
doi:10.6342/NTU202401914

國立臺灣大學管理學院資訊管理學系

碩士論文

Department of Information Management

College of Management

National Taiwan University

Master’s Thesis

使用穩健最佳化作為深度強化學習指引 –

以化學物料生產排程作為應用案例

Robust Optimization as an Oracle Guiding Method for Deep

Reinforcement Learning –

an Application in Chemical Material Production Scheduling

Problem

黃奕滔

Yi-Tao Huang

指導教授：李家岩 博士

Advisor: Chia-Yen Lee, Ph.D.

中華民國 112年 7月

July 2023

doi:10.6342/NTU202401914

doi:10.6342/NTU202401914

謝辭

首先非常感謝李家岩老師在我大四時以及碩士班兩年的指導，不管是在研

究方向的指導或支持都給了我很大的幫助，原先覺得強化學習與最佳化方法的

結合會太過困難，但老師在一路以來不僅沒有否定這條路線，還給予了我一些

建議，讓我建立了很大的信心。除此之外，不能不感謝孔令傑老師在大學四年

對我的影響，讓我有抽象化的思考能力、扎實的作業研究基礎、還有大型程式

撰寫的經驗，少了老師們的培養我是絕對寫不出這篇論文的。

同時，要感謝佑鑫學長不厭其煩的和我討論強化學習的數學推導與演算法

的設計，還有芯瑜在最後一步時協助我編修論文並提供先前的經驗給我參考，

以及柏儒在我統計相關知識不足時給予的協助。當然，瑞昕、采嬪和彬祺給我

的陪伴與鼓勵也是不可或缺的，真的很開心能夠一起走過這段旅途。

最後，我要感謝父母、女友無條件的各種支援與諒解，讓我沒有後顧之憂

的進行研究，也才能順利把這篇論文產出。

doi:10.6342/NTU202401914

i

摘要

在本文中，我們提出了一種新的強化學習訓練框架，專門用於動態排程單階

段多產品化學反應器。該方法透過最佳化方法的合作，將策略梯度收斂時所遇到

的局部最優挑戰減輕，優化了強化學習模型目標值以及它的穩定性。除此之外，

我們進一步透過將穩健最佳化作為指導引擎，提高模型對參數誤差的穩健性，促

進了在需求與生產效率不穩定的情況下所能採用的較保守之決策風格。實驗結果

證明了我們所提出方法的有效性，與簡單的演員-評論家方法相比，在同樣的參

數設計下多個指標上都有所提高。

本研究的研究貢獻在深度強化學習與最佳化方法上的整合有所突破，也透過

本框架提供新的強化學習訓練框架，可以應用於其他領域問題之中。

關鍵詞：製造排程、強化學習、穩健最佳化、化工製造、隨機規劃

doi:10.6342/NTU202401914

ii

Abstract

In this paper, we present a novel guiding framework for the training phase of

Reinforcement Learning (RL) models, specifically tailored for dynamic scheduling of

a single-stage multi-product chemical reactor. Our approach addresses the challenge of

local optima in policy gradient methods by integrating optimization methods,

enhancing both the objective value and stability of the RL model. We further enhance

the robustness of our model against parameter distortions by incorporating robust

optimization as a guiding engine, promoting a more conservative decision-making style.

Our experimental results demonstrate the efficacy of our approach, with several metrics

compared to simple Actor-Critic methods.

Our work thus serves as an advancement in the integration of Deep Reinforcement

Learning and optimization methods, hopefully opening new avenues for research and

application in dynamic scheduling and beyond.

Keywords: Production scheduling, reinforcement learning, robust optimization,

chemical production, stochastic programming

doi:10.6342/NTU202401914

iii

Table of Contents

Abstract .. ii

摘要 ...i

Table of contents ... iii

List of figures ... v

List of tables .. vi

Chapter 1 Introduction ... 1

1.1 Background and Motivation ... 1

1.2 Research Objective ... 4

1.3 Thesis Architecture .. 5

Chapter 2 Literature Review .. 6

2.1 Scheduling with Uncertainties ... 6

2.2 Chemical Production Scheduling ... 9

2.3 Oracle Guiding DRL .. 12

Chapter 3 Methodologies ... 15

3.1 Research Framework .. 15

3.2 Problem Definition ... 16

3.2.1 Problem Description ... 16

3.2.2 Mathematical Model ... 18

3.3 Reinforcement learning model ... 24

3.3.1 Model design .. 24

3.3.2 State definition.. 26

doi:10.6342/NTU202401914

iv

3.3.3 Reward definition ... 27

3.4 Proposed OR-Guiding Algorithm .. 27

3.4.1 Training Workflow ... 27

3.4.2 Algorithm Implementation ... 29

Chapter 4 Numerical Studies .. 34

4.1 Environment Setup ... 34

4.2 Data Simulation .. 35

4.2.1 Basic Configurations .. 35

4.2.2 Parameter Definitions ... 35

4.3 Model Description and Sensitivity Analysis .. 39

4.3.1 Model Descriptions .. 39

4.3.2 Sensitivity Analysis .. 40

4.4 Solution Value Analysis ... 43

4.4.1 Descriptive Statistics .. 43

4.4.2 Evaluation Metrics .. 45

4.5 Execution Time Analysis ... 48

4.6 Gantt Similarity Analysis ... 50

Chapter 5 Conclusion and Future Works ... 53

5.1 Conclusion .. 53

5.2 Future Works .. 53

References ... 55

doi:10.6342/NTU202401914

v

List of figures

Figure 1 Research framework .. 15

Figure 2 Example of experiment setting .. 17

Figure 3 Demonstration of RL episode .. 25

Figure 4 Demonstration of an experiment ... 26

Figure 5 State encoding ... 27

Figure 6 Training workflow ... 28

Figure 7 Demand simulation and its errors .. 39

Figure 8 Optimization-based models delta sensitivity analysis 41

Figure 9 RL-based models delta sensitivity analysis ... 42

Figure 10 Price of robustness for Robust models .. 46

Figure 11 EVPI of Optimization-based models ... 47

Figure 12 EVPI of RL-based models ... 47

Figure 13 Bottleneck time consumption of each model .. 49

Figure 14 Gantt of RO solution in scenario 1 .. 52

Figure 15 Gantt of RLeRO solution in scenario 1 ... 52

Figure 16 Gantt of A2C solution in scenario 1 .. 52

doi:10.6342/NTU202401914

vi

List of tables

Table 1 Comparisons of previous works in chemical scheduling problems 11

Table 2 Comparisons of previous works in chemical scheduling problems 13

Table 3 Robust optimization embedded A2C learning algorithm 31

Table 4 Experiment parameters ... 35

Table 5 Range of parameters ... 35

Table 6 Sampling methods... 36

Table 7 Depending parameters .. 38

Table 8 Two-dimensional (YRSR & Δ) sensitivity analysis 42

Table 9 Optimization-based models’ objective statistics... 43

Table 10 RL-based models’ objective statistics... 44

Table 11 Inference time of RL-based models .. 50

Table 12 Gantt similarities between models .. 50

doi:10.6342/NTU202401914

1

Chapter 1 Introduction

Parts of this thesis have been developed into a journal article, which has been

published as ‘Robust-optimization-guiding deep reinforcement learning for chemical

material production scheduling’ in Computers & Chemical Engineering (Lee et al.,

2024).

1.1 Background and Motivation

Industrial production plays a pivotal role worldwide, leading to unprecedented

demand for essential chemical materials. The shortage of such materials can result in

over-queued time and devastate work-in-progress. Moreover, in the era of COVID-19

and the subsequent post-COVID-19 period, supply chains have become increasingly

unpredictable and variable in demand (Hoek, 2020). Chemical material production, as

a crucial upstream sector for most production industries, faces significant uncertainties

like production delays, yield rate fluctuation, shifting demand, and the need for frequent

rescheduling (Gupta & Maravelias, 2016; Janak et al., 2007; Li & Ierapetritou, 2008).

In chemical material production planning scenarios, stockout (i.e., demand

unfulfillment) situations are mostly caused by demand and yielding rate uncertainty

(Gupta & Maravelias, 2016). Besides, the chemical material production station is

usually non-stoppable, which means the production process is continuous. In other

words, we cannot set the machine to be idle or discretely change the producing product;

doi:10.6342/NTU202401914

2

the product transition processes are involved with different settings, including

temperature, pressure, or concentrations, etc., and the change of configurations are

continuous. The switching phases will yield off-grade material that cannot be sold and

are thus considered as costs (Hubbs et al., 2020). By the aforementioned characteristics,

the scheduling problem becomes to determine when to change the producing product

and what product to produce in the next.

The production scheduling problem is typically NP-hard, suggesting there's no

existing algorithm that can solve such a problem within polynomial time (Lenstra et al.,

1977). Traditional operations research methodologies, such as mixed-integer linear

programming, use a branch-and-bound algorithm for finding (sub)optimal solutions.

When factoring in uncertainty, stochastic programming incorporates expected values

and distribution assumptions to align with real-world scenarios. However, the time-

consuming nature of the optimization process poses challenges when dealing with cases

requiring frequent rescheduling (Sahinidis, 2004).

Recently, Deep Reinforcement Learning (DRL) has been introduced as a potential

solution to this issue (Hubbs et al., 2020). While DRL requires considerable offline

training time, it offers relatively low-cost online planning (inferencing). However, the

convergence of neural networks can be extremely slow if the solution space is too large

(Sutton & Barto, 1998).

doi:10.6342/NTU202401914

3

Moreover, the dimensional complexity of discrete optimization problems often

confounds the learning algorithm during exploration and exploitation phases without

the aid of an "oracle guiding" mechanism or something similar. For instance, to achieve

better objective value, an agent might have to sacrifice short-term rewards for long-

term gains. Even though such a decision theoretically can be modeled by a multi-layer

neural network, it's almost impossible for a random trial-and-error exploration method

(like epsilon-greedy) to discover and learn accordingly (Silver et al., 2016). Training a

decision-making style, such as robustness to randomness, becomes even more

challenging.

Given the considerations and challenges in chemical production scheduling, there

have been recent attempts to solve it using DRL. Nevertheless, DRL faces its own set

of obstacles, including time-consuming training processes and difficulties in handling

uncertainties. Therefore, this study proposes a Reinforcement Learning embedded with

Robust Optimization (RLeRO) framework. It is designed to aid the DRL model in

solving the scheduling problem by incorporating an "oracle guiding" mechanism in the

training phase. Furthermore, this framework integrates uncertainty robustness into its

decision-making style to better align with the characteristics of modern supply chains.

doi:10.6342/NTU202401914

4

1.2 Research Objective

The primary research objective of this study is to develop a Deep Reinforcement

Learning (DRL) agent that is capable of tackling the chemical material production

scheduling problem while robustly handling uncertainties.

From a detailed analysis of the chemical material production industry and the

associated planning problems, we recognize that an effective scheduling methodology

for this real-world application should exhibit three key attributes: (1) robustness to

variations in demand and yield rate, without the need for distribution assumptions, (2)

low computational burden during the inferencing of scheduling suggestions, and (3) the

presence of guidance during the learning phase.

Our approach involves refining the framework proposed by Hubbs et al. (2020)

that uses DRL to solve the scheduling problem in the chemical material production

industry. This refined framework aims to meet all three requirements simultaneously.

It will be a combination of robust optimization and an advanced actor-critic

reinforcement learning approach during the training phase. In addition, we will evaluate

the performance of this new framework by comparing it with traditional optimization

approaches and the standard Advantage Actor-Critic (A2C) method.

The main contribution of our work is to introduce an operations-research-based

guiding method in the RL training phase, which can help the policy network escape

doi:10.6342/NTU202401914

5

from local optimality. Furthermore, we adopted robust optimization as a guiding engine

for the policy network to learn a conservative decision-making style and evaluate the

value of it through several metrics.

1.3 Thesis Architecture

In Chapter 2, we will conduct a review of previous methodologies applied to

chemical production scheduling, as well as oracle guiding methods. Chapter 3

introduces the main contribution of this study, the RLeRO algorithm. In Chapter 4, we

will evaluate the proposed algorithm, comparing its performance with traditional

optimization methods and the simple A2C as benchmarks. Finally, in Chapter 5, we

will draw conclusions from our study and look forward to potential improvements and

future research directions.

doi:10.6342/NTU202401914

6

Chapter 2 Literature Review

In this chapter, we will present previous works related to our study, respectively.

Firstly, Section 2.1 surveys papers about scheduling methodologies with uncertainties.

Section 2.2 reviews the applications of optimization methodologies and reinforcement

learning in chemical production scheduling problem. As for Section 2.3, oracle guiding

methods for DRL will be discussed.

2.1 Scheduling with Uncertainties

Several methodologies have been proposed to manage uncertainties in scheduling

problems. Janak et al. (2006) present a reactive scheduling framework, which

strategically fixes binary variables from the original production schedule to circumvent

the need for comprehensive rescheduling. Mihoubi et al. (2021) proposes a surrogate-

assisted simulation-optimization approach, based on scheduling rules, to address

Reactive Scheduling (RS) and the Flexible Job Shop Scheduling Problem (FJSSP),

crucial aspects of real-world manufacturing systems. It aims to encapsulate the dynamic

nature of FJSSP while balancing reactivity and overall system performance.

Taking a different route, Bonfill et al. (2004) leverage a two-stage stochastic

optimization approach to manage risk in short-term scheduling of multiproduct batch

plants dealing with demand uncertainties. This body of work was later expanded in next

year (Bonfill et al., 2005) to accommodate variable processing times in chemical batch

doi:10.6342/NTU202401914

7

processes' short-term scheduling. Hu et al. (2020) presents a two-stage stochastic

programming framework for optimizing production in a manufacturing plant's kitting

facility, accounting for uncertainties in kit demand and worker yield. Given a multi-

product case study, the model effectively handles uncertainties, underlining their

significant impact on production planning decisions.

In an effort to handle scheduling challenges arising from uncertain processing

times, market demands, or prices, Lin et al. (2004) proposed a robust optimization

method. Janak et al. (2007) built on this work, tailoring the approach for scenarios

where uncertainty is described by a known probability distribution.

On the other hand, Petrovic & Duenas (2006) utilized fuzzy programming to

handle parallel machine scheduling and rescheduling in an uncertain environment.

Their proposed method, a predictive-reactive approach, involves two key steps: first,

the creation of a schedule, and second, a rescheduling phase. Each step addresses

distinct aspects of the scheduling problem.

 Jia & Ierapetritou (2006a, 2006b) proposed a unique method for uncertainty

analysis on the right-hand side (RHS) for mixed-integer linear programming (MILP)

problems. The procedure involves an iterative process that includes sensitivity analysis

using linear programming and multi-parametric linear programming, as well as

updating the branch-and-bound tree. They further improved this framework by devising

doi:10.6342/NTU202401914

8

a way to manage the issue of infeasibility. This involved providing a description of the

feasible region prior to implementing the parametric MILP algorithm. Additionally,

they took into account uncertainty in the objective function coefficients and problem

constraints, offering a comprehensive approach to managing uncertainties in scheduling.

 Chang et al. (2022) applies deep reinforcement learning (DRL) to the dynamic and

complex task of scheduling in a smart factory's production process. By designing a

double deep Q-networks (DDQN) architecture and a soft ε-greedy behavior policy, it

provides an approach to the flexible job shop scheduling problem (FJSP) that excels in

real-time adaptation and minimizes penalties for earliness and tardiness.

To address uncertainty, two major methodologies for planning and scheduling are

robust optimization (RO) and stochastic programming (Grossmann et al., 2016). In

contrast to stochastic optimization, which starts by assuming the uncertainty has a

probabilistic description, RO constructs a solution that is feasible for any realization of

the uncertainty in a given set (Bertsimas et al., 2011). The characteristic of RO allows

user to construct model without knowing underlying stochastic distribution of

uncertainties, which is usually unavailable in real world problems (Nemirovski, 2019).

doi:10.6342/NTU202401914

9

2.2 Chemical Production Scheduling

 Jung et al. (2004) proposed a multi-stage recourse model that takes demand

uncertainty into consideration, which assumed the demand distribution as discrete

scenarios and conduct multi-steps of wait-and-see process. However, the multi-stage

recourse framework will cause exponential growth in problem size when the stage or

scenario count increased. While Sand & Engell (2004) used two-stage recourse model

considering both demand and yielding rate uncertainties as discrete scenarios as well.

 As for RO approach, Lin et al. (2004) uses ellipsoidal set to take care demand and

yielding rate uncertainties simultaneously, moreover, the robust counterpart model does

not give more computation burden than the original one, which is different from multi-

stage models.

The works of RL application on scheduling problem is relatively sparse but having

good results, Riedmiller & Riedmiller (1999) adopted perceptron into Q-learning for

production scheduling problem without considering uncertainties, which also supported

the idea of our research motivation: “RL is better for frequent replanning cases because

of its low computational burden in inferences.” The latest paper applied RL in chemical

production scheduling problem we can find is the framework from (Hubbs et al., 2020),

which is the one we targeted to enhance; the paper uses A2C method to describe the

unknown demand distribution without giving assumptions, but as the conclusion it

doi:10.6342/NTU202401914

10

mentioned: “Future research can explore possibilities for integrating DRL and

optimization methods.”

Our study is to improve the RL application in chemical production scheduling

problem through operations research guiding methods, including deterministic and

robust optimization; noted that different guiding methods bring different decision-

making style up, for instance, our study shows that RO guiding in the training phase

will encourage network to take robust decisions.

The comparisons of previous works in chemical material production scheduling

problems with uncertainty are shown in Table 1.

doi:10.6342/NTU202401914

11

Table 1 Comparisons of previous works in chemical material production scheduling problems with uncertainty

Paper Methodology Uncertainty Decision making style Distribution assumption Computational time

Demand Yielding rate

Jung et al. (2004) Multi-stage recourse O X Wait-and-see, conservative

before uncertainty revealed

Required, separated into

discrete scenarios

Not considered

Sand & Engell

(2004)

Two-stage recourse O O Wait-and-see, conservative

before uncertainty revealed

Required, separated into

discrete scenarios

Not considered

Lin et al. (2004) Robust optimization O O Robust to uncertainty at the

beginning

Not required Not considered

Riedmiller &

Riedmiller (1999)

Q-learning X X Target to maximum returns Not required Considered

Hubbs et al.

(2020)

A2C O X Target to maximum returns Not required Considered

This study A2C + OR guiding O O Self-definable

(Robust as an example)

Not required Considered

doi:10.6342/NTU202401914

12

2.3 Oracle Guiding DRL

Although there are several algorithms helps the convergence of neural network

(NN) during the training phase, “an important but under-explored aspect is how to

leverage oracle observation to facilitate learning.” (Han et al., 2022). i.e., information

that is invisible during online decision making, but is available during offline training

is usually unused. They combines Bayesian probability concept with oracle provided

information, proposed a VLOG algorithm that significantly reduce training time in each

RL classical cases.

Suphx, an agent of playing a traditional Chinese game Mahjong developed by

Microsoft, provides perfect information while training and gradually decay the

information completeness from 1 to 0, which is sort of implementing a training

guidance that instruct the learning process get into the swing faster (Li et al., 2020).

Another state-of-the-art DRL project is AlphaGo developed by Google, which also

adopt transfer learning as an approach of guidance instead of trial-and-error while the

neuron network is ignorant at first. The information is not explicitly exposed to the

learning algorithm but implicitly embedded in the pretrained model. The pretrained

model took the games performed by human professional chess player as training set,

and it learnt to predict next move after observing current status (Silver et al., 2016). It

is a little different from VLOG and Suphx cases but with similar concept.

doi:10.6342/NTU202401914

13

From the literatures surveyed so far, researches in the guidance of reinforcement

learning are relatively lack. Although the robustness of RL algorithm is widely

discussed, most of the literatures uses adversarial approach for training, which can hurt

the generalization of model (Raghunathan et al., 2019) and with the disadvantage of

non-convergence, overfitting, and mode-collapse (Andriushchenko & Flammarion,

2020). Therefore, our research proposed a “Reinforcement Learning embedded with

Robust Optimization” training framework; targeting to achieve the robustness in

parameters and observations perturbations and boost the effectiveness of training

progress.

Table 2 shows the comparisons of previous works which adopted different kinds

of guidance in the RL training phase.

Table 2 Comparisons of previous works adopted guidance in RL training phase

Paper Training phase guiding Target

(Han et al., 2022) Bayesian probability Shorten training phase

Improve explainability

(J. Li et al., 2020) Decaying perfect information Shorten training phase

Help convergence

(Silver et al., 2016) Network transfer learning Shorten training phase

Improve policy

doi:10.6342/NTU202401914

14

This research Operations research Build up decision style

doi:10.6342/NTU202401914

15

Chapter 3 Methodologies

The research framework is demonstrated in Section 3.1. In Section 3.2 we will

describe the chemical material production scheduling problem as a mathematical model

for a more formal and unambiguity illustration. Sequentially, the definition and details

of the reinforcement learning model will be explained in Section 3.3. Lastly, in Section

3.4, the OR-guiding algorithm is proposed.

3.1 Research Framework

The research framework is shown in Figure 1 Research framework:

Figure 1 Research framework

In the preparatory stage, we first construct a mathematical programming model for

the chemical material production scheduling problem, designing the configurations of

doi:10.6342/NTU202401914

16

parameters accordingly.Next, we implement methodologies including deterministic

optimization with perfect information and expected value, robust optimization, and

Advantage Actor Critic (A2C) as benchmarks.The third part introduces the operations

research-guiding (OR-guiding) methodologies we propose, transitioning from A2C

with deterministic optimization guidance to A2C with robust optimization guidance.

Lastly, we carry out numerical analyses and result comparisons to draw conclusions for

each model and provide suggestions for the use case of each methodology.

3.2 Problem Definition

3.2.1 Problem Description

The problem definition of this study is based on the mathematical model

constructed by Hubbs et al. (2020) with slight modification; we introduce the yielding

rate uncertainty into the parameters, which is not included in the baseline paper.

We defined an experiment period set 𝑃̂ (each period is one day), which contains

all of the periods in a whole experiment, and a planning period set 𝑃 rolls in 𝑃̂ for

each scheduling subproblems. For each time we plan or replan a schedule is to solve

such a subproblem with period set 𝑃. Inside of the planning set 𝑃, we can distinguish

two types of periods: fixed planning periods set 𝐹 and the remaining are unfixed

planning periods, where 𝐹 is the first |𝐹| periods of 𝑃. The implication of fixed

periods is that once a planning schedule has been determined, it cannot be changed due

doi:10.6342/NTU202401914

17

to the operating procedures defined by the chemical plant. This implies that the main

decision we make in a schedule pertains to the last |𝑃| − |𝐹| periods. The main idea

of experiment period, planning period, and fixed period in Figure 2 Example of

experiment setting are provided as an example, with the setting of |𝑃̂| = 30 |, |P| =

12, and |𝐹| = 5.

Figure 2 Example of experiment setting

In the scheduling problem, we must determine which type of chemical material

product from the product set 𝐼 the machine should produce. The costs that should be

taken into consideration include the transition cost 𝐶𝑖𝑗
𝑇 , which is incurred when

transitioning from product 𝑖 ∈ 𝐼 to 𝑗 ∈ 𝐼; the unit inventory cost 𝐶𝑖
𝑆 for product 𝑖 ∈

𝐼; and the stockout cost 𝐶𝑖
𝐿 for product 𝑖 ∈ 𝐼.

The reason for the transition cost is that switching products often leads to large

fluctuations in processing temperature, which in turn yields off-grade material that

cannot be sold and is thus counted as a discount term (Hubbs et al., 2020). Furthermore,

the unit profit 𝑉𝑖 represents the reward for fulfilling the demand for each product 𝑖 ∈

doi:10.6342/NTU202401914

18

𝐼. The decision-making process aims to maximize the gross profit, i.e., the sum of the

profits 𝑉𝑖 minus the costs 𝐶𝑖𝑗
𝑇 , 𝐶𝑖

𝑆, and 𝐶𝑖
𝐿.

It is crucial to note that the demand 𝐷̃𝑖𝑝 and yielding rate 𝐴̃𝑖 are uncertain,

meaning we cannot know the actual values (noted as 𝐷̂𝑖𝑝 and 𝐴̂𝑖𝑝) until the

uncertainty is revealed over time. However, the value of 𝐷̃𝑖𝑝will gradually become

more accurate as the current period gets closer to the predicted demand period in our

experiment design, the details of which will be provided in the data simulation section.

3.2.2 Mathematical Model

As the scheduling problem described above, the sets and parameters are listed below:

Sets

𝐼 Product categories set.

𝑃̂ Experiment periods set.

𝑃 Planning periods set, which rolls in 𝑃̂ for each scheduling subproblems.

𝐹 Fixed planning periods set, which is a subset of 𝑃 (the first |𝐹| periods of 𝑃).

Parameters

𝐶𝑖𝑗
𝑇 Transition cost from producing product 𝑖 to 𝑗, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼.

𝐶𝑖
𝑆 Unit inventory cost of product 𝑖, ∀𝑖 ∈ 𝐼.

𝐶𝑖
𝐿 Unit stockout cost of product 𝑖, ∀𝑖 ∈ 𝐼.

𝑉𝑖 Unit profit of product 𝑖, ∀𝑖 ∈ 𝐼.

doi:10.6342/NTU202401914

19

𝑆𝑖
𝐼 Initial inventory of product 𝑖, ∀𝑖 ∈ 𝐼.

𝑋𝑖𝑓 Fixed production schedule for product 𝑖 in period 𝑓, ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹.

𝐷̃𝑖𝑝 Predicted uncertain demand for product 𝑖 in period 𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃.

𝐴̃𝑖 Nominal uncertain yield amount for product 𝑖 in unit period, ∀𝑖 ∈ 𝐼.

𝐷̂𝑖𝑝 Actual demand amount for product 𝑖 in period 𝑝, which is not available when

planning, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃.

𝐴̂𝑖𝑝 Actual production amount for product 𝑖 in period 𝑝, which is not available when

planning, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃.

The decision variables used for the model are as follows:

Decision Variables

𝑥𝑖𝑝 The binary variable describes whether product is scheduled in a period, 1 if

product 𝑖 is scheduled in period 𝑝, else 0, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 ∪ {𝑃−1}.

Dependent Variables

𝑦𝑖𝑝 The sales amount of product 𝑖 in period 𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃.

𝑠𝑖𝑝 The inventory amount of product 𝑖 in period 𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 ∪ {𝑃−1}.

𝑙𝑖𝑝 Stockout amount of product 𝑖 in period 𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃.

𝑧𝑖𝑗𝑝 The binary variable describes whether transition happened in a period, 1 if

transition from producing product 𝑖 to 𝑗 occurred, else 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼.

doi:10.6342/NTU202401914

20

The aim of the scheduling model is to maximize the gross profit of the chemical

production schedule. This includes sales profit derived from demand fulfillment,

denoted as ∑ ∑ 𝑉𝑖𝑦𝑖𝑝𝑝∈𝑃𝑖∈𝐼 , the inventory cost for product storage represented by

∑ ∑ 𝐶𝑖
𝑆𝑠𝑖𝑝𝑝∈𝑃𝑖∈𝐼 , the stockout cost due to unfulfilled demand indicated as ∑ 𝐶𝑖

𝐿𝑙𝑖𝑝𝑖∈𝐼 ,

and the transition cost, given by ∑ ∑ ∑ 𝐶𝑖𝑗
𝑇

𝑝∈𝑃𝑗∈𝐼,𝑗≠𝑖𝑖∈𝐼 𝑧𝑖𝑗𝑝. The objective function is

illustrated in equation (1).

𝑀𝑎𝑥 ∑∑𝑉𝑖𝑦𝑖𝑝 −∑∑𝐶𝑖
𝑆𝑠𝑖𝑝

𝑝∈𝑃

−∑𝐶𝑖
𝐿𝑙𝑖𝑝

𝑖∈𝐼

− ∑ ∑ ∑𝐶𝑖𝑗
𝑇

𝑝∈𝑃𝑗∈𝐼,𝑗≠𝑖𝑖∈𝐼

𝑧𝑖𝑗𝑝

𝑖∈𝐼𝑝∈𝑃𝑖∈𝐼

 (3.1)

The constraints of the model are listed below:

𝑠𝑖𝑃0 = 𝑆𝑖
𝐼 , ∀𝑖 ∈ 𝐼 (3.2)

𝑥𝑖𝑓 = 𝑋𝑖𝑗, ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹 ∪ {𝑃0} (3.3)

𝑠𝑖𝑝 = 𝑠𝑖(𝑝−1) + 𝐴̃𝑖𝑥𝑖𝑝 − 𝐷̃𝑖𝑝 + 𝑙𝑖𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3.4)

∑𝑧𝑖𝑗𝑝
𝑖∈𝐼

= 𝑥𝑗𝑝, ∀𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 (3.5)

∑𝑧𝑖𝑗𝑝
𝑗∈𝐼

= 𝑥𝑖(𝑝−1), ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3.6)

∑𝑥𝑖𝑝
𝑖∈𝐼

= 1, ∀𝑝 ∈ 𝑃 (3.7)

𝑦𝑖𝑝 = 𝑚𝑖𝑛(𝐴̃𝑖𝑥𝑖𝑝 + 𝑠𝑖(𝑝−1), 𝐷̃𝑖𝑝), ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3.8)

𝑥𝑖𝑝 ∈ {0,1}, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 ∪ {𝑃0} (3.9)

𝑧𝑖𝑗𝑝 ∈ {0,1}, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 (3.10)

𝑠𝑖𝑝 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 ∪ {𝑃0} (3.11)

𝑙𝑖𝑝 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3.12)

doi:10.6342/NTU202401914

21

First of all, we denote 𝑃0 as the first period of the scheduling subproblem, and

the parameters with tilde sign (~) show their uncertainties. Constraints (3.2) and (3.3)

are related to the state initialization of each subproblem. Constraint (3.2) determined

the initial inventory from the given parameter 𝑆𝑖
𝐼, and constraint (3.3) determined the

production of each fixed planning period by 𝑋𝑖𝑗. Constraint (3.4) guaranteed the mass

balance of production, inventory, and demand. Constraint (3.5) and (3.6) cooperate to

identify the occurrence of production transition in each period. Constraint (3.7) ensured

that for each period, only one of product type could be chosen to produce. Constraint

(3.8) determined the sales amount of each period and product. Constraints (3.9) to (3.12)

show the domain of each decision variables.

3.3 Robust Optimization

Robust optimization is a relative new branch in mathematical optimization field. In

contrast to stochastic optimization, which starts by assuming the uncertainty has a

probabilistic description, RO constructs a solution that is feasible for any realization

of the uncertainty in a given set (Bertsimas et al., 2011). The general formulation of RO

is shown in (3.13), where 𝑥 is a vector of decision variables, 𝑢𝑖 is the uncertain

parameters, and 𝒰𝒾 is the corresponding uncertainty set for each constraint. After

reductions and transformations, the uncertainty set within RO formulation will

hopefully being transformed to a new formulation, i.e., robust counterpart. An easy

doi:10.6342/NTU202401914

22

analogy of “robust counterpart” is like a twin of the previous RO formulation. A robust

counterpart is less structural (less human readable), but interpretable or solvable for

most solver engine, e.g., Gurobi, CPLEX, etc. The transformation process may involve

many mathematical theories, we will omit it in this work but can be retrieved from

Lectures on Robust Convex Optimization (Nemirovski, 2019).

𝑚𝑖𝑛 𝑓0(𝑥)

𝑠. 𝑡. 𝑓𝑖(𝑥, 𝑢𝑖) ≤ 0, ∀𝑢𝑖 ∈ 𝒰𝒾, 𝑖 = 1, … ,𝑚

(3.13)

𝒰𝒾 can be determined by several approaches (we will only introduce three of them for

illustrations):

Ellipsoidal uncertainty

Ben-Tal and Nemirovski (Ben-Tal & Nemirovski, 1999) consider ellipsoidal

uncertainty sets, where 𝒰 is given as (3.14) and the robust counterpart of this

formulation will become (3.15), which is a second-order-cone programming.

𝒰 = {(𝒂𝟏, … , 𝒂𝒎): 𝑎𝑖 = 𝑎𝑖
0 + Δ𝑖𝑢𝑖 , 𝑖 = 1, … ,𝑚, ||𝑢||2 ≤ 𝜌} (3.14)

𝑚𝑖𝑛 𝒄𝑻𝒙

𝑠. 𝑡. 𝒂𝒊
𝟎𝒙 ≤ 𝑏𝑖 − 𝜌||Δ𝑖𝒙||2, ∀𝑖 ∈ 1,… ,𝑚

(3.15)

Polyhedral uncertainty

Polyhedral uncertainty can be viewed as a special case of ellipsoidal uncertainty (Ben-

Tal & Nemirovski, 1999). Consider a mathematical programming in (3.16), the dual of

doi:10.6342/NTU202401914

23

the inner maximization problem is (3.17), which can be simplified to a robust

counterpart (3.18).

𝑚𝑖𝑛 𝒄𝑻𝒙

𝑠. 𝑡. 𝑚𝑎𝑥{𝑫𝒊𝒂𝒊≤𝒅𝒊}𝒂𝒊
𝑻𝒙 ≤ 𝑏𝑖 , ∀𝑖 = 1,… ,𝑚

(3.16)

𝑚𝑖𝑛 𝒑𝒊
𝑻𝒅𝒊

𝑠. 𝑡. 𝑝𝑖
𝑇𝐷𝑖 = 𝑥

 𝑝𝑖 ≤ 0

(3.17)

𝑚𝑖𝑛 𝒄𝑻𝒙

𝑠. 𝑡. 𝑝𝑖
𝑇 ≤ 𝑏𝑖, ∀𝑖 = 1,… ,𝑚

 𝑝𝑖
𝑇𝐷𝑖 = 𝑥, ∀𝑖 = 1,… ,𝑚

 𝑝𝑖 ≤ 0, ∀𝑖 = 1,… ,𝑚

(3.18)

Cardinality constrained uncertainty

Bertsimas and Sim (Bertsimas & Sim, 2004) define a family of polyhedral uncertainty

sets that encode a budget of uncertainty into cardinality constraints (3.19), and can be

transform to a robust counterpart (3.20), which is a tractable linear optimization

problem.

𝑚𝑖𝑛 𝒄𝑻𝒙

𝑠. 𝑡. ∑𝑎𝑖𝑗𝑥𝑗
𝑗

+𝑚𝑎𝑥{𝑆𝑖⊆𝐽𝑖}∑𝑎̂𝑖𝑗
𝑗∈𝑆𝑖

𝑦𝑗 ≤ 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑚,

 −𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑦𝑗 , 1 ≤ 𝑗 ≤ 𝑛,

(3.19)

doi:10.6342/NTU202401914

24

 𝒍 ≤ 𝒙 ≤ 𝒖

 𝒚 ≥ 𝟎

𝑚𝑖𝑛 𝒄𝑻𝒙

𝑠. 𝑡.∑𝑎𝑖𝑗𝑥𝑗
𝑗

+ 𝑧𝑖Γ𝑖 +∑𝑝𝑖𝑗
𝑗

≤ 𝑏𝑖, ∀𝑖,

 𝒛𝒊 + 𝒑𝒊𝒋 ≥ 𝑎̂𝑖𝑗𝒚𝒋, ∀𝑖, 𝑗,

 −𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑦𝑗 , ∀𝑗,

 𝒍 ≤ 𝒙 ≤ 𝒖,

 𝒑 ≥ 𝟎,

 𝒚 ≥ 𝟎.

(3.20)

In this paper, we will adopt Cardinality constrained uncertainty set RO as a

guidance for DRL training process.

3.4 Reinforcement learning model

3.4.1 Model design

The agent is modeled using a deep neural network consisting of three hidden layers,

each comprising 256 nodes. The rectified linear unit (ReLU) activation function (3.21)

is used for these layers:

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (3.21)

σ(𝑥)𝑚 =
𝑒𝑥𝑚

∑ 𝑒𝑥𝑚𝑀
𝑚=1

, ∀𝑚 ∈ 𝑀 (3.22)

doi:10.6342/NTU202401914

25

The output of the network employs a softmax function (3.22), resulting in a

probability distribution of the discrete actions 𝐴. An action, denoted by 𝑎, is sampled

from A. This action corresponds to 𝑥𝑖𝑝 in the mathematical model (MM), indicating

the product to be scheduled in a particular period. In other words, the product to be

produced in each period is determined by a single forward propagation of the state, and

a complete schedule is generated through successive propagations.

For instance, as shown in Figure 3 Demonstration of RL episode, illustrates a

schedule where the number of products and the planning horizon length are both equal

to 4. In each step of the RL agent, a one-hot-encoded output is sampled and assigned to

𝑥𝑖𝑝.

Figure 3 Demonstration of RL episode

An "episode" or a "schedule" is considered complete once all periods have been

traversed. According to this schedule, the factory will commence production for one

period. After the lapse of a period, the next episode begins, and the process depicted in

the last figure is repeated. Notably, in the plan for the next period, there are fixed

planning horizons, as exemplified by the first two periods in each episode in Figure 4.

doi:10.6342/NTU202401914

26

Figure 4 Demonstration of an experiment

3.4.2 State definition

The state information, which includes inventory levels, one-hot-encoded current

schedules, forecasted demand, estimated stockout, and other parameters of the problem,

is provided to the network. This information enables the network to determine the

appropriate action to take and assess the current situation.

The inventory level state simply reflects the current inventory of each product,

represented as an ordered list of size |𝐼|. The current schedules provide the determined

schedule information, with unplanned periods filled with zeros. The forecasted demand

for each future period is also available. It's worth noting that the demand values used

here are assigned with 𝐷̃𝑖𝑝 rather than 𝐷̂𝑖𝑝 to prevent data leakage since uncertainties

are not revealed during planning. The estimated stockout count for each product type

is calculated by subtracting the sum of inventories and production from predicted

demands 𝐴̃𝑖𝑥𝑖𝑝 + 𝑠𝑖𝑝 − 𝐷̃𝑖𝑝. As it aids network convergence, it's also considered part

of the state information.

doi:10.6342/NTU202401914

27

In addition to the state information resulting from the last action, constant

parameters 𝐶𝑖𝑗
𝑇 , 𝐶𝑖

𝑆, 𝐶𝑖
𝐿, 𝑉𝑖 and the time counter parameter 𝑡 are also incorporated.

The inclusion of these constant parameters is intended to generalize the agent, enabling

it to adapt to different parameter settings in different scenarios.

Lastly, min-max normalization is applied to each type of value, padding zeros are

added to the edge periods, and everything is concatenated into a 1D array to serve as

the model input, as illustrated in Figure 5.

Figure 5 State encoding

3.4.3 Reward definition

The definition of reward is essentially the change in objective value that occurs

after a particular action is taken. For instance, if a certain product 𝑖 is manufactured in

a step, the environment will compute the repercussions of this production. If this

production will satisfy future demand, it would lead to a decrease in the estimated

stockout count, thereby resulting in an increased objective value. In this case, the

reward for this step would be the contribution to the improvement in the objective, that

is, the original objective value minus the new objective value.

doi:10.6342/NTU202401914

28

3.5 Proposed OR-Guiding Algorithm

3.5.1 Training Workflow

The workflow of the proposed OR-guiding framework for the described problem is

shown as Figure 6:

Figure 6 Training workflow

To train an agent that can be applied in variable scenarios, for example, different

product selling profit, transition cost, etc., the training set have to include multiple

combination of constant parameters instead of single setting. Therefore, we designed a

parameter generator that can random sample a parameter set which is reasonable (will

be discussed in data simulation section). Given that the training process of RL need to

experience the same trajectory for multiple times to actually learn from it (Zhang &

Sutton, 2018), we store the generated parameter set as an individual scheduling problem

in a space called “scheduling problem pool”. In training phase, one of the scheduling

doi:10.6342/NTU202401914

29

problems in the pool will be cyclically sampled as an experiment (the concept is near

to experience replay), and a rolling window handler will transform the experiment into

episodes of daily scheduling problems for the agent to experience.

After the reception of daily problem, which is an environment for the agent to

interact with, the agent will try to take action on it. Then we will examine the output

action distribution, once if we consider guidance is needed, the oracle (MM solver) will

be invoked and optimal action substitute the original action.

The agent is composed by A2C method with small modifications: The gradient

calculation and update block remains the same while oracle is not involved, else we

will calculate “oracle critic value error” and “oracle advantage actor gradient” for critic

and actor network, respectively. The detail of those update method will be explained in

Section 3.5.2.

3.5.2 Algorithm Implementation

In order to illustrate, we utilize the Reinforcement Learning embedded with

Robust Optimization (RLeRO) as an example to demonstrate the use of the OR-guiding

framework. The pseudocode of the framework can be found in Table 3.

Before we delve into the algorithm, it's important to understand the update formula

of the Advantage-Actor-Critic (A2C) method, which is a prerequisite. We denoted state

of step 𝑡 in episode 𝑛 as 𝑠𝑡
(𝑛)

 and action as 𝑎𝑡
(𝑛)

,

doi:10.6342/NTU202401914

30

In the actor-critic method, the actor learns a policy network denoted by 𝜃, which

is updated by the policy gradient as shown in Formula (3.15). This gradient is weighted

by the Q-value, as determined by the critic network. For instance, if the Q-value is small

or even negative, it implies that the given action 𝑎 is not encouraged in the state 𝑠.

Consequently, the gradient update corresponding to each state-action pair will influence

the probabilities of actions output from the policy network.

The A2C learning algorithm introduces an advantage function 𝐴(𝑠𝑡
(𝑛), 𝑎𝑡

(𝑛))

(3.24) instead of the Q-value function 𝑄(𝑠𝑡
(𝑛), 𝑎𝑡

(𝑛)) defined in Formula (3.23). In

Formula (3.26), which is the approximation of (3.24), we can see that 𝐴′ is derived by

calculating the sum of current reward and discounted state value with a discount rate

𝛾, then minus the previous state value. Ultimately, the critic gradient is derived as

shown in Formula (3.27).

1

𝑁
∑ ∑ 𝑄(𝑠𝑡

(𝑛)
, 𝑎𝑡
(𝑛)
)

𝑇𝑛
𝑡=1

𝑁
𝑛=1 ⋅ ∇𝜃𝑙𝑜𝑔𝑝𝜃(𝑎𝑡

(𝑛)|𝑠𝑡
(𝑛)). (3.23)

𝐴(𝑠𝑡
(𝑛), 𝑎𝑡

(𝑛)) = 𝑄(𝑠𝑡
(𝑛), 𝑎𝑡

(𝑛)) − 𝑉(𝑠𝑡
(𝑛)
) (3.24)

𝑄(𝑠𝑡
(𝑛), 𝑎𝑡

(𝑛)) (3.25)

𝑟(𝑛) + 𝛾𝑉(𝑠𝑡+1
(𝑛)) − 𝑉(𝑠𝑡

(𝑛)) = 𝐴′(𝑠𝑡
(𝑛), 𝑎𝑡

(𝑛)). (3.26)

∇𝜃𝑉 ∑
1

𝑇𝑛

𝑇𝑛
𝑡=1 𝐴′(𝑠𝑡

(𝑛), 𝑎𝑡
(𝑛)|𝜃𝑉)

2

. (3.27)

doi:10.6342/NTU202401914

31

Table 3 Robust optimization embedded A2C learning algorithm framework

Requirements:

• A differentiable policy parameterization 𝜋(𝑎|𝑠, 𝜃𝜋).

• A differentiable state-value parameterization 𝑉(𝑠|𝜃𝑉).

• Select step-size hyper-parameters 0 < 𝛼𝜋, 𝛼𝑉 ≤ 1.

• Select guiding-threshold hyper-parameter 𝜌 > 0.

1: Initialize the parameters 𝜃𝑉 , 𝜃𝜋.

2: for 𝑁 episodes do:

3: Initialize the episode with 𝑠0

4: for 𝑇 steps in episode do: (∀𝑡 ∈ 𝑇)

5: Get action probability distribution 𝑝𝑎 from current policy 𝜋(𝑠𝑡, 𝜃𝜋)

6: if entropy(pa) > 𝜌:

7: RO invoked and get action 𝑎𝑡.

8: Get realized objective as total return:

𝑓 ← RO_solver. 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑜𝑏𝑗()

9: Calculate return: 𝑅𝑡 ← 𝑓 − 𝑓<𝑡

10: Take action 𝑎𝑡 and observe reward 𝑟𝑡 and new state 𝑠𝑡+1.

11: Calculate baseline:

𝑏 ← RO_solver. 𝑓𝑖𝑥_𝑎𝑐𝑡𝑖𝑜𝑛(argmax
a
(p

a
)). 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑜𝑏𝑗()

12: Calculate advantage: Δ𝑡 ← 𝑅𝑡 − 𝑏

13: Calculate partial critic loss: 𝜅𝑡 ←  𝑅𝑡 − 𝑉(𝑠𝑡|𝜃𝑉)

14: else:

15: Get action 𝑎𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎(𝑝𝑎)

16: Take action 𝑎𝑡, observe reward 𝑟𝑡 and new state 𝑠𝑡+1

17: Calculate advantage: Δ𝑡 ← 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1|𝜃𝑉) − 𝑉(𝑠𝑡|𝜃𝑉)

18: Calculate partial critic loss: 𝜅𝑡 ←  Δ𝑡

19: Calculate actor loss: ℒ(𝜃𝜋) ← −
1

𝑇
∑ Δ𝑡𝑙𝑜𝑔(𝜋(𝑎𝑡|𝑠𝑡, 𝜃𝜋))
𝑇
𝑡

20: Calculate policy entropy:

𝐻(𝜋(𝑎𝑡|𝑠𝑡, 𝜃𝜋)) ← −∑𝜋(𝑎𝑡|𝑠𝑡, 𝜃𝜋)

𝑖

𝑙𝑜𝑔 𝜋(𝑎𝑡|𝑠𝑡, 𝜃𝜋)

doi:10.6342/NTU202401914

32

21: Update actor: 𝜃𝜋 ≔ 𝜃𝜋 + 𝛼𝜋 (∇𝜃𝜋ℒ(𝜃𝜋) + 𝛽∇𝜃𝜋𝐻)

22: Calculate critic loss: ℒ(𝜃𝒱) =
1

𝑇
∑ (𝜅𝑡)

2𝑇
𝑡

23: Update critic: 𝜃𝑉 ≔ 𝜃𝑉 + 𝛼𝑉∇𝜃𝑉ℒ(𝜃𝑉)

Result: trained actor network 𝜃𝜋 and critic network 𝜃𝒱.

The RLeRO training algorithm (Table 3 Robust optimization embedded A2C

learning algorithm) inherits the framework from A2C, albeit with some modifications,

as underlined in the pseudocode. The differences, marked in bold, will be explained

according to their order of execution:

In line 6, we want the RO solver to step in when the agent hesitates among

potential actions. This hesitation often stems from two reasons: (1) imminent risks due

to unrevealed uncertainty, and (2) the neural network not having learned from similar

conditions yet. In both cases, the action distribution outputted by the policy network

will have a large entropy. We set up a threshold 𝜌 for this entropy: if the entropy is

greater than the threshold, the learning process will enter the "RO guiding block";

otherwise, the original A2C will be employed.

For lines 8 and 9: in the "RO guiding block," the expected return (the sum of

remaining rewards) is calculated differently due to the extra information provided by

the RO solver. The return 𝑅𝑡 is set to the 𝑅𝑂_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑜𝑏𝑗≥𝑡, which represents the

actual return after adopting the RO solution. This value will be used to calculate the

advantage and partial critic loss in the "RO guiding block."

doi:10.6342/NTU202401914

33

For lines 11 and 12: the concept of a "Baseline" is central to the A2C algorithm as

it aids in the convergence of the actor network. However, in the "RO guiding block,"

the state-value function is not a suitable baseline because it is unstable and can

potentially undermine the information provided by the guiding process. As a substitute,

we fix the decision variable for the action in the RO model to argmax
a
(p

a
) and

calculate its realized objective value (denoted as 𝑏 in the pseudocode). This is a

reasonable approach because the two objective values are on the same scale and are

thus comparable. The next step involves subtracting 𝑏 from the return 𝑅𝑡 to obtain the

advantage value.

The final difference is observed in line 13, where the critic loss compiles partial

critic loss from each step (line 22). The partial critic loss 𝜅𝑡 from the "RO guiding"

process is defined by 𝑅𝑡 − 𝑉(𝑠𝑡|𝜃𝑉), which means the return minus the state-value.

The loss function can help the value network 𝜃𝑉 to better approximate the current state-

value by learning from the actual (realized) return.

doi:10.6342/NTU202401914

34

Chapter 4 Numerical Studies

In Chapter 4, we conduct a series of numerical experiments to evaluate the

effectiveness of our proposed methods. Initially, we specify the computer and software

used in these experiments in Section 4.1. In Section 4.2, we detail the configurations of

the parameter generator.

Section 4.3 introduces our models and provides an analysis of their sensitivity

against uncertainty parameters. Following this, in Section 4.4, we select suitable

scenarios for further exploration. In Section 4.5, we present comparisons of execution

time across different models. Lastly, in Section 4.6, we calculate the similarity of Gantt

charts to verify the decision-making style of each model.

4.1 Environment Setup

All of the experiments conducted in this study were performed on a computer

equipped with an AMD Ryzen 5 5600 6-Core Processor running at 3.50 GHz, supported

by 16.0 GB of memory, and utilizing an NVIDIA GeForce RTX 3060 GPU.

On the software side, the experimental codes were implemented in Python,

specifically version 3.8.10. Optimization models were solved using Gurobi version

10.0.1 (Gurobi Optimization LLC, n.d.). All neural networks were defined and trained

using PyTorch, version 1.13.1.

doi:10.6342/NTU202401914

35

4.2 Data Simulation

4.2.1 Basic Configurations

The high-level parameters for this study are outlined in Table 4. The length of the

experiment horizon and the size of the planning window were selected based on the

scale of the problem we needed to investigate further. The number of product types is

derived from (Hubbs et al., 2020), which reflects the capabilities of an existing chemical

material production machine. The fixed horizon for each window also aligns with the

baseline paper, adhering to real-world procedural rules.

Table 4 Experiment parameters

Notation Description Setting

|𝐼| Product type count 4

|𝑃̂| Experiment horizon length 90

|𝑃| Planning window size 15

|𝐹| Fixed horizon in each window 7

4.2.2 Parameter Definitions

Instead of defining the precise value for each parameter, we established lower and

upper bounds for the parameter generator. The following ranges have been specified

(Table 5):

Table 5 Range of parameters

Notation Description Setting

doi:10.6342/NTU202401914

36

𝐴̂_𝑙𝑏 Lower bound of yielding rates 90

𝐴̂_𝑢𝑏 Upper bound of yielding rates 100

𝐷̂_𝑙𝑏 Lower bound of demands 80

𝐷̂_𝑢𝑏 Upper bound of demands 120

𝑉_𝑙𝑏 Lower bound of profits 25

𝑉_𝑢𝑏 Upper bound of profits 35

Our parameter generator will draw samples from a uniform distribution to enrich

the variety within the scheduling problem pool mentioned in Section 3.4.1 (as listed in

the table). Although 𝐴̂𝑖𝑝 and 𝐷̂𝑖𝑝 are generated at the outset and stored in the pool,

they remain inaccessible during training and inferencing to prevent data leakage. The

only instance these two parameters come into play is during the evaluation phase;

agents or optimization models can only access the estimated yielding rates and demands.

The notations are listed in Table 6.

Table 6 Sampling methods

Notation Description Setting

𝐴̂𝑖𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 True yielding rate of each

product in each period

~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝐴̂_𝑙𝑏, 𝐴̂_𝑢𝑏)

𝐷̂𝑖𝑝 , ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 True demand of each

product in each period

~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝐷̂_𝑙𝑏, 𝐷̂_𝑢𝑏)

doi:10.6342/NTU202401914

37

𝑉𝑖 , ∀𝑖 ∈ 𝐼 Sales profit of each

product

~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑉_𝑙𝑏, 𝑉_𝑢𝑏)

𝑆𝑖
𝐼 , ∀𝑖 ∈ 𝐼 Initial inventory of each

product

~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝐷̂_𝑙𝑏, 𝐷̂_𝑢𝑏)

The remaining parameters depend on those previously mentioned and are listed in

Table 7. 𝐶𝑖𝑗
𝑇 represents transition costs. The transition process leads to the production

of partial unsellable off-grade materials in subsequent periods. Hence, the cost is

calculated by multiplying the sales profit of the next product, the yielding rate of the

next product, and a constant factor of 0.2 (Hubbs et al., 2020). The definitions of

inventory cost 𝐶𝑖
𝑆 and stockout cost 𝐶𝑖

𝐿 are similar: we assume that the more valuable

a product is, the more it costs to store or the higher the cost of stockout.

Uncertain parameters are treated differently in different models. However, all

models share the same estimated values for these parameters. In the real-world

scheduling problem, while we don't know the actual demand during planning, there

exists some estimation of it. For instance, the sum of pre-order tickets may represent

future demand. Still, they are subject to change, and we can expect that the further in

time the order ticket is, the more likely it is to be modified. Consequently, we designed

a demand distortion parameter Δ, which describes the rate of demand value distortion

over periods. As illustrated in Figure 7, each 𝐷̃𝑖𝑝 is subject to increased perturbation

doi:10.6342/NTU202401914

38

as period 𝑝 increases. This figure shows the relationship between actual and estimated

demand, revealing that the estimation error gradually grows due to random noises.

For the yielding rate, which falls between its lower and upper bounds, a naive

estimate is its average value.

Table 7 Depending parameters

Notation Description Setting

𝐶𝑖𝑗
𝑇 ,

∀𝑖, 𝑗 ∈ 𝐼

Transition costs from

product 𝑖 to product 𝑗

𝑉𝑗 ⋅ 𝐴𝑗
∗ ⋅ 0.2

𝐶𝑖
𝑆 Inventory costs of products 𝑉𝑖 ⋅ 0.2

𝐶𝑖
𝐿 Stockout costs of products 𝑉𝑖 ⋅ 0.3

𝐴̃𝑖 Estimated yielding rates
𝐴̂_𝑙𝑏 + 𝐴̂_𝑢𝑏

2

Δ Demand distortion rate 3

𝐷̃𝑖𝑝,

∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃

Estimated demands,

fluctuation increased by

periods

~𝑢𝑛𝑖𝑓𝑜𝑟𝑚

(

(1 − Δ ⋅

𝑝 − 𝑃0
|𝑃|

) 𝐷̂𝑖𝑝,

(1 + Δ ⋅
𝑝 − 𝑃0
|𝑃|

)𝐷̂𝑖𝑝)

doi:10.6342/NTU202401914

39

Figure 7 Demand simulation and its errors

4.3 Model Description and Sensitivity Analysis

4.3.1 Model Descriptions

The Perfect Information Deterministic Optimization (PIDO) model, having access

to perfect information from the outset, including uncertain parameters, is capable of

crafting optimal solutions based on pre-sampled yielding rates and actual demands.

This makes its decisions the most effective and efficient. Consequently, it is considered

a benchmark against other optimization-based models.

The Expected Value Deterministic Optimization (EVDO) model addresses

uncertainty by employing expected values. However, in our use-cases, there are no

predefined statistical distributions, so we utilized the mean of the range of uncertain

doi:10.6342/NTU202401914

40

parameters and distorted demands to estimate the schedules. Since EVDO doesn't

account for any other potential data points for each parameter, it is prone to disruptions

and this could destabilize its scheduling significantly. This is particularly apparent in

scenarios with high distortion rates, where the resulting schedule may fail to meet the

actual demand, leading to an increase in stockouts and adversely affecting the stability

of the realized objective.

On the other hand, Robust Optimization (RO) is an optimization approach

characterized by robust decision-making. It often makes conservative actions to avoid

infeasibility in data perturbations. However, such a decision style may lead to a trade-

off in some optimality. This trade-off, though, is highly worthwhile in scenarios that

necessitate greater planning stability.

4.3.2 Sensitivity Analysis

To select an appropriate fluctuation parameter, we conducted a sensitivity analysis,

employing 30 replications (Figure 8 Optimization-based models delta sensitivity

analysis). The PIDO model is not influenced by the distortions, which means it can

consistently make optimal decisions and achieve the maximum objective value. The

EVDO model, only able to observe distorted demands, sees its objective value decrease

as delta increases. As for the RO model, which tends to adopt relatively conservative

actions, it sacrifices some objective values to achieve more robust results against

doi:10.6342/NTU202401914

41

demand distortion. The intersection of PIDO and RO occurs at delta = 3.0. This implies

that if the demand distortion rate exceeds 3.0, the conservative decisions made by the

RO model will ultimately yield better results than the EVDO model.

Figure 8 Optimization-based models delta sensitivity analysis

As for the three RL-based models, their performance is depicted in Figure 9. The

simple A2C model without any guidance yielded the lowest objective value, regardless

of how the demand distortion changed. The two models with guidance, namely

A2C+DO and RLeRO, didn't show big differences in objective value when the

distortions were small. However, when the distortion rate increased to 2.0, the A2C

doi:10.6342/NTU202401914

42

model guided by RO (named RLeRO) demonstrated stability in objective values.

Figure 9 RL-based models delta sensitivity analysis

Both the optimization and RL approaches showed intersections at the value of

delta = 3.0, so we will conduct further investigations in these scenarios in section 4.4.

To explore the influence of all uncertain variables in the RLeRO model, we also

conducted a two-dimensional sensitivity analysis with 5 replications, as shown in Table

8. The results reveal a declining trend in objective values as both Δ and the yielding

rate sample range (YRSR) increase.

Table 8 Two-dimensional (YRSR & Δ) sensitivity analysis

YRSR\Δ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0 583,413

(3,141)

575,313

(3,460)

568,285

(4,679)

565,447

(5,483)

570,411

(6,578)

557,310

(7,318)

557,715

(7,920)

553,939

(9,446)

0.1 580,249

(3,222)

575,223

(3,660)

567,821

(4,933)

565,498

(5,567)

556,501

(6,829)

556947

(7,356)

557,601

(8,913)

554,173

(9,862)

0.2 578,952

(3,349)

575,106

(3,725)

566,366

(4,968)

564,997

(5,633)

557,063

(7,217)

557,211

(7,542)

555,408

(9,298)

552,382

(9,863)

0.3 579,431

(3,442)

575,006

(3,862)

565,264

(5,098)

565,510

(5,919)

556,880

(7,250)

556,885

(7,685)

556,019

(9,348)

551,766

(9,930)

0.4 578,407 576,757 570,845 565,592 556,751 556,631 555,807 550,708

doi:10.6342/NTU202401914

43

(3,449) (4,264) (5,194) (5,998) (7,292) (7,881) (9,394) (9,985)

4.4 Solution Value Analysis

4.4.1 Descriptive Statistics

As mentioned in Section 4.3, we selected high demand distortion cases where RO

outperformed EVDO and RLeRO surpassed A2C + DO, demonstrating their robustness.

The results for the three optimization-based models are shown in Table 9

Optimization-based models’ objective statistics. The RO model had better objective

and standard deviation values than EVDO. As expected, the improvement in both mean

and standard deviation becomes more pronounced as the distortion parameter increases.

We chose the edge case primarily for easier observation.

Table 9 Optimization-based models’ objective statistics

Model

Realized

obj. Mean

Realized

obj. Std.

Gap on obj. mean Note

PIDO 671,540 0 - Benchmark

EVDO 628,473 29,562 6.41% -

RO 630,003 23,875 6.18%

Improve 19.23% in std.

versus EVDO

The comparison of the three RL-based models is shown in Table 10 RL-based

models’ objective statistics. Without specific design of network structure and hyper-

parameters, the A2C method achieved about 81% of the benchmark's performance.

doi:10.6342/NTU202401914

44

However, its performance in terms of standard deviation is not ideal, with an increase

of nearly 30% compared to the EVDO.

The proposed guiding framework in this paper aims to improve learning

effectiveness in the early stages of model training and in situations with dilemmas, by

using mathematical optimization to guide subproblems. In the first experiment, DO was

used as the guiding engine, resulting in a 4% increase in the realized objective value

compared to A2C, reaching 82% of the benchmark, and a 11% reduction in standard

deviation.

For application scenarios that require higher stability, both A2C and A2C+DO guiding

still need further improvement in terms of standard deviation. Therefore, the second

experiment aimed to bring about a change in decision-making style through the guiding

process during learning. We used RO as the guiding engine and observed that the model

indeed learned to adopt a more conservative strategy during inference, which achieved

a 9% reduction in standard deviation. This final model is named as Reinforcement

Learning embedded with Robust Optimization, abbreviated as RLeRO.

Table 10 RL-based models’ objective statistics

Model

Realized

Obj.

Mean

Realized

Obj. Std.

Improvement

on obj. mean

Improvement

on obj. std

Note

doi:10.6342/NTU202401914

45

A2C 528,541 38,426 - - Baseline

A2C + DO 549,265 34,013 3.92% 11.48%

Better than

baseline

RLeRO

(A2C + RO)

557,715 30,650 5.52% 20.23%

Better than

A2C + DO

4.4.2 Evaluation Metrics

For research with probability distribution assumptions, the "expected value of

perfect information (EVPI)" and the "value of stochastic solution (VSS)" can be used

to identify the value of stochastic programming. However, all of the experiments

mentioned above were conducted without assuming statistical distributions, meaning

that VSS is not applicable in our cases. Since our major discussion revolves around

robustness against parameter fluctuation, we borrow the idea of VSS and substitute it

with a metric known as "price of robustness (PR)" (Chassein & Goerigk, 2016).

The main concept of PR is to compute the distance between the EVDO and robust

solution (RS) in terms of objective value (4.1). In our research case, we calculate the

mean PR of 30 replications at different distortion rates.

In real-world situations, we cannot know the demand fluctuation, i.e., the

distortion coefficient, in advance. Thus, we analyze the price of robustness in different

scenarios to determine the best application of robust models. The results are shown in

doi:10.6342/NTU202401914

46

Figure 10: We observe a negative trend in the price of robustness for both RLeRO and

RO models, which indicates that the sacrifice of applying a robust solution diminishes

as the fluctuation rate increases. In cases with high demand fluctuation, it is even more

beneficial to adopt conservative policies.

𝑃𝑅 = 𝐸𝑉𝐷𝑂 – RS (4.1)

Figure 10 Price of robustness for Robust models

The EVPI is calculated by subtracting the PIDO from the wait-and-see (WS)

objective value (2), which represents how much a decision-maker would be willing to

pay for perfect information. The WS models are those we want to evaluate. In our case,

we want to show that the robust models are less needed of accurate (perfect)

information, i.e., low EVPI values.

In our case, we separate the calculation result into two figures - optimization-based

(Figure 11) and RL-based (Figure 12) - to compare them to their respective baseline

doi:10.6342/NTU202401914

47

models. We can observe that in the optimization-based group, the EVPI value of DO

surpasses that of RO at high demand distortion rates. For the RL-based group, RLeRO

has the lowest value compared to the others. These results demonstrate that the robust

models are more resilient to imperfect information.

𝐸𝑉𝑃𝐼 = 𝑃𝐼𝐷𝑂 – WS (4.2)

Figure 11 EVPI of Optimization-based models

Figure 12 EVPI of RL-based models

doi:10.6342/NTU202401914

48

4.5 Execution Time Analysis

In traditional optimization methods, there is no distinction between training and

inference. The process begins with constructing a mathematical model for the

scheduling problem, which is then solved using an optimizer to obtain the optimal

solution. Each rescheduling event requires solving the problem with different inputs,

and the required time grows quickly with the size of the problem. Conversely, in RL

applications, the initial step involves model training, which is the most computationally

intensive part of the entire process. Solving a scheduling problem simply necessitates

running inference once, a process that takes relatively less time compared to training.

This gives RL an advantage in scenarios requiring frequent rescheduling. Moreover, as

long as state information is effectively designed for input parameters, the same model

can be used for inference and scheduling across different parameter settings.

Figure 13 presents a comparison of the time consumption among various models

for different problem sizes (planning horizon lengths). As the bottleneck for RL lies in

the training phase, the training time serves as the comparison metric for the solver. Each

data point denotes the average result from 20 experiments. It can be observed that both

the deterministic model and the robust optimization model display an exponential-like

growth in solving time, failing to converge within the set time limit of 3000 seconds

when the planning horizon exceeds 60. The general A2C method, however, has a

doi:10.6342/NTU202401914

49

significantly slower growth curve and surpasses traditional optimization methods when

the problem size approaches 50. Our proposed guiding framework, which solves and

guides the model's uncertain subproblems during the training process, necessitates more

time in the training phase compared to a simple A2C model. However, compared to

models with exponential growth, this computational burden is still within an acceptable

range.

Figure 13 Bottleneck time consumption of each model

Regarding the inference time for the RL model, which refers to the time consumed

during the forward propagation of state information through the network, it is extremely

minimal when compared to RL training and MM solving. The mean inference time

consumption across different planning horizons, calculated from 30 replications, is

shown in Table 11. From these results, we can observe that the differences in inference

time across different planning horizons are small enough to be negligible.

doi:10.6342/NTU202401914

50

Table 11 Inference time of RL-based models

Model |P| = 10 |P| = 20 |P| = 40 |P| = 60

A2C 0.09s (0.02) 0.09s (0.03) 0.09s (0.02) 0.11s (0.02)

A2C+DO 0.09s (0.02) 0.09s (0.03) 0.09s (0.01) 0.10s (0.02)

RLeRO

(A2C + RO)

0.09s (0.02) 0.09s (0.02) 0.08s (0.02) 0.09s (0.02)

4.6 Gantt Similarity Analysis

To examine the differences between models, we calculate a "Gantt similarity"

score for each combination of models based on 30 replications (Table 12). The

similarity score is determined by comparing the production decisions in segments of

the schedule, where the proportion of matching segments represents the similarity.

We observe a significant similarity gap between RL-based and optimization-based

methods. However, when guiding methods are introduced, this gap narrows

considerably.

Table 12 Gantt similarities between models

 EVDO RO A2C A2C + DO RLeRO

(A2C + RO)

EVDO 1 93.55%

(8.24)

38.71%

(15.32)

74.19%

(10.56)

70.96%

(8.63)

RO - 1 45.05% 64.51% 80.64%

doi:10.6342/NTU202401914

51

(5.70) (14.37) (7.01)

A2C - - 1 45.16%

(7.55)

32.25%

(4.98)

A2C + DO - - - 1 73.52%

(8.17)

RLeRO

(A2C + RO)

- - - - 1

Figure 14 and Figure 15 each represent a Gantt chart from the RO and RLeRO

models, respectively, within the same experiment simulation. It is evident that the

schedules bear similarity, indicating that the latter model has indeed learnt from the RO

guiding phase and is inclined towards conservative actions. By contrast, the simple A2C

model (Figure 16) has lesser commonality with the RO Gantt chart. This comparison

also corroborates that the RLeRO model effectively mimics the decision-making style

of the RO model.

doi:10.6342/NTU202401914

52

Figure 14 Gantt of RO solution in scenario 1

Figure 15 Gantt of RLeRO solution in scenario 1

Figure 16 Gantt of A2C solution in scenario 1

doi:10.6342/NTU202401914

53

Chapter 5 Conclusion and Future Works

5.1 Conclusion

This paper presents a guiding framework for training reinforcement learning

models, specifically for the dynamic scheduling of a single-stage multi-product reactor.

The framework was motivated by the limitations observed in previous research: "There

is no guarantee of optimality with policy gradient methods, as the reinforce algorithm

can converge to local optimality. (Sutton et al., 1999)" As such, we initially attempted

to guide the training phase, and as expected, our proposed approach improved decision

quality in terms of objective value and stability, compared to simple A2C methods. To

further enhance robustness against parameter distortions, we adopted robust

optimization as a guiding engine, which enabled a more conservative decision-making

style. The effectiveness of these improvements was validated through experimental

results, where we compared different models using the "Price of Robustness" metric,

confirming the enhanced robustness of the RO and RLeRO methods.

5.2 Future Works

We have made strides in integrating DRL and optimization methods, addressing

the research gaps highlighted in baseline paper. Nonetheless, there remains ample room

for further exploration in this field. For instance, future research could attempt to

doi:10.6342/NTU202401914

54

incorporate other guiding methods during the training phase, or modify the gradient and

loss functions for a better synergy between RL and optimization methods.

We also aim to broaden the scope of our training framework beyond scheduling

problems. One potential direction is the development of a converter that can translate a

mathematical model into an RL environment. This could facilitate the application of

our proposed framework in a wider range of problem contexts.

The lack of comparative studies on different RL guiding methodologies is

noteworthy. Future research could utilize approaches like "decaying perfect

information" as a baseline for more in-depth analysis and evaluation of these methods.

doi:10.6342/NTU202401914

55

References

Andriushchenko, M., & Flammarion, N. (2020). Understanding and Improving Fast

Adversarial Training. Advances in Neural Information Processing Systems, 33,

16048–16059.

https://proceedings.neurips.cc/paper/2020/hash/b8ce47761ed7b3b6f48b58335

0b7f9e4-Abstract.html

Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs.

Operations Research Letters, 25(1), 1–13. https://doi.org/10.1016/S0167-

6377(99)00016-4

Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and Applications of

Robust Optimization. SIAM Review, 53(3), 464–501.

https://doi.org/10.1137/080734510

Bertsimas, D., & Sim, M. (2004). The Price of Robustness. Operations Research,

52(1), 35–53. https://doi.org/10.1287/opre.1030.0065

Bonfill, A., Bagajewicz, M., Espuña, A., & Puigjaner, L. (2004). Risk Management in

the Scheduling of Batch Plants under Uncertain Market Demand. Industrial

& Engineering Chemistry Research, 43(3), 741.

doi:10.6342/NTU202401914

56

Bonfill, A., Espuña, A., & Puigjaner, L. (2005). Addressing Robustness in Scheduling

Batch Processes with Uncertain Operation Times. Industrial & Engineering

Chemistry Research, 44(5), 1524–1534. https://doi.org/10.1021/ie049732g

Chang, J., Yu, D., Hu, Y., He, W., & Yu, H. (2022). Deep Reinforcement Learning

for Dynamic Flexible Job Shop Scheduling with Random Job Arrival.

Processes, 10, 760. https://doi.org/10.3390/pr10040760

Chassein, A., & Goerigk, M. (2016). Performance Analysis in Robust Optimization.

In M. Doumpos, C. Zopounidis, & E. Grigoroudis (Eds.), Robustness Analysis

in Decision Aiding, Optimization, and Analytics (Vol. 241, pp. 145–170).

Springer International Publishing. https://doi.org/10.1007/978-3-319-33121-

8_7

Grossmann, I. E., Apap, R. M., Calfa, B. A., García-Herreros, P., & Zhang, Q. (2016).

Recent advances in mathematical programming techniques for the

optimization of process systems under uncertainty. Computers & Chemical

Engineering, 91, 3–14. https://doi.org/10.1016/j.compchemeng.2016.03.002

Gupta, D., & Maravelias, C. T. (2016). On deterministic online scheduling: Major

considerations, paradoxes and remedies. Computers & Chemical Engineering,

94, 312–330. https://doi.org/10.1016/j.compchemeng.2016.08.006

Gurobi Optimization LLC. (n.d.). Gurobi Optimizer Reference Manual.

doi:10.6342/NTU202401914

57

Han, D., Kozuno, T., Luo, X., Chen, Z., Doya, K., Yang, Y., & Li, D. (2022, March

16). Variational oracle guiding for reinforcement learning.

Hoek, R. (2020). Research opportunities for a more resilient post-COVID-19 supply

chain – closing the gap between research findings and industry practice.

International Journal of Operations & Production Management, ahead-of-

print. https://doi.org/10.1108/IJOPM-03-2020-0165

Hu, Z., Ramaraj, G., & Hu, G. (2020). Production planning with a two-stage

stochastic programming model in a kitting facility under demand and yield

uncertainties. International Journal of Management Science and Engineering

Management, 15(3), 237–246.

https://doi.org/10.1080/17509653.2019.1710301

Hubbs, C. D., Li, C., Sahinidis, N. V., Grossmann, I. E., & Wassick, J. M. (2020). A

deep reinforcement learning approach for chemical production scheduling.

Computers & Chemical Engineering, 141, 106982.

https://doi.org/10.1016/j.compchemeng.2020.106982

Janak, S. L., Floudas, C. A., Kallrath, J., & Vormbrock, N. (2006). Production

Scheduling of a Large-Scale Industrial Batch Plant. II. Reactive Scheduling.

Industrial & Engineering Chemistry Research, 45(25), 8253–8269.

https://doi.org/10.1021/ie0600590

doi:10.6342/NTU202401914

58

Janak, S. L., Lin, X., & Floudas, C. A. (2007). A new robust optimization approach

for scheduling under uncertainty: II. Uncertainty with known probability

distribution. Computers & Chemical Engineering, 31(3), 171–195.

https://doi.org/10.1016/j.compchemeng.2006.05.035

Jia, Z., & Ierapetritou, M. (2006a). Generate Pareto Optimal Solutions of Scheduling

Problems Using Normal Boundary Intersection Technique. Computers &

Chemical Engineering, 1, 268–280.

Jia, Z., & Ierapetritou, M. (2006b). Uncertainty analysis on the righthand side for

MILP problems. AIChE Journal, 52, 2486–2495.

https://doi.org/10.1002/aic.10842

Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. V., & Eversdyk, D. (2004). A

simulation based optimization approach to supply chain management under

demand uncertainty. Computers & Chemical Engineering, 28(10), 2087–2106.

https://doi.org/10.1016/j.compchemeng.2004.06.006

Lee, C.-Y., Huang, Y.-T., & Chen, P.-J. (2024). Robust-optimization-guiding deep

reinforcement learning for chemical material production scheduling.

Computers & Chemical Engineering, 187, 108745.

https://doi.org/10.1016/j.compchemeng.2024.108745

doi:10.6342/NTU202401914

59

Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of Machine

Scheduling Problems. In P. L. Hammer, E. L. Johnson, B. H. Korte, & G. L.

Nemhauser (Eds.), Annals of Discrete Mathematics (Vol. 1, pp. 343–362).

Elsevier. https://doi.org/10.1016/S0167-5060(08)70743-X

Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R., Zhao, L., Qin, T., Liu, T.-

Y., & Hon, H.-W. (2020). Suphx: Mastering Mahjong with Deep

Reinforcement Learning (arXiv:2003.13590). arXiv.

http://arxiv.org/abs/2003.13590

Li, Z., & Ierapetritou, M. (2008). Process scheduling under uncertainty: Review and

challenges. Computers & Chemical Engineering, 32, 715–727.

https://doi.org/10.1016/j.compchemeng.2007.03.001

Lin, X., Janak, S. L., & Floudas, C. A. (2004). A new robust optimization approach

for scheduling under uncertainty: I. Bounded uncertainty. Computers &

Chemical Engineering, 28(6), 1069–1085.

https://doi.org/10.1016/j.compchemeng.2003.09.020

Mihoubi, B., Bouzouia, B., & Gaham, M. (2021). Reactive scheduling approach for

solving a realistic flexible job shop scheduling problem. International Journal

of Production Research, 59(19), 5790–5808.

https://doi.org/10.1080/00207543.2020.1790686

doi:10.6342/NTU202401914

60

Nemirovski, A. (2019). Lectures on Robust Convex Optimization [Dataset].

https://doi.org/10.1287/e356790b-ddcc-4920-a645-a2d08c6334bb

Petrovic, D., & Duenas, A. (2006). A fuzzy logic based production

scheduling/rescheduling in the presence of uncertain disruptions. Fuzzy Sets

and Systems, 157(16), 2273–2285. https://doi.org/10.1016/j.fss.2006.04.009

Raghunathan, A., Xie, S. M., Yang, F., Duchi, J. C., & Liang, P. (2019). Adversarial

Training Can Hurt Generalization (arXiv:1906.06032). arXiv.

http://arxiv.org/abs/1906.06032

Riedmiller, S., & Riedmiller, M. (n.d.). A neural reinforcement learning approach to

learn local dispatching policies in production scheduling.

Sahinidis, N. V. (2004). Optimization under uncertainty: State-of-the-art and

opportunities. Computers & Chemical Engineering, 28(6–7), 971–983.

https://doi.org/10.1016/j.compchemeng.2003.09.017

Sand, G., & Engell, S. (2004). Modeling and solving real-time scheduling problems

by stochastic integer programming. Computers & Chemical Engineering,

28(6), 1087–1103. https://doi.org/10.1016/j.compchemeng.2003.09.009

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,

S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,

doi:10.6342/NTU202401914

61

M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game

of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.

https://doi.org/10.1038/nature16961

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT

Press.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999). Policy Gradient

Methods for Reinforcement Learning with Function Approximation. Advances

in Neural Information Processing Systems, 12.

https://proceedings.neurips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a

5c43b0f-Abstract.html

Zhang, S., & Sutton, R. S. (2018). A Deeper Look at Experience Replay

(arXiv:1712.01275). arXiv. https://doi.org/10.48550/arXiv.1712.01275

