IR St - - L QRN LR
Al =

Department of Information Management

College of Management

National Taiwan University

Master’s Thesis
3 %%fé‘-ﬁgfﬂf_ LTS RRBRILEY 5}}:1 2] _

AL Bl A R PR T LR K G

Robust Optimization as an Oracle Guiding Method for Deep
Reinforcement Learning —
an Application in Chemical Material Production Scheduling

Problem

X 5o
n ZE— A

Yi-Tao Huang
TR SIS K
Advisor: Chia-Yen Lee, Ph.D.
PERRLII2E T2

July 2023

doi:10.6342/NTU202401914



B 32 RS A8 2 A3 3 3L
DRXEEEERLE

12 P AR Ak AR A6 AE 2 R BSR4 8 45 5] — st
CXVREEN X 22y Vi 3

Robust Optimization as an Oracle Guiding Method for
Deep Reinforcement Learning — an Application in
Chemical Material Production Scheduling Problem

AW Xt ESE (£33 R10725026) £ B &M A
PEREELEA S AR IAE LB HRE 112 47
A1 BATHAREZBEZRBR KRR FILEHR

oRER :

/i A
Z Ak FelF

X A S

T dé(@f%(

--.-.01914



= A1)
;&]—. fﬁ“
FAAFRHE RPEEF AN e B2 FLIIs Eafn > 2 3 LA

e EAAERE T AR Dl RAL @R EY ERGL 2w

R0 B SH AR - HEREAREHE Y TREAT OEREA ST
PR RS A A A M A AT bR R o F R FPT  RAF oA e A

2]
1=

o

f

FER s A3 T Ak R B i fg - A2 B R RR -

)4

Bofs ) RABRHA A LgIEE

e
T
R
S
pIs
i
\\E‘_
-g_ﬂ\
al'd
~=y
Y
o
4
%
¥
~
(S
=
{w
Lo

HREERE Y 0 4 4 RO EH e AN

doi:10.6342/NTU202401914



&

ke @ PR DT - BT Y IR 0 R e A 1
BIASTEF BE - 25 ERG 3 FDE 0T B0 R T ae g 51
ﬁ%fﬂﬁ;%#‘f%iﬁ“ﬂr“ ) ,%IL TRV EYRAPEELE T ﬁ‘]%%fiﬂ}ioﬁ/%ﬂ—'—oi?]‘ )
AP - SRR (TR g T B A RO L R
B AR REG AT I RETAFIRT AR R R 2 A R T RS

FEEOAPE AR D g ot BPE SRR TR RS A R RS

Bk T 5 Bdp AR R TR

AEEH/EFTNR CE Y IRIEE > VUt N H B AR REZ Y o

R RS A R S AN R A s

doi:10.6342/NTU202401914



Abstract

In this paper, we present a novel guiding framework for the training phase of
Reinforcement Learning (RL) models, specifically tailored for dynamic scheduling of
a single-stage multi-product chemical reactor. Our approach addresses the challenge of
local optima in policy gradient methods by integrating optimization methods,
enhancing both the objective value and stability of the RL model. We further enhance
the robustness of our model against parameter distortions by incorporating robust
optimization as a guiding engine, promoting a more conservative decision-making style.
Our experimental results demonstrate the efficacy of our approach, with several metrics
compared to simple Actor-Critic methods.

Our work thus serves as an advancement in the integration of Deep Reinforcement
Learning and optimization methods, hopefully opening new avenues for research and
application in dynamic scheduling and beyond.

Keywords: Production scheduling, reinforcement learning, robust optimization,

chemical production, stochastic programming

doi:10.6342/NTU202401914



Table of Contents

A 01 - Uod TP S SRR s i
FE R et sssessas bbb snssasas e bt onsese Nne 01 ST L A i
TaDIE OF CONENES ...ttt sttt ettt b e st et nee e enenaeas iii
LSE OF FIGUIES .ottt sttt sttt ettt be b e b naens v
LISE OF tADIES ..ttt aeens Vi
Chapter 1 INFOAUCTION ..c.veeeeeiiceeiecteeecte ettt sttt et be e steeraebesreente e 1
1.1 Background and MOTIVALION...........cccuiiiiiiieieic e 1
1.2 RESEAICN ODJECHIVE... .ottt re e e are s 4
1.3 THESIS ATCNITECTUIE ....c.eevveieieiie et 5
Chapter 2 LIterature REVIEW .........coiiuivierieieieieeieeteetese sttt 6
2.1 Scheduling With UNCErtaiNties ..........cccoveiieii i 6
2.2 Chemical Production Scheduling ..........cccoviviiiiiiciice e 9
2.3 0racle GUIAING DRL .....ccviiiiiiieieeeee e 12
Chapter 3 MEethOAOIOGIES ......c.eovvieeeeiecieetee ettt ettt s steera e 15
3.1 ReSArCh FrameWOIK.........coueriiiiiiiiiesiicieieie e 15
3.2 Problem DefiNItiON ........c.cciiiriiee e nne s 16
3.2.1 Problem DeSCIIPLION ......cceeieieeieieeieeeerie ettt st see e 16
3.2.2 Mathematical MOEl..........cccooiieee e e 18

3.3 Reinforcement 1earning MOdel ...........ccoviiiiiiieieiee e, 24
3.3. 1 MOGEI ESIGN ...ttt st et see e e 24
3.3.2 State AeFINITION. ....cc.iieieieee ettt sttt 26

iii

doi:10.6342/NTU202401914



3.3.3 REWAIT G INITION 1.ttt ettt ettt e e e e et e e e e e e e ee e eeeestesanaettebeeeeeeas 27

3.4 Proposed OR-Guiding AlGOrithm .........ccviiiiieiicc e aa s 27
3.4.1 Training WOTKFIOW ......viieceeeecece et e s s 27
3.4.2 Algorithm Implementation ............cceoeriririreneneeee e 29

Chapter 4 NUMEIICAl SLUAIES......cceeiieiieieieeete sttt st 34

4.1 ENVIFONMENT SELUD ...ovviivieiieeie ettt sre e e aneenne s 34

4.2 Data SIMUIBEION .....c.eiiiiiie e 35
4.2.1 BasiC CONFIQUIALIONS ......ccveereiiiiieiecie ettt ste et ve e et s re e s beesaesbeereennens 35
4.2.2 Parameter DefiNItiONS .......c..covieirieinieiriere et 35

4.3 Model Description and Sensitivity ANalySiS.........ccoovvveiereienenineneseeeeeeen, 39
4.3.1 MOAEI DESCIIPLIONS ....ecuvivieeeeieiteeieste ettt sttt ste et te s e esaesbe e eaesbeesaesteernensens 39
4.3.2 SENSILIVILY ANAIYSIS ....ocuviiiceieie ettt et st aesbeere et 40

4.4 SOIUtion Value ANAlYSIS.......ccoiiiiiiiieee e 43
4.4.1 DESCIIPLIVE SEALISICS ...cuviivieereiicieeiecte et ete et ste et e testeeseesbe e eae s e eaesteernennens 43
4.4.2 EVAIUALION IMELIICS. ...cviueeiiieiiieieteese ettt 45

4.5 EXecution Time ANAIYSIS ........coviiiiiieiie e 48

4.6 Gantt SIMIlarity ANAIYSIS........cciiieiiicieece e 50

Chapter 5  Conclusion and FUUIe WOIKS ........ccoiieiieriiieiese e 53
5.1 CONCIUSION. ...ttt bbbttt 53
5.2 FULUIE WOTKS ...t 53

RETEIBNCES ...ttt b e st n e nbe 55

iv

doi:10.6342/NTU202401914



List of figures

Figure 1 Research framework ... 15
Figure 2 Example of eXperiment SEttiNG .........ccoovereriiiiiiinieeeese i 17
Figure 3 Demonstration of RL €PiSOUE.........ccccveiiiiiiiiiiiiieeieee e 25
Figure 4 Demonstration of an exXPeriment ...........ccccoveiiiineninieeese e 26
FIQure 5 State BNCOOING .....ooviiiieieiieite et 27
Figure 6 Training WOrKFIOW............ooiiiiiiiiee e 28
Figure 7 Demand Simulation and ItS EITOIS........ccccoiiiriiinerieieee e 39
Figure 8 Optimization-based models delta sensitivity analysis...........c.ccocvvvrivriininnnn. 41
Figure 9 RL-based models delta sensitivity analysis..........cccccooeieniiiienininiicen, 42
Figure 10 Price of robustness for Robust Models ............ccoovvieiiiini i, 46
Figure 11 EVPI of Optimization-based Models..........c.cooiiriieiininiee 47
Figure 12 EVPI of RL-based MOdelS.........c.coviiiiiiiiiiieeee e 47
Figure 13 Bottleneck time consumption of each model ...........cccccooeiiiiiiiiiiicien, 49
Figure 14 Gantt of RO solution in SCENAIO 1 .......cccooeiiiiiiiiiieieiese e 52
Figure 15 Gantt of RLeRO solution in SCENArio L.........cccovvvirieienene e 52
Figure 16 Gantt of A2C solution in SCENANO L.........ccoocviiiininiieieiese e 52
\'

doi:10.6342/NTU202401914



List of tables

Table 1 Comparisons of previous works in chemical scheduling problems................ 11
Table 2 Comparisons of previous works in chemical scheduling problems................ 13
Table 3 Robust optimization embedded A2C learning algorithm ............cccoevvinnen. 31
Table 4 EXPEriment PAramMeters ........cccooiiiiieiiieiese st 35
Table 5 Range Of PArameters ........cocvoeiieiieie e 35
Table 6 SaMPling MELNOTS..........ooiiiiii s 36
Table 7 Depending PArameters .......cccceiveiieieieesie e e e eee e see e e see e e esaesneeseeas 38
Table 8 Two-dimensional (YRSR & A) sensitivity analysis ..........ccccoeveveiveieiiiennnn, 42
Table 9 Optimization-based models’ objective StatiStiCS..........ccovveririniiiiiieeeiee, 43
Table 10 RL-based models’ 0bjective StatiStiCS........coveririririeierieniesie s 44
Table 11 Inference time of RL-based MOdels............ccooeiiiiiiiiiiiieee, 50
Table 12 Gantt similarities between models...........ccoeiiiiiiiii e, 50
Vi

doi:10.6342/NTU202401914



Chapter 1 Introduction

Parts of this thesis have been developed into a journal article, which has been
published as ‘Robust-optimization-guiding deep reinforcement learning for chemical
material production scheduling’ in Computers & Chemical Engineering (Lee et al.,
2024).

1.1 Background and Motivation

Industrial production plays a pivotal role worldwide, leading to unprecedented
demand for essential chemical materials. The shortage of such materials can result in
over-queued time and devastate work-in-progress. Moreover, in the era of COVID-19
and the subsequent post-COVID-19 period, supply chains have become increasingly
unpredictable and variable in demand (Hoek, 2020). Chemical material production, as
a crucial upstream sector for most production industries, faces significant uncertainties
like production delays, yield rate fluctuation, shifting demand, and the need for frequent
rescheduling (Gupta & Maravelias, 2016; Janak et al., 2007; Li & lerapetritou, 2008).

In chemical material production planning scenarios, stockout (i.e., demand
unfulfillment) situations are mostly caused by demand and yielding rate uncertainty
(Gupta & Maravelias, 2016). Besides, the chemical material production station is
usually non-stoppable, which means the production process is continuous. In other

words, we cannot set the machine to be idle or discretely change the producing product;

doi:10.6342/NTU202401914



the product transition processes are involved with different settings, including

temperature, pressure, or concentrations, etc., and the change of configurations are

continuous. The switching phases will yield off-grade material that cannot be sold and

are thus considered as costs (Hubbs et al., 2020). By the aforementioned characteristics,

the scheduling problem becomes to determine when to change the producing product

and what product to produce in the next.

The production scheduling problem is typically NP-hard, suggesting there's no

existing algorithm that can solve such a problem within polynomial time (Lenstra et al.,

1977). Traditional operations research methodologies, such as mixed-integer linear

programming, use a branch-and-bound algorithm for finding (sub)optimal solutions.

When factoring in uncertainty, stochastic programming incorporates expected values

and distribution assumptions to align with real-world scenarios. However, the time-

consuming nature of the optimization process poses challenges when dealing with cases

requiring frequent rescheduling (Sahinidis, 2004).

Recently, Deep Reinforcement Learning (DRL) has been introduced as a potential

solution to this issue (Hubbs et al., 2020). While DRL requires considerable offline

training time, it offers relatively low-cost online planning (inferencing). However, the

convergence of neural networks can be extremely slow if the solution space is too large

(Sutton & Barto, 1998).

doi:10.6342/NTU202401914



Moreover, the dimensional complexity of discrete optimization problems often

confounds the learning algorithm during exploration and exploitation phases without

the aid of an "oracle guiding™ mechanism or something similar. For instance, to achieve

better objective value, an agent might have to sacrifice short-term rewards for long-

term gains. Even though such a decision theoretically can be modeled by a multi-layer

neural network, it's almost impossible for a random trial-and-error exploration method

(like epsilon-greedy) to discover and learn accordingly (Silver et al., 2016). Training a

decision-making style, such as robustness to randomness, becomes even more

challenging.

Given the considerations and challenges in chemical production scheduling, there

have been recent attempts to solve it using DRL. Nevertheless, DRL faces its own set

of obstacles, including time-consuming training processes and difficulties in handling

uncertainties. Therefore, this study proposes a Reinforcement Learning embedded with

Robust Optimization (RLeRO) framework. It is designed to aid the DRL model in

solving the scheduling problem by incorporating an "oracle guiding" mechanism in the

training phase. Furthermore, this framework integrates uncertainty robustness into its

decision-making style to better align with the characteristics of modern supply chains.

doi:10.6342/NTU202401914



1.2 Research Objective

The primary research objective of this study is to develop a Deep Reinforcement
Learning (DRL) agent that is capable of tackling the chemical material production
scheduling problem while robustly handling uncertainties.

From a detailed analysis of the chemical material production industry and the
associated planning problems, we recognize that an effective scheduling methodology
for this real-world application should exhibit three key attributes: (1) robustness to
variations in demand and yield rate, without the need for distribution assumptions, (2)
low computational burden during the inferencing of scheduling suggestions, and (3) the
presence of guidance during the learning phase.

Our approach involves refining the framework proposed by Hubbs et al. (2020)
that uses DRL to solve the scheduling problem in the chemical material production
industry. This refined framework aims to meet all three requirements simultaneously.
It will be a combination of robust optimization and an advanced actor-critic
reinforcement learning approach during the training phase. In addition, we will evaluate
the performance of this new framework by comparing it with traditional optimization
approaches and the standard Advantage Actor-Critic (A2C) method.

The main contribution of our work is to introduce an operations-research-based

guiding method in the RL training phase, which can help the policy network escape

doi:10.6342/NTU202401914



from local optimality. Furthermore, we adopted robust optimization as a guiding engine

for the policy network to learn a conservative decision-making style and evaluate the

value of it through several metrics.

1.3 Thesis Architecture

In Chapter 2, we will conduct a review of previous methodologies applied to

chemical production scheduling, as well as oracle guiding methods. Chapter 3

introduces the main contribution of this study, the RLeRO algorithm. In Chapter 4, we

will evaluate the proposed algorithm, comparing its performance with traditional

optimization methods and the simple A2C as benchmarks. Finally, in Chapter 5, we

will draw conclusions from our study and look forward to potential improvements and

future research directions.

doi:10.6342/NTU202401914



Chapter 2 Literature Review

In this chapter, we will present previous works related to our study, respectively.
Firstly, Section 2.1 surveys papers about scheduling methodologies with uncertainties.
Section 2.2 reviews the applications of optimization methodologies and reinforcement
learning in chemical production scheduling problem. As for Section 2.3, oracle guiding
methods for DRL will be discussed.

2.1 Scheduling with Uncertainties

Several methodologies have been proposed to manage uncertainties in scheduling
problems. Janak et al. (2006) present a reactive scheduling framework, which
strategically fixes binary variables from the original production schedule to circumvent
the need for comprehensive rescheduling. Mihoubi et al. (2021) proposes a surrogate-
assisted simulation-optimization approach, based on scheduling rules, to address
Reactive Scheduling (RS) and the Flexible Job Shop Scheduling Problem (FJSSP),
crucial aspects of real-world manufacturing systems. It aims to encapsulate the dynamic
nature of FIJSSP while balancing reactivity and overall system performance.

Taking a different route, Bonfill et al. (2004) leverage a two-stage stochastic
optimization approach to manage risk in short-term scheduling of multiproduct batch
plants dealing with demand uncertainties. This body of work was later expanded in next

year (Bonfill et al., 2005) to accommodate variable processing times in chemical batch

doi:10.6342/NTU202401914



processes' short-term scheduling. Hu et al. (2020) presents a two-stage stochastic

programming framework for optimizing production in a manufacturing plant's Kitting

facility, accounting for uncertainties in kit demand and worker yield. Given a multi-

product case study, the model effectively handles uncertainties, underlining their

significant impact on production planning decisions.

In an effort to handle scheduling challenges arising from uncertain processing

times, market demands, or prices, Lin et al. (2004) proposed a robust optimization

method. Janak et al. (2007) built on this work, tailoring the approach for scenarios

where uncertainty is described by a known probability distribution.

On the other hand, Petrovic & Duenas (2006) utilized fuzzy programming to

handle parallel machine scheduling and rescheduling in an uncertain environment.

Their proposed method, a predictive-reactive approach, involves two key steps: first,

the creation of a schedule, and second, a rescheduling phase. Each step addresses

distinct aspects of the scheduling problem.

Jia & lerapetritou (2006a, 2006b) proposed a unique method for uncertainty

analysis on the right-hand side (RHS) for mixed-integer linear programming (MILP)

problems. The procedure involves an iterative process that includes sensitivity analysis

using linear programming and multi-parametric linear programming, as well as

updating the branch-and-bound tree. They further improved this framework by devising

doi:10.6342/NTU202401914



a way to manage the issue of infeasibility. This involved providing a description of the

feasible region prior to implementing the parametric MILP algorithm. Additionally,

they took into account uncertainty in the objective function coefficients and problem

constraints, offering a comprehensive approach to managing uncertainties in scheduling.

Chang et al. (2022) applies deep reinforcement learning (DRL) to the dynamic and

complex task of scheduling in a smart factory's production process. By designing a

double deep Q-networks (DDQN) architecture and a soft e-greedy behavior policy, it

provides an approach to the flexible job shop scheduling problem (FJSP) that excels in

real-time adaptation and minimizes penalties for earliness and tardiness.

To address uncertainty, two major methodologies for planning and scheduling are

robust optimization (RO) and stochastic programming (Grossmann et al., 2016). In

contrast to stochastic optimization, which starts by assuming the uncertainty has a

probabilistic description, RO constructs a solution that is feasible for any realization of

the uncertainty in a given set (Bertsimas et al., 2011). The characteristic of RO allows

user to construct model without knowing underlying stochastic distribution of

uncertainties, which is usually unavailable in real world problems (Nemirovski, 2019).

doi:10.6342/NTU202401914



2.2 Chemical Production Scheduling

Jung et al. (2004) proposed a multi-stage recourse model that takes demand
uncertainty into consideration, which assumed the demand distribution as discrete
scenarios and conduct multi-steps of wait-and-see process. However, the multi-stage
recourse framework will cause exponential growth in problem size when the stage or
scenario count increased. While Sand & Engell (2004) used two-stage recourse model
considering both demand and yielding rate uncertainties as discrete scenarios as well.

As for RO approach, Lin et al. (2004) uses ellipsoidal set to take care demand and
yielding rate uncertainties simultaneously, moreover, the robust counterpart model does
not give more computation burden than the original one, which is different from multi-
stage models.

The works of RL application on scheduling problem is relatively sparse but having
good results, Riedmiller & Riedmiller (1999) adopted perceptron into Q-learning for
production scheduling problem without considering uncertainties, which also supported
the idea of our research motivation: “RL is better for frequent replanning cases because
of its low computational burden in inferences.” The latest paper applied RL in chemical
production scheduling problem we can find is the framework from (Hubbs et al., 2020),
which is the one we targeted to enhance; the paper uses A2C method to describe the

unknown demand distribution without giving assumptions, but as the conclusion it

doi:10.6342/NTU202401914



mentioned: “Future research can explore possibilities for integrating DRL and

optimization methods.”

Our study is to improve the RL application in chemical production scheduling

problem through operations research guiding methods, including deterministic and

robust optimization; noted that different guiding methods bring different decision-

making style up, for instance, our study shows that RO guiding in the training phase

will encourage network to take robust decisions.

The comparisons of previous works in chemical material production scheduling

problems with uncertainty are shown in Table 1.

10

doi:10.6342/NTU202401914



Table 1 Comparisons of previous works in chemical material production scheduling problems with uncertainty

Paper Methodology Uncertainty Decision making style Distribution assumption | Computational time
Demand | Yielding rate

Jung et al. (2004) | Multi-stage recourse | O X Wait-and-see, conservative | Required, separated into | Not considered
before uncertainty revealed | discrete scenarios

Sand & Engell Two-stage recourse O O Wait-and-see, conservative | Required, separated into | Not considered

(2004) before uncertainty revealed | discrete scenarios

Lin et al. (2004) Robust optimization | O O Robust to uncertainty at the | Not required Not considered
beginning

Riedmiller & Q-learning X X Target to maximum returns | Not required Considered

Riedmiller (1999)

Hubbs et al. A2C ) X Target to maximum returns | Not required Considered

(2020)

This study A2C + OR guiding ) ) Self-definable Not required Considered
(Robust as an example)

11

doi:10.6342/NTU202401914




2.3 Oracle Guiding DRL

Although there are several algorithms helps the convergence of neural network
(NN) during the training phase, “an important but under-explored aspect is how to
leverage oracle observation to facilitate learning.” (Han et al., 2022). i.e., information
that is invisible during online decision making, but is available during offline training
is usually unused. They combines Bayesian probability concept with oracle provided
information, proposed a VLOG algorithm that significantly reduce training time in each
RL classical cases.

Suphx, an agent of playing a traditional Chinese game Mahjong developed by
Microsoft, provides perfect information while training and gradually decay the
information completeness from 1 to 0, which is sort of implementing a training
guidance that instruct the learning process get into the swing faster (Li et al., 2020).

Another state-of-the-art DRL project is AlphaGo developed by Google, which also
adopt transfer learning as an approach of guidance instead of trial-and-error while the
neuron network is ignorant at first. The information is not explicitly exposed to the
learning algorithm but implicitly embedded in the pretrained model. The pretrained
model took the games performed by human professional chess player as training set,
and it learnt to predict next move after observing current status (Silver et al., 2016). It
is a little different from VLOG and Suphx cases but with similar concept.

12

doi:10.6342/NTU202401914



From the literatures surveyed so far, researches in the guidance of reinforcement

learning are relatively lack. Although the robustness of RL algorithm is widely

discussed, most of the literatures uses adversarial approach for training, which can hurt

the generalization of model (Raghunathan et al., 2019) and with the disadvantage of

non-convergence, overfitting, and mode-collapse (Andriushchenko & Flammarion,

2020). Therefore, our research proposed a ‘“Reinforcement Learning embedded with

Robust Optimization” training framework; targeting to achieve the robustness in

parameters and observations perturbations and boost the effectiveness of training

progress.

Table 2 shows the comparisons of previous works which adopted different kinds

of guidance in the RL training phase.

Table 2 Comparisons of previous works adopted guidance in RL training phase

Paper

Training phase guiding

Target

(Han et al., 2022)

Bayesian probability

Shorten training phase

Improve explainability

(J. Li et al., 2020)

Decaying perfect information

Shorten training phase

Help convergence

(Silver et al., 2016)

Network transfer learning

Shorten training phase

Improve policy

13

doi:10.6342/NTU202401914



This research

Operations research

Build up decision style

14

doi:10.6342/NTU202401914



Chapter 3 Methodologies

The research framework is demonstrated in Section 3.1. In Section 3.2 we will

describe the chemical material production scheduling problem as a mathematical model

for a more formal and unambiguity illustration. Sequentially, the definition and details

of the reinforcement learning model will be explained in Section 3.3. Lastly, in Section

3.4, the OR-guiding algorithm is proposed.

3.1 Research Framework

The research framework is shown in Figure 1 Research framework:

Preper:

-

N

S
Problem Description

(Mathematical model)
5

1

-

~N

Data Simulation

ations

Benchmark methodologies

Perfect information Expected value
deterministic deterministic ...
S optimization

optimization

optimization

Robust

Proposed methodologies

A2C + Robust
optimization

A2C + Deterministic
optimization

(
L

comparisons

Analysis and J

|
[ Conclusion ]

Figure 1 Research framework

In the preparatory stage, we first construct a mathematical programming model for

the chemical material production scheduling problem, designing the configurations of

15

doi:10.6342/NTU202401914



parameters accordingly.Next, we implement methodologies including deterministic
optimization with perfect information and expected value, robust optimization, and
Advantage Actor Critic (A2C) as benchmarks.The third part introduces the operations
research-guiding (OR-guiding) methodologies we propose, transitioning from A2C
with deterministic optimization guidance to A2C with robust optimization guidance.
Lastly, we carry out numerical analyses and result comparisons to draw conclusions for
each model and provide suggestions for the use case of each methodology.

3.2 Problem Definition

3.2.1 Problem Description

The problem definition of this study is based on the mathematical model
constructed by Hubbs et al. (2020) with slight modification; we introduce the yielding
rate uncertainty into the parameters, which is not included in the baseline paper.

We defined an experiment period set P (each period is one day), which contains
all of the periods in a whole experiment, and a planning period set P rolls in P for
each scheduling subproblems. For each time we plan or replan a schedule is to solve
such a subproblem with period set P. Inside of the planning set P, we can distinguish
two types of periods: fixed planning periods set F and the remaining are unfixed
planning periods, where F is the first |F| periods of P. The implication of fixed
periods is that once a planning schedule has been determined, it cannot be changed due

16

doi:10.6342/NTU202401914



to the operating procedures defined by the chemical plant. This implies that the main
decision we make in a schedule pertains to the last |P| — |F| periods. The main idea
of experiment period, planning period, and fixed period in Figure 2 Example of
experiment setting are provided as an example, with the setting of |I3| =30 |, |P|=

12,and |F| = 5.

Planning horizon =5+ 7 = 12
Fixed periods =5 I To be scheduled = 7 I
I Fixed periods = 5 I To be scheduled =7 I
I Fixed periods = 5 I To be scheduled =7 I
I Fixed periods =5 I To be scheduled = 7 I
I Fixed periods =5 I To be scheduled = 7 I

I Fixed periods = 5 I To be scheduled = 7

—

Experiment length = 30
Figure 2 Example of experiment setting

In the scheduling problem, we must determine which type of chemical material
product from the product set I the machine should produce. The costs that should be
taken into consideration include the transition cost CZ which is incurred when
transitioning from product i € I to j € I; the unit inventory cost C; for product i €
I; and the stockout cost Cj for product i € 1.

The reason for the transition cost is that switching products often leads to large
fluctuations in processing temperature, which in turn yields off-grade material that
cannot be sold and is thus counted as a discount term (Hubbs et al., 2020). Furthermore,

the unit profit V; represents the reward for fulfilling the demand for each product i €

17

doi:10.6342/NTU202401914



1. The decision-making process aims to maximize the gross profit, i.e., the sum of the
profits V; minus the costs Cf;, C7,and C}.

It is crucial to note that the demand ﬁip and yielding rate A; are uncertain,
meaning we cannot know the actual values (noted as D;, and A;,) until the
uncertainty is revealed over time. However, the value of Eipwill gradually become
more accurate as the current period gets closer to the predicted demand period in our
experiment design, the details of which will be provided in the data simulation section.
3.2.2 Mathematical Model
As the scheduling problem described above, the sets and parameters are listed below:
Sets
I Product categories set.

P Experiment periods set.

P Planning periods set, which rolls in P for each scheduling subproblems.

F  Fixed planning periods set, which is a subset of P (the first |F| periods of P).
Parameters

CZ- Transition cost from producing product i to j, Vi€ l,j € I.

C$ Unit inventory cost of product i, Vi € I.

Cl Unit stockout cost of product i, Vi € 1.

V;  Unit profit of product i, Vi € I.

18

doi:10.6342/NTU202401914



S Initial inventory of product i, Vi € I.

X;r Fixed production schedule for product i inperiod f, Vi€ I, f € F.

Predicted uncertain demand for product i in period p, Vi € I,p € P.

A; Nominal uncertain yield amount for product i in unit period, Vi € I.

Actual demand amount for product i in period p, which is not available when

planning, Vi € I,p € P.

A, Actual production amount for product i in period p, which is not available when
planning, Vi € I,p € P.

The decision variables used for the model are as follows:

Decision Variables

x;p The binary variable describes whether product is scheduled in a period, 1 if
product i is scheduled in period p,else 0, Vi € I,p € P U {P_,}.

Dependent Variables

Yip The sales amount of product i in period p, Vi € I,p € P.

Sy The inventory amount of product i in period p, Vi € I,p € P U {P_,}.

lip  Stockout amount of product i in period p, Vi € I,p € P.

zijp The binary variable describes whether transition happened in a period, 1 if

transition from producing product i to j occurred, else 0, Vi € I,j € I.

19

doi:10.6342/NTU202401914



The aim of the scheduling model is to maximize the gross profit of the chemical

production schedule. This includes sales profit derived from demand fulfillment,

denoted as X;e; Xpep Viyip, the inventory cost for product storage represented by

Yiel Xpep Cl-ssip, the stockout cost due to unfulfilled demand indicated as Y;¢; Cl-Lll-p,

and the transition cost, given by ¥c; Y e j=i Zpep CZ- z;jp. The objective function is

illustrated in equation (1).

Max ZZ Vivip — ZZ Clsip — Z Cllp — Z Z Z Cl; zijp (3.1)

i€l peP i€l peP i€l

The constraints of the model are listed below:
Sip, = S{, Vi €I

xl-f :XU,Vl EI,fEFU{PO}

Sip = Sip—1) + Aixip — Dip + 1y, Vi€ Lp EP
ZZUP = ij,Vj € I,p eEP

i€l

Zzijp = xi(p_l),Vi € I,p EP
JEI

ZXip = 1,VPEP

i€l

Vip = min(Aixy, + Sip-1),Dip), Vi€ I,p €P
Xip € {0,1},Vi € I,p € P U {Py}

2, €{0A},Vi€l,jE€L,pEP

Sip =2 0,Vi €1,p € P U {Py}

lp 2 0,Vi€l,peP

20

i€l j€l,j+i peP

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

doi:10.6342/NTU202401914



First of all, we denote P, as the first period of the scheduling subproblem, and
the parameters with tilde sign (~) show their uncertainties. Constraints (3.2) and (3.3)
are related to the state initialization of each subproblem. Constraint (3.2) determined
the initial inventory from the given parameter S/, and constraint (3.3) determined the
production of each fixed planning period by X;;. Constraint (3.4) guaranteed the mass
balance of production, inventory, and demand. Constraint (3.5) and (3.6) cooperate to
identify the occurrence of production transition in each period. Constraint (3.7) ensured
that for each period, only one of product type could be chosen to produce. Constraint
(3.8) determined the sales amount of each period and product. Constraints (3.9) to (3.12)
show the domain of each decision variables.
3.3 Robust Optimization
Robust optimization is a relative new branch in mathematical optimization field. In
contrast to stochastic optimization, which starts by assuming the uncertainty has a
probabilistic description, RO constructs a solution that is feasible for any realization
of the uncertainty in a given set (Bertsimas et al., 2011). The general formulation of RO
is shown in (3.13), where x is a vector of decision variables, u; is the uncertain
parameters, and U, is the corresponding uncertainty set for each constraint. After
reductions and transformations, the uncertainty set within RO formulation will
hopefully being transformed to a new formulation, i.e., robust counterpart. An easy

21

doi:10.6342/NTU202401914



analogy of “robust counterpart” is like a twin of the previous RO formulation. A robust
counterpart is less structural (less human readable), but interpretable or solvable for
most solver engine, e.g., Gurobi, CPLEX, etc. The transformation process may involve
many mathematical theories, we will omit it in this work but can be retrieved from

Lectures on Robust Convex Optimization (Nemirovski, 2019).

min fo(x)

(3.13)
s.t. filxu) <0,Vuy; €U i=1,...,m
U, can be determined by several approaches (we will only introduce three of them for
illustrations):
Ellipsoidal uncertainty
Ben-Tal and Nemirovski (Ben-Tal & Nemirovski, 1999) consider -ellipsoidal
uncertainty sets, where U is given as (3.14) and the robust counterpart of this

formulation will become (3.15), which is a second-order-cone programming.

U={(ay,..,ap):a =ad+Au;,i =1,...,m, ||u||2 < p} (3.14)

min cTx
(3.15)
s.t. alx <b; — p||Al-x||2,Vi €1,..,m
Polyhedral uncertainty
Polyhedral uncertainty can be viewed as a special case of ellipsoidal uncertainty (Ben-

Tal & Nemirovski, 1999). Consider a mathematical programming in (3.16), the dual of

22

doi:10.6342/NTU202401914



the inner maximization problem is (3.17), which can be simplified to a robust

counterpart (3.18).

min c'x
(3.16)
s.t. max{Diaisdl.}aiTx <bh,Vi=1,..,m
min prd;
s.t. pIDi=x (3.17)
pi<0
min cTx
s.t. pl<b, Vi=1,..m
(3.18)

pID;=x, Vi=1,..,m
pi <0, Vi=1,..,m

Cardinality constrained uncertainty

Bertsimas and Sim (Bertsimas & Sim, 2004) define a family of polyhedral uncertainty

sets that encode a budget of uncertainty into cardinality constraints (3.19), and can be

transform to a robust counterpart (3.20), which is a tractable linear optimization

problem.

min cTx

s.t. z a;jxj + maxg,cjy Z a;jyi<b;, 1<i<m,

J JES;

1<j<n,

(3.19)

doi:10.6342/NTU202401914



min cTx

S.t.z al-jxj +ZiFi+Zpij < bi' Vl,
J

J

z; + Dij = &ijy]-, Vi,j,

Y <% <y vj, (3.20)

In this paper, we will adopt Cardinality constrained uncertainty set RO as a
guidance for DRL training process.
3.4 Reinforcement learning model

3.4.1 Model design

The agent is modeled using a deep neural network consisting of three hidden layers,
each comprising 256 nodes. The rectified linear unit (ReLU) activation function (3.21)

is used for these layers:

ReLU(x) = max(0,x) (3.21)
g*m
O'(X)m = M—x,‘v’m EM (322)
m=1€""
24

doi:10.6342/NTU202401914



The output of the network employs a softmax function (3.22), resulting in a
probability distribution of the discrete actions A. An action, denoted by a, is sampled
from A. This action corresponds to x;, in the mathematical model (MM), indicating
the product to be scheduled in a particular period. In other words, the product to be
produced in each period is determined by a single forward propagation of the state, and
a complete schedule is generated through successive propagations.

For instance, as shown in Figure 3 Demonstration of RL episode, illustrates a
schedule where the number of products and the planning horizon length are both equal

to 4. In each step of the RL agent, a one-hot-encoded output is sampled and assigned to

xip.

Product
Product
Product
Product

0 NA NA NA 0 0 NA NA 0 0 0 NA 0 0 0 1
Time Time Time Time
Step Step Step

Figure 3 Demonstration of RL episode

An "episode” or a "schedule” is considered complete once all periods have been
traversed. According to this schedule, the factory will commence production for one
period. After the lapse of a period, the next episode begins, and the process depicted in
the last figure is repeated. Notably, in the plan for the next period, there are fixed

planning horizons, as exemplified by the first two periods in each episode in Figure 4.
25

doi:10.6342/NTU202401914



0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0
Episode 1 Episode 2 Episode 3 Episode 4

Figure 4 Demonstration of an experiment

3.4.2 State definition

The state information, which includes inventory levels, one-hot-encoded current
schedules, forecasted demand, estimated stockout, and other parameters of the problem,
is provided to the network. This information enables the network to determine the
appropriate action to take and assess the current situation.

The inventory level state simply reflects the current inventory of each product,
represented as an ordered list of size |I|. The current schedules provide the determined
schedule information, with unplanned periods filled with zeros. The forecasted demand
for each future period is also available. It's worth noting that the demand values used
here are assigned with Eip rather than ﬁip to prevent data leakage since uncertainties
are not revealed during planning. The estimated stockout count for each product type
is calculated by subtracting the sum of inventories and production from predicted
demands /L-xl-p + Sip — Eip. As it aids network convergence, it's also considered part

of the state information.

26

doi:10.6342/NTU202401914



In addition to the state information resulting from the last action, constant
parameters ClT] C?, ¢k, v; and the time counter parameter t are also incorporated.
The inclusion of these constant parameters is intended to generalize the agent, enabling
it to adapt to different parameter settings in different scenarios.

Lastly, min-max normalization is applied to each type of value, padding zeros are

added to the edge periods, and everything is concatenated into a 1D array to serve as

the model input, as illustrated in Figure 5.

state, = Sip Xip Dip Aixip + Sip — Dip t

Inventory Determined Predicted Estimated Constant Time
levels schedules demands stockouts parameters counter

Figure 5 State encoding

3.4.3 Reward definition

The definition of reward is essentially the change in objective value that occurs

after a particular action is taken. For instance, if a certain product i is manufactured in

a step, the environment will compute the repercussions of this production. If this

production will satisfy future demand, it would lead to a decrease in the estimated

stockout count, thereby resulting in an increased objective value. In this case, the

reward for this step would be the contribution to the improvement in the objective, that

is, the original objective value minus the new objective value.

27

doi:10.6342/NTU202401914



3.5 Proposed OR-Guiding Algorithm
3.5.1 Training Workflow

The workflow of the proposed OR-guiding framework for the described problem is

shown as Figure 6:

Realized objective (for oracle critic loss & advantage gradient calculation)

/ Generalized Agent \
Network
error _-1 .
Calculate /| Network Action
/ H 1 1 .
g N distribution Guidance Oracle
s gradient ¢ ded? MM sol
No s AN needed? Yes, ( solver)
oracle critic N, Actor Qracle
value error .
“oracte " Network invoked
involved? Yes Calculate oracle | .+’
advantage actor  F©
gradient NO’ take
argmax action
State Reward - Generated
Daily ) .
. optimal action
scheduling
problem
Substitute
per episode
Rollin
Parameter . €
enerator problem window
g Cyclical handler
pool

sampling
Figure 6 Training workflow

To train an agent that can be applied in variable scenarios, for example, different
product selling profit, transition cost, etc., the training set have to include multiple
combination of constant parameters instead of single setting. Therefore, we designed a
parameter generator that can random sample a parameter set which is reasonable (will
be discussed in data simulation section). Given that the training process of RL need to
experience the same trajectory for multiple times to actually learn from it (Zhang &
Sutton, 2018), we store the generated parameter set as an individual scheduling problem

in a space called “scheduling problem pool”. In training phase, one of the scheduling
28

doi:10.6342/NTU202401914



problems in the pool will be cyclically sampled as an experiment (the concept is near
to experience replay), and a rolling window handler will transform the experiment into
episodes of daily scheduling problems for the agent to experience.

After the reception of daily problem, which is an environment for the agent to
interact with, the agent will try to take action on it. Then we will examine the output
action distribution, once if we consider guidance is needed, the oracle (MM solver) will
be invoked and optimal action substitute the original action.

The agent is composed by A2C method with small modifications: The gradient
calculation and update block remains the same while oracle is not involved, else we
will calculate “oracle critic value error” and “oracle advantage actor gradient” for critic
and actor network, respectively. The detail of those update method will be explained in
Section 3.5.2.

3.5.2 Algorithm Implementation

In order to illustrate, we utilize the Reinforcement Learning embedded with
Robust Optimization (RLeRO) as an example to demonstrate the use of the OR-guiding
framework. The pseudocode of the framework can be found in Table 3.

Before we delve into the algorithm, it's important to understand the update formula
of the Advantage-Actor-Critic (A2C) method, which is a prerequisite. We denoted state
of step ¢ inepisode n as s and actionas al™,

29

doi:10.6342/NTU202401914



In the actor-critic method, the actor learns a policy network denoted by 6, which
is updated by the policy gradient as shown in Formula (3.15). This gradient is weighted
by the Q-value, as determined by the critic network. For instance, if the Q-value is small
or even negative, it implies that the given action a is not encouraged in the state s.
Consequently, the gradient update corresponding to each state-action pair will influence
the probabilities of actions output from the policy network.

The A2C learning algorithm introduces an advantage function A(s§">,a§">)
(3.24) instead of the Q-value function Q(st("),agn)) defined in Formula (3.23). In
Formula (3.26), which is the approximation of (3.24), we can see that A’ is derived by
calculating the sum of current reward and discounted state value with a discount rate
v, then minus the previous state value. Ultimately, the critic gradient is derived as

shown in Formula (3.27).

TIN 2, (s af) - Vologpe(ai[s™) (3.23)

A(s™,a™) = o(s™,a™) - v(s™) (3.24)

(s, a™) (3.25)

r® 4V (si) = v(s) = 4'(s™,a). (3.26)

Vo, fngl—nA'(st(n% a§")|491,)2 (3.27)
30

doi:10.6342/NTU202401914



Table 3 Robust optimization embedded A2C learning algorithm framework

Requirements:
e A differentiable policy parameterization m(als, 6,).
o A differentiable state-value parameterization V (s|6y).
e Select step-size hyper-parameters 0 < a,, ay < 1.
e Select guiding-threshold hyper-parameter p > 0.

1. Initialize the parameters 6y, 6,,.
2: for N episodes do:
3 Initialize the episode with s,
4: for T steps in episode do: (Vt € T)
5: Get action probability distribution p, from current policy n(s;, 6,)
6 if entropy(p,) > p:
7 RO invoked and get action a;.
8 Get realized objective as total return:
f < RO solver.realized_obj()

9: Calculate return: R, « f — f;
10: Take action a; and observe reward r, and new state s;, .
11: Calculate baseline:

b « RO_solver. fix_action(argmax _(p,)).realized_obj()

12: Calculate advantage: A; <« R; — b

13: Calculate partial critic loss: k; < R; — V(s;|6y)

14: else:

15: Get action a; « argmax,(p,)

16: Take action a;, observe reward r; and new state s;,,
17: Calculate advantage: A; « 1. + YV (st4116y) — V(s:16y)
18: Calculate partial critic loss: k; « A;

19:  Calculate actor loss: £(6,) « —%Z{ Aclog(m(aclst, 6r))

20: Calculate policy entropy:

H(T[(atlst; 911)) <= Z mt(alse, 0n) log m(ag|se, 6r)

i

31

doi:10.6342/NTU202401914



21:  Update actor: 6, = 6, + ay (Vo_c(0,) + BV _H)
22: Calculate critic loss: £(6y) = %Z{(Kt)z

23: Update critic: 8y == 6y, + Vg, L(6y)
Result: trained actor network 6, and critic network 68,,.

The RLeRO training algorithm (Table 3 Robust optimization embedded A2C

learning algorithm) inherits the framework from A2C, albeit with some modifications,

as underlined in the pseudocode. The differences, marked in bold, will be explained

according to their order of execution:

In line 6, we want the RO solver to step in when the agent hesitates among

potential actions. This hesitation often stems from two reasons: (1) imminent risks due

to unrevealed uncertainty, and (2) the neural network not having learned from similar

conditions yet. In both cases, the action distribution outputted by the policy network

will have a large entropy. We set up a threshold p for this entropy: if the entropy is

greater than the threshold, the learning process will enter the "RO guiding block™;

otherwise, the original A2C will be employed.

For lines 8 and 9: in the "RO guiding block," the expected return (the sum of

remaining rewards) is calculated differently due to the extra information provided by

the RO solver. The return R; is set to the RO_realized_objs;, which represents the

actual return after adopting the RO solution. This value will be used to calculate the

advantage and partial critic loss in the "RO guiding block."

32

doi:10.6342/NTU202401914



For lines 11 and 12: the concept of a "Baseline™ is central to the A2C algorithm as
it aids in the convergence of the actor network. However, in the "RO guiding block,"
the state-value function is not a suitable baseline because it is unstable and can
potentially undermine the information provided by the guiding process. As a substitute,
we fix the decision variable for the action in the RO model to argmax (p,) and
calculate its realized objective value (denoted as b in the pseudocode). This is a
reasonable approach because the two objective values are on the same scale and are
thus comparable. The next step involves subtracting b from the return R, to obtain the
advantage value.

The final difference is observed in line 13, where the critic loss compiles partial
critic loss from each step (line 22). The partial critic loss x; from the "RO guiding"
process is defined by R; — V(s;|6y), which means the return minus the state-value.
The loss function can help the value network 6, to better approximate the current state-

value by learning from the actual (realized) return.

33

doi:10.6342/NTU202401914



Chapter 4 Numerical Studies

In Chapter 4, we conduct a series of numerical experiments to evaluate the
effectiveness of our proposed methods. Initially, we specify the computer and software
used in these experiments in Section 4.1. In Section 4.2, we detail the configurations of
the parameter generator.

Section 4.3 introduces our models and provides an analysis of their sensitivity
against uncertainty parameters. Following this, in Section 4.4, we select suitable
scenarios for further exploration. In Section 4.5, we present comparisons of execution
time across different models. Lastly, in Section 4.6, we calculate the similarity of Gantt
charts to verify the decision-making style of each model.

4.1 Environment Setup

All of the experiments conducted in this study were performed on a computer
equipped with an AMD Ryzen 5 5600 6-Core Processor running at 3.50 GHz, supported
by 16.0 GB of memory, and utilizing an NVIDIA GeForce RTX 3060 GPU.

On the software side, the experimental codes were implemented in Python,
specifically version 3.8.10. Optimization models were solved using Gurobi version
10.0.1 (Gurobi Optimization LLC, n.d.). All neural networks were defined and trained

using PyTorch, version 1.13.1.

34

doi:10.6342/NTU202401914



4.2 Data Simulation
4.2.1 Basic Configurations

The high-level parameters for this study are outlined in Table 4. The length of the
experiment horizon and the size of the planning window were selected based on the
scale of the problem we needed to investigate further. The number of product types is
derived from (Hubbs et al., 2020), which reflects the capabilities of an existing chemical
material production machine. The fixed horizon for each window also aligns with the

baseline paper, adhering to real-world procedural rules.

Table 4 Experiment parameters

Notation Description Setting
| Product type count 4
|| Experiment horizon length 90
|P| Planning window size 15
|F| Fixed horizon in each window 7

4.2.2 Parameter Definitions

Instead of defining the precise value for each parameter, we established lower and

upper bounds for the parameter generator. The following ranges have been specified

(Table 5):

Table 5 Range of parameters

Notation Description Setting

35

doi:10.6342/NTU202401914



A_lb Lower bound of yielding rates 90
A_ub Upper bound of yielding rates 100
D_lb Lower bound of demands 80
D_ub Upper bound of demands 120
V_lb Lower bound of profits 25
V_ub Upper bound of profits 35

Our parameter generator will draw samples from a uniform distribution to enrich

the variety within the scheduling problem pool mentioned in Section 3.4.1 (as listed in

the table). Although Aip and ﬁl-p are generated at the outset and stored in the pool,

they remain inaccessible during training and inferencing to prevent data leakage. The

only instance these two parameters come into play is during the evaluation phase;

agents or optimization models can only access the estimated yielding rates and demands.

The notations are listed in Table 6.

Table 6 Sampling methods

Notation

Description

Setting

~

ip»

Aip, Vi € I,p € P | True yielding rate of each
~uniform (A_lb, A_ub)
product in each period
D, ,Vi€el,p€P |True demand of each

product in each period

~ uniform(f)_lb, ﬁ_ub)

36

doi:10.6342/NTU202401914



V,,Viel Sales profit of each
~uniform(V_lb,V_ub)
product

St,viel Initial inventory of each
~uniform(D_lb,D_ub)
product

The remaining parameters depend on those previously mentioned and are listed in
Table 7. Cl-C- represents transition costs. The transition process leads to the production
of partial unsellable off-grade materials in subsequent periods. Hence, the cost is
calculated by multiplying the sales profit of the next product, the yielding rate of the
next product, and a constant factor of 0.2 (Hubbs et al., 2020). The definitions of
inventory cost €7 and stockoutcost C are similar: we assume that the more valuable
a product is, the more it costs to store or the higher the cost of stockout.

Uncertain parameters are treated differently in different models. However, all
models share the same estimated values for these parameters. In the real-world
scheduling problem, while we don't know the actual demand during planning, there
exists some estimation of it. For instance, the sum of pre-order tickets may represent
future demand. Still, they are subject to change, and we can expect that the further in
time the order ticket is, the more likely it is to be modified. Consequently, we designed
a demand distortion parameter A, which describes the rate of demand value distortion
over periods. As illustrated in Figure 7, each Ep IS subject to increased perturbation

37

doi:10.6342/NTU202401914



as period p increases. This figure shows the relationship between actual and estimated

demand, revealing that the estimation error gradually grows due to random noises.

For the yielding rate, which falls between its lower and upper bounds, a naive

estimate is its average value.

Table 7 Depending parameters

Notation Description Setting
cl, Transition  costs  from
V- 4;-0.2
Vi,j el product i to product j
c; Inventory costs of products V;-0.2
ct Stockout costs of products V;-0.3
A; Estimated yielding rates A-lb;—A-ub
A Demand distortion rate 3
Dy, Estimated demands,
p — Po\ ~
1 -4~ ) Dy,
Vi € I,p € P | fluctuation increased by | ~uniform
(1+A- p—_P())D
|p| 7%
periods

38

doi:10.6342/NTU202401914



Demand simulation

— actual
-~ estimation
2004 ----- error

150 +

quantity
<

50 A

52 54 56 58 60 62 64
period

Figure 7 Demand simulation and its errors

4.3 Model Description and Sensitivity Analysis
4.3.1 Model Descriptions

The Perfect Information Deterministic Optimization (PIDO) model, having access
to perfect information from the outset, including uncertain parameters, is capable of
crafting optimal solutions based on pre-sampled yielding rates and actual demands.
This makes its decisions the most effective and efficient. Consequently, it is considered
a benchmark against other optimization-based models.

The Expected Value Deterministic Optimization (EVDO) model addresses
uncertainty by employing expected values. However, in our use-cases, there are no
predefined statistical distributions, so we utilized the mean of the range of uncertain

39

doi:10.6342/NTU202401914



parameters and distorted demands to estimate the schedules. Since EVDO doesn't
account for any other potential data points for each parameter, it is prone to disruptions
and this could destabilize its scheduling significantly. This is particularly apparent in
scenarios with high distortion rates, where the resulting schedule may fail to meet the
actual demand, leading to an increase in stockouts and adversely affecting the stability
of the realized objective.

On the other hand, Robust Optimization (RO) is an optimization approach
characterized by robust decision-making. It often makes conservative actions to avoid
infeasibility in data perturbations. However, such a decision style may lead to a trade-
off in some optimality. This trade-off, though, is highly worthwhile in scenarios that
necessitate greater planning stability.

4.3.2 Sensitivity Analysis

To select an appropriate fluctuation parameter, we conducted a sensitivity analysis,
employing 30 replications (Figure 8 Optimization-based models delta sensitivity
analysis). The PIDO model is not influenced by the distortions, which means it can
consistently make optimal decisions and achieve the maximum objective value. The
EVDO model, only able to observe distorted demands, sees its objective value decrease
as delta increases. As for the RO model, which tends to adopt relatively conservative
actions, it sacrifices some objective values to achieve more robust results against

40

doi:10.6342/NTU202401914



demand distortion. The intersection of PIDO and RO occurs at delta = 3.0. This implies

that if the demand distortion rate exceeds 3.0, the conservative decisions made by the

RO model will ultimately yield better results than the EVDO model.

Delta sensitivity analysis

670000

660000

650000

640000

Objective mean

630000

620000
— PIDO

EVDO
610000 —T— RO

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Delta (demand distortion rate)

Figure 8 Optimization-based models delta sensitivity analysis

As for the three RL-based models, their performance is depicted in Figure 9. The

simple A2C model without any guidance yielded the lowest objective value, regardless

of how the demand distortion changed. The two models with guidance, namely

A2C+DO and RLeRO, didn't show big differences in objective value when the

distortions were small. However, when the distortion rate increased to 2.0, the A2C

41

doi:10.6342/NTU202401914



model guided by RO (named RLeRO) demonstrated stability in objective values.

Delta sensitivity analysis

660000

640000

620000

— PIDO
A2C
—e— A2C4+DO
580000 - -@- A2C+RO

600000

Objective mean

560000

540000 A

520000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Delta (demand distortion rate)

Figure 9 RL-based models delta sensitivity analysis

Both the optimization and RL approaches showed intersections at the value of

delta = 3.0, so we will conduct further investigations in these scenarios in section 4.4.

To explore the influence of all uncertain variables in the RLeRO model, we also

conducted a two-dimensional sensitivity analysis with 5 replications, as shown in Table

8. The results reveal a declining trend in objective values as both A and the yielding

rate sample range (YRSR) increase.

Table 8 Two-dimensional (YRSR & A) sensitivity analysis

YRSR\A | 0 0.5 1.0 15 2.0 2.5 3.0 35

0 583,413 | 575,313 | 568,285 | 565,447 | 570,411 | 557,310 | 557,715 | 553,939
(3,141) | (3.460) | (4,679) | (5483) | (6,578) | (7,318) | (7,920) | (9,446)

0.1 580,249 | 575,223 | 567,821 | 565,498 | 556,501 | 556947 | 557,601 | 554,173
(3,222) | (3,660) | (4,933) | (5567) | (6,829) | (7,356) | (8,913) | (9,862)

0.2 578,952 | 575,106 | 566,366 | 564,997 | 557,063 | 557,211 | 555,408 | 552,382
(3,349) | (3,725) | (4.968) | (5.633) | (7.217) | (7.542) | (9,298) | (9,863)

0.3 579,431 | 575,006 | 565,264 | 565,510 | 556,880 | 556,885 | 556,019 | 551,766
(3,442) | (3,862) | (5,098) | (5919) | (7.250) | (7,685) | (9,348) | (9,930)

0.4 578,407 | 576,757 | 570,845 | 565,592 | 556,751 | 556,631 | 555,807 | 550,708

42

doi:10.6342/NTU202401914



(3,449) | (4,264) | (5,194) | (5,998) | (7,292) | (7,881) | (9,394) | (9,985)

4.4 Solution Value Analysis
4.4.1 Descriptive Statistics
As mentioned in Section 4.3, we selected high demand distortion cases where RO
outperformed EVDO and RLeRO surpassed A2C + DO, demonstrating their robustness.
The results for the three optimization-based models are shown in Table 9
Optimization-based models’ objective statistics. The RO model had better objective
and standard deviation values than EVDO. As expected, the improvement in both mean
and standard deviation becomes more pronounced as the distortion parameter increases.

We chose the edge case primarily for easier observation.

Table 9 Optimization-based models’ objective statistics

Realized | Realized
Model Gap on obj. mean Note
obj. Mean | obj. Std.

PIDO 671,540 0 - Benchmark

EVDO | 628,473 29,562 6.41% -

Improve 19.23% in std.
RO 630,003 23,875 6.18%
versus EVDO

The comparison of the three RL-based models is shown in Table 10 RL-based

models’ objective statistics. Without specific design of network structure and hyper-

parameters, the A2C method achieved about 81% of the benchmark's performance.
43

doi:10.6342/NTU202401914



However, its performance in terms of standard deviation is not ideal, with an increase

of nearly 30% compared to the EVDO.

The proposed guiding framework in this paper aims to improve learning

effectiveness in the early stages of model training and in situations with dilemmas, by

using mathematical optimization to guide subproblems. In the first experiment, DO was

used as the guiding engine, resulting in a 4% increase in the realized objective value

compared to A2C, reaching 82% of the benchmark, and a 11% reduction in standard

deviation.

For application scenarios that require higher stability, both A2C and A2C+DO guiding

still need further improvement in terms of standard deviation. Therefore, the second

experiment aimed to bring about a change in decision-making style through the guiding

process during learning. We used RO as the guiding engine and observed that the model

indeed learned to adopt a more conservative strategy during inference, which achieved

a 9% reduction in standard deviation. This final model is named as Reinforcement

Learning embedded with Robust Optimization, abbreviated as RLeRO.

Table 10 RL-based models’ objective statistics

Realized
Realized | Improvement | Improvement
Model Obj. Note
Obj. Std. | on obj. mean | on obj. std
Mean

44

doi:10.6342/NTU202401914



A2C 528,541 | 38,426 - - Baseline
Better than
A2C + DO | 549,265 | 34,013 3.92% 11.48%
baseline
RLeRO Better than
557,715 | 30,650 5.52% 20.23%
(A2C + RO) A2C + DO

4.4.2 Evaluation Metrics

For research with probability distribution assumptions, the "expected value of

perfect information (EVPI)" and the "value of stochastic solution (VSS)" can be used

to identify the value of stochastic programming. However, all of the experiments

mentioned above were conducted without assuming statistical distributions, meaning

that VSS is not applicable in our cases. Since our major discussion revolves around

robustness against parameter fluctuation, we borrow the idea of VSS and substitute it

with a metric known as "price of robustness (PR)" (Chassein & Goerigk, 2016).

The main concept of PR is to compute the distance between the EVDO and robust

solution (RS) in terms of objective value (4.1). In our research case, we calculate the

mean PR of 30 replications at different distortion rates.

In real-world situations, we cannot know the demand fluctuation, i.e., the

distortion coefficient, in advance. Thus, we analyze the price of robustness in different

scenarios to determine the best application of robust models. The results are shown in

45

doi:10.6342/NTU202401914



Figure 10: We observe a negative trend in the price of robustness for both RLeRO and

RO models, which indicates that the sacrifice of applying a robust solution diminishes

as the fluctuation rate increases. In cases with high demand fluctuation, it is even more

beneficial to adopt conservative policies.

PR = EVDO - RS (4.1)
Price of robustness
-—- RLeRO
20000 A RO
10000 -
A Py
pd “' .rf N
/ | [
~ s \ \
0 Y il 1 Y
I
e \\ Py \ I A
wl ~ . \ i !
S Mo "‘ F'. \\\
—-10000 - . ! \
“ I \
i/ \
\ 1 \
o \
—20000 | v '
v A
) y
A
A
A
—30000 - \
T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Delta (demand distortion rate)

Figure 10 Price of robustness for Robust models

The EVPI is calculated by subtracting the PIDO from the wait-and-see (WS)

objective value (2), which represents how much a decision-maker would be willing to

pay for perfect information. The WS models are those we want to evaluate. In our case,

we want to show that the robust models are less needed of accurate (perfect)

information, i.e., low EVPI values.

In our case, we separate the calculation result into two figures - optimization-based

(Figure 11) and RL-based (Figure 12) - to compare them to their respective baseline

46

doi:10.6342/NTU202401914



models. We can observe that in the optimization-based group, the EVPI value of DO

surpasses that of RO at high demand distortion rates. For the RL-based group, RLeRO

has the lowest value compared to the others. These results demonstrate that the robust

models are more resilient to imperfect information.

EVPI = PIDO - WS

value

value

Expected value of perfect information

60000 4

50000 4

40000 4

30000 4

20000 4

10000 -

--- DO
RO

T T
0.5 1.0 1.5 2.0 2.5 3.0 3.5
Delta (demand distortion rate)

Figure 11 EVPI of Optimization-based models

Expected value of perfect information

160000 -

150000 +

140000 ~

130000 ~

120000 +

110000 ~

100000 -

90000

0.5 1.0 15 2.0 2.5 3.0 35
Delta (demand distortion rate)

Figure 12 EVPI of RL-based models

47

doi:10.6342/NTU202401914



4.5 Execution Time Analysis

In traditional optimization methods, there is no distinction between training and
inference. The process begins with constructing a mathematical model for the
scheduling problem, which is then solved using an optimizer to obtain the optimal
solution. Each rescheduling event requires solving the problem with different inputs,
and the required time grows quickly with the size of the problem. Conversely, in RL
applications, the initial step involves model training, which is the most computationally
intensive part of the entire process. Solving a scheduling problem simply necessitates
running inference once, a process that takes relatively less time compared to training.
This gives RL an advantage in scenarios requiring frequent rescheduling. Moreover, as
long as state information is effectively designed for input parameters, the same model
can be used for inference and scheduling across different parameter settings.

Figure 13 presents a comparison of the time consumption among various models
for different problem sizes (planning horizon lengths). As the bottleneck for RL lies in
the training phase, the training time serves as the comparison metric for the solver. Each
data point denotes the average result from 20 experiments. It can be observed that both
the deterministic model and the robust optimization model display an exponential-like
growth in solving time, failing to converge within the set time limit of 3000 seconds

when the planning horizon exceeds 60. The general A2C method, however, has a
48

doi:10.6342/NTU202401914



significantly slower growth curve and surpasses traditional optimization methods when

the problem size approaches 50. Our proposed guiding framework, which solves and

guides the model's uncertain subproblems during the training process, necessitates more

time in the training phase compared to a simple A2C model. However, compared to

models with exponential growth, this computational burden is still within an acceptable

range.

1600 A

1400 A

1200 A

1000 A

second

600 -

400 1

200 A

Mean time consumption of models

800 1

—— Deterministic model
== Robust model

—#&— A2C train

—e— RLDO train

-@- RLRO train

10 20 30

Figure 13 Bottleneck time consumption of each model

plan horizon

60

Regarding the inference time for the RL model, which refers to the time consumed

during the forward propagation of state information through the network, it is extremely

minimal when compared to RL training and MM solving. The mean inference time

consumption across different planning horizons, calculated from 30 replications, is

shown in Table 11. From these results, we can observe that the differences in inference

time across different planning horizons are small enough to be negligible.

49

doi:10.6342/NTU202401914



Table 11 Inference time of RL-based models

Model P| = 10 IP| = 20 IP| = 40 IP| = 60

A2C 0.09s (0.02) 0.09s (0.03) 0.09s (0.02) 0.11s (0.02)

A2C+DO | 0.09s(0.02) | 0.09s(0.03) | 0.09s(0.01) | 0.10s(0.02)

RLeRO

(A2C + RO)

0.09s (0.02) | 0.09s(0.02) | 0.08s(0.02) | 0.09s(0.02)

4.6 Gantt Similarity Analysis

To examine the differences between models, we calculate a "Gantt similarity"
score for each combination of models based on 30 replications (Table 12). The
similarity score is determined by comparing the production decisions in segments of
the schedule, where the proportion of matching segments represents the similarity.

We observe a significant similarity gap between RL-based and optimization-based
methods. However, when guiding methods are introduced, this gap narrows

considerably.

Table 12 Gantt similarities between models

EVDO |RO A2C | A2C+DO RLeRO
(A2C + RO)
EVDO 1 93.55% | 38.71% | 74.19% 70.96%
(8.24) | (15.32) | (10.56) (8.63)
RO - 1 45.05% | 64.51% 80.64%
50

doi:10.6342/NTU202401914



(5.70) | (14.37) (7.01)
A2C 1 45.16% 32.25%
(7.55) (4.98)
A2C + DO - 1 73.52%
(8.17)
RLeRO ] ; 1
(A2C + RO)

Figure 14 and Figure 15 each represent a Gantt chart from the RO and RLeRO

models, respectively, within the same experiment simulation. It is evident that the

schedules bear similarity, indicating that the latter model has indeed learnt from the RO

guiding phase and is inclined towards conservative actions. By contrast, the simple A2C

model (Figure 16) has lesser commonality with the RO Gantt chart. This comparison

also corroborates that the RLeRO model effectively mimics the decision-making style

of the RO model.

51

doi:10.6342/NTU202401914



Product 0 I I I I I I .
Product 1 I I I I I I I
Product 2 I I I . I I I

Product 3 I I I I I . I

0 5 10 15 20 25 30

Figure 14 Gantt of RO solution in scenario 1

Product 0 I I I I I I I
Product 1 I I I . I .
e BTN il

Product 3 I I . I .

0 5 10 15 20 25 30

Figure 15 Gantt of RLeRO solution in scenario 1

e | B B KR NN
Product 1 I . . I . I
Product 2 I I I I

Product 3 I I . . I I I

Figure 16 Gantt of A2C solution in scenario 1

52

doi:10.6342/NTU202401914



Chapter 5 Conclusion and Future Works

5.1 Conclusion

This paper presents a guiding framework for training reinforcement learning
models, specifically for the dynamic scheduling of a single-stage multi-product reactor.
The framework was motivated by the limitations observed in previous research: "There
is no guarantee of optimality with policy gradient methods, as the reinforce algorithm
can converge to local optimality. (Sutton et al., 1999)" As such, we initially attempted
to guide the training phase, and as expected, our proposed approach improved decision
quality in terms of objective value and stability, compared to simple A2C methods. To
further enhance robustness against parameter distortions, we adopted robust
optimization as a guiding engine, which enabled a more conservative decision-making
style. The effectiveness of these improvements was validated through experimental
results, where we compared different models using the "Price of Robustness” metric,
confirming the enhanced robustness of the RO and RLeRO methods.

5.2 Future Works

We have made strides in integrating DRL and optimization methods, addressing
the research gaps highlighted in baseline paper. Nonetheless, there remains ample room
for further exploration in this field. For instance, future research could attempt to

53

doi:10.6342/NTU202401914



incorporate other guiding methods during the training phase, or modify the gradient and

loss functions for a better synergy between RL and optimization methods.

We also aim to broaden the scope of our training framework beyond scheduling

problems. One potential direction is the development of a converter that can translate a

mathematical model into an RL environment. This could facilitate the application of

our proposed framework in a wider range of problem contexts.

The lack of comparative studies on different RL guiding methodologies is

noteworthy. Future research could utilize approaches like "decaying perfect

information" as a baseline for more in-depth analysis and evaluation of these methods.

54

doi:10.6342/NTU202401914



References

Andriushchenko, M., & Flammarion, N. (2020). Understanding and Improving Fast
Adversarial Training. Advances in Neural Information Processing Systems, 33,
16048-16059.
https://proceedings.neurips.cc/paper/2020/hash/b8ced 7761ed7b3b6f48058335
Ob7f9e4-Abstract.html

Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs.
Operations Research Letters, 25(1), 1-13. https://doi.org/10.1016/S0167-
6377(99)00016-4

Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and Applications of
Robust Optimization. SIAM Review, 53(3), 464-501.
https://doi.org/10.1137/080734510

Bertsimas, D., & Sim, M. (2004). The Price of Robustness. Operations Research,
52(1), 35-53. https://doi.org/10.1287/opre.1030.0065

Bonfill, A., Bagajewicz, M., Espufia, A., & Puigjaner, L. (2004). Risk Management in
the Scheduling of Batch Plants under Uncertain Market Demand. Industrial

&amp; Engineering Chemistry Research, 43(3), 741.

55

doi:10.6342/NTU202401914



Bonfill, A., Espufia, A., & Puigjaner, L. (2005). Addressing Robustness in Scheduling

Batch Processes with Uncertain Operation Times. Industrial & Engineering

Chemistry Research, 44(5), 1524-1534. https://doi.org/10.1021/ie049732g

Chang, J., Yu, D., Hu, Y., He, W., & Yu, H. (2022). Deep Reinforcement Learning

for Dynamic Flexible Job Shop Scheduling with Random Job Arrival.

Processes, 10, 760. https://doi.org/10.3390/pr10040760

Chassein, A., & Goerigk, M. (2016). Performance Analysis in Robust Optimization.

In M. Doumpos, C. Zopounidis, & E. Grigoroudis (Eds.), Robustness Analysis

in Decision Aiding, Optimization, and Analytics (Vol. 241, pp. 145-170).

Springer International Publishing. https://doi.org/10.1007/978-3-319-33121-

8 7

Grossmann, I. E., Apap, R. M., Calfa, B. A., Garcia-Herreros, P., & Zhang, Q. (2016).

Recent advances in mathematical programming techniques for the

optimization of process systems under uncertainty. Computers & Chemical

Engineering, 91, 3-14. https://doi.org/10.1016/j.compchemeng.2016.03.002

Gupta, D., & Maravelias, C. T. (2016). On deterministic online scheduling: Major

considerations, paradoxes and remedies. Computers & Chemical Engineering,

94, 312-330. https://doi.org/10.1016/j.compchemeng.2016.08.006

Gurobi Optimization LLC. (n.d.). Gurobi Optimizer Reference Manual.

56

doi:10.6342/NTU202401914



Han, D., Kozuno, T., Luo, X., Chen, Z., Doya, K., Yang, Y., & Li, D. (2022, March
16). Variational oracle guiding for reinforcement learning.

Hoek, R. (2020). Research opportunities for a more resilient post-COVID-19 supply
chain — closing the gap between research findings and industry practice.
International Journal of Operations & Production Management, ahead-of-
print. https://doi.org/10.1108/1J0OPM-03-2020-0165

Hu, Z., Ramaraj, G., & Hu, G. (2020). Production planning with a two-stage
stochastic programming model in a kitting facility under demand and yield
uncertainties. International Journal of Management Science and Engineering
Management, 15(3), 237-246.
https://doi.org/10.1080/17509653.2019.1710301

Hubbs, C. D., Li, C., Sahinidis, N. V., Grossmann, I. E., & Wassick, J. M. (2020). A
deep reinforcement learning approach for chemical production scheduling.
Computers & Chemical Engineering, 141, 106982.
https://doi.org/10.1016/j.compchemeng.2020.106982

Janak, S. L., Floudas, C. A., Kallrath, J., & Vormbrock, N. (2006). Production
Scheduling of a Large-Scale Industrial Batch Plant. Il. Reactive Scheduling.
Industrial & Engineering Chemistry Research, 45(25), 8253-8269.
https://doi.org/10.1021/ie0600590

57

doi:10.6342/NTU202401914



Janak, S. L., Lin, X., & Floudas, C. A. (2007). A new robust optimization approach
for scheduling under uncertainty: Il. Uncertainty with known probability
distribution. Computers & Chemical Engineering, 31(3), 171-195.
https://doi.org/10.1016/j.compchemeng.2006.05.035

Jia, Z., & lerapetritou, M. (2006a). Generate Pareto Optimal Solutions of Scheduling
Problems Using Normal Boundary Intersection Technique. Computers &
Chemical Engineering, 1, 268-280.

Jia, Z., & lerapetritou, M. (2006b). Uncertainty analysis on the righthand side for
MILP problems. AIChE Journal, 52, 2486—-2495.
https://doi.org/10.1002/aic.10842

Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. V., & Eversdyk, D. (2004). A
simulation based optimization approach to supply chain management under
demand uncertainty. Computers & Chemical Engineering, 28(10), 2087—2106.
https://doi.org/10.1016/j.compchemeng.2004.06.006

Lee, C.-Y., Huang, Y.-T., & Chen, P.-J. (2024). Robust-optimization-guiding deep
reinforcement learning for chemical material production scheduling.
Computers & Chemical Engineering, 187, 108745.

https://doi.org/10.1016/j.compchemeng.2024.108745

58

doi:10.6342/NTU202401914



Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of Machine
Scheduling Problems. In P. L. Hammer, E. L. Johnson, B. H. Korte, & G. L.
Nemhauser (Eds.), Annals of Discrete Mathematics (Vol. 1, pp. 343-362).
Elsevier. https://doi.org/10.1016/S0167-5060(08)70743-X

Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R., Zhao, L., Qin, T., Liu, T.-
Y., & Hon, H.-W. (2020). Suphx: Mastering Mahjong with Deep
Reinforcement Learning (arXiv:2003.13590). arXiv.
http://arxiv.org/abs/2003.13590

Li, Z., & lerapetritou, M. (2008). Process scheduling under uncertainty: Review and
challenges. Computers & Chemical Engineering, 32, 715-727.
https://doi.org/10.1016/j.compchemeng.2007.03.001

Lin, X., Janak, S. L., & Floudas, C. A. (2004). A new robust optimization approach
for scheduling under uncertainty: I. Bounded uncertainty. Computers &
Chemical Engineering, 28(6), 1069-1085.
https://doi.org/10.1016/j.compchemeng.2003.09.020

Mihoubi, B., Bouzouia, B., & Gaham, M. (2021). Reactive scheduling approach for
solving a realistic flexible job shop scheduling problem. International Journal
of Production Research, 59(19), 5790-5808.
https://doi.org/10.1080/00207543.2020.1790686

59

doi:10.6342/NTU202401914



Nemirovski, A. (2019). Lectures on Robust Convex Optimization [Dataset].

https://doi.org/10.1287/e356790b-ddcc-4920-a645-a2d08c6334bb

Petrovic, D., & Duenas, A. (2006). A fuzzy logic based production

scheduling/rescheduling in the presence of uncertain disruptions. Fuzzy Sets

and Systems, 157(16), 2273-2285. https://doi.org/10.1016/j.fss.2006.04.009

Raghunathan, A., Xie, S. M., Yang, F., Duchi, J. C., & Liang, P. (2019). Adversarial

Training Can Hurt Generalization (arXiv:1906.06032). arXiv.

http://arxiv.org/abs/1906.06032

Riedmiller, S., & Riedmiller, M. (n.d.). A neural reinforcement learning approach to

learn local dispatching policies in production scheduling.

Sahinidis, N. V. (2004). Optimization under uncertainty: State-of-the-art and

opportunities. Computers & Chemical Engineering, 28(6-7), 971-983.

https://doi.org/10.1016/j.compchemeng.2003.09.017

Sand, G., & Engell, S. (2004). Modeling and solving real-time scheduling problems

by stochastic integer programming. Computers & Chemical Engineering,

28(6), 1087-1103. https://doi.org/10.1016/j.compchemeng.2003.09.009

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,

Schrittwieser, J., Antonoglou, 1., Panneershelvam, V., Lanctot, M., Dieleman,

S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, 1., Lillicrap, T., Leach,

60

doi:10.6342/NTU202401914



M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game
of Go with deep neural networks and tree search. Nature, 529(7587), 484—4389.
https://doi.org/10.1038/nature16961

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT
Press.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999). Policy Gradient
Methods for Reinforcement Learning with Function Approximation. Advances
in Neural Information Processing Systems, 12.
https://proceedings.neurips.cc/paper/1999/hash/464d828b85b0bed98e80adela
5¢43b0f-Abstract.html

Zhang, S., & Sutton, R. S. (2018). A Deeper Look at Experience Replay

(arXiv:1712.01275). arXiv. https://doi.org/10.48550/arXiv.1712.01275

61

doi:10.6342/NTU202401914



