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摘要 

在本文中，我們提出了一種新的強化學習訓練框架，專門用於動態排程單階

段多產品化學反應器。該方法透過最佳化方法的合作，將策略梯度收斂時所遇到

的局部最優挑戰減輕，優化了強化學習模型目標值以及它的穩定性。除此之外，

我們進一步透過將穩健最佳化作為指導引擎，提高模型對參數誤差的穩健性，促

進了在需求與生產效率不穩定的情況下所能採用的較保守之決策風格。實驗結果

證明了我們所提出方法的有效性，與簡單的演員-評論家方法相比，在同樣的參

數設計下多個指標上都有所提高。 

本研究的研究貢獻在深度強化學習與最佳化方法上的整合有所突破，也透過

本框架提供新的強化學習訓練框架，可以應用於其他領域問題之中。 

關鍵詞：製造排程、強化學習、穩健最佳化、化工製造、隨機規劃 
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Abstract 

In this paper, we present a novel guiding framework for the training phase of 

Reinforcement Learning (RL) models, specifically tailored for dynamic scheduling of 

a single-stage multi-product chemical reactor. Our approach addresses the challenge of 

local optima in policy gradient methods by integrating optimization methods, 

enhancing both the objective value and stability of the RL model. We further enhance 

the robustness of our model against parameter distortions by incorporating robust 

optimization as a guiding engine, promoting a more conservative decision-making style. 

Our experimental results demonstrate the efficacy of our approach, with several metrics 

compared to simple Actor-Critic methods.  

Our work thus serves as an advancement in the integration of Deep Reinforcement 

Learning and optimization methods, hopefully opening new avenues for research and 

application in dynamic scheduling and beyond. 

Keywords: Production scheduling, reinforcement learning, robust optimization, 

chemical production, stochastic programming 
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Chapter 1 Introduction 

Parts of this thesis have been developed into a journal article, which has been 

published as ‘Robust-optimization-guiding deep reinforcement learning for chemical 

material production scheduling’ in Computers & Chemical Engineering (Lee et al., 

2024). 

1.1 Background and Motivation 

Industrial production plays a pivotal role worldwide, leading to unprecedented 

demand for essential chemical materials. The shortage of such materials can result in 

over-queued time and devastate work-in-progress. Moreover, in the era of COVID-19 

and the subsequent post-COVID-19 period, supply chains have become increasingly 

unpredictable and variable in demand (Hoek, 2020). Chemical material production, as 

a crucial upstream sector for most production industries, faces significant uncertainties 

like production delays, yield rate fluctuation, shifting demand, and the need for frequent 

rescheduling (Gupta & Maravelias, 2016; Janak et al., 2007; Li & Ierapetritou, 2008). 

In chemical material production planning scenarios, stockout (i.e., demand 

unfulfillment) situations are mostly caused by demand and yielding rate uncertainty 

(Gupta & Maravelias, 2016). Besides, the chemical material production station is 

usually non-stoppable, which means the production process is continuous. In other 

words, we cannot set the machine to be idle or discretely change the producing product; 
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the product transition processes are involved with different settings, including 

temperature, pressure, or concentrations, etc., and the change of configurations are 

continuous. The switching phases will yield off-grade material that cannot be sold and 

are thus considered as costs (Hubbs et al., 2020). By the aforementioned characteristics, 

the scheduling problem becomes to determine when to change the producing product 

and what product to produce in the next. 

The production scheduling problem is typically NP-hard, suggesting there's no 

existing algorithm that can solve such a problem within polynomial time (Lenstra et al., 

1977). Traditional operations research methodologies, such as mixed-integer linear 

programming, use a branch-and-bound algorithm for finding (sub)optimal solutions. 

When factoring in uncertainty, stochastic programming incorporates expected values 

and distribution assumptions to align with real-world scenarios. However, the time-

consuming nature of the optimization process poses challenges when dealing with cases 

requiring frequent rescheduling (Sahinidis, 2004). 

Recently, Deep Reinforcement Learning (DRL) has been introduced as a potential 

solution to this issue (Hubbs et al., 2020). While DRL requires considerable offline 

training time, it offers relatively low-cost online planning (inferencing). However, the 

convergence of neural networks can be extremely slow if the solution space is too large 

(Sutton & Barto, 1998). 
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Moreover, the dimensional complexity of discrete optimization problems often 

confounds the learning algorithm during exploration and exploitation phases without 

the aid of an "oracle guiding" mechanism or something similar. For instance, to achieve 

better objective value, an agent might have to sacrifice short-term rewards for long-

term gains. Even though such a decision theoretically can be modeled by a multi-layer 

neural network, it's almost impossible for a random trial-and-error exploration method 

(like epsilon-greedy) to discover and learn accordingly (Silver et al., 2016). Training a 

decision-making style, such as robustness to randomness, becomes even more 

challenging. 

Given the considerations and challenges in chemical production scheduling, there 

have been recent attempts to solve it using DRL. Nevertheless, DRL faces its own set 

of obstacles, including time-consuming training processes and difficulties in handling 

uncertainties. Therefore, this study proposes a Reinforcement Learning embedded with 

Robust Optimization (RLeRO) framework. It is designed to aid the DRL model in 

solving the scheduling problem by incorporating an "oracle guiding" mechanism in the 

training phase. Furthermore, this framework integrates uncertainty robustness into its 

decision-making style to better align with the characteristics of modern supply chains. 
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1.2 Research Objective 

The primary research objective of this study is to develop a Deep Reinforcement 

Learning (DRL) agent that is capable of tackling the chemical material production 

scheduling problem while robustly handling uncertainties. 

From a detailed analysis of the chemical material production industry and the 

associated planning problems, we recognize that an effective scheduling methodology 

for this real-world application should exhibit three key attributes: (1) robustness to 

variations in demand and yield rate, without the need for distribution assumptions, (2) 

low computational burden during the inferencing of scheduling suggestions, and (3) the 

presence of guidance during the learning phase. 

Our approach involves refining the framework proposed by Hubbs et al. (2020) 

that uses DRL to solve the scheduling problem in the chemical material production 

industry. This refined framework aims to meet all three requirements simultaneously. 

It will be a combination of robust optimization and an advanced actor-critic 

reinforcement learning approach during the training phase. In addition, we will evaluate 

the performance of this new framework by comparing it with traditional optimization 

approaches and the standard Advantage Actor-Critic (A2C) method. 

The main contribution of our work is to introduce an operations-research-based 

guiding method in the RL training phase, which can help the policy network escape 
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from local optimality. Furthermore, we adopted robust optimization as a guiding engine 

for the policy network to learn a conservative decision-making style and evaluate the 

value of it through several metrics. 

1.3 Thesis Architecture 

In Chapter 2, we will conduct a review of previous methodologies applied to 

chemical production scheduling, as well as oracle guiding methods. Chapter 3 

introduces the main contribution of this study, the RLeRO algorithm. In Chapter 4, we 

will evaluate the proposed algorithm, comparing its performance with traditional 

optimization methods and the simple A2C as benchmarks. Finally, in Chapter 5, we 

will draw conclusions from our study and look forward to potential improvements and 

future research directions. 
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Chapter 2 Literature Review 

In this chapter, we will present previous works related to our study, respectively. 

Firstly, Section 2.1 surveys papers about scheduling methodologies with uncertainties. 

Section 2.2 reviews the applications of optimization methodologies and reinforcement 

learning in chemical production scheduling problem. As for Section 2.3, oracle guiding 

methods for DRL will be discussed. 

2.1 Scheduling with Uncertainties 

Several methodologies have been proposed to manage uncertainties in scheduling 

problems. Janak et al. (2006) present a reactive scheduling framework, which 

strategically fixes binary variables from the original production schedule to circumvent 

the need for comprehensive rescheduling. Mihoubi et al. (2021) proposes a surrogate-

assisted simulation-optimization approach, based on scheduling rules, to address 

Reactive Scheduling (RS) and the Flexible Job Shop Scheduling Problem (FJSSP), 

crucial aspects of real-world manufacturing systems. It aims to encapsulate the dynamic 

nature of FJSSP while balancing reactivity and overall system performance.  

Taking a different route, Bonfill et al. (2004) leverage a two-stage stochastic 

optimization approach to manage risk in short-term scheduling of multiproduct batch 

plants dealing with demand uncertainties. This body of work was later expanded in next 

year (Bonfill et al., 2005) to accommodate variable processing times in chemical batch 
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processes' short-term scheduling. Hu et al. (2020) presents a two-stage stochastic 

programming framework for optimizing production in a manufacturing plant's kitting 

facility, accounting for uncertainties in kit demand and worker yield. Given a multi-

product case study, the model effectively handles uncertainties, underlining their 

significant impact on production planning decisions. 

In an effort to handle scheduling challenges arising from uncertain processing 

times, market demands, or prices, Lin et al. (2004) proposed a robust optimization 

method. Janak et al. (2007) built on this work, tailoring the approach for scenarios 

where uncertainty is described by a known probability distribution. 

On the other hand, Petrovic & Duenas (2006) utilized fuzzy programming to 

handle parallel machine scheduling and rescheduling in an uncertain environment. 

Their proposed method, a predictive-reactive approach, involves two key steps: first, 

the creation of a schedule, and second, a rescheduling phase. Each step addresses 

distinct aspects of the scheduling problem. 

 Jia & Ierapetritou (2006a, 2006b) proposed a unique method for uncertainty 

analysis on the right-hand side (RHS) for mixed-integer linear programming (MILP) 

problems. The procedure involves an iterative process that includes sensitivity analysis 

using linear programming and multi-parametric linear programming, as well as 

updating the branch-and-bound tree. They further improved this framework by devising 
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a way to manage the issue of infeasibility. This involved providing a description of the 

feasible region prior to implementing the parametric MILP algorithm. Additionally, 

they took into account uncertainty in the objective function coefficients and problem 

constraints, offering a comprehensive approach to managing uncertainties in scheduling. 

 Chang et al. (2022) applies deep reinforcement learning (DRL) to the dynamic and 

complex task of scheduling in a smart factory's production process. By designing a 

double deep Q-networks (DDQN) architecture and a soft ε-greedy behavior policy, it 

provides an approach to the flexible job shop scheduling problem (FJSP) that excels in 

real-time adaptation and minimizes penalties for earliness and tardiness.  

To address uncertainty, two major methodologies for planning and scheduling are 

robust optimization (RO) and stochastic programming (Grossmann et al., 2016). In 

contrast to stochastic optimization, which starts by assuming the uncertainty has a 

probabilistic description, RO constructs a solution that is feasible for any realization of 

the uncertainty in a given set (Bertsimas et al., 2011). The characteristic of RO allows 

user to construct model without knowing underlying stochastic distribution of 

uncertainties, which is usually unavailable in real world problems (Nemirovski, 2019). 
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2.2 Chemical Production Scheduling 

 Jung et al. (2004) proposed a multi-stage recourse model that takes demand 

uncertainty into consideration, which assumed the demand distribution as discrete 

scenarios and conduct multi-steps of wait-and-see process. However, the multi-stage 

recourse framework will cause exponential growth in problem size when the stage or 

scenario count increased. While Sand & Engell (2004) used two-stage recourse model 

considering both demand and yielding rate uncertainties as discrete scenarios as well. 

 As for RO approach, Lin et al. (2004) uses ellipsoidal set to take care demand and 

yielding rate uncertainties simultaneously, moreover, the robust counterpart model does 

not give more computation burden than the original one, which is different from multi-

stage models.  

The works of RL application on scheduling problem is relatively sparse but having 

good results, Riedmiller & Riedmiller (1999) adopted perceptron into Q-learning for 

production scheduling problem without considering uncertainties, which also supported 

the idea of our research motivation: “RL is better for frequent replanning cases because 

of its low computational burden in inferences.” The latest paper applied RL in chemical 

production scheduling problem we can find is the framework from (Hubbs et al., 2020), 

which is the one we targeted to enhance; the paper uses A2C method to describe the 

unknown demand distribution without giving assumptions, but as the conclusion it 
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mentioned: “Future research can explore possibilities for integrating DRL and 

optimization methods.” 

Our study is to improve the RL application in chemical production scheduling 

problem through operations research guiding methods, including deterministic and 

robust optimization; noted that different guiding methods bring different decision-

making style up, for instance, our study shows that RO guiding in the training phase 

will encourage network to take robust decisions. 

The comparisons of previous works in chemical material production scheduling 

problems with uncertainty are shown in Table 1. 
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Table 1 Comparisons of previous works in chemical material production scheduling problems with uncertainty 

Paper Methodology Uncertainty Decision making style Distribution assumption Computational time 

Demand Yielding rate 

Jung et al. (2004) Multi-stage recourse O X Wait-and-see, conservative 

before uncertainty revealed 

Required, separated into 

discrete scenarios 

Not considered 

Sand & Engell 

(2004) 

Two-stage recourse O O Wait-and-see, conservative 

before uncertainty revealed 

Required, separated into 

discrete scenarios 

Not considered 

Lin et al. (2004) Robust optimization O O Robust to uncertainty at the 

beginning 

Not required Not considered 

Riedmiller & 

Riedmiller (1999) 

Q-learning X X Target to maximum returns Not required Considered 

Hubbs et al. 

(2020) 

A2C O X Target to maximum returns Not required Considered 

This study A2C + OR guiding O O Self-definable 

(Robust as an example) 

Not required Considered 
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2.3 Oracle Guiding DRL 

Although there are several algorithms helps the convergence of neural network 

(NN) during the training phase, “an important but under-explored aspect is how to 

leverage oracle observation to facilitate learning.” (Han et al., 2022). i.e., information 

that is invisible during online decision making, but is available during offline training 

is usually unused. They combines Bayesian probability concept with oracle provided 

information, proposed a VLOG algorithm that significantly reduce training time in each 

RL classical cases. 

Suphx, an agent of playing a traditional Chinese game Mahjong developed by 

Microsoft, provides perfect information while training and gradually decay the 

information completeness from 1 to 0, which is sort of implementing a training 

guidance that instruct the learning process get into the swing faster (Li et al., 2020). 

Another state-of-the-art DRL project is AlphaGo developed by Google, which also 

adopt transfer learning as an approach of guidance instead of trial-and-error while the 

neuron network is ignorant at first. The information is not explicitly exposed to the 

learning algorithm but implicitly embedded in the pretrained model. The pretrained 

model took the games performed by human professional chess player as training set, 

and it learnt to predict next move after observing current status (Silver et al., 2016). It 

is a little different from VLOG and Suphx cases but with similar concept. 
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From the literatures surveyed so far, researches in the guidance of reinforcement 

learning are relatively lack. Although the robustness of RL algorithm is widely 

discussed, most of the literatures uses adversarial approach for training, which can hurt 

the generalization of model (Raghunathan et al., 2019) and with the disadvantage of 

non-convergence, overfitting, and mode-collapse (Andriushchenko & Flammarion, 

2020). Therefore, our research proposed a “Reinforcement Learning embedded with 

Robust Optimization” training framework; targeting to achieve the robustness in 

parameters and observations perturbations and boost the effectiveness of training 

progress. 

Table 2 shows the comparisons of previous works which adopted different kinds 

of guidance in the RL training phase. 

Table 2 Comparisons of previous works adopted guidance in RL training phase 

Paper Training phase guiding Target 

(Han et al., 2022) Bayesian probability Shorten training phase 

Improve explainability 

(J. Li et al., 2020) Decaying perfect information Shorten training phase 

Help convergence 

(Silver et al., 2016) Network transfer learning Shorten training phase 

Improve policy 
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This research Operations research Build up decision style 

  



doi:10.6342/NTU202401914

 

15 

 

Chapter 3 Methodologies 

The research framework is demonstrated in Section 3.1. In Section 3.2 we will 

describe the chemical material production scheduling problem as a mathematical model 

for a more formal and unambiguity illustration. Sequentially, the definition and details 

of the reinforcement learning model will be explained in Section 3.3. Lastly, in Section 

3.4, the OR-guiding algorithm is proposed. 

3.1 Research Framework 

The research framework is shown in Figure 1 Research framework: 

 

Figure 1 Research framework 

In the preparatory stage, we first construct a mathematical programming model for 

the chemical material production scheduling problem, designing the configurations of 
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parameters accordingly.Next, we implement methodologies including deterministic 

optimization with perfect information and expected value, robust optimization, and 

Advantage Actor Critic (A2C) as benchmarks.The third part introduces the operations 

research-guiding (OR-guiding) methodologies we propose, transitioning from A2C 

with deterministic optimization guidance to A2C with robust optimization guidance. 

Lastly, we carry out numerical analyses and result comparisons to draw conclusions for 

each model and provide suggestions for the use case of each methodology. 

3.2 Problem Definition 

3.2.1 Problem Description 

The problem definition of this study is based on the mathematical model 

constructed by Hubbs et al. (2020) with slight modification; we introduce the yielding 

rate uncertainty into the parameters, which is not included in the baseline paper. 

We defined an experiment period set 𝑃̂ (each period is one day), which contains 

all of the periods in a whole experiment, and a planning period set 𝑃 rolls in 𝑃̂ for 

each scheduling subproblems. For each time we plan or replan a schedule is to solve 

such a subproblem with period set 𝑃. Inside of the planning set 𝑃, we can distinguish 

two types of periods: fixed planning periods set 𝐹  and the remaining are unfixed 

planning periods, where 𝐹  is the first |𝐹| periods of 𝑃. The implication of fixed 

periods is that once a planning schedule has been determined, it cannot be changed due 
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to the operating procedures defined by the chemical plant. This implies that the main 

decision we make in a schedule pertains to the last |𝑃| − |𝐹| periods. The main idea 

of experiment period, planning period, and fixed period in Figure 2 Example of 

experiment setting are provided as an example, with the setting of |𝑃̂| = 30 |, |P| =

12, and |𝐹| = 5. 

 

Figure 2 Example of experiment setting 

In the scheduling problem, we must determine which type of chemical material 

product from the product set 𝐼 the machine should produce. The costs that should be 

taken into consideration include the transition cost 𝐶𝑖𝑗
𝑇 , which is incurred when 

transitioning from product 𝑖 ∈ 𝐼 to 𝑗 ∈ 𝐼; the unit inventory cost 𝐶𝑖
𝑆 for product 𝑖 ∈

𝐼; and the stockout cost 𝐶𝑖
𝐿 for product 𝑖 ∈ 𝐼. 

The reason for the transition cost is that switching products often leads to large 

fluctuations in processing temperature, which in turn yields off-grade material that 

cannot be sold and is thus counted as a discount term (Hubbs et al., 2020). Furthermore, 

the unit profit 𝑉𝑖 represents the reward for fulfilling the demand for each product 𝑖 ∈
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𝐼. The decision-making process aims to maximize the gross profit, i.e., the sum of the 

profits 𝑉𝑖 minus the costs 𝐶𝑖𝑗
𝑇 , 𝐶𝑖

𝑆, and 𝐶𝑖
𝐿. 

It is crucial to note that the demand 𝐷̃𝑖𝑝  and yielding rate 𝐴̃𝑖  are uncertain, 

meaning we cannot know the actual values (noted as 𝐷̂𝑖𝑝  and 𝐴̂𝑖𝑝 ) until the 

uncertainty is revealed over time. However, the value of 𝐷̃𝑖𝑝will gradually become 

more accurate as the current period gets closer to the predicted demand period in our 

experiment design, the details of which will be provided in the data simulation section. 

3.2.2 Mathematical Model 

As the scheduling problem described above, the sets and parameters are listed below: 

Sets 

𝐼 Product categories set. 

𝑃̂ Experiment periods set. 

𝑃 Planning periods set, which rolls in 𝑃̂ for each scheduling subproblems. 

𝐹 Fixed planning periods set, which is a subset of 𝑃 (the first |𝐹| periods of 𝑃). 

Parameters 

𝐶𝑖𝑗
𝑇  Transition cost from producing product 𝑖 to 𝑗, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼. 

𝐶𝑖
𝑆 Unit inventory cost of product 𝑖, ∀𝑖 ∈ 𝐼. 

𝐶𝑖
𝐿 Unit stockout cost of product 𝑖, ∀𝑖 ∈ 𝐼. 

𝑉𝑖 Unit profit of product 𝑖, ∀𝑖 ∈ 𝐼. 
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𝑆𝑖
𝐼 Initial inventory of product 𝑖, ∀𝑖 ∈ 𝐼. 

𝑋𝑖𝑓 Fixed production schedule for product 𝑖 in period 𝑓, ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹. 

𝐷̃𝑖𝑝 Predicted uncertain demand for product 𝑖 in period 𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃. 

𝐴̃𝑖 Nominal uncertain yield amount for product 𝑖 in unit period, ∀𝑖 ∈ 𝐼. 

𝐷̂𝑖𝑝 Actual demand amount for product 𝑖 in period 𝑝, which is not available when 

planning, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃.  

𝐴̂𝑖𝑝 Actual production amount for product 𝑖 in period 𝑝, which is not available when 

planning, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃. 

The decision variables used for the model are as follows: 

Decision Variables 

𝑥𝑖𝑝 The binary variable describes whether product is scheduled in a period, 1  if 

product 𝑖 is scheduled in period 𝑝, else 0, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 ∪ {𝑃−1}. 

Dependent Variables 

𝑦𝑖𝑝 The sales amount of product 𝑖 in period 𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃. 

𝑠𝑖𝑝 The inventory amount of product 𝑖 in period 𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 ∪ {𝑃−1}. 

𝑙𝑖𝑝 Stockout amount of product 𝑖 in period 𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃. 

𝑧𝑖𝑗𝑝 The binary variable describes whether transition happened in a period, 1  if 

transition from producing product 𝑖 to 𝑗 occurred, else 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼. 
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The aim of the scheduling model is to maximize the gross profit of the chemical 

production schedule. This includes sales profit derived from demand fulfillment, 

denoted as ∑ ∑ 𝑉𝑖𝑦𝑖𝑝𝑝∈𝑃𝑖∈𝐼 , the inventory cost for product storage represented by 

∑ ∑ 𝐶𝑖
𝑆𝑠𝑖𝑝𝑝∈𝑃𝑖∈𝐼 , the stockout cost due to unfulfilled demand indicated as ∑ 𝐶𝑖

𝐿𝑙𝑖𝑝𝑖∈𝐼 , 

and the transition cost, given by ∑ ∑ ∑ 𝐶𝑖𝑗
𝑇

𝑝∈𝑃𝑗∈𝐼,𝑗≠𝑖𝑖∈𝐼 𝑧𝑖𝑗𝑝. The objective function is 

illustrated in equation (1). 

𝑀𝑎𝑥 ∑∑𝑉𝑖𝑦𝑖𝑝 −∑∑𝐶𝑖
𝑆𝑠𝑖𝑝

𝑝∈𝑃

−∑𝐶𝑖
𝐿𝑙𝑖𝑝

𝑖∈𝐼

− ∑ ∑ ∑𝐶𝑖𝑗
𝑇

𝑝∈𝑃𝑗∈𝐼,𝑗≠𝑖𝑖∈𝐼

𝑧𝑖𝑗𝑝 

𝑖∈𝐼𝑝∈𝑃𝑖∈𝐼

 (3.1) 

The constraints of the model are listed below: 

𝑠𝑖𝑃0 = 𝑆𝑖
𝐼 , ∀𝑖 ∈ 𝐼 (3.2) 

𝑥𝑖𝑓 = 𝑋𝑖𝑗, ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹 ∪ {𝑃0} (3.3) 

𝑠𝑖𝑝 = 𝑠𝑖(𝑝−1) + 𝐴̃𝑖𝑥𝑖𝑝 − 𝐷̃𝑖𝑝 + 𝑙𝑖𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3.4) 

∑𝑧𝑖𝑗𝑝
𝑖∈𝐼

= 𝑥𝑗𝑝, ∀𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 (3.5) 

∑𝑧𝑖𝑗𝑝
𝑗∈𝐼

= 𝑥𝑖(𝑝−1), ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3.6) 

∑𝑥𝑖𝑝
𝑖∈𝐼

= 1, ∀𝑝 ∈ 𝑃 (3.7) 

𝑦𝑖𝑝 = 𝑚𝑖𝑛(𝐴̃𝑖𝑥𝑖𝑝 +  𝑠𝑖(𝑝−1), 𝐷̃𝑖𝑝), ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃  (3.8) 

𝑥𝑖𝑝 ∈ {0,1}, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 ∪ {𝑃0} (3.9) 

𝑧𝑖𝑗𝑝 ∈ {0,1}, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 (3.10) 

𝑠𝑖𝑝 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 ∪ {𝑃0} (3.11) 

𝑙𝑖𝑝 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3.12) 
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First of all, we denote 𝑃0 as the first period of the scheduling subproblem, and 

the parameters with tilde sign (~) show their uncertainties. Constraints (3.2) and (3.3) 

are related to the state initialization of each subproblem. Constraint (3.2) determined 

the initial inventory from the given parameter 𝑆𝑖
𝐼, and constraint (3.3) determined the 

production of each fixed planning period by 𝑋𝑖𝑗. Constraint (3.4) guaranteed the mass 

balance of production, inventory, and demand. Constraint (3.5) and (3.6) cooperate to 

identify the occurrence of production transition in each period. Constraint (3.7) ensured 

that for each period, only one of product type could be chosen to produce. Constraint 

(3.8) determined the sales amount of each period and product. Constraints (3.9) to (3.12) 

show the domain of each decision variables. 

3.3 Robust Optimization 

Robust optimization is a relative new branch in mathematical optimization field. In 

contrast to stochastic optimization, which starts by assuming the uncertainty has a 

probabilistic description, RO constructs a solution that is feasible for any realization 

of the uncertainty in a given set (Bertsimas et al., 2011). The general formulation of RO 

is shown in (3.13), where 𝑥  is a vector of decision variables, 𝑢𝑖  is the uncertain 

parameters, and 𝒰𝒾  is the corresponding uncertainty set for each constraint. After 

reductions and transformations, the uncertainty set within RO formulation will 

hopefully being transformed to a new formulation, i.e., robust counterpart. An easy 



doi:10.6342/NTU202401914

 

22 

 

analogy of “robust counterpart” is like a twin of the previous RO formulation. A robust 

counterpart is less structural (less human readable), but interpretable or solvable for 

most solver engine, e.g., Gurobi, CPLEX, etc. The transformation process may involve 

many mathematical theories, we will omit it in this work but can be retrieved from 

Lectures on Robust Convex Optimization (Nemirovski, 2019).  

𝑚𝑖𝑛 𝑓0(𝑥) 

𝑠. 𝑡.    𝑓𝑖(𝑥, 𝑢𝑖) ≤ 0, ∀𝑢𝑖 ∈ 𝒰𝒾, 𝑖 = 1, … ,𝑚 

(3.13) 

𝒰𝒾 can be determined by several approaches (we will only introduce three of them for 

illustrations):  

Ellipsoidal uncertainty 

Ben-Tal and Nemirovski (Ben-Tal & Nemirovski, 1999) consider ellipsoidal 

uncertainty sets, where 𝒰  is given as (3.14) and the robust counterpart of this 

formulation will become (3.15), which is a second-order-cone programming. 

𝒰 = {(𝒂𝟏, … , 𝒂𝒎): 𝑎𝑖 = 𝑎𝑖
0 + Δ𝑖𝑢𝑖  , 𝑖 = 1, … ,𝑚, ||𝑢||2  ≤  𝜌}  (3.14) 

𝑚𝑖𝑛 𝒄𝑻𝒙 

𝑠. 𝑡.    𝒂𝒊
𝟎𝒙 ≤ 𝑏𝑖 − 𝜌||Δ𝑖𝒙||2, ∀𝑖 ∈ 1,… ,𝑚  

(3.15) 

Polyhedral uncertainty 

Polyhedral uncertainty can be viewed as a special case of ellipsoidal uncertainty (Ben-

Tal & Nemirovski, 1999). Consider a mathematical programming in (3.16), the dual of 
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the inner maximization problem is (3.17), which can be simplified to a robust 

counterpart (3.18). 

𝑚𝑖𝑛 𝒄𝑻𝒙 

𝑠. 𝑡.       𝑚𝑎𝑥{𝑫𝒊𝒂𝒊≤𝒅𝒊}𝒂𝒊
𝑻𝒙 ≤ 𝑏𝑖 , ∀𝑖 = 1,… ,𝑚 

(3.16) 

𝑚𝑖𝑛 𝒑𝒊
𝑻𝒅𝒊 

𝑠. 𝑡.      𝑝𝑖
𝑇𝐷𝑖 = 𝑥 

             𝑝𝑖 ≤ 0  

(3.17) 

𝑚𝑖𝑛 𝒄𝑻𝒙 

𝑠. 𝑡.     𝑝𝑖
𝑇 ≤ 𝑏𝑖,      ∀𝑖 = 1,… ,𝑚 

            𝑝𝑖
𝑇𝐷𝑖 = 𝑥,   ∀𝑖 = 1,… ,𝑚 

            𝑝𝑖 ≤ 0,        ∀𝑖 = 1,… ,𝑚 

(3.18) 

Cardinality constrained uncertainty 

Bertsimas and Sim (Bertsimas & Sim, 2004) define a family of polyhedral uncertainty 

sets that encode a budget of uncertainty into cardinality constraints (3.19), and can be 

transform to a robust counterpart (3.20), which is a tractable linear optimization 

problem.  

𝑚𝑖𝑛 𝒄𝑻𝒙 

𝑠. 𝑡.    ∑𝑎𝑖𝑗𝑥𝑗
𝑗

+𝑚𝑎𝑥{𝑆𝑖⊆𝐽𝑖}∑𝑎̂𝑖𝑗
𝑗∈𝑆𝑖

𝑦𝑗 ≤ 𝑏𝑖 ,     1 ≤ 𝑖 ≤ 𝑚, 

     −𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑦𝑗 ,                                               1 ≤ 𝑗 ≤ 𝑛, 

(3.19) 
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     𝒍 ≤ 𝒙 ≤ 𝒖 

           𝒚 ≥ 𝟎 

𝑚𝑖𝑛 𝒄𝑻𝒙 

𝑠. 𝑡.∑𝑎𝑖𝑗𝑥𝑗
𝑗

+ 𝑧𝑖Γ𝑖 +∑𝑝𝑖𝑗
𝑗

≤ 𝑏𝑖,           ∀𝑖, 

    𝒛𝒊 + 𝒑𝒊𝒋 ≥ 𝑎̂𝑖𝑗𝒚𝒋,                                   ∀𝑖, 𝑗, 

    −𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑦𝑗 ,                                       ∀𝑗, 

    𝒍 ≤ 𝒙 ≤ 𝒖, 

    𝒑 ≥ 𝟎, 

    𝒚 ≥ 𝟎. 

(3.20) 

In this paper, we will adopt Cardinality constrained uncertainty set RO as a 

guidance for DRL training process. 

3.4 Reinforcement learning model 

3.4.1 Model design 

The agent is modeled using a deep neural network consisting of three hidden layers, 

each comprising 256 nodes. The rectified linear unit (ReLU) activation function (3.21) 

is used for these layers: 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (3.21) 

σ(𝑥)𝑚 =
𝑒𝑥𝑚

∑ 𝑒𝑥𝑚𝑀
𝑚=1

, ∀𝑚 ∈ 𝑀 (3.22) 
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The output of the network employs a softmax function (3.22), resulting in a 

probability distribution of the discrete actions 𝐴. An action, denoted by 𝑎, is sampled 

from A. This action corresponds to 𝑥𝑖𝑝 in the mathematical model (MM), indicating 

the product to be scheduled in a particular period. In other words, the product to be 

produced in each period is determined by a single forward propagation of the state, and 

a complete schedule is generated through successive propagations. 

For instance, as shown in Figure 3 Demonstration of RL episode, illustrates a 

schedule where the number of products and the planning horizon length are both equal 

to 4. In each step of the RL agent, a one-hot-encoded output is sampled and assigned to 

𝑥𝑖𝑝. 

 

Figure 3 Demonstration of RL episode 

An "episode" or a "schedule" is considered complete once all periods have been 

traversed. According to this schedule, the factory will commence production for one 

period. After the lapse of a period, the next episode begins, and the process depicted in 

the last figure is repeated. Notably, in the plan for the next period, there are fixed 

planning horizons, as exemplified by the first two periods in each episode in Figure 4. 
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Figure 4 Demonstration of an experiment 

3.4.2 State definition 

The state information, which includes inventory levels, one-hot-encoded current 

schedules, forecasted demand, estimated stockout, and other parameters of the problem, 

is provided to the network. This information enables the network to determine the 

appropriate action to take and assess the current situation. 

The inventory level state simply reflects the current inventory of each product, 

represented as an ordered list of size |𝐼|. The current schedules provide the determined 

schedule information, with unplanned periods filled with zeros. The forecasted demand 

for each future period is also available. It's worth noting that the demand values used 

here are assigned with 𝐷̃𝑖𝑝 rather than 𝐷̂𝑖𝑝 to prevent data leakage since uncertainties 

are not revealed during planning. The estimated stockout count for each product type 

is calculated by subtracting the sum of inventories and production from predicted 

demands 𝐴̃𝑖𝑥𝑖𝑝  + 𝑠𝑖𝑝 − 𝐷̃𝑖𝑝. As it aids network convergence, it's also considered part 

of the state information. 
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In addition to the state information resulting from the last action, constant 

parameters 𝐶𝑖𝑗
𝑇 , 𝐶𝑖

𝑆, 𝐶𝑖
𝐿, 𝑉𝑖 and the time counter parameter 𝑡 are also incorporated. 

The inclusion of these constant parameters is intended to generalize the agent, enabling 

it to adapt to different parameter settings in different scenarios. 

Lastly, min-max normalization is applied to each type of value, padding zeros are 

added to the edge periods, and everything is concatenated into a 1D array to serve as 

the model input, as illustrated in Figure 5. 

 

Figure 5 State encoding 

3.4.3 Reward definition 

The definition of reward is essentially the change in objective value that occurs 

after a particular action is taken. For instance, if a certain product 𝑖 is manufactured in 

a step, the environment will compute the repercussions of this production. If this 

production will satisfy future demand, it would lead to a decrease in the estimated 

stockout count, thereby resulting in an increased objective value. In this case, the 

reward for this step would be the contribution to the improvement in the objective, that 

is, the original objective value minus the new objective value. 
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3.5 Proposed OR-Guiding Algorithm 

3.5.1 Training Workflow 

The workflow of the proposed OR-guiding framework for the described problem is 

shown as Figure 6: 

 

Figure 6 Training workflow 

To train an agent that can be applied in variable scenarios, for example, different 

product selling profit, transition cost, etc., the training set have to include multiple 

combination of constant parameters instead of single setting. Therefore, we designed a 

parameter generator that can random sample a parameter set which is reasonable (will 

be discussed in data simulation section). Given that the training process of RL need to 

experience the same trajectory for multiple times to actually learn from it (Zhang & 

Sutton, 2018), we store the generated parameter set as an individual scheduling problem 

in a space called “scheduling problem pool”. In training phase, one of the scheduling 
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problems in the pool will be cyclically sampled as an experiment (the concept is near 

to experience replay), and a rolling window handler will transform the experiment into 

episodes of daily scheduling problems for the agent to experience. 

After the reception of daily problem, which is an environment for the agent to 

interact with, the agent will try to take action on it. Then we will examine the output 

action distribution, once if we consider guidance is needed, the oracle (MM solver) will 

be invoked and optimal action substitute the original action. 

The agent is composed by A2C method with small modifications: The gradient 

calculation and update block remains the same while oracle is not involved, else we 

will calculate “oracle critic value error” and “oracle advantage actor gradient” for critic 

and actor network, respectively. The detail of those update method will be explained in 

Section 3.5.2. 

3.5.2 Algorithm Implementation 

In order to illustrate, we utilize the Reinforcement Learning embedded with 

Robust Optimization (RLeRO) as an example to demonstrate the use of the OR-guiding 

framework. The pseudocode of the framework can be found in Table 3. 

Before we delve into the algorithm, it's important to understand the update formula 

of the Advantage-Actor-Critic (A2C) method, which is a prerequisite. We denoted state 

of step 𝑡 in episode 𝑛 as 𝑠𝑡
(𝑛)

 and action as 𝑎𝑡
(𝑛)

,  
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In the actor-critic method, the actor learns a policy network denoted by 𝜃, which 

is updated by the policy gradient as shown in Formula (3.15). This gradient is weighted 

by the Q-value, as determined by the critic network. For instance, if the Q-value is small 

or even negative, it implies that the given action 𝑎 is not encouraged in the state 𝑠. 

Consequently, the gradient update corresponding to each state-action pair will influence 

the probabilities of actions output from the policy network. 

The A2C learning algorithm introduces an advantage function 𝐴(𝑠𝑡
(𝑛), 𝑎𝑡

(𝑛)) 

(3.24) instead of the Q-value function 𝑄(𝑠𝑡
(𝑛), 𝑎𝑡

(𝑛)) defined in Formula (3.23). In 

Formula (3.26), which is the approximation of (3.24), we can see that 𝐴′ is derived by 

calculating the sum of current reward and discounted state value with a discount rate 

𝛾, then minus the previous state value. Ultimately, the critic gradient is derived as 

shown in Formula (3.27). 

1

𝑁
∑ ∑ 𝑄(𝑠𝑡

(𝑛)
, 𝑎𝑡
(𝑛)
)

𝑇𝑛
𝑡=1

𝑁
𝑛=1 ⋅ ∇𝜃𝑙𝑜𝑔𝑝𝜃(𝑎𝑡

(𝑛)|𝑠𝑡
(𝑛)). (3.23) 

𝐴(𝑠𝑡
(𝑛), 𝑎𝑡

(𝑛)) = 𝑄(𝑠𝑡
(𝑛), 𝑎𝑡

(𝑛)) − 𝑉(𝑠𝑡
(𝑛)
) (3.24) 

𝑄(𝑠𝑡
(𝑛), 𝑎𝑡

(𝑛)) (3.25) 

𝑟(𝑛) + 𝛾𝑉(𝑠𝑡+1
(𝑛)) − 𝑉(𝑠𝑡

(𝑛)) = 𝐴′(𝑠𝑡
(𝑛), 𝑎𝑡

(𝑛)). (3.26) 

∇𝜃𝑉 ∑
1

𝑇𝑛

𝑇𝑛
𝑡=1 𝐴′(𝑠𝑡

(𝑛), 𝑎𝑡
(𝑛)|𝜃𝑉)

2

. (3.27) 
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Table 3 Robust optimization embedded A2C learning algorithm framework 

Requirements: 

• A differentiable policy parameterization 𝜋(𝑎|𝑠, 𝜃𝜋). 

• A differentiable state-value parameterization 𝑉(𝑠|𝜃𝑉). 

• Select step-size hyper-parameters 0 < 𝛼𝜋, 𝛼𝑉 ≤ 1. 

• Select guiding-threshold hyper-parameter 𝜌 > 0. 

1:  Initialize the parameters 𝜃𝑉 , 𝜃𝜋. 

2:  for 𝑁 episodes do: 

3:      Initialize the episode with 𝑠0 

4:      for 𝑇 steps in episode do: (∀𝑡 ∈ 𝑇) 

5:          Get action probability distribution 𝑝𝑎 from current policy 𝜋(𝑠𝑡, 𝜃𝜋) 

6:          if  entropy(pa) >  𝜌: 

7:              RO invoked and get action 𝑎𝑡. 

8:              Get realized objective as total return:  

𝑓 ← RO_solver. 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑜𝑏𝑗() 

9:              Calculate return: 𝑅𝑡 ← 𝑓 − 𝑓<𝑡 

10:             Take action 𝑎𝑡 and observe reward 𝑟𝑡 and new state 𝑠𝑡+1. 

11:             Calculate baseline:  

𝑏 ← RO_solver. 𝑓𝑖𝑥_𝑎𝑐𝑡𝑖𝑜𝑛(argmax
a
(p

a
)). 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑜𝑏𝑗() 

12:             Calculate advantage: Δ𝑡 ← 𝑅𝑡 − 𝑏 

13:             Calculate partial critic loss: 𝜅𝑡 ←  𝑅𝑡 − 𝑉(𝑠𝑡|𝜃𝑉) 

14:         else: 

15:             Get action 𝑎𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎(𝑝𝑎)  

16:             Take action 𝑎𝑡, observe reward 𝑟𝑡 and new state 𝑠𝑡+1 

17:             Calculate advantage: Δ𝑡 ← 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1|𝜃𝑉) − 𝑉(𝑠𝑡|𝜃𝑉) 

18:             Calculate partial critic loss: 𝜅𝑡 ←  Δ𝑡 

19:     Calculate actor loss: ℒ(𝜃𝜋) ← −
1

𝑇
∑ Δ𝑡𝑙𝑜𝑔(𝜋(𝑎𝑡|𝑠𝑡, 𝜃𝜋))
𝑇
𝑡  

20:     Calculate policy entropy:  

𝐻(𝜋(𝑎𝑡|𝑠𝑡, 𝜃𝜋)) ← −∑𝜋(𝑎𝑡|𝑠𝑡, 𝜃𝜋)

𝑖

𝑙𝑜𝑔 𝜋(𝑎𝑡|𝑠𝑡, 𝜃𝜋) 
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21:     Update actor: 𝜃𝜋 ≔ 𝜃𝜋 + 𝛼𝜋 (∇𝜃𝜋ℒ(𝜃𝜋) + 𝛽∇𝜃𝜋𝐻) 

22:     Calculate critic loss: ℒ(𝜃𝒱) =
1

𝑇
∑ (𝜅𝑡)

2𝑇
𝑡  

23:     Update critic: 𝜃𝑉 ≔ 𝜃𝑉 + 𝛼𝑉∇𝜃𝑉ℒ(𝜃𝑉) 

Result: trained actor network 𝜃𝜋 and critic network 𝜃𝒱. 

The RLeRO training algorithm (Table 3 Robust optimization embedded A2C 

learning algorithm) inherits the framework from A2C, albeit with some modifications, 

as underlined in the pseudocode. The differences, marked in bold, will be explained 

according to their order of execution: 

In line 6, we want the RO solver to step in when the agent hesitates among 

potential actions. This hesitation often stems from two reasons: (1) imminent risks due 

to unrevealed uncertainty, and (2) the neural network not having learned from similar 

conditions yet. In both cases, the action distribution outputted by the policy network 

will have a large entropy. We set up a threshold 𝜌 for this entropy: if the entropy is 

greater than the threshold, the learning process will enter the "RO guiding block"; 

otherwise, the original A2C will be employed. 

For lines 8 and 9: in the "RO guiding block," the expected return (the sum of 

remaining rewards) is calculated differently due to the extra information provided by 

the RO solver. The return 𝑅𝑡 is set to the 𝑅𝑂_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑜𝑏𝑗≥𝑡, which represents the 

actual return after adopting the RO solution. This value will be used to calculate the 

advantage and partial critic loss in the "RO guiding block." 
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For lines 11 and 12: the concept of a "Baseline" is central to the A2C algorithm as 

it aids in the convergence of the actor network. However, in the "RO guiding block," 

the state-value function is not a suitable baseline because it is unstable and can 

potentially undermine the information provided by the guiding process. As a substitute, 

we fix the decision variable for the action in the RO model to argmax
a
(p

a
)  and 

calculate its realized objective value (denoted as 𝑏  in the pseudocode). This is a 

reasonable approach because the two objective values are on the same scale and are 

thus comparable. The next step involves subtracting 𝑏 from the return 𝑅𝑡 to obtain the 

advantage value. 

The final difference is observed in line 13, where the critic loss compiles partial 

critic loss from each step (line 22). The partial critic loss 𝜅𝑡 from the "RO guiding" 

process is defined by 𝑅𝑡 − 𝑉(𝑠𝑡|𝜃𝑉), which means the return minus the state-value. 

The loss function can help the value network 𝜃𝑉 to better approximate the current state-

value by learning from the actual (realized) return. 
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Chapter 4 Numerical Studies 

In Chapter 4, we conduct a series of numerical experiments to evaluate the 

effectiveness of our proposed methods. Initially, we specify the computer and software 

used in these experiments in Section 4.1. In Section 4.2, we detail the configurations of 

the parameter generator. 

Section 4.3 introduces our models and provides an analysis of their sensitivity 

against uncertainty parameters. Following this, in Section 4.4, we select suitable 

scenarios for further exploration. In Section 4.5, we present comparisons of execution 

time across different models. Lastly, in Section 4.6, we calculate the similarity of Gantt 

charts to verify the decision-making style of each model. 

4.1 Environment Setup 

All of the experiments conducted in this study were performed on a computer 

equipped with an AMD Ryzen 5 5600 6-Core Processor running at 3.50 GHz, supported 

by 16.0 GB of memory, and utilizing an NVIDIA GeForce RTX 3060 GPU. 

On the software side, the experimental codes were implemented in Python, 

specifically version 3.8.10. Optimization models were solved using Gurobi version 

10.0.1 (Gurobi Optimization LLC, n.d.). All neural networks were defined and trained 

using PyTorch, version 1.13.1. 
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4.2 Data Simulation 

4.2.1 Basic Configurations 

The high-level parameters for this study are outlined in Table 4. The length of the 

experiment horizon and the size of the planning window were selected based on the 

scale of the problem we needed to investigate further. The number of product types is 

derived from (Hubbs et al., 2020), which reflects the capabilities of an existing chemical 

material production machine. The fixed horizon for each window also aligns with the 

baseline paper, adhering to real-world procedural rules. 

Table 4 Experiment parameters 

Notation Description Setting 

|𝐼| Product type count  4 

|𝑃̂| Experiment horizon length 90 

|𝑃| Planning window size 15 

|𝐹| Fixed horizon in each window 7 

4.2.2 Parameter Definitions 

Instead of defining the precise value for each parameter, we established lower and 

upper bounds for the parameter generator. The following ranges have been specified 

(Table 5):  

Table 5 Range of parameters 

Notation Description Setting 
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𝐴̂_𝑙𝑏 Lower bound of yielding rates 90 

𝐴̂_𝑢𝑏 Upper bound of yielding rates 100 

𝐷̂_𝑙𝑏 Lower bound of demands 80 

𝐷̂_𝑢𝑏 Upper bound of demands 120 

𝑉_𝑙𝑏 Lower bound of profits 25 

𝑉_𝑢𝑏 Upper bound of profits 35 

Our parameter generator will draw samples from a uniform distribution to enrich 

the variety within the scheduling problem pool mentioned in Section 3.4.1 (as listed in 

the table). Although 𝐴̂𝑖𝑝 and 𝐷̂𝑖𝑝 are generated at the outset and stored in the pool, 

they remain inaccessible during training and inferencing to prevent data leakage. The 

only instance these two parameters come into play is during the evaluation phase; 

agents or optimization models can only access the estimated yielding rates and demands. 

The notations are listed in Table 6. 

Table 6 Sampling methods 

Notation Description Setting 

𝐴̂𝑖𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 True yielding rate of each 

product in each period 

~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝐴̂_𝑙𝑏, 𝐴̂_𝑢𝑏) 

𝐷̂𝑖𝑝 , ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 True demand of each 

product in each period 

~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝐷̂_𝑙𝑏, 𝐷̂_𝑢𝑏) 
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𝑉𝑖 , ∀𝑖 ∈ 𝐼 Sales profit of each 

product 

~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑉_𝑙𝑏, 𝑉_𝑢𝑏) 

𝑆𝑖
𝐼  , ∀𝑖 ∈ 𝐼 Initial inventory of each 

product 

~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝐷̂_𝑙𝑏, 𝐷̂_𝑢𝑏) 

The remaining parameters depend on those previously mentioned and are listed in 

Table 7. 𝐶𝑖𝑗
𝑇  represents transition costs. The transition process leads to the production 

of partial unsellable off-grade materials in subsequent periods. Hence, the cost is 

calculated by multiplying the sales profit of the next product, the yielding rate of the 

next product, and a constant factor of 0.2 (Hubbs et al., 2020). The definitions of 

inventory cost 𝐶𝑖
𝑆 and stockout cost 𝐶𝑖

𝐿 are similar: we assume that the more valuable 

a product is, the more it costs to store or the higher the cost of stockout. 

Uncertain parameters are treated differently in different models. However, all 

models share the same estimated values for these parameters. In the real-world 

scheduling problem, while we don't know the actual demand during planning, there 

exists some estimation of it. For instance, the sum of pre-order tickets may represent 

future demand. Still, they are subject to change, and we can expect that the further in 

time the order ticket is, the more likely it is to be modified. Consequently, we designed 

a demand distortion parameter Δ, which describes the rate of demand value distortion 

over periods. As illustrated in Figure 7, each 𝐷̃𝑖𝑝 is subject to increased perturbation 
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as period 𝑝 increases. This figure shows the relationship between actual and estimated 

demand, revealing that the estimation error gradually grows due to random noises. 

For the yielding rate, which falls between its lower and upper bounds, a naive 

estimate is its average value. 

Table 7 Depending parameters 

Notation Description Setting 

𝐶𝑖𝑗
𝑇 ,  

∀𝑖, 𝑗 ∈ 𝐼 

Transition costs from 

product 𝑖  to product 𝑗  

𝑉𝑗 ⋅ 𝐴𝑗
∗ ⋅ 0.2 

𝐶𝑖
𝑆 Inventory costs of products 𝑉𝑖 ⋅ 0.2 

𝐶𝑖
𝐿 Stockout costs of products 𝑉𝑖 ⋅ 0.3 

𝐴̃𝑖 Estimated yielding rates 
𝐴̂_𝑙𝑏 + 𝐴̂_𝑢𝑏

2
 

Δ Demand distortion rate 3 

𝐷̃𝑖𝑝,  

∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 

Estimated demands, 

fluctuation increased by 

periods 

~𝑢𝑛𝑖𝑓𝑜𝑟𝑚

(

 
(1 − Δ ⋅

𝑝 − 𝑃0
|𝑃|

) 𝐷̂𝑖𝑝,

(1 + Δ ⋅
𝑝 − 𝑃0
|𝑃|

)𝐷̂𝑖𝑝 )
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Figure 7 Demand simulation and its errors 

4.3 Model Description and Sensitivity Analysis 

4.3.1 Model Descriptions 

The Perfect Information Deterministic Optimization (PIDO) model, having access 

to perfect information from the outset, including uncertain parameters, is capable of 

crafting optimal solutions based on pre-sampled yielding rates and actual demands. 

This makes its decisions the most effective and efficient. Consequently, it is considered 

a benchmark against other optimization-based models. 

The Expected Value Deterministic Optimization (EVDO) model addresses 

uncertainty by employing expected values. However, in our use-cases, there are no 

predefined statistical distributions, so we utilized the mean of the range of uncertain 
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parameters and distorted demands to estimate the schedules. Since EVDO doesn't 

account for any other potential data points for each parameter, it is prone to disruptions 

and this could destabilize its scheduling significantly. This is particularly apparent in 

scenarios with high distortion rates, where the resulting schedule may fail to meet the 

actual demand, leading to an increase in stockouts and adversely affecting the stability 

of the realized objective. 

On the other hand, Robust Optimization (RO) is an optimization approach 

characterized by robust decision-making. It often makes conservative actions to avoid 

infeasibility in data perturbations. However, such a decision style may lead to a trade-

off in some optimality. This trade-off, though, is highly worthwhile in scenarios that 

necessitate greater planning stability. 

4.3.2 Sensitivity Analysis 

To select an appropriate fluctuation parameter, we conducted a sensitivity analysis, 

employing 30 replications (Figure 8 Optimization-based models delta sensitivity 

analysis). The PIDO model is not influenced by the distortions, which means it can 

consistently make optimal decisions and achieve the maximum objective value. The 

EVDO model, only able to observe distorted demands, sees its objective value decrease 

as delta increases. As for the RO model, which tends to adopt relatively conservative 

actions, it sacrifices some objective values to achieve more robust results against 
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demand distortion. The intersection of PIDO and RO occurs at delta = 3.0. This implies 

that if the demand distortion rate exceeds 3.0, the conservative decisions made by the 

RO model will ultimately yield better results than the EVDO model. 

 

Figure 8 Optimization-based models delta sensitivity analysis 

As for the three RL-based models, their performance is depicted in Figure 9. The 

simple A2C model without any guidance yielded the lowest objective value, regardless 

of how the demand distortion changed. The two models with guidance, namely 

A2C+DO and RLeRO, didn't show big differences in objective value when the 

distortions were small. However, when the distortion rate increased to 2.0, the A2C 
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model guided by RO (named RLeRO) demonstrated stability in objective values.

 

Figure 9 RL-based models delta sensitivity analysis 

Both the optimization and RL approaches showed intersections at the value of 

delta = 3.0, so we will conduct further investigations in these scenarios in section 4.4. 

To explore the influence of all uncertain variables in the RLeRO model, we also 

conducted a two-dimensional sensitivity analysis with 5 replications, as shown in Table 

8. The results reveal a declining trend in objective values as both Δ and the yielding 

rate sample range (YRSR) increase. 

Table 8 Two-dimensional (YRSR & Δ) sensitivity analysis 

YRSR\Δ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

0 583,413 

(3,141) 

575,313 

(3,460) 

568,285 

(4,679) 

565,447 

(5,483) 

570,411 

(6,578) 

557,310 

(7,318) 

557,715 

(7,920) 

553,939 

(9,446) 

0.1 580,249 

(3,222) 

575,223 

(3,660) 

567,821 

(4,933) 

565,498 

(5,567) 

556,501 

(6,829) 

556947 

(7,356) 

557,601 

(8,913) 

554,173 

(9,862) 

0.2 578,952 

(3,349) 

575,106 

(3,725) 

566,366 

(4,968) 

564,997 

(5,633) 

557,063 

(7,217) 

557,211 

(7,542) 

555,408 

(9,298) 

552,382 

(9,863) 

0.3 579,431 

(3,442) 

575,006 

(3,862) 

565,264 

(5,098) 

565,510 

(5,919) 

556,880 

(7,250) 

556,885 

(7,685) 

556,019 

(9,348) 

551,766 

(9,930) 

0.4 578,407 576,757 570,845 565,592 556,751 556,631 555,807 550,708 
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(3,449) (4,264) (5,194) (5,998) (7,292) (7,881) (9,394) (9,985) 

4.4 Solution Value Analysis 

4.4.1 Descriptive Statistics 

As mentioned in Section 4.3, we selected high demand distortion cases where RO 

outperformed EVDO and RLeRO surpassed A2C + DO, demonstrating their robustness. 

The results for the three optimization-based models are shown in Table 9 

Optimization-based models’ objective statistics. The RO model had better objective 

and standard deviation values than EVDO. As expected, the improvement in both mean 

and standard deviation becomes more pronounced as the distortion parameter increases. 

We chose the edge case primarily for easier observation. 

Table 9 Optimization-based models’ objective statistics 

Model 

Realized  

obj. Mean 

Realized 

obj. Std. 

Gap on obj. mean Note 

PIDO 671,540 0 - Benchmark 

EVDO 628,473 29,562 6.41% - 

RO 630,003 23,875 6.18% 

Improve 19.23% in std. 

versus EVDO  

The comparison of the three RL-based models is shown in Table 10 RL-based 

models’ objective statistics. Without specific design of network structure and hyper-

parameters, the A2C method achieved about 81% of the benchmark's performance. 
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However, its performance in terms of standard deviation is not ideal, with an increase 

of nearly 30% compared to the EVDO. 

The proposed guiding framework in this paper aims to improve learning 

effectiveness in the early stages of model training and in situations with dilemmas, by 

using mathematical optimization to guide subproblems. In the first experiment, DO was 

used as the guiding engine, resulting in a 4% increase in the realized objective value 

compared to A2C, reaching 82% of the benchmark, and a 11% reduction in standard 

deviation. 

For application scenarios that require higher stability, both A2C and A2C+DO guiding 

still need further improvement in terms of standard deviation. Therefore, the second 

experiment aimed to bring about a change in decision-making style through the guiding 

process during learning. We used RO as the guiding engine and observed that the model 

indeed learned to adopt a more conservative strategy during inference, which achieved 

a 9% reduction in standard deviation. This final model is named as Reinforcement 

Learning embedded with Robust Optimization, abbreviated as RLeRO. 

Table 10 RL-based models’ objective statistics 

Model 

Realized  

Obj. 

Mean 

Realized 

Obj. Std. 

Improvement 

on obj. mean 

Improvement 

on obj. std 

Note 
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A2C 528,541 38,426 - - Baseline 

A2C + DO 549,265 34,013 3.92% 11.48% 

Better than 

baseline 

RLeRO 

(A2C + RO) 

557,715 30,650 5.52% 20.23% 

Better than 

A2C + DO 

4.4.2 Evaluation Metrics 

For research with probability distribution assumptions, the "expected value of 

perfect information (EVPI)" and the "value of stochastic solution (VSS)" can be used 

to identify the value of stochastic programming. However, all of the experiments 

mentioned above were conducted without assuming statistical distributions, meaning 

that VSS is not applicable in our cases. Since our major discussion revolves around 

robustness against parameter fluctuation, we borrow the idea of VSS and substitute it 

with a metric known as "price of robustness (PR)" (Chassein & Goerigk, 2016). 

The main concept of PR is to compute the distance between the EVDO and robust 

solution (RS) in terms of objective value (4.1). In our research case, we calculate the 

mean PR of 30 replications at different distortion rates. 

In real-world situations, we cannot know the demand fluctuation, i.e., the 

distortion coefficient, in advance. Thus, we analyze the price of robustness in different 

scenarios to determine the best application of robust models. The results are shown in 
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Figure 10: We observe a negative trend in the price of robustness for both RLeRO and 

RO models, which indicates that the sacrifice of applying a robust solution diminishes 

as the fluctuation rate increases. In cases with high demand fluctuation, it is even more 

beneficial to adopt conservative policies. 

𝑃𝑅 =  𝐸𝑉𝐷𝑂 – RS (4.1) 

 

Figure 10 Price of robustness for Robust models 

The EVPI is calculated by subtracting the PIDO from the wait-and-see (WS) 

objective value (2), which represents how much a decision-maker would be willing to 

pay for perfect information. The WS models are those we want to evaluate. In our case, 

we want to show that the robust models are less needed of accurate (perfect) 

information, i.e., low EVPI values. 

In our case, we separate the calculation result into two figures - optimization-based 

(Figure 11) and RL-based (Figure 12) - to compare them to their respective baseline 
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models. We can observe that in the optimization-based group, the EVPI value of DO 

surpasses that of RO at high demand distortion rates. For the RL-based group, RLeRO 

has the lowest value compared to the others. These results demonstrate that the robust 

models are more resilient to imperfect information. 

𝐸𝑉𝑃𝐼 =  𝑃𝐼𝐷𝑂 – WS (4.2) 

 

Figure 11 EVPI of Optimization-based models 

 

Figure 12 EVPI of RL-based models 
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4.5 Execution Time Analysis 

In traditional optimization methods, there is no distinction between training and 

inference. The process begins with constructing a mathematical model for the 

scheduling problem, which is then solved using an optimizer to obtain the optimal 

solution. Each rescheduling event requires solving the problem with different inputs, 

and the required time grows quickly with the size of the problem. Conversely, in RL 

applications, the initial step involves model training, which is the most computationally 

intensive part of the entire process. Solving a scheduling problem simply necessitates 

running inference once, a process that takes relatively less time compared to training. 

This gives RL an advantage in scenarios requiring frequent rescheduling. Moreover, as 

long as state information is effectively designed for input parameters, the same model 

can be used for inference and scheduling across different parameter settings. 

Figure 13 presents a comparison of the time consumption among various models 

for different problem sizes (planning horizon lengths). As the bottleneck for RL lies in 

the training phase, the training time serves as the comparison metric for the solver. Each 

data point denotes the average result from 20 experiments. It can be observed that both 

the deterministic model and the robust optimization model display an exponential-like 

growth in solving time, failing to converge within the set time limit of 3000 seconds 

when the planning horizon exceeds 60. The general A2C method, however, has a 
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significantly slower growth curve and surpasses traditional optimization methods when 

the problem size approaches 50. Our proposed guiding framework, which solves and 

guides the model's uncertain subproblems during the training process, necessitates more 

time in the training phase compared to a simple A2C model. However, compared to 

models with exponential growth, this computational burden is still within an acceptable 

range. 

 

Figure 13 Bottleneck time consumption of each model 

Regarding the inference time for the RL model, which refers to the time consumed 

during the forward propagation of state information through the network, it is extremely 

minimal when compared to RL training and MM solving. The mean inference time 

consumption across different planning horizons, calculated from 30 replications, is 

shown in Table 11. From these results, we can observe that the differences in inference 

time across different planning horizons are small enough to be negligible. 
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Table 11 Inference time of RL-based models 

Model |P| = 10 |P| = 20 |P| = 40 |P| = 60 

A2C 0.09s (0.02) 0.09s (0.03) 0.09s (0.02) 0.11s (0.02) 

A2C+DO 0.09s (0.02) 0.09s (0.03) 0.09s (0.01) 0.10s (0.02) 

RLeRO 

(A2C + RO) 

0.09s (0.02) 0.09s (0.02) 0.08s (0.02) 0.09s (0.02) 

4.6 Gantt Similarity Analysis 

To examine the differences between models, we calculate a "Gantt similarity" 

score for each combination of models based on 30 replications (Table 12). The 

similarity score is determined by comparing the production decisions in segments of 

the schedule, where the proportion of matching segments represents the similarity. 

We observe a significant similarity gap between RL-based and optimization-based 

methods. However, when guiding methods are introduced, this gap narrows 

considerably. 

Table 12 Gantt similarities between models 

 EVDO RO A2C A2C + DO RLeRO 

(A2C + RO) 

EVDO 1 93.55% 

(8.24) 

38.71% 

(15.32) 

74.19% 

(10.56) 

70.96% 

(8.63) 

RO - 1 45.05% 64.51% 80.64% 
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(5.70) (14.37) (7.01) 

A2C - - 1 45.16% 

(7.55) 

32.25% 

(4.98) 

A2C + DO - - - 1 73.52% 

(8.17) 

RLeRO 

(A2C + RO) 

- - - - 1 

 

Figure 14 and Figure 15 each represent a Gantt chart from the RO and RLeRO 

models, respectively, within the same experiment simulation. It is evident that the 

schedules bear similarity, indicating that the latter model has indeed learnt from the RO 

guiding phase and is inclined towards conservative actions. By contrast, the simple A2C 

model (Figure 16) has lesser commonality with the RO Gantt chart. This comparison 

also corroborates that the RLeRO model effectively mimics the decision-making style 

of the RO model. 
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Figure 14 Gantt of RO solution in scenario 1 

 

Figure 15 Gantt of RLeRO solution in scenario 1 

 

Figure 16 Gantt of A2C solution in scenario 1 
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Chapter 5 Conclusion and Future Works 

5.1 Conclusion 

This paper presents a guiding framework for training reinforcement learning 

models, specifically for the dynamic scheduling of a single-stage multi-product reactor. 

The framework was motivated by the limitations observed in previous research: "There 

is no guarantee of optimality with policy gradient methods, as the reinforce algorithm 

can converge to local optimality. (Sutton et al., 1999)" As such, we initially attempted 

to guide the training phase, and as expected, our proposed approach improved decision 

quality in terms of objective value and stability, compared to simple A2C methods. To 

further enhance robustness against parameter distortions, we adopted robust 

optimization as a guiding engine, which enabled a more conservative decision-making 

style. The effectiveness of these improvements was validated through experimental 

results, where we compared different models using the "Price of Robustness" metric, 

confirming the enhanced robustness of the RO and RLeRO methods. 

5.2 Future Works 

We have made strides in integrating DRL and optimization methods, addressing 

the research gaps highlighted in baseline paper. Nonetheless, there remains ample room 

for further exploration in this field. For instance, future research could attempt to 
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incorporate other guiding methods during the training phase, or modify the gradient and 

loss functions for a better synergy between RL and optimization methods. 

We also aim to broaden the scope of our training framework beyond scheduling 

problems. One potential direction is the development of a converter that can translate a 

mathematical model into an RL environment. This could facilitate the application of 

our proposed framework in a wider range of problem contexts. 

The lack of comparative studies on different RL guiding methodologies is 

noteworthy. Future research could utilize approaches like "decaying perfect 

information" as a baseline for more in-depth analysis and evaluation of these methods. 
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