
doi:10.6342/NTU202501430

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master’s Thesis

利用計算叢集優化 QAOA的大規模模擬

Optimizing Large-Scale QAOA Simulation using
Computing Clusters

邱信瑋

Shin-Wei Chiu

指導教授: 洪士灝博士

Advisor: Shih-Hao Hung Ph.D.

中華民國 114年 7月

July, 2025

doi:10.6342/NTU202501430i

doi:10.6342/NTU202501430

Acknowledgements

首先，我要衷心感謝洪士灝教授這兩年來的悉心指導。在您的引領下，我

這個初入研究殿堂的學生得以一步步學習並掌握了獨立完成研究的方法，並成

功將研究成果投稿至 2025年 Practice & Experience in Advanced Research Computing

Conference。

同時，我也要感謝江介宏教授和涂嘉恒教授，百忙之中撥冗擔任我的口試委

員，並為我的論文提供了寶貴的建議與指導。

特別感謝同為量子組的楊卓敏和侯善融同學。在這兩年辛苦的研究生生涯中，

我們時常一同挑燈夜戰，為研究付出無數心力。閒暇之餘，我們也一同打籃球、

健身，共同維護身心健康，這段時光彌足珍貴。

此外，也要感謝官澔恩同學這兩年來在課業上的陪伴。許多需要分組的課程，

能與他同組總讓我倍感安心，他是一位非常優秀的夥伴。

最後，謹向我的父母和女朋友獻上最深的謝意。你們是我最堅實的後盾，在

我失落迷茫時，總能溫暖地陪伴在旁；在我無助時，給予我莫大的鼓勵與信心。

即使遭遇挫折，你們也毫無保留地接納我。特別是在碩二上學期，面臨論文寫

作、修課、實習、求職、刷題、外語學習等多重壓力，每天都身處巨大的考驗之

中，感謝你們堅定的支持，讓我得以順利平安地完成學業。

ii

doi:10.6342/NTU202501430

摘要

本研究開發了一款資源高效的量子電路模擬器，專為在大規模組合優化問題

上執行量子近似優化算法 (QAOA)而設計。我們的核心貢獻在於整合了狀態向量

轉置 (State Vector Transposition, SVT)技術。這項技術透過在跨節點或跨裝置傳輸

前執行本地端的量子位元（Qubit）重排，能有效集中傳輸所需的狀態向量區塊。

此方法不僅顯著提升了傳輸效率，更有效減輕了模擬大型量子電路所固有的記憶

體需求，大幅提升了模擬性能。這種方法有助於在多樣化的分散式計算平台（包

括多節點 CPU和多設備 GPU架構）上實現高效的擴展。實驗驗證突顯了我們提

出的模擬器卓越的性能。在大規模 QAOA電路上的基準測試表明，與現有最先進

的模擬器相比，我們的模擬器實現了顯著的加速，在 GPU平台上性能提升高達

1490倍，在純 CPU環境中提升 28倍。此外，我們進行全面的可擴展性實驗證實

了模擬器在分散式計算環境中保持接近最佳效率的能力。這種可擴展性使我們的

工作成為模擬深度 QAOA電路的寶貴工具，有效地彌合了當前經典計算資源的能

力與量子算法研究日益增長的需求之間的差距，成功縮短了經典計算資源與量子

算法研究需求之間的鴻溝。最後，我們亦針對 SVT技術進行全面效能分析，確認

其在 QAOA模擬中的最佳化效益。

關鍵字：量子近似演算法、量子計算、量子模擬、組合優化問題、平行計算、效
能分析

iii

doi:10.6342/NTU202501430

Abstract

This study presents a resource-efficient quantum-circuit simulator purpose-built for

running theQuantumApproximateOptimizationAlgorithm (QAOA) on large-scale combinatorial-

optimization problems. Our key contribution is the integration of a State Vector Transposi-

tion (SVT) technique. By locally reordering qubits before inter-node or inter-device com-

munication, SVT concentrates the state-vector blocks that actually need to be transferred,

dramatically improving data-transfer efficiency while easing the memory footprint inher-

ent to large-circuit simulation. The result is a substantial performance boost and seamless

scalability across heterogeneous distributed platforms, including multi-node CPU clus-

ters and multi-device GPU systems. Extensive experiments underscore the superior per-

formance of the simulator. On large QAOA benchmarks, it outperforms state-of-the-art

simulators by up to 1,490× on GPUs and 28× on CPUs. Scalability studies further show

that the simulator maintains near-optimal parallel efficiency in distributed environments,

making it a powerful tool for simulating deep QAOA circuits and closing the gap between

iv

doi:10.6342/NTU202501430

classical computing capabilities and the rapidly growing demands of quantum-algorithm

research. Finally, a thorough performance analysis confirms the optimization benefits of

SVT within QAOA simulations.

Keywords: quantum approximate optimization algorithm (QAOA), quantum comput-

ing, quantum circuit simulation, combinatorial optimization problem, parallel program-

ming, performance analysis

v

doi:10.6342/NTU202501430

Contents

Page

Verification Letter from the Oral Examination Committee i

Acknowledgements ii

摘要 iii

Abstract iv

Contents vi

List of Figures viii

List of Tables xi

Chapter 1 Introduction 1

Chapter 2 Background 5

2.1 Quantum Approximate Optimization Algorithm 5

2.2 Combinatorial Optimization Problems 7

2.3 Using QAOA to solve Max-Cut Problem 8

2.4 State Vector Simulation . 9

Chapter 3 Related Work 12

3.1 Algorithmic Advances in QAOA . 12

3.2 Classical Parameter‑Search and Co‑Processing 13

3.3 Noise‑Aware and Hybrid Variants 13

vi

doi:10.6342/NTU202501430

3.4 Quantum Circuit Simulators for QAOA 14

3.5 Cluster‑Level Optimisations for Large‑Scale QAOA 15

Chapter 4 Methodology 16

4.1 Quantum Approximate Optimization Algorithm Preliminaries 16

4.2 State Vector Transposition . 18

4.2.1 Global Qubit Swap with Local MSB 19

4.2.2 Case 2: Global Qubit Swap with Non-Local MSB 23

Chapter 5 Evaluation 31

5.1 Experiment Setup . 31

5.2 Experimental Results . 32

5.3 Scalability Analysis . 37

5.4 State Vector Transposition Analysis 41

5.5 Buffer Tuning for State Vector Transposition 44

Chapter 6 Conclusion 48

References 49

vii

doi:10.6342/NTU202501430

List of Figures

4.1 Illustration of state vector distribution and global/local qubits on a dis-

tributed memory system. A 4-qubit state is distributed across two GPUs,

with Q3 designated as the global qubit. 20

4.2 Conceptual state after Q3-Q2 swap (Case 1). The figure shows the result-

ing memory layout on GPU0 and GPU1, indicating which amplitudes are

missing (marked with ’?’) and need to be exchanged. 21

4.3 Case 1, Step 1: Prepare for Global Data Exchange. The contiguous blocks

of amplitudes required by the other GPU (A4-A7 for GPU1, A8-A11 for

GPU0) are copied to local buffers. 23

4.4 Case 1, Step 2: Global Qubit Swap (Qubit Reordering). The memory

layout is updated according to the new qubit order (Q2, Q3, Q1, Q0),

showing the locations where external data (marked with ’?’) will be written. 24

4.5 Case 1, Step 3: Data Transmission. Data is transmitted between GPUs

and written from the buffer into the main statevector memory, completing

the SVT for the Q3-Q2 swap. 24

4.6 Illustration of scattered data transfer in a direct Global-Non-Local MSB

swap (Q3-Q0). The figure shows the state after a direct swap, indicating

the non-contiguous amplitudes (marked with ’?’) that would need to be

exchanged between GPUs. 25

4.7 Case 2, Step 1: Initial Local Swap. A local swap is performed between

the non-Local MSB target qubit (Q0) and the Local MSB (Q2) to reorder

the local state vector, making the data for the upcoming global exchange

contiguous. 26

viii

doi:10.6342/NTU202501430

4.8 Case 2, State after Initial Local Swap. The memory layout after the Q0-

Q2 local swap, viewed with the global qubit (Q3) conceptually swapped

with the new Local MSB (Q0), showing that the required external data

(marked with ’?’) is now contiguous. 27

4.9 Case 2, Step 2: Prepare for Global Data Exchange. Contiguous blocks

of amplitudes (resulting from the initial local swap) are copied to local

buffers for inter-GPU transmission. 27

4.10 Case 2, Step 3: Global Qubit Swap. The global swap (Q3-Q0 concep-

tual swap) is performed, leading to a memory state where external data

(marked with ’?’) is needed. Data is transmitted via buffers. 28

4.11 Case 2, Step 4: Data Transmission. Data is written from the buffers into

the main statevector memory, completing the SVT up to the final local

reordering. 29

4.12 Case 2, Step 5: Final Local Swap. A concluding local swap (Q0-Q2) is

performed to achieve the final desired qubit ordering (Q0, Q2, Q1, Q3)

after the global Q3-Q0 transposition. 30

5.1 Comparison of simulation time on the single-node CPU-only platform. . . 33

5.2 Comparison of simulation time on the multi-node CPU-only platform. . . 34

5.3 Comparison of simulation time on the single-device GPU platform. . . . 35

5.4 Comparison of simulation time on the multi-device GPU platform. 36

5.5 Weak-scaling results for proportionally larger 33-qubit–per-node QAOA

circuits on a multi-node CPU cluster (1–8 nodes). 38

5.6 Weak-scaling results for proportionally larger 30-qubit–per-GPU QAOA

circuits on a multi-GPU platform (1–64 GPUs). 39

5.7 Strong-scaling results for a fixed 33-qubit QAOA circuit on a multi-node

CPU cluster. 40

5.8 Strong-scaling results for a fixed 30-qubit QAOA circuit on a multi-GPU

platform (1–64 GPUs). 41

ix

doi:10.6342/NTU202501430

5.9 SVT transfer time versus buffer size on an H100 GPU cluster. Intra-node

transfers use NVSwitch (900 Gbps); inter-node transfers use InfiniBand

NICs (400 Gbps). 45

5.10 Detailed comparison of intra-node and inter-node SVT transfer times and

the resulting speed-up factor (inter-node time divided by intra-node time).

The speed-up approaches the theoretical 18× limit implied by theNVSwitch-

to-InfiniBand bandwidth ratio.. 45

5.11 RDMA transfer time versus buffer size for a single-layer, 31-qubit QAOA

simulation on a multi-node CPU cluster. The minimum (1.14 s) occurs

at 223 B; larger buffers provide diminishing returns and eventually incur

extra latency due to incipient bufferbloat. 46

5.12 Detailed RDMA transfer times (seconds) for buffer sizes 216–227 B. The

optimal value (1.14 s at 223 B) is highlighted in red. 47

x

doi:10.6342/NTU202501430

List of Tables

3.1 Key capabilities of representative state‑of‑the‑art simulators. 15

5.1 The hardware and software configurations of CPU-Only and GPU platforms 32

5.2 The overall speedup for 34-qubit QAOA simulation on the single-node

CPU-only platform. 33

5.3 The overall speedup for 36-qubit QAOA simulation on the multi-node

CPU-only platform. 33

5.4 The overall speedup for 32-qubit QAOA simulation on the single-device

GPU platform. 35

5.5 The overall speedup for 30-qubit QAOA simulation on the single-device

GPU platform. 35

5.6 The overall speedup for 34-qubit QAOA simulation on the multi-device

GPU platform. 36

5.7 Strong scaling analysis for 33-qubit systems on CPU clusters. 43

5.8 Strong scaling analysis for 32-qubit systems on GPU clusters. 44

xi

doi:10.6342/NTU202501430

Chapter 1 Introduction

Combinatorial optimization is a frequently discussed topic in computer science and

engineering. Its goal is to find the optimal solution in a limited discrete space by mini-

mizing or maximizing an objective function under given constraints. There are notable

examples, including the Max-Cut problem [2], portfolio optimization [6], and various

routing challenges, such as the Traveling Salesman Problem [18]. Applications span di-

verse areas such as logistics, production planning, data analysis, and electronic design

automation. Since many combinatorial optimization problems (including Max-Cut) are

inherently NP-hard, finding exact solutions for large instances is computationally diffi-

cult on classical computers. Therefore, there have been various kinds of approximate

algorithms developed to find approximately optimal solutions within polynomial time,

such as genetic algorithms [34], Monte Carlo methods [30], and simulated annealing [40].

However, due to the inherent limitations of classical computing architectures, traditional

computing strategies are fundamentally limited in terms of scalability and performance.

Quantum computing offers a potential paradigm shift to address these limitations by

exploiting principles of quantum mechanics such as superposition and entanglement. Un-

like classical bits, qubits possess the ability to exist in a superposition of states, which

facilitates a form of inherent parallelism. Entanglement establishes non-classical cor-

relations between qubits, allowing for the exploration of vast computational spaces far

1

doi:10.6342/NTU202501430

more efficiently than is possible classically. These inherent characteristics underpin the

promise of substantial accelerations in the resolution of specific problems, including those

in combinatorial optimization and number theory. Pivotal quantum algorithms, such as

the Quantum Fourier Transform [11], Shor’s algorithm for integer factorization [37], and

Grover’s algorithm for database search [19], clearly demonstrate the advantages of using

quantum computing. Continuous progress in quantum hardware development and theoret-

ical algorithm design has made quantum computing a stunning transformative technology

in fields as diverse as cryptography and complex data analysis in computer science and

materials science in engineering.

Quantum computing offers several promising methodologies for addressing com-

binatorial optimization challenges. These include Quantum Annealing [25], the Quan-

tum Adiabatic Algorithm [17], the Variational Quantum Eigensolver (VQE) [32], and

the Quantum Approximate Optimization Algorithm (QAOA) [16]. Among these tech-

niques, QAOA has attracted considerable interest, particularly due to its suitability for

near-term intermediate-scale quantum (NISQ) devices and its adaptability as a hybrid

quantum-classical algorithm. QAOA employs a variational approach to optimize a pa-

rameterized quantum circuit, aiming to maximize the anticipated value of a problem’s

objective function. This iterative process involves executing the quantum circuit with

specific parameters, measuring the output, and then using a classical optimizer to update

the parameters for the next iteration, progressively refining the solution.

While physical quantum hardware development is ongoing, classical simulation of

quantum circuits, especially for algorithms like QAOA, remains essential for algorithm

design, testing, and benchmarking. Classical simulation offers the advantage of being

free from the noise and decoherence inherent in current physical quantum systems. How-

2

doi:10.6342/NTU202501430

ever, the computational resources necessary for precise classical simulation scale expo-

nentially with the increasing number of qubits. This exponential scaling presents a signifi-

cant challenge, particularly for simulating deepQAOA circuits required for larger problem

instances. Prior research, such as the work by Lin et al. [27], introduced performance opti-

mizations for QAOA simulation on single CPU or GPU nodes, demonstrating superiority

over existing methods. Nevertheless, the memory capacity of a single node fundamentally

limits these approaches to simulating circuits with a moderate number of qubits (typically

below 30-40), precluding simulations for significantly larger problem sizes crucial for

demonstrating practical quantum advantage.

To address the limitations of single-node classical simulation and facilitate the in-

vestigation of QAOA on more extensive problem instances, this research presents a high-

performance, distributed QAOA simulator. A core technical contribution is the develop-

ment of techniques that exploit the inherent tensor structure of quantum state vectors and

gate operations to minimize redundant computations and, critically, reduce costly inter-

node and inter-device communication overhead. We conducted extensive experimental

evaluations on both CPU-based clusters and GPU-based workstations to assess the per-

formance and scalability of our methodology. On multi-node CPU platforms, our simula-

tor demonstrates superior performance compared to state-of-the-art distributed simulators,

including mpiQulacs [23], QuEST [24], and UniQ [43]. Similarly, on multi-device GPU

platforms, utilizing configurations up to 64 NVIDIA H100 GPUs, our approach signifi-

cantly outperforms leading GPU simulators such as Qiskit-Aer [1], cuQuantum [4], and

HyQuas [42]. Our experimental results show speedups of up to 28x on multi-node CPU

and an impressive 1490x on multi-device GPU platforms compared to existing methods.

Furthermore, both strong and weak scaling studies indicate that our distributed simulator

3

doi:10.6342/NTU202501430

achieves near-optimal efficiency across various hardware configurations, demonstrating

its potential for simulating QAOA circuits on a significantly larger number of qubits than

previously possible.

The key contributions of this research are outlined below:

1. We present a resource-efficient, distributed QAOA simulator designed to scale to

a large number of qubits on multi-node CPU clusters and multi-device GPU plat-

forms.

2. We propose and implement a suite of optimization techniques that leverage the

structure of quantum computations to significantly reduce data transfer and com-

putational overhead in large-scale distributed quantum circuit simulations.

3. We provide a comprehensive performance analysis and scalability benchmark of

our distributed methodology, comparing it against leading state-of-the-art quantum

circuit simulators on both multi-node CPU and multi-device GPU architectures.

4

doi:10.6342/NTU202501430

Chapter 2 Background

2.1 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum-

classical variational method developed for current Noisy Intermediate-Scale Quantum

(NISQ) computers. Its fundamental objective is to identify approximate solutions for

combinatorial optimization problems. The central concept behind QAOA involves em-

ploying a parameterized quantum circuit (referred to as an ansatz) to create a quantum

state whose energy expectation value corresponds to the cost function of the original op-

timization problem.

The QAOA procedure is as follows:

1. Problem Mapping: This initial step involves transforming the cost function, de-

noted as C(z), of the combinatorial optimization problem into a quantum Hamilto-

nian HC . This Hamiltonian is typically diagonal in the computational basis, guar-

anteeing that its ground state aligns with the problem’s optimal solution.

2. Ansatz Preparation: Prepare a quantum state |ψ(γ,β)⟩ is constructed utilizing a

parameterized quantum circuit with p layers, also known as the QAOA depth. This

ansatz usually comprises two alternating Hamiltonians: the problem Hamiltonian

5

doi:10.6342/NTU202501430

HC and a mixer Hamiltonian HM (often expressed as
∑

iXi, where Xi represents

the Pauli-X operator acting on qubit i). Each layer involves two parameters, γk and

βk. The initial state is generally the ground state of the mixer Hamiltonian, such as

|+⟩⊗n.

|ψ(γ,β)⟩ = e−iβpHM e−iγpHC · · · e−iβ1HM e−iγ1HC |+⟩⊗n

Here, γ = (γ1, . . . , γp) and β = (β1, . . . , βp) are the parameters to be optimized.

3. Expectation Value Measurement: The parameterized circuit is executed on a

quantum computer, and the expectation value of the problem HamiltonianHC is de-

terminedwith respect to the final state |ψ(γ,β)⟩, resulting inE(γ,β) = ⟨ψ(γ,β)|HC |ψ(γ,β)⟩.

4. Classical Optimization: A classical optimization algorithm (e.g., gradient descent,

Nelder-Mead) is employed on a classical computer to fine-tune the parametersγ and

β . The objective is to minimize (or maximize, depending on the specific problem)

the measured expectation value E(γ,β).

5. Iteration: Steps 3 and 4 are repeated until either the parameters converge or a pre-

defined maximum number of iterations has been completed.

6. Result Interpretation: Prepare the final quantum state |ψ(γ∗,β∗)⟩ using the opti-

mal parameters (γ∗,β∗), and perform multiple measurements in the computational

basis. The measurement outcome (computational basis state) that appears most fre-

quently typically corresponds to an approximate solution to the original optimiza-

tion problem.

A significant benefit of QAOA is its comparatively shallow circuit depth, which positions

it as a strong contender for demonstrating a quantum advantage on NlSQ devices. From a

6

doi:10.6342/NTU202501430

theoretical standpoint, as the circuit depth p approaches infinity, QAOA holds the potential

to identify the optimal solution for the given problem.

2.2 Combinatorial Optimization Problems

In order to maximize or minimize a specific objective function, combinatorial opti-

mization problems require finding the best solution from a finite (or countably infinite)

discrete set of feasible solutions. These problems are widespread in operations research,

computer science, engineering, economics, and other fields. The main difficulty is that

the size of the space of feasible solutions usually increases exponentially with the size of

the problem, making an exhaustive search impractical.

Common instances of combinatorial optimization problems include:

• Knapsack Problem: Choosing the most valuable items to be included in a knapsack

without surpassing its weight limit.

• Vehicle Routing Problem (VRP): The purpose of this algorithm is to find the most

efficient route for delivering goods or services to customers. The goal is usually to

minimize total travel distance, time, or cost while adhering to various restrictions

like vehicle capacity or time windows.

• Graph Coloring Problem: This problem involves assigning different colors to the

nodes of a graph so that no two adjacent nodes share the same color, with the goal

of minimizing the total number of colors used.

• Max-Cut problem: This problem requires splitting the vertices of a given graph into

two disjoint sets while maximizing the total number (or sum of weights) of edges

7

doi:10.6342/NTU202501430

connecting the vertices in the two different sets.

This document centers on the Maximum Cut Problem (Max-Cut). Given an undi-

rected graph G = (V,E), where V represents the collection of vertices (or nodes) and

E signifies the set of edges, each edge (i, j) ∈ E can have an associated weight wij (if

unweighted, wij = 1). The goal of this problem is to partition the vertex set V into two

subsets S and V \ S, such that the cumulative weight of the edges connecting vertices in

S and vertices in V \ S is maximized.

Formally, we can assign a binary variable zi ∈ {0, 1} (or si ∈ {+1,−1}) to each

vertex i ∈ V , indicating which set the vertex belongs to. The objective is to maximize the

following function:

C =
∑

(i,j)∈E

wij
1− sisj

2

where si = (−1)zi . When vertices i and j belong to different sets (si ̸= sj), then sisj =

−1, and the edge (i, j) contributes wij to the objective function. When they belong to

the same set (si = sj), then sisj = +1, and the edge (i, j) contributes 0. The Max-Cut

problem is generally NP-hard, meaning that finding an exact solution for large graphs is

computationally very difficult.

2.3 Using QAOA to solve Max-Cut Problem

Asmentioned before, QAOA is a quantum algorithm designed to solve combinatorial

optimization problems. However, it operates directly on quantum states andHamiltonians,

rather than classical graph structures or cost functions. In order to use QAOA to solve the

Max-Cut problem, we must first convert the original description of the Max-Cut problem

8

doi:10.6342/NTU202501430

on a classical computer into a quantum formula suitable for QAOA operations.

Specifically, we need to map the objective function defined on this problem (that is,

the sum of the edge weights we want to maximize) to the quantum HamiltonianHC . This

Hamiltonian should have the following properties: its energy expectation value is related

to the value of the objective function, and its ground state (that is, the lowest energy state)

corresponds to the optimal solution to this problem (that is, themaximum cut segmentation

we require).

Common target formulations for this mapping are two equivalent mathematical mod-

els: Quadratic Unconstrained Binary Optimization (QUBO) and the Ising model. Both

models help us naturally transition to qubits and quantum Hamiltonians.

2.4 State Vector Simulation

State vector simulation is a method for simulating the process of quantum computa-

tion on a classical computer. It is one of the most direct and conceptually simple quantum

simulation techniques.

In quantum computing, the state of a system of n qubits is represented by a 2n-

dimensional complex vector, called a quantum state vector, usually expressed as |ψ⟩. This

vector resides in a 2n-dimensional Hilbert space H = (C2)⊗n. And, the state vector can

be expressed as a linear combination of the computational basis states as below:

|ψ⟩ =
2n−1∑
k=0

ck |k⟩

where |k⟩ are the computational basis states (e.g., |00...0⟩ , |00...1⟩ , . . . , |11...1⟩), and ck ∈

9

doi:10.6342/NTU202501430

C are the complex amplitudes. These amplitudes must satisfy the normalization condition∑2n−1
k=0 |ck|2 = 1. Among them, the value of |ck|2 represents the probability of obtaining

the result k when the quantum system is measured on the computational basis.

The following is the state vector simulation process:

1. Representing the State: Store the 2n complex amplitudes ck that represent the

quantum state vector |ψ⟩ directly in the memory of a classical computer. This is

typically implemented as an array of complex numbers.

2. Simulating Evolution: Operations in quantum computation (quantum gates) cor-

respond to unitary matricesU (of size 2n×2n) acting on the state vector. Simulating

a quantum gate operation involves multiplying the unitary matrix representing the

gate by the state vector stored in memory. For instance, if the system’s state is |ψ⟩,

applying a gate U results in the new state |ψ′⟩ = U |ψ⟩. In the simulation, this

corresponds to computing the new amplitude vector c′ = Uc. For single-qubit or

two-qubit gates, although the corresponding global unitary matrix is large, the up-

date to the state vector amplitudes can often be performed more efficiently due to

the sparse or local nature of the operation, without explicitly constructing or storing

the full 2n × 2n matrix.

3. Simulating Measurement: Simulating a measurement of the quantum state |ψ⟩ in

the computational basis involves randomly selecting a basis state |k⟩ according to

the probabilities |ck|2. After themeasurement, the state vector is updated (collapsed)

according to the measurement outcome.

Themain advantage of state vector simulation is that it provides complete information

about the quantum system’s state (all amplitudes ck) and can simulate quantum evolution

10

doi:10.6342/NTU202501430

exactly (ignoring numerical precision errors). This makes it highly suitable for debugging

quantum algorithms, verifying the correctness of small quantum circuits, and studying

quantum phenomena.

However, the primary drawback of state vector simulation is its substantial resource

requirement. Storing the state vector for n qubits requires O(2n)memory space, and sim-

ulating a quantum gate operation typically takesO(2n) computation time (for dense gates)

or time related to the number of non-zero amplitudes. This exponential scaling in resource

usage limits state vector simulation to systems with a relatively small number of qubits

(usually around 30-50, depending on available memory and computational power). For

larger quantum systems, other simulation techniques (such as tensor network simulation,

stabilizer simulation, etc.) or actual quantum hardware are necessary.

11

doi:10.6342/NTU202501430

Chapter 3 Related Work

Quantum Approximate Optimization Algorithm (QAOA) has emerged as a leading

variational approach for combinatorial optimisation, promising scalable quantum advan-

tage once sufficiently large fault‑tolerant hardware becomes available. This chapter re-

views five intertwined research threads that underpin large‑scale QAOA simulation: (i)

algorithmic advances, (ii) classical parameter‑search and co‑processing, (iii) noise‑aware

and hybrid variants, (iv) high‑performance simulators, and (v) cluster‑level systems opti-

misations.

3.1 Algorithmic Advances in QAOA

Recent algorithmic advancements in QAOA have aimed at improving its perfor-

mance and scalability. Initial versions of QAOA primarily relied on straightforward im-

plementations with limited levels (P), yet subsequent research has demonstrated that in-

creasing the depth of QAOA circuits enhances solution accuracy. Farhi et al. [16] first

showed that raising the depth p improves the Max‑Cut approximation ratio. Subsequent

works introduced layer‑by‑layer or p‑swap training strategies that reuse converged shal-

low parameters as warm‑starts for deeper circuits [7, 45]. Adaptive techniques such as

parameter transfer across weighted instances [14] and mixer generalisations under the

12

doi:10.6342/NTU202501430

Quantum Alternating Operator Ansatz [21] further widen the search space. Variants like

Recursive‑QAOA [3] and Warm‑start QAOA [15] reshape the cost landscape or seed pa-

rameters with classical heuristics, yielding better convergence on large graphs.

3.2 Classical Parameter‑Search and Co‑Processing

Parameter optimization remains a critical bottleneck in the implementation ofQAOA.

Optimising the variational angles γ,β therefore dominates overall runtime. Analytic gra-

dients obtained via the parameter‑shift rule [12, 26] or finite‑differencemethods are widely

used, yet they can stall on barren plateaux. Gradient‑free meta‑heuristics—e.g. Genetic

Algorithms [29], Particle‑Swarm Optimisation [9], and multi‑start local search [36]—ex-

plore the rugged landscape more globally. For weighted‐Max‑Cut instances, an analytic

rescaling of unweighted optimal angles has been shown to shrink the search space dramat-

ically and speed convergence [35]. Machine‑learning–accelerated co‑processing loops

that predict promising angle updates on‑the‑fly further reduce wall‑clock time for deep

circuits [20].

3.3 Noise‑Aware and Hybrid Variants

Considering the practical constraints of current quantum hardware, several noise-

aware and hybrid implementations of QAOA have emerged. Noise-aware variants explic-

itly incorporate noise models into the optimization process or adapt circuits based on hard-

ware characteristics, effectively enhancing robustness under realistic quantum hardware

conditions. Noise‑robust QAOA seeks to counter hardware decoherence by co‑designing

parameters with device noise models. Noise‑Adaptive VQA [31] and subsequent work

13

doi:10.6342/NTU202501430

by Bravyi et al. [8] demonstrate fidelity gains by iteratively updating circuit structure or

sampling schedule. QuantumNAS [41] generalises this idea to architecture search, of-

fering transferable insight beyond QAOA. These approaches, together with the broader

framework of hybrid VQAs [28, 33], underpin practical NISQ‑era deployments.

3.4 Quantum Circuit Simulators for QAOA

Reliable simulation of QAOA circuits plays an essential role in algorithmic devel-

opment, parameter optimization, and benchmarking, particularly given current quantum

hardware limitations. Numerous state-of-the-art simulators have been developed to pro-

vide efficient and accurate quantum circuit simulation capabilities. Table 3.1 summarizes

a comparison of widely used simulators, including QuEST [24], mpiQulacs [23], cuQuan-

tum [4], Qiskit-Aer [1], HyQuas [42], UniQ [43], the GPU-accelerated method by Lin

et al. [27], and FOR-QAOA (this work). Simulators such as QuEST, cuQuantum, and

Qiskit-Aer leverage distributed computing across multiple nodes and GPU acceleration

to enhance computational efficiency. Efficient communication techniques are critical for

performance at scale; examples include state vector partitioning with MPI [24], double

buffering to overlap communication and computation [23], optimized MPI data transfers

combined with computation overlap [1, 4], global-local swap strategies [42, 43], and state

vector transposition (used in Our work). These simulators have become indispensable

tools for validating QAOA algorithms prior to execution on physical quantum processors.

14

doi:10.6342/NTU202501430

Table 3.1: Key capabilities of representative state‑of‑the‑art simulators.

Simulator Distributed GPU‑Accel. Communication Scheme Purpose
QuEST [24] ✓ ✓ state‑vector partition general purpose

mpiQulacs [23] ✓ ✓ double buffering general purpose
cuQuantum [4] ✓ ✓ tensor slicing + overlap general purpose
Qiskit‑Aer [1] ✓ ✓ tensor slicing + overlap general purpose
HyQuas [42] ✓ ✓ hybrid partitioner general purpose
UniQ [43] ✓ ✓ hybrid partitioner general purpose

Lin et al. [27] ✓ N/A specific for QAOA
Our work ✓ ✓ state‑vector transposition specific for QAOA

3.5 Cluster‑Level Optimisations for Large‑Scale QAOA

Scaling QAOA simulations to large numbers of qubits necessitates careful considera-

tion of cluster-level optimizations. Recent advancements have focused on efficient work-

load distribution, memory optimization, and communication reduction strategies. Tech-

niques such as domain decomposition (partitioning the state vector or circuit operations),

dynamic load balancing, and optimized communication protocols have shown significant

potential for improving scalability and performance. Research has explored specialized

data structures and memory hierarchy management, such as bit-slicing the Hilbert space

representation to reduce memory footprint [39]. Furthermore, parallel computing tech-

niques, including hierarchical parallelism utilizing both inter-node (e.g., MPI) and intra-

node (e.g., multi-threading, GPU) parallelism, are crucial for efficiently utilizing cluster

resources [10, 13]. Optimizing inter-node communication using high-performance in-

terconnects and protocols like Remote Direct Memory Access (RDMA) has also been

investigated to reduce latency and improve bandwidth [22].

These innovations are essential for enabling high-performance simulations of large-

scale QAOA circuits across multi-node computing clusters, paving the way for tackling

larger problem instances relevant to real-world applications.

15

doi:10.6342/NTU202501430

Chapter 4 Methodology

In this section, we demonstrate how our optimization strategies can be integrated

into a large-scale QAOA simulation for a Max-Cut problem. First, in section 4.1, we

discuss the initial, cost, and mixer layers, along with existing optimization methodologies.

Second, section 4.2 describes our technique for enhancing data-transfer efficiency across

multi-node or multi-device environments.

4.1 QuantumApproximate Optimization Algorithm Pre-

liminaries

The multi-level QAOA, an extension of the fundamental single-level framework,

iteratively refines candidate solutions. This work utilizes the Max-Cut problem as a rep-

resentative application to illustrate the QAOA methodology. Algorithm 1 outlines the

simulation procedure for a P -level QAOA circuit.

A single QAOA level (or layer) is characterized by the sequential application of two

unitary operators, derived from a cost Hamiltonian ĤC and amixer (or driver) Hamiltonian

ĤM . Specifically, a P -level QAOA circuit applies a sequence of P such layers. The

evolution under these Hamiltonians is governed by a set of 2P variational parameters,

γ = (γ1, . . . , γP) and β = (β1, . . . , βP). These parameters are classically optimized to

16

doi:10.6342/NTU202501430

minimize (or maximize) the expectation value of ĤC , thereby steering the quantum state

towards an approximate solution. The quality of the approximation we obtain generally

improves with increasing P .

Algorithm 1 The typical methodology for the QAOA simulation.
1: stateVector← initZeroState()
2: for 0 ≤ i < N do ▷ Initial Layer
3: stateVector← HGate(stateVector, i)
4: end for
5: for 0 ≤ p < P do ▷ P -level QAOA
6: for 0 ≤ i < N do ▷ Cost Layer
7: for i < j < N do
8: stateVector← RZZGate(stateVector, i, j, γp)
9: end for
10: end for
11: for 0 ≤ i < N do ▷Mixer Layer
12: stateVector← RXGate(stateVector, i, βp)
13: end for
14: end for

The construction of a QAOA circuit involves three primary stages for each level:

Initial State Preparation The algorithm commences by preparing the qubits in an ap-

propriate initial state to facilitate exploration of the solution space. The standard approach

is to initializeN qubits to |0⟩⊗N and then apply a Hadamard gate [5, 19, 38] to each qubit.

This produces an equally weighted superposition of all 2N computational basis states,

|+⟩⊗N = 1√
2N

∑
z∈{0,1}N |z⟩, providing an unbiased starting point for optimization.

Cost Hamiltonian Layer This layer applies the unitary operator UC(γk) = e−iγkĤC ,

where ĤC represents the encoded objective function of the optimization problem. For the

maximum cut problem on a graphG = (V,E), whereN = |V | nodes, each node typically

corresponds to a qubit. In the computational basis, the cost Hamiltonian is diagonal and

can be expressed as ĤC =
∑

(i,j)∈E wij
1
2
(I − ẐiẐj). Here, wij signifies the weight of the

17

doi:10.6342/NTU202501430

edge between nodes i and j, and Ẑk is the Pauli-Z operator applied to qubit k. The term

e−iγkwijẐiẐj/2 corresponds to an RZZ gate (or a sequence of CNOT and RZ gates) between

qubits i and j, parameterized by γk and the edgeweightwij . This encoding directly reflects

the Max-Cut objective of maximizing the total weight of edges linking nodes in distinct

partitions.

Mixer Hamiltonian Layer Following the cost layer, the mixer layer applies the uni-

tary operator UM(βk) = e−iβkĤM . The mixer Hamiltonian ĤM is chosen to induce tran-

sitions between different computational basis states, enabling the algorithm to explore

the solution landscape. For ĤM , a common choice is the transverse field Hamiltonian,

ĤM =
∑N

i=1 X̂i, where X̂i is the Pauli-X operator on qubit i. And, the corresponding

unitary evolution e−iβkX̂i is an RX gate applied to each qubit. Crucially, ĤC and ĤM

generally do not commute ([ĤC , ĤM] ̸= 0). This non-commutation is crucial because it

ensures that alternating applications of UC and UM can explore regions outside the ĤC

eigenstates in the Hilbert space. The classical optimizer then adjusts the parameters γ and

β to navigate this landscape and find states that produce a good approximate solution.

4.2 State Vector Transposition

In situations where the distance between interacting pairs of quantum states exceeds

the memory capacity of a single computational rank, traditional optimization strategies

become ineffective. To address this challenge, we introduce State Vector Transposition

(SVT), which involves rearranging the state vector within and across computational de-

vices, enabling efficient handling of quantum states beyond the memory constraints of

individual ranks.

18

doi:10.6342/NTU202501430

We utilize Figure 4.1 as an illustrative example to introduce specific terminology

used in the proposed algorithm. First, let us assume we have two GPUs, denoted as GPU0

and GPU1. Each GPU’s memory can store a statevector corresponding to 3 qubits, i.e., 23

statevectors. To simulate a 4-qubit circuit, we need to use two GPUs (GPU0 and GPU1)

to store 24 statevectors. In this scenario, the index of the fourth qubit (Q3 in the figure) is

referred to as a global qubit. The reason for this designation is that when operations are

performed on this qubit, pairs of statevectors are located on different GPUs rather than

locally. It can be observed that the index value of the global qubit directly maps to the

GPU index. For instance, GPU0 corresponds to Q3 = 0, and GPU1 corresponds to Q3 =

1. This concept can be further extended. Suppose each GPU’s memory can still store a

statevector of size corresponding to 3 qubits. If we have 4 GPUs, we can simulate a 5-

qubit circuit. In this case, there will be two global qubits (Q4 and Q3). The global qubits

corresponding to GPU0 will be Q4 = 0 and Q3 = 0. GPU1 corresponds to Q4 = 0 and Q3

= 1, GPU2 corresponds to Q4 = 1 and Q3 = 0, and GPU3 corresponds to Q4 = 1 and Q3

= 1.

Next, we elaborate on the State Vector Transposition (SVT) operation. There are two

primary cases for performing SVT, distinguished by the nature of the target qubits involved

in the subsequent quantum operation relative to the global qubits and the Local MSB.

Further details on these two cases are provided in subsection 4.2.1 and subsection 4.2.2.

4.2.1 Global Qubit Swap with Local MSB

In the first case, at least one target qubit of the subsequent quantum operation is a

global qubit, and the remaining target qubits are either not involved in the operation or are

not the Local MSB. In this situation, the State Vector Transposition (SVT) is performed

19

doi:10.6342/NTU202501430

Figure 4.1: Illustration of state vector distribution and global/local qubits on a distributed
memory system. A 4-qubit state is distributed across two GPUs, with Q3 designated as
the global qubit.

20

doi:10.6342/NTU202501430

by directly swapping the global target qubit with the Local MSB.

Consider the example of performing a SWAP operation between Q3 (Global) and

Q2 (Local MSB) on a 4-qubit state distributed across GPU0 and GPU1, where each GPU

holds a 23-sized statevector chunk. After the Q3-Q2 SWAP, GPU0 will require amplitudes

A8 to A11 from GPU1, while GPU1 will require amplitudes A4 to A7 from GPU0, as

conceptually illustrated in Figure 4.2.

Figure 4.2: Conceptual state after Q3-Q2 swap (Case 1). The figure shows the resulting
memory layout on GPU0 and GPU1, indicating which amplitudes are missing (marked
with ’?’) and need to be exchanged.

We observe that the amplitudes required for exchange betweenGPU0 andGPU1 form

contiguous blocks, and their relative order is preserved when transferred to the destination

GPU. The question then arises: how do we determine which block of amplitudes needs

to be exchanged with which GPU? To address this, let’s first consider the 23 statevector

space held locally by each GPU, temporarily ignoring the global qubit distribution. This

21

doi:10.6342/NTU202501430

23 space can be divided intoN equal parts, whereN is the number of GPUs. For the case

of 2 GPUs, this results in two 22-sized blocks. Each GPU is responsible for a specific

block based on its GPU index. For GPU0 (index 0), the 0-th 22 block is local, and the 1st

22 block is conceptually associated with GPU1 (index 1). Similarly, for GPU1 (index 1),

the 1st 22 block is local, and the 0-th 22 block is associated with GPU0 (index 0).

When swapping the global qubit (Q3) with the Local MSB (Q2), the data exchange

pattern is dictated by the values of Q3. GPU0 holds the data where Q3=0, and GPU1

holds the data where Q3=1. After the swap, the qubit indices are reordered. The ampli-

tudes originally associated with Q3=0, Q2=1 (held by GPU0) need to move to the location

where the new index corresponds to Q2=1, Q3=0. This new location is on GPU1. Con-

versely, amplitudes originally associated with Q3=1, Q2=0 (held by GPU1) need to move

to the location where the new index corresponds to Q2=0, Q3=1. This new location is on

GPU0. This corresponds precisely to exchanging the 22 blocks identified above based on

the GPU index/global qubit value. The advantage of performing a qubit swap between the

global qubit and the Local MSB is that it significantly reduces the overhead typically as-

sociated with arbitrary gather and scatter operations, thereby enhancing data transmission

efficiency.

The process is executed step-by-step as follows:

1. Prepare for Global Data Exchange: Copy the block of amplitudes to be sent to

another GPU into a local buffer. Figure 4.3 illustrates the copying of blocks A4-A7

(from GPU0) and A8-A11 (from GPU1) to the respective GPU buffers.

2. Global Qubit Swap (Qubit Reordering): Conceptually (or by index calculation),

swap the Global qubit index and the Local MSB index within the local memory

22

doi:10.6342/NTU202501430

Figure 4.3: Case 1, Step 1: Prepare for Global Data Exchange. The contiguous blocks of
amplitudes required by the other GPU (A4-A7 for GPU1, A8-A11 for GPU0) are copied
to local buffers.

structure. This operation prepares the memory layout to receive the data from other

GPUs. At this stage, each GPU’s memory will have a section requiring amplitude

blocks from other GPUs, as shown in Figure 4.4. Concurrently, data exchange

occurs between the GPUs, with each GPU sending its buffered block to the corre-

sponding destination GPU.

3. Data Transmission: Each GPU receives the amplitude block sent from the other

GPU into its buffer. The amplitudes from the buffer are then directly written into

the corresponding block within the main statevector memory, completing the trans-

position for this GPU. Figure 4.5 depicts the buffers indicating data being sent and

received, and the final statevector arrangement after the received data has been writ-

ten to the correct locations.

4.2.2 Case 2: Global Qubit Swap with Non-Local MSB

In the second case, at least one target qubit of the subsequent quantum operation is a

global qubit, and the remaining target qubits include the Local MSB. Here, we cannot di-

23

doi:10.6342/NTU202501430

Figure 4.4: Case 1, Step 2: Global Qubit Swap (Qubit Reordering). The memory layout is
updated according to the new qubit order (Q2, Q3, Q1, Q0), showing the locations where
external data (marked with ’?’) will be written.

Figure 4.5: Case 1, Step 3: Data Transmission. Data is transmitted between GPUs and
written from the buffer into the main statevector memory, completing the SVT for the Q3-
Q2 swap.

24

doi:10.6342/NTU202501430

rectly swap the global target qubit with the Local MSB, as a direct swap between a global

qubit (e.g., Q3) and a non-Local MSB local qubit (e.g., Q0 in a Q3-Q0 swap scenario)

would result in the statevector amplitudes requiring transmission being scattered, as illus-

trated in Figure 4.6. Unlike the contiguous data blocks in subsection 4.2.1, this scattered

distribution would necessitate frequent calculation and storage of offsets for the data on

the local GPU during software implementation, leading to excessive overhead.

Figure 4.6: Illustration of scattered data transfer in a direct Global-Non-Local MSB swap
(Q3-Q0). The figure shows the state after a direct swap, indicating the non-contiguous
amplitudes (marked with ’?’) that would need to be exchanged between GPUs.

Therefore, to perform a Global Qubit Swap with Non-Local MSB efficiently, the

following sequence of steps is executed:

1. Initial Local Swap: Perform a local SWAP operation between the local qubit that

is a target for the global exchange (the non-Local MSB target qubit, e.g., Q0) and

the Local MSB (e.g., Q2). This swap also involves exchanging the corresponding

25

doi:10.6342/NTU202501430

amplitudes. Figure 4.7 shows the state after performing a local swap between Q0

and Q2 for a target Q3-Q0 global swap. After this step, the amplitudes that would

have been scattered in a direct global swap (Figure 4.6) become contiguous and or-

dered within the local memory blocks when viewed in the context of the subsequent

global exchange, as depicted in Figure 4.8.

Figure 4.7: Case 2, Step 1: Initial Local Swap. A local swap is performed between the
non-LocalMSB target qubit (Q0) and the LocalMSB (Q2) to reorder the local state vector,
making the data for the upcoming global exchange contiguous.

2. Prepare for Global Data Exchange: Copy the contiguous block of amplitudes

destined for other GPUs (based on the state after the initial local swap) into a local

buffer. Figure 4.9 shows the relevant amplitude blocks being copied to buffers on

GPU0 and GPU1.

3. Global Qubit Swap: Perform the SWAP operation between the Global qubit (Q3)

and the qubit currently occupying the Local MSB position (Q0 after Step 1). This

26

doi:10.6342/NTU202501430

Figure 4.8: Case 2, State after Initial Local Swap. The memory layout after the Q0-Q2
local swap, viewed with the global qubit (Q3) conceptually swapped with the new Local
MSB (Q0), showing that the required external data (marked with ’?’) is now contiguous.

Figure 4.9: Case 2, Step 2: Prepare for Global Data Exchange. Contiguous blocks of
amplitudes (resulting from the initial local swap) are copied to local buffers for inter-GPU
transmission.

27

doi:10.6342/NTU202501430

involves transmitting the buffered amplitude blocks between the GPUs. Following

this swap, each GPU’s statevector memory will have sections that require amplitude

blocks from other GPUs, as illustrated in Figure 4.10. Data transmission of the

buffered blocks occurs between the corresponding GPUs.

Figure 4.10: Case 2, Step 3: Global Qubit Swap. The global swap (Q3-Q0 conceptual
swap) is performed, leading to a memory state where external data (marked with ’?’) is
needed. Data is transmitted via buffers.

4. Data Transmission: Upon receiving the amplitude block from the other GPU into

the local buffer, write these amplitudes directly into the corresponding block within

the main statevector memory. This completes the global exchange part of the pro-

cess. Figure 4.11 shows the data exchange via buffers and the state after writing the

received data.

5. Final Local Swap: Perform a final local SWAP between the qubit currently at the

Local MSB position (Q0) and the qubit that needs to be moved back to the posi-

28

doi:10.6342/NTU202501430

Figure 4.11: Case 2, Step 4: Data Transmission. Data is written from the buffers into the
main statevector memory, completing the SVT up to the final local reordering.

tion originally occupied by the local qubit targeted for the global swap (Q2). This

final swap restores the correct local qubit ordering relative to the now-transposed

global qubit (Q0). Figure 4.12 shows the final state after this concluding local swap,

achieving the desired qubit ordering (Q0, Q2, Q1, Q3) for the completed global

swap.

29

doi:10.6342/NTU202501430

Figure 4.12: Case 2, Step 5: Final Local Swap. A concluding local swap (Q0-Q2) is
performed to achieve the final desired qubit ordering (Q0, Q2, Q1, Q3) after the global
Q3-Q0 transposition.

30

doi:10.6342/NTU202501430

Chapter 5 Evaluation

This chapter presents a performance evaluation of our simulator by comparing it

against existing state-of-the-art simulators. We begin in Section 5.1 by outlining the ex-

perimental setup for both CPU-based and GPU-based implementations of our work. Sub-

sequently, Section 5.2 details a comprehensive performance evaluation and comparison

with other leading simulators. Next, Section 5.3 offers an in-depth analysis of the scalabil-

ity of our approach in relation to several well-known simulators. In addition, Section 5.4

presents a strong-scaling study of the proposed SVT technique, verifying that our com-

munication efficiency approaches its theoretical optimum. Finally, Section 5.5 analyzes

the impact of buffer configurations on transmission performance, leading to further im-

provements in overall simulation efficiency.

5.1 Experiment Setup

The hardware and software configurations employed for our work are detailed in

Table 5.1, encompassing both CPU-only and GPU-accelerated platforms provided by a

supercomputing center. The CPU platform is a multi-node cluster interconnected via

RDMA, while the GPU platform leverages NVSwitch and InfiniBand for high-bandwidth

inter-GPU communication. Both platforms are equipped with contemporary processors,

31

doi:10.6342/NTU202501430

ample memory resources, and optimized software stacks, including MPI and CUDA,

specifically tailored to enhance quantum circuit simulation performance. QAOA bench-

mark measurements are based on the average execution time of ten independent runs, uti-

lizing double-precision floating-point arithmetic. We selected the five-level QAOA due

to its demonstrated superior approximation ratios compared to classical algorithms [44].

Given the repetitive nature of circuits across QAOA levels, performance trends observed

for the five-level implementation are representative of those for six or more levels [27].

Table 5.1: The hardware and software configurations of CPU-Only and GPU platforms

Category CPU-Only Platform GPU Platform
Cluster Configuration 8 nodes 8 DGX-H100 servers

CPU Model 2 × Intel® Xeon®
Platinum 8352V per node

2 × Intel® Xeon®
Platinum 8480+ per server

CPU Cores 36 cores per CPU (72 per node) 56 cores per CPU (112 per server)
Memory 768 GB per node 80 GB per GPU, total 64 GPUs

Interconnect RDMA switch (100 Gbps) NVSwitch (900 GBps) intra-server,
InfiniBand NIC (400 Gbps) inter-server

Operating System Ubuntu 24.04, Kernel 6.8.0 Red Hat 8.5.0, Kernel 4.18.0
MPI Library OpenMPI 4.1.7 OpenMPI 4.1.6
CUDA Toolkit N/A CUDA 12.2
NCCL Version N/A NCCL 2.18.5

5.2 Experimental Results

In this section, we present experimental results demonstrating the performance of

our simulator on both CPU and GPU platforms, focusing on the advantages brought by

our State Vector Transposition (SVT) strategy for distributed computation across multiple

devices and nodes, as introduced in section 4.2.

CPU-Only Platform For the CPU-only platform, we evaluated performance on both

single-node and multi-node configurations against several established simulators, includ-

ing QuEST, mpiQulacs, UniQ, and Lin et al. Figure 5.1 illustrates the simulation time

32

doi:10.6342/NTU202501430

28 29 30 31 32 33 34
Qubit

100

101

102

103

104

Si
m

ul
at

io
n

Ti
m

e(
s)

mpiqulacs QuEST UniQ Lin et al Our Work

Figure 5.1: Comparison of simulation time on the single-node CPU-only platform.

Table 5.2: The overall speedup for 34-qubit QAOA simulation on the single-node CPU-
only platform.

Simulator Time (sec) Speedup
QuEST [24] 9666.67 1.2x
mpiqulacs [23] 10983.6 –
UniQ [43] 4861.64 2.3x
Lin et al [27] 1823.83 6.0x
Our Work 397.59 27.6x

Table 5.3: The overall speedup for 36-qubit QAOA simulation on the multi-node CPU-
only platform.

Simulator Time (sec) Speedup
QuEST [24] 7181.82 1.6x
mpiqulacs [23] 11800.43 –
UniQ [43] 4875.32 2.4x
Our Work 415.18 28.4x

33

doi:10.6342/NTU202501430

31 32 33 34 35 36
Qubit

101

102

103

104
Si

m
ul

at
io

n
Ti

m
e(

s)
QuEST mpiqulacs UniQ Our Work

Figure 5.2: Comparison of simulation time on the multi-node CPU-only platform.

on a single computational node for a 5-level QAOA circuit with 28 to 34 qubits. These

results establish the strong performance baseline of our simulator on a single CPU node,

which is based on prior single-node optimization efforts developed by members of our

research team. Table 5.2 further quantifies this, showing the overall speedup for a 34-

qubit QAOA simulation where our work achieves a significant 27.6x speedup compared

to mpiQulacs [23]. The primary demonstration of our distributed approach, however, is

shown on a cluster platform comprising 8 computational nodes for the same 5-level QAOA

circuit with 31 to 36 qubits. As depicted in Figure 5.2, our simulator continues to exhibit

exceptional performance in this multi-node environment. As detailed in Table 5.3 for the

36-qubit QAOA simulation, the significant speedups achieved by our simulator (up to

28.4x over mpiQulacs, 17.3x over QuEST, and 11.7x over UniQ for 34 qubits) highlight

the effectiveness of our SVT strategy in optimizing data transfers and computation across

multiple CPU nodes. Lin et al. was not included in multi-node tests as it lacks support for

this configuration.

34

doi:10.6342/NTU202501430

28 29 30 31 32
Qubit

10 1

100

101

102

Si
m

ul
at

io
n

Ti
m

e(
s)

N/A N/A

QuEST
cuQuantum

Qiskit-Aer
HyQuas

Lin et al
Our Work

Figure 5.3: Comparison of simulation time on the single-device GPU platform.

Table 5.4: The overall speedup for 32-qubit QAOA simulation on the single-device GPU
platform.

Simulator Time (sec) Speedup
QuEST [24] 120.94 –

cuQuantum [4] 41.42 2.9x
Qiskit-Aer [1] 40.30 3.0x
HyQuas [42] OOM –
Lin et al [27] 13.24 9.1x
Our Work 9.15 13.2x

Table 5.5: The overall speedup for 30-qubit QAOA simulation on the single-device GPU
platform.

Simulator Time (sec) Speedup
QuEST [24] 26.68 –

cuQuantum [4] 9.09 2.9x
Qiskit-Aer [1] 8.86 3.0x
HyQuas [42] 5.57 4.8x
Lin et al [27] 3.03 8.8x
Our Work 2.06 13.0x

35

doi:10.6342/NTU202501430

30 31 32 33 34
Qubit

10 1

100

101

102

103

Si
m

ul
at

io
n

Ti
m

e(
s)

cuQuantum Qiskit-Aer HyQuas Our Work

Figure 5.4: Comparison of simulation time on the multi-device GPU platform.

Table 5.6: The overall speedup for 34-qubit QAOA simulation on the multi-device GPU
platform.

Simulator Time (sec) Speedup
cuQuantum [4] 12.81 187.6x
Qiskit-Aer [1] 2402.86 –
HyQuas [42] 61.49 39.1x
Our Work 1.61 1490.6x

36

doi:10.6342/NTU202501430

GPU Platform On the GPU platform we benchmarked our simulator against state-of-

the-art frameworks—QuEST, cuQuantum, Qiskit-Aer, and HyQuas. Figure 5.3 reports the

runtime of a five-layer QAOA circuit with 28–32 qubits on a single GPU, establishing a

strong single-device baseline for our method. HyQuas fails to execute the 31- and 32-qubit

cases because its simulation strategy requires excessive memory.

Table 5.4 lists the detailed runtimes for the 32-qubit experiment; our simulator deliv-

ers the best performance, achieving a 13.2× speed-up over the baseline QuEST. Because

HyQuas cannot handle 32 qubits, we additionally present 30-qubit results in Table 5.5,

where our approach still attains the leading 13.0× speed-up.

While single-GPU benchmarks already demonstrate clear advantages, the primary

benefit of SVT lies in distributed simulations. Figure 5.4, therefore, shows the runtime

on up to 64 GPUs for circuits with 30–34 qubits. Because HyQuas can simulate at most

34 qubits with eight GPUs, the plot is limited to this size. Table 5.6 summarizes the 34-

qubit results: our simulator achieves a dramatic 1490.6× speed-up relative to the baseline

Qiskit-Aer and surpasses cuQuantum (8.0×) and HyQuas (38.2×). These findings confirm

that our optimized data-transfer and computation strategy scales efficiently acrossmultiple

GPU devices. QuEST and the method of Lin et al. were excluded from the multi-GPU

comparison because they do not support this platform configuration.

5.3 Scalability Analysis

To comprehensively evaluate the performance and scalability of our work on dis-

tributed systems, we conducted both weak and strong scaling analyses, two standard met-

rics in high-performance computing. Our experiments spanned multi-node CPU clusters

37

doi:10.6342/NTU202501430

(analyzed across 1 to 8 nodes) and multi-device GPU platforms (assessed across 1 to 64

devices), covering exponentially increasing resource configurations.

Weak Scaling Weak scaling assesses how effectively a system maintains performance

efficiency as the problem size is increased proportionally to the available computational

resources. In the context of simulating quantum circuits, this evaluates the simulator’s

ability to handle larger state vectors by utilizing more nodes or devices while ideally keep-

ing the execution time constant.

33/1 34/2 35/4 36/8
Qubits/Devices

103

104

Si
m

ul
at

io
n

Ti
m

e(
s)

28.4x

QuEST mpiqulacs UniQ Our Work

Figure 5.5: Weak-scaling results for proportionally larger 33-qubit–per-node QAOA cir-
cuits on a multi-node CPU cluster (1–8 nodes).

For the CPU-based implementation, weak scaling experiments were conducted on a

cluster, starting with a 33-qubit simulation on a single node and scaling up the problem

size proportionally with the number of nodes (up to 8 nodes). As shown in Figure 5.5,

our approach demonstrates consistently stable efficiency throughout the scaling range,

comparable to that of QuEST, mpiQulacs, and UniQ. Importantly, our work achieves a

significant performance advantage, maintaining up to a 28.4x speedup over these other

38

doi:10.6342/NTU202501430

frameworks across all tested configurations.

30/1 31/2 32/4 33/8 34/16 35/32 36/64
Qubits/Devices

100

101

102

103

Si
m

ul
at

io
n

Ti
m

e(
s)

7.7x

Qiskit-Aer cuQuantum HyQuas Our Work

Figure 5.6: Weak-scaling results for proportionally larger 30-qubit–per-GPU QAOA cir-
cuits on a multi-GPU platform (1–64 GPUs).

Similarly, weak scaling of the GPU-based implementation was evaluated on a multi-

device GPU environment, starting with a 30-qubit simulation on a single device and in-

creasing the problem size proportionally up to 64 devices. Figure 5.6 illustrates that our

work exhibits better scalability and maintains more stable efficiency compared to Qiskit-

Aer, cuQuantum, and HyQuas. Notably, Qiskit-Aer encountered out-of-memory errors

when scaling to 32 and 64 devices, highlighting a limitation in its ability to handle larger

problem sizes in this distributed setting. Across all tested GPU configurations, our simu-

lator consistently delivers a speedup exceeding 7.7x compared to the other simulators.

Strong Scaling Strong scaling measures the reduction in execution time for a fixed-size

problem as the number of computational resources increases. This metric assesses how

efficiently a system can utilize additional resources to solve a constant problem faster,

ideally showing a linear reduction in execution time with a linear increase in resources.

39

doi:10.6342/NTU202501430

1 2 4 8
Devices

102

103

Si
m

ul
at

io
n

Ti
m

e(
s)

20.8x

QuEST mpiqulacs UniQ Our Work

Figure 5.7: Strong-scaling results for a fixed 33-qubit QAOA circuit on a multi-node CPU
cluster.

The strong scaling performance for the CPU-based implementation, shown in Fig-

ure 5.7, evaluates a fixed 33-qubit QAOA simulation on the cluster. The results demon-

strate remarkable efficiency: our simulator, utilizing a single node, achieves an execution

time that is only one-quarter of the time required by QuEST and mpiQulacs using eight

nodes. Furthermore, comparing performance at the maximum tested scale, our approach

with eight nodes shows a substantial 20.8x speedup compared to QuEST, highlighting its

superior efficiency in solving a fixed problem size with increasing resources.

For the GPU-based implementation, strong scaling tests evaluated a fixed 30-qubit

QAOA simulation across multiple GPU devices (up to 64 devices), as depicted in Fig-

ure 5.8. Our simulator sustains consistently low runtimes as resources scale, delivering

an 11.3 × speed-up over cuQuantum, the most stable competitor in our evaluation, when

scaling from a single GPU up to 64. By contrast, HyQuas benefits from multi-GPU con-

figurations only within a single node; once the simulation spans multiple nodes, its run-

time increases, indicating bottlenecks introduced by inter-node communication. Although

40

doi:10.6342/NTU202501430

1 2 4 8 16 32 64
Devices

10 1

100

101

Si
m

ul
at

io
n

Ti
m

e(
s)

11.3x

cuQuantum Qiskit-Aer HyQuas Our Work

Figure 5.8: Strong-scaling results for a fixed 30-qubit QAOA circuit on a multi-GPU
platform (1–64 GPUs).

Qiskit-Aer supportsMPI-based parallelism, its runtime decreases onlymarginally with ad-

ditional GPUs, suggesting that the current MPI backend does not fully exploit multi-GPU

resources for this workload.

5.4 State Vector Transposition Analysis

In the preceding sections, we demonstrated the performance gains achieved by in-

tegrating our SVT technique. Across both CPU and GPU clusters, our simulator out-

performs other well-known simulators in benchmark tests. Moreover, weak and strong

scaling analyses confirm that the optimized simulator exhibits superior scalability. How-

ever, these results represent the overall simulation time and do not isolate the contribution

of SVT itself. Consequently, this section revisits the strong scaling experiments on CPU

and GPU clusters to investigate the intrinsic performance and scalability characteristics of

SVT.

41

doi:10.6342/NTU202501430

In a strong scaling scenario, the ideal simulation time should decrease inversely with

the number of devices:

Simulation Time = Single-Device Simulation Time
Number of Devices

.

However, as communication overhead is introduced on the simulator during the commu-

nication process, it is essential to evaluate whether the sum of the expected simulation time

and the SVT execution time aligns with the actually measured strong scaling simulation

time. In other words:

Actual Measured Simulation Time = Ideal Simulation Time+ SVT Overhead.

Next, we analyze the performance of SVT under a strong scaling scenario on CPU and

GPU clusters separately.

SVT Analysis on CPU Clusters We performed a strong scaling study of a 5-level, 33-

qubit system on a CPU cluster with SVT enabled; the results are summarized in Table 5.7.

Two key observations emerge:

1. SVT overhead decreases with node count. Although the total data exchanged per

node remains constant, the SVT overhead gradually declines as the number of nodes

increases because:

• a reduced amount of data destined for each peer (due to even partitioning), and

• the ability to transfer these smaller chunks in parallel, which amortizes com-

munication costs. Consequently, the additional time introduced by SVT di-

minishes with higher parallelism.

42

doi:10.6342/NTU202501430

2. Close agreement between predicted and measured times. The measured simula-

tion times match the sum of the ideal times and SVT overhead, with similarity ratios

ranging from 0.93 to 0.98, indicating that SVT imposes virtually no additional cost

beyond its own overhead.

Table 5.7: Strong scaling analysis for 33-qubit systems on CPU clusters.
Qubits/Nodes Ideal Time (s) SVT Overhead (s) Measured Time (s) Similarity (Ideal + SVT vs. Measured)

33/1 N/A N/A 190.22 N/A
33/2 95.11 22.89 120.89 0.98
33/4 47.56 22.06 74.51 0.93
33/8 23.78 21.37 45.87 0.98

SVT Analysis on GPU Clusters A strong-scaling study of a 5-level, 32-qubit system

was carried out on a GPU cluster with SVT enabled; the results are presented in Table 5.8.

Two key findings emerge:

1. Inter-node communication substantially increases SVT overhead. When data

exchange crosses node boundaries, the SVT overhead rises markedly, reducing the

acceleration gained in the measured simulation time. A detailed breakdown of intra-

node versus inter-node communication performance is provided in subsequent sec-

tions.

2. High agreement between predicted and measured times is maintained. Al-

though the similarity between the predicted time (Ideal + SVT) and the measured

time is lower than that on the CPU cluster, it never falls below 0.87. The lower ra-

tio is attributed to the extremely short compute time on GPUs, which magnifies any

additional overhead; nevertheless, SVT introduces no noticeable extra simulation

cost.

43

doi:10.6342/NTU202501430

Table 5.8: Strong scaling analysis for 32-qubit systems on GPU clusters.
Qubits/Nodes Ideal Time (s) SVT Overhead (s) Measured Time (s) Similarity (Ideal + SVT vs. Measured)

32/1 N/A N/A 8.87 N/A
32/2 4.43 0.43 5.06 0.96
32/4 2.22 0.29 2.66 0.94
32/8 1.11 0.19 1.50 0.87
32/4 0.56 0.59 1.29 0.88
32/8 0.28 0.49 0.86 0.89

5.5 Buffer Tuning for State Vector Transposition

Achieving optimal performance for distributed quantum simulations on high-performance

computing (HPC) systems requires meticulous tuning of data-intensive operations such as

State Vector Transposition (SVT) described in section 4.2. In this context, buffer tuning is

pivotal to maximizing data-transfer efficiency.

Buffer tuning selects the optimal size of the data chunk (number of subvectors) trans-

mitted per communication call. Transfer performance is dictated by the trade-off between

latency and throughput:

• Buffer too small—latency dominated. Tiny chunks trigger many transfer initia-

tions, incurring high per-byte overhead and frequent stalls, which degrade overall

performance.

• Buffer too large—bufferbloat. Oversized chunks can saturate the communication

pipeline, lowering the effective throughput.

Accordingly, this section investigates buffer tuning on both CPU and GPU clusters to

identify well-balanced buffer sizes, thereby boosting transfer efficiency and reducing total

simulation time.

44

doi:10.6342/NTU202501430

16 18 20 22 24 26 28
Buffer Size

0

500

1000

1500

2000

2500

To
ta

l T
ra

ns
m

is
si

on
 T

im
e

(m
s)

Intra-Node vs. Inter-Node Transmission Time
Intra-Node
Inter-Node

Figure 5.9: SVT transfer time versus buffer size on an H100 GPU cluster. Intra-node
transfers use NVSwitch (900 Gbps); inter-node transfers use InfiniBand NICs (400 Gbps).

Figure 5.10: Detailed comparison of intra-node and inter-node SVT transfer times and
the resulting speed-up factor (inter-node time divided by intra-node time). The speed-up
approaches the theoretical 18× limit implied by the NVSwitch-to-InfiniBand bandwidth
ratio..

45

doi:10.6342/NTU202501430

Buffer Tuning on GPU Clusters We benchmarked a five-layer, 30-qubit QAOA cir-

cuit on H100 GPU clusters to study how buffer size affects the data-transfer time of State

Vector Transposition (SVT). Two scenarios were considered—intra-node transfers over

NVSwitch (900 Gbps) and inter-node transfers over InfiniBand (400 Gbps)—as summa-

rized in Fig. 5.9. Intra-node communication is markedly faster than inter-node communi-

cation. For bothmodes, transfer time decreases with larger buffers, albeit with diminishing

returns. Figure 5.10 presents the detailed results, showing that the inter-/intra-node time

ratio (i.e., the intra-node speed-up) grows monotonically with buffer size and asymptoti-

cally approaches the 18-fold difference predicted by the link bandwidths.

16 17 18 19 20 21 22 23 24 25 26 27 28
Buffer Size (B)

0

1

2

3

4

5

To
ta

l T
ra

ns
m

is
si

on
 T

im
e

(s
)

RDMA Transmission Time vs. Buffer Size
RDMA

Figure 5.11: RDMA transfer time versus buffer size for a single-layer, 31-qubit QAOA
simulation on a multi-node CPU cluster. The minimum (1.14 s) occurs at 223 B; larger
buffers provide diminishing returns and eventually incur extra latency due to incipient
bufferbloat.

Buffer Tuning on CPU Clusters On the CPU cluster we benchmarked a single-layer,

31-qubit QAOA circuit and swept the RDMA buffer size (Fig. 5.11). Transfer time drops

steeply from 5.00 s at 216 B to 1.14 s at 223 B; beyond that point the curve flattens and rises

46

doi:10.6342/NTU202501430

Figure 5.12: Detailed RDMA transfer times (seconds) for buffer sizes 216–227 B. The
optimal value (1.14 s at 223 B) is highlighted in red.

slightly, signalling the onset of bufferbloat. Figure 5.12 lists the detailed measurements,

showing that a buffer size of 223 B offers the best latency–throughput trade-off, yielding

a 4.6 × reduction relative to the smallest buffer.

47

doi:10.6342/NTU202501430

Chapter 6 Conclusion

In this work, we presented a resource-efficient quantum circuit simulator specifically

optimized for executing the Quantum Approximate Optimization Algorithm (QAOA) on

large-scale combinatorial optimization problems. Our key contribution lies in the integra-

tion of State Vector Transposition (SVT), a technique that effectivelymitigates the inherent

exponential computational and memory demands associated with simulating large quan-

tum circuits. This approach facilitates efficient scaling across diverse distributed comput-

ing platforms, including multi-node CPU and multi-device GPU architectures.

Experimental validation highlights the superior performance of our proposed sim-

ulator. Benchmarking on large-scale QAOA circuits demonstrates substantial speedups

compared to existing state-of-the-art simulators, achieving performance improvements of

up to 1490x onGPUplatforms and 28x onCPU-only environments. Furthermore, compre-

hensive scalability experiments confirm the simulator’s ability to maintain near-optimal

efficiency in distributed computing environments. This scalability positions our work as

a valuable tool for simulating deep QAOA circuits, effectively bridging the gap between

the capabilities of current classical computational resources and the growing demands of

quantum algorithm research.

48

doi:10.6342/NTU202501430

References

[1] Qiskit aer: High‑performance quantum circuit simulation, 2024.

[2] G. Ausiello, A. Marchetti-Spaccamela, P. Crescenzi, G. Gambosi, M. Protasi, and

V. Kann. Complexity and Approximation. Springer, 1999.

[3] E. Bae and S. Lee. Recursive qaoa outperforms the original qaoa for the max‑cut

problem on complete graphs. Quantum Information Processing, 23(3):78, 2024.

[4] H. Bayraktar, A. Charara, and D. e. Clark. cuquantum sdk: A high‑performance

library for accelerating quantum science, 2023.

[5] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Com-

puting, 26(5):1411–1473, 1997.

[6] F. Black and R. Litterman. Global portfolio optimization. Financial Analysts Jour-

nal, 48(5):28–43, 1992.

[7] A. Brady and S. van Frank. Layerwise learning for the quantum approximate opti-

mization algorithm. In IEEE Quantum Week 2021, 2021.

[8] S. Bravyi and N. Klco. Mitigating device noise in qaoa via adaptive circuit compi-

lation. Physical Review Research, 2022.

49

doi:10.6342/NTU202501430

[9] K. Bui and M. Pham. Particle swarm optimisation of variational quantum circuits.

Quantum Science and Technology, 2024.

[10] D. Claudino, D. Lyakh, and A. McCaskey. Parallel quantum computing simulations

via quantum accelerator platform virtualization. arXiv preprint, 2024.

[11] D. Coppersmith. An approximate fourier transform useful in quantum factoring. In

Proceedings 35th Annual Symposium on Foundations of Computer Science, pages

536–545. IEEE, 1994.

[12] G. Crooks. Gradients of parameterized quantum gates using the parameter‑shift rule

and gate decomposition. Physical Review A, 2019.

[13] A. Doi and D. Takahashi. Quantum computing simulator on a heterogeneous hpc

system. In Proceedings of HPC Asia 2019, pages 1–9, 2019.

[14] Y. Dong, C. Ho, Y. Wang, L. Cincio, and P. Coles. Parameter transfer for quantum

approximate optimization of weighted max‑cut. arXiv preprint, 2022.

[15] D. Egger, J. Mareček, and S. Woerner. Warm‑starting quantum optimization. Quan-

tum, 5:479, 2021.

[16] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algo-

rithm. arXiv preprint, 2014.

[17] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A quan-

tum adiabatic evolution algorithm applied to random instances of an np‑complete

problem. Science, 292(5516):472–475, 2001.

[18] M. M. Flood. The traveling-salesman problem. Operations research, 4(1):61–75,

1956.

50

doi:10.6342/NTU202501430

[19] L. Grover. A fast quantum mechanical algorithm for database search, 1996.

[20] G. Guerreschi and A. Matsuura. Accelerating variational quantum algorithms using

machine learning. Quantum Science and Technology, 4(4):045012, 2019.

[21] S. Hadfield, Z. Wang, B. O’Gorman, E. Rieffel, D. Santoro, and S. Pakin. From

the quantum approximate optimization algorithm to a quantum alternating operator

ansatz. Quantum Science and Technology, 4(1):014004, 2019.

[22] C. Hsu, C. Wang, N. Hsu, C. Tu, and S. Hung. Towards scalable quantum circuit

simulation via rdma. In Proceedings of RACS ＇23, 2023.

[23] S. Imamura, M. Yamazaki, T. Honda, A. Kasagi, A. Tabuchi, H. Nakao, N. Fuku-

moto, and K. Nakashima. mpiqulacs: A distributed quantum computer simulator for

a64fx‑based cluster systems, 2022.

[24] T. Jones, A. Brown, I. Bush, and S. Benjamin. Quest and high‑performance simula-

tion of quantum computers. Scientific Reports, 9(1), 2019.

[25] T. Kadowaki and H. Nishimori. Quantum annealing: A new method for minimizing

multidimensional functions. Chemical Physics Letters, 219(5):343–348, 1994.

[26] W. Lavrijsen, A. Tudor, J. Müller, C. Iancu, andW. de Jong. Classical optimizers for

noisy intermediate‑scale quantum devices. In 2020 IEEE International Conference

on Quantum Computing and Engineering (QCE), pages 267–277, 2020.

[27] Y. Lin, C. Wang, C. Tu, and S. Hung. Towards optimizations of quantum circuit

simulation for solving max‑cut problems with qaoa. In Proceedings of SAC ＇24,

2024.

51

doi:10.6342/NTU202501430

[28] J. McClean, J. Romero, R. Babbush, and A. Aspuru‑Guzik. The theory of variational

hybrid quantum‑classical algorithms. New Journal of Physics, 18(2):023023, 2016.

[29] L. Mitchell and R. Shaydulin. Genetic‑algorithm assisted parameter optimisation for

qaoa. In HPEC 2023, 2023.

[30] C. Z. Mooney. Monte carlo simulation. Number 116. Sage, 1997.

[31] T. O’Brien and B. Tarasinski. Noise‑adaptive variational quantum algorithms with

reduced measurement requirements. npj Quantum Information, 2022.

[32] A. Peruzzo, J. McClean, P. Shadbolt, M. Yung, X. Zhou, P. Love, A. Aspuru‑Guzik,

and J. O’Brien. A variational eigenvalue solver on a photonic quantum processor.

Nature Communications, 5, 2014.

[33] J. Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

[34] C. Reeves. Genetic algorithms. Springer, 2003.

[35] R. Shaydulin, A. F. Izmaylov, Y.-H. Chen, and S. Bianco. Parameter setting in quan-

tum approximate optimization of weighted maxcut. Quantum Science and Technol-

ogy, 7(2):025024, 2022.

[36] R. Shaydulin, I. Safro, and J. Larson. Multistart methods for quantum approxi-

mate optimization. In 2019 IEEE High Performance Extreme Computing Confer-

ence (HPEC), pages 1–8, 2019.

[37] P. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In

Proceedings 35th Annual Symposium on Foundations of Computer Science, pages

124–134, 1994.

52

doi:10.6342/NTU202501430

[38] D. Simon. On the power of quantum computation. SIAM Journal on Computing,

26(5):1474–1483, 1997.

[39] Y. Tsai, J. Jiang, and C. Jhang. Bit‑slicing the hilbert space: Scaling up accurate

quantum circuit simulation to a new level. arXiv preprint, 2020.

[40] P. J. Van Laarhoven, E. H. Aarts, P. J. van Laarhoven, and E. H. Aarts. Simulated

annealing. Springer, 1987.

[41] H. Wang, Y. Ding, J. Gu, Y. Lin, D. Pan, F. Chong, and S. Han. Quantumnas:

Noise‑adaptive search for robust quantum circuits. In 2022 IEEE International

Symposium on High‑Performance Computer Architecture (HPCA), pages 692–708,

2022.

[42] C. Zhang, Z. Song, H.Wang, K. Rong, and J. Zhai. Hyquas: Hybrid partitioner‑based

quantum circuit simulation system on gpu. In Proceedings of the ACM International

Conference on Supercomputing, pages 443–454, 2021.

[43] C. Zhang, H.Wang, Y. Li, Q. Liu, and Z. Chen. Uniq: A unified programming model

for efficient quantum circuit simulation. In Proceedings of SC 2022, 2022.

[44] L. Zhou, S. Wang, S. Choi, H. Pichler, and M. Lukin. Quantum approximate op-

timization algorithm: Performance, mechanism, and implementation on near‑term

devices. Physical Review X, 10(2):021067, 2020.

[45] S. Zhu, X. Luo, and Z. Sun. p‑swap: Efficient depth expansion for qaoa. Quantum,

7:1104, 2023.

53

	Verification Letter from the Oral Examination Committee
	Acknowledgements
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Quantum Approximate Optimization Algorithm
	Combinatorial Optimization Problems
	Using QAOA to solve Max-Cut Problem
	State Vector Simulation

	Related Work
	Algorithmic Advances in QAOA
	Classical Parameter‑Search and Co‑Processing
	Noise‑Aware and Hybrid Variants
	Quantum Circuit Simulators for QAOA
	Cluster‑Level Optimisations for Large‑Scale QAOA

	Methodology
	Quantum Approximate Optimization Algorithm Preliminaries
	State Vector Transposition
	Global Qubit Swap with Local MSB
	Case 2: Global Qubit Swap with Non-Local MSB

	Evaluation
	Experiment Setup
	Experimental Results
	Scalability Analysis
	State Vector Transposition Analysis
	Buffer Tuning for State Vector Transposition

	Conclusion
	References

