, they are 

applicable to any molecular 

system. 

⚫ They may require substantial 

computational resources. 

⚫ Computational cost scales 

exponentially with molecular size. 

This limits the applicability of QM 

methods to relatively small systems 
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2.3.3. Reverse Algorithm, Part (I): Generative Algorithms 

In fact, a significant focus of CAMD research has been the development of 

generative algorithms, particularly those specialized for designing drug-like molecules45-

47. These algorithms can be generally categorized into three main approaches105: atom-

based modifications, fragment-based modifications and reaction-based modifications. 

These approaches are illustrated in Table 2.3-3. Atom-based modifications excel in their 

ability to explore extensive chemical space through a compact set of meticulously crafted 

rules. Conversely, fragment-based modifications, while enhancing synthetic feasibility 

and reducing combinatorial complexity, come at the cost of constraining the accessible 

chemical space. Reaction-based modifications offer the advantages of well-established 

synthetic feasibility and practical synthesis pathways. However, it is crucial to point out 

that reaction-based modifications can introduce significant structural alterations.105 

Therefore, it is advisable to employ reaction-based modifications primarily for a rough 

exploration of chemical space.105 Furthermore, the accessible chemical space from 

reaction-based modifications is heavily dependent upon the scope of reaction templates 

and the specific types of subject chemicals. 

In the atom-based or fragment-based modifications, the molecular modification 

operators and pre-defined molecular building blocks (i.e. fragments and atoms) are 

repeatedly utilized to create new chemical structures in pursuit of property specifications. 

During this process, the changes of subject chemical structures are typically not based on 

the knowledge of realistic chemical reactions. Molpher106, 107, Spaceship108, 

MoleculeEvoluator109, GraphGA110, 111, GraphMCTS110, 111, EvoMol112 are the generative 

algorithms employing atom-based modifications, while CReM105, LEADD113, 

BRADSHAW114, OpenGrowth59, FOG115, LigBuilder v3116, 117, MOARF118, PhDD119, 

AutoGrow v3.0120, 121, and Flux60, 61 adopt fragment-based modifications. In contrast, 
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reaction-based modifications are centered on templates derived from realistic chemical 

reactions.122 Recent applications123-127 of reaction-based modifications often make use of 

RDKit64, where the reaction templates are encoded in "reaction SMARTS" format. When 

provided with a chemical structure along with a reaction template, RDKit identifies the 

substructures that align with the reactive site pattern defined in the template and execute 

the specified chemical transformation. DOGS128, 129, AutoCouple123, LiGen130, and 

SYNOPSIS131 are the exemplary models for reaction-based molecular design. 
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Table 2.3-3. The three types of the generative algorithms. 

Type Starting chemical 𝒖𝒊  Operation 𝜹𝒖𝒊 New chemical 𝒖𝒊
𝒏𝒆𝒘 = 𝒖𝒊 + 𝜹𝒖𝒊 

Atom-based 

 

e.g. substitution 

  

Fragment-based 

 

e.g. merge 

  

Reaction-based 

 

Example: a real reaction of nucleophilic substitution 

(O-[CH2;D2;+0:1]-[C:2]-[C:3]=[C:4])>>([Br;H0;D1;+0]-[CH2;D2;+0:1]-[C:2]-[C:3]=[C:4]) 

  

 

amide linker benzene 
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2.3.4. Reverse Algorithm, Part (II): Selection Algorithms 

Based on the categories of task specifications and solution methods, a review for 

literatures of fragment-based molecular design is summarized in Table A3. It should be 

noted that the brute force (BF) method, as adopted by R. Gani and E. A. Brignole (section 

1.3.2), may experience combinatorial explosion when an enormous number of building 

blocks are available. In this situation, solving the CAMD problem with limited 

computational resources will be impractical. To address this issue, meta-heuristic 

algorithms can be used in place of the brute force method. Although meta-heuristic 

algorithms may not guarantee global optimality for solutions, they have reasonable trade-

off between computational costs and optimality of solutions.132 These algorithms include 

the genetic algorithm (GA)133-138, simulated annealing algorithm (SA)139, 140, genetic-

simulated annealing composite algorithm (GA-SA)141-144, ant colony optimization 

algorithm (ACO)145-147, tabu search algorithm (TS)48, 148-150, Monte Carlo tree search 

(MCTS)110, 151-154, branch-and-reduce algorithm (B&R)54, 155, 156, outer approximation 

(OA)155, 157-160, and brutal-force (BF) search161. 

GA, SA, and ACO are inspired by the principles from nature. The main idea of GA 

is to simulate a molecular world governed by Darwinian theory. Specifically, a molecular 

structure is analogous to a chromosome. "Genetic operators" mimic genetic variations: a 

mutation operator modifies substructures of a molecular structure, creating a new 

molecular species, while a crossover operator exchanges the substructures between two 

parent molecules, yielding two new molecular species. After evaluating properties of 

these new molecules, a "selection algorithm" filters out undesirable species based on their 

performance rankings. This iterative generation-and-selection process continues until a 

collection of optimal species is identified. 
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SA is based on the statistical mechanical interpretation of the annealing process. In 

the canonical ensemble (NVT system), the probability distribution of states follows the 

Boltzmann distribution:  

 

𝑃𝑖 =
exp (−

𝐸𝑖
∗

𝑇 )

∑   exp(−
𝐸𝑗

∗

𝑇
)𝑠𝑡𝑎𝑡𝑒𝑠 𝑗

 (2.3–1) 

 

Here, 𝐸i
∗ = 𝐸𝑖/𝑘𝐵  represents the characteristic temperature for energy state 𝐸𝑖 , 

with 𝑘𝐵 being the Boltzmann constant. At high temperatures, it is equally probable for 

a physical system to be at any available quantum state. In contrast, at low temperatures, 

only the lowest-energy state is probable. The two cases show that the annealing (𝑇ℎ𝑖𝑔ℎ →

𝑇𝑙𝑜𝑤 ) is a process that gradually distinguishes among different energy states. In the 

context of an optimization task, this feature offers a wide range of potential solutions in 

the early stages and ensures satisfactory convergence in the later stages. In algorithm 

implementation, the 𝐸𝑖
∗ and 𝐸𝑗

∗ should be replaced with the objective function, and a 

suitable decaying rate α for temperature parameter 𝑇 is necessary. A rapid decay in the 

𝑇 may lead to premature optimization, leading to convergence at the local minima near 

the initial guesses.  

The concept of ACO is rooted in the foraging behavior exhibited by ants. Initially, 

the ant colony embarks on a random exploration of the area surrounding their nest, 

searching for a food source. Upon successful discovery, an ant returns to the nest carrying 

a bite of food, while simultaneously laying down pheromone trails along its path. These 

pheromone trails serve as a communication channel, attracting other ants to follow the 

same route. Once back at the nest, the ant resumes the exploration cycle. The 
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attractiveness of a particular path is directly influenced by the concentration of 

pheromones deposited on it. However, this pheromone concentration naturally diminishes 

over time. Shorter paths between the nest and the food source offer the advantage of 

quicker travel times, leading to a higher concentration of pheromones remaining on these 

paths due to the shorter travel time. Consequently, a positive feedback loop is established: 

more ants are drawn to the shorter paths with higher pheromone concentrations, 

ultimately enabling the colony to identify the optimal route. 

Unlike the previously discussed nature-inspired algorithms, Tabu Search (TS) 

employs a memory-based approach to navigate the search space for optimization 

problems. The central principle of TS revolves around the creation and utilization of a 

"tabu list." This list serves as a dynamic record of unfavorable moves or solutions 

encountered during the search process. By incorporating these elements into the taboo list, 

the algorithm prioritizes exploration of uncharted territories within the search space. 
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Chapter 3. Constructing a Program for Conventional CAMD 

In section 2.3, the diverse variety of each component in CAMD framework has been 

reviewed. We now construct the four components based on our own specifications. 

 

 

Figure 2.3-1. The four components in rule-based CAMD framework. 

 

3.1. Chemical Representation: MARS+ Package 

MARS (Molecular Assembling and Representation Suite)162 serves as a versatile 
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toolbox for general-purpose molecular design. It demonstrates the feasibility in using five 

arrays of integers to record the constituent elements along with their connectivity among 

the within a molecule, thereby forming a digital representation of molecular structure. 

Additionally, MARS provides a collection of operations that enable the permutation of 

molecular substructures, resulting in the creation of novel molecular species. One can 

experience this generative algorithm by inputting two (or more) chemical species and 

subjecting them to these structure operations. 

This work presents MARS+163, an extension of the original MARS software 

specifically designed to handle complex molecular structures. MARS+ expands its 

capabilities to encompass geometric isomers (cis-trans isomers), stereoisomers, 

complicated polycyclic compounds, and ionic species. This extended coverage of the 

chemical space allows MARS+ to explore a wider range of molecules with greater 

chemical and physical diversity. 

At the core of MARS+ lies the molecular data structure (MDS), detailed in section 

3.1.2. This MDS is comprised of eight integer arrays and two string arrays, efficiently 

storing information about atoms and fragments within a molecule. A key strength of 

MARS+ is its ability to combine multiple single-component MDS objects into a 

supermolecular MDS. This capability proves particularly valuable for handling complex 

chemicals, such as ionic liquids, which consist of separate cationic and anionic 

components. For the construction and manipulation of chemical structures, MARS+ 

offers a rich set of twelve operations. These operations can be categorized into three 

primary groups, as described in section 3.3:  

 

⚫ 9 uni-molecular operations: These operations focus on modifying individual 

molecules through addition, deletion, or insertion of atoms, bond changes, element 
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substitutions, cis-trans inversion, chirality inversion, cyclization, and decyclization. 

 

⚫ 2 bi-molecular operations: These operations facilitate the redistribution of 

molecular fragments between two molecules, enabling the creation of new molecules 

through crossover and combination. 

 

⚫ 1 bi-supermolecular operation: This operation, component swap, allows for the 

exchange of components between supermolecular entities. 

 

To streamline molecule input and ensure the generation of canonical SMILES strings, 

MARS+ incorporates wrappers around selected Open Babel API functions. Figure 3.1-1 

provides a visual representation of the MARS+ architecture and its functionalities.  
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Figure 3.1-1. The architecture of MARS+ package. Reprinted with permission from the reference163. Copyright 2023 American Chemical Society.
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3.1.1. The Library of Base Elements 

MARS+ utilizes a library of pre-defined base elements to represent the building 

blocks of chemical structures. These base elements can encompass individual atoms (e.g., 

H, C, O), functional groups (e.g., CH3, OH, benzene), or even ionic groups (e.g., 1,3-

dimethylimidazolium). The definition of these base elements is established within the 

set_up() function in src/ELEMENTS.cpp source file. Table A4 to Table A6 in  Appendix 

A provides a comprehensive list of neutral, cationic, and anionic base elements for 

reference. Each base element is characterized by a minimum of eight attributes, as 

summarized in Table 3.1-1. 

 

Table 3.1-1. The attributes of a base element. 

Attribute Significance 

name The SMILES representation of the base element 

id A unique numerical identifier for the base element within the library 

norder The total number of valence bonds 

order An array storing the specific bond order for each valence bond 

bd An array storing number of valence bonds per order 

index The character index of the first bond in the name string. 

suffspos The starting position of any optional suffix 

chg The overall charge of the segment 

 

It's important to note that not all attributes are utilized for every purpose. Here's a 

breakdown of the attributes crucial for different functionalities:  
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⚫ MDS representation (section 3.1) and structural operations (section 3.3.1 to 

3.3.3): These functionalities primarily rely on the id, norder, chg, order array, and bd 

array for accurate representation and manipulation of the molecular data structure. 

 

⚫ Raw SMILES output from MDS (section 3.3.4): Generating raw SMILES strings 

from the MDS necessitates the name, index, order, and suffspos (presumably a total 

bond count) attributes. 

 

The nomenclature of name string should follow the format of 

“[core_atom][valences][suffix]”, where [core_atom] represents the central atom, 

[valences] indicates the available bond count, and [suffix] an optional component for 

specifying functional groups. This suffix allows for the flexible introduction of diverse 

functional groups into the base element library. Figure 3.1-2 provides an illustrative 

example of the attribute settings for the base element 1,3-dimethylimidazolium (ID=36). 

The core concept behind MARS+ lies in representing each molecular input as a 

connectivity network constructed from these pre-defined base elements. Consequently, 

the comprehensiveness of the base element library directly influences the robustness and 

versatility of the MDS representation. Expanding the library with new elements is 

possible by following the instructions provided in the 

inputs/element_lists/element_list.txt file. 
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Figure 3.1-2. The attribute settings for the base element 1,3-dimethylimidazolium (id=36). 

The last carbon in suffix uses a double bond to connect with [N+], forming a ring with 

99999 as its default ring number. Reprinted with permission from the reference163. 

Copyright 2023 American Chemical Society. 

 

3.1.2. Molecular Data Structure (MDS) 

In the MARS+ framework, the Molecular Data Structure (MDS) captures the 

connectivity between the fundamental elements of a molecule, akin to a molecular graph 

representation72. The MDS for single molecule is defined in src/MOLECULE.h source 

code file while the specialized supermolecule MDS, as exemplified by ionic liquids, is 

defined in src/IL.h source code file. The MDS consists of 10 data elements (see Table 

3.1-2), each a one-dimensional array of size 𝑁. Here, 𝑁 represents the total number of 

base elements forming the molecule. There's one exception: the cyclic bond order array. 
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The size of this particular array is dictated by the number of rings (𝑁𝑟) present in the 

molecule, rather than the total number of base elements. In other words, the structure 

variable 𝒖𝒊 is represented by, 

 

𝒖𝒊 =

[
 
 
 
 
 
 
 
 
 
 

𝑪𝟏×𝑵

𝑷𝟏×𝑵

𝑴𝟏×𝑵

𝑹𝟏×𝑵

𝑪𝒉𝒊𝟏×𝑵

𝑪𝒚𝟏×𝑵

𝑪𝒚𝒃𝟏×𝑵𝒓

𝑷𝒓𝟏×𝑵

𝑭𝒄𝒕𝟏×𝑵

𝑬𝒄𝒕𝟏×𝑵 ]
 
 
 
 
 
 
 
 
 
 

𝑖

 (3.1–1) 

 

Table 3.1-2 provides a detailed explanation of each data element within the MDS. 

Each constituent element within a molecule is designated a unique integer ranging from 

1 to 𝑁 in the in the element indice array 𝑪𝟏×𝑵 (variable: Cindex). The element type 

array 𝑴𝟏×𝑵 (variable: Mindex) serves the purpose of recording the base element ID for 

each corresponding element within the element indice array. This ID allows for the 

retrieval of information such as charge, name, and valence of each element from the base 

element library (see Table A4 to Table A6 in Appendix A). The parent indices array 

𝑷𝟏×𝑵  (variable: Pindex) stores the element index of the parent element within the 

molecule to which the current element is connected. It is important to note that each 

element within a molecule has exactly only one parent element, except for the first 

element in MDS (it has no parent element). In contrast, an element can be connected to 

two or more "descendant elements". 

The bond order array 𝑹𝟏×𝑵 (variable: Rindex) stores the bond order between an 

element and its parent element. The cyclic flag array 𝑪𝒚𝟏×𝑵  (variable: Cyindex) 
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indicates cyclic substructures within the molecule. Each unique cyclic substructure is 

assigned a non-zero number to two of its member elements, indicating that the two 

elements are connected by a bond to form the ring. The bond order for this specific ring-

forming bond is stored in the separate cyclic bond order array 𝑪𝒚𝒃𝟏×𝑵𝒓
  (variable: 

Cybnd), where 𝑁𝑟  represents the number of rings in the molecule. The cis-trans 

front/end flags array 𝑭𝒄𝒕𝟏×𝑵/𝑬𝒄𝒕𝟏×𝑵  (variable: ctsisomer) specifies the “\” and “/” 

notation in front of or at the end of an element name to denote cis-trans isomerism. The 

protection flag array 𝑷𝒓𝟏×𝑵 (variable: protect) identifies elements that are protected 

from any structural modifications during subsequent manipulations. 

The OpenSMILES specification74 incorporates the concept of "winding type" to 

represent the chirality of centers within a molecule. For a chiral carbon atom, 

“R1[C@](R2)(R3)(R4)” indicates that substituents R2, R3, and R4 are arranged in an 

anti-clockwise order when viewed from R1 towards the chiral carbon. Conversely, 

“R1[C@@](R2)(R3)(R4)” signifies a clockwise arrangement. This anti-clockwise 

winding ("@") is encoded as a value of 1, while clockwise winding ("@@") is encoded 

as 2 within the chirality flag array, chirality flag 𝑪𝒉𝒊𝟏×𝑵 (variable: chi).  

As an example, Table 3.1-2 provides an illustrative example of the MDS 

representation for an imidazolium cation, C[n+](c1)ccn1[C@H](F)/C=C/C. Here's a 

breakdown of the information encoded within the data structure: 

 

⚫ Element Indexing and Parentage: Each atom in the cation is assigned a unique 

serial number (1 to 11) representing its element index. The parent index for the first 

element is always 0, signifying its position as the starting point in the data structure. 
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⚫ Element Type and Base Element Library: The element type array and the base 

element library (see Table A4 to Table A6 in Appendix A) work together to define 

the properties of each element. For instance, the first entry in the element type array, 

along with the base element library, identifies the first element (element index = 1) 

as "C(-)(-)(-)(-)" (ID = 1). This notation indicates a charge-neutral carbon atom with 

four single bonds. Similarly, the second element (element index = 2) is identified as 

"[N+](=)(-)(-)" (ID = 16), representing a positively charged nitrogen atom with a 

double bond and two single bonds. The parent element of the second element is the 

first element (element index=1), as indicated by the second entry of parent indices 

array. 

 

⚫ Bond Orders: The bond order array stores the bond order between an element and 

its parent. The second entry in this array indicates a single bond (value of 1) between 

the second element (element index = 2, [N+](=)(-)(-), ID = 16) and its parent (element 

index = 1, C(-)(-)(-)(-), ID = 1). Note that the bond order index for the first element 

is always zero, reflecting its status as the starting point. 

 

⚫ Cyclic Substructures: The cyclic flag array and the cyclic bond order array work in 

tandem to represent cyclic structures within the molecule. In this example, the sixth 

element (element index = 6, N(-)(-)(-), ID = 7) and the third element (element index 

= 3, C(=)(-)(-), ID = 2) form a single bond to create the imidazolium ring. 

Consequently, both elements are assigned a value of 1 in the corresponding entry of 

the cyclic flag array. The bond order for this ring closure is stored as a single bond 

(value of 1) in the first entry of the cyclic bond order array. 

 



doi:10.6342/NTU202403528

47 

 

⚫ Protection Flags: For the design of other imidazolium ionic liquids, the 

protection flag array can be employed. Assigning a value of 1 to all members of the 

imidazolium ring within this array protects them from modifications during operations 

like crossover, decyclization, or subtraction. 
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Table 3.1-2. The molecular data structure (MDS) in MARS+ package 

Name Stored information 
Canonical SMILES: C[n+](c1)ccn1[C@H](F)/C=C/C 

Molecular size: N = 11 

Element indices 

𝑪𝟏×𝑵 

Serial numbering from 1 to N for each base element in the 

molecule 
1 2 3 4 5 6 7 8 9 10 11 

 

The numbers are the element 

indices 

Parent indices 

𝑷𝟏×𝑵 
The base element to connect with 0 1 2 2 4 5 6 7 7 9 10 

Element types 

𝑴𝟏×𝑵 
The ID of the base elements (Table A4 to Table A6) 1 16 2 2 2 7 1 11 2 2 1 

Bond orders 

𝑹𝟏×𝑵 

Bond order information for the connection determined by 

(𝑪𝟏×𝑵, 𝑷𝟏×𝑵, 𝑴𝟏×𝑵) 
0 1 2 1 2 1 1 1 1 2 1 

Chirality flags 

𝑪𝒉𝒊𝟏×𝑵 
Chirality information of each base elements in the molecule 0 0 0 0 0 0 1 0 0 0 0 

†In this example the imidazolium ring is protected. 

††The notation "_" signifies a null string rather than a blank space. 
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Table 3.1-2. The molecular data structure (MDS) in MARS+ package (continued) 

Name Stored information 
Canonical SMILES: C[n+](c1)ccn1[C@H](F)/C=C/C 

Molecular size: N = 11 

Cyclic flags 

𝑪𝒚𝟏×𝑵 

Ring numbering: Two elements labeled with the same 

number will be connected to form a ring. 
0 0 1 0 0 1 0 0 0 0 0 

 

The numbers are the element 

indices 

Cyclic bond orders 

𝑪𝒚𝒃𝟏×𝑵𝒓  
The bond order for each cyclic flag 1 

Protection flags† 

𝑷𝒓𝟏×𝑵 
The elements labeled 1 will be free from genetic operations 0 1 1 1 1 1 1 0 0 0 0 

Cis-trans front flags†† 

𝑭𝒄𝒕𝟏×𝑵 

Record “/” or “\” that should be put in front of the element 

name 
_ _ _ _ _ _ _ _ / _ _ 

Cis-trans end flags†† 

𝑬𝒄𝒕𝟏×𝑵 

Record “/” or “\” that should be put at the end of element 

name (before the first bond) 
_ _ _ _ _ _ _ _ _ / _ 

†In this example the imidazolium ring is protected. 

†† The notation "_" signifies a null string rather than a blank space.
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3.2. Forward Algorithm: Property Prediction Models 

In this section, we present theoretical foundations for several crucial property models 

implemented in this work. All the models incorporated in this work are outlined in Table 

3.2-1 and Table 3.2-2. 

 

Table 3.2-1. The property estimation method incorporated in this work 

Property Computational toolkits 

Activity coefficient, 𝛾𝑖/𝑆 
Gaussian solvation calculations164 + COSMO-

SAC model100 

Highest occupied molecular orbital 

(HOMO), 𝐸𝐻𝑂𝑀𝑂 
Gaussian164 

Lowest unoccupied molecular 

orbital (LUMO), 𝐸𝐿𝑈𝑀𝑂 
Gaussian164 

Ionization potential (IP)2, 𝐸𝐼𝑃 Gaussian164 

Electron affinity (EA)2, 𝐸𝐸𝐴 Gaussian164 

Fundamental gap2, 165, 𝐸𝑔𝑎𝑝 Derived from IP and EA, 𝐸𝑔𝑎𝑝 = 𝐸𝐼𝑃 − 𝐸𝐸𝐴 

Electronegativity97, 166, 𝜒𝑚 Derived from IP and EA, 𝜒𝑚 = −
𝐸𝐼𝑃+𝐸𝐸𝐴

2
 

Chemical hardness97, 167, 𝜂 Derived from IP and EA, 𝜂 =
𝐸𝐼𝑃−𝐸𝐸𝐴

2
 

Electrophilicity97, 167, 𝜔 Derived from IP and EA, 𝜔 =
χ𝑚
2

2𝜂
=

(𝐸𝐼𝑃+𝐸𝐸𝐴)2

4(𝐸𝐼𝑃−𝐸𝐸𝐴)
 

SAscore64, 168 RDKit64 

SCscore169 RDKit64 

NPscore64, 170 RDKit64 
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Table 3.2-2. The RDKit descriptors171 incorporated in this work.  

Type Descriptors 

Perception of substructure 

feature 

Molecular Connectivity Chi Indexes, 𝜒𝑣 and 𝜒𝑛 

Tanimoto Similarity, 𝒯𝑠(𝑚𝑜𝑙1, 𝑚𝑜𝑙2) 

The number of atoms, 𝑁𝐴𝑡𝑚𝑠 

The number of rotatable bonds 𝑁𝑅𝑜𝑡𝐵𝑛𝑑 

The number of rings 𝑁𝑅𝑖𝑛𝑔𝑠 

The number of aromatic rings 𝑁𝐴𝑟𝑜𝑅𝑖𝑛𝑔𝑠 

The number of spiro atoms 𝑁𝑆𝑝𝑖𝐴𝑡𝑚𝑠 

The number of bridge atoms 𝑁𝐵𝑟𝑖𝐴𝑡𝑚𝑠, and so on 

Quantification of structure 

asymmetry 

Averaged distance from plane of best fit, 𝑃𝐵𝐹 

Principal moments of inertia, 𝑃𝑀𝐼1, 𝑃𝑀𝐼2, 𝑃𝑀𝐼3 

Inertial shape factor, 𝐼𝑆𝐹 

Eccentricity, 𝐸𝑐𝑐𝑒𝑛𝑡 

Asphericity, 𝐴𝑠𝑝ℎ𝑒𝑟 

Spherocity Index, 𝑆𝑝ℎ𝑒𝑟𝑜 

Estimation of physicochemical 

properties 

1-octanol/water partition coefficient, 𝑙𝑜𝑔𝑃 

The number of hydrogen bond donors, 𝑁𝐻𝐵𝐷 

The number of hydrogen bond acceptors, 𝑁𝐻𝐵𝐴 

molecular refractive index, 𝑀𝑅 

Labute's approximate surface area, 𝐴𝑆𝐴 

Topological polar surface area, 𝑇𝑃𝑆𝐴 

Radius of gyration, 𝑅𝑔 
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3.2.1. COSMO-SAC Activity Coefficient Model 

COSMO-SAC-2010 model100, 172 serves as a reliable method for predicting activity 

coefficients based on the principles of solvation thermodynamics173, 174. This model 

requires only the chemical structure of the solute molecule as input. To understand the 

connection between the solvation process and activity coefficients, let's establish some 

key definitions. Firstly, the solvation is defined as an isothermal-isobaric process to 

transfer the solute molecules from a fixed position in an ideal gas phase into a fixed 

position within the solvent phase, without altering the solvent’s composition.174 The 

partial molar Gibbs free energy of a fixed solute molecule i in solvent S is denoted as 

𝐺𝑖/𝑆

∗
 . This term represents the pseudo-chemical potential of the solute, essentially the 

chemical potential 𝐺𝑖/𝑆 excluding the contribution from molecular translational motion 

(i.e. liberation free energy 𝑅𝑇ln(𝑥𝑖𝐶𝑆𝛬𝑖
3)). 

 

𝐺𝑖/𝑆(𝑇, 𝑃, 𝑥) = 𝐺𝑖/𝑆

∗
(𝑇, 𝑃, 𝑥) + 𝑅𝑇ln(𝑥𝑖𝐶𝑆𝛬𝑖

3) (3.2–1) 

 

Here, 𝑥𝑖 is the mole fraction of species i in the solvent S, 𝐶𝑆 is the number density 

of solvent molecules, 𝛬𝑖 =
ℏ

√2𝜋𝑚𝑖𝑘𝑇
  denotes the thermal wavelength of solute i, ℏ 

represents the reduced Plank constant, 𝑚𝑖 represent the mass of a solute particle, and 𝑘 

denotes the Boltzmann constant. The pseudo-chemical potential 𝐺𝑖/𝑆

∗
 is the free energy 

associated with intramolecular degrees of freedom (e.g. vibrational, rotational, electronic, 

and nuclear contributions) and intermolecular interactions. On the other hand, the 

liberation free energy 𝑅𝑇ln(𝑥𝑖𝐶𝑆𝛬𝑖
3) gets its name as it can be interpreted as the required 
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work to enable thermal translational motion of solute in solvent phase. With these 

definitions, we can now define the solvation free energy Δ𝐺𝑖/𝑆

∗,𝑠𝑜𝑙
 . It represents the 

difference between the pseudo-chemical potential of the solute in the solution state 

𝐺𝑖/𝑆

∗
(𝑇, 𝑃, 𝑥) and the ideal gas state 𝐺𝑖/𝑆

∗,𝐼𝐺𝑀
(𝑇, 𝑃, 𝑥).  

 

Δ𝐺𝑖/𝑆

∗,𝑠𝑜𝑙
(𝑇, 𝑃, 𝑥) = 𝐺𝑖/𝑆

∗
(𝑇, 𝑃, 𝑥) − 𝐺𝑖/𝑆

∗,𝐼𝐺𝑀
(𝑇, 𝑃, 𝑥) (3.2–2) 

 

Combining eq (5.2–1) and (5.2–2), we have: 

 

Δ𝐺𝑖/𝑆

∗,𝑠𝑜𝑙
(𝑇, 𝑃, 𝑥) = 𝐺𝑖/𝑆(𝑇, 𝑃, 𝑥) − 𝐺𝑖/𝑆

𝐼𝐺𝑀
(𝑇, 𝑃, 𝑥) + 𝑅𝑇ln (

𝑃

𝐶𝑆𝑘𝑇
) (3.2–3) 

 

According to the definition of activity and eq (3.2–3): 

 

ln 𝑥𝑖𝛾𝑖/𝑆(𝑇, 𝑃, 𝑥) =
𝐺𝑖/𝑆(𝑇, 𝑃, 𝑥) − 𝐺𝑖/𝑖(𝑇, 𝑃)

𝑅𝑇
 

=
Δ𝐺𝑖/𝑆

∗,𝑠𝑜𝑙
(𝑇, 𝑃, 𝑥) − Δ𝐺𝑖/𝑖

∗,𝑠𝑜𝑙(𝑇, 𝑃)

𝑅𝑇
+

𝐺𝑖/𝑆

𝐼𝐺𝑀
(𝑇, 𝑃, 𝑥) − 𝐺𝑖/𝑖

𝐼𝐺(𝑇, 𝑃)

𝑅𝑇
+ ln

𝐶𝑆

𝐶𝑖
 

(3.2–4) 

 

Here, 𝐺𝑖/𝑖 represents the molar free energy of pure fluid i. Given 𝐺𝑖/𝑆

𝐼𝐺𝑀
(𝑇, 𝑃, 𝑥) −

𝐺𝑖/𝑖
𝐼𝐺(𝑇, 𝑃) = 𝑅𝑇ln𝑥𝑖, the activity coefficient of the solute i in the solvent S is determined 

from the free energy difference between the solvated solution state ∆𝐺𝑖/𝑆

∗𝑠𝑜𝑙
  and the 

solvated pure fluid state Δ𝐺𝑖/𝑖
∗,𝑠𝑜𝑙

.173, 175 
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ln 𝛾𝑖/𝑆(𝑇, 𝑃, 𝑥) =
∆𝐺𝑖/𝑆

∗𝑠𝑜𝑙(𝑇, 𝑃, 𝑥) − ∆𝐺𝑖/𝑖
∗𝑠𝑜𝑙(𝑇, 𝑃)

𝑅𝑇
+ ln

𝐶𝑆

𝐶𝑖
 (3.2–5) 

 

The solvation of solute i into the implicit continuum solvent S can be decomposed 

into 7 steps based on COSMO solvation theory101, 175, 176: (a) the charge of the ideal-gas 

solute is turned off. (b) cavity is created within the solvent S in order to accommodate the 

solute molecule, resulting in the cavity formation free energy ∆𝐺𝑖/𝑆

∗𝑐𝑎𝑣
. (c) the charge-

neutral solute is transferred from the gas phase to the cavity in the solvent phase. (d) The 

solvent S is transformed into a perfect conductor with dielectric constant of infinity. (e) 

the charge of the solute is turned on and is completely screened by the perfect conductor, 

resulting in the free energy of ideal solvation ∆𝐺𝑖

∗𝑖𝑠
= 𝐸𝑖

𝐶𝑂𝑆𝑀𝑂 − 𝐸𝑖
𝐼𝐺  . (f) the charge 

density 𝜎𝑛
∗ on each ideal screening surface segment 𝑛 is averaged using eq. (3.2–6), 

resulting in the apparent charge density 𝜎𝑛 and charge averaging correction term ∆𝐺𝑖

∗𝑐𝑐
. 

(g) the averaged screening charges are removed to restore the original solvent S, resulting 

in the restoring free energy ∆𝐺𝑖/𝑆

∗𝑟𝑒𝑠
.  

 

𝜎𝑛 =

∑ 𝜎𝑚
∗

𝑟𝑚
2𝑟𝑒𝑓𝑓

2

𝑟𝑚
2 + 𝑟𝑒𝑓𝑓

2 exp (−𝑓𝑑𝑒𝑐𝑎𝑦
𝑑𝑛𝑚

𝑟𝑚
2 + 𝑟𝑒𝑓𝑓

2 )𝜎𝑚
∗

∑
𝑟𝑚

2𝑟𝑒𝑓𝑓
2

𝑟𝑚
2 + 𝑟𝑒𝑓𝑓

2 exp (−𝑓𝑑𝑒𝑐𝑎𝑦
𝑑𝑛𝑚

𝑟𝑚
2 + 𝑟𝑒𝑓𝑓

2 )𝜎𝑚
∗

 (3.2–6) 

 

Here, 𝑑𝑛𝑚 is the distance (in Å) between the ideal screening surface segments 𝑛 

and 𝑚 . 𝑟𝑒𝑓𝑓 = (𝑎𝑒𝑓𝑓/𝜋)
0.5

  is the effective radius of each surface segment, where 

𝑎𝑒𝑓𝑓 = 7.25 Å2 is the effective surface area of each segment. The unit conversion facto 

𝑓𝑑𝑒𝑐𝑎𝑦 = 3.57  corrects the distance 𝑑𝑚𝑛  from Å  to Bohr radius.172 If dispersive 
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interactions ∆𝐺𝑖/𝑆

∗𝑑𝑠𝑝
 are also considered177-179, the overall solvation free energy can be 

expressed as the sum of the five contributions.  

 

∆𝐺𝑖/𝑆

∗𝑠𝑜𝑙
= ∆𝐺𝑖

∗𝑖𝑠
+ ∆𝐺𝑖/𝑆

∗𝑟𝑒𝑠
+ ∆𝐺𝑖

∗𝑐𝑐
+ ∆𝐺𝑖/𝑆

∗𝑑𝑠𝑝
+ ∆𝐺𝑖/𝑆

∗𝑐𝑎𝑣
 (3.2–7) 

 

In particular, the sum of the first four terms is referred to as the solvation charging 

free energy ∆𝐺𝑖/𝑆

∗𝑐ℎ𝑔
= ∆𝐺𝑖

∗𝑖𝑠
+ ∆𝐺𝑖/𝑆

∗𝑟𝑒𝑠
+ ∆𝐺𝑖

∗𝑐𝑐
+ ∆𝐺𝑖/𝑆

∗𝑑𝑠𝑝
 , as it originates from (either 

permanent or transient) charges and dipoles. On the other hand, the cavity formation 

energy ∆𝐺𝑖/𝑆

∗𝑐𝑎𝑣
 accounts for the molecular size and shape differences among components. 

Since the free energy of ideal solvation ∆𝐺𝑖

∗𝑖𝑠
  and the charge averaging free energy 

∆𝐺𝑖

∗𝑐𝑐
 are only dependent on solute species, they will be cancelled out in the calculation 

of eq. (3.2–5). The dispersion term ∆𝐺𝑖/𝑆

∗𝑑𝑠𝑝
 is assumed to be a weak function of solvent 

(i.e. ∆𝐺𝑖/𝑆

∗𝑑𝑠𝑝
≈ Δ𝐺𝑖/𝑖

∗,𝑑𝑠𝑝
) in COSMO-SAC-2010 model, therefore it also assumed to be 

cancelled out in eq. (3.2–5). Nevertheless, the contribution of dispersion term to the 

activity coefficient is explicitly considered in the later development.179 From these 

arguments, eq. (3.2–5) can be rewritten as eq. (3.2–8). 

 

ln 𝛾𝑖/𝑆 =
∆𝐺𝑖/𝑆

∗𝑟𝑒𝑠 − ∆𝐺𝑖/𝑖
∗𝑟𝑒𝑠

𝑅𝑇
+

∆𝐺𝑖/𝑆
∗𝑐𝑎𝑣 − ∆𝐺𝑖/𝑖

∗𝑐𝑎𝑣

𝑅𝑇
+ ln

𝐶𝑆

𝐶𝑖
 (3.2–8) 

 

In particular, Lin and Sandler175, 180 suggest use Staverman-Guggenheim model181, 

182 to describe the cavity formation term along with the concentration term in eq. (3.2–

8). 
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ln 𝛾𝑖/𝑆
𝑆𝐺 =

∆𝐺𝑖/𝑆
∗𝑐𝑎𝑣 − ∆𝐺𝑖/𝑖

∗𝑐𝑎𝑣

𝑅𝑇
+ ln

𝐶𝑆

𝐶𝑖

= ln (
ϕi

𝑥𝑖
) +

𝑧

2
𝑞𝑖 ln (

𝜃𝑖

𝜙𝑖
) + 𝑙𝑖 −

ϕi

𝑥𝑖
∑𝑥𝑗𝑙𝑗
𝑗

 

(3.2–9) 

 

Here, 𝜃𝑖 = 𝑥𝑖𝑞𝑖/∑𝑥𝑖𝑞𝑖 , 𝜙𝑖 = 𝑥𝑖𝑟𝑖/∑𝑥𝑖𝑟𝑖 , 𝑙𝑖 = (𝑧/2)(𝑟𝑖 − 𝑞𝑖) − (𝑟𝑖 − 1) , 𝑟𝑖 =

𝑉𝑖
𝐶𝑂𝑆𝑀𝑂/𝑟0, 𝑞𝑖 = 𝐴𝑖

𝐶𝑂𝑆𝑀𝑂/𝑞0. 𝑥𝑖 is the mole fraction of species i, 𝑟𝑖 is the normalized 

volume of species i, 𝑟0 = 66.69 Å3  is the reference volume, 𝑞𝑖  is the surface area 

parameters for i, 𝑞0 = 79.53 Å2 is the reference area, and 𝑧 = 10 is the parameter of 

coordination number. 𝑉𝑖
𝐶𝑂𝑆𝑀𝑂  and 𝐴𝑖

𝐶𝑂𝑆𝑀𝑂  are the volume and the surface area of 

species i obtained from COSMO calculations, respectively. 

On the other hand, the determination of restoring free energy ∆𝐺𝑖/𝑆

∗𝑟𝑒𝑠
 is based on 

the screening charge surface obtained from COSMO solvation calculation. The total 

surface area of a solute molecule i, denoted as 𝐴𝑖 , can be factored into three 

contributions100: 𝐴𝑖
𝑁𝐻𝐵(𝜎)  from surface not involved in hydrogen bonding, 𝐴𝑖

𝑂𝐻(𝜎) 

from surface involved in OH-typed hydrogen-bonding, and 𝐴𝑖
𝑂𝑇(𝜎)  from surface 

involved in HF-typed, NH-typed, as well as other special hydrogen bonding such as O in 

ketones and NO2 in nitro compounds. The σ-profile 𝑝𝑖(𝜎), i.e. the probability distribution 

of finding a surface with charge density 𝜎 , can be obtained after a reweighting by a 

gaussian function 𝑝ℎ𝑏(𝜎),  

 

𝑃ℎ𝑏(𝜎) = 1 − exp(
𝜎2

2𝜎𝑜
2
) (3.2–10) 
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𝑝𝑖
𝑁𝐻𝐵(𝜎) =

𝐴𝑖
𝑛ℎ𝑏(𝜎) + 𝐴𝑖

ℎ𝑏(𝜎)[1 − 𝑃ℎ𝑏(𝜎)]

𝐴𝑖
 (3.2–11) 

𝑝𝑖
𝑂𝐻(𝜎) =

𝐴𝑖
𝑂𝐻(𝜎)𝑃ℎ𝑏(𝜎)

𝐴𝑖
 (3.2–12) 

𝑝𝑖
𝑂𝑇(𝜎) =

𝐴𝑖
𝑂𝑇(𝜎)𝑃ℎ𝑏(𝜎)

𝐴𝑖
 (3.2–13) 

𝑝𝑖(𝜎) = 𝑝𝑖
𝑁𝐻𝐵(𝜎) + 𝑝𝑖

𝑂𝐻(𝜎) + 𝑝𝑖
𝑂𝑇(𝜎) (3.2–14) 

 

Here, σ0 = 0.007 𝑒/Å . For a mixture system, its σ-profile is superposed by the 

surface area distribution of each pure component i, with their mole fraction 𝑥𝑖 as the 

weighting factor. 

 

𝑝𝑆(𝜎) =
∑ 𝑥𝑖𝐴𝑖𝑝𝑖(𝜎)𝑐

𝑖

∑ 𝑥𝑖𝐴𝑖
𝑐
𝑖

 (3.2–15) 

 

The σ-profile is utilized to calculate the electrostatic interactions between segments 

𝜎𝑚
𝑡  and 𝜎𝑛

𝑘. Here, the subscript m (or n) refers to the particular surface segment m (or n), 

and the superscript t (or k) indicates the type of the segment, i.e. OH, OT, or NHB. It is 

important to notice that, in COSMO-SAC model, the chemical species in the system are 

regarded as a mixture of the charged surface segments. The probability for two surface 

segments to form an interacting pair is modeled by Boltzmann distribution, as described 

by eq. (3.2–16). Each possible segment pair is microstate assumed to be independent from 

the other pairs. 

 

𝑝𝑆(𝜎𝑚
𝑡 )𝑝𝑆(𝜎𝑛

𝑘) = exp [−
𝐸𝑝𝑎𝑖𝑟(𝜎𝑚

𝑡 , 𝜎𝑛
𝑘) − (𝜇𝑠(𝜎𝑚

𝑡 ) + 𝜇𝑠(𝜎𝑛
𝑡))

𝑘𝑇
] (3.2–16) 
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Here, 𝐸𝑝𝑎𝑖𝑟(𝜎𝑚
𝑡 , 𝜎𝑛

𝑘)  is the self-energy of segment pair (𝜎𝑚
𝑡 , 𝜎𝑛

𝑘) , 𝜇𝑠(𝜎𝑚
𝑡 ) 

represents the segment chemical potential of fragment 𝜎𝑚
𝑡 . Self-energy can be factorized 

into the misfit energy 𝐸𝑚𝑓(𝜎𝑚
𝑡 , 𝜎𝑛

𝑘, 𝑇), hydrogen bonding interaction 𝐸ℎ𝑏(𝜎𝑚
𝑡 , 𝜎𝑛

𝑘), and 

non-electrostatic energy (mostly dispersion) 𝐸𝑛𝑒. 

 

𝐸𝑝𝑎𝑖𝑟(𝜎𝑚
𝑡 , 𝜎𝑛

𝑘) = 𝐸𝑚𝑓(𝜎𝑚
𝑡 , 𝜎𝑛

𝑘, 𝑇) + 𝐸ℎ𝑏(𝜎𝑚
𝑡 , 𝜎𝑛

𝑘) + 𝐸𝑛𝑒 

= (𝐴𝐸𝑆 +
𝐵𝐸𝑆

𝑇2
) (𝜎𝑚

𝑡 + 𝜎𝑛
𝑘)2 − 𝑐ℎ𝑏(𝜎𝑚

𝑡 , 𝜎𝑛
𝑘)(𝜎𝑚

𝑡 − 𝜎𝑛
𝑘)2 + 𝐸𝑛𝑒 

(3.2–17) 

 

To define the segment activity coefficient 𝛤𝑆(𝜎𝑚
𝑡 )  for segment 𝜎𝑚

𝑡  , the charge-

neutral ideal segment mixture (CNISM), where the partial molar free energy of fragment 

𝜎𝑚
𝑡  is 𝜇𝑠

𝐶𝑁𝐼𝑆𝑀(0) = 𝜇𝑠
0(0) + 𝑘𝑇ln𝑝𝑠(𝜎𝑚

𝑡 ), is chosen as the reference system, as shown 

in eq. (3.2–18). 𝜇𝑠
0(0) =

1

2
𝐸𝑝𝑎𝑖𝑟(0,0) is the chemical potential of a pure segment species 

under charge-neutral condition. 

 

ln𝛤𝑆(𝜎𝑚
𝑡 ) =

𝜇𝑠(𝜎𝑚
𝑡 ) − (𝜇𝑠

0(0) + 𝑘𝑇ln𝑝𝑠(𝜎𝑚
𝑡 ))

𝑘𝑇
 (3.2–18) 

 

Note that 𝑝𝑆 , 𝜇𝑠
0(0) , and 𝐸𝑝𝑎𝑖𝑟  in eq (3.2–16) and eq (3.2–18) are known 

information from COSMO calculation. Therefore, it is intuitive to solve eq (3.2–16) first 

for the chemical potential terms, and then substitute the results into eq (3.2–18) to 

calculate ln𝛤𝑆. However, this will lead to a large system of equations. To see this, let the 

number of surface segments with charge density 𝜎𝑞 be 𝑛𝑞, the total number of surface 

segments be 𝑓 = ∑ 𝑛𝑞𝑞  , and 𝑛𝑞𝑣 = 𝑛𝑣𝑞 =
𝑓

2
𝑝𝑆(𝜎𝑞)𝑝𝑆(𝜎𝑣)  be the number of pairs 
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forming from segment q and v. 𝑓 and 𝑛𝑞 are also the known information obtained from 

COSMO calculation. The 𝑛𝑞𝑣  terms contribute 𝑓(𝑓 + 1)/2  unknown variables, and 

the conservation law of segments provide 𝑓 independent equations: 

 

𝑛11 + 𝑛12 + ⋯+ 𝑛1𝑓 = 𝑛1 

𝑛21 + 𝑛22 + ⋯+ 𝑛2𝑓 = 𝑛2 

⋮ 

𝑛𝑓1 + 𝑛𝑓2 + ⋯+ 𝑛𝑓𝑓 = 𝑛𝑓 

(3.2–19) 

 

In addition, there are 𝑓 unknown chemical potential terms 𝜇𝑠(𝜎𝑞), and eq (3.2–16) 

provides 𝑓(𝑓 + 1)/2 independent equations to relate them. It turns out that there are 

𝑓(𝑓 + 3)/2  equations and 𝑓(𝑓 + 3)/2  unknowns are to be solved. The number of 

surface segments for a medium-sized molecule can be up to 3000, therefore the system 

of equations might be impractical to solve. An alternative mathematical form for 𝛤𝑆(𝜎𝑚
𝑡 ) 

is found to facilitate the calculation and enhance the robustness. The key idea is to 

eliminate the chemical potential terms 𝜇𝑠(𝜎𝑚
𝑡 ) and 𝜇𝑠(𝜎𝑛

𝑡) while combining eq (3.2–

16) with (3.2–18). Firstly, summing over all the 𝜎𝑛
𝑘 in eq (3.2–16) can eliminate 𝑝𝑆(𝜎𝑛

𝑘) 

because of the relationship ∑ 𝑝𝑆(𝜎𝑛
𝑘)𝜎𝑛

𝑘 = 1. This leads to an expression for 𝜇𝑠(𝜎𝑚
𝑡 ): 

 

𝜇𝑠(𝜎𝑚
𝑡 ) = 𝑘𝑇ln𝑝𝑆(𝜎𝑚

𝑡 ) − 𝑘𝑇ln [∑exp(−
𝐸𝑝𝑎𝑖𝑟(𝜎𝑚

𝑡 , 𝜎𝑛
𝑘) − 𝜇𝑠(𝜎𝑛

𝑡)

𝑘𝑇
)

𝜎𝑛
𝑘

] (3.2–20) 

 

Substituting eq (3.2–20) for the 𝜇𝑠(𝜎𝑚
𝑡 ) in eq (3.2–18), we have: 
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ln𝛤𝑆(𝜎𝑚
𝑡 ) = −ln [∑exp(−

𝐸𝑝𝑎𝑖𝑟(𝜎𝑚
𝑡 , 𝜎𝑛

𝑘) − 𝜇𝑠(𝜎𝑛
𝑡) + 𝜇𝑠

0(0)

𝑘𝑇
)

𝜎𝑛
𝑘

] (3.2–21) 

 

Using eq (3.2–18) to eliminate 𝜇𝑠(𝜎𝑛
𝑡) term in (3.2–21), we finally arrive at eq. 

(3.2–22). This equation enables us to determine ln𝛤𝑆(𝜎𝑚
𝑡 )  by successive iterations. 

Specifically, 𝛤𝑆(𝜎𝑛
𝑘) is initialized with 0 for every 𝜎𝑛

𝑘, and then the formula on the right-

hand side is continually used to update 𝛤𝑆(𝜎𝑚
𝑡 ). 

 

ln𝛤𝑆(𝜎𝑚
𝑡 ) = − ln [∑𝑝𝑆

𝜎𝑛
𝑘

(𝜎𝑛
𝑘)𝛤𝑆(𝜎𝑛

𝑘) exp (−
𝛥𝑊(𝜎𝑚

𝑡 , 𝜎𝑛
𝑘)

𝑘𝐵𝑇
)] (3.2–22) 

 

Here, Δ𝑊(𝜎𝑚
𝑡 , 𝜎𝑛

𝑘) = 𝐸𝑝𝑎𝑖𝑟(𝜎𝑚
𝑡 , 𝜎𝑛

𝑘) − 𝐸𝑝𝑎𝑖𝑟(0,0) represents the exchange energy 

between fragments 𝜎𝑚
𝑡  and 𝜎𝑛

𝑘. 

 

Δ𝑊(𝜎𝑚
𝑡 , 𝜎𝑛

𝑘) = (𝐴𝐸𝑆 +
𝐵𝐸𝑆

𝑇2
) (𝜎𝑚

𝑡 + 𝜎𝑛
𝑘)2 − 𝑐ℎ𝑏(𝜎𝑚

𝑡 , 𝜎𝑛
𝑘)(𝜎𝑚

𝑡 − 𝜎𝑛
𝑘)2 (3.2–23) 

 

Once the successive iterations in eq. (3.2–22) reach convergence, the restoring 

energy ∆𝐺𝑖/𝑆
∗𝑟𝑒𝑠 can be expressed in terms of fragment contributions:  

 

𝛥𝐺𝑖/𝑆
∗𝑟𝑒𝑠

𝑅𝑇
=

𝐴𝑖

𝑎𝑒𝑓𝑓
∑𝑝𝑖(𝜎𝑚

𝑡 )ln𝛤𝑆(𝜎𝑚
𝑡 )

𝜎𝑚
𝑡

 (3.2–24) 

 

Finally, combining eq (3.2–8), eq (3.2–9) , and eq (3.2–24), we have:  
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ln 𝛾𝑖/𝑆 =
𝐴𝑖

𝑎𝑒𝑓𝑓
∑𝑝𝑖(𝜎𝑚

𝑡 )[ln𝛤𝑆(𝜎𝑚
𝑡 ) − ln𝛤𝑖(𝜎𝑚

𝑡 )]

𝜎𝑚
𝑡

+ ln 𝛾𝑖/𝑆
𝑆𝐺 (3.2–25) 

 

The electrostatic interaction parameters, namely 𝐴𝐸𝑆, 𝐵𝐸𝑆, 𝑐ℎ𝑏(𝜎𝑚
𝑡 , 𝜎𝑛

𝑘), the value 

𝜎0 in the Gaussian function for fragment classification, and the effective interaction area 

𝑎𝑒𝑓𝑓 between the two fragments, are the few parameters required by the COSMO-SAC 

model and can be found in previous literature 100, 175.  

 

3.2.2. Electronic Properties from Quantum Simulations 

The electron density 𝜌(𝐫)  is an important property in quantum mechanical 

calculations, as it determines complete information of a ground state (including the 

external field 𝑣(𝐫)  arisen from presence of nuclei) according to Hohenberg-Kohn 

theorems.183 Its mathematical form is expressed as eq (3.2–26). 

 

𝜌(𝐫) = 𝑁|Ψ(𝐬𝟏, 𝐫𝟏, … , 𝐬𝐍, 𝐫𝐍)|2 (3.2–26) 

𝑁 = ∫𝜌(𝐫)𝑑𝒓 (3.2–27) 

 

Here, 𝑁 is the number of elections in the considered system, Ψ is the normalized 

wave function for the system, 𝐬𝐢  represents the spin state of electron i, 𝐫𝐢  is the 

coordinate of electron i, 𝑑𝒓 = 𝑑𝒔𝟏𝑑𝒓𝟏 ⋯𝑑𝒔𝑵𝑑𝒓𝑵. Based on density functional theory 

(DFT)183, The total energy functional 𝐸[𝜌(𝐫)] is expressed as eq (3.2–43). 
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𝐸[𝜌(𝐫)] = 𝑇[𝜌(𝐫)] + 𝑉𝑒𝑒[𝜌(𝐫)] + 𝑉𝑛𝑒[𝜌(𝐫)]

= 𝑇[𝜌(𝐫)] + 𝑉𝑒𝑒[𝜌(𝐫)] + ∫𝜌(𝐫)𝑣(𝐫)𝑑𝐫 

(3.2–28) 

 

Here, 𝑇[𝜌(𝐫)] is total kinetic energy of the electron system, 𝑉𝑒𝑒[𝜌(𝐫)] is the total 

electron-electron repulsive energy, and 𝑣(𝐫) is external field (in this case, electric field 

produced by the nuclei). With the functional form 𝑣(𝐫)  fixed, we can use Lagrange 

multiplier method to find the lowest total energy 𝐸[𝜌(𝐫)] subjected to eq (3.2–27). 

 

ℒ[𝜌(𝐫), 𝜒𝑚] = 𝐸[𝜌(𝐫)] − 𝜒𝑚 (∫𝜌(𝐫)𝑑𝐫 − 𝑁) (3.2–29) 

 

Here, ℒ[𝜌(𝐫), 𝜒𝑚] is the Lagrangian, 𝜒𝑚 is the Lagrange multiplier for condition 

eq (3.2–27). The functional derivate184 of ℒ[𝜌(𝐫), 𝜒𝑚] with respect to 𝜌(𝐫) is: 

 

𝛿𝐸[𝜌(𝐫)]

𝛿𝜌(𝐫)
− ∫𝜒𝑚𝑑𝐫 = 0 (3.2–30) 

 

On the other hand. we have from eq (3.2–28) that: 

 

𝛿𝐸[𝜌(𝐫)]

𝛿𝑣(𝐫)
= ∫𝜌(𝐫)𝑑𝐫 (3.2–31) 

 

It turns out the total energy functional 𝐸[𝜌(𝐫), 𝑣(𝐫)] can be recasted as166:  
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𝐸[𝜌(𝐫), 𝑣(𝐫)] = ∫ 𝛿𝐸[𝜌(𝐫), 𝑣(𝐫)]
𝜌(𝐫),𝑣(𝐫)

𝜌=0,𝑣=0

 

= ∫
𝛿𝐸[𝜌(𝐫), 𝑣(𝐫)]

𝛿𝜌(𝐫)
𝛿𝜌(𝐫) +

𝛿𝐸[𝜌(𝐫), 𝑣(𝐫)]

𝛿𝑣(𝐫)
𝛿𝑣(𝐫)

𝜌(𝐫),𝑣(𝐫)

𝜌=0,𝑣=0

 

= 𝜒𝑚 ∫∫ 𝛿𝜌(𝐫)
𝜌(𝐫)

𝜌=0

𝑑𝐫 + ∫𝜌(𝐫)∫ 𝛿𝑣(𝐫)
𝑣(𝐫)

𝑣=0

𝑑𝐫 

= 𝜒𝑚𝑁 + ∫𝜌(𝐫)𝑣(𝐫)𝑑𝐫 

(3.2–32) 

 

Here, 𝜒𝑚 = (𝜕𝐸/𝜕𝑁)𝑣  is defined as electronegativity by R. S. Mulliken.185 In 

analogy to thermodynamic depiction, 𝜒𝑚 bears the significance of “chemical potential” 

for the electron system. Now use Taylor expansion to obtain expression for the energy 

functional of anion state 𝐸[𝜌𝑁+1(𝒓)]  and cation state 𝐸[𝜌𝑁−1(𝒓)] . Let 𝜌𝑁+1(𝒓) =

𝜌𝑁(𝒓) + Δ𝜌+(𝒓) and 𝜌𝑁−1(𝒓) = 𝜌𝑁(𝒓) − Δ𝜌−(𝒓), then, 

 

𝐸[𝜌𝑁+1(𝒓)] = 𝐸[𝜌𝑁(𝒓) + Δ𝜌+(𝒓)]

= 𝐸[𝜌𝑁(𝒓)] + ∫(
𝛿𝐸[𝜌𝑁(𝒓)]

𝛿𝜌𝑁(𝒓)
)

𝑣

Δ𝜌+(𝒓)𝑑𝐬𝑑𝐫

+
1

2
∫(

𝛿2𝐸[𝜌𝑁(𝒓)]

𝛿𝜌𝑁(𝒓′)𝛿𝜌𝑁(𝒓′′)
)

𝑣

Δ𝜌−(𝒓′)Δ𝜌−(𝒓′′)𝑑𝒔′𝑑𝒓′𝑑𝐬′′𝑑𝐫′′ + ⋯ 

(3.2–33) 

 

𝐸[𝜌𝑁−1(𝒓)] = 𝐸[𝜌𝑁(𝒓) − Δ𝜌−(𝒓)]

= 𝐸[𝜌𝑁(𝒓)] − ∫(
𝛿𝐸[𝜌𝑁(𝒓)]

𝛿𝜌𝑁(𝒓)
)

𝑣

Δ𝜌−(𝒓)𝑑𝐬𝑑𝐫

+
1

2
∫(

𝛿2𝐸[𝜌𝑁(𝒓)]

𝛿𝜌𝑁(𝒓′)𝛿𝜌𝑁(𝒓′′)
)

𝑣

Δ𝜌−(𝒓′)Δ𝜌−(𝒓′′)𝑑𝒔′𝑑𝒓′𝑑𝐬′′𝑑𝐫′′ + ⋯ 

(3.2–34) 

 

The mathematical forms for ionization potential (𝐸𝐼𝑃 = 𝐸[𝜌
𝑁−1

(𝒓)] − 𝐸[𝜌
𝑁
(𝒓)]) and 
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electron affinity (𝐸𝐸𝐴 = 𝐸[𝜌
𝑁
(𝒓)] − 𝐸[𝜌

𝑁+1
(𝒓)]) can be determined based on eq (3.2–33) 

and (3.2–34), namely: 

 

𝐸𝐸𝐴 = 𝐸[𝜌
𝑁
(𝒓)] − 𝐸[𝜌

𝑁+1
(𝒓)]

= −∫(
𝛿𝐸[𝜌

𝑁
(𝒓)]

𝛿𝜌
𝑁
(𝒓)

)
𝑣

Δ𝜌
+
(𝒓)𝑑𝐬𝑑𝐫

−
1

2
∫(

𝛿2𝐸[𝜌
𝑁
(𝒓)]

𝛿𝜌
𝑁
(𝒓′)𝛿𝜌

𝑁
(𝒓′′)

)
𝑣

Δ𝜌
−
(𝒓′)Δ𝜌

−
(𝒓′′)𝑑𝒔′𝑑𝒓′𝑑𝐬′′𝑑𝐫′′ + ⋯ 

(3.2–35) 

 

𝐸𝐼𝑃 = 𝐸[𝜌
𝑁−1

(𝒓)] − 𝐸[𝜌
𝑁
(𝒓)]

= −∫(
𝛿𝐸[𝜌

𝑁
(𝒓)]

𝛿𝜌
𝑁
(𝒓)

)
𝑣

Δ𝜌
−
(𝒓)𝑑𝐬𝑑𝐫

+
1

2
∫(

𝛿2𝐸[𝜌
𝑁
(𝒓)]

𝛿𝜌
𝑁
(𝒓′)𝛿𝜌

𝑁
(𝒓′′)

)
𝑣

Δ𝜌
−
(𝒓′)Δ𝜌

−
(𝒓′′)𝑑𝒔′𝑑𝒓′𝑑𝐬′′𝑑𝐫′′ + ⋯ 

(3.2–36) 

 

The electronegativity 𝜒𝑚  is determined as the arithmetic average of mean 

(
𝛿𝐸[𝜌𝑁(𝒓)]

𝛿𝜌𝑁(𝒓)
)
𝑣
 in eq (3.2–35) and eq (3.2–36). 

 

𝜒𝑚 = −(
𝜕𝐸

𝜕𝑁
)
𝑣

≈
1

2
(−

𝐸𝐸𝐴

∫ Δ𝜌
+
(𝒓)𝑑𝐬𝑑𝐫

−
𝐸𝐼𝑃

∫ Δ𝜌
−
(𝒓)𝑑𝐬𝑑𝐫

) = −
𝐸𝐼𝑃 + 𝐸𝐸𝐴

2
 (3.2–37) 

 

Note that ∫Δ𝜌+(𝒓)𝑑𝐬𝑑𝐫 = ∫Δ𝜌−(𝒓)𝑑𝐬𝑑𝐫 = 1 . Similarly, the arithmetic average of 

mean (
𝛿2𝐸[𝜌𝑁(𝒓)]

𝛿𝜌𝑁(𝒓′)𝛿𝜌𝑁(𝒓′′)
)
𝑣
  in eq (3.2–35) and eq (3.2–36) is defined as the chemical 

hardness 𝜂. 
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𝜂 =
1

2
(
𝜕2𝐸

𝜕𝑁2
) ≈

1

2
[−

2𝐸𝐸𝐴

2(∫Δ𝜌+(𝒓)𝑑𝐬𝑑𝐫)
2 +

2𝐸𝐼𝑃

2(∫Δ𝜌−(𝒓)𝑑𝐬𝑑𝐫)
2] =

𝐸𝐼𝑃 − 𝐸𝐸𝐴

2
 (3.2–38) 

 

Now use the number of electrons in system, i.e. 𝑁, in place of density functional 

𝜌𝑁(𝒓), we have: 

 

𝐸(𝑁) = 𝐸(𝑁0) + (
𝜕𝐸

𝜕𝑁
)
𝑣

(𝑁 − 𝑁0) +
1

2
(
𝜕2𝐸

𝜕𝑁2
)

𝑣

(𝑁 − 𝑁0)
2 + ⋯

= 𝐸(𝑁0) − 𝜒𝑚(𝑁 − 𝑁0) + 𝜂(𝑁 − 𝑁0)
2 + ⋯ 

(3.2–39) 

 

Here, 𝑁0 represented the number of electrons in the unperturbed system. Systems 

governed by eq (3.2–39) has a saturation threshold for gaining bound electrons. This is 

because after saturation the addition of elections no longer influences energy 𝐸(𝑁) , 

which implies that these excessive ones are free electrons.97 To determine this threshold 

𝑁𝑚𝑒, find the extremum of eq (3.2–39) with respect to 𝑁. 

 

𝑑𝐸(𝑁)

𝑑𝑁
|
𝑁𝑚𝑒

= −𝜒𝑀 + 2𝜂(𝑁𝑚𝑒 − 𝑁0) = 0 (3.2–40) 

𝑁𝑚𝑒 − 𝑁0 =
𝜒𝑚

2𝜂
 (3.2–41) 

 

The energy to corresponding to the maximum number of elections (𝑁𝑚𝑒) is 

 

𝐸(𝑁𝑚𝑒) = 𝐸(𝑁0) −
𝜒𝑚

2

2𝜂
+

𝜒𝑚
2

4𝜂2
 (3.2–42) 
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In particular, 𝜔 =
𝜒𝑚

2

2𝜂
=

(𝐸𝐼𝑃+𝐸𝐸𝐴)2

4(𝐸𝐼𝑃−𝐸𝐸𝐴)
  is defined as the electrophilicity index, 

representing an approximate energy decrease with respect to the state of bound electron 

saturation. The electronegativity 𝜒𝑚 , hardness 𝜂 , and electrophilicity index 𝜔  are 

employed in studies on chemical reactivity, stability, reaction selectivity, reaction 

mechanisms, and kinetic modeling. For example, electronegativity 𝜒𝑚  is utilized in 

constructing kinetic models for radical polymerization.186-188 Hardness 𝜂 itself serves as 

a measure of chemical stability, characterizing the fundamental energy gap2, 165. 

Additionally, it forms the basis of HSAB theory189 (Hard and Soft Lewis Acid and Base), 

which states “hard likes hard and soft likes soft” in acid-base reaction. The electrophilicity 

index 𝜔 measures chemical reactivity in electrophilic (i.e. electron-accepting) reactions 

and is valuable in understanding aromaticity, superacidity, and spectral shifts in molecular 

systems167. 

 

3.2.3. Synthetic Accessibility Score (SAscore) 

The synthetic accessibility score (SAscore)64, 168 is a metric used to evaluate the 

molecular structural complexity and non-usuality. From its definition, the synthetic 

accessibility goes from high to low as SAscore goes from 1.0 to 10.0. It is established by 

analyzing the molecular structural complexity and the occurrence of molecular fragments 

in a subset (934,064 species) of PubChem database. To calculate 𝑆𝐴𝑠𝑐𝑜𝑟𝑒(𝒖𝒊)  for 

molecular species 𝒖𝒊 , the raw fragment score 𝑆𝑐𝑜𝑟𝑒𝐹(𝒖𝒊)  and raw complexity score 

𝑆𝑐𝑜𝑟𝑒𝐶(𝒖𝒊) need to be calculated in advance. 

Particularly, the evaluation of raw fragment score 𝑆𝑐𝑜𝑟𝑒𝐹(𝒖𝒊) relies on a fragment 

scoring dictionary 𝐹𝑟𝑎𝑔𝑑𝑖𝑐𝑡 = {(𝐹𝑟𝑎𝑔𝑗 , 𝐹𝑟𝑎𝑔𝑆𝑐𝑜𝑟𝑒𝑗), 𝑗 = 1,2, … }, which is given in 

RDKit package.64 In this dictionary, high scores are assigned to the most common 
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fragments encountered within the PubChem subset. Conversely, fragments not found in 

this subset are assigned a default raw score of -4.0. The raw fragment score for molecular 

species 𝒖𝒊, i.e. 𝑆𝑐𝑜𝑟𝑒𝐹(𝒖𝒊), is determined as the averaged raw score per fragment in 𝒖𝒊.  

 

𝑆𝑐𝑜𝑟𝑒𝐹(𝒖𝒊) =
∑ 𝑛𝑘(𝒖𝒊) 𝐹𝑟𝑎𝑔𝑆𝑐𝑜𝑟𝑒𝑘𝑘

∑ 𝑛𝑘(𝒖𝒊)𝑘

 (3.2–43) 

 

Here, 𝑛𝑘(𝒖𝒊)  is the number of 𝐹𝑟𝑎𝑔𝑘  occurrences in 𝒖𝒊 , which can be 

determined from the Morgan fingerprint calculated using RDKit. 𝐹rag𝑆𝑐𝑜𝑟𝑒𝑘 = −4.0 

if 𝐹𝑟𝑎𝑔𝑑𝑖𝑐𝑡[𝐹𝑟𝑎𝑔𝑘] = ∅ . On the other hand, complexity score 𝑆𝑐𝑜𝑟𝑒𝐶(𝒖𝒊)  is 

determined from the number of stereo-genic centers, cyclic substructures, constituent 

atoms, and the number of feature types possessed by the molecular species. Here, the 

treatment of 𝑆𝑐𝑜𝑟𝑒𝐶(𝒖𝒊)  in RDKit is presented. This is slightly different from the 

original implementation.168 

 

𝑆𝑖𝑧𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝒖𝒊) = 𝑛𝐴𝑡𝑜𝑚(𝒖𝒊)
1.005 − 𝑛𝐴𝑡𝑜𝑚(𝒖𝒊) (3.2–44) 

𝑆𝑡𝑒𝑟𝑒𝑜𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝒖𝒊) = log (𝑛𝑆𝑡𝑒𝑟𝑒𝑜𝐶𝑒𝑛𝑡𝑒𝑟𝑠(𝒖𝒊) + 1) (3.2–45) 

𝑆𝑝𝑖𝑟𝑜𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝒖𝒊) = log (𝑛𝑆𝑝𝑖𝑟𝑜𝐴𝑡𝑜𝑚𝑠(𝒖𝒊) + 1) (3.2–46) 

𝑀𝑎𝑐𝑟𝑜𝐶𝑦𝑐𝑙𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝒖𝒊) = 𝑙𝑜𝑔[min(1, 𝑛𝑀𝑎𝑐𝑟𝑜𝐶𝑦𝑐𝑙𝑒𝑠(𝒖𝒊)) + 1] (3.2–47) 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝐹𝑔𝑝𝐷𝑒𝑛(𝒖𝒊) = 0.5 ln [max (1,
𝑛𝐴𝑡𝑜𝑚𝑠(𝒖𝒊)

𝑛𝐹𝑔𝑝𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑇𝑦𝑝𝑒𝑠(𝒖𝒊)
)] (3.2–48) 

𝑆𝑐𝑜𝑟𝑒𝐶(𝒖𝒊) = −𝑆𝑖𝑧𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝒖𝒊) − 𝑆𝑡𝑒𝑟𝑒𝑜𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝒖𝒊)

− 𝑆𝑝𝑖𝑟𝑜𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝒖𝒊) − 𝑀𝑎𝑐𝑟𝑜𝐶𝑦𝑐𝑙𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝒖𝒊)

− 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝐹𝑔𝑝𝐷𝑒𝑛(𝒖𝒊) 

(3.2–49) 
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Raw SAscore is defined as eq (3.2–50). If 𝑟𝑎𝑤𝑆𝐴𝑠𝑐𝑜𝑟𝑒(𝒖𝒊) > 8, smooth the 10-

end using natural log function, as (3.2–51) shows. 

 

𝑟𝑎𝑤𝑆𝐴𝑠𝑐𝑜𝑟𝑒(𝒖𝒊) = 11.0 −
9.0

6.5
[𝑆𝑐𝑜𝑟𝑒𝐹(𝒖𝒊) + 𝑆𝑐𝑜𝑟𝑒𝐶(𝒖𝒊) + 5.0] (3.2–50) 

𝑟𝑎𝑤𝑆𝐴𝑠𝑐𝑜𝑟𝑒(𝒖𝒊) = 8.0 + ln [𝑟𝑎𝑤𝑆𝐴𝑠𝑐𝑜𝑟𝑒(𝒖𝒊) − 8.0] (3.2–51) 

 

Finally, scaling the 𝑟𝑎𝑤𝑆𝐴𝑠𝑐𝑜𝑟𝑒(𝒖𝒊)  to closed interval [1.0, 10.0] , obtain 

𝑆𝐴𝑠𝑐𝑜𝑟𝑒(𝒖𝒊). 

 

𝑆𝐴𝑠𝑐𝑜𝑟𝑒(𝒖𝒊) = max(min[10.0, 𝑟𝑎𝑤𝑆𝐴𝑠𝑐𝑜𝑟𝑒(𝒖𝒊)] , 1.0) (3.2–52) 

 

It should be noted that SAscore does not explicitly evaluate the level of difficulty in 

synthesizing a chemical through reactions. It is more like a metric to assess molecular 

structural complexity and similarity with common chemicals. Also note that raw fragment 

score 𝑆𝑐𝑜𝑟𝑒𝐹(𝒖𝒊)  will be −4.0  for a chemical not possessing any fragment in the 

fragment scoring dictionary 𝐹𝑟𝑎𝑔𝑑𝑖𝑐𝑡 . In this scenario. 𝑟𝑎𝑤𝑆𝐴𝑠𝑐𝑜𝑟𝑒(𝒖𝒊)  will be 

greater than [11.0 −
9.0

6.5
(−4.0 + 5.0)] = 4.08  according to (3.2–50). It is therefore 

reasonable to consider 𝑆𝐴𝑠𝑐𝑜𝑟𝑒(𝒖𝒊) = 4.0  to be a rough dividing line of synthetic 

accessibility. 

 

3.2.4. Synthetic Complexity Score (SCscore) 

The synthetic complexity score (SCscore)169 is a metric used to evaluate the level of 

difficulty in synthesizing a particular chemical. Specifically, the level of difficult is 

quantified by the required number of reaction steps. From its definition, the synthetic 
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complexity goes from low to high as SCscore goes from 1.0 to 5.0. It is established by 

employing a 6-layer neural network model to learn 12 million reactions from Reaxy 

database. Notably, during training, it is required that the product complexity should 

always be greater than the complexity of any of the reactant. To calculate 𝑆𝐶𝑠𝑐𝑜𝑟𝑒(𝒖𝒊) 

for molecular species 𝒖𝒊, it is necessary to prepare Morgan fingerprint 𝑀𝐺𝐹𝑔𝑝(𝒖𝒊) in 

advance. The model details are presented in Table 3.2-3. 

 

Table 3.2-3. The dimensions of every layer in SCscore model. 

Layer 𝑗 Weight 𝑾𝒋 Bias 𝒃𝒋 

Normalized layer output 𝒔𝒋 

𝒔𝒋 = Normalize(𝒔𝒋−𝟏𝑾𝒋 + 𝒃𝒋) 

j = 1 1024 × 300 1 × 300 

ReLU: let every negative entry in 

(𝒔𝒋−𝟏𝑾𝒋 + 𝒃𝒋) be 0 

j = 2 300 × 300 1 × 300 

j = 3 300 × 300 1 × 300 

j = 4 300 × 300 1 × 300 

j = 5 300 × 300 1 × 300 

j = 6 300 × 300 1 × 1 Softmax: 𝒔𝒋 = 1.0 +
4.0

1.0 +exp[−(𝒔𝒋−𝟏𝑾𝒋+𝒃𝒋)]
 

†𝒔𝟎 = 𝑀𝐺𝐹𝑔𝑝(𝒖𝒊) is the fingerprint for species 𝒖𝒊 in 1 × 1024 dimensions.  

††The normalized output 𝒔𝟔 is the 𝑆𝐶𝑠𝑐𝑜𝑟𝑒(𝒖𝒊) for species 𝒖𝒊. 

 

Since the SAscore and SCscore evaluate different aspects of synthetic feasibility, 

combining them can provide more comprehensive insights. Consider a sequential reaction 

in which the SAscore and SCscore are evaluated for every (intermediate) product. From 

the perspective of SCscore, a practical sequential reaction should exhibit a monotonically 

increasing SCscore curve with respect to reaction steps. Therefore, if a decline in the 
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SCscore is observed, it suggests that the reverse reaction may be more practical. 

Conversely, a surge in the SAscore curve indicates that rare and complex substructures, 

such as rings, have been formed through the reaction steps. If the SAscore significantly 

decreases while the SCscore significantly increases throughout the reaction steps, it is 

advisable to directly purchase the end product (or its precursor) from chemical suppliers. 

169 

It should be emphasized that reaction steps associated with reasonable variations in 

SAscore and SCscore curves are not necessarily practical. To identify the most realistic 

reaction pathway, one may resort to computer-assisted synthesis planning (CASP)126 

software, such as AiZynthFinder125 and ASKCOS126. When provided with a chemical, 

CASP software plans practical reaction steps for synthesizing the chemical from common 

precursors. 
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3.3. Reverse Algorithm (I): MARS+ Package 

3.3.1. Structure Manipulations – uni-molecular operations 

The mutation operation modifies the based elements within a molecule within the 

context of Myelodysplastic Syndromes (MDS) research. MARS+ offers 9 distinct 

mutation methods: addition, subtraction, insertion, element change, bond change, 

cyclization, decyclization, cis-trans inversion, and chirality inversion. Figure 3.3-1 

illustrates each of these 9 operations. Notably, the addition, subtraction, bond change, 

and cyclization operations have been refined from previous versions of MARS to enhance 

capability, stability, and reliability. These operations are detailed below: 

 

⚫ Addition: This operation introduces a new element with a specified bond order to a 

molecule. The introduced element must possess a free valence compatible with the 

specified bond order. If either the existing molecule or the introduced element lacks 

the necessary free valence, the addition is cancelled. Addition leads to a new branch 

substructure, as the introduced element becomes an endpoint in the molecular graph. 

 

⚫ Subtraction: This operation removes a designated element from the molecule. The 

removed element's parent and descendant elements are then connected with a user-

specified bond order, while preserving the remaining molecular connectivity. 

However, the operation is cancelled if the resulting valences of the parent or 

descendant elements are incompatible. 

 

⚫ Insertion: This operation introduces a new element between two connected elements 

in a molecule. The insertion involves replacing the existing bond between them with 
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a specified substructure containing a central element and its connecting bond orders, 

i.e. “[bond_I][element][bond_II]”. Both originally connected elements must possess 

free valences compatible with the specified substructure for the insertion to proceed. 

Otherwise, the operation is cancelled. 

 

⚫ Element Change: This operation modifies an element and its associated bond orders 

with its parent and descendant elements. Essentially, it replaces a substructure of the 

form "[bond_I][element][bond_II]" with a new element and its compatible bond 

orders. Compatibility checks are performed to ensure the new element can connect 

appropriately with the parent and descendant elements. 

 

⚫ Bond Change: This operation modifies a bond order and the elements at its two ends, 

effectively replacing a substructure of the form "[element_I][bond][element_II]" 

with a different substructure of the same form. Similar to element change, 

compatibility checks are performed to ensure the new substructure can connect 

seamlessly with the surrounding elements. 

 

⚫ Cyclization: This operation generates a cyclic substructure with at least five member 

elements in the ring. This lower limit is set to avoid torsional hindrance issues 

commonly encountered in smaller cyclic substructures, but it can be adjusted if 

required. Cyclization involves labeling two designated elements with the same cyclic 

flag (a unique identifier) and then connecting them with a specified bond order. If 

either element lacks the necessary free valence for the specified bond order, the 

cyclization is cancelled. 
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⚫ Decyclization: This operation breaks open a cyclic substructure identified by a 

specific cyclic flag number. The cyclic bond order is reverted to regular bonds on the 

two relevant atoms. Subsequently, the remaining cyclic flags are renumbered to 

maintain consecutive numbering. 

 

⚫ Cis-Trans Inversion: This operation flips the cis-trans isomerism of a double bond. 

It essentially changes the notation in the array of cis-trans front/end flags from "\" to 

"/" (or vice versa). 

 

⚫ Chirality Inversion: This operation modifies the chirality of a chiral center. It flips 

the chirality flag from 1 (representing anti-clockwise winding) to 2 (representing 

clockwise winding) or vice versa. Notably, MARS+ assigns default isomerisms (trans 

and clockwise winding) when a potentially isomeric substructure is formed during 

other operations. 

 

It is important to note that some operations may generate double-bond or triple-bond 

free valences. For instance, the addition operation can introduce a C(=)(-)(-) element (ID 

= 2) that forms a single bond with the molecule. In this scenario, the remaining (=)(-) 

bonds become free valences, implicitly representing attachment points for three hydrogen 

atoms. These free valences can be utilized in subsequent operations. 
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Figure 3.3-1. Illustration of the nine uni-molecular operations. Reprinted with permission from the reference163. Copyright 2023 American 

Chemical Society.
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3.3.2. Structure Manipulations – bi-molecular operations 

In addition to mutation operations, MARS+ offers functionalities for generating new 

molecules by combining fragments from two existing molecules or exchanging 

substructures between them. These bi-molecular operations provide a powerful tool for 

exploring chemical space. Here, we describe the two bi-molecular operations: crossover 

and combination. 

 

⚫ Crossover: The crossover operation mimics the biological process of chromosome 

crossover during meiosis. It generates new molecules by exchanging fragments 

between two input molecules. This operation requires specifying a bond from each 

of input molecule as the crossover point. If the bond orders of the designated 

crossover points are identical, the operation exchanges the molecular fragments 

based on those points. Figure 3.3-2 exemplifies the crossover operation between 

[C4mim] and [P4,4,4,4], resulting in the generation of [C4C3im] and [P2,4,4,4]. If 

crossover leads to unpaired cyclic flags in fragments, the ring will be destructed. 

 

⚫ Combination: The combination operation merges two input molecules 

into a single new molecule by forming a bond between designated points on each 

molecule. This operation involves selecting one element from each input molecule 

and a free valence from each chosen element. If the bond orders of the selected free 

valences are the same, the operation connects the two molecules through these free 

valences. Figure 3.3-2 illustrates one possible combination product of [C4mim] and 

[P4,4,4,4]. Notably, MARS+ allows for flexibility in choosing any single element 

from each molecule for the combination operation. 
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Figure 3.3-2. Illustration of the two bi-molecular operations. The crossover point is represented by the scissor symbol, while the combination 

point is denoted by the brown arrow. Adapted with permission from the reference163. Copyright 2023 American Chemical Society. 
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3.3.3. Structure Manipulations – bi-supermolecular operations 

MARS+ introduces a distinctive operation known as component swap, which differs 

from the uni-molecular and bi-molecular operations discussed earlier. Unlike these 

operations, which are aimed at generating new molecular structures, component swap 

delves into the combinatorial space spanned by existing chemical components, without 

creating novel molecular entities. This operation is pivotal in exploring diverse chemical 

formulations. 

Essentially, component swap exchanges two specified components between two 

separate supermolecules. For instance, in the context of Molecular Data Structure (MDS) 

representation for ionic liquids, where a cation and an anion are distinct components, 

component swap allows for the interchange of either the cation or the anion components. 

Figure 3.3-3 provides an example demonstrating an anion swap operation applied to two 

distinct ionic liquids.  
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Figure 3.3-3. Illustration of the component swap operation. Reprinted with permission from the reference163. Copyright 2023 American 

Chemical Society. 
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3.3.4. Transformation of SMILES into MDS (smi2mds) 

In a CAMD task, the starting chemical species can be either generated randomly 

from pre-defined libraries or user-specified. In particular, the latter scenario necessitates 

robust descriptors for transforming other molecular input formats into the MDS 

representation. MARS+ utilizes SMILES (Simplified Molecular Input Line Entry System) 

strings as the standard input and output format in its applications in CAMD tasks. To 

realize input transformation, MARS+ integrates functions from the OpenBabel C++ API. 

Here's a breakdown of the process: 

 

⚫ SMILES Input and Conversion: The input SMILES string is stored in a variable 

named SMILES_stringstream. The smi2mds_OBabel() function utilizes the 

OpenBabel conversion object (OBConversion) to transform the SMILES string into 

a 3D Open Babel Molecular object (OBMol). 

 

⚫ Enriching the OBMol Object: Initially, the OBMol object lacks hydrogen atoms 

and atomic coordinates. The AddHydrogens() function adds implicit hydrogen atoms 

to the molecule.The Build() function calculates 3D coordinates for each atom. These 

steps are crucial for accurate isomerism perception. 

 

⚫ Isomerism Detection: The HasCisTransStereo() function checks for the presence of 

cis/trans isomers in the molecule. The HasTetrahedralStereo() function checks for 

the presence of tetrahedral stereocenters (potential chiral centers). If isomers are 

detected, detailed information can be retrieved using GetCisTransStereo() and 

GetTetrahedralStereo() functions. 
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⚫ Data Extraction and MDS Conversion: Loops like FOR_BONDS_OF_MOL 

and FOR_ATOMS_OF_MOL iterate through the OBMol object to access 

information about bonds, atom types, and detected isomerisms. The 

smi2mds_OBabel() function, defined in the src/MOLECULE.cpp file, utilizes 

this extracted data to construct the corresponding MDS for the molecule. 

 

For a more in-depth explanation of the technical details, refer to Algorithm 1 in 

Appendix A. 

 

3.3.5. Transformation of MDS into SMILES (mds2smi()) 

MARS+ offers the mds2smi() function (defined in src/MOLECULE.cpp) to convert 

a MDS to a SMILES string. This conversion process relies on two helper matrices: Bindex 

and atomsmi. Bindex is a two-dimensional matrix where each row Bindex[i] corresponds 

to the (i+1)-th element in the MDS. Initially, Bindex[i] is a copy of the bond orders 

defined for that element in the MDS (section 3.1.1). As the conversion progresses, for 

each (j+1)-th valence of element i used to form a bond with another element within the 

molecule, the corresponding entry in Bindex[i] (i.e., Bindex[i][j]) is set to 0. 

Consequently, the remaining non-zero values in Bindex[i] represent the element's free 

valences, which are assumed to be connected to implicit hydrogen atoms in the SMILES 

output. 

Similarly, atomsmi is a two-dimensional matrix where each row atomsmi[i] maps 

the SMILES of the (i+1)-th element to proper output positions in the overall molecular 

SMILES string, so as to form a valid SMILES. This mapping is determined by the 

molecular connectivity specified by Bindex. For instance, in the case of ethane (canonical 
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SMILES: CC), the positions of C characters in the output SMILES string depend on how 

the carbons are connected, a process detailed in Algorithm 2 in Appendix A.  

Once the raw SMILES representation is generated with the aid of atomsmi, it can be 

canonicalized using the Open Babel API. Moreover, Open Babel supports the conversion 

of SMILES into various other chemoinformatic formats such as MOLfile and GJFfile, 

broadening the utility and compatibility of the output data. 

 

3.4. Reverse Algorithm (II): Selection Algorithms 

3.4.1. Fitness Function 

As mentioned in section 2.1, the optimality of a designed species 𝒖𝒊  (at 

thermodynamic state 𝒘𝒊 ) is characterized from fitness function 𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒊, 𝒘𝒊; 𝒕)  or 

objective function 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖𝒊, 𝒘𝒊; 𝒕)  in view of the mathematical framework. In this 

work, we choose to use fitness function 𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒊, 𝒘𝒊; 𝒕) , which by its significance 

should give higher score as the molecular properties are closer to the target values. The 

most straightforward way to formulate a fitness functions is to utilize the discrepancy 

between predicted molecular properties 𝒇(𝒛(𝒖𝒊), 𝒘𝒊) =

[𝑓1(𝒛(𝒖𝒊), 𝒘𝒊); … ; 𝑓𝑝+𝑞(𝒛(𝒖𝒊), 𝒘𝒊)]  and the properties specifications 𝒕 = [𝑡1, … , 𝑡𝑛] 

(see section 2.1 for notations). For convenience, the absolute deviation of molecular 

property j from the corresponding target value is denoted as Δ𝑗(𝒖𝒊, 𝒘𝒊; 𝒕) =

|𝑓𝑗(𝒛(𝒖𝒊), 𝒘𝒊) − 𝑡𝑗|. The averaged absolute deviation over the n properties is denoted as 

〈Δ𝑗(𝒖𝒊, 𝒘𝒊; 𝒕)〉 = ∑ Δ𝑗(𝒖𝒊, 𝒘𝒊; 𝒕)
𝑛
𝑗 /𝑛. 

Note that it is often difficult to predict whether there will be at least a designed 

chemical species 𝒖𝒊  that makes Δ𝑗(𝒖𝒊, 𝒘𝒊; 𝒕)  go infinity during the optimization 

process, as it depends on the nature of the chemical species 𝐮𝐢  and the property 
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estimation method 𝑓𝑗 for each of the property j. For this robustness issue, it is the best 

practice to devise a well-behaved and finite-bounded fitness function that can map 

Δ𝑗(𝒖𝒊, 𝒘𝒊; 𝒕) to a finite value even when Δ𝑗(𝒖𝒊, 𝒘𝒊; 𝒕) is infinite. For this purpose, the 

mathematical form we use is: 

 

𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒊, 𝒘𝒊; 𝒕) = 𝐴 −
𝐵

1.0 + 𝐶 exp (
−〈Δ𝑗(𝒖𝒊, 𝒘𝒊; 𝒕)〉

𝐷 )

 
(3.4–1) 

 

Here, 𝐴, 𝐵, and 𝐶 are positive coefficients that determine the higher bound (eq. 

(3.4–2)) and lower bound (eq. (3.4–3)) of fitness, and 𝐷 is a positive coefficient that 

affects the decaying rate of fitness with respect to 〈Δ𝑗(𝒖𝒊, 𝒘𝒊; 𝒕)〉.  

 

𝐹𝑖𝑡𝑓𝑐𝑛ℎ𝑏𝑛𝑑 = 𝐴 −
𝐵

1.0 + 𝐶
 (3.4–2) 

𝐹𝑖𝑡𝑓𝑐𝑛𝑙𝑏𝑛𝑑 = 𝐴 − 𝐵 (3.4–3) 

  

These parameters are empirically set as 𝐴 = 6.0, 𝐵 = 5.0, 𝐶 = 4.0, and 𝐷 = 3.0, 

with 𝐹𝑖𝑡𝑓𝑐𝑛ℎ𝑏𝑛𝑑 = 5.0  and 𝐹𝑖𝑡𝑓𝑐𝑛𝑙𝑏𝑛𝑑 = 1.0 . The decay of fitness with respect to 

〈Δ𝑗(𝒖𝒊, 𝒘𝒊; 𝒕)〉 is shown in Figure 3.4-1.  
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Figure 3.4-1. The relationship between fitness (eq. (3.4–1)) and the mean deviation of 

properties from targets 〈Δ𝑗(mi, si; 𝑡)〉 with parameter A=6, B=5, C=4, and D=3. 

 

3.4.2. Selection Algorithms 

Let 𝑁𝑝𝑜𝑝𝑢 be the number of chemical entities at the current iteration 𝑛, denoted by 

the set 𝑃𝑜𝑝𝑢𝑛 = {(𝒖𝟏
𝒏, 𝒘𝟏

𝒏), … , (𝒖𝑵𝒑𝒐𝒑𝒖

𝒏 , 𝒘𝑵𝒑𝒐𝒑𝒖

𝒏 )} , where 𝒖  represents chemical 

structure and 𝒘 represents thermodynamics state. A selection algorithm 𝑷 is employed 

to sample a specific number of entities from 𝑃𝑜𝑝𝑢𝑛. This sample, denoted by the set 

𝑆𝑒𝑙𝑛, may contain duplicates due to the possibility of repeated selections. Subsequently, 

genetic operators are applied to the chemicals within 𝑆𝑒𝑙𝑛  to generate new chemical 

entities. The collection of these newly generated chemicals is denoted by 𝐺𝑒𝑛𝑛. We have 

implemented several selection algorithms 𝑷 to select chemicals from (𝑃𝑜𝑝𝑢𝑛 ∪ 𝐺𝑒𝑛𝑛) 

as the subject chemicals in the next iteration. In other words, 𝑷(𝑃𝑜𝑝𝑢𝑛 ∪ 𝐺𝑒𝑛𝑛) =

{(𝒖𝒂
𝒏, 𝒘𝒂

𝒏), (𝒖𝒃
𝒏, 𝒘𝒃

𝒏), (𝒖𝒄
𝒏, 𝒘𝒄

𝒏), … } = 𝑃𝑜𝑝𝑢𝑛+1. 

0.0

1.0

2.0

3.0

4.0

5.0

0.0 5.0 10.0 15.0 20.0 25.0

F
it

fc
n

(u
i,w

i;
 t

)

‹Δ
𝑗
(ui,wi; t)›



doi:10.6342/NTU202403528

84 

 

 

⚫ New-species Roulette Wheel (RW) 

This scheme only selects from the newly generated chemicals, i.e. 𝑷(𝐺𝑒𝑛𝑛) =

{(𝒖𝒂
𝒏, 𝒘𝒂

𝒏), (𝒖𝒃
𝒏, 𝒘𝒃

𝒏), (𝒖𝒄
𝒏, 𝒘𝒄

𝒏), … } = 𝑃𝑜𝑝𝑢𝑛+1 . The probability for a chemical to be 

selected to the next iteration is determined by the fraction of its fitness in 𝐺𝑒𝑛𝑛. 

 

𝑃𝑅𝑊(𝒖𝒊
𝒏, 𝒘𝒊

𝑛; 𝒕) =
𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒊

𝒏, 𝒘𝒊
𝑛; 𝒕)

∑ 𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒋
𝒏, 𝒘𝒋

𝑛; 𝒕)
𝐺𝑒𝑛𝑛
𝑗

 (3.4–4) 

 

⚫ Linearly-scaled Individual Fitness (LSIF) 

Similar to RW, this scheme only selects from the newly generated chemicals, i.e. 

𝑷(𝐺𝑒𝑛𝑛) = {(𝒖𝒂
𝒏, 𝒘𝒂

𝒏), (𝒖𝒃
𝒏, 𝒘𝒃

𝒏), (𝒖𝒄
𝒏, 𝒘𝒄

𝒏), … } = 𝑃𝑜𝑝𝑢𝑛+1 . The probability for a 

chemical to be selected to the next iteration is determined solely by its normalized fitness. 

The normalization constant is the higher bound of the fitness function, i.e. eq (3.4–2). 

 

𝑃𝐿𝑆𝐼𝐹(𝒖𝒊
𝒏, 𝒘𝒊

𝑛; 𝒕) =
𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒊

𝒏, 𝒘𝒊
𝒏; 𝒕)

𝐴 −
𝐵

1.0 + 𝐶

 (3.4–5) 

 

⚫ Simulated Annealing (SA) 

We called it a child chemical when the chemical is generated from applying genetic 

operators to its parent chemicals. This scheme compares a child chemical (𝒙𝒊
𝒏, 𝒚𝒊

𝒏) ∈

𝐺𝑒𝑛𝑛 with its parent chemicals (𝒖𝒊
𝒏, 𝒘𝒊

𝒏) ∈ 𝑃𝑜𝑝𝑢𝑛, and determines either of them to be 

selected to the next iteration, i.e. 𝑷(𝑃𝑜𝑝𝑢𝑛 ∪ 𝐺𝑒𝑛𝑛) = {(𝒖𝒂
𝒏, 𝒘𝒂

𝒏), (𝒙𝒃
𝒏, 𝒚𝒃

𝒏), … } =

𝑃𝑜𝑝𝑢𝑛+1. The probability for a child chemical (𝒙𝒊
𝒏, 𝒚𝒊

𝒏) ∈ 𝐺𝑒𝑛𝑛 to be selected to the 

next iteration is determined by a temperature parameter 𝑇 and the difference of fitness 
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between its parent (𝒖𝒊
𝒏, 𝒘𝒊

𝑛) ∈ 𝑃𝑜𝑝𝑢𝑛 and it. 

 

𝑃𝑆𝐴(𝒙𝒊
𝒏, 𝒚𝒊

𝑛; 𝒕) = exp(−
𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒊

𝒏, 𝒘𝒊
𝑛; 𝒕) − 𝐹𝑖𝑡𝑓𝑐𝑛(𝒙𝒊

𝒏, 𝒚𝒊
𝑛; 𝒕)

𝑇
) (3.4–6) 

 

In its execution, the temperature parameter 𝑇  should be initialized with a 

sufficiently high positive value. This makes lim
𝑇→∞

𝑃𝑆𝐴(𝒙𝒊
𝒏, 𝒚𝒊

𝑛; 𝒕) = 1  even child 

chemical (𝒙𝒊
𝒏, 𝒚𝒊

𝑛) ∈ 𝐺𝑒𝑛𝑛 is much worse than its parent chemicals (𝒖𝒊
𝒏, 𝒘𝒊

𝑛) ∈ 𝑃𝑜𝑝𝑢𝑛, 

thereby encouraging the exploration of chemical space (feasible region). As iterations 

proceed, the temperature is annealed using a programmed strategy, say, 𝑇𝑛+1 = 𝛼𝑇𝑛, 0 <

α < 1. As the temperature gradually becomes lower, it becomes less likely to select a 

worse child species over the its (relative better) parent species. This can be seen from the 

fact that any nonzero positive differences [𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒊
𝒏, 𝒘𝒊

𝑛; 𝒕) − 𝐹𝑖𝑡𝑓𝑐𝑛(𝒙𝒊
𝒏, 𝒚𝒊

𝑛; 𝒕))] 

makes lim
𝑇→0

𝑃𝑆𝐴(𝒙𝒊
𝒏, 𝒚𝒊

𝑛; 𝒕) = 0. 

 

⚫ Fitness Monte Carlo (FMC) 

This scheme compares a child chemical (𝒙𝒊
𝒏, 𝒚𝒊

𝒏) ∈ 𝐺𝑒𝑛𝑛 with its parent chemicals 

(𝒖𝒊
𝒏, 𝒘𝒊

𝒏) ∈ 𝑃𝑜𝑝𝑢𝑛, and determines either of them to be selected to the next iteration, i.e. 

𝑷(𝑃𝑜𝑝𝑢𝑛 ∪ 𝐺𝑒𝑛𝑛) = {(𝒖𝒂
𝒏, 𝒘𝒂

𝒏), (𝒙𝒃
𝒏, 𝒚𝒃

𝒏), … } = 𝑃𝑜𝑝𝑢𝑛+1 . It resembles SA in 

mechanism, but it has no temperature parameter. After sufficient iterations using FMC, 

we expect the frequency distribution of all the chemicals ( 𝑇𝑜𝑡𝑃𝑜𝑝𝑢𝑛 = {𝑃𝑜𝑝𝑢1 ∪

𝑃𝑜𝑝𝑢2 ∪ …∪ 𝑃𝑜𝑝𝑢𝑛} ) against property-target discrepancy Δ𝑗(𝒖𝒊, 𝒘𝒊; 𝒕)  should be 

similar to 𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒊, 𝒘𝒊; 𝒕). (Recall section 3.4.1) 
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𝑃𝐹𝑀𝐶(𝒙𝒊
𝒏, 𝒚𝒊

𝑛; 𝒕) =
𝐹𝑖𝑡𝑓𝑐𝑛(𝒙𝒊

𝒏, 𝒚𝒊
𝑛; 𝒕)

𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒊
𝒏, 𝒘𝒊

𝑛; 𝒕)
 (3.4–7) 

 

⚫ Non-dominated Sorting (NS) 

Non-dominated sorting, based on Pareto optimality 190, is particularly useful for 

multi-objective optimization problem. To illustrate the concept of Pareto optimality, let 

us consider a population of only four chemical species 𝑃𝑜𝑝𝑢 =

{(𝒖𝟏, 𝒘𝟏), (𝒖𝟐, 𝒘𝟐), (𝒖𝟑, 𝒘𝟑), (𝒖𝟒, 𝒘𝟒)}. Each (𝒖𝒊, 𝒘𝒊) has 𝑚 properties 𝒇(𝒖𝒊, 𝒘𝒊) =

[𝑓1(𝒖𝒊, 𝒘𝒊), … , 𝑓𝑚(𝒖𝒊, 𝒘𝒊)]
T, where 𝑓𝑗 is the model used for predicting property 𝑗. Let 

the fitness function evaluate every single property, i.e. 𝑭𝒊𝒕𝒇𝒄𝒏(𝒖𝒊, 𝒘𝒊; 𝒕) =

[𝐹𝑖𝑡𝑓𝑐𝑛1(𝒖𝒊, 𝒘𝒊; 𝒕), … , 𝐹𝑖𝑡𝑓𝑐𝑛𝑚(𝒖𝒊, 𝒘𝒊; 𝒕)]
T, instead of lumping properties together.  

For pair of chemicals (𝒖𝒊, 𝒘𝒊), (𝒖𝒋, 𝒘𝒋) ∈ 𝑃𝑜𝑝𝑢 , we say (𝒖𝒊, 𝒘𝒊)  dominates 

(𝒖𝒋, 𝒘𝒋) if the two conditions are satisfied: 

 

(I) 𝑭𝒊𝒕𝒇𝒄𝒏(𝒖𝒊, 𝒘𝒊; 𝒕) ≥ 𝑭𝒊𝒕𝒇𝒄𝒏(𝒖𝒋, 𝒘𝒋; 𝒕) 

(II) For at least a property 𝑘, 𝐹𝑖𝑡𝑓𝑐𝑛𝑘(𝒖𝒊, 𝒘𝒊; 𝒕) > 𝐹𝑖𝑡𝑓𝑐𝑛𝑘(𝒖𝒋, 𝒘𝒋; 𝒕). 

 

In other words, (𝒖𝒊, 𝒘𝒊)  dominates (𝒖𝒋, 𝒘𝒋)  by improving at least one of 

(𝒖𝒋, 𝒘𝒋)’s property without sacrificing (𝒖𝒋, 𝒘𝒋)’s optimality in any other property. This 

is illustrated in Figure 3.4-2. When (𝒖𝟑, 𝒘𝟑)  moves horizontally to the position of 

(𝒖𝟏, 𝒘𝟏) , it improves 𝐹𝑖𝑡𝑓𝑐𝑛2(𝒖𝒊, 𝒘𝒊; 𝒕)  without sacrificing 𝐹𝑖𝑡𝑓𝑐𝑛1(𝒖𝒊, 𝒘𝒊; 𝒕) . 

Therefore, (𝒖𝟑, 𝒘𝟑)  is dominated by (𝒖𝟏, 𝒘𝟏) . Moving (𝒖𝟏, 𝒘𝟏)  to the position of 

point 2 improves property 𝐹𝑖𝑡𝑓𝑐𝑛2(𝒖𝒊, 𝒘𝒊; 𝒕)  at the sacrifice of 𝐹𝑖𝑡𝑓𝑐𝑛1(𝒖𝒊, 𝒘𝒊; 𝒕) . 

Therefore, there are not dominance relations between them. 



doi:10.6342/NTU202403528

87 

 

 

 

Figure 3.4-2. Schematic diagram for Pareto frontier. The number of properties is reduced 

to two (𝑚 = 2) for illustration. 

 

After exhaustive comparisons between every pair of species in 𝑃𝑜𝑝𝑢, one may find 

several species not dominated by any others. These species are optimal, and forms a set 

called the first Pareto frontier, 𝐹𝑟𝑜𝑛𝑡1. Picking out these species from 𝑃𝑜𝑝𝑢, the same 

method can be applied to determine the second Pareto frontier, 𝐹𝑟𝑜𝑛𝑡2, and so on. The 

chemical species in the same 𝐹𝑟𝑜𝑛𝑡  are sorted in descending order of the crowded 

distance.191 The crowded distance quantifies the sparsity around a point in multi-

dimensional property space. The lesser crowded solutions are preferred due to its potential 

for leading to wider exploration. 
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The calculation of crowded distance is exemplified by Table 3.4-1. The crowded 

distance 𝒖𝟏 in property i is determined by sorting the population in the ascending order 

of property i, followed by calculating the difference of single-property fitness between 

the two adjacent chemicals of 𝒖𝟏. The crowded distance of each property sums up the 

overall crowded distance. 

 

Table 3.4-1. Calculation of crowded distance for chemical 𝒖𝟏. 

Property 
Sorted in ascending order 

of 𝑓𝑗(𝒖𝒊, 𝒘𝒊) 

Crowded distance (CD) of 𝒖𝟏 in property 

𝑓𝑗(𝒖𝒊, 𝒘𝒊) 

𝑓1(𝒖𝒊, 𝒘𝒊) 𝑢2 𝑢4 𝒖𝟏 𝑢3 
CD1(𝒖𝟏, 𝒘𝟏) = 𝐹𝑖𝑡𝑓𝑐𝑛1(𝒖𝟑, 𝒘𝟑)

− 𝐹𝑖𝑡𝑓𝑐𝑛1(𝒖𝟒, 𝒘𝟒) 

𝑓2(𝒖𝒊, 𝒘𝒊) 𝑢2 𝒖𝟏 𝑢4 𝑢3 
CD2(𝒖𝟏, 𝒘𝟏) = 𝐹𝑖𝑡𝑓𝑐𝑛2(𝒖𝟒, 𝒘𝟒)

− 𝐹𝑖𝑡𝑓𝑐𝑛2(𝒖𝟐, 𝒘𝟐) 

... ... ... ... ... .... 

𝑓𝑚(𝒖𝒊, 𝒘𝒊) 𝑢4 𝑢3 𝒖𝟏 𝑢2 
CD𝑚(𝒖𝟏, 𝒘𝟏) = 𝐹𝑖𝑡𝑓𝑐𝑛𝑚(𝒖𝟐, 𝒘𝟐)

− 𝐹𝑖𝑡𝑓𝑐𝑛𝑚(𝒖𝟑, 𝒘𝟑) 

Overall crowded distance for 𝒖𝟏, CD(𝒖𝟏, 𝒘𝟏) = ∑ CDi(𝒖𝟏, 𝒘𝟏)
𝑚
𝑖=1  

†This table illustrates the scenario of a 4-species population, 𝑃𝑜𝑝𝑢 = {𝒖𝟏, 𝒖𝟐, 𝒖𝟑, 𝒖𝟒}. 
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Chapter 4. Intrinsic Performance of MARS+ based CAMD 

 

4.1. Exhaustive Structure Operations on Every Possible Point 

A key advantage of MARS+ is its transparency in comprehensively generating all 

possible new chemicals for each molecular operation. To illustrate this capability, we will 

utilize two ionic liquids depicted in Figure 4.1-1 to exemplify the generation of all 

possible new molecules for each of the twelve developed operations. It is important to 

note that the protection mechanism is only activated for the charged atoms. For clarity in 

the following text, the ionic liquid in Figure 4.1-1(a) will be designated as IL (a), with 

its cation and anion components referred to as cation (a) and anion (a), respectively. 

Similarly, IL (b), cation (b), and anion (b) will denote the ionic liquid presented in Figure 

4.1-1(b). 

 

 

Figure 4.1-1. Exemplary ionic liquids (a) and (b) used for demonstrating the test of 

exhaustive single operation. Reprinted with permission from the reference163. Copyright 
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2023 American Chemical Society. 

 

4.1.1. Insertion 

In the molecular data structure, any two connected elements must be linked by a bond. 

We denote this substructure as “[element_1][bond][element_2]”. When an insertion 

operation occurs, a new substructure ‘[bond_I][element][bond_II]’ replaces the existing 

bond. Consequently, the resulting substructure becomes 

“[element_1][bond_I][element][bond_II][element_2]”. Notably, the newly introduced 

element (denoted as [element]) connects to [element_1] via [bond_I] and to [element_2] 

via [bond_II]. For cation (a), 7 allowable bonds exist for insertion operations: C4=C5, 

C5-N6, N6-C7, C7-F8, C7-C9, C9=C10, and C10-C11. Figure 4.1-2 illustrates the 25 

unique cations generated out of the 31 possible combinations. 
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Figure 4.1-2. The 31 result cations produced from insertion operation on the double 

bonds between the 4th and the 5th element of cation (a). (U) denotes a unique species 

among the cations shown here. (Caption: element index of element I, element index of 

element II, ID of the introduced element, bond order of the introduced element with the 

parent element, bond order of the introduced element with the descendant element). 
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Reprinted with permission from the reference163. Copyright 2023 American Chemical 

Society. 

 

4.1.2. Cyclization 

The cyclization operation in cation (a) involves pairing elements with single bond 

free valences to form rings within the molecule. Among the 8 elements eligible (element 

index = 1, 3, 4, 5, 7, 9, 10, 11), the minimum ring size allowed is set to 5 members. 

However, not all pairs of these elements can successfully form rings meeting this size 

criterion. Despite the requirement for rings to be larger than 5 members, the generated 

cations exhibit some smaller rings due to variations in ring perception algorithms. This 

includes the identification of the largest set of smallest rings (LSSR)192, smallest set of 

smallest rings (SSSR)193-195, or other ring sets. It's noted that the rings perceived by 

MARS's built-in algorithm often do not strictly adhere to LSSR or SSSR principles. 

In future developments, enhancing algorithms for determining SSSR and 

implementing minimum cycle basis (MCB)194 methodologies would be beneficial. This 

improvement would ensure more accurate and consistent identification of smallest ring 

systems within generated cations, contributing to enhanced precision in molecular 

structure analysis and design. 
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Figure 4.1-3. The 13 result cations produced from cyclization operation on cation (a). (U) 

means a unique species among the cations shown here. (Caption: element index of 

element I, element index of element II, cyclic bond order in between). Reprinted with 

permission from the reference163. Copyright 2023 American Chemical Society. 
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4.1.3. Decyclization 

The decyclization operation removes paired ring numbers and restores the cyclic 

bond order to the two relevant atoms. As these cyclic bond orders become free valences, 

they are assumed to connect with implicit hydrogen atoms. In the case of cation (a), the 

only available point for this operation is C3-N6. The resulting cation is depicted in Figure 

4.1-4. 

 

 

Figure 4.1-4. The structure of cation (a) before and after the destruction of C3-N6 

ring bond (cyclic flag = 1). Reprinted with permission from the reference163. Copyright 

2023 American Chemical Society. 

 

4.1.4. Cis-trans inversion 

This operation applies to any element with either a cis-trans front flag or a cis-trans 

end flag. Taking cation (a) as an example, if we invert the cis-trans front flag of the 9th 

element (changing “/” to "\"), it results in a cis isomer, as depicted in Figure 4.1-5. 

Interestingly, altering the cis-trans end flag of the 10th element (also from “/” to "\") leads 

to the same structure. 
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Figure 4.1-5. The structure of cation (a) before and after the inversion of cis-trans 

isomerism of the 9th element (Caption: element index of the subject element, flag type of 

the subject element, flag before inversion, flag after inversion) Reprinted with permission 

from the reference163. Copyright 2023 American Chemical Society. 

 

4.1.5. Chirality inversion 

The chirality inversion operation can be applied to any chiral center within a 

molecule. In the case of cation (a), only the 7th element (with ID=1, represented as 

C(-)(-)(-)(-)) exhibits chirality. By performing the chirality inversion operation, the 

chirality flag of the 7th element changes from 1 (anti-clockwise winding) to 2 (clockwise 

winding). 
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Figure 4.1-6. The structure of cation (a) before and after the inversion of cis-trans 

isomerism of the 7th element. (Caption: element index of chiral center, chirality flag 

before operation, chirality flag after operation) Reprinted with permission from the 

reference163. Copyright 2023 American Chemical Society. 

 

4.1.6. Crossover 

The crossover operation facilitates the creative combination of fragments from two 

parent molecules to generate novel "child" molecules. This process entails the selection 

of a bond (crossover point) from each parent molecule. Successful crossover hinges on 

matching bond orders at both chosen points. When this condition is met, the molecular 

fragments beyond those points undergo reciprocal exchange, resulting in the formation of 

two structurally distinct offspring. 

Since this work aims to design ionic liquids, viable crossover points are restricted to 

those that will lead to two positively charged child molecules. Figure 4.1-7 demonstrates 

the scenario where the double bond between the 4th and 5th elements of cation (a) 

(C4=C5) serves as one of the designated crossover points. Cation (b) presents four 

potential double bonds (C5=C6, C15=C16, C17=C18, and C22=C23) that can function 

as the other crossover point. However, bonds such as C2=C3 and C12=C13 in cation (b) 

are excluded as viable options since they will result in the formation of neutral species, 

deviating from the desired outcome. 

It is noteworthy that the ring bond, like [N+]14=C19 in cation (b), cannot be the 

subject of crossover. This suggests limitations in their current handling by MARS+. The 

ring-open algorithm110, 196 in during crossover is an ongoing development within MARS+ 

to address complex crossover scenarios involving cyclic structures. 
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Figure 4.1-7. The 4 pairs of cations generated from applying crossover operation on the 

cation (a) and cation (b), with crossover point of cation (a) fixed at the double bond 

between its 4th and 5th element. (Caption: crossover point for cation (a), crossover point 

for cation (b)) Reprinted with permission from the reference163. Copyright 2023 American 

Chemical Society. 

 

4.1.7. Combination 

The combination of two molecules is feasible when compatible free valences exist 

between them. In cation (a), eight elements possess free single bonds: those with element 

index 1, 3, 4, 5, 7, 9, 10, and 11. Cation (b) exhibits a higher number of elements with 

single bond valences – eighteen in total. These elements correspond to indices 1, 2, 7, 8, 
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9, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, and 25. Figure 4.1-8 illustrates results where 

the third element of cation (a) is selected as one of the potential combination points. 

 

 

Figure 4.1-8. The 18 cations generated from applying combination operation on cation 

(a) and cation (b), with the 3rd element of cation (a) picked as the combination point. (U) 

means a unique species among the cations shown here. (Caption: element index of the 

combination point in cation (a), element index of the combination point in cation (b), 

bond order in between). Reprinted with permission from the reference163. Copyright 2023 

American Chemical Society. 

 

4.1.8. Component Swap 

The component swap operation achieves the generation of two novel ionic liquids 
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through a straightforward exchange of the MDS between anion (a) and anion (b). This 

process transforms IL(a) into [cation(a)][anion(b)] and IL(b) into [cation(b)][anion(a)]. 

It's important to note that while this operation yields distinct ionic liquids, it does not 

introduce new molecular species. This is because the connectivity and elemental 

composition of each molecule remain unaltered. Despite this, the component swap 

operation holds potential value in the design of diverse molecular mixtures. 

 

 

Figure 4.1-9. The IL (a) and IL (b) after component swap operation. Reprinted with 

permission from the reference163. Copyright 2023 American Chemical Society. 

 

4.2. Chemical Space Exploration via Iterative Enumeration 

A significant strength of MARS+ lies in its capability to perform all conceivable 

molecular operations on every atom and bond within a given molecule. This is achieved 

efficiently by employing nested for-loops to iterate through all operations on all potential 

operation sites. Consider the addition operation as an illustrative example. The 

Mol.addition(i,j,m) function adds a base element j to the free valence of the i-th element 

in a molecule using a specific bond order m. To execute every possible addition operation, 

a triple loop is required to traverse all elements i in the molecule, all base elements j in 
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the library, and all permissible bond orders m = 1 to 3. Similar loops can be readily 

developed for all the nine uni-molecular operations supported by MARS+. 

To illustrate the power of exhaustive uni-molecular operations, we performed a five-

round iteration on methane. This initial round yielded eleven unique new species: CC, 

CO, CN, CF, CCl, CBr, CI, CS, CP, C[PH4], and C[PH3]. Subsequently, each of these 

newly generated species underwent another round of exhaustive uni-molecular operations. 

This process was repeated five times, resulting in a total of 26,817,632 structures. The 

canonical SMILES strings (determined using Open Babel65) for these structures were then 

employed to identify unique species in each round, totaling 672,042 unique structures. 

Figure 4.2-1 depicts the number of generated structures and unique species for each 

round. As evident from the figure, both quantities exhibit exponential growth with the 

number of exhaustive iterations. 

Figure 4.2-2 visualizes the number of new structures generated by each operation. 

This exercise reveals several noteworthy observations. The first five operations (addition, 

insertion, subtraction, element change, and bond change) produce comparable numbers 

of structures from the second to fifth rounds of iterations. A more detailed analysis 

(Figure 4.2-3) indicates that addition and insertion are the primary operations responsible 

for generating new unique species. As the maximum molecular size among the design 

molecules increases with each iteration, the potential operation points for subtraction, 

element change, and bond change operations also grow concomitantly. Cis-trans and 

chirality inversions commence in the fourth iteration when the number of heavy atoms 

potentially reaches four in round three. Cyclization initiates in round five because the 

minimum permitted ring size is set to five. Notably, no decyclization operation was 

performed in the first five rounds due to the absence of ring-containing compounds in the 

initial four iterations. 
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Figure 4.2-1. The number of successful operations and newly generated unique species 

per iteration. Reprinted with permission from the reference163. Copyright 2023 American 

Chemical Society. 
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Figure 4.2-2. The number of successful operations, factorized into the contribution from 

each operation and each iteration. Reprinted with permission from the reference163. 

Copyright 2023 American Chemical Society. 
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Figure 4.2-3. The number of novel unique molecules, factorized into the contribution 

from each operation and each iteration. Every species is credited to the operation 

responsible for its first appearance. Reprinted with permission from the reference163. 

Copyright 2023 American Chemical Society. 

 

4.3. Can MARS+ Produce Well-known Chemicals? 

In essence, each of the molecular operations can be considered as a form of virtual 

elementary chemical reactions. Theoretically, there should be at least a virtual synthesis 

pathway between any reactant species and any product species if the operations are 

sufficiently “elementary”. This can be preliminarily assessed by determining if there is at 

least a programmable sequence of molecular operations that can traverse all the species 

in a real synthesis pathway. If such sequences exist, the scheme of molecular operations 
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is elementary enough to account for this synthesis pathway, and the possibility to find the 

involved species with computational design is justified. For this case study, we have 

selected the total synthesis scheme of Oseltamivir (or Tamiflu), as drug molecule 

syntheses are typically much more complex than ionic liquid syntheses. Figure 4.3-1 

displays the intermediate products in the synthesis pathway proposed by E.J. Corey et 

al.197, 198, and the complete sequence of molecular operations we construct is shown in 

Figure B1 (also see Tamiflu_Corey() function in src/CASES_NEU.cpp). There are 7 types 

of operations involved, including addition, element change, bond change, subtraction, 

chirality inversion, cyclization, and decyclization.  

To assess the chemical feasibility of all the involved chemical structures, we use 

synthetic accessibility score (SAscore)64, 168 and synthetic complexity score (SCscore)169. 

SAscore assesses the synthetic accessibility based on the occurrences of molecular 

fragments in PubChem database, while SCscore evaluates synthetic complexity based on 

the number of required reaction steps inferred from the knowledge of Reaxys database. 

Using these two scoring functions, we illustrate the variation in chemical feasibility 

against the sequential reaction steps in Figure B2. A practical sequential reaction should 

exhibit a monotonically increasing SCscore curve. Therefore, when a slump in SCscore 

is observed (e.g. the 10th to 11th species in Figure B2), it suggests that the reverse 

reaction may be more practical from a domain knowledge perspective. On the other hand, 

a surge in SAscore curve (e.g. the 16th to 19th species in Figure B2) indicates that rare 

and complex substructures, such as rings, have been formed through the reaction steps. 

It should be emphasized that those reaction steps associated with reasonable 

variations in SAscore and SCscore curves are not necessarily practical. To obtain the most 

realistic reaction pathway, one may resort to computer-assisted synthesis planning 

(CASP)126 software, such as AiZynthFinder125 and ASKCOS126. When provided with a 
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chemical, CASP software attempts to identify common precursors and provide practical 

reaction steps for synthesizing the chemical from these precursors. 

 

 

Figure 4.3-1. The intermediate products in the total synthesis scheme of Oseltamivir 

proposed by E.J. Corey et al.197, 198 The green numbers are element indices. Reprinted 

with permission from the reference163. Copyright 2023 American Chemical Society. 
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Chapter 5. Design of Novel ILs for CO2 Capture 

 

5.1. A Review of Theoretical and Application Insights 

The emission of carbon dioxide (CO2) has emerged as a significant contributor to 

climate change, drawing increasing concerns in recent years.199 Although the atmospheric 

CO2 concentration surpassed the 400-ppm threshold in 2015,200 the utilization of fossil 

fuels remains unavoidable in contemporary anthropogenic activities. Notably, the power 

generation, as well as industrial processes, are responsible for approximately two-third of 

36.8 billion tons of global CO2 emissions in 2022.201, 202 In response to the urgent need to 

mitigate CO2 emissions, various carbon capture and storage (CCS) techniques8, 203-208 

have been under development and continuous improvement, including physical 

absorption, chemical absorption, membrane-based separation, cryogenic distillation, 

chemical looping combustion, hydrate-based separation, adsorption, and so on.205, 209 

There are essentially three schemes for the integration of these techniques into power 

plants and industrial processes. The pre-combustion scheme aims to separate CO2 from 

fossil fuels before combustion. In this scheme, the coal (or natural gas) feed undergoes 

the high-temperature gasification reaction C + H2O → CO + H2 (or steam methane 

reforming reaction CH4 + H2O → CO + 3 H2), followed by the water-gas shift reaction 

CO + H2O → CO2 + H2 at around 40℃. 204, 210 Subsequently, carbon capture techniques 

are applied to the shifted syngas, leaving pure H2 as the fuel for combustion. As shifted 

syngas typically contains a moderate level of CO2 (15-60 %8, 204, 205, PCO2 ≈ 12-20 bar210), 

physical absorption employing Selexol solvent is reportedly a suitable strategy for carbon 

captures in pre-combustion scheme.210, 211 The post-combustion scheme is often 

implemented in coal-fired power plants, where the flue gas typically contains a low level 
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of CO2 (10-14 %).8, 204, 205 Monoethanolamine (MEA)-based chemical absorption, which 

utilizes acid-base neutralization, is a conventional approach for post-combustion scheme. 

The oxyfuel-combustion scheme involves combusting fuel in an oxygen-rich 

environment, resulting in a flue gas mainly containing water and a high level of CO2 (70-

98 %).8, 204, 205 After the removal of impurities (e.g. sulfur dioxide, nitrogen oxides, and 

fly ash), the CO2 can be captured by compressing the flue gas. 

 

Table 5.1-1. Typical subject gas and operating condition for carbon capture. 

Schemes 
Post-combustion207, 

212-215 

Pre-combustion207, 

216-221 

Oxy-combustion212, 

222-224 

T and P of the 

subject gas 
1 bar, 40-75 ℃ 20-60 bar, 35-40 ℃ 1 bar, 150 ℃ 

Mol% Flue gas Shifted gas Flue gas 

CO2 0.150 0.300 0.700 

CO 0.000 0.050 0.000 

N2 0.650 0.000 0.150 

O2 0.100 0.000 0.050 

H2 0.000 0.450 0.000 

H2O 0.100 0.150 0.100 

CH4 0.000 0.050 0.000 

 

 

Among these techniques and processes, MEA-based post-combustion scheme has the 

highest technological maturity,203, 225 as evidenced by its successful commercialization in 

2013226. However, the technique encounters challenges related to high solvent loss 
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(volatilization, oxidative degradation, and thermal degradation), high energy demands for 

solvent regeneration (3.2-4.2 GJ/tonne CO2 at >100℃), and solvent corrosivity.208, 227, 228 

The plantwide energy efficiency may be enhanced through process reconfigurations.208, 

228, 229 Nevertheless, the issues of solvent mass loss and high regeneration energy persist 

as challenges unless a different solvent is used, as these aspects are primarily governed 

by the thermodynamic nature of solvent. 

In the past two decades, ionic liquids (ILs) have emerged as a potential solution to 

these issues.208, 230-232 Several mechanistic studies have revealed theoretical feasibility to 

using them as CO2 absorbents, although a few of their arguments are case-dependent.233 

Firstly, it has been proposed that the anion of IL serves as a Lewis base and interacts 

weakly with Lewis-acid CO2. Qualitatively, the CO2 solubility is proportional to the 

strength of acid-base interaction, and the basicity of the anion directly influences this 

interaction.233 However, other studies also propose that it is the ether group (R1-O-R2)234 

and primary amine group (R-NH2)235 in either cation or anion part can lead to the 

nucleophilic reactions between ILs and CO2. In this scenario, chemical absorption occurs, 

and the measured CO2 solubility is usually significantly higher than the predicted value 

from physical absorption models.236 

A suitable IL-based solvent is expected to have a weak interaction (typically van der 

Waals force) with CO2, ensuring that the solvent regeneration will not be too difficult.237 

Secondly, the number of exposed binding sites per free volume is also the crucial 

factors.233, 238 The molar free volume of IL is influenced by both the cation-anion 

interaction and the shape of the molecule. Based on different models for excluded volume, 

the molar free volume, 𝑉𝑓, is often calculated from either eq (5.1–1) or eq (5.1–2).238 
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𝑉𝑓 = 𝑉 − 1.3 𝑉𝑣𝑑𝑊 (5.1–1) 

𝑉𝑓 = 𝑉 − 𝑉𝐶𝑂𝑆𝑀𝑂 (5.1–2) 

 

Here, 𝑉 is the molar volume of IL, 𝑉𝑣𝑑𝑊 is the molar van der Waals volume of IL, 

and 𝑉𝐶𝑂𝑆𝑀𝑂 is the molar COSMO volume of IL. Asymmetric molecular structures are 

generally prone to creating more free volume with particular orientation.239 On the other 

hand, when the gas-solvent binding interaction is not strong, a greater free volume 

generally promote the gas diffusivity, allowing the solvent to accommodate more gas 

within a finite time interval.240 When the gas-solvent binding interaction is strong (e.g. 

hydrogen bonding), it is necessary to consider that, in addition to the promoting effect 

mentioned above, a greater free volume may expose more binding sites of solvents, 

leading to a retarded diffusion.241 The permeability of gas, 𝒫𝑖, which considers these two 

competing effects, is suitable for evaluating solvent performance in finite-time absorption 

process.240 

 

𝒫𝑖 =
𝐷𝑖

𝐻𝑖/𝑆
 (5.1–3) 

 

Here, 𝐷𝑖  represents the diffusivity of gas molecule i, and 𝐻𝑖/𝑆  is the Henry’s 

constant of gas molecule i in solution S. The mole fraction-based gas solubility is 

inversely proportional to Henry’s constant.62 In a case study on imidazolium-based ILs 

with various lengths of alkyl chains, a positive correlation is found between the mole 

fraction-based solubility and the free volume of IL.238 Additionally, CO2/CH4 and CO2/N2 

selectivity also exhibit negative correlations with molar volume of IL.238 These evidences 

suggest that desirable performance may be achieved by pursuing ILs with low molar 
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volume and high molar free volume. 

ILs typically exhibit negligible vapor pressure, non-flammability, and high 

thermochemical stability over a wide temperature range.242-245 These characteristics are 

partially ascribed to the Coulombic interaction between the cation and anion of the ILs. 

Furthermore, studies have indicated that the energy consumption associated with the IL 

solvents regeneration may be 30-50% lower than that required by conventional MEA.246, 

247 These attributes are favorable for applications in absorption processes, suggesting their 

potential as substitutes for MEA. The structural and compositional tunability of ILs also 

offer a wide spectrum of novel species and performance properties yet to be explored.248 

It is suggested that at least a million of pure ILs are theoretically possible,242 and some of 

them have proven to be promising solvents for CO2 capture applications.230, 247 However, 

certain ILs also exhibit high viscosity and high molar heat capacity, leading to increased 

costs associated with solvent pumping and CO2 desorption, respectively.247 Addressing 

these challenges represents a key area for future research endeavors. 

 

5.2. Thermodynamic Modeling 

Considering a system of solute gas mixture and solvent at vapor-liquid phase 

equilibrium (VLE)62 under temperature 𝑇 and pressure 𝑃. the solubility of the solute i 

in the solvent could be determined by equilibrium criterion 𝑓
𝑖

𝑉
= 𝑓

𝑖

𝐿
. Here, 𝑓

𝑖

𝑉
 and 𝑓

𝑖

𝐿
 

are the fugacity of component i in the gas phase and liquid phase, respectively. With ideal 

mixture (IM) chosen as the reference system for each of the two phases, the equilibrium 

criterion can be expressed as: 

 

𝑦𝑖𝜙𝑖
(𝑇, 𝑃, 𝑦)𝑃 = 𝑥𝑖𝛾𝑖/𝑆(𝑇, 𝑃, 𝑥)𝑓𝑖(𝑇, 𝑃) (5.2–1) 
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Here, 𝑦 and 𝑥 are the equilibrium composition of the gas mixture and the liquid 

mixture, 𝑦𝑖 and 𝑥𝑖 are the equilibrium mole fraction of component i in the vapor phase 

and the liquid phase, 𝑃 is the pressure of system, 𝑇 is the temperature of system, 𝛾𝑖/𝑆 

is the activity coefficient of component i in the solvent S, 𝜙𝑖 is the fugacity coefficient 

of component i in the vapor phase, and 𝑓𝑖 represents the fugacity of component i in the 

hypothetical liquid state at 𝑇 and 𝑃. In the scenario of modest solubility, the infinitely 

dilute solute in the solvent (i.e. x𝑖 → 0) is often set as the reference state of liquid phase. 

 

𝑓
𝑖

𝐿
= 𝑥𝑖𝛾𝑖/𝑆(𝑇, 𝑃, 𝑥)𝑓𝑖(𝑇, 𝑃) = 𝑥𝑖𝛾𝑖/𝑆

∗ (𝑇, 𝑃, 𝑥)𝐻𝑖/𝑆(𝑇, 𝑃) (5.2–2) 

 

Here, 𝐻𝑖  is Henry’s constant of the gas solute, 𝛾𝑖/𝑆
∗   is the modified activity 

coefficient using infinite dilute solute in liquid phase as reference state. From this 

definition, 𝛾𝑖/𝑆
∗  will be unity at infinite dilution ( lim

𝑥𝑖→0
𝛾𝑖/𝑆

∗ (𝑇, 𝑃, 𝑥) = 1). Subsequently, 

the mathematical form for Henry’s constant and a modified activity coefficient can be 

derived from taking the infinite dilute limit of eq (5.2–2). 

Here, 𝐻𝑖/𝑆 represents the Henry's constant for carbon dioxide, and 𝛾𝑖/𝑆
∗  represents 

the activity coefficient defined with the reference system of carbon dioxide present as an 

infinitely dilute species in the ionic liquid. According to this definition, 

 

lim
𝑥𝑖→0

𝑓
𝑖

𝐿

𝑥𝑖
= 𝐻𝑖/𝑆(𝑇, 𝑃, 𝑥𝑖 → 0) = 𝛾𝑖/𝑆

∞ (𝑇, 𝑃, 𝑥𝑖 → 0)𝑓𝑖(𝑇, 𝑃) (5.2–3) 

𝛾𝑖/𝑆
∗ (𝑇, 𝑃, 𝑥) =

𝛾𝑖/𝑆(𝑇, 𝑃, 𝑥)

𝛾𝑖/𝑆
∞ (𝑇, 𝑃, 𝑥𝑖 → 0)

 (5.2–4) 
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Here, 𝛾𝑖/𝑆
∞ (𝑇, 𝑃, 𝑥𝑖 → 0) is the infinite dilute activity coefficient (IDAC) of solute 

in solvent S, i.e. lim
𝑥𝑖→0

𝛾𝑖/𝑆(𝑇, 𝑃, 𝑥) = 𝛾𝑖/𝑆
∞ (𝑇, 𝑃, 𝑥𝑖 → 0). For region of low solubility, the 

activity coefficient 𝛾𝑖/𝑆 can be reasonably approximated by 𝛾𝑖/𝑆
∞  (or equivalently 

𝛾𝑖/𝑆
∗ (𝑇, 𝑃, 𝑥) ≈ 1). This is known as the Henry’s law: 

 

𝑥𝑖
𝐻𝑒𝑛𝑟𝑦

=
𝑦𝑖𝜙𝑖

(𝑇, 𝑃, 𝑦)𝑃

𝐻𝑖/𝑆(𝑇, 𝑃, 𝑥𝑖 → 0)
=

𝑦𝑖𝜙𝑖
(𝑇, 𝑃, 𝑦)𝑃

𝛾𝑖/𝑆
∞ (𝑇, 𝑃, 𝑥𝑖 → 0)𝑓𝑖(𝑇, 𝑃)

 (5.2–5) 

 

For region of higher solubility, Henry’s law may lead to nonnegligible error due to 

large deviation of 𝛾𝑖/𝑆
∗ (𝑇, 𝑃, 𝑥)  from unity. In this situation, one should consider the 

actual form of 𝛾𝑖/𝑆
∗ (𝑇, 𝑃, 𝑥) when calculating solubility. This is equivalent to return to 

eq (5.2–1) without further simplification. The solubility 𝑥𝑖  should be solved through 

successive iterations using eq (5.2–6). 

 

𝑥𝑖
𝑉𝐿𝐸 =

1 𝑏𝑎𝑟

𝛾𝑖/𝑆(𝑇, 𝑃, 𝑥)𝑓𝑖(𝑇, 𝑃)
 (5.2–6) 

 

In this work, the desirable equilibrium composition of the gas mixture 𝑦, operating 

temperature 𝑇, and operating pressure 𝑃 are user-specified, while the solubility 𝑥 is 

the thermodynamic variable to be determined. From eq (5.2–6), the mathematical form 

of distribution coefficient (𝛽𝑖 ), selectivity (𝑆𝑖𝑗 ), performance index (𝑃𝐼𝑖𝑗 ), absorption-

desorption index (𝐴𝐷𝐼𝑖 ), and absorption-selectivity-desorption index (𝐴𝑆𝐷𝐼𝑖𝑗 ) can be 

defined,142, 249-251 with the subscript i and j denoting different chemical components. High 
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𝛽𝑖 , 𝑆𝑖𝑗 , and 𝑃𝐼𝑖𝑗  imply the potential for desirable absorption performance. When 

selectivity and desorption are also considered, low 𝐴𝐷𝐼𝑖  and 𝐴𝑆𝐷𝐼𝑖𝑗  indicate the 

potential for desirable overall performance.  

 

𝛽𝑖 = (
𝑥𝑖

𝑦𝑖
)

𝑇,𝑃,𝑦

= (
𝜙

𝑖
𝑃

𝛾𝑖/𝑆𝑓𝑖
)

𝑇,𝑃,𝑦

 (5.2–7) 

𝑆𝑖𝑗 = (
𝛽𝑖

𝛽𝑗
)

𝑇,𝑃,𝑦

= [(
𝜙𝑖𝑃

𝛾𝑖/𝑆𝑓𝑖
)(

𝛾𝑗/𝑆𝑓𝑗

𝜙
𝑗
𝑃

)]

𝑇,𝑃,𝑦

 (5.2–8) 

𝑃𝐼𝑖𝑗 = (𝛽𝑖𝑆𝑖𝑗)𝑇,𝑃,𝑦
= [(

𝜙
𝑖
𝑃

𝛾𝑖/𝑆𝑓𝑖
)

2

(
𝛾𝑗/𝑆𝑓𝑗

𝜙
𝑗
𝑃

)]

𝑇,𝑃,𝑦

 (5.2–9) 

𝐴𝐷𝐼𝑖 = [
1

(𝛽𝑖)𝑇𝑎𝑑

(𝛽𝑖)𝑇𝑑𝑒

(𝛽𝑖)𝑇𝑎𝑑

]
𝑃,𝑦

= [(
𝛾𝑖/𝑆𝑓𝑖

𝜙
𝑗
𝑃

)

𝑇𝑎𝑑

2

(
𝜙

𝑖
𝑃

𝛾𝑖/𝑆𝑓𝑖
)

𝑇𝑑𝑒

]

𝑃,𝑦

 (5.2–10) 

𝐴𝑆𝐷𝐼𝑖𝑗 = [
1

(𝛽𝑖)𝑇𝑎𝑑

1

(𝑆𝑖𝑗)𝑇𝑎𝑑

(𝛽𝑖)𝑇𝑑𝑒

(𝛽𝑖)𝑇𝑎𝑑

]

𝑃,𝑦

= [(
𝛾𝑖/𝑆𝑓𝑖

𝜙𝑗𝑃
)

𝑇𝑎𝑑

3

(
𝜙𝑗𝑃

𝛾𝑗/𝑆𝑓𝑗
)

𝑇𝑎𝑑

(
𝜙𝑖𝑃

𝛾𝑖/𝑆𝑓𝑖
)

𝑇𝑑𝑒

]

𝑃,𝑦

 (5.2–11) 

 

Here, 𝑇𝑎𝑑  and 𝑇𝑑𝑒  are the operating temperature of absorption and desorption 

processes, respectively, and the subscripts in eqs (5.2–15) ~ (5.2–11) indicate the 

thermodynamic condition where the physical quantities are evaluated. Since high 

pressure and low temperature favor the absorption of CO2, it is most desirable to operate 

desorption process at low pressure and high temperature. In many studies on post-

combustion CO2 capture, the absorption performance of ILs is evaluated at 0.2 ~ 5.0 bar 

and 293.2 ~ 333.2 K, while the desorption performance is typically evaluated at roughly 
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the same pressure as in the absorption process and a 30.0 ~ 90.0 K higher temperature.231, 

247, 252, 253  

In addition to solubility-based indices, the Gibbs free energy Δ𝐺𝑖/𝑆
𝑎𝑏𝑠 , enthalpy 

Δ𝐻𝑖/𝑆
𝑎𝑏𝑠 , and entropy Δ𝑆𝑖/𝑆

𝑎𝑏𝑠  of the standard absorption process can provide more 

physicochemical insights. In particular, Δ𝐺𝑖/𝑆
𝑎𝑏𝑠  characterizes the minimum required 

work to carry out the absorption process, Δ𝐻𝑖/𝑆
𝑎𝑏𝑠 represents the heat associated with the 

absorption, and Δ𝑆𝑖/𝑆
𝑎𝑏𝑠 roughly reflects the changed molecular ordering in solvent phase 

due to the absorption process. These quantities are defined as eqs (3.2–8) ~ (3.2–10).254 

 

Δ𝐺𝑖/𝑆

𝑎𝑏𝑠
(𝑇, 𝑃, 𝑥) = 𝐺𝑖/𝑆(𝑇, 𝑃, 𝑥) − 𝐺𝑖

𝑜,𝐼𝐺𝑀
(𝑇, 𝑃𝑜, 𝑥) = 𝑅𝑇ln (

𝛾𝑖/𝑆𝑓𝑖

𝑃𝑜
) (5.2–12) 

Δ𝐻𝑖/𝑆

𝑎𝑏𝑠
(𝑇, 𝑃, 𝑥) = −𝑇2

𝜕

𝜕𝑇
(
Δ𝐺𝑖/𝑆

𝑎𝑏𝑠

𝑇
)

𝑃,𝑥

= −
𝑅𝑇2

𝛾𝑖/𝑆𝑓𝑖
(
𝜕𝛾𝑖/𝑆𝑓𝑖

𝜕𝑇
)

𝑃,𝑥

 (5.2–13) 

Δ𝑆𝑖/𝑆
𝑎𝑏𝑠(𝑇, 𝑃, 𝑥) =

Δ𝐻𝑖/𝑆

𝑎𝑏𝑠
− Δ𝐺𝑖/𝑆

𝑎𝑏𝑠

𝑇
= −

𝑅𝑇

𝛾𝑖/𝑆𝑓𝑖
(
𝜕𝛾𝑖/𝑆𝑓𝑖

𝜕𝑇
)

𝑃,𝑥

− 𝑅 ln (
𝛾𝑖/𝑆𝑓𝑖

𝑃𝑜
) (5.2–14) 

 

In this study, the activity coefficient of carbon dioxide in the ionic liquid is predicted 

using the COSMO-SAC (COnductor-like Screening Model - Segment Activity 

Coefficient) model, specifically the 2010 version100. The fugacity of pure liquid carbon 

dioxide is obtained from the NIST DIPPR 101 database using the vapor pressure 

equation255, as shown in eq. (5.2–15):  

 

𝑓𝑖(𝑇, 𝑃) ≈ 𝑃𝑖
𝑣𝑎𝑝

(𝑇) = exp (𝐴𝑖 +
𝐵𝑖

𝑇
+ 𝐶𝑖ln𝑇 + 𝐷𝑖𝑇

𝐸𝑖) (5.2–15) 
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Here, 𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖, and 𝐸𝑖 are empirical parameters, and the fugacity 𝑓𝑖(𝑇, 𝑃) 

is expressed in Pa. The fugacity of pure liquid carbon dioxide at 298.15 K is 64.48 bar.  

 

5.3. Validation of COSMO-SAC Predictions 

The reliability of property prediction model is crucial in a CAMD task, as it directly 

impacts the credibility of the reported optimal species. To assess the accuracy of the 

COSMO-SAC-based method, predicted CO2 solubility in various IL systems is compared 

with experimental data. A total of 620 Henry’s constant data points (105 IL species) and 

4537 VLE solubility data points (96 IL species) are sourced from the ILThermo 

database.256, 257 However, chemical absorption is reported to occur in some CO2-IL 

systems under experimental conditions. For example, ether group (R1-O-R2)234 and 

primary amine group (R-NH2) may react with CO2 through nucleophilic reactions.235 In 

chemical absorption, it is noted that vapor pressure is significantly lower than estimated 

by physical absorption models258, indicating that CO2 solubility in IL due to chemical 

absorption can be substantially higher than that from physical absorption236 Notably, since 

the COSMO-SAC-2010 model does not account for chemical reactions between solute 

and solvent, such data points are excluded from this validation study. 

These chemical absorbents include [C2mim][Ac]258, [C4mim][Ac]258, 

[C6mim][eFAP]258, [C4mim][PRO]258, [C4mim][ISB]258, [C4mim][Me3Ac]258, 

[C4mim][LEV]258, [N0,0,0,2-OH][Ac]259, [N0,0,0,2-OH][LAC]259, 

[(COC)mim][TFLA]234, [(COC)mim][TF2N]234, [(COC)mim][DCA]234, 

[(COC)mim][PF6]234, and [(COC)mim][BF4]234 belong to this type. The experiments 

were conducted by Sharma et al. (T=303.15~323.15 K, P=0.1~1.6 bar)234, Yokozeki et al. 

(at T=298.15 K, P=0~20 bar)258, and Kurnia et al. (T=298.15~328.15 K, P=1.16~15.56 

bar)259.  
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Based on the common operational conditions for pre-combustion scheme (Table 

5.1-1), data points with temperatures exceeding 350 K or pressures exceeding 60 bar are 

filtered out from both the VLE and Henry’s constant datasets. This filtering leaves 3004 

VLE solubility data points and 546 Henry’s constant data points, serving as the validation 

sets for COSMO-SAC prediction at post-combustion or pre-combustion operating 

condition. Additionally, VLE data points with pressures below 5 bar are collected 

separately to serve as another validation set for COSMO-SAC prediction at post-

combustion operating condition. 

For these systems, we calculated the errors between COSMO-SAC predictions and 

experimental values, including the average absolute deviation (AAD), average absolute 

relative deviation (AARD), and the root mean square deviation (RMSD). Taking 

solubility as an example, the three deviations are calculated by eq. (5.3–1) to (5.3–3) 

respectively, and the results are presented in Table 5.3-1.  

 

AAD =
1

𝑁𝑠
∑

1

𝑁𝑝,𝑖
∑ |𝑥𝐶𝑂2,𝑐𝑎𝑙𝑐,𝑗 − 𝑥𝐶𝑂2,𝑒𝑥𝑝𝑡,𝑗| × 100 %

𝑁𝑝,𝑖

𝑗

𝑁𝑠

𝑖
 

(5.3–1) 

AARD =
1

𝑁𝑠
∑

1

𝑁𝑝,𝑖
∑

|𝑥𝐶𝑂2,𝑐𝑎𝑙𝑐,𝑗 − 𝑥𝐶𝑂2,𝑒𝑥𝑝𝑡,𝑗|

𝑥𝐶𝑂2,𝑒𝑥𝑝𝑡,𝑗
× 100 %

𝑁𝑝,𝑖

𝑗

𝑁𝑠

𝑖
 (5.3–2) 

RMSD = √
1

𝑁𝑠
∑

1

𝑁𝑝,𝑖
∑ (𝑥𝐶𝑂2,𝑐𝑎𝑙𝑐,𝑗 − 𝑥𝐶𝑂2,𝑒𝑥𝑝𝑡,𝑗)

2𝑁𝑝,𝑖

𝑗

𝑁𝑠

𝑖
 (5.3–3) 

 

Here, 𝑁𝑠  represents the number of ionic liquid species, and 𝑁𝑝,𝑖  represents the 

number of data points for ionic liquid species i. Furthermore, by comparing the scatter 

plots (Figure 5.3-1 and Figure 5.3-3) with experimental data, we believe that COSMO-

SAC shows acceptable performance in terms of the errors in both solubility cases, 
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although there is still room for improvement. It can be observed that the trends in 

predicted values by the COSMO-SAC model are consistent with the experimental values. 

Another study236, which evaluates the accuracy of COSMO-RS in predicting the CO2 

Henry’s constant within a distinct set of ILs not covered in this research, reports an AARD 

of 64.5% for physical IL absorbents, which decreases to 29.4% after calibration. 

Therefore, we posit that COSMO-SAC can serve as a qualitative or semi-quantitative 

predictive tool within the operational range (i.e. P = 1 bar, T = 298.15 to 348.15 K) of this 

study. 

 

Table 5.3-1. The accuracy of COSMO-SAC prediction: Henry’s constant of CO2 in ILs. 

All the Henry’s constant experimental data: 105 IL species, 620 data points 

Property AAD AARD RMSD 

𝐻𝐶𝑂2
 52.427 bar 11088 % 144.76 bar 

𝑥𝐶𝑂2

𝐻𝑒𝑛𝑟𝑦
 at 1 bar† 0.0632 46.61 % 0.2346 

Subset 1 (𝐓 ≤ 𝟑𝟓𝟎 𝐊): 96 IL species, 546 data points 

Property AAD AARD RMSD 

𝐻𝐶𝑂2
 41.393 bar 53.836 % 129.82 bar 

𝑥𝐶𝑂2

𝐻𝑒𝑛𝑟𝑦
 at 1 bar† 0.00791 42.848 % 0.0137 

† Based on eq (5.2–5), 𝑥𝐶𝑂2.𝑒𝑥𝑝𝑡
𝐻𝑒𝑛𝑟𝑦

= 1/𝐻𝐶𝑂2.𝑒𝑥𝑝𝑡 at 1 bar. 
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Table 5.3-2. The accuracy of COSMO-SAC prediction: CO2 solubility in ILs. 

All the VLE experimental data: 96 IL species, 4537 points 

Property AAD AARD RMSD 

𝑃 1.248 bar 739.62 % 2.0900 bar 

𝑥𝐶𝑂2

𝑉𝐿𝐸 0.0977 52.52 % 0.1515 

Subset 1: 𝐏 ≤ 𝟔𝟎 𝐛𝐚𝐫, 𝐓 ≤ 𝟑𝟓𝟎 𝐊, 80 IL species, 3004 points 

Property AAD AARD RMSD 

𝑃 0.820 bar 61.28 % 1.349 bar 

𝑥𝐶𝑂2

𝑉𝐿𝐸 0.0547 40.83 % 0.0900 

Subset 2: 𝐏 ≤ 𝟓 𝐛𝐚𝐫, 𝐓 ≤ 𝟑𝟓𝟎 𝐊, 50 IL species, 612 points 

Property AAD AARD RMSD 

𝑃 0.931 bar 55.20 % 1.280 bar 

𝑥𝐶𝑂2

𝑉𝐿𝐸 0.01392 58.60 % 0.0246 
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Figure 5.3-1. Comparison of COSMO-SAC predicted CO2 solubility in ionic liquids (ILs) 

with VLE experimental data. 
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Figure 5.3-2. Comparison of COSMO-SAC predicted Henry’s constant of CO2 in ionic 

liquids (ILs) with experimental data. 
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Figure 5.3-3. Comparison of COSMO-SAC predicted Henry’s constant of CO2 in ionic 

liquids (ILs) with experimental data. 
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combinations represented by the experimental data. Identifying potentially superior ILs 

within this unexplored space becomes a possibility. Essentially, this combined approach 

functions as a computational component-screening method for designing novel ILs. 

Figure 5.4-1 depicts a heatmap illustrating the predicted CO2 solubility across all 

screened ILs. ILs with at least an existing experimental data point are marked with dots. 

Notably, the heatmap reveals a combinatorically optimal IL that appears to have been 

missed by the experimental studies. These potentially promising ILs are listed in Table 

5.4-1 

 

Table 5.4-1. Some potentially promising ILs discovered from screening method. 

Abbreviation SMILES 𝑥𝐶𝑂2
𝑉𝐿𝐸 

[C2TT][Cl] CCSC(=[N+](C)C)N(C)C.[Cl-] 0.0704 

[C2TT][Br] CCSC(=[N+](C)C)N(C)C.[Br-] 0.0625 

[P6,6,6,14][IDA] 
CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC

)CCCCCC.[O-]C(=O)CNCC(=O)[O-] 
0.0669 

[C2TT][IDA] 
CCSC(=[N+](C)C)N(C)C.[O-]C(=O)CNCC(=O)[

O-] 
0.0626 

[C1mim][Cl] Cn1cc[n+](c1)C.[Cl-] 0.0589 
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Figure 5.4-1. Solubility of CO2 in screened ILs. A dot in a cell indicates the presence of 

at least one VLE experimental data point for the CO2-IL system. 

 

Figure 5.4-2 and Figure 5.4-3 demonstrate the heatmaps of reciprocal SAscore and 

reciprocal SCscore, respectively, for every screened ILs. As mentioned in section 3.2.3, a 

chemical with its SAscore larger than 4.0 (or reciprocal SAscore ≤ 0.25) is considered 

a rare molecular structure. Based on this criterion, these results suggest that a practical IL 

may not always be assessed as highly feasible according to these two indices. Note that 
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the SAscores for the screened ILs range from 2.272 ([P6,6,6,14][Cl]) to 5.79 ([N0,0,2-

OH,2-OH][PF6]). 

 

 

Figure 5.4-2. Reciprocal SAscore of screened ILs. Red cells indicate high synthetic 

accessibility (or low structural complexity). A dot in a cell indicates the presence of at 

least one VLE experimental data point for the CO2-IL system. 
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Figure 5.4-3. Reciprocal SCscore of screened ILs. Red cells indicate low synthetic 

complexity. A dot in a cell indicates the presence of at least one VLE experimental data 

point for the CO2-IL system 

 

The absorption free energy (Δ𝐺𝑖/𝑆

𝑎𝑏𝑠
), absorption enthalpy (Δ𝐻𝑖/𝑆

𝑎𝑏𝑠
), and absorption 

entropy (Δ𝑆𝑖/𝑆

𝑎𝑏𝑠
) of the screened ILs are presented in Figure 5.4-4, Figure 5.4-5, and 

Figure 5.4-6. These represent the thermodynamic changes associated with the absorption 
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of ideal-gas CO2 (balanced by inert gas) at standard pressure 𝑃𝑜 = 1 𝑏𝑎𝑟 . A positive 

value for Gibbs free energy indicates that the CO2 capture process will not occur 

spontaneously, necessitating thermodynamic work to initiate the process. This is due to 

the high vapor pressure of CO2 at 298.15 K (64.48 bar), where CO2 tends to favor the 

vapor phase unless strongly interacted with by the IL, making it significantly non-ideal. 

The negative enthalpy indicates an exothermic absorption process, albeit typically less 

exothermic than conventional monoethanolamine (MEA)-based absorption processes.255, 

260 Absorption entropy characterizes the increase in the number of accessible states after 

the absorption process. It is intuitive to expect that CO2 loses some configurational states 

upon entering a liquid phase where the solvent exhibits attractive interactions. 

 



doi:10.6342/NTU202403528

127 

 

 

Figure 5.4-4. Absorption free energy (Δ𝐺𝑖/𝑆

𝑎𝑏𝑠
) of CO2 in the screened ILs. A dot in a cell 

indicates the presence of at least one VLE experimental data point for the CO2-IL system. 
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Figure 5.4-5. Absorption enthalpy (Δ𝐻𝑖/𝑆

𝑎𝑏𝑠
) of CO2 in the screened ILs. A dot in a cell 

indicates the presence of at least one VLE experimental data point for the CO2-IL system. 
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Figure 5.4-6. Absorption enthalpy (Δ𝑆𝑖/𝑆

𝑎𝑏𝑠
) of CO2 in the screened ILs. A dot in a cell 

indicates the presence of at least one VLE experimental data point for the CO2-IL system. 

 

Finally, the reciprocal of absorption-desorption index (ADI-1, see eq (5.2–10)) 

represents an overall ease of employing an ionic liquid (IL) for CO2 capture. Ideally, an 

IL should readily absorb CO2 at a lower temperature and then release it at a higher 

temperature for regeneration. In this study, we evaluated ADI using absorption and 

desorption temperatures of 298.15 K and 348.15 K, respectively. Interestingly, the 
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optimal species identified in CO2 solubility calculations (Figure 5.4-1) coincide with 

those found in this analysis. These species exhibit relative negative absorption enthalpy 

(Figure 5.4-5). This suggests that the regeneration process, where CO2 is desorbed from 

the IL, might require additional energy input due to the exothermic nature of the 

absorption process.  

It is noteworthy that these optimal species also perform optimally among the 

screened ILs in terms of absorption-selectivity-desorption indices (ASDI), exception for 

the case that H2O is present. Please refer to Figure B3 to Figure B7 for further details. 

Also see Figure B8 to Figure B13 for the IL’s selectivity of CO2 over other gas. 
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Figure 5.4-7. Reciprocal absorption-desorption index (ADI) of CO2 in the screened ILs. 

The darker red indicates the desirable performance. A dot in a cell indicates the presence 

of at least one VLE experimental data point for the CO2-IL system. 

 

5.5. Computational Details of IL Design Using CAMD 

Figure 5.5-1 shows the detailed steps for the design of new ionic liquids with 

desirable CO2 solubility. In this work, the target values of both Henry’s constant and VLE-

based CO2 solubility are set as 1.0, while the molecular size for cation and anion are not 
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restricted. Before starting a CAMD, a library of basic elements and associated occurrence 

rate is prepared in MDS (section 3.1.1), and the generation of new species from genetic 

operations and random constructions is subjected to this probability distribution.  

The CAMD process initializes with a population of 40 ILs (in MDS format) created 

either by user specification or by random combination of basic elements. Each IL in 

population can be outputted as the simplified molecular-input line-entry system 

(SMILES)261 format by mds2smi() subroutine in MARS-PLUS package, and 

subsequently the SMILES is converted to 3D molecular structure with the aid of open-

source program OpenBabel.81 The 3D molecular structure is one of the proper input 

format for quantum chemical calculations using Gaussian 09262. For each molecular or 

ionic species, a molecular geometry optimizations in vacuum is performed on Gaussian, 

followed by the COSMO solvation calculation in water solvent, with both of the steps are 

at b3lyp/6-31g(d,p) level. After COSMO calculations, the activity, VLE-based solubility, 

and Henry’s constant of CO2 in an IL solvent can be determined (see section 5.2). 

Subsequently, the fitness 𝐹𝑖𝑡𝑓𝑐𝑛(𝒖𝒊, 𝒘𝒊; 𝒕) of each IL is determined based on eq. (3.4–1) 

and the survival probability 𝑃𝑅𝑊(𝒎𝒊, 𝒔𝒊; 𝒕) is calculated using eq. (3.4–4). Based on the 

probability distribution over all the species in the initial population, 40 ILs are selected 

using roulette wheel selection. It should be noted that the species composition of the 

selected ILs are usually different from that of initial population. 

Some of the selected ILs species are modified into other species by applying genetic 

operators (section 3.3) to them. In this work, each operation is devised to manipulate a 

particular fraction of the selected species, namely, (𝑃𝑐𝑟 , 𝑃𝑚𝑢, 𝑃𝑐𝑏, 𝑃𝑐𝑠) =

(0.8, 0.3, 0.15, 0.15)  for crossover, mutation, combination, and component swap, 

respectively. After the property evaluations for newly generated species, a new generation 

of population is then formally formed. The new population is subjected to next round of 
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selection, genetic operations, and property evaluations, until the convergence or 

termination criteria are satisfied. However, genetic algorithm cannot offer convergence 

guarantees due to the stochastic nature.263 Therefore, we set the 625th generation as the 

termination criterion. 

To prevent the optimization from being trapped in local extrema, the alienization of 

population is carried out in population every 25 generations. In this operation, the ILs 

with their fitness lower than the 34th percentile in the population will be replaced with 

randomly generated chemicals. This help the optimizer discard the less-promising 

temporary solutions and direct the search to different locations in the feasible region. The 

redistribution of solutions in chemical space is found to be useful for practical design 

tasks.264 
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Figure 5.5-1. Flow diagram of the CAMD algorithm developed in this work. 

 

The effect of the initial population on the result of CAMD is examined by comparing 

two cases of CAMD. In one case, 40 ILs with the best CO2 solubility (0.0165 ≤ 𝑥𝐶𝑂2
≤

0.0402) are selected from the Henry’s constant data and specified as initial population. 

In the other case, the initial population are generated from random connections of basic 

elements.  
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Table 5.5-1. Summary of the settings for the two CAMD tasks. 

 Task 1 Task 2 

Target Henry’s constant 

(bar) 
1.00 1.00 

Target VLE-based 

solubility 
1.00 1.00 

Population 40 40 

Restriction of molecular 

size 
None None 

Initial population 

40 ILs from the 

experimental data of 

Henry’s constant 

Randomly generated 40 

ILs 

Maximum of GA 

generations 
625 625 

 

 

5.6. CAMD Results 

Figure 5.6-1 displays the evolution trajectory of CO2 solubility, represented by 

several statistical quantities for the population, including maximum, minimum, mean 

value, and quartiles. For the iterations at which the alienization operator is not activated, 

the variation of these statistical quantities with respect to the generation are usually small 

(less than 0.03) in task 1. In contrast, the temporal variation observed in task 2 is relatively 

larger than in task 1. Specifically, in task 2, the distribution of CO2 solubility across the 

population appears more scattered compared to task 1. The stabilizing effect observed in 

task 1 may be attributed to the similarity among the cations and anions present in the 

population. 
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It is noteworthy that, in both tasks, ILs with high CO2 solubility are primarily 

generated through the alienization operator. This suggests that relying solely on crossover 

and mutation operations may make it challenging to discover ILs with significantly 

enhanced CO2 solubility. Alienization operator can mitigate the issue of CAMD becoming 

trapped in local maxima, where an optimal species dominates the population. By 

introducing new "genes" into the population, the alienization operator facilitates the 

exchange of molecular fragments with heterogeneous species, potentially leading to a 

wider variety of optimal candidates. Nevertheless, in task 2, the alienization operator 

appears less effective in achieving substantial solubility improvements; for instance, few 

ILs achieve solubility greater than 0.2 upon alienization." 

Figure 5.6-2 illustrates the evolution of the number of cations, anions, and IL species 

within the population. The trajectory indicates that the genetic algorithm does not exhibit 

clear convergence under our parameter settings for both tasks. Sharp peaks in the 

trajectory correspond to instances of the alienization operator. Specifically, in task 1, the 

alienization operator effectively renews the entire population around the 175th generation, 

suggesting that an optimal species dominates approximately two-thirds of the population 

before alienization within that generation interval. Furthermore, the variety of anions 

generally appears lower compared to that of cations. This suggests that reducing the 

degree of freedom for anions contributes to achieving higher CO2 solubility. 
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Figure 5.6-1. Evolution trajectory of population in terms of mean, quartiles, maximum, and minimum value of CO2 solubility for (a) task 1 and (b) 

task 2. 
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Figure 5.6-2. Evolution trajectory of the number of cation, anion, and IL species existing in population for (a) task 1 and (b) task 2. 
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The comparison between Hi-derived CO2 solubility and VLE-based CO2 solubility 

for task 1 (3507 IL species) and task 2 (3176 IL species) is shown by Figure 5.6-3. 

Though the CAMD is capable of designing better ILs than specified ILs, most of the new 

species would only have modest solubility for CO2. In the regime of 𝑥𝐶𝑂2,𝑐𝑎𝑙𝑐,𝑉𝐿𝐸 < 0.1, 

the two methods show good agreement (with AADHenry-VLE=0.000431 and AARDHenry-

VLE=1.43%). However, in the regime of 𝑥𝐶𝑂2,𝑐𝑎𝑙𝑐,𝑉𝐿𝐸 > 0.1  the AADHenry-VLE and 

AARDHenry-VLE increase to 0.0631 and 41.2%, respectively. This implies that a minimum 

AADHenry-VLE value of 0.631 might be inevitable for the regime of high CO2 solubility 

even though the target of Henry’s constant and VLE-based solubility are set 1.00 

consistently. Note that the required calculation time for VLE-based method might be 

significantly longer than that for Hi-based method because of the iterations for the 

composition in IL phase. The use of Henry’s constant might be sufficient if lower 

accuracy of CO2 solubility is acceptable. 

 



doi:10.6342/NTU202403528

140 

 

 

 

Figure 5.6-3. Comparison between Hi-derived and VLE-based CO2 solubility in each of the designed IL species in (a) task 1 and (b) task 2. The 

blue dots are the ILs specified in the initial population, and the orange dots are the designed ILs. 
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Since the analysis by Figure 5.6-1 and Figure 5.6-2 only accounts for the 

distribution of species in population, the analysis of IL species throughout all generation 

would be more comprehensive. Figure 5.6-4 shows the distribution of the accumulated 

number of IL species with respect to CO2 solubility per 100 generations, with the inset 

figure for the regime of higher solution. Note that if an IL species has appeared in former 

generation, it will no longer be counted in any generation later than its first appearance. 

Even so, the genetic algorithm is able to produce new ILs species in late generations. 

Of all the 3507 IL species generated in task 1, the CO2 solubility in the 70.34% of 

the IL species have at least comparable performance with the initial ILs, i.e. higher than 

the minimum solubility provided by ILs in the initial population, 

CCCC[n+]1ccccc1.N#C[N-]C#N (𝑥𝐶𝑂2,𝑐𝑎𝑙𝑐,𝑉𝐿𝐸 = 0.016487). However, only 1.11% of 

all the 3507 IL species are better than the best IL species in the initial population, 

CNO[N+](CC)(C)C.[F-] (𝑥𝐶𝑂2,𝑐𝑎𝑙𝑐,𝑉𝐿𝐸 = 0.058486). Most of the optimal ILs have halide 

as its anion part, which has good agreement with experimental findings.  

Of all the 3176 IL species generated in task 1, the CO2 solubility in the 69.54% of 

the IL species have at least comparable performance with the “lower bound” 

benchmarking IL, CCCC[n+]1ccccc1.N#C[N-]C#N (𝑥𝐶𝑂2,𝑐𝑎𝑙𝑐,𝑉𝐿𝐸 = 0.016487) . 

However, only 3.46% of all the 3176 IL species are better than the best benchmarking IL, 

CNO[N+](CC)(C)C.[F-] (𝑥𝐶𝑂2,𝑐𝑎𝑙𝑐,𝑉𝐿𝐸 = 0.058486).  
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Figure 5.6-4. The distribution of accumulated new ILs species per 100 generations against the CO2 solubility provided by the ILs in (a) task 1 and 

(b) task 2. The inset figure shows the regime of higher CO2 solubility. 
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Table 5.6-1. The optimal species (𝑥𝐶𝑂2
𝑉𝐿𝐸 ≥ 0.07) of task 1 

IL SAscore SCscore 𝑥𝐶𝑂2
𝑉𝐿𝐸 

O=N[NH3+].[Cl-] 6.459758 1.730161 7.15130E-01 

[NH+]1=C(CC=O)COC1.[OH-] 5.663391 2.257299 6.73963E-01 

C[N+](=O)O.[F-] 4.037967 1.308444 4.98330E-01 

C[N+]1=C(CO1)CC=O.[OH-] 5.112391 2.146881 4.20333E-01 

C[N+](=O)O.[OH-] 4.037967 1.306965 3.43853E-01 

N#C[n+]1ccccc1.[F-] 3.868907 1.409937 2.69921E-01 

N#C[n+]1ccccc1.[OH-] 3.868907 1.570812 2.27249E-01 

[NH+]1=C(CC=O)COCC1.[OH-] 5.344792 2.080685 1.97139E-01 

C[n+]1ccccc1.[F-] 2.89633 1.403133 1.63559E-01 

C[n+]1ccccc1.[OH-] 2.89633 1.560102 1.55642E-01 

O[N+]1=C(CC=O)COCC1.[OH-] 4.657605 2.056511 1.44625E-01 

[NH+](=C(CO)CC=O)C.[OH-] 5.808888 1.865491 1.22312E-01 

CC(C1=[N+](OC1)C)C=O.[OH-] 5.443628 2.075878 1.08546E-01 

O[n+]1ccccc1.[F-] 3.376086 1.202416 9.85660E-02 

C[P+]1(C)C#CC1(C)C.[OH-] 5.715484 2.100247 9.13450E-02 

ClC(=O)[n+]1ccccc1.[OH-] 3.367023 1.175276 8.56980E-02 

OC#C[N+](=O)C#CO.CC[PH-](

C(CC)C)(C#CO)(C)C 
6.336244 2.574127 8.36600E-02 

CC([N+](=C)C)(CC=N)O.[F-] 6.423307 2.309639 8.01830E-02 

COCC(=[NH+]C)CC=O.[OH-] 5.333102 2.207268 7.87510E-02 

CC(=O)C([NH+](C)C)C.[F-] 5.379002 2.09177 7.68860E-02 

O=CC1COCC1=[NH+]C.[OH-] 5.989354 2.216406 7.65240E-02 



doi:10.6342/NTU202403528

144 

 

CC[n+]1ccccc1.[F-] 2.82999 1.423173 7.59730E-02 

OC#C[N+](=O)C#CO.CC[PH-](

C(C)C)(C#CO)(C)C 
6.14283 2.574661 7.25630E-02 

CC(=O)C(C1=[N+](OC1)C)C.[O

H-] 
4.945539 2.334749 7.20170E-02 

CO[N+](OO)(OC)C.[OH-] 4.886232 2.375703 7.13900E-02 

 

Table 5.6-2. The optimal species (𝑥𝐶𝑂2
𝑉𝐿𝐸 ≥ 0.08) of task 2 

IL SAscore SCscore 𝑥𝐶𝑂2
𝑉𝐿𝐸 

O=CC(C=[NH+]C)(C)C.[OH-] 5.840043 1.89082 8.00000E-02 

CCC=[N+](OC)C.[F-] 5.185766 2.132104 8.02840E-02 

Cc1cc[n+](cc1)C.[F-] 2.886188 1.773975 8.04050E-02 

C=CC(=[N+](C(=N)C)C)C.[F-] 6.089354 2.360347 8.07740E-02 

Cc1c[n+](C)c2c(c1)C2.[F-] 3.913382 2.152881 8.08520E-02 

CCC=C([P+](C(=C=NF)O)(OO)

O)C.CCC([PH2-](C)(C)C)(N(C)C

)C 

6.409714 3.059779 8.10000E-02 

Cc1ccc[n+](c1)C.[F-] 3.097125 1.643486 8.12980E-02 

FN=C=C([P+](C(=C(N)C)C)(OO

)O)O.CCC1(CC[PH-]1(C)(C)CC)

N(C)C 

6.587133 4.110911 8.13040E-02 

FN=C=C([P+](C(=CC)CC)(OO)

O)O.CCC([PH-]1(C)(C)CC1)(N(

C)C)C(C)C 

6.539413 3.548242 8.21360E-02 

CCC(=O)C(=[N+](C)C)C.[OH-] 3.909215 1.680957 8.27660E-02 

CC(=O)[N+]1=CC#CC1.[OH-] 5.870281 1.819372 8.37440E-02 

C[N+](=CC=C)CC#C.[F-] 5.75616 2.064453 8.50460E-02 
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C=C1CN=N[P+]1(C)C.[F-] 5.836898 2.405142 8.69230E-02 

FN=C=C([P+](C(=CF)C)(OO)O)

O.CCC([PH-](C)(C)(C)C)(N(C)C

)C 

6.623562 3.26906 8.69300E-02 

FN=C=C([P+](C(=C(C)C)C)(OO

)O)O.CCC([PH2-](C)(C)C)(N(C)

C)C(C)C 

6.235303 3.294852 8.72020E-02 

C[N+](=CC#C)C(=O)C.[OH-] 5.411162 1.430787 8.74800E-02 

[NH+](N=NC)(CC=O)C.[OH-] 6.721646 1.997546 9.14330E-02 

CC(=[N+]1C=CC1=C)C.[F-] 5.058266 2.131142 9.24060E-02 

C#C[n+]1ccccc1.[F-] 4.162007 1.429662 9.49730E-02 

C#C[n+]1ccccc1.[OH-] 4.162007 1.30316 9.50540E-02 

Cc1c2ccc([n+]1C)C2.[F-] 5.403497 2.823614 9.54300E-02 

Br[N+](=C)C#C.[F-] 5.880827 1.651061 9.58300E-02 

FN=C=C([P+](C(=C)CC)(OO)O)

O.CCC([PH-](C)(C)(C)C)(N(C)C

)CC 

6.294364 3.208405 9.81460E-02 

Cc1cccc[n+]1C.[F-] 3.06133 1.597929 9.82020E-02 

CC(=O)[n+]1ccccc1.[F-] 3.072457 1.324428 9.90920E-02 

C[P+]1(CCN=N1)C=C.[F-] 6.390823 2.106228 1.00680E-01 

C[n+]1cc2Cc1cc2.[F-] 5.874027 2.37717 1.01297E-01 

C[N+]1=C(C=C)C#CCC1.[F-] 5.712546 2.395702 1.03652E-01 

CO[N+]1=NC=CC1=C.[F-] 5.485177 2.148332 1.10217E-01 

CO[N+](=O)C#C.[F-] 5.144282 1.5844 1.10712E-01 

C=CC(=[N+](C=N)C)C.[F-] 6.508901 2.571599 1.19672E-01 

CC#C[N+](=O)OC.[F-] 5.027521 1.69505 1.22925E-01 
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C[n+]1ccccc1.[OH-] 2.89633 1.560102 1.55649E-01 

C[n+]1ccccc1.[F-] 2.89633 1.403133 1.63568E-01 

[NH2+]=O.F[P-](F)(F)(F)(F)F 6.449028 1.389601 2.63303E-01 

OC=C([PH3+])O.[F-] 5.763995 1.549239 5.43695E-01 
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Chapter 6. Rule-based vs. AI-based CAMD 

 

6.1. AI-based Generative Models for CAMD 

The rapid advancement of artificial intelligence (AI) has witnessed a surge in the 

development of machine learning (ML) models specifically designed for the field of 

molecular design.34, 265-269 Unlike conventional CAMD, AI-based generative models are 

data-driven and thus require a large database of chemical structures and associated 

properties. Besides, AI-based molecular design also differs from conventional molecular 

design in its approaches for generation and representation of chemical structures. The 

prevailing generative models for Computer-Aided Molecular Design (CAMD) include 

the RNN-based chemical language model (Figure 6.1-1 and Appendix F.2)153, 154, 270-280 

and the VAE-based latent variable model (Figure 6.1-2 and Appendix F.3)280-292. Notably, 

both these models require learning the inherent patterns of valid chemical representations 

before functioning as generative tools. This stands in contrast to traditional CAMD 

approaches, where chemical representation is typically predefined before model 

development. Chemical syntactic models aim to learn the contextual relationships among 

tokens (e.g. atomic symbols) in sequential data (e.g. SMILES73, 74) so that they can 

generate new sequential data based on the acquired rules. On the other hand, latent 

variable model aims to create a continuous latent space where a chemical species is 

represented by a unique numerical vector. This vector encapsulates the abstract chemical 

patterns of a species. New chemical species can be generated via sampling of points in 

latent space and can be translated into readable format through decoder. Beyond these 

prominent model categories, additional machine learning based models have been 

specifically designed to act as decision-makers for conventional molecular 
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modifications291, 293-295, with RDKit employed for the molecular representation and 

execution of modifications. 

Despite these remarkable progresses, both these types of models suffer from some 

limitations. When these models are trained for exploration tasks, the properties 

distribution in the generated chemicals, such as logP and SAscores, tends to resemble that 

of the training data.284, 296 It is only when these models are trained for exploitation tasks 

that they exhibit a task-specific distribution. In other words, explorative chemical 

syntactic models and explorative latent variable models may not be ideal for generating 

structures with properties beyond the scope of the training dataset. For exploitation tasks, 

it may be necessary to employ transfer learning297, 298 to train additional models tailored 

to different combinations of target properties. Furthermore, these two model types may 

require additional effort to regularize and rationalize the modification behaviors, such as 

constraining modifications to practical fragment-scale alterations.299-301 It may also be 

challenging for these two models to implement every possible modification at every 

potential substructure. For example, when atomic symbols are sequentially appended to 

an existing SMILES, opportunities to connect with inner substructures may be missed. 

On the other hand, the numerical values in latent vector representation do not directly 

reveal the actual modification points within a chemical structure, making regulation 

difficult. In contrast, traditional CAMD approaches and ML-based decision-makers allow 

for straightforward manipulations of the structure variables in a controllable fashion. 

Changes to the structure can be realized at the desired resolution, whether it involves the 

replacement of an atom, a functional group, or an entire structural fragment. The 

generated molecules are not limited to any prespecified group of molecules. 



doi:10.6342/NTU202403528

149 

 

 

Figure 6.1-1. The flowchart for computer-aided molecular design based on SMILES representation and early architecture of RNN277. 
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Figure 6.1-2. The flowchart for computer-aided molecular design based on early architecture of VAE281. 
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6.2. Benchmarks for Comparing Rule-based and AI-based CAMD 

For both chemical syntactic models and latent variable AI models, their performance 

in exploration tasks35, 36 are often quantified by distribution-learning metrics111, 302 such 

as the validity, uniqueness, novelty, and internal diversity of generated chemicals. The 

significance of these quantities are elaborated in Table 6.2-1. In addition, their 

performance in exploitative design35, 36 of organic molecules is frequently evaluated by 

goal-directed metrics.111, 303, 304 These metrics indicate the optimality of the designed 

molecules in terms of the target values of properties (e.g. logP, SAscore, CNS 

desirability305, and the similarity306, 307 with specific drug-like molecules).  

The reconstruction rate308 of chemicals (see Appendix F.2 and F.3), as indicated by 

learning loss, is also a crucial metric for assessing the intrinsic accuracy of the model.. 

Both the reconstruction rate and validity from early VAE-based models are often around 

50%275, 283, 287, 289, 309, 310, while for RNN-based models these two metrics are 63.0 to 

99.6%273, 280 and 30.0 to 100.0%270, 275, 279, 280, 296, respectively. Recent advancements in 

techniques have led to significant improvements in both types of models. For VAE-based 

models, the implementation of self-attention transformer280, 311 (see Appendix F.4) has led 

to increased chemical validity and reconstruction rates, reaching levels as high as 98.0% 

to 99.9%280, 284, 291, 312, 313. Furthermore, these advancements have also contributed to 

higher levels of chemical novelty and uniqueness, both exceeding 80.0%280, 284. On the 

other hand, it has been suggested that replacing RNN-based models with transformers314-

316 or introducing attention mechanism to RNN-based models280 may enhance the 

chemical validity.  
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Table 6.2-1. The significance of the distribution-learning metrics. 

Metric Significance 

Validity 

The fraction of the generated chemicals recognizable by RDKit,82 

indicating how well the model adheres to rules for valid chemical 

representations. 

Uniqueness 
The proportion of the distinct chemicals among a set of valid structures, 

highlighting diversity in generated chemicals. 

Novelty 
The proportion of the unique structures not represented in the training 

data, indicating the model's ability to avoid overfitting. 

Filters 

The proportion of the generated chemicals passing specific filters 

employed during training data curation (e.g., excluding halogen-

containing compounds), demonstrating adherence to additional user-

defined constraints. 

Internal 

diversity 

The diversity of the generated chemicals measured by Tanimoto 

similarity, reflecting exploration across different regions of chemical 

space. 

 

For rule-based generative models, both goal-directed metrics are also applicable, 

whereas certain distribution-learning metrics may be less meaningful in some 

comparisons.111 Rule-based models are typically developed independently of training 

datasets and are not designed to replicate the distribution of such datasets. Therefore, the 

novelty metric, as well as filters metric, will be ill-defined for rule-based generative 

models. Moreover, robust rule-based models generally ensure the near-perfect validity 

metric of the generated chemicals for each rule-based model. Validity is often trivial in 

differentiating the performance of multiple rule-based models.  

Currently, numerous benchmark suites are available to facilitate the evaluation of 

rule-based and AI-based models. Each suite typically includes reference datasets, baseline 
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generative models (both AI-based and rule-based), distribution-learning metric, and a 

variety of goal-directed tasks, as detailed in Table 6.2-2. These reference datasets serve 

as training data for baseline models and as initial molecules in goal-directed tasks, aiming 

to standardize the starting point for each task across different baseline models. This 

standardization minimizes non-intrinsic differences among baseline models within the 

same goal-directed task, allowing the intrinsic nature of these generative models to be 

more clearly characterized by their performance in these tasks. However, achieving a 

completely fair comparison can be challenging due to different nature of generative 

algorithms. For example, the approach used by MARS+ to generate new chemicals differ 

fundamentally from that of RNN-based chemical syntactic models. MARS+ iteratively 

modifies a population of chemical species to generate new ones, whereas most RNN-

based models generate a new species from scratch in one go without modifying existing 

species.  

Two benchmark suites, GuacaMol111 and MolOpt317, provide extensive sets of goal-

directed tasks and baseline models (detailed in section 6.3 and 6.4), making them popular 

choices for evaluating the capabilities of new generative models in the exploitative design 

of organic drug-like molecules. In the following sections, the performance of MARS+-

based CAMD in different tasks is ranked with other baseline models based on the two 

suites. 
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Table 6.2-2. A survey of benchmark suites and the metrics provided. 

Benchmark suite Benchmark types 

GuacaMol111 

ChEMBL 24 dataset 

20 goal-directed tasks: metrics include similarity 

with some drug-like molecules, logP, TPSA, and 

constitutional isomers etc. 

Distribution-learning metrics 

MolOpt317 

ZINC 250K dataset 

23 goal-directed tasks: include most of the goal-

directed metrics in GuacaMol plus QED DRD2, 

GSK3β, JNK3. 

Molecular Sets (MOSES)302 

ZINC clean leads dataset 
Distribution-learning metrics 

Tartarus303 

CEPDE & customized datasets 

4 Goal-directed tasks: metrics include HOMO-

LUMO gap, dipole moment, electronic excitation 

energy, and activation energy. 

SMINADockingBenchmark318 

ChEMBL & ZINC datasets 

1 Goal-directed task: docking affinities serve as 

the metric 

DeNovoBenchmarks319 

GuacaMol & ZINC datasets 

11 Goal-directed tasks: include a few metrics 

from GuacaMol and MolOpt such as logP, QED. 

MolecularNet320 

QM9, FreeSolv, etc. 

Benchmark for property prediction models (e.g., 

solubility, solvation free energy, lipophilicity) and 

molecular classification models. 

 

6.3. GuacaMol: Effectiveness of MARS+ and Other Baseline Models 

GuacaMol111 primarily evaluates the effectiveness of generative models in each task. 

For each goal-directed task, starting chemicals are initialized using the best-suited species 

from the built-in ChEMBL dataset in GuacaMol. The population size (|𝑃𝑜𝑝𝑢𝑛| , see 

section 3.4.2) is set to 100 and the offspring population size (|𝐺𝑒𝑛𝑛|, see section 3.4.2) is 
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set to 200. Roulette wheel scheme (section 3.4.2) is adopted for selecting the subject 

chemical species from population 𝑃𝑜𝑝𝑢𝑛 for crossover and mutation operations. The 

probabilities of crossover and mutations are 1.0 and 0.5, respectively. Mutation occurs 

following successful crossovers. After evaluating the properties of generated species, the 

most optimal species from the union of the current population and offspring population 

is selected for the next iteration, i.e. 𝑃𝑜𝑝𝑢𝑛+1 = find_optimal(𝑃𝑜𝑝𝑢𝑛 ⋃ 𝐺𝑒𝑛𝑛). 

Rule-based models like GRAPH_GA110, 111 can run up to a maximum of 1000 

iterations unless an early-termination criterion is met (i.e. lack of progress in any species 

within the population over 5 consecutive iterations). Typically, 1000 iterations are 

sufficient for these tasks to find at least a local optimal species.317 After the iterations 

finish, the average score of the top-K species is calculated for particular values of K, e.g. 

the average score of top-1, top-10, and top-100 species. The “score” here shares the same 

significance with the single-property fitness function used in genetic algorithm based 

generative models. The overall performance of the generative model in the goal-directed 

task is quantified by an overall score, determined by the geometric or arithmetic average 

of these top-K average scores. For instance, using the arithmetic average scheme, the 

overall score for most goal-directed tasks is represented as: 

 

Overall_score =
1

3
(Top1_avg + Top10_avg + Top100_avg) (6.3–1) 

 

In this study, we utilize the 20 goal-directed tasks in GuacaMol benchmark suite111 

to compare MARS+ with other baseline models. As mentioned earlier, only metrics 

related to chemical diversity (i.e., uniqueness and internal diversity) remain well-defined 

for rule-based models. Since chemical diversity is typically not the primary objective in 



doi:10.6342/NTU202403528

156 

 

practical molecular design tasks, this comparison excludes distribution-learning 

metrics. The target properties for each of the goal-directed tasks are detailed in Table 

6.3-1, and the baseline models are summarized in Table 6.3-2.  

 

Table 6.3-1. Goal-directed tasks in GuacaMol.111 

Task Target properties  

Celecoxib rediscovery sim(Celecoxib, ECFC4) = 1 

Troglitazone rediscovery sim(Troglitazone, ECFC4) = 1 

Thiothixene rediscovery sim(Thiothixene, ECFC4) = 1 

Aripiprazole similarity sim(Aripiprazole, ECFC4) ≥ 0.75 

Albuterol similarity sim(Albuterol, FCFC4) ≥ 0.75 

Mestranol similarity sim(Mestranol, AP) ≥ 0.75 

C11H24 constitutional isomer isomer(C11H24) = 1 

C9H10N2O2PF2Cl 

constitutional isomer 
isomer(C9H10N2O2PF2Cl) = 1 

Median molecules 1 
sim(camphor, ECFC4) = 1 

sim(menthol, ECFC4) = 1 

Median molecules 2 
sim(tadalafil, ECFC6) = 1 

sim(sildenafil, ECFC6) = 1 

Osimertinib MPO 

sim(osimertinib, FCFC4) = 1 

sim(osimertinib, ECFC6) = 1 

TPSA ≥ 100 

logP ≤ 1 

Fexofenadine MPO 
sim(fexofenadine, AP) ≥ 0.8 

TPSA ≥ 90 
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logP ≤ 4 

Ranolazine MPO 

sim(ranolazine, AP) ≥ 0.7 

logP ≥ 7 

TPSA ≥ 95 

number of fluorine atoms = 1 

Perindopril MPO 
sim(perindopril, ECFC4) = 1 

number aromatic rings 

Amlodipine MPO 
sim(amlodipine, ECFC4) 

number rings = 2 

Sitagliptin MPO 

sim(sitagliptin, ECFC4) = 0 

logP = 2.0165 

TPSA = 77.04 

isomer(C16H15F6N5O) = 1 

Zaleplon MPO 
sim(zaleplon, ECFC4) = 1 

isomer(C19H17N3O2) = 1 

Valsartan SMARTS 

SMARTS(𝑠2) = 1 

logP = 2.0165 

TPSA = 77.04 

Bertz = 896.38 

deco hop 

SMARTS(𝑠2) = 1 

SMARTS(𝑠3) = 0 

SMARTS(𝑠4) = 0 

sim(𝑠5, PHCO) ≥ 0.85 

scaffold hop 
SMARTS(𝑠2) = 0 

SMARTS(𝑠6) = 1 
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sim(𝑠5, PHCO) ≥ 0.75 

†𝑠2 to 𝑠6 are chemical patterns in reaction SMARTS format.  

𝑠2: [#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]-c12 

𝑠3: [#7]-c1ccc2ncsc2c1 

𝑠4: CS([#6])(=O)=O 

𝑠5: CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C-(C)(C)C 

𝑠6: [#6]-[#6]-[#6]-[#8]-[#6]∼[#6]∼[#6]∼[#6]∼[#6]-[#7]-c1ccc2ncsc2c1 

 

Table 6.3-2. The five baseline models in GuacaMol.111 

Baseline model Generative algorithm 

BEST_FROM_DATASET The best species screened from the built-in dataset. 

GRAPH_GA 
Genetic algorithm-based optimization molecular graphs. 

It is similar to MARS+. 

SMILES_LSTM_HC 
RNN-based chemical syntactic model based on SMILES 

(Appendix F.2) 

SMILES_GA Genetic algorithm-based optimization on SMILES. 

GRAPH_MCTS 

RNN-based chemical syntactic model (Appendix F.2) 

based on SMILES, with Monte Carlo tree search 

algorithm for species generation. 

 

The comparison between our MARS+ based CAMD and other baseline models are 

presented in Figure 6.3-1. Except for the search for constitutional isomers of C11H14 

and C9H10N2O2PF2Cl, MARS+ ranks the second, following GRAPH_GA. In most 

tasks, MARS+ shows slightly compromised performance compared to GRAPH_GA, 

although its overall performance (i.e., the sum of overall scores across tasks) is 

comparable to GRAPH_GA. The difference between MARS+ and GRAPH_GA is 

particularly notable in the task of searching for constitutional isomers of C11H14 and 
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C9H10N2O2PF2Cl. We suspect this discrepancy may stem from inefficient fragment 

exchange in our crossover operation (see Figure 3.3-2). From the source code of 

GRAPH_GA, it appears that all base elements in a fragment can connect with another 

fragment in GRAPH_GA's crossover operation if their valences are compatible, whereas 

in our crossover operation, a fragment can only connect with another one at the crossover 

point. We attempted to align our crossover operation with GRAPH_GA's implementation, 

resulting in a revised version called MARS+_modcross. The performance of 

MARS+_modcross is also shown in Figure 6.3-1. This revision significantly improves 

MARS+'s performance in the tasks involving C11H14 and C9H10N2O2PF2Cl. However, 

it also leads to substantial performance sacrifices in some single-objective tasks such as 

Celecoxib rediscovery and Troglitazone rediscovery, and a slightly compromised 

performance in other tasks.  
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Figure 6.3-1. Performance of 5 baseline models in GuacaMol benchmark, MARS+, and MARS+_modcross. 
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6.4. MolOpt: Efficiency of MARS+ and Other Baseline Models 

In contrast to GuacaMol, MolOpt317 assesses the efficiency of generative models in 

achieving a goal-directed task. Each task begins with randomly selected chemicals from 

the built-in ZINC 250K dataset. The population size (|𝑃𝑜𝑝𝑢𝑛| section 3.4.2) is set 120 

and the offspring population size (|𝐺𝑒𝑛𝑛| section 3.4.2) is set 70. Roulette wheel scheme 

(section 3.4.2) is employed to choose chemical species from population 𝑃𝑜𝑝𝑢𝑛  for 

crossover and mutation operations, with crossover and mutation probabilities set at 1.0 

and 0.067, respectively. Mutation occurs subsequent to successful crossovers. Following 

evaluation of the generated species' properties, the most optimal species from the union 

of the current population and offspring population is selected for the subsequent iteration, 

i.e. 𝑃𝑜𝑝𝑢𝑛+1 = find_optimal(𝑃𝑜𝑝𝑢𝑛 ⋃ 𝐺𝑒𝑛𝑛). 

All hyperparameters of AI models and parameters of rule-based models are fine-

tuned to optimize the AUC-top10 metric (detailed in next paragraphs) in Zaleplon MPO 

and Perindopril MPO tasks (see Table 6.3-1). Rule-based models such as GRAPH_GA110, 

111 are allowed to evaluate up to a maximum of 10,000 new unique species unless an 

early-termination criterion is met (i.e. lack of progress in the average score of the 

population over 5 consecutive iterations). Upon generating i-th new unique species and 

evaluating its properties, the average score of the top-K species at this stage is computed, 

as shown in eq (6.4–1).  

 

TopK_avg(𝒖𝟏, 𝒖𝟐, … , 𝒖𝒊) =
1

𝐾
∑ scoring_func(𝒖𝒋/𝒊)

𝐾

𝑗=1
 (6.4–1) 

 

Here, 𝒖𝒊 represents the i-th generated species, and 𝒖𝒋/𝒊 is the j-th best species in 
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the generated species {𝒖𝟏, 𝒖𝟐, … , 𝒖𝒊} . If 𝐾 > 𝑖 , then only the i available species, 

{𝒖𝟏, 𝒖𝟐, … , 𝒖𝒊}, are used in the calculation top-K average score. The overall efficiency of 

the generative model in the goal-directed task is quantified using the area under top-K 

curve (AUC-topK)317, 321, described by eq (6.4–2). Given that each top-K average score 

ranges between 0 and 1, the constant 1/10000 normalizes the AUC-topK to the closed 

interval [0, 1]. 

 

AUC_topK =
1

10000
∫ TopK_average(𝒖𝟏, 𝒖𝟐, … , 𝒖𝒊)𝑑𝑖

𝑁

1

 (6.4–2) 

 

This study compares MARS+ with other baseline models across 18 goal-directed 

tasks from the MolOpt benchmark suite317, namely, all the tasks in Table 6.3-1 with 

exclusion of C11H24 isomer searching and Aripiprazole rediscovery. Details of the 

baseline models in MolOpt are summarized in Table 6.4-1.  

 

Table 6.4-1. The 25 baseline models in MolOpt.317  

Baseline model Generative algorithm 

GRAPH_GA 
Rule-based and optimization-based genetic algorithm on 

molecular graphs. It is similar to MARS+. 

REINVENT 
RNN-based chemical syntactic model based on SMILES 

(Appendix F.2) 

REINVENT_SELFIES 
RNN-based chemical syntactic model based on SELFIES 

(Appendix F.2) 

GP_BO GRAPH_GA with GP_BO optimization algorithm 

STONED Genetic algorithm-based optimization on SELFIES. 
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SMILES_LSTM_HC 
RNN-based chemical syntactic model based on SMILES 

(Appendix F.2) 

SMILES_GA Genetic algorithm-based optimization on SMILES. 

SYNNET 
Reaction-based optimization on molecular graph with 

neural network model for decision making. 

DOG_GEN 
Reaction-based optimization on molecular graph with RNN 

model for decision making. 

DST 
Genetic algorithm-based optimization on GNN-based 

molecular graph 

MARS 
Genetic algorithm-based optimization on GNN/MPNN-

based molecular graph 

MIMOSA 
Genetic algorithm-based optimization on GNN-based 

molecular graph 

MOL_PAL Property model-based (MPNN) screening method 

SELFIES_LSTM_HC 
RNN-based chemical syntactic model based on SELFIES 

(Appendix F.2) 

DOG_AE 

Reaction-based optimization on molecular graph with RNN 

model for decision making and autoencoder as an extra 

molecular representation for new species generation. 

GFLOWNET 
Genetic algorithm-based optimization on GNN-based 

molecular graph 

SELFIES_GA Genetic algorithm-based optimization on SELFIES. 

SELFIES_VAE_BO 
VAE-based latent variable model based on SMILES 

(Appendix F.3) 

SCREENING Randomly sampling from ZINC 250K reference dataset. 

SMILES_VAE_BO 
VAE-based latent variable model based on SMILES 

(Appendix F.3) 

PASITHEA Direct gradient-based molecule optimization employing 
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DNN and SELFIES 

GFLOWNET-AL 
GFLOWNET with extra property models included to 

enhance sampling efficiency 

JT_VAE_BO 
VAE-based latent variable model based on SMILES 

(Appendix F.3) 

GRAPH_MCTS 
RNN-based chemical syntactic model (Appendix F.2) with 

Monte Carlo tree search 

MOLDQN 
Reaction-based optimization on molecular graph with 

neural network model for decision making. 

 

The comparison of our MARS+ with other baseline models is depicted in Figure 

6.4-2. In terms of overall performance, measured by the sum of AUC top-K scores across 

tasks, MARS+_modcross ranks 3rd, following REINVENT (1st) and GRAPH_GA (2nd). 

Similar to the findings in GuacaMol, MARS+_modcross demonstrates performance 

comparable to GRAPH_GA in most of the tasks, except for Celecoxib rediscovery and 

the search for C9H10N2O2PF2Cl isomers. In particularly, MARS+_modcross exhibits 

apparent inefficiency in Celecoxib rediscovery. Upon examination of the generated 

species, it appears that high-scoring species from GRAPH_GA, such as 

Cc1ccc(c2cc(N)c(=O)n(C(C)C(=O)NC3CCCCC3)n2)o1 with a score of 0.868, typically 

contain abundant cyclic substructures.  

Our crossover operation appears to favor the disruption of cyclic substructures, as 

mentioned in section 3.3.2 that rings will be destructed if unpaired cyclic flags arise 

during the fragmentation process. In contrast, GRAPH_GA has a ring crossover 

mechanism (detailed in Figure 6.4-2), which exchanges ring components between two 

molecules while ensuring that the number of rings in each molecule remains unchanged 

after operation. This mechanism could be seen as an extension of our crossover approach, 
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where the second cut is always on a ring bond in our current implementation. It would be 

beneficial to generalize our crossover mechanism in future work to incorporate similar 

ring-preserving strategies seen in GRAPH_GA, potentially enhancing the efficiency of 

cyclic structure preservation in molecule design tasks. 

REINVENT emerges as the most effective model across a majority of tasks, 

highlighting the superior efficiency of its reinforcement learning-based training algorithm 

compared to other models utilizing similar working principle, such as 

SMILES_LSTM_HC.317 In contrast, methods that rely only on the incremental 

construction of molecules from a single starting point using small building blocks (e.g. 

tokens or atoms), such as MOLDQN and GRAPH_MCTS, prove to be less efficient. 

While these approaches have the potential to explore a broader chemical space, they are 

more suited for explorative tasks rather than exploitative ones.  
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Figure 6.4-1. The steps of (a-c) plain crossover and (d-f) ring crossover in GRAPH_GA. 

Ring crossover requires two cuts: one at a specified bond and another at adjacent bonds 

or bonds separated by one bond. In step (f), the resulting ring fragments from step (e) are 

paired and connected using ring bonds to ensure the number of rings in each molecule 

remains unchanged after operation. This figure is reproduced from reference110 with 

permission from the Royal Society of Chemistry. 
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Figure 6.4-2. Performance of 25 baseline models in MolOpt benchmark and MARS+_modcross. 
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Chapter 7. Conclusions 

The previously developed molecular design tool, MARS162, is extended to handle 

various types of chemicals, including linear, branched, cyclic compounds, ionic species, 

cis-trans isomers, and optical isomers. The new program, MARS+, has the following 

outstanding features: 

 

(1) 12 reversible operations for molecular structure manipulation 

(2) Each operation can be applied on all possible positions (atoms or bonds) 

(3) Capable of handling isomers (enantiomers and cis-trans isomers) 

(4) Capable of handling neutral and ionic species 

(5) Most molecular structures can be generated with a series of available operations 

 

As a traditional method, MARS+ can generate new chemical species without an 

existing structural database, and the structure of generated chemicals can be very different 

from any existing ones. traditional method also offer advantages of CAMD in that the 

structure change can be applied to a desired position and in a desired fashion. This is 

different from most RNN-based chemical syntactic models and VAE-based latent variable 

models, where the learned molecular representation may not be sufficiently robust for 

that. In addition, genetic algorithm-based CAMD has been demonstrated to be 

comparable to, or even better than, ML-based models in certain well-studied tasks, such 

as drug design. We illustrate that MARS+ is capable of generating very complex 

structures by a combination of molecular operations. A very large database of chemicals 

can be easily created by extensive and exhaustive repetitions of all operations on every 

site of any existing molecule. Such a database with rich structure diversity and high 



doi:10.6342/NTU202403528

169 

 

resolution may also be useful for developing data-driven methods. 

MARS+ is applied to the design of novel ILs as CO2 absorbents. The potential 

advantages of ionic liquids over the conventional solvents in CO2 capture have drawn a 

lot of attention. For the search of specialty ILs, the combinatorial screening of common 

cations and anions is often used. Typically, such method can generate the ILs more 

feasible for laboratory synthesis, though the pre-defined library of ions largely limits the 

variety of IL candidates. In this work, we show that the atomic level CAMD can 

compensate for the disadvantages of screening methods. The proposed CAMD 

framework is able to automatically create numerous ions based on genetic algorithm, 

though the feasibility of laboratory synthesis for ILs is not as satisfactory as that from 

screening method. Under the given target values and parameter settings, the results show 

that the specification of initial population has limited influence on the design of ILs with 

high CO2 solubility (xCO2
> 0.1 ). However, it will help the design of ILs with better 

similarity and comparable CO2 solubility. 

Finally, MARS+ is benchmarked against other baseline models using the GuacaMol 

and MolOpt suites. In the effectiveness test with GuacaMol, MARS+ ranks second among 

5 models, just behind GRAPH_GA. Across most goal-directed tasks, MARS+ performs 

comparably to GRAPH_GA, except in the search for constitutional isomers of C11H24 

and C9H10N2O2PF2Cl. Generalizing the crossover operation could potentially improve 

performance in these tasks, but it may come at the cost of performance on other single-

objective tasks, such as Celecoxib and Troglitazone rediscovery. In the efficiency test 

with MolOpt, MARS+ ranks third out of 26 models, following REINVENT (1st) and 

GRAPH_GA (2nd). Notably, MARS+ exhibits particular inefficiency in Celecoxib 

rediscovery compared to GRAPH_GA, which may be attributed to the absence of a ring 

crossover mechanism in MARS+. 
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Chapter 8. Prospects and Future Work 

 

8.1. Applications to Other Chemical Mixture Systems 

The current version of MARS+ demonstrates potential for handling various complex 

systems with minimal or moderate modifications to its source code. These systems 

encompass pharmaceutical cocrystals322, double-salt ionic liquids (DSILs)58, deep 

eutectic solvents (DESs)323, 324, optoelectronic materials2, 325, 326, biomolecules327, and 

polymers328-331.  

Pharmaceutical cocrystals are crystalline materials typically composed of an active 

pharmaceutical ingredient (API), either neutral or ionic, and a neutral coformer. The 

coformer significantly influences key physicochemical properties of the cocrystal, such 

as melting point, chemical stability, solubility, dissolution rate, and bioavailability. This 

influence stems largely from hydrogen-bonding interactions between the API and the 

coformer. Moreover, the coformer can potentially alter the structural integrity of the API, 

thereby modifying its properties. Designing optimal conformers for drug delivery and 

release would be a valuable area of research. 

Double-salt ionic liquids (DSILs) and deep eutectic solvents (DESs) are natural 

extensions of the current study. DSILs consist of two distinct ionic liquids (ILs), 

[Cat1][An1] and [Cat2][An2], blended in a specific stoichiometric ratio. This mixture 

system introduces additional combinatorial degrees of freedom in its components, making 

it an ideal subject for demonstrating the capabilities of CAMD and screening methods. 

DESs are often regarded as a specialized category within ILs. Their unique characteristic 

lies in the hydrogen-bonding interactions among their components, which leads to 

unexpectedly deep depression in their melting points. 
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Our implementation of MARS+ based CAMD incorporates key performance 

properties of optoelectronic materials, including fundamental gap, electron affinity, 

ionization potential, and electronegativity (see section 3.2). Future enhancements may 

involve integrating properties such as exciton binding energy2, which could serve as a 

preliminary indicator for assessing a molecule's suitability for applications in 

photovoltaic cells or light-emitting devices. 

The design of biomolecules and polymers is theoretically achievable using MARS+. 

However, efficient conformer enumeration and geometry optimization are often 

necessary for these studies, as the physicochemical properties of macromolecules can be 

highly dependent on their conformations. Performing force field-based atomic 

optimization using RDKit and OpenBabel can be time-consuming for each 

macromolecule. Fortunately, AlphaFold332, 333 can efficiently handle this task, 

significantly reducing the computational time required. 

 

8.2. Enriching the Mechanisms for Molecular Manipulations 

Up to this point, we should highlight the distinctions between MARS+ and the other 

traditional atom-based and fragment-based algorithms. MoleculeEvoluator109 

(proprietary), Spaceship108 (proprietary), Molpher106, 107 (open-source), EvoMol112 (open-

source), and GraphGA110, 111 (open-source) are software for atom-based molecular design. 

While MoleculeEvoluator109 and GraphGA110, 111 bear some similarities with MARS+ in 

terms of the overall scheme of crossover and mutation operators, they do not appear to 

explicitly consider the operators for merging and isomerism inversions. MARS+ also 

provides more flexibility for operators. For instance, MoleculeEvoluator109 only uses 

single bond for “ring creation”, while MARS+ permits the use of single, double, and triple 

bonds for that. The “uninsert atom” in MoleculeEvoluator109 is applicable only for the 
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atoms exactly connecting with two heavy atoms, whereas MARS+ allows the subtraction 

of any atom as long as the junction valences of the two remaining subgraphs are 

compatible. On the other hand, as the atom-based modifications of GraphGA110, 111 are 

implemented via reaction SMARTS, additional (yet trivial) reaction templates may be 

required to extend the operator’s applicability to more substructures. For example, in an 

exploration task using GraphGA110, 111, one may need a template for each increment in 

ring size to facilitate the formation of 7-membered and larger rings. However, the 

formation of these large rings is naturally feasible in MARS+. 

Molpher106, 107 and EvoMol112 also employ atom-based modifications, but they lack 

mechanisms for ring formation/destruction, crossover, merging, and isomerism 

inversions. Spaceship108 shares similarities with these two, yet it can introduce aromatic 

rings through a mutation mechanism. These three software propose a “bond 

rearrangement” (or “group moving”) mechanism that can relocate a side chain within a 

chemical structure. The fragment-based LEADD113 (open-source) also propose 

interesting modification mechanisms such as “internal expansion” and “translation”. In 

“internal expansion” operation, a subject atom/fragment in a chemical structure is self-

cloned to form a replica as its additional connecting neighbors, and then the subject 

atom/fragment is replaced with another type of atom/fragment. Although MARS+ lacks 

an "internal expansion" mechanism, it can still achieve similar modifications through 

consecutive operations of addition and change_element. On the other hand, the 

"translation" operation is analogous to the "bond rearrangement" mentioned earlier but 

emphasizes the explicit potential to rearrange atoms/fragments to the inner points of a 

chemical graph via insertions and uninsertions. Given that "translation" could be 

especially useful in exploring constitutional isomers, it is worth noting that MARS+ 

should consider its inclusion in future work. 
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The majority of fragment-based algorithms have simpler connection rules and 

modification mechanisms compared to atom-based algorithms. For instance, the available 

valences of a fragment in LigBuilder116, 117  are restricted those originally bonded with a 

hydrogen atom, and therefore the connection between two adjacent fragments is always 

a single bond. CReM105 (open-source) provides addition of fragments to a molecule, 

substitution of a substructure with a fragment, and merging of molecules with linkers. 

They do not propose mechanism such as change_element or subtraction, as these are 

generally less necessary for their specific purposes. On the other hand, Flux60, 61 

demonstrates the use of retrosynthesis techniques to enhance the synthetic feasibility of 

generated molecules. 

 

8.3. Integrated Computational Molecular-Process Design 

Since the designed chemicals ultimately need to be applied to practical processes to 

evaluate their impacts, it is advantageous to incorporate process objectives and constraints 

into the molecular design task, forming the integrated computational molecular-process 

design334. Process objectives and constraints can be directly integrated into the equality 

constraints 𝒉(𝒖𝒊, 𝒘𝒊) = 0  and inequality constraints 𝒈(𝒖𝒊, 𝒘𝒊) ≤ 0  in the mixed-

integer nonlinear programming (MINLP) formulation, with process variables 𝒘𝒊 

optimized simultaneously with chemical species 𝒖𝒊.
335-337 Alternatively, the integrated 

molecular-process design can be divided into two stages: the first stage focuses on 

computational molecular design, while the subsequent stage optimizes the process with 

chemical species fixed to those identified as optimal in the first stage.338, 339 This 

alternative approach is similar to the GBD method (see Appendix E) in solving MINLP 

problem. 
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8.4. Qualitative Comparisons for Implemented Selection Algorithms 

In section 3.4, we have implemented several selection algorithms within MARS+ 

based CAMD. Conducting a qualitative comparison to analyze the behaviors of these 

algorithms would provide valuable insights. Such comparisons could serve as a basis for 

selecting appropriate algorithms for more complex goal-directed tasks encountered in 

future application studies, and also guide improvements to these algorithms. We designed 

two goal-directed tasks to characterize these selection algorithms: one simple and one 

challenging. 

In both tasks, logP is selected as the sole target property, with the initial population 

consisting of molecules having logP values between 8.0 and 9.0. The simple task sets the 

target logP to 4.0, while the challenging task sets it to -4.0. AUC top-K (see section 6.4) 

may be utilized to measure the efficiency of each selection algorithm. 

It is important to note that this comparison differs from the studies in sections 6.3 

and 6.4. Here, the comparison is conducted with a fixed choice of molecular data structure 

(MDS) and a fixed generative algorithm, specifically MARS+. Sections 6.3 and 6.4, in 

contrast, compare interplaying effects across different combinations of MDSs, generative 

algorithms, and selection algorithms. 
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Appendix A. Supplementary Tables to the Main Texts 

 

Table A1. A survey of molecular and property databases. Reprinted with permission from 

the reference163. Copyright 2023 American Chemical Society. 

Database/Research Covered chemical subspace Properties 

GDB-1715-18 ~ 1.71011 
HOMO, LUMO, dipole, 

IP, EA etc. 
NIST CCCBDB 

database340 
~ 2.1103 

ChemSpider13 ~ 7.1107 MW, Tm, Tb, Pvap, 

toxicity etc. PubChem database14 ~ 2.5108 

NIST chemistry 

Webbook341 
~ 7.3104 

Thermophysical data, 

MW, Tm, Tb, toxicity etc. 

Dortmund databank19, 20 

Pure: ~ 8.7104 species 

VLE: ~ 4.4104 mixtures 

LLE: ~ 4.1104 mixtures etc. 

Thermophysical data 

(e.g. Pvap ,VLE, LLE, 

etc.), MW, Tm, Tb 

Beilstein database12 ~ 1.0107 Reaction mechanisms 

LOLI database 

(ChemADVISOR)11 
More than 6.0105 species 

Regulatory data (e.g. 

medical, toxicological, 

pharmacological and 

clinical data etc.) 
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Table A2. A survey of chemical space exploration and size estimation research. 

Reference Conditions 
Estimated size of 

chemical subspace 

Drew, K. L. et 

al.26 

(1) Number of C atoms ≤ 100 

(2) Consists of C, N, O, F, P, S, Cl, Br, I 

and H 

Organic molecules: 

3.410
9 

Drug-like molecules: 

1.510
7
 

Weininger, D.29 

(1) MW ≤ 1000 g/mol 

(2) Consists of C, N, O, F, P, S, Cl, Br, I 

and H 

(3) Consider stereoisomers 

10180 

Bohacek, R. S. et 

al.
 
29, 342 

(1) MW ≤ 500 g/mol, heavy atoms ≤ 

30 

(2) Consists of C, N, O, F, S, Cl, Br, and 

H 

10
63

 

Walters, W. P. et 

al.29, 343

 

Virtual screening based on the existing 

building blocks in typical combinatorial 

libraries 

10
100

 

Lemonick, S.344 
The number of organic and inorganic 

substances in the CAS database 
10

8
 

Ogata et al.27 Consists of C, N, O, S, Cl and H 10
8
 ~ 10

19
 

 



doi:10.6342/NTU202403528

177 

 

Table A3. A survey of work applying CAMD for chemical engineering problems*. Reprinted with permission from the reference264. Copyright 

2018 American Chemical Society. 

Property 

estimation 

MINLP 

solution 

Group 

Contribution 

(GC) 

Quantitative 

Structure-Property 

Relationship 

(QSPR) 

Quantum Mechanics 

based Method 

(QM-based) 

Genetic Algorithm 

(GA)133-138 

• polymer: materials for 

semiconductor encapsulation, 

1993~1995328-330 

• small molecules: alternative 

refrigerant, 1995329 

• solvent: LL extraction, 2000345 

• solvent: LL extraction, 2007346 

• solvent: antioxidant solubilization, 

2014347 

• solvent: LL extraction, 1995351 

• small molecules (for drug design): 

lipophilicity, length, solvent 

accessible surface, dipole moment, 

2000352 

• polymer (enzyme inhibitor): ΔG of 

RNA folding, RNA sequence length, 

2002353 

• solvent: LL extraction, 2017356 

• polymer: dielectric constant, 

2016331 

• solvent: reaction rate constant, 

2017357 
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• solvent: relative energy difference 

and solubility parameters, 2014347 

• solvent: extractive reaction, 2016348 

• solvent: ab/desorption process, 

2017349 

• IL: heat transfer, 2013350 

• IL: electrical conduction, 2013350 

• IL solvent: LL extraction, 2013350 

• IL solvent: Naphthalene 

solubilization, 2013350 

• small molecules (for drug design): 

number of H-bond donors/accepters, 

docking geometry, 2005354 

 

• small molecules: enzyme-substrate 

binding energy, structure similarity, 

2008355 

Simulated Annealing 

(SA)140, 358-362 

• small molecules: log(Kow), 1996363 

• small molecules: alternative 

refrigerants, 1998364 

• solvent: LL extraction, 1998364 

• small molecules: alternative 

refrigerants, 1998365 

• small molecules: molecular 

compactness, 1996363 
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• solvent: LL extraction, 1998365 

• solvent: LL extraction, 2002366, 367  

HSTA 

• solvent: LL extraction, 2006368 

Genetic Algorithm & 

Simulated Annealing 

(GA-SA)141 

• solvent: LL extraction, 2017369  • IL: LL extraction, 2017370 

• IL: LL extraction, 2017371 

Ant Colony  

Optimization Algorithm 

(ACO)146, 372 

• solvent: LL extraction, 2015373  

EACO 

  

Tabu Search 

(TS)148 

 • metal-ligand complex: 

electronegativity, density, toxicity and 

oxidation state, 2005374 

• IL: gas refrigerant separation, 2010375 
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Solver Package • polymer: mechanical strength, 

1996376  GINO 

• IL: azeotrope separation, 2012377  

GAMS/CPLEX 

• IL: gas refrigerant separation, 

2010375  GAMS/CPLEX 

• metal-ligand complex: 

electronegativity, density, toxicity and 

oxidation state, 2005374  

GAMS/DICOPT 

• polymer: glass transition 

temperature, density and heat 

capacity, 1999378   

GAMS/DICOPT++ 

 

Outer Approximation 

(OA)157, 158, 379 

• solvent: extractive reaction, 2002380 

• solvent: LL extraction, 2002380 

• solvent: CO2 absorption process, 

2016379 

• small molecules: alternative 

refrigerants, 1996381 

  

Interval-based Global 

Optimization Algorithm 

• polymer: mechanical strength, 

1996376 
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(IBGO)382 

Branch-and-Reduce 

Algorithm (B&R)383 

• small molecules: alternative 

refrigerants, 2003384 

• solvent: LL extraction, 2013385 

• solvent: crystallization, 2013385 

  

Brute Force 

with Reduced 

Combinatorial 

Complexity 

(BF) 

• solvent: LL extraction, 198338 

• solvent: LL extraction, 1986386 

• solvent: LL extraction, 1991387 

• solvent: gas absorption, 1991387 

• solvent: extractive distillation, 

1991387 

• solvent: extractive distillation 

process, 1994388 

• solvents: extraction, 1999389 
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• solvent: extractive distillation, 

1999389 

• solvents: extraction process, 

1999390 

• solvent: crystallization, 2006391 

• IL: applications on heat transfer, 

2013350 

• IL: electrical conduction, 2013350 

• IL solvent: LL extraction, 2013350 

• IL solvent: dissolution of 

Naphthalene, 2013350 

• polymer: density and glass 

transition temperature, 2015392 

• surfactant: UV sunscreen, 2015392 

• solvent: LL extraction, 2015392 

• solvent: extraction, 198939 
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• small molecules: alternative 

refrigerant, 198939 

• polymer: semiconductor 

encapsulation, 198939 

 *the format of the content is (materials: properties or problem, year)reference 
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Table A4. The attributes of neutral base elements. Reprinted with permission from the 

reference163. Copyright 2023 American Chemical Society. 

ID Name (SMILES representation) Bond order charge 

1 [CH0](-)(-)(-)(-) 1 1 1 1 0 

2 C(=)(-)(-) 2 1 1 0 

3 C(#)(-) 3 1 0 

4 C(=)(=) 2 2 0 

5 O(-)(-) 1 1 0 

6 O(=) 2 0 

7 N(-)(-)(-) 1 1 1 0 

8 N(=)(-) 2 1 0 

9 N(#) 3 0 

10 O(-) 1 0 

11 F(-) 1 0 

12 Cl(-) 1 0 

13 Br(-) 1 0 

14 I(-) 1 0 

19 S(-)(-) 1 1 0 

20 S(=) 2 0 

21 P(-)(-)(-) 1 1 1 0 

22 P(=)(-) 2 1 0 

23 P(#) 3 0 

31 [PH0](-)(-)(-)(-)(-) 1 1 1 1 1 0 

32 [PH0](=)(-)(-)(-) 2 1 1 1 0 

34 S(=)(-)(-) 1 1 0 
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61 [SH0](=)(=)(-)(-) 2 2 1 1 0 

62 Cl(=)(=)(=)(-) 2 2 2 1 0 

66 P(=)(-)(-) 2 1 1 0 

67 [CH0@@](-)(-)(-)(-) 1 1 1 1 0 

68 [CH0@](-)(-)(-)(-) 1 1 1 1 0 

69 [PH0](-)(-)(-)(-) 1 1 1 1 0 

70 *(-) 1 0 
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Table A5. The attributes of cation base elements. Reprinted with permission from the 

reference163. Copyright 2023 American Chemical Society. 

ID Name (SMILES representation) Bond order charge 

15 [NH0+](-)(-)(-)(-) 1 1 1 1 +1 

16 [NH0+](=)(-)(-) 2 1 1 +1 

17 [PH0+](-)(-)(-)(-) 1 1 1 1 +1 

18 [PH0+](=)(-)(-) 2 1 1 +1 

36 [CH0](-)(-)(-)([N+]1C=CN(C)C=1) 1 1 1 +1 

37 [CH0](-)(-)(-)([N+]1C=CN(C)C(C)=1) 1 1 1 +1 

38 [CH0](-)(-)(-)(N1C=C[N+](C)=C1) 1 1 1 +1 

39 [CH0](-)(-)(-)([N+]1=CC=CC(C)=C1) 1 1 1 +1 

40 [CH0](-)(-)(-)(C1=C[N+](C)=CC=C1) 1 1 1 +1 

41 C(-)(1=[NH+]C=CC=C1) 1 +1 

42 [NH0+](-)(1=CC=CC=C1) 1 +1 

57 [In+3](-)(-)(-)(-) 1 1 1 1 +3 

64 [Ga+3](-)(-)(-)(-) 1 1 1 1 +3 

65 [SH0+](-)(-)(-) 1 1 1 +1 
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Table A6. The attributes of anion base elements. Reprinted with permission from the 

reference163. Copyright 2023 American Chemical Society. 

ID Name (SMILES representation) 
Bond 

order 
charge 

24 [F-] 0 -1 

25 [Cl-] 0 -1 

26 [Br-] 0 -1 

27 [I-] 0 -1 

28 [OH1-] 0 -1 

29 [OH0-](-) 1 -1 

30 [PH0-](-)(-)(-)(-)(-)(-) 
1 1 1 

1 1 1 
-1 

33 S(-)(=O)(=O)([O-]) 1 -1 

35 [NH0-](-)(-) 1 1 -1 

43 [NH0-](S(=O)(=O)C(F)(F)(F))(S(=O)(=O)C(F)(F)(F)) 0 -1 

44 [BH0-](-)(-)(-)(-) 
1 1 1 

1 
-1 

45 C(-)(-)(-)(C(=O)([O-])) 1 1 1 -1 

46 C(#N)([S-]) 0 -1 

47 C(-)(-)(-)(OP(=O)(OC)([O-])) 1 1 1 -1 

48 C(#N)([N-]C#N) 0 -1 

49 [BH0-](C#N)(C#N)(C#N)(C#N) 0 -1 

50 S(OCCOCCOC)(=O)(=O)([O-]) 0 -1 

51 S(c(cc1)ccc1C)(=O)(=O)([O-]) 0 -1 

52 [PH0-](F)(F)(F)(C(C(F)(F)F)(F)F)(C(C(F)(F)F)(F)F)(C(C(F)(F)F)(F)F) 0 -1 

53 [NH0-](S(=O)(=O)C(C(F)(F)F)(F)F)(S(=O)(=O)C(C(F)(F)F)(F)F) 0 -1 
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54 [CH0-](S(C(F)(F)(F))(=O)(=O))(S(C(F)(F)(F))(=O)(=O))(S(C(F)(F)(F))(=O)(=O)) 0 -1 

55 [PH0-](F)(F)(F)(F)(F)(F) 0 -1 

56 [In+3]([Cl-])([Cl-])([Cl-])([Cl-]) 0 -1 

58 Cl(=O)(=O)([O-])(=O) 0 -1 

59 [CH0-](-)(-)(-) 1 1 1 -1 

60 [NH0+](=O)([O-])([O-]) 0 -1 

63 [SH0-](-) 1 -1 
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Algorithm 1. A code segment for converting SMILES into MARS+ MDS format. 

Reprinted with permission from the reference163. Copyright 2023 American Chemical 

Society. 

MDS consists of element index array (Cindex), parent index array (Pindex), element 

type array (Mindex), bond order array (Rindex), cyclic flag array (Cyindex), cyclic bond 

array (Cybnd), cis-tran front/end flag array (ctsisomer), and chirality flag array (chi). 

Now we describe how to convert a SMILES into MDS with the aid of OpenBabel. 

 

1. Openbabel: Convert a given SMILES to an OBMol object 
OBMol mol; //Declare mol as an instance of OBMol object 

OBConversion conv(&SMILES_stringstream); //Input the given SMILES to 

conv 

conv.SetInFormat("SMI"); //Set SMILES to be the input format for conv 

conv.Read(&mol); //Use conv to build the connectivity among heavy atoms 

in mol 

mol.AddHydrogens(); //Add hydrogen atoms to the heavy atoms in mol 

PerceiveStereo(&mol); //Perceive chiral centers from current mol 

OBBuilder builder; 

builder.Build(mol); //Create 3D coordinates for all the atoms in mol 

PerceiveStereo(&mol); //Perceive chiral centers from 3D structure of 

mol 

 

2. Transcribe the structural information (atoms, bonding, and isomerisms) in mol to 

MDS 
OBStereoFacade facade(&mol); //Use facade to get isomerism information 

of mol 

FOR_BONDS_OF_MOL(bond, mol) { //Traverse all the bonds in mol 

   //Access the two atoms connected by this bond 

   OBAtom* BeginAtom=bond->GetBeginAtom();   

   OBAtom* EndAtom=bond->GetEndAtom(); 

   //Transcribe the information to bond order array (Rindex) 

   Rindex.at(EndAtom->GetId())=bond->GetBondOrder();  

    

   //Perceive cis-trans isomerisms in mol 

   if (bond->GetBondOrder()==2 && facade.HasCisTransStereo(bond-

>GetId())) {  

      OBCisTransStereo* ct=NULL; 

      ct=facade.GetCisTransStereo(bond->GetId()); 

      OBTetrahedralStereo::Config A=tr->GetConfig(OBStereo::ShapeU); 

      //Access the substituents in U-shape order (1234, 2341, 3412, or 

4123): 

        A.refs.at(0), A.refs.at(1), A.refs.at(2), and A.refs.at(3) 
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        SMILES: F(/C(=C/(Br)(I))(Cl)) 

      //It does not need to know what permutation is actually adopted. 

      //Generally, the 1st and 3rd accessed atoms are in trans 

configuration. 

      //Assign “/” as the cis-trans front flag (Fct) for the beginning 

atom (C)  

        Of the double bond. 

      //Assign “/” as the cis-trans end flag (Ect) for the ending atom 

(C) of  

        the double bond. 

      OBAtom* BeginAtom=bond->GetBeginAtom(); 

      OBAtom* EndAtom=bond->GetEndAtom(); 

      ctsisomer.at(0).at(BeginAtom->GetId())=”/”;  //Cis-trans front 

flag 

      ctsisomer.at(1).at(EndAtom->GetId())=”/”;  //Cis-trans end flag 

   } 

} 

 

FOR_ATOMS_OF_MOL(atom, mol) { //Traverse all the atoms in mol 

   //Transcribe information to element index array (Cindex) 

   Cindex.at(atom->GetId())=atom->GetId()+1;   

   if (atom->GetAtomNum()==6) { 

      //Transcribe information to element type array (Mindex), based on 

valences. 

      if (the atom has 4 single bonds) Mindex.at(atom->GetId())=1; 

      if (the atom has 2 single bonds and 1 double bond) ... 

   }  

   else if (atom->GetAtomNum()==7) { 

       ... 

   } 

    

   //Perceive optical isomerisms in mol 

   if (facade.HasTetrahedralStereo(atom->GetId())) { 

      OBTetrahedralStereo* tr=NULL; 

      tr=facade.GetTetrahedralStereo(atom->GetId()); 

      OBTetrahedralStereo::Config A=tr-

>GetConfig(OBStereo::Clockwise); 

      //Access the substituents in clockwise order (234, 342, or 423): 

        A.refs.at(0), A.refs.at(1), and A.refs.at(2) 

        SMILES: F([C@@](Cl)(Br)(I)) 
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      //Access the chiral center: A.center 

      //Check if the order of these substituents in mol are consistent 

with  

        the clockwise order. 

      If (consistent order) chi.at(A.center)=2;  //Chirality flag 

      else chi.at(A.center)=1;  //Chirality flag 

   } 

} 

unsigned int ringnum=1; 

FOR_BONDS_OF_MOL(bond, mol) { //Traverse all the bonds in mol 

   //Assign parent indices 

   OBAtom* BeginAtom=bond->GetBeginAtom(); 

   OBAtom* EndAtom=bond->GetEndAtom(); 

   if (BeginAtom is the 1st parent of EndAtom) { 

      //Record the numbering of BeginAtom in parent indices array 

      Pindex.at(EndAtom->GetId())=Cindex.at(BeginAtom->GetId()); 

   } 

   else if (BeginAtom is the 2nd parent of EndAtom) { 

      //Record this bonding in cyclic flag array and cyclic bond order 

array 

      Cyindex.at(BeginAtom->GetId()).push_back(ringnum); 

      Cyindex.at(EndAtom->GetId()).push_back(ringnum); 

      Cybnd.resize(ringnum,0); 

      Cybnd.at(ringnum-1)=bond->GetBondOrder(); 

      ringnum++; 

   } 

} 
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Algorithm 2. Steps to convert MARS+ MDS into SMILES. Reprinted with permission 

from the reference163. Copyright 2023 American Chemical Society. 

Suppose we have ethane (raw SMILES: C(C)) in MDS format: 

Parent indices (Pindex) 0 1 

Element indices (Cindex) 1 2 

Element types (Mindex) 1 1 

Bond orders (Rindex) 0 1 

Cyclic flag array (Cyindex) 0 0 

Cyclic bond order array (Cybnd) Null 

Cis-trans front flag array 

(ctsisomer.at(0)) 

_ _ 

Cis-trans end flag array 

(ctsisomer.at(1)) 

_ _ 

Chirality flag array 0 0 

 

1. Create Bindex and atomsmi for the molecule 

The first C atom:  
  //See main text sec 2.1 for the meaning of name, index, and suffspos. 

name: C(-)(-)(-)(-)   

index=2           

suffspos=13         
//Bindex[i] records the conectivity of the (i+1)th element  

//Its 1st bond is used to connect with the 2nd C atom. 

//3 remaining single bonds are free (connect with H atoms) 

Bindex[0] = [0, 1, 1, 1]   
//For the (i+1)th element in the molecule, atomsmi[i] records the 

output  

     positions for its name. 

//Initialization of output positions for each of the charaters in 

its name. 

atomsmi[0] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]   

The second C atom:  

name: C(-)(-)(-)(-) 

index=2 

suffspos =13 
//Its 1st bond is used to connect with the 1st C atom 

Bindex[1] = [0, 1, 1, 1] 
//Initialization of output positions for each of the charaters in 

its name. 

atomsmi[1] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] 

 

2. MDS: Shift the output position of characters 
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//Adjust atomsmi[0] and atomsmi[1] so that the name of the two atoms 

can be outputted as C(-C(-)(-)(-)(-))(-)(-)(-), where the blue 

characters come from the 1st C atom, and the brown characters come 

from the 2nd C atom 

The first C: For each character after position index1st_C, shift the output position by 

nbond2nd_C 

name: C(-)(-)(-)(-) 

index=2 

suffspos =13 

Bindex[0] = [0, 1, 1, 1] 

atomsmi[0] = [0, 1, 2, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]  //Adjusted 

The second C: Shift the output position by (1+index1st_C) for all the characters. 

name: C(-)(-)(-)(-) 

index=2 

suffspos =13 

Bindex[1] = [0, 1, 1, 1] 

atomsmi[1] = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]  //Adjusted 

 

3. MDS: Erase redundant “(-)” and “-”. 
//With the aid of Bindex[0] and Bindex[1], one can erase the redundant 

notations for single bonds “-” and free valences “(-)”. As a result, 

the SMILES would be  C(_C____________)_________, where the underline 

denotes white spaces. 

The first C:  

name: C() 

Bindex[0] = [0, 1, 1, 1] 

atomsmi[0] = [0, 1, 16]  //Redundant bond notations erased. 

The second C:  

name: C 

Bindex[1] = [0, 1, 1, 1] 

atomsmi[1] = [3]  //Redundant bond notations erased. 

 

4. MDS: Re-numbers the output position of the remaining characters to form a SMILES 

string. 
//Now delete the white spaces of C(_C____________)_________. Arrange 

consecutive output positions for the remaining characters so that 

reasonable SMILES  C(C) can be generated. 

The first C:  

name: C() 

Bindex[0] = [0, 1, 1, 1] 

atomsmi[0] = [0, 1, 3]  //Renumbered. 

The second C:  
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name: C 

Bindex[1] = [0, 1, 1, 1] 

atomsmi[1] = [2]  //Renumbered. 

 

5. MDS: Output raw SMILES by writing the character name[i][j] to the atom[i][j] 

position in a character array Rawsmi 

Rawsmi[atomsmi[0][0]]=Rawsmi[0]=”C” 

Rawsmi[atomsmi[0][1]]=Rawsmi[1]=”(” 

Rawsmi[atomsmi[1][0]]=Rawsmi[2]=”C” 

Rawsmi[atomsmi[0][3]]=Rawsmi[3]=”)” 

→ Rawsmi = C(C) 

 

6. OpenBabel: Canonicalize the raw SMILES 
//Specify Rawsmi in RAW_SMILES_stringstream 

//The canonical SMILES is outputted to CAN_SMILES_stringstream 

OBConversion conv(&RAW_SMILES_stringstream,&CAN_SMILES_stringstream); 

 

//Canonicalize the raw SMILES  

if(conv.SetInAndOutFormats("SMI","SMI")) { 

conv.AddOption("canonical",OBConversion::GENOPTIONS); 

conv.Convert(); 

} 
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Appendix B. Supplementary Figures to the Main Texts 

 

 

 

 

Figure B1. Constructing a programmatic sequence of molecular operations to mimic the 

Oseltamivir synthesis pathway of E.J. Corey et al. The caption under a structure indicates 

the operation to bring the previous structure to current one. Reprinted with permission 

from the reference163. Copyright 2023 American Chemical Society. 
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Figure B2. Constructing a programmatic sequence of molecular operations to mimic the Oseltamivir synthesis pathway of E.J. Corey et al.: the 

variation of SCscore and SAscore with respect to reaction steps. Reprinted with permission from the reference163. Copyright 2023 American 

Chemical Society. 
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Figure B3. Reciprocal absorption-selectivity-desorption index (ASDI, see eq (5.2–11)) of CO2 over 

N2 in the screened ILs. The darker red indicates the desirable performance. A dot in a cell indicates 

the presence of at least one VLE experimental data point for the CO2-IL system. 
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Figure B4. Reciprocal absorption-selectivity-desorption index (ASDI, see eq (5.2–11)) of CO2 over 

CH4 in the screened ILs. The darker red indicates the desirable performance. A dot in a cell indicates 

the presence of at least one VLE experimental data point for the CO2-IL system. 
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Figure B5. Reciprocal absorption-selectivity-desorption index (ASDI, see eq (5.2–11)) of CO2 over 

CO in the screened ILs. The darker red indicates the desirable performance. A dot in a cell indicates 

the presence of at least one VLE experimental data point for the CO2-IL system. 
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Figure B6. Reciprocal absorption-selectivity-desorption index (ASDI, see eq (5.2–11)) of CO2 over 

H2O in the screened ILs. The darker red indicates the desirable performance. A dot in a cell indicates 

the presence of at least one VLE experimental data point for the CO2-IL system. 
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Figure B7. Reciprocal absorption-selectivity-desorption index (ASDI, see eq (5.2–11)) of CO2 over 

O2 in the screened ILs. The darker red indicates the desirable performance. A dot in a cell indicates 

the presence of at least one VLE experimental data point for the CO2-IL system. 
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Figure B8. Selectivity of CO2 over CH4 (eq (5.2–8)) in the screened ILs. The darker red indicates 

the desirable performance. A dot in a cell indicates the presence of at least one VLE experimental 

data point for the CO2-IL system. 
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Figure B9. Selectivity of CO2 over CO (eq (5.2–8)) in the screened ILs. The darker red indicates 

the desirable performance. A dot in a cell indicates the presence of at least one VLE experimental 

data point for the CO2-IL system. 
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Figure B10. Selectivity of CO2 over H2 (eq (5.2–8)) in the screened ILs. The darker red indicates 

the desirable performance. A dot in a cell indicates the presence of at least one VLE experimental 

data point for the CO2-IL system. 
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Figure B11. Selectivity of CO2 over H2O (eq (5.2–8)) in the screened ILs. The darker red indicates 

the desirable performance. A dot in a cell indicates the presence of at least one VLE experimental 

data point for the CO2-IL system. 



doi:10.6342/NTU202403528
206 

 

 

Figure B12. Selectivity of CO2 over N2 (eq (5.2–8)) in the screened ILs. The darker red indicates 

the desirable performance. A dot in a cell indicates the presence of at least one VLE experimental 

data point for the CO2-IL system. 
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Figure B13. Selectivity of CO2 over O2 (eq (5.2–8)) in the screened ILs. The darker red indicates 

the desirable performance. A dot in a cell indicates the presence of at least one VLE experimental 

data point for the CO2-IL system. 
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Appendix C. Optimality in Non-linear Programming 

 

C.1. Optimality Conditions in Unconstrained Optimizations393 

Problem C1 

argmin
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) (C.1–1) 

𝒘 ∈ 𝑊 ⊆ ℝ𝑚 (C.1–2) 

 

 

C.1.1. First-order Necessary Conditions 

Let 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) be at least once continuously differentiable in the neighborhood of 

a point 𝒘∗. If 𝒘∗ is a local minimum solution of 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘), then 

 

𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗) = 𝟎 (C.1–3) 

 

C.1.2. Second-order Necessary Conditions 

Let 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) be at least twice continuously differentiable in the neighborhood of 

a point 𝒘∗. If 𝒘∗ leads to a local minimum of 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘), then 

 

(I)  𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗) = 𝟎 (C.1–4) 

(II)  𝒘𝑻[𝛁𝐰𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗)]𝒘 ≥ 0, ∀𝒘 ∈ ℝ𝑚 (C.1–5) 

 

Property (II) means that [𝛁𝐰𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗)] matrix is positive semidefinite. 

 

C.1.3. Second-order Sufficient Conditions 

Let that 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘)  is at least twice continuously differentiable in the 
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neighborhood of a point 𝒘∗. If  

 

(I)  𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗) = 𝟎 (C.1–6) 

(II)  𝒘𝑻[𝛁𝐰𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗)]𝒘 ≥ 0, ∀𝒘 ∈ ℝ𝑚 (C.1–7) 

 

then 𝒘∗ is a local minimum. Note that if [𝛁𝐰𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗)] matrix in condition (II) 

is positive definite (i.e. 𝒘𝑻[𝛁𝐰𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗)]𝒘 > 0 for all 𝒘 ∈ ℝ𝑚), then 𝒘∗ will 

be a strict local minimum. 

 

C.1.4. A Short Proof 

These theorems can be examined by second-order Tyler expansion at local minimum 

solution 𝒘∗ along a feasible direction (section C.3). 

 

𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗ + 𝑡𝒅)

= 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗) + 𝑡𝒅𝑻𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗)

+
1

2
𝑡2𝒅𝑻[𝛁𝐰𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗)]𝒅 + 𝒪(𝑡3) 

(C.1–8) 

 

C.2. Optimality Conditions in Constrained Optimizations37, 394 

Problem C2 

argmin
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) (C.2–1) 

subjected to 

𝒉(𝒘) = 0 (C.2–2) 

𝒈(𝒘) ≤ 0 (C.2–3) 
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𝒘 ∈ 𝑊 ⊆ ℝ𝑚 (C.2–4) 

 

 

C.2.1. First-order Necessary Condition (Karush-Kuhn-Tucker, KKT) 

Each of the inequality constraints in eq (C.2–3) can be transformed into an equality 

one by introducing a slack variable 𝑠𝑗
2 ≥ 0, that is, 

 

𝑔𝑗(𝒘) + 𝑠𝑗
2 = 0 (C.2–5) 

 

After such transformation, the original minimization Problem C2 can be 

reformulated using Lagrange multiplier method. Let 𝝀 = [𝜆1, … , 𝜆𝑝]
𝑇
 be the multipliers 

for p equality constraints 𝒉(𝒘) , 𝝁 = [𝜇1, … , 𝜇𝑞]
𝑇
  be the multipliers for q inequality 

constraints 𝒈(𝒘), and 𝒔 ⨀ 𝒔 = [𝑠1
2, … , 𝑠𝑞

2]
𝑇
 be the slacks variables for each inequality 

constraints. Here, ⨀  is the Hardamard product operator, meaning the element-wise 

product of two matrices with the same dimensions. The Lagrange function ℒ(𝒘, 𝝀, 𝝁, 𝒔) 

is: 

 

ℒ(𝒘, 𝝀, 𝝁, 𝒔) = 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) + ∑𝜆𝑖ℎ𝑖(𝒘)

𝑝

𝑖=1

+ ∑𝜇𝑗[𝑔𝑗(𝒘) + 𝑠𝑗
2]

𝑞

𝑗=1

 (C.2–6) 

 

Suppose 𝒘∗ is a local minimum solution to the original Problem C2. There should 

also be the solution (𝒘∗, 𝝀∗, 𝝁∗, 𝐬∗) to the minimization problem in Lagrange multiplier 

formulation, i.e. eq (C.2–6). For (𝒘∗, 𝝀∗, 𝝁∗, 𝐬∗) to be a local extremum, the necessary 

conditions of eq (C.2–7) to eq (C.2–10) should be satisfied: 
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∇𝐰ℒ(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗) = ∇𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗) + ∑𝜆𝑖
∗∇𝐰ℎ𝑖(𝒘

∗)

𝑝

𝑖=1

+ ∑𝜇𝑗
∗∇𝐰𝑔𝑗(𝒘

∗)

𝑞

𝑗=1

= 𝟎 (C.2–7) 

∇𝝀ℒ(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗) = 𝒉(𝒘∗) = 𝟎 (C.2–8) 

∇𝝁ℒ(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗) = 𝒈(𝒘∗) + 𝐬∗ ⨀ 𝐬∗ = 𝟎 (C.2–9) 

∇𝒔ℒ(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗) = 2 𝝁∗ ⨀ 𝐬∗ = 𝟎 (C.2–10) 

 

Multiplying eq (C.2–10) by 𝐬  with Hardamard operator and combining the 

equation with eq (C.2–9), the eq (C.2–10) is equivalently: 

 

[∇𝒔ℒ(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗)] ⨀ 𝐬∗ = 2 𝝁∗ ⨀ 𝐬∗ ⨀ 𝐬∗  = −2 𝝁∗ ⨀ 𝒈(𝒘∗) = 𝟎 (C.2–11) 

 

The condition eq (C.2–11) means that, for each inequality constraint 𝑔𝑗(𝒘
∗) at 

𝒘∗ with 𝑗 = 1 to 𝑞, either 𝑔𝑗(𝒘
∗) = 0 or 𝜇𝑗 = 0 holds true. If both of them are zero, 

it should be the trivial case that inequality constraint j is not presented in Problem C2.  

The inequality constraints with equality sign 𝑔𝑗(𝒘
∗) = 0  are termed the active 

constraints, denoted as 𝒜𝑔(𝒘∗) = {𝑗 |𝑔𝑗(𝒘
∗) = 0, 𝑗 = 1 𝑡𝑜 𝑞} . On the other hand, 

𝜇𝑗 = 0  means 𝑔𝑗(𝒘
∗) + 𝑠𝑖

2 = 0  with 𝑠𝑖
2 > 0  and 𝑔𝑗(𝒘

∗) < 0 . The inequality 

constraints satisfied with strict inequality sign 𝑔𝑗(𝒘
∗) < 0, and these constraints belong 

to inactive constraints 𝒥𝑔(𝒘∗) = {𝑗 |𝑔𝑗(𝒘
∗) < 0, 𝑗 = 1 𝑡𝑜 𝑞}. Following this definition, 

every equality constraint ℎ𝑖(𝒘
∗)  is an active constraint, as eq (C.2–8) requires. To 

differentiate them from inequality active constraints, let equality active constraints be 

denoted as 𝒜ℎ(𝒘∗) = {𝑖 |ℎ𝑖(𝒘
∗) = 0, 𝑖 = 1 𝑡𝑜 𝑝}. Based on eq (C.2–11), there are 𝑞 

elements in 𝒜𝑔(𝒘∗) ∪ 𝒥𝑔(𝒘∗). From eqs (C.2–7), (C.2–8), (C.2–9), and (C.2–11), we 

have (𝑚 + 𝑝 + 𝑞) equations to solve for (𝑚 + 𝑝 + 𝑞) unknown variables. 
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Let 𝐀(𝒘∗) be the matrix whose rows are the gradients of the objective function 

and active constraints at local minimum solution 𝒘∗, i.e. 

 

𝑨(𝒘∗) = [

[∇𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗)]𝑇
1×𝑚

[∇𝐰𝒉(𝒘∗)]𝑇
𝑝×𝑚

, 𝑖 ∈ 𝒜ℎ(𝒘∗)

[∇𝐰𝒈(𝒘∗)]𝑇
|𝒜𝑔(𝒘∗)|×𝑚

, 𝑗 ∈ 𝒜𝑔(𝒘∗)

] (C.2–12) 

 

Now invoke Gordan’s theorem (section C.4). Since 𝒘∗  is a local minimum 

solution and ∇𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗)𝒅 ≥ 0  for any feasible direction 𝒅  (section C.3), the 

equations 𝑨(𝒘∗)𝒅 < 𝟎  has no solution. Therefore, 𝑨𝑻(𝒘∗)𝐩 =

[∇𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗), ∇𝐰ℎ𝑖(𝒘
∗)∇𝐰𝑔𝑗(𝒘

∗)]𝐩 = 𝟎  (with 𝐩 ≥ 𝟎 ) has a solution. Clearly, 𝐩 

refers to the Lagrange multipliers in column vector form, according to (C.2–7). 

 

𝐩 = [

1
[𝜆𝑖

∗]𝑝×1, 𝑖 ∈ 𝒜ℎ(𝒘∗)

[𝜇𝑗
∗]

|𝒜𝑔(𝒘∗)|×1
, 𝑗 ∈ 𝒜𝑔(𝒘∗)

] ≥ 𝟎 (C.2–13) 

 

Nota that, for each inactive inequality constraint, the multipliers are zero, i.e. 𝜇𝑗
∗ =

0  for 𝑗 ∉ 𝒜𝑔(𝒘∗) . Also, all the equality constraints are active, i.e. 𝒜ℎ(𝒘∗) =

{𝑖 |𝑖 = 1 𝑡𝑜 𝑝} . Consequently, eq (C.2–13) implies that all the multipliers are 

nonnegative., namely 

 

𝝀∗ ≥ 𝟎 (C.2–14) 

𝝁∗ ≥ 𝟎 (C.2–15) 

 

Finally, the first-order necessary conditions are presented as a system of conditions 
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consisting of eq (C.2–7) to eq (C.2–9), eq (C.2–11), eq (C.2–14), and eq (C.2–15). If the 

active inequality constraints, 𝒜𝑔(𝒘∗), are known, these conditions can also be expressed 

in a more straightforward from: 

 

∇𝐰ℒ(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗) = ∇𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗) + ∑𝜆𝑖
∗∇𝐰ℎ𝑖(𝒘

∗)

𝑝

𝑖=1

+ ∑𝜇𝑗
∗∇𝐰𝑔𝑗(𝒘

∗)

𝑞

𝑗=1

= 𝟎 (C.2–16) 

ℎ𝑖(𝒘
∗) = 0, ∀𝑖 ∈ 𝒜ℎ(𝒘

∗) (C.2–17) 

𝑔𝑗(𝒘
∗) = 0, ∀𝑗 ∈ 𝒜𝑔(𝒘∗) (C.2–18) 

𝜆𝑖
∗ ≥ 0, ∀𝑖 ∈ 𝒜ℎ(𝒘

∗) (C.2–19) 

𝜇𝑗
∗ ≥ 0, ∀𝑗 ∈ 𝒜𝑔(𝒘∗) (C.2–20) 

𝜇𝑗
∗ = 0, ∀𝑗 ∈ 𝒥𝑔(𝒘∗) (C.2–21) 

 

with active constraints 𝒜ℎ(𝒘∗) and 𝒜𝑔(𝒘∗). 

 

𝒜ℎ(𝒘∗) = {𝑖 |ℎ𝑖(𝒘
∗) = 0, 𝑖 = 1 𝑡𝑜 𝑝} (C.2–22) 

𝒜𝑔(𝒘∗) = {𝑗 |𝑔𝑗(𝒘
∗) = 0, 𝑗 = 1 𝑡𝑜 𝑞} (C.2–23) 

 

C.2.2. First-order Sufficient Condition (Karush-Kuhn-Tucker, KKT) 

Suppose that 𝒘∗ is a local minimum solution to Problem C2. Following the notation 

in section C.2.1, let (𝒘∗, 𝝀∗, 𝝁∗, 𝐬∗)  satisfies the first-order KKT necessary condition 

with linear independent constraint qualification. Let 𝒜𝑔(𝒘∗) = {𝑗 | 𝑔𝑗(𝒘
∗) = 0, 𝑗 =

1 to 𝑞}  to indicate the active inequality constraints at 𝒘∗ . Let 𝒜ℎ
+(𝒘∗, 𝝀∗) =

{𝑖 | 𝜆𝑖
∗ > 0, 𝑖 = 1 to 𝑝} and 𝒜ℎ

−(𝒘∗, 𝝀∗) = {𝑖 | 𝜆𝑖
∗ < 0, 𝑖 = 1 to 𝑝}. If 

 

(I) 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗) is pseudo-convex at 𝒘∗,  
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(II) 𝑔𝑗(𝒘
∗) with 𝑗 ∈ 𝒜𝑔(𝒘∗) are quasi-convex at 𝒘∗, 

(III) ℎ𝑖(𝒘
∗) with 𝑖 ∈ 𝒜ℎ

+(𝒘∗) are quasi-convex at 𝒘∗, and 

(IV) ℎ𝑖(𝒘
∗) with 𝑖 ∈ 𝒜ℎ

−(𝒘∗) are quasi-concave at 𝒘∗. 

 

then 𝒘∗ is a global optimal solution to Problem C2. If these convexity properties are 

only restricted to a small domain, then 𝒘∗ is a local minimum. 

 

C.2.3. Second-order Necessary Condition 

Suppose that 𝒘∗ is a local minimum solution to Problem C2. Following the notation 

in section C.2.1, let (𝒘∗, 𝝀∗, 𝝁∗, 𝐬∗)  satisfies the first-order KKT necessary condition 

with linear independent constraint qualification. Then  

 

𝒅𝑻[∇𝒘∇𝒘ℒ(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗)]𝒅 ≥ 0, ∀𝒅 ∈ ℱ(𝒘∗) (C.2–24) 

 

C.2.4. Second-order Sufficient Condition 

Let 𝒘∗  be a local minimum solution to Problem C2. Following the notation in 

section C.2.1, let (𝒘∗, 𝝀∗, 𝝁∗, 𝐬∗) satisfies the first-order KKT necessary condition with 

linear independent constraint qualification. Suppose 

 

𝒅𝑻[∇𝒘∇𝒘ℒ(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗)]𝒅 > 0, ∀𝒅 ∈ ℱ(𝒘∗), 𝒅 ≠ 0 (C.2–25) 

 

Then, 𝒘∗ is a local minimum solution. 
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C.3. Tangent Cone and Feasible Directions393 

Let 𝒘𝟏 be a feasible point in a closed convex set 𝑆. A sequence [𝐳𝟏, … , 𝐳𝐤] with 

𝐳𝐤 ∈ 𝑆  and 𝐳𝐤 → 𝒘𝟏  for all sufficiently large 𝑘  is defined as a feasible sequence 

approaching 𝒘𝟏 . A tangent vector 𝒅  at 𝒘𝟏  is defined as eq (C.3–1), provided that 

there are a feasible sequence approaching 𝒘𝟏 and a corresponding sequence of positive 

scalars [𝑡1, … , 𝑡𝑘] with 𝑡𝑘 → 0. 

 

Lim
𝑘→∞

𝒛𝒌 − 𝒘𝟏

𝑡𝑘
= 𝒅 (C.3–1) 

 

Let the active constraint set at 𝒘𝟏 be 𝒜(𝒘𝟏) = 𝒜ℎ(𝒘𝟏) ∪ 𝒜𝑔(𝒘𝟏) (see section 

C.2.1 for the definition of 𝒜𝑔(𝒘𝟏) and 𝒜ℎ(𝒘𝟏)). The set of feasible directions ℱ(𝒘𝟏) 

for Problem C2, is defined as: 

 

ℱ(𝒘𝟏) = {𝒅 |
𝒅𝑻𝛁ℎ𝒊(𝒘𝟏) = 𝟎  ∀𝑖 ∈ 𝒜ℎ(𝒘𝟏)  𝑎𝑛𝑑

𝒅𝑻𝛁𝑔𝒋(𝒘𝟏) ≤ 𝟎  ∀𝑗 ∈ 𝒜𝑔(𝒘𝟏)         
} (C.3–2) 

 

The central ideal of this definition is to collect possible directions 𝒅 along which 

ensures an optimization step will not move 𝒘𝟏 out of feasible region. To see this, one 

can utilize the definition of tangent vector (eq (C.3–1)) and regard 𝒛𝒌 as the point after 

an optimization step is conducted to 𝒘𝟏. 

 

ℎ𝑖(𝒛𝒌) = ℎ𝑖(𝒘𝟏) + 𝑡𝑘𝒅
𝑻𝛁𝐰ℎ𝑖(𝒘𝟏) + 𝒪(𝑡𝑘) (C.3–3) 

𝑔𝑗(𝒛𝒌) = 𝑔𝑗(𝒘𝟏) + 𝑡𝑘𝒅
𝑻𝛁𝐰𝑔𝑗(𝒘𝟏) + 𝒪(𝑡𝑘)  (C.3–4) 
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Here, 𝒪(𝑡𝑘)  means that the order of the remaining terms is roughly 𝑡𝑘 , with 

lim
𝑘→∞

𝒪(𝑡𝑘) = 0. Based on the constraints in Problem C2, we should require ℎ𝑖(𝒛𝒌) =

ℎ𝑖(𝒘𝟏) and 𝑔𝑗(𝒛𝒌) ≤ 𝑔𝑗(𝒘𝟏). Therefore, we have from (C.3–3) and (C.3–4) that: 

 

lim
𝑘→∞

ℎ𝑖(𝒛𝒌) − ℎ𝑖(𝒘𝟏)

𝑡𝑘
= 𝒅𝑻𝛁𝐰ℎ𝑖(𝒘𝟏) = 0 (C.3–5) 

lim
𝑘→∞

𝑔𝑗(𝒛𝒌) − 𝑔𝑗(𝒘𝟏)

𝑡𝑘
= 𝒅𝑻𝛁𝐰𝑔𝑗(𝒘𝟏) ≤ 0 (C.3–6) 

 

The same treatment can be applied to the objective function, and we will have: 

 

𝑂𝑏𝑗𝑓𝑐𝑛(𝒛𝒌) = 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝟏) + 𝑡𝑘𝒅
𝑻𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝟏) + 𝒪(𝑡𝑘)  (C.3–7) 

 

It should be noted that, from eq (C.3–2), the optimization of 𝒘𝟏 along a feasible 

direction 𝒅 does not guarantee further improvement of 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝟏), as such property 

is not imposed in the definition. If 𝒘𝟏 is away from any local minimum solution, it is 

desirable to require 𝑂𝑏𝑗𝑓𝑐𝑛(𝒛𝒌) ≤ 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝟏), or equivalently 𝒅𝑻𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝟏) ≤

𝟎.  

 

lim
𝑘→∞

𝑂𝑏𝑗𝑓𝑐𝑛(𝒛𝒌) − 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝟏)

𝑡𝑘
= 𝒅𝑻𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝟏) ≤ 0 (C.3–8) 

 

From this, the set of usable feasible directions ℱ𝑢(𝒘𝟏) , also called the set of 

improving feasible directions, is defined as: 
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ℱ𝑢(𝒘𝟏) = ℱ(𝒘𝟏) ∩ {𝒅 |𝒅𝑻𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝟏) ≤ 𝟎} (C.3–9) 

 

Every improving feasible directions should be capable of minimizing 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝟏) 

if 𝒘𝟏  is not a local minimum solution. If 𝒘∗  is a local minimum solution to the 

minimization problem, then for every 𝒅 ∈ ℱ(𝒘∗)  we have 𝒅𝑻𝛁𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗) ≥ 𝟎 . 

This can be seen from eq (C.3–7).  

 

C.4. Gordan’s Theorem394 

Let 𝐀 be an 𝑚 × 𝑛 matrix. Then either of the following systems has a solution. 

System 1: 𝐀𝐱 < 𝟎                 for some 𝐱 ∈ ℝn 

System 2: 𝐀𝐓𝐩 = 𝟎  𝑤𝑖𝑡ℎ 𝐩 ≥ 𝟎      for some nonzero 𝐩 ∈ ℝm 

 

C.5. Lagrangian Duality Problem394 

Every nonlinear primal problem C5 has a Lagrangian dual Problem Dual(C5) 

 

Problem C5 

min
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) (C.5–1) 

subjected to 

𝒉(𝒘) = 0 (C.5–2) 

𝒈(𝒘) ≤ 0 (C.5–3) 

𝒘 ∈ 𝑊 ⊆ ℝ𝑚 (C.5–4) 

 

 

Denote the Lagrange function for Problem C5 as 𝜃(𝒘, 𝝀, 𝝁) = 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) +

∑ 𝜆𝑖ℎ𝑖(𝒘)
𝑝
𝑖=1 + ∑ 𝜇𝑗𝑔𝑗(𝒘)𝑞

𝑗=1 . (Note: slack variables are excluded) 
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Problem Dual(C5) 

max
𝝀,𝝁≥𝟎

[inf
𝒘

 𝜃(𝒘, 𝝀, 𝝁)] (C.5–5) 

subjected to 

𝝁 ≥ 𝟎 (C.5–6) 

𝝀 ∈ ℝ𝑝 (C.5–7) 

𝝁 ∈ ℝ𝑞 (C.5–8) 

 

 

C.6. Nonlinear Duality Theorem394 

Let 𝒘  be a feasible solution to Problem C5, i.e. 𝒘 ∈ 𝑊 ⊆ ℝ𝑚 , 𝒈(𝒘) ≤ 0 , and 

𝒉(𝒘) = 0. Also, let (𝝀, 𝝁) be a feasible solution to Problem Dual(C5), i.e. 𝝁 ≥ 𝟎. Then  

 

𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) ≥ sup
𝝀,𝝁≥𝟎

[inf
𝒘

 𝜃(𝒘, 𝝀, 𝝁)] ≥ inf
𝒘

 𝜃(𝒘, 𝝀, 𝝁) (C.6–1) 

 

Since ∑ 𝜆𝑖ℎ𝑖(𝒘)
𝑝
𝑖=1 + ∑ 𝜇𝑗𝑔𝑗(𝒘)𝑞

𝑗=1 ≤ 0 for all the feasible solution 𝒘, we have 

inf
𝒘

 𝜃(𝒘, 𝝀, 𝝁) ≤ inf
𝒘

 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) ≤ 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) . In particular, inf
𝒘

 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) =

𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗) , where 𝒘∗  is an optimal solution to Problem C5. Also note that 

∑ 𝜆𝑖
∗ℎ𝑖(𝒘

∗)
𝑝
𝑖=1 + ∑ 𝜇𝑗

∗𝑔𝑗(𝒘
∗)𝑞

𝑗=1 = 0  since KKT conditions are satisfied at 𝒘∗ . From 

this, the minimum of Problem C5 at 𝒘∗ will be the same as the maximum of Problem 

Dual(C5) at 𝒘∗. 

 

min
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) = 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗) = sup
𝝀,𝝁≥𝟎

[inf
𝒘

 𝜃(𝒘, 𝝀, 𝝁)] = 𝜃(𝒘∗, 𝝀∗, 𝝁∗) (C.6–2) 
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Appendix D. Solving Non-linear Programming Problems68 

 

Problem D 

argmin
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒘) (C.6–1) 

subjected to 

𝒉(𝒘) = 0 (C.6–2) 

𝒈(𝒘) ≤ 0 (C.6–3) 

𝒘 ∈ 𝑊 ⊆ ℝ𝑚 (C.6–4) 

 

 

D.1. Sequential Quadratic Programming (SQP) Method 

Recall the first-order necessary KKT conditions, eqs (D.1–1) to (D.1–4): 

 

∇𝐰ℒ(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗) = ∇𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘∗) + ∑𝜆𝑖
∗∇𝐰ℎ𝑖(𝒘

∗)

𝑝

𝑖=1

+ ∑𝜇𝑗
∗∇𝐰𝑔𝑗(𝒘

∗)

𝑞

𝑗=1

= 𝟎 (D.1–1) 

∇𝝀ℒ(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗) = 𝒉(𝒘∗) = 𝟎 (D.1–2) 

∇𝝁ℒ(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗) = 𝒈(𝒘∗) + 𝐬∗ ⨀ 𝐬∗ = 𝟎 (D.1–3) 

1

2
∇𝒔ℒ(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗) = 𝝁∗ ⨀ 𝐬∗ = 𝟎 (D.1–4) 

 

Sequential Quadratic Programming (SQP) employs the Newton method (or quasi-

Newton method, depending on the Hessian update scheme) to seek a solution 

(𝒘∗, 𝝀∗, 𝝁∗, 𝒔∗)  satisfying the first-order necessary KKT conditions. To simplify the 

formulation, let us introduce the variable 𝒀 and function 𝑭(𝒀) as eqs (D.1–5) and (D.1–

6), respectively. 
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𝒀 =

[
 
 
 
 
[𝒘]𝑚×1

[𝝀]𝑝×1

[𝝁]𝑞×1

[𝒔]𝑞×1 ]
 
 
 
 

 (D.1–5) 

𝑭(𝒀) =

[
 
 
 
 

[∇𝐰ℒ(𝒀)]𝑚×1

[𝒉(𝒀)]𝑝×1

[𝒈(𝒀) + 𝐬 ⨀ 𝐬]𝑞×1

[𝝁 ⨀ 𝐬]𝑞×1 ]
 
 
 
 

 (D.1–6) 

 

From eqs (D.1–1) to (D.1–4), 𝑭(𝒀∗) = 𝟎 at an optimal solution 𝒀∗. The Newton 

iteration scheme is formulated as follows: 

 

[𝛁𝒀𝑭(𝒀𝒌)]𝚫𝒀𝒌 = [𝛁𝒀𝑭(𝒀𝒌)](𝒀𝒌+𝟏 − 𝒀𝒌) = −𝑭(𝒀𝒌) (D.1–7) 

 

Here, 𝚫𝒀𝒌 = (𝒀𝒌+𝟏 − 𝒀𝒌) . 𝒀𝒌+𝟏  is the feasible solution obtained from at the 

(k+1)-th iteration, determined based on the function value 𝑭(𝒀𝒌)  and gradients 

𝛁𝒀𝑭(𝒀𝒌)  at the previous solution 𝒀𝒌 . In particular, the gradients 𝛁𝒀𝑭(𝒀𝒌)  take the 

form: 

 

[𝛁𝒀𝑭(𝒀𝒌)] = [
𝑩(𝑚+𝑝+𝑞)×(𝑚+𝑝+𝑞) 𝑪(𝑚+𝑝+𝑞)×𝑞

𝑫𝑞×(𝑚+𝑝+𝑞) 𝑬𝑞×𝑞
] (D.1–8) 

 

The matrices 𝑩, 𝑪, 𝑫, and 𝑬 are: 

 

𝑩 = [

[∇𝐰∇𝐰ℒ(𝒀𝒌)]𝑚×𝑚 [∇𝐰𝒉(𝒀𝒌)]𝑚×𝑝 [∇𝐰𝒈(𝒀𝒌)]𝑚×𝑞

[∇𝐰𝒉(𝒀𝒌)]
𝑇
𝑝×𝑚

𝟎 𝟎

[∇𝐰𝒈(𝒀𝒌)]
𝑇

𝑞×𝑚
𝟎 𝟎

] (D.1–9) 
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𝑪 = [
𝟎
𝟎
2𝐬

] (D.1–10) 

𝑫 = [𝟎 𝟎 𝒔𝑻𝑰] (D.1–11) 

𝑬 = [𝝁𝑻𝑰] (D.1–12) 

 

Here, 𝑰  denotes the identity matrix. Iterations proceed from 𝒀𝒌 → 𝒀𝒌+𝟏  via eq 

(D.1–7) continue until 𝑭(𝒀𝒌+𝟏) = 𝟎  is satisfied. Alternatively, Problem D can be 

reformulated into a sequence of a sequence of quadratic programming (QP) Problem D1 

by linearizing of constraints.395  

 

Problem D1 (Quadratic programming with linearized constraints) 

argmin
𝚫𝒘𝒌

𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝒌) + [∇𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝒌)]𝒅 +
1

2
𝒅𝑻[∇𝐰∇𝐰ℒ(𝒘𝒌)]𝚫𝒘𝒌 (D.1–13) 

subjected to 

𝒉(𝒘𝒌) + [∇𝐰𝒉(𝒘𝒌)]𝚫𝒘𝒌 = 0 (D.1–14) 

𝒈(𝒘𝒌) + [∇𝐰𝒈(𝒘𝒌)]𝚫𝒘𝒌 ≤ 0 (D.1–15) 

𝚫𝒘𝒌 ∈ 𝑊 ⊆ ℝ𝑚 (D.1–16) 

 

 

From Lagrange multiplier formulation (eq (D.1–17)), one of the first-order necessary 

KKT conditions for Problem D1 is eq (D.1–18), and it is equivalent to the first m rows of 

[𝛁𝒀𝑭(𝒀𝒌)]𝚫𝒀𝒌 . This condition justifies that Problem D can be solved iteratively by 

solving Problem D1 at each newly traversed 𝒘𝒌. 
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ℒ̃(𝚫𝒘𝒌, 𝝀̃, 𝝁̃) = 𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝒌) + [∇𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝒌)]𝒅 +
1

2
𝒅𝑻[∇𝐰∇𝐰ℒ(𝒘𝒌)]𝚫𝒘𝒌

+ ∑𝜆𝑖
∗̃[ℎ𝑖(𝒘𝒌) + [∇𝐰ℎ𝑖(𝒘𝒌)]𝚫𝒘𝒌]

𝑝

𝑖=1

+ ∑𝜇𝑗
∗̃[𝑔𝑗(𝒘𝒌) + [∇𝐰𝑔𝑗(𝒘𝒌)]𝚫𝒘𝒌]

𝑞

𝑗=1

 

(D.1–17) 

 

𝛁𝒅𝓛̃(𝚫𝒘𝒌, 𝝀
∗̃, 𝝁∗̃) 

= ∇𝐰𝑂𝑏𝑗𝑓𝑐𝑛(𝒘𝒌) + [∇𝐰∇𝐰ℒ(𝒘𝒌)]𝚫𝒘𝒌 + ∑𝜆𝑖
∗̃∇𝐰ℎ𝑖(𝒘𝒌)

𝑝

𝑖=1

+ ∑𝜇𝑗
∗̃∇𝐰𝑔𝑗(𝒘𝒌)

𝑞

𝑗=1

 

= 𝟎 

(D.1–18) 
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Appendix E. Generalized Benders Decomposition37, 69, 70 

 

Problem E 

argmin
𝒖,𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘) (D.1–1) 

subjected to 

𝒉(𝒖,𝒘) = 0 (D.1–2) 

𝒈(𝒖,𝒘) ≤ 0 (D.1–3) 

𝒖 ∈ 𝑈 ⊆ ℤ𝑛 (D.1–4) 

𝒘 ∈ 𝑊 ⊆ ℝ𝑚 (D.1–5) 

 

 

E.1. Problem Projection 

Problem E can be transformed into a 𝒖-space Problem Eu: 

 

Problem Eu 

argmin
𝒖

𝜈(𝒖) (E.1–1) 

subjected to 

𝒖 ∈ 𝑉  (E.1–2) 

with 𝑉 = {𝒖 |𝒉(𝒖,𝒘) = 0, 𝒈(𝒖,𝒘) ≤ 0 for some 𝒘 ∈ 𝑊} 

 

Here, 𝜈(𝒖) is named Problem Dual(Eu), signifying that it is the dual problem (see 

section C.5) of Problem Eu. Problem Dual(Eu) is a nonlinear programming problem where 

w is the variable to be optimized and 𝒖 is fixed at some value. This dual problem is 

presented in the next section. 
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E.2. Dual Problems of the Projected Problems 

Problem Dual(Eu) 

𝜈(𝒖) = inf
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘) (E.2–1) 

subjected to  

𝒉(𝒖,𝒘) = 0 (E.2–2) 

𝒈(𝒖,𝒘) ≤ 0 (E.2–3) 

𝒘 ∈ 𝑊 ⊆ ℝ𝑚 (E.2–4) 

 

 

Formulate the dual problem of Problem Dual(Eu), denoted as Problem Dual2(Eu), 

with 𝒖  still fixed at the same value. Let 𝜃(𝒖,𝒘, 𝝀, 𝝁) = 𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘) +

∑ 𝜆𝑖ℎ𝑖(𝒖,𝒘)
𝑝
𝑖=1 + ∑ 𝜇𝑗𝑔𝑗(𝒖,𝒘)𝑞

𝑗=1 . 

 

Problem Dual2(Eu) 

sup
𝝀,𝝁≥𝟎

[inf
𝒘

 𝜃(𝒖,𝒘, 𝝀, 𝝁)] (E.2–5) 

subjected to 

𝝁 ≥ 𝟎 (E.2–6) 

𝒖 ∈ 𝑉 (E.2–7) 

𝝀 ∈ ℝ𝑝 (E.2–8) 

𝝁 ∈ ℝ𝑞 (E.2–9) 

 

 

E.3. Formulation of GBD Form 

Substituting Problem Dual2(Eu) back to Problem Eu, we have Problem GBD(E): 

 

Problem GBD(E) 
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argmin
𝒖

[ sup
𝝀,𝝁≥𝟎

[inf
𝒘

 𝜃(𝒖,𝒘, 𝝀, 𝝁)]] (E.3–1) 

subjected to 

𝒖 ∈ 𝑉  (E.3–2) 

𝝁 ≥ 𝟎 (E.3–3) 

𝝀 ∈ ℝ𝑝 (E.3–4) 

𝝁 ∈ ℝ𝑞 (E.3–5) 

with 𝑉 = {𝒖 |𝒉(𝒖,𝒘) = 0, 𝒈(𝒖,𝒘) ≤ 0 for some 𝒘 ∈ 𝑊} 

 

Let 𝛼 = sup
𝝀,𝝁≥𝟎

[inf
𝒘

 𝜃(𝒖,𝒘, 𝝀, 𝝁)] ≤ inf
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘) be a lower bound of Problem 

E under the condition that 𝒖 is fixed. Reformulate Problem GBD(E): 

 

Problem GBD(E)-M-INLP(𝒘𝒕) (GBD master problem, integer nonlinear programming) 

argmin
𝒖,𝜶

𝛼 (E.3–6) 

subjected to 

𝛼 ≥  inf
𝒘

 𝜃(𝒖,𝒘, 𝝀, 𝝁) (E.3–7) 

𝒖 ∈ 𝑉  (E.3–8) 

𝝁 ≥ 𝟎 (E.3–9) 

𝝀 ∈ ℝ𝑝 (E.3–10) 

𝝁 ∈ ℝ𝑞 (E.3–11) 

with 𝑉 = {𝒖 |𝒉(𝒖,𝒘) = 0, 𝒈(𝒖,𝒘) ≤ 0 for some 𝒘 ∈ 𝑊} 

 

 

Note that the inf
𝒘

 𝜃(𝒖,𝒘, 𝝀, 𝝁)  in eq (E.3–7) represents Problem Dual(Eu), since 
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inf
𝒘

 𝜃(𝒖,𝒘, 𝝀, 𝝁)  characterizes the lower bound of inf
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘)  in Problem 

Dual(Eu). This problem is also called the Problem GBD(E)-P-NLP(𝒖). 

 

Problem GBD(E)-P-NLP(𝒖) (GBD primal problem, nonlinear programming)  

𝜈(𝒖) = inf
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘) (E.3–12) 

subjected to  

𝒉(𝒖,𝒘) = 0 (E.3–13) 

𝒈(𝒖,𝒘) ≤ 0 (E.3–14) 

𝒘 ∈ 𝑊 ⊆ ℝ𝑚 (E.3–15) 

 

 

E.4. GBD Algorithm 

Step 1: Guess initial point 𝒖𝟏, solve nonlinear programing problem Problem GBD(E)-

P-NLP(𝒖) (i.e. Problem Dual(Eu), 𝑣(𝐮𝟏)). Obtain an optimal (or near-optimal) primal 

solution 𝒘𝟏 as well as the multiplier vectors (𝝀𝟏, 𝝁𝟏). Set the counter 𝑘 = 1 if feasible, 

𝑟 = 1  if infeasible, and current upper bound 𝑍𝑈 = 𝑣(𝒖𝟏) = inf
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖𝟏, 𝒘)  of 

Problem GBD(E)-P-NLP(𝒖). Set the convergence tolerance ϵ ≥ 0. 

  

Step 2: Solve Problem GBD(E)-M-INLP(𝒘𝒕), with 𝒘 fixed at each 𝒘𝒕, 𝑡 = 1,… , 𝑘. In 

particular, α should be large than the value of Lagrangian for all the points of (𝒘, 𝝀, 𝝁) 

that have been tried. 

 

𝛼 ≥  𝜃(𝒖,𝒘𝒕, 𝝀𝒕, 𝝁𝒕), for every 𝑡 = 1,… , 𝑘 (E.4–1) 

 

In addition, all the 𝒘’s that have been tried need to fulfill the requirements of 𝑉. 
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∀𝒘𝒕 with 𝑡 = 1,… , 𝑟, ∃𝒖 ∈ 𝑉 (E.4–2) 

 

Let ( 𝒖∗, 𝛼∗ ) be the optimal solution. 𝑍𝐿 = 𝛼∗ = sup
𝝀𝒕,𝝁𝒕≥𝟎

[inf
𝒘𝒕

 𝜃(𝒖,𝒘, 𝝀, 𝝁)] ≤

inf
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖,𝒘)  is a lower bound of the Problem E. If 𝑍𝐿 + ϵ ≥ 𝑍𝑈 , terminate 

iterations. 

 

Step 3: Solve nonlinear programing problem Problem GBD(E)-P-NLP(𝒖) with 𝒖 fixed 

at 𝒖∗ (i.e. Problem Dual(Eu), 𝑣(𝒖∗)). One of the following scenarios must occur: 

 

(I) 𝑍𝑈
∗ = 𝑣(𝒖∗) = inf

𝒘
𝑂𝑏𝑗𝑓𝑐𝑛(𝒖∗, 𝒘) is finite with an optimal solution (𝒘∗, 𝛌∗, 𝝁∗). If 

𝑍𝐿 + ϵ ≥ 𝑍𝑈
∗ , terminate the iterations. Otherwise, set 𝑘 = 𝑘 + 1, 𝒘𝒌 = 𝒘∗ and 𝒖𝒌 =

𝒖∗. If 𝑍𝑈
∗ < 𝑍𝑈, set 𝑍𝑈 = 𝑍𝑈

∗ . Return to Step 2. 

 

(II) Problem 𝑣(𝒖∗) = inf
𝒘

𝑂𝑏𝑗𝑓𝑐𝑛(𝒖∗, 𝒘)  is infeasible for 𝒖 = 𝒖∗ . This means that 

(𝒘∗, 𝛌∗, 𝝁∗ ) fails to fulfill the requirements of 𝑉  at 𝒖∗ . Add (𝒘∗, 𝛌∗, 𝝁∗ ) into the 

consideration in 𝑉, so in next iterations 𝒖 is determined based 𝒘∗ on such that 𝒖 ∈ 𝑉. 

Set 𝑟 = 𝑟 + 1, 𝒘𝒓 = 𝒘∗, 𝝀𝒓 = 𝛌∗, and 𝝁𝒓 = 𝝁∗. Return to Step 2. 
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Appendix F. Theories of Some AI-based Generative Models 

 

F.1. Neuron and Neural Network (NN) 

A neural network (NN) consists of multiple layers of neurons, as illustrated by 

Figure F1. Each of the neuron can receive input data 𝒙  and transform them into an 

output 𝑦  through mathematical operations. Specifically, each input data 𝑥𝑖  in 𝒙  is 

associated with a weight 𝑊𝑖 in the neuron. Based on these weights and a bias 𝑏, all the 

input data are lumped into a linear combination form 𝑋, as presented in eq. (F.1–1). Then, 

the 𝑋  is encoded by a non-linear activation function 𝑦 = 𝜎(𝑋)  such as sigmoid 

function, as presented in eq. (F.1–2). The purpose of activation function is to normalize 

the 𝑋 such that the output 𝑦 is within desirable upper and lower bounds. Finally, the 

output 𝑦 serves as the input for the next-layer neurons. It should be noted that the non-

linearity of activation function plays a significant role in strengthening the applicability 

of NNs. With that non-linearity, the NN will be a universal approximator for functions, 

as stated in universal approximation theorem.396 

 

𝑋 = 𝑾𝒙 + 𝑏 = 𝑏 + ∑ 𝑊𝑖𝑥𝑖

𝑛

𝑖=1
 (F.1–1) 

𝑦 = 𝜎(𝑋) =
1

1 + exp (−𝑋)
 (F.1–2) 

 

In the training process of a NN model, the optimizer iteratively adjusts the weights 

and bias of each neuron such that the network can reproduce the input-output relation of 

the training data. This is typically achieved by gradient-based minimization of loss 

function ℒ(𝒚(𝒙); 𝜽), where 𝜽 denotes all the adjustable weights and biases in the NN. 
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There are many gradient-based algorithms for updating the parameters. For example, the 

newton’s method is one of the simplest algorithms based on the first-order and second-

order derivatives (i.e. Hessian matrix 𝑯) of loss function.397 

 

𝚫𝜽 = −𝑯−𝟏𝛁𝜽ℒ(𝒚(𝒙); 𝜽) (F.1–3) 

 

Since the gradients with respect to the parameters of layer j (i.e. 𝛁𝜽𝒋
ℒ) depend on 

the parameters of all its succeeding layers (i.e. 𝜽𝒌>𝒋 ), it is much efficient to calculate 

gradients starting with the output layer and ending up with the input layer. This is known 

as the back-propagation algorithm.398, 399 

 

 

Figure F1. The schematic diagram of a fully-connected neural network. 
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Figure F2. The components of a neuron: weights, bias and activation function. 

 

F.2. RNN-based Chemical Semantic Model 

Recurrent neural networks (RNNs) are a family of neural networks specialized for 

processing a sequential data. They are widely used in the context generation in response 

to input texts, as known as the sequence-to-sequence tasks. The applications of RNN 

models include natural language processing400, 401, machine translation, chatbot, and 

musical composition402. An RNN network is composed of one or multiple unit. There are 

two common units: long short-term memory units (LSTMs) and gated recurrent units 

(GRUs)397, 403. As shown by Figure F3, either type of the units has a past-memory cell 

(LSTM: 𝑐; GRU: ℎ), a new-memory cell (LSTM: 𝑐̃; GRU: ℎ̃), and several gates (LSTM: 

𝑖 , 𝑜 , and 𝑓 ; GRU: 𝑟  and 𝑧 ). The overall hidden state of an RNN, denoted as 𝒉𝒕 , 

depends on the information stored in memory cells and the states of gates within each 

unit. The operation of an RNN can be illustrated by Figure F4. When the RNN is 
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operating in free-running mode, or inference mode, it can be conceptualized as being 

unfolded into a sequence of time steps that it has processed. In this scenario, the output 

token generated in each time step serves as the input token for the subsequent time step. 

In the training process, a non-numerical sequential data 𝑺 is decomposed into 𝑇 

tokens [𝒔𝟏, 𝒔𝟐, … , 𝒔𝒕, … , 𝒔𝑻] before fed into an RNN, and the unique tokens are stored 

into a library. Each token 𝒔𝒋 in the library is associated with a unique numerical feature 

vector 𝒆𝒋 through entity embedding401, 404 or one-hot encoding266, 401. Based on this, the 

tokenized data [𝒔𝟏, 𝒔𝟐, … , 𝒔𝒕, … , 𝒔𝑻]  is transformed into a feature vector form 

[𝒆𝟏, 𝒆𝟐, … , 𝒆𝒕, … , 𝒆𝑻] . Instead of token 𝒔𝒕 , it is the feature vector 𝒆𝒕  that the 

mathematical operations in the RNN are conducted to. When a feature vector 𝒆𝒊  is 

inputted to a unit, the state of gates will update through eq. (F.2–1) to (F.2–3), eq. (F.2–

7), and eq. (F.2–8). Subsequently, the feature vector 𝒆𝒕 is encoded into the new-memory 

cell through eq. (F.2–4) and eq. (F.2–9). Then, the contents in the past-memory cell are 

mixed with the those in the new-memory cell, thereby forming the hidden state 𝒉𝒕, as 

illustrated by eq. (F.2–5), eq. (F.2–6), and eq. (F.2–10).  

 

⚫ Long short-term memory unit (LSTM): 

𝒐𝒕 = 𝜎(𝑾𝒐𝒆𝒕 + 𝑼𝒐𝒉𝒕−𝟏 + 𝑽𝒐𝒄𝒕 + 𝒃𝒐) (F.2–1) 

𝒇𝒕 = 𝜎(𝑾𝒇𝒆𝒕 + 𝑼𝒇𝒉𝒕−𝟏 + 𝑽𝒇𝒄𝒕−𝟏 + 𝒃𝒇) (F.2–2) 

𝒊𝒕 = 𝜎(𝑾𝒊𝒆𝒕 + 𝑼𝒊𝒉𝒕−𝟏 + 𝑽𝒊𝒄𝒕−𝟏 + 𝒃𝒊) (F.2–3) 

𝒄̃𝑡 = tanh(𝑾𝒄𝒆𝒕 + 𝑼𝒄𝒉𝒕−𝟏 + 𝒃𝒄) (F.2–4) 

𝒄𝒕 = 𝒇𝒕 ⊙ 𝒄𝒕−𝟏 + 𝒊𝒕 ⊙ 𝒄̃𝑡 (F.2–5) 

𝒉𝒕 = 𝒐𝒕 ⊙ tanh(𝒄𝒕) (F.2–6) 

where 𝜎 is the activation functions for the gates. 𝒊𝒕, 𝒐𝒕, and 𝒇𝒕 are the states of “input”, 

“output”, and “forget” gates, respectively. The subscript t denotes time step. 𝑾𝒐, 𝑾𝒇, 
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𝑾𝒊, 𝑾𝒄, 𝑼𝒐, 𝑼𝒇, 𝑼𝒊, 𝑼𝒄, 𝑽𝒐, 𝑽𝒇, and 𝑽𝒊, are the weights. 𝒉𝒕 is the hidden state. ⊙ 

is the entry-wise multiplication operator. 

 

⚫ Gated recurrent unit (GRU): 

𝒓𝒕 = 𝜎(𝑾𝒓𝒆𝒕 + 𝑼𝒓𝒉𝒕−𝟏 + 𝒃𝒓) (F.2–7) 

𝒛𝒕 = 𝜎(𝑾𝒛𝒆𝒕 + 𝑼𝒛𝒉𝒕−𝟏 + 𝒃𝒛) (F.2–8) 

𝒉̃𝑡 = tanh[𝑾𝒉𝒆𝒕 + 𝑼𝒉(𝒓𝒕 ⊙ 𝒉𝒕−𝟏) + 𝒃𝒉] (F.2–9) 

𝒉𝒕 = (𝟏 − 𝒛𝒕) ⊙ 𝒉𝒕−𝟏 + 𝒛𝒕 ⊙ 𝒉̃𝑡 (F.2–10) 

where 𝜎 is the activation functions for the gates. 𝒓𝒕 and 𝒛𝒕 are the states of “reset” and 

“update” gates, respectively. 𝑾𝒓, 𝑾𝒛, 𝑾, 𝑼𝒓, 𝑼𝒛, and 𝑼 are the weights. 𝒉𝒕 is the 

hidden state. ⊙  is the entry-wise multiplication operator, as known as Hadamard 

product. 

 

Finally, as presented in eq. (F.2–12), a softmax layer is used to compute the 

probability distribution 𝒑𝒕 = 𝒑(𝒉𝒕; 𝜽) = [𝑝𝑡1, 𝑝𝑡2, … , 𝑝𝑡𝑁]  for classifying the 𝒉𝒕  as a 

certain feature vector in the [𝒆𝟏, 𝒆𝟐, … , 𝒆𝑵] , where 𝑁  is the total number of unique 

tokens in the library, and 𝜽 represents all of the involved weights and bias. Based on the 

probability distribution 𝒑𝒕 , a feature vector is sampled from the library as the output 

𝒆𝒕+𝟏 , whose corresponding token 𝒔𝒕+𝟏  can be determined from the token-embedding 

relations established before, as presented in eq. (F.2–13). 

 

𝒂𝒕 = 𝑾𝒔𝒉𝒕 + 𝒃𝒔 = [𝑾𝒔𝟏𝒉𝒕 + 𝑏𝑠1; … ;𝑾𝒔𝑵𝒉𝒕 + 𝑏𝑠𝑁] (F.2–11) 

𝒑𝒕 = 𝒑(𝒉𝒕; 𝜽) =
exp(𝒂𝒕)

∑ exp(𝑾𝒔𝒋𝒉𝒕 + 𝑏𝑠𝑗)
𝑁
𝒋=𝟏

 (F.2–12) 

𝒔𝒕+𝟏 ← 𝒑𝒕 (F.2–13) 
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Figure F3. Two types of RNN units: LSTM and GRU. 𝑠𝑡 is the input token, 𝑒𝑡 is the 

feature vector for 𝑠𝑡, 𝑝𝑡 is the probability distribution for library tokens, 𝑒𝑡+1 is the 

feature vector for the output token sampled from 𝑝𝑡, and 𝑠𝑡+1 is the output token. 𝑐 

and ℎ are past-memory cells, 𝑐̃ and ℎ̃ are new-memory cells, 𝑖, 𝑓, 𝑜, 𝑟, and 𝑧 are 

gates, and 𝑎 is softmax layer for classification.403 
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Figure F4. The free-running mode of an RNN in a context-generating task. 

 

Given that the training process is meant to reproduce the training data 𝑺 =

[𝒔𝟏, 𝒔𝟐, … , 𝒔𝒕, … , 𝒔𝑻], the conditional probability for generating the expected contexts is 

used to defined as loss function for the RNN. As shown by eq. (F.2–14), the minimization 

of the loss function ℒ𝑅𝑁𝑁  is equivalent to maximizing the probability to generate 𝑺 

from 𝒔𝟏.  

 

ℒ𝑅𝑁𝑁 = − log[𝑝(𝑺; 𝜽)] = −∑ log[𝑝(𝒔𝒕|𝒔𝒕−𝟏, … , 𝒔𝟏; 𝜽)]
𝑇

𝑡=1
 (F.2–14) 

 

The work by M. Olivecrona et al. (2017)276 and M. H. S. Segler et al. (2018)277 are 

two examples for applying RNN to computational molecular design. Their framework of 

RNN-based molecular design is depicted in Figure 6.1-1. In their work, the molecular 

structures are represented by language-like SMILES (Simplified Molecular-Input Line-

Entry System) strings.74 The semantic significance of a SMILES string relies on the 

correct arrangements of constituent characters under the grammatical rules.74 For 

instances, “C(C(O))” is ethanol, “C(O(C))” is diethyl ether, and “C(C(C)” is an invalid 
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SMILES string since the left and right round brackets need to be paired for the closure of 

a chain. To construct a syntactic model capable of generating valid SMILES strings, both 

research groups gathered approximately 1.5 million SMILES strings from the ChEMBL 

database. These samples were then utilized to train an LSTM-based RNN model. In the 

training process the RNN parameters 𝜽 are optimized such that the learning loss reached 

its minimum value. Subsequently, the trained RNN model served as a generative model 

for producing new molecules. To ensure the validity of the newly generated SMILES 

strings, RDKit parsing was employed for examination. Valid SMILES strings were then 

subjected to property models. The valid chemical species, along with their associated 

properties, were appended to the training data. Then, a subset of the expanded training 

data, comprising molecules exhibiting optimal performance properties, was used to 

retrain the RNN model. This technique, referred to as transfer learning, aimed to enhance 

the model's specialization for particular specifications in the molecular design task. The 

iterative process of retraining the model and generating new molecular species is 

performed until a chemical candidate satisfying the property specifications is identified. 

Regarding the performance evaluation of their RNN model, approximately 94% to 

98% of the generated SMILES strings are valid. Furthermore, approximately 90% of 

these valid SMILES strings fall outside the scope of the training data, highlighting the 

model's ability to generate novel chemical structures. Additionally, about 89% of the valid 

SMILES strings correspond to unique chemical species. Despite of these promising 

metrics, there are several limitations on the applicability of RNN. Firstly, it is important 

to note that, due to architectural nature, training or running an RNN model can demand 

much higher computational resources (e.g. memory bandwidth) compared to 

convolutional and linear neural network layers.405 Secondly, it may be difficult to train 

LSTM-based and GRU-based RNN models due to the problem of exploding gradients.406, 
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407 This problem is caused by the dynamical behavior of serial mathematical operations 

by NN layers. Take LSTM-based RNN as the example. To see this issue, let us write down 

the gradients of ℒ𝑅𝑁𝑁(𝐿𝑆𝑇𝑀) with respect to a particular weight 𝑾 in the neural network, 

as presented in eq. (F.2–15).408 In this equation, 𝒂𝒕 is referred to eq. (F.2–11), and 𝒉𝒕 is 

referred to eq. (F.2–6) .  

 

𝛁𝑾ℒ𝑅𝑁𝑁(𝐿𝑆𝑇𝑀) = −∑
𝜕 log[𝑝(𝒔𝒕|𝒔𝒕−𝟏, … , 𝒔𝟏)]

𝜕𝒂𝒕

𝜕𝒂𝒕

𝜕𝒉𝒕

𝜕𝒉𝒕

𝜕𝒄𝒕

𝜕𝒄𝒕

𝜕𝒄𝟏

𝜕𝒄𝟏

𝜕𝑾

𝑇

𝑡=1
 (F.2–15) 

 

In particular, the chain rule in eq. (F.2–15) involves the derivatives of memory states 

from the time step 1 to 𝑡 , as explicitly expressed by eq. (F.2–16). Substituting the 

variables in eq. (F.2–16) with eq. (F.2–2), eq. (F.2–3), and eq. (F.2–5) results in the full 

expression, as shown by eq. (F.2–17).  

 

𝜕𝒄𝒕

𝜕𝒄𝟏
=

𝜕𝒄𝒕

𝜕𝒄𝒕−𝟏

𝜕𝒄𝒕−𝟏

𝜕𝒄𝒕−𝟐
…

𝜕𝒄𝟐

𝜕𝒄𝟏
 (F.2–16) 

𝜕𝒄𝒕

𝜕𝒄𝟏
= ∏ [𝒇𝒌 + 𝑽𝒇[𝜎

′(𝑾𝒇𝒆𝒌 + 𝑼𝒇𝒉𝒌−𝟏 + 𝑽𝒇𝒄𝒌−𝟏 + 𝒃𝒇) ⊙ 𝒄𝒌−𝟏]
𝑡

𝑘=2

+ 𝑽𝒊[𝜎
′(𝑾𝒊𝒆𝒌 + 𝑼𝒊𝒉𝒌−𝟏 + 𝑽𝒊𝒄𝒌−𝟏 + 𝒃𝒊) ⊙ 𝒄̃𝑘]] 

(F.2–17) 

 

It should be noted that the activation function 𝜎 is specified by user before training 

and its mathematical form remains unchanged during the training process. Therefore, it 

is relatively easy to regulate the derivative of activation function 𝜎′  and the state of 

forget gate 𝒇𝒌 to avoid the exploding gradients. However, the optimal 𝑽𝒇 and 𝑽𝒊 are 

undetermined until the training finishes successfully, hence they are typically the 

predominant factors in eq. (F.2–17), especially when 𝑡 ≫ 1. Suppose 𝑽𝒊 term is more 
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predominant than 𝑽𝒇 term, then we have eq. (F.2–18).406, 407 

 

‖
𝜕𝒄𝒕

𝜕𝒄𝟏
‖ ≈ ∏ ‖𝑽𝒊‖‖diag(𝜎′(𝑾𝒊𝒆𝒌 + 𝑼𝒊𝒉𝒌−𝟏 + 𝑽𝒊𝒄𝒌−𝟏 + 𝒃𝒊) ⊙ 𝒄̃𝑘)‖

𝑡

𝑘=2
 (F.2–18) 

 

From eq. (F.2–2) and eq. (F.2–5), we know that 𝑽𝒊 would be a 𝑛 × 𝑛 square matrix 

if both the 𝒄̃  vector and 𝒄  vector have dimension of 𝑛 . The eigenvalues 𝜆𝟏 ≥ 𝜆2 ≥

⋯ ≥ 𝜆𝑛  and the corresponding eigenvectors 𝒒𝟏, 𝒒𝟐, … , 𝒒𝒏  of matrix 𝑽𝒊  can be 

obtained through eigen-decomposition406, 407.  

 

𝑽𝒊 = 𝑸𝑫𝑸−𝟏 (F.2–19) 

𝑫 = diag(𝜆1, 𝜆2, … , 𝜆𝑛) (F.2–20) 

𝑸 = [𝒒𝟏, 𝒒𝟐, … , 𝒒𝒏] (F.2–21) 

 

If the largest eigenvalue 𝜆1 is smaller than 1, the derivatives of memory states, i.e. 

eq. (F.2–16), will vanish. Consequently, the gradient of loss function 𝛁𝑾ℒ𝑅𝑁𝑁(𝐿𝑆𝑇𝑀) and 

parameter update 𝚫𝜽 also vanish based on eq. (F.2–15) and eq. (F.1–3) respectively. As 

the reset gate 𝒓𝒕  in GRU and the forget gate 𝒇𝒕  in LSTM (see eq. (F.2–17)) will 

contribute to the derivatives of memory states, both units are usually free from the 

problem of vanishing gradients407, 408,.  

On the other hand, if the value of 𝜆𝟏 is greater than 1, the derivatives of memory 

states will explode. Consequently, the gradient of loss function 𝛁𝑾ℒ𝑅𝑁𝑁(𝐿𝑆𝑇𝑀)  and 

parameter update 𝚫𝜽  also explode. Additional mechanisms need to be employed for 

improvement, though they would increase the architectural and technical complexity of 

the model.407, 409 For example, the “teacher forcing” technique suggests that the exploding 
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gradients in the training process can be prevented by always using the ground-truth token 

as the input for the next time step34, 409, 410. It has been found that the RNN-based 

molecular design without “teacher forcing” would generate nearly 0% valid SMILES 

strings.34  

 

 

Figure F5. Comparison between the free-running mode and the teacher forcing mode of 

RNN. 

 

F.3. VAE-based Latent Variable Model 

Plain autoencoders (AEs) and variational autoencoders (VAEs) are devised to 

represent a high-dimension data by a lower-dimension vector, thereby compressing the 

data into a more compact format. These autoencoders have been proven to be useful in 

tasks such as translation, drug design, and image processing. The architectures for the two 

types of autoencoders are shown by Figure F6. 
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Figure F6. The architectures of plain autoencoders (AEs) and variational autoencoders 

(VAEs) 

 

Both types of the autoencoders consists of an encoder and a decoder, each of which 

is a neural network. The encoder extracts the feature patterns of the input data and maps 

them to a relatively low-dimension vector space called latent space. The decoder recovers 

a data to its original format from the limited features recorded in its latent space 

representation. The primary mechanistic distinction between the two types of 

autoencoders lies in their respective approaches to determining the latent space 

representation. The VAEs map an encoder output to the mean value 𝝁 = [𝜇1, … , 𝜇𝑖 , … ] 

and the standard deviation 𝝈 = [𝜎1, … , 𝜎𝑖 , . . ] of a multi-dimensional normal distribution, 

i.e. eq. (F.3–1). In other words, VAEs encode each input data point into a probability 

distribution, thus exhibiting stochastic features. In contrast, plain AEs directly map an 
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encoder output to a single fixed point in the latent space, making them deterministic in 

nature.  

 

𝒩(𝑧𝑖; 𝜇𝑖 , 𝜎𝑖
2) =

1

𝜎𝑖√2𝜋
exp [−

1

2
(
𝑧𝑖 − 𝜇𝑖

𝜎𝑖
)
2

] (F.3–1) 

 

In VAEs, the latent space representation of, denoted as 𝒛 = [𝑧1, … , 𝑧𝑖 , … ] , is 

determined by sampling from a modified distribution rather than eq. (F.3–1). In practice, 

the values sampled by VAEs are actually standard scores 𝑣𝑖, as depicted in eq. (F.3–2). 

Moreover, the normal distribution of eq. (F.3–1) is approximated by the standard normal 

distribution 𝒩(𝑣𝑖; 0,1), as demonstrated in eq. (F.3–3). 

The sampling process involves two steps. Firstly, a standard score 𝑣̃𝑖 is sampled 

from 𝒩(𝑣𝑖; 0,1) , as illustrated by eq. (F.3–4). Next, multi-dimensional 𝒗̃ =

[𝑣̃1, … , 𝑣̃𝑖 , … ]  are transformed into 𝒛  using eq. (F.3–2), which can be rewritten as a 

concise vector form using the entry-wise multiplication operator “⊙”, as presented by eq. 

(F.3–5). The approximation by eq. (F.3–3) decouples 𝑣𝑖 from pre-exponential 𝜎𝑖 and 

facilitates the update of neural network parameters during the backpropagation step, 

wherein the gradients of the loss function with respect to 𝝁 and 𝝈, i.e. 𝛁𝝁ℒ𝑉𝐴𝐸 and 

𝛁𝝈ℒ𝑉𝐴𝐸, are computed. Since in eq. (F.3–5) the stochastic nature is factored out into the 

𝒗̃ term, the two aforementioned gradients become clearly-defined and computable as 𝒗̃ 

is treated as a constant per sample.411 

 

𝑣𝑖 =
𝑧𝑖 − 𝜇𝑖

𝜎𝑖
 (F.3–2) 

𝒩(𝑣𝑖; 𝜇𝑖 , 𝜎𝑖
2) =

1

𝜎𝑖√2𝜋
exp(−

𝑣𝑖
2

2
) =

𝒩(𝑣𝑖; 0,1)

𝜎𝑖
∼ 𝒩(𝑣𝑖; 0,1) (F.3–3) 
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𝑣̃𝑖 ← 𝒩(𝑣𝑖; 0,1) (F.3–4) 

𝒛 = 𝝁 + 𝝈 ⊙ 𝒗̃ (F.3–5) 

 

In training step, the optimizer seeks the best model parameters by minimization of 

loss function. Therefore, the distinction between plain AEs and VAEs also characterized 

by their loss function. Let 𝒙 be the input data, 𝒟 be the decoder function, ℰ be the 

encoder function, 𝐾𝐿 be the Kullback-Leibler divergence, 𝒩(𝒗; 𝝁, 𝝈𝟐) be the multi-

dimensional normal distribution, and 𝒛 be the latent space representation for a data in 

VAE. Then, the loss function for AEs is written as eq. (F.3–6), and the loss function for 

VAEs is written as eq. (F.3–7). 

 

ℒ𝐴𝐸 = |𝒙 − 𝒟(ℰ(𝒙))|2 (F.3–6) 

ℒ𝑉𝐴𝐸 = |𝒙 − 𝒟(𝒛)|2 + 𝐾𝐿[𝒩(𝒗; 𝟎, 𝟏),𝒩(𝒗; 𝝁, 𝝈𝟐)] (F.3–7) 

𝐾𝐿[𝒩(𝒗; 𝟎, 𝟏),𝒩(𝒗; 𝝁, 𝝈𝟐)] = −∫ 𝒩(𝒗; 𝟎, 𝟏) ln
𝒩(𝒗; 𝝁, 𝝈𝟐)

𝒩(𝒗; 𝟎, 𝟏)
𝑑𝒗

𝑣𝑖→∞

𝑣𝑖→−∞

 (F.3–8) 

 

Both of the loss functions have a reconstruction loss as their first term in the right-

hand side, which characterizes the reconstruction rate of an autoencoder, i.e. the success 

rate to restore input data 𝒙 after it goes through encoder, latent space, and decoder. The 

loss function of VAEs have an extra KL divergence term, which is a measure for the 

dissimilarity between two probability distributions, as shown by eq. (F.3–8). By 

incorporating the KL divergence term in the loss function, the learning process 

encourages 𝒩(𝒗; 𝝁, 𝝈𝟐)  to be progressively asymptotic to 𝒩(𝒗; 𝟎, 𝟏)  during the 

learning steps. Consequently, VAEs can form a relatively small-range and compact 

distribution around the origin of latent space, as demonstrated by Figure F7.411 
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Figure F7. A typical latent space distribution for variational autoencoders (VAEs).411 

 

On the other hand, it has been pointed out that plain AEs may encounter robustness 

issues when used as generative models. For a plain AE, the heterogeneous training data 

tend to form different large-scale sparse clusters in the latent space, as demonstrated by 

Figure F8.411 As the plain AE-based generative models rely on the sampling in latent 

space for new data, the unpopulated region in latent space can result in ineligible data.  
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Figure F8. A typical latent space distribution for plain autoencoders (AEs).411 

 

R. Gómez-Bombarelli et al. (2018)281 and S. Mohammadi et al. (2019)412 are two 

pioneering works that utilize the VAEs for molecular design. As illustrated by Figure 

6.1-2, the typical architecture of VAE-based molecular design consists of a VAE and 

neural-network based (NN-based) property models. Their training data for the VAE are 

chemical structures in SMILES74 format. In the training process, one feeds a vast number 

of chemical structures to encoder and requires the decoder to reconstruct those structures 

from their latent space representation. Meanwhile, the KL divergence term in the loss 

function helps the encoder to create relatively continuous and smooth clusters in latent 

space. As a chemical structure is encoded into a point in latent space, new chemical 

species can be generated by a sampling of new points or a redistribution of existing points 

in the latent space. These new points are then sent to NN-based QSPR models for 

prediction of properties, and outputted into readable chemical structures by the decoder. 
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F.4. Transformer Architecture with Self-Attention Mechanism 

The integration of transformer architecture with self-attention mechanisms280, 311 into 

VAE- and RNN-based generative models has significantly improved model performance. 

Notably, chemical validity and reconstruction rates have been elevated to 98-99.9%280, 284, 

291, 312, and chemical novelty and uniqueness have surpassed 80%280, 284.  

Key advantages of transformers over RNNs lie in the self-attention mechanism and 

the presence of multiple “attention heads”. Attention heads capture different semantic 

aspects of the input sequence, enabling the model to capture comprehensive information. 

The self-attention mechanism effectively addresses the long-range dependency problem 

inherent in RNNs, where correlations between distant tokens often diminish during 

training due to the vanishing gradient issue (section F.2). The self-attention mechanism 

transforms the input embedding matrix 𝑬𝒎  into query 𝑸𝒊 . key 𝑲𝒊 , and value 𝑽𝒊 

matrices. These matrices are subsequently employed to compute attention scores for each 

head, 𝐡𝐞𝐚𝐝𝐢. The heads are concatenated to determine the next output token. 

 

𝑬𝒎 = [𝒂𝟏; 𝒂𝟐; … ; 𝒂𝒎] (F.4–1) 

𝑬𝒕 = [𝒃𝟏; 𝒃𝟐; … ; 𝒃𝒕] (F.4–2) 

𝑽𝒊 = [𝒗𝟏,𝒊; 𝒗𝟐,𝒊; … ; 𝒗𝒎,𝒊] = 𝑬𝒎𝑾𝒊
𝑽 (F.4–3) 

𝑲𝒊 = [𝒌𝟏,𝒊; 𝒌𝟐,𝒊; … ; 𝒌𝒎,𝒊] = 𝑬𝒎𝑾𝒊
𝑲 (F.4–4) 

𝑸𝒊 = [𝒒𝟏,𝒊; 𝒒𝟐,𝒊; … ; 𝒒𝒕,𝒊] = 𝑬𝒕𝑾𝒊
𝑸

 (F.4–5) 

 

𝐡𝐞𝐚𝐝𝐢 = attention(𝑸𝒊, 𝑲𝒊, 𝑽𝒊; 𝑑𝑘) = softmax (
𝑸𝒊𝑲𝒊

𝑻 + 𝑴

√𝑑𝑘

)𝑽𝒊 (F.4–6) 

𝑶𝒑 = [𝒐𝟏; 𝒐𝟐; … ; 𝒐𝒑] = horizontal_concat(𝐡𝐞𝐚𝐝𝟏, … , 𝐡𝐞𝐚𝐝𝐡)𝑾
𝑶 (F.4–7) 
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𝑷𝒕 = [𝒑𝟏; 𝒑𝟐; … ; 𝒑𝒕] = softmax(𝑶𝒕𝑾
𝑷) (F.4–8) 

 

 

Figure F9. Transformer-based VAE: training mode. 
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Figure F10. Transformer-based VAE: free running mode. 
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