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摘要
無人機可用於許多空中任務，例如探索、檢查、建圖、與環境互動與搜救。

在這些無人機的應用中，其中一項是針對警隊。在市區中，追捕嫌疑人或目標是

市區警隊的重要任務之一，此方式無需消耗過多人力。然而，長期的訓練過程是

非常勞力密集的。同時，在任務過程中，一些畫面的目標估測失誤可能也會發生，

這可能是由於障礙物或訊號傳輸故障造成的遮擋情形引起的。

因此，在這篇論文中，我們使用一四旋翼無人機隊解決針對單一目標之空中

多群體自主追蹤問題，而此無人機隊會受到障礙物或無法預測之暫時訊號傳輸故

障遮擋的影響，造成目標估測暫時失靈。此系統包含使用卡爾曼濾波器 (Kalman

Filter)融合機載圖像與慣性測量單元 (IMU)測量數據進行無人機的全局定位，根

據與無人機相對位置估測目標位置，透過基於軌跡之動作預測解決目標位置暫時

的目標估測失效，提取唯一目標狀態的平均演算法，以及基於共識 (Consensus)之

多群體系統隊形追蹤控制演算法。此外也提供了實驗結果來展示系統的可用性。

關鍵字：

四旋翼無人機、多群組系統、卡爾曼濾波器、動作預測、軌跡追蹤、基於共識之

隊形控制
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ABSTRACT

UAVs (Unmanned Aerial Vehicles) or drones can be used for many purposes in a

lot of aerial tasks, such as exploration, inspection, mapping, interaction with the environ-

ment, or even search and rescue. Among these applications of the UAVs, one of them is

the police team. Chasing suspects or targets can be one of the most important task for

the police in the city without much effort. However, the long process of training would

be labor-intensive. Simultaneously, during the tasks, there might be some image-based

estimation failure of the target, which may be caused by occlusion from the obstacles or

signal transmission failure.

As a result, in this thesis, we solve the autonomous aerial multi-agent tracking prob-

lem toward a single target using a team of quadrotors under the occlusion by obstacles or

unpredicted temporary signal transmission failure. The system include global localization

of quadrotors using data fusion of onboard image and IMUmeasurement by Kalman filter

(KF), target position estimation with the positions relative to the quadrotors, trajectory-

based target motion prediction for solving temporarily unpredictable estimation failure

of the target position, averaging algorithm for extracting the unique state of the target
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and consensus-based formation tracking algorithm for controlling the multi-agent system.

Furthermore, We also provide some experiment results to demonstrate the capability of

the system.

Keywords:

Quadrotor,Multi-Agent System,Kalman Filter (KF),Motion Prediction, Trajectory Track-

ing, Consensus-Based Formation Control
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Chapter 1

Introduction
In this chapter, wewill introduce themotivation of the research, problem formulation,

contributions and the organization of this thesis.

1.1 Motivation for Using Multi-Agent System

UAVs (Unmanned Aerial Vehicles) or drones can be used for many purposes in a

lot of aerial tasks, such as exploration, inspection, mapping, interaction with the environ-

ment, or even search and rescue, as shown in Figure 1.1. According to Goldman Sachs

Research [1: Goldman Sachs 2016], UAVs evolve into a $100 billion market by 2020.

Simultaneously, 70% of the usage of them is in the military in the market, 17% is in the

use for the consumers, which is usually for individuals, and 13% is in the use of B2B

(business-to-business), such as agriculture, mining and health. Although there are a lot of

usages in the military, the latter two are more common for us to see.

Among these applications of the UAVs, one of them is the police team. They use

UAVs for mapping cites, chasing suspects, crime scene investigation, 3D reconstruction

of accidents, traffic flowmanagement, search and rescue, or even natural disaster relief [2:

Figure 1.1: The applications of the UAVs.

1
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Droneblog 2021]. Chasing suspects can be one of the most important task for the police

in the city. It can track the target without a lot of physical power and obtain the state of

the target with efficiency, as shown in Figure 1.2 [3: 華視新聞 CH52 ].

(a) A news highlight. (b) The onboard image of the drone.

Figure 1.2: A scenario for chasing suspects using a single drone by police teams.

However, in order to operate the UAV in the environment with obstacles, the police

have to go through a lot of training such as localization, control and emergency response

using GPS (Global Positioning System), IMU (Inertial Measurement Unit) and the im-

age, or even complete several kinds of mission training such as mapping and surveying,

photographic documentation of scenes, tactical ISR (information, surveillance and recon-

naissance), supply transportation and public relations [4: Police 1 2018], which is labor-

intensive. Furthermore, due to the safety, a human can only operate and control a UAV,

which will also increase the labor consumption. As a result, developing an autonomous

UAV surveillance and tracking system with efficiency is the issue we can think of.

Nonetheless, due to the limitation of the hardware, an autonomous tracking system

has lower confidence for most people than the system controlled by human in most of

the cases because we may encounter the failure of the communication system [5: 洪哲

政 2023] or some occlusion by the obstacles [6: Zhang 2019], which will decrease the

confidence on it by people. Another example can be seen in the self-driving car market.

Although the driving cars can have less errors than humans nowadays, most people tend

2
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to drive by human [7: Yoshida 2021]. As a result, we need to construct a more reliable

and efficient system to convince people that it is much more efficient than the system

controlled by humans.

To address the problem, we need to consider issues such as motion prediction and

viewing the target from different angles. For the former issue, we can recall the scenario

in Figure 1.2(b). Once the target car is moving right, we can infer that it will move right

even if it is behind the tree on the right side. For the latter issue, we can consider the

behavior of the animals, and one we can consider are the animals living in a group. For

example, some birds fly with the V-formation flight or cluster flocking [8: Portugal 2020],

locusts and bees fly in a swarm [9: Tylus 2020], [10: Logan Berry Heritage Farm 2018],

and hyenas can attack the prey in a formation to increase the perception [11: Young 2023].

These behaviors of the animals can be the capable ways for tracking the target in the

real UAV system. There are also some research on the multi-agent UAV system. For

example, in [12: Liu et al. 2022], the authors proposes the strategies to track the target

according to the recognition rate using a team of drones, [13: Wu et al. 2022] proposes a

real-time formation tracking control protocol with obstacle avoidance, and [14: Chen et al.

2022] proposes a decentralized H∞ PID team formation tracking strategy under external

disturbance, intrinsic stochastic fluctuation and trailing vortex coupling.

As a result, after referring to these examples, a multi-agent UAV surveillance and

tracking system can be a strategy we can consider. As shown in Figure 1.3, if we use

a single UAV to track the target, the target may be occluded sometimes, which causes

the failure of the task as Figure 1.3(a), but if we use multiple UAVs, it will enlarge the

surveillance area and increase the perception of the system as the case of Figure 1.3(b).

By doing some information exchange, we have a more reliable surveillance and tracking

3
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system of the UAVs.

(a) Single-agent surveillance. (b) Multi-agent surveillance.

Figure 1.3: Surveillance using multiple agents will increase the perception of the system.

1.2 Problem Formulation of Aerial Multi-Agent Track-

ing

Quadrotor is one of the most common kinds of UAVs. As shown in Figure 1.4 [15:

Xie and Lynch 2017], it consists of a body and four sets of motors with propellers. The

quadrotor move itself by the adjustment of the speed of each motor. The opposite motors

rotate in the same direction. It can control the yaw by the adjustment of the speed of the

opposite motors and also adopts the strategy of wheeled take-off and landing technology

and integrated navigation mode, which is extremely dynamic to resist the impact of air

currents, and has excellent advantages such as anti-surveillance, anti-signal detection and

interference.

We first discuss the principle of it. As shown in Figure 1.5 [16: Murtaza’s Workshop

- Robotics and AI ], in Figure 1.5(a), if the rotors exert the same forces and counteract the

gravity, the quadrotor will hover. In the case of Figure 1.5(b), if the total force exerted by

the rotors is larger or smaller than the gravity, the quadrotor will go up or down vertically,

4
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Figure 1.4: The schematic appearance of the quadrotor.

As for the case in Figure 1.5(c), if exerted forces cannot make the quadrotor stable, it will

tilt and move sideways, and in Figure 1.5(d), if the opposite motors change their speed, in

order to maintain conservation of angular momentum, the quadrotor will make a turn.

As for the dynamics of a quadrotor, we can use the concept discussed before. The

total force exert on the quadrotor can affect the motion of the quadrotor and the total

angular momentum exerted by the motors can affect the rotation of the quadrotor. As a

result, the dynamic model of a quadrotor can be given by

mẍ = −mge3 + fRe3, (1.1)

Ṙ = RΩ̂, (1.2)

IΩ̇ = M − Ω× IΩ, (1.3)

where m is the mass of the quadrotor, x is the position in the three dimensions, g is the

gravity, e3 = [ 0 0 1 ]T , f is the total thrust exerting on the system, R ∈ SO(3) is

the orientation, Ω is the angular velocity expressed in the camera (robot) frame, I is the

moment of inertia, M is the moment exerting on the system, and •̂ is the hat map of the

vector. Among these notations, the thrust f and the moment M are the control inputs to

5
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(a) Hovering. (b) Moving vertically.

(c) Moving sideways. (d) Turning.

Figure 1.5: The principle of flight of a quadrotor.

the system.

In the scenario, we want to design the control command properly to let the formation

of the quadrotors keep tracking toward the target with some unpredictable occlusion. As

shown in Figure 1.6, the field of view of the triangular formation should cover the target

in the ideal case so that at least one agent could see the target and predict the target motion.

In the later chapters, we will discuss how to achieve this task.

1.3 Contributions of the Thesis

In the previous section, we mentioned some research about multi-agent tracking and

surveillance frameworks. There are some issues we can discuss including localization and

tracking strategies.

For the issue of localization, Global Positioning System (GPS) is an important ele-

6
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Figure 1.6: The schematic scenario in this thesis.

ment in the localization. For instance, the authors of [17: Qu and Zhang 2011] use co-

operative localization algorithm to solve the unpredictable malfunction of GPS receiver.

Nonetheless, there is no GPS device on our drone so that we cannot obtain the global

position with it directly. The onboard vision is also one of the strategies. For instance,

the authors of [18: Ma et al. 2023] proposed the vision-based relative localization as well

as the formation tracking framework with YOLOv7. Nonetheless, the frequency of the

image is only about 30Hz, which is not suitable for our scenario. The other common de-

vice for localization is IMU. Nonetheless, the IMU on the drone we use has severe error

accumulation, which is not suitable for use as a single sensor, as described in Appendix

G. Among the disadvantages above, more research focus on the sensor fusion algorithms.

As for the sensor fusion for localization of the drone, the authors of [19: Wang et al.

2022] use UAV swarm localization system based on probabilistic data association (PDA)

for vision-based relative measurements and integrate with the IMU measurements and

broadcast information with extended Kalman filter (EKF). In [20: Zheng et al. 2023],

the authors fuse the information of multi-UAV ranging and user-side IMU module using

unscented Kalman filter (UKF) to solve the partial GNSS-denied environment. These

7
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fusion algorithms can be the references of the localization frameworks in our system.

Furthermore, for the issue of drone tracking toward the target, the authors of [21:

Thomas et al. 2017] proposed an trajectory error-based cost function to make a quadrotor

track with efficiency. This paper gives us the concept of trajectory-based prediction but

lacks the solution of multi-agent problem. The authors of [12: Liu et al. 2022] proposed

a multi-agent tracking method. This paper gives us the concept of the formation of drone

teams but has lack of the elementary concepts in dynamics. In [22: Li et al. 2019], the

authors proposed a consensus-based formation tracking control algorithm. It solves the

problem of slow convergence speed and low accuracy of the formation but only validate

with simulation, which means it assume the conditions are all ideal including localization

accuracy and target estimation. That is, the strategies of these papers about drone tracking

consider the localization framework of the agents is always correct, which will not suitable

for our case.

The contributions of the thesis are that it integrates and solve the problems when

using low-cost quadrotors such as IMU accumulation, estimation failure of the target and

occlusion from the obstacles or transmission failure and propose a workflow to solve these

problems.

All in all, this thesis aims to develop a quadrotor surveillance and tracking system

that efficiently tracks a single target. The system encompasses localization, estimation,

and motion prediction of the target, as well as extracting the unique reference state of

the target, formation tracking, and control of the quadrotors. We validate the enhanced

tracking algorithms by using obstacles with known positions in theworld frame. The target

trajectories are utilized to predict its motion, and an averaging method is employed for

8
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determining the unique reference state of the target. Additionally, the formation tracking

and control algorithm is used to track the target in a formation, ensuring group discipline

and avoiding collisions. These strategies will also be discussed in the later chapters.

1.4 Organization of the Thesis

In this thesis, there are some main objectives we can consider. Chapter 1 introduces

some issues of the current problems. Chapter 2 presents a literature survey of different

methods. Chapter 3 covers the related works that forms the basis for our study. Chapter

4 are the proposed the methodologies we use in the system. Chapters 5 and 6 present

experimental results and validations with conclusions and future works.
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Chapter 2

Literature Survey
This thesis focuses on constructing a multi-agent quadrotor tracking and surveillance

system. Some references including localization, visual servoing and formation tracking

will be organized in this chapter.

2.1 Accurate Localization with Vision Assistance

We use the quadrotor ”Tello” as our control plant. As shown in Figure 2.1, this kind

of quadrotor has an IMU and a monocular camera in front of it. IMU can measure the

velocity and the acceleration and obtain the position by integration. However, the IMU

in this kind of quadrotor has a fatal flaw that it has a severe IMU error accumulation. As

shown in Figure 2.2 [23: NightjarOne ], as the quadrotor travels longer, the error measured

by the IMU will accumulate, where the white curve in Figure 2.2(a) is the ground truth

and the blue curve is the position estimation of the IMU. Simultaneously, the graph shown

in Figure 2.2(b) demonstrates the error can be up to 500 centimeters within 50 seconds of

traveling. In order to solve this problem, we can use the onboard image to improve the

localization problem.

Figure 2.1: The onboard sensors on Tello.

11
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(a) Trajectory visualization in 2D space. (b) Odometry error (cm) within time.

Figure 2.2: The effect of error accumulation.

There are several strategies for localization. For example, as shown in Figure 2.4,

we can do localization using visual odometry (VO), visual inertial odometry (VIO) or by

the landmark. These techniques can be applied on the localization of the quadrotors with

GPS and LiDAR unavailable.

2.1.1 Localization with Visual Odometry (VO) with Vision Directly

Visual odometry (VO) is a technique to obtain the pose of the plant using the infor-

mation of the image. By calculating the motion of the images in the time sequence in [24:

Nister et al. 2004], the autors use VO for pose estimation. However, VO has the problem

of accuracy if the texture of the environment is not such obvious. Simultaneously, the

sampling frequency is also the problem. The frequency of the video is about 30Hz gener-

ally, which is not sufficient, so we can use IMU whose the sampling frequency can be up

to 1000Hz to compensate the disadvantage.

2.1.2 Localization with Visual Inertial Odometry (VIO) Based on Fu-

sion of Vision and IMU Information

Visual inertial odometry (VIO) combines the visual odometry and inertial odometry

together to take the advantages of these two methods. Generally, it can be divided into two

12
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categories: loosely coupled and tightly coupled VIO. As shown in Figure 2.3 [25: Tang et

al. 2020], loosely coupled VIO conbines the position and orientation calculated by visual

odometry and the position, orientation and velocity calculated by IMU odometry together

[26: Liu and Shen 2017], [27: Weiss et al. 2013], [28: Weiss and Siegwart 2011]. It has

lower computation cost but is hard to fix the error of inertial with image. Tightly coupled

VIO combines the features of the image in 2D [29: Forster et al. 2017], [30: Caruso et al.

2017] or 3D [31: Mourikis and Roumeliotis 2007], [32: Palezieux et al. 2016] with the

IMU measurement directly. It has higher computation cost but higher accuracy as well.

(a) Loosely coupled.

(b) Tightly coupled.

Figure 2.3: The workflow of loosely and tightly coupled VIO.

2.1.3 Landmark-Based Localization, a Modified Version of VIO

Landmark is also an information we can think of. It has the advantage that we can lo-

calize the plant without preliminary information on the environment. For example, authors

of [33: Han et al. 2013] propose a novel landmark-based particle localization algorithm

13
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Localization

VO VIO Landmark-Based

 [24: Nister et al. 2004]  [25: Tang et al. 2020]  [33: Han et al. 2013]
 [34: Zhang et al. 2012]
 [35: Salahuddin et al. 2011]

Loosely-Coupled

Tightly-Coupled

[26: Liu and Shen 2017]
[27: Weiss et al. 2013]
[28: Weiss and Siegwart 2011]

 [29: Forster et al. 2017]
 [30: Caruso et al. 2017]
 [31: Mourikis and Roumeliotis 2007]
 [32: Palezieux et al. 2016]

Figure 2.4: Literature survey of localization.

for the global localization problem called relocation, authors of [34: Zhang et al. 2012]

present a localization algorithm of indoor mobile robot based on landmark, and authors of

[35: Salahuddin et al. 2011] construct a novel Artificial Landmark-Based Identification

System (ALIS) and make the computation faster with better distance estimation. If we use

the landmark with known pose, by the estimation of the camera image, we can update the

pose of the quadrotor to correct the problem of error accumulation of the IMU and make

the pose of the quadrotor more accurate.
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2.2 Visual Servoing for Robots

Visual servoing is a technique to control the plant using the information of image.

Camera is the most common vision sensor in the applications. Generally, it can be divided

into to categories including position-based visual servoing (PBVS) and vision-based visual

servoing (IBVS) as shown in Figure 2.5.

2.2.1 Position-BasedVisual Servoing (PBVS)Based onPosition Feed-

back

Position-based visual servoing (PBVS) uses the estimated position or pose of the

target to control the plant. For example, authors of [36: Popova and Liu 2016], [37: Zhao

et al. 2020] and [38: Liu et al. 2021] develop a controller based on the position to track

the target. However, the quadrotor system is not a stable system, so during the flight, the

vibrationwould occur, which couldmake the recognition of the target unstable. As a result,

recording the trajectory and predicting the motion of the target can solve the problem. The

authors of [21: Thomas et al. 2017] and [39: Chen et al. 2016] use the positions of the

target with time to construct the trajectory of the target and use the sequential quadratic

programming (SQP) method to construct an objective function under some constraints and

optimize the trajectory and control the quadrotor(s).

2.2.2 Image-Based Visual Servoing (IBVS) Based on Image Features

Feedback

Image-based visual servoing (IBVS) uses the information of the image based on the

2D image feature on the image plane directly on the control law design. Authors of [40:

Serra et al. 2015] use IBVS to design the proposed nonlinear controller. In [41: Xie

and Lynch 2017], the authors use this technique to construct an adaptive output feedback
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controller. Furthermore, in [42: Chesi and Shen 2012], the authors also use it for path

planning of the aerial vehicles.

2.2.3 Hybrid Approach, Combination of PBVS and IBVS

As for the pros and cons of these two strategies, PBVS has the advantage of the

accuracy of the target pose, but it is computationally expensive. IBVS has the advantage

of low computation cost but has difficulties with very large rotations of the camera, and

we call it camera retreat.

As a result, some papers also propose the hybrid approach. In [43: Malis et al.

1999] and [44: Corke and Hutchinson 2001], the authors propose the new visual servoing

strategies by combining these two methods together to improve the advantages of them.

Among these methods, we will use PBVS for controlling the quadrotors because we

need to obtain the exact state of the target in the world frame to share the information with

each agent and accomplish the surveillance and tracking task.

2.3 Formation Tracking for Multi-Agent Systems

The reason we want to do the formation control during tracking is that we want to

make the multi-agent quadrotor system track with discipline and maintain the distance

of safety. In [45: Chang 2020], the author divided the formation tracking control into

several categories, including leader-follower, potential function-based, virtual structure,

consensus-based, behavior-based and intelligent methods, etc. Leader-follower is the

method to use a leader and several followers [46: Wang 1991], [47: Desai et al. 1998], [48:

Do and Pan 2007]. It is easier to implement but collision problem may occur due to the

lack of communication between the followers and may fail with the failure of the leader.
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Visual Servoing

PBVS IBVS Hybrid

 [21: Thomas et al. 2017] 
 [36: Popova and Liu 2016]
 [37: Zhao et al. 2020]
 [38: Liu et al. 2021]
 [39: Chen et al. 2016]

 [40: Serra et al. 2015]
 [41: Xie and Lynch 2017]
 [42: Chesi and Shen 2012]

 [43: Malis et al. 1999]
 [44: Corke and Hutchinson 2001] 

Figure 2.5: Literature survey of visual servoing.

Potential function-based method [49: Do 2008], [50: Yu et al. 2019], [51: Pang et al.

2021] uses the potential function to make the agents interact with attractive and repulsive

forces but may cause the deadlock. Virtual structure method [52: Beard et al. 2000], [53:

Kang et al. 2000], [54: Leonard and Fiorelli 2001] considers the formation as a rigid body

but it is the open-loop control without feedback. Consensus-based method [55: Chen et

al. 2021], [56: Bae et al. 2021], [57: Liu and Huang 2021] uses the consensus problem to

maintain and move the formation but cannot prevent the collision with each other during

formation configuration or reconfiguration phases. Behavior-based method [58: Balch

and Arkin 1998], [59: Schneider-Fontan and Mataric 1998], [60: Lawton et al. 2003]

uses several desired behaviors for each agent, and the control is from the weighting of the

importance of each behavior but may cause destructive interference. Intelligence method

[61: Lu 2020], [62: Huang et al. 2022], [63: Er et al. 2024] controls the formation by

learning. However, because it is a data-driven method, we cannot analyze the system by
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Formation Tracking

Virtual 
Structure Consensus Behavior

 [49: Do 2008]
 [50: Yu et al. 2019]
 [51: Pang et al. 2021]

 [55: Chen et al. 2021]
 [56: Bae et al. 2021]
 [57: Liu and Huang 2021]

 [58: Balch and Arkin 1998]
 [59: Schneider-Fontan and Mataric 1998]
 [60: Lawton et al. 2003]

Leader-
Follower

Potential
Function Intelligence

 [46: Wang 1991]
 [47: Desai et al. 1998]
 [48: Do and Pan 2007]

 [52: Beard et al. 2000]
 [53: Kang et al. 2000]
 [54: Leonard and Fiorelli 2001]

 [61: Lu 2020]
 [62: Huang et al. 2022]
 [63: Er et al. 2024]

 [45: Chang 2020

Figure 2.6: Literature survey of formation tracking.

the mathematical derivation, which is not easy to derive the equations and prove the sta-

bility of the system. The summary of formation tracking for multi-agent system is shown

in Figure 2.5. In Chapter 3, we will further introduce the objective of these algorithms.

As a result, this thesis take the emphasis on the localization with vision and IMU

information, visual servoing and formation tracking with vision information as the lit-

erature usages. Each issue has several strategies, and we can take these strategies into

consideration to design our system. The summary of this chapter is shown in Figure 2.7.
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Figure 2.7: Summary of literature survey.
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Chapter 3

Related Works of the System

3.1 Camera Pinhole Model, a Coordinate Transforma-

tion between Camera Image and World Frame

Camera is a common sensor we can use in the applicaitions of robotics. The imaging

principle of a camera is based on several fundamental principles in optics. When light

passes through the camera’s lens, it is focused onto a photosensitive component. Pinhole

camera model is a simplified model representation. As shown in Figure 3.1 [64: Ortiz et

al. 2017], as light rays from different points in the scene pass through the pinhole, they

converge to form an inverted image on the imaging plane, typically a sensor or film.

According to [65: Tsai 1987] referred to Figure 3.2, there are four steps to do the

transformation of the camera coordinate, including

1. Rigid body transformation from the object world coordinate system.

2. Transformation from 3D camera coordinate to ideal (undistorted) image coordinate.

3. Distortion adjustment.

4. Real image coordinate to computer image coordinate coordinate transformation.

First we define the world frame {W}, camera frame {C} and image frame {i}, they
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Figure 3.1: Camera pinhole model.

have coordinate transformation below.
XC

YC

ZC

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33




XW

YW

ZW

+


Tx

Ty

Tz

 = R


XW

YW

ZW

+ T, (3.1)

where R is the rotation matrix and T is the translation from frame {W} to frame {C}.

After defining the transformation from world frame to camera frame, we then project

the perception from camera frame {C} to image frame {i}. According to the characteris-

tics of homothetic triangles in pinhole geometry, we can define

xi = fx
XC

ZC

, (3.2)

yi = fy
YC

ZC

, (3.3)

where fx and fy are the focal lengths of the camera in xi and yi directions in pixel.
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Figure 3.2: The steps for camera coordinate transformation.
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Figure 3.3: Radial distortion on the edge of the image.

Third, radial distortion is a phenomenon when the lens is not ideal, which would

make the image distort on the edge of the image. As shown in Figure 3.3, we can observe

that the fan on the upper left corner is partly distorted. As a result, we need to solve this

kind of problem by radial distortion correction. We define the radial distortion correction

of the lens.  xid

yid

 = L(r)

 xi

yi

 . (3.4)

In this equation, the left hand side is the coordinate after distortion correction. We use

the function L(r) = 1 + k1r
2 + k2r

4 . . . , where r =
√
(xi − xic)2 + (yi − yic)2 is the

Euclidean distance between the distorted image point and the distortion center to do radial

distortion correction.

Finally, we transform the image coordinate (xid, yid) to the computer image coordi-
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nate (xf , yf ), as shown below.

xf = sxd
′−1
x xid + Cx, (3.5)

yf = d′
−1
y yid + Cy, (3.6)

where (Cx, Cy) is the row and column numbers of the center of computer frame memory,

d′x = dx
Ncx

Nfx
, d′y = dy

Ncy

Nfy
where (dx, dy) are the center to center distance between adjacent

sensor elements in x and y (scan line) directions, (Ncx, Ncy) are the numbers of sensor

elements in the x and y directions, and (Nfx, Nfy) are the numbers of pixels in a line as

sampled by the computer.

Among the equations above in this section, the parameters we want to calibrate are

the rotation matrix R and translation vector T from frame {W} to frame {C}, the focal

length of the camera (fx, fy), the coefficients k1, k2 . . . for solving the radial distortion

and the uncertainty image scale factor sx. However, the framework in step 4 is not the

element we want to discuss since it is not the work we can modify. As a result, in the later

chapter, we will discuss the frameworks from step 1 to step 3 for camera calibration to

solve the parameters.

3.2 Kalman Filter for State Estimation and Sensor Fu-

sion

Kalman Filter (KF) is an algorithm used for state estimation in systems that are sub-

ject to noise and uncertainty. It can be widely used in sensor fusion or state observer. As

shown in Figure 3.4 [66: Welch and Bishop 2006], it has two main steps including pre-

diction and correction. Prediction is the process to project the state and error covariance
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ahead. We first define the equation in the digital state space model and the prediction the

error covariance

x̂−
k = Ax̂k−1 +Buk−1, (3.7)

P−
k = APk−1A

T +Q, (3.8)

where Q is the process noise covariance matrix.

On the other hand, correction is the process to compute the Kalman gain. Simulta-

neously, we update the estimated state according to the measurement zk and update the

error covariance using Kalman gain. The equations can be defined as

Kk = P−
k HT (HP−

k HT +R)−1, (3.9)

x̂k = x̂−
k +Kk(zk −Hx̂−

k ), (3.10)

Pk = (I −KkH)P−
k , (3.11)

where R is the measurement noise covariance matrix, H is the Jacobian matrix of the

observation model, and I is the identity matrix. We use the definition of the equations to

do the process of the algorithms.

3.3 Mathematical Optimization Problems

Mathematical optimization is a general term of all optimization problems. In this

chapter, wewill introduce somemathematical optimization problems, especially in convex
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Figure 3.4: The workflow of the Kalman filter in mathematical interpretation.

optimization. It has the form as

min
x

f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p.

In this optimization problem, f0 : Rn → R is the objective function which we want

to minimize, fi : Rn → R are the inequality constraints, and hi : Rn → R are the

equality constraints. We want to minimize the objective function under some inequality

and equality constraints.

Convex optimization is a problem to minimize/maximize a convex function under

some constraints. It is widely used on signal processing, finance, communications, energy
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Figure 3.5: The interpretation of a convex function.

and control systems, etc. The standard form of convex programming can be written as

min
x

f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p,

where fi(x) are convex functions and hi(x) are affine, and x ∈ Rn.

Convex function has the characteristic that for any t satisfying 0 ≤ t ≤ 1 and any

x1, x2 in the domain of convex function f , the below inequality should holds.

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2). (3.12)

That is, as shown in Figure 3.5 [67: Wikipedia ], for any line segment formed by x1 and

x2, the function values of the line segment should larger or equal to the value of the convex

function. As for the affine function, it has the characteristic that it is the sum of a linear

function and a constant, as the form below.

h(x) = Ax+ b, (3.13)
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Figure 3.6: Research fields in convex optimization.

where A ∈ Rp×n and b ∈ Rp. That is, it has equality in (3.28).

f(tx1 + (1− t)x2) = tf(x1) + (1− t)f(x2). (3.14)

The categories of the convex optimization problems including linear programming (LP),

quadratic programming (QP), second-order cone programming (SOCP), semidefinite pro-

gramming (SDP) and conic programming (CP) will obey this rule, as shown in Figure 3.6.

Besides of QP, other problems are formulated in Appendix C.

3.3.1 Quadratic Programming (QP)

In this thesis, we solve quadratic programming problems for curve fitting of the target

trajectory. Quadratic programming (QP) is the problem when the objective function is

convex quadratic and the constraint functions are affine, as shown below.

min
x

1

2
xTPqpx+ qTqpx+ r

s.t. Gqpx ⪯ hqp

Aqpx = bqp,
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where Pqp ∈ Sn
+ (positive semidefinite symmetric matrix), Gqp ∈ Rm×n, Aqp ∈ Rp×n,

and bqp ∈ Rp.

Convex optimization can be solved by several methods. For instance, Newton’s

method can be used to solve the optimization problem with no constraints, interior point

method (barrier method) uses a logrithmic barrier to optimize the objective function and

eliminate the inquality constraints. Besides, gradient descent uses the local gradient to

find the minimum whose gradient approaches zero. In fact, there are more than these

methods. These methods by iteration can be used to solve the optimization problems in

our research.

3.4 Consensus-Based Formation Tracking Control Strat-

egy

Consensus-based formation tracking control is a method to control the multi-agent

system according to the states and the communication protocol of the agents. The objective

of this algorithm is to make the states, including position and velocity, to converge to a

desired value. That is, we want to let ||ri(t)− rj(t)− dij|| → 0 and ||ṙi(t)− ṙj(t)|| → 0

as t → ∞ where dij is the position offset between ith and jth agents, and ri(t), rj(t) and

ṙi(t), ṙj(t) are the positions and velocities of the ith and jth agents, which will be satisfied

for any initial states ri(0) and ṙi(0). Other kinds of formation tracking control algorithms

are introduced in Appendix D.
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Chapter 4

Methodologies

4.1 System Overview for Vision-Based Multi-Agent Tra-

jectory Tracking System with Landmark-Based Lo-

calization

Before we introduce the techniques we use. We first introduce the system overview.

As shown in Figure 4.1, we take the drone Tello as the control plant. We can do state

estimation using onboard IMU and camera, and do sensor fusion using linear Kalman

filter (KF) to make the state more accurate. After obtaining the estimated drone state,

we can obtain the state of the target, and after recording it with time, we can obtain the

trajectory with time to predict the motion. We use the message of current state of the

drone and the trajectory of the target as the input of the trajectory planner to obtain the

reference trajectory. Finally, a position-based visual servoing (PBVS) controller is applied

to send the velocity command to control the drone, which achieves the purpose of feedback

control.

We first define the coordinates of the system. As shown in Figure 4.2, we assume

the camera frame and the quadrotor frame are the same at frame {C}. Simultaneously,

the world frame {W} has only translation with frame {C}. Thus, there is no rotation

between them. Additionally, to validate the capability of the system, an implement of a

motion capture system is needed. There is an RBG camera with frame {M} which has

the rotation of -90 degrees and opposite z axis.
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Figure 4.1: System overview.
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RCW , TCW
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Figure 4.2: Relationship of the coordinates.

The overall coordinate transformation of the experiment is listed below.


XW

YW

ZW

 = RCW


XC

YC

ZC

+ TCW , (4.1)


XW

YW

ZW

 = RMW


XM

YM

ZM

+ TMW , (4.2)

where RCW and RMW can be defined as

RCW = I3, (4.3)
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where

I3 =


1 0 0

0 1 0

0 0 1

 , (4.4)

and

RMW = Rz=−z ×Rx(−90◦) =


1 0 0

0 0 1

0 1 0

 , (4.5)

where

Rx(−90◦) =


1 0 0

0 cos(−90◦) − sin(−90◦)

0 sin(−90◦) cos(−90◦)

 , Rz=−z =


1 0 0

0 1 0

0 0 −1

 . (4.6)

We will use this coordinate system in the experiment validations.

4.2 Proposed KF-Based Localization with Landmarks

As mentioned in chapter 2 and Appendix G, the onboard IMU of the quadrotor Tello

has a severe error accumulation, so we need to improve the problem with downward vi-

sion using the onboard camera. The method of downward vision processing is shown

in Appendix A. This section will focus on the strategies to make the localization more

accurate.

4.2.1 Workflow of State Estimation According to Landmarks with

Vision

Localization is a vital technique in PBVS control. We use the Kalman filter with a

constant speed model to do the localization using the landmarks with known positions in
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the world frame {W}. The linear model of the Kalman filter can be defined as

A(k) =



1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1


, (4.7)

H(k) =

0 0 1 0

0 0 0 1

 , (4.8)

where dt = 0.1(s) is the runtime of a loop in the algorithm.

First, according to [68: Wu 2019], we can estimate the relative position (∆XW ,∆YW )

between the target and itself in the world frame according to the relative height∆heightf

and pixel value in the image, as shown in Figure 4.3. The equation to estimate its position

(a) Representation of the relative height. (b) Relative position estimation in the 2D image.

Figure 4.3: Schematic scenario in state estimation according to the landmark.
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can be interpreted as

∆XW = −(v − cx)×∆heightf ×
himg
αv

, (4.9)

∆YW = (u− cy)×∆heightf ×
wimg

αu

, (4.10)

where (u, v) is the pixel value of the landmark center in the image, (cx, cy) is the center

of the image in pixel, (himg, wimg) are the height and width of the image in pixel, and

(αu, αv) = (1.04, 0.77)m is the FOV in xi and yi direction at the height of 1 meter.

Thus, the position of the quadrotor in the world frame {W} is

XW,quad = XW,landmark +∆XW , (4.11)

YW,quad = YW,landmark +∆YW , (4.12)

where (XW,landmark, YW,landmark) is the position of the landmark in the world frame {W}

with known position.

4.2.2 KF-Based State Estimation According to Landmarks

Recalling the workflow in Figure 3.4, when the quadrotor detect the target, it will

use the landmark information directly. If there is no landmark, it will take the last position

information as the initial state input of the KF and run the KF algorithm to update the

position. If the quadrotor detect the landmark again, it will use the landmark information

again. The workflow is shown in Figure 4.4. The simulation and experiment result will

be shown in Appendix I.
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Check if the 
Landmark Detected

Use the Image
Information

Use KF-Based
Localization

Last Position by
Image Estimation

Initialize 
Error Covariance

Yes

No

Input
Image

Figure 4.4: The workflow of proposed KF-based localization framework.

4.3 Trajectory-Based Motion Prediction of the Target

The purpose why we need to obtain the trajectory is that because the vision will not

be always stable. That is, the target is not always detected through the image. As a result,

trajectory is an important essence for tracking. Furthermore, motion prediction is also a

vital method. If we track the target without prediction, the drone will lose some target

information unpredictably. In this section, we will introduce the strategies to obtain the

trajectories of the target in x and y directions using onboard vision of the quadrotors with

more accurate KF-based localization.

4.3.1 Target State Estimation with Downward Vision

Similar to 4.2.1, the representation of the equation to estimate relative position with
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the target can be interpreted as

∆XW,t = (vt − cx)×∆heightf,t ×
himg

αv

, (4.13)

∆YW,t = −(ut − cy)×∆heightf,t ×
wimg

αu

, (4.14)

where the notations with subscript t denote the relative information with the target. We

can obtain the target position as

XW,t = XW,quad +∆XW,t, (4.15)

YW,t = YW,quad +∆YW,t, (4.16)

for estimating the position of the target. Different from section 4.2.1 to estimate the drone

position itself using the landmark, the direction of these equations is opposite. In this

section, we estimate the quadrotors themselves according to the external object, but in

this section, it estimates the external object using its information.

4.3.2 Trajectory Function Representation

After we have the positions of the target within time, we can fit the target trajectories

in XW and YW directions. It can be defined as [21: Thomas et al. 2017]

g(t) =
n∑

k=0

ckbk(t). (4.17)

In the representation of the element in the vector, it can be formed as

gi(t) = ci
T b(t), (4.18)

where the target trajectory g(t) is the function of time, ck is the coefficients of the poly-
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nomial trajectory, and b(t) can be the standard power basis. That is,

b(t) =

[
1 t t2 . . . tn

]T
. (4.19)

4.3.3 Target Motion Prediction with Curve Fitting

For the motion prediction of the target, we first estimate the position of the target

within time and obtain the trajectories of the target which are functions of time.

When the target is detected, we record its position as well as the time. As shown in

Figure 4.5, we collect the most recent points to do curve fitting. If the number of points

is equal to 10, the algorithm will discard the first data to perform curve fitting. That is,

we maintain a record of the most recent 10 sets of data to avoid the effect of the previous

data. After discarding the first point of the set, we check whether the new point be added

or not. If there is new point detected in the next loop, the algorithm would utilize these 10

points to perform curve fitting. Else, the algorithm would utilize the remaining 9 points

to perform curve fitting until the new point detected. As for the curve fitting, we can

formulate it into an unconstrained convex optimization (QP) problem.

minF (c) =
N∑
k=1

(cTXW,k − YW,k)
2,

where F (c) is the quadratic function we want to optimize,XW,k are theX positions of the

points, YW,k are the Y positions of the points in the world frame {W}, and coefficients of

the polynomial we want to fit can be defined as

c = argminF (c). (4.20)
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Input Points 
with Time

Curve Fitting
with x Points

(x≥10)

Discard the 
First Point

Whether the new
point added? No

Yes

Curve Fitting
with x-1 Points

If x≥10

Figure 4.5: The workflow of sliding-window points selection for curve fitting.

Here c = [c0 c1 c2 . . . cn] is the vector consisting of all the elements of ck in Equation 4.17.

In this paper, we utilize first-degree polynomials to fit the polynomial trajectories. That

is, c ∈ R2 and g(t) is a linear function.

4.4 Control Strategies of the Multi-Quadrotor System

4.4.1 Planar Consensus-Based Formation Tracking Control for the

Multi-Agent System

In this section, we will introduce the control law in XW and YW directions to make

the team of quadrotors to track the ground target with formation.

4.4.1.1 Reference State Extraction

According the curve fitting algorithm, we can predict the motion of the target for

each quadrotors. As shown in Figure 4.6, each quadrotor plans a trajectory and predicts a
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Figure 4.6: The schematic scenario for individual trjaectory of prediction.

reference state including position and velocity terms at current time.

ri,rs = [ri,r, ṙi,r], (4.21)

where ri,r is the position of the reference from trajectory-based motion prediction, which

is also the function value of g(t) at current time and ṙi,r is the velocity of the reference,

which is also the function value of ġ(t) at current time.

Nonetheless, according to the motion prediction algorithm, if the quadrotor cannot

obtain the new target information for a long time, it will utilize the last trajectory to predict

the current state of the target, which will make the information of the target inaccurate.

Thus, we take the threshold of the predicted position to obtain acceptable state. The equa-

tion for selecting the acceptable reference states can be formulated as

ri,rs,accep =


ri,rs, if |ri,r| ≤ thresh

None, otherwise.

(4.22)
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As a result, the overall unique reference state can be formulated as

roverall,rs = mean(ri,rs,accep) for ri,rs,accep ̸= None, (4.23)

where roverall,rs = [pref , ṗref ] include position and velocity terms.

4.4.1.2 Planar Consensus-Based Formation Tracking Control

Next, because for the current package we use, we need to design the velocity com-

mand for the quadrotors. We consider a single-integrator dynamic of a quadrotor

ṙi = ui, i = 1, ..., n, (4.24)

where n = 3 is the number of agents, and ui ∈ R2 is the control input of the ith agent. In

our control scheme referring to [69: Ren and Beard 2007], the consensus-based velocity

control input can be designed as

ui = ṙdi − αi(ri − rdi )−
n∑

j=1

[(ri − rdi )− (rj − rdj )], (4.25)

where αi > 0 is a scalar, rdi is the desired state of the ith agent. Here the states ri and rdi

are the position information with the velocity control input ui. That is, ri = [XWi, YWi]

and rdi = [Xd
Wi, Y

d
Wi] = pref + di where di is the distance of position offset, as shown

in Figure 4.7. Furthermore, the desired velocity ṙdi = [Ẋd
Wi, Ẏ

d
Wi] = ṗref . The stability

analysis of the formation controller will be presented in Appendix M.

Nonetheless, due to the hardware limitations such as signal transmission and the

weights of the ArUco markers on the quadrotors for the motion capture system, collision

will sometimes occur among the quadrotors with the design command ui. As a result, for

the designed formation control command, we revise the command velocity ui and set a
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Figure 4.7: The relationship between the current states and desired formation of the agents.

saturation projection for it. That is,

uif =


ui, if ∥ui∥ ≤ 0.3

0.3 ui
∥ui∥ , if ∥ui∥ > 0.3.

Here uif is the final designed control command (m/s) in the experiment. Note that the

command velocity is also larger than the target speed.
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Chapter 5

Experiment Results and Validations of

the System
In this chapter, we will discuss the multi-agent localization and consensus-based for-

mation tracking controller toward a moving ground target. We also compare some KF-

based localization results of the quadrotors with the ground truth, the predicted target po-

sition of each drone using curve fitting with estimated data, the averaged unique predicted

position of the target with the actual position, the positions of all moving objects including

the quadrotors and the target, and executing time interval of the command velocities.

5.1 Experiment Setup

We use three quadrotors as our control plant. The objective is to localize the quadro-

tors with landmarks and obtain the state of the ground moving target under partially oc-

clusion from the landmarks by the tracking framework with trajectory assistance. The

external objects including landmarks and the target are detected by means of the ArUco

markers on them. An RGB camera from the third perspective is applied for capturing the

motions of quadrotors (ID: 98, 99, 100) and the target reference (ID: 50). The scenario is

shown in Figure 5.1.

5.2 Task Overview

For the scenario design, there are 3 non-control tasks and 3x3 control tasks for eval-

uating the effect of the proposed algorithms, as shown in Table 5.1. The purpose is to
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(a) Target scenario. (b) Schematic target scenario.

Figure 5.1: Experiment scenario.

demonstrate that control of the group will make them detect the target even when the tar-

get is moving. We divide the cases into three cases according to the obstacles to imitate the

conditions of simple, normal and complex scenario in the cities. Furthermore, the veloc-

ity of the target is also a vital criteria to evaluate the capability of the tracking algorithms

because there might be some difference for target surveillance efficiency. We will also

show the results in the later sections. The velocities of the target in these cases are

1. Stationary: v = 0 (m/s) along YW direction

2. Slow: v = 0.03 ∼ 0.07 (m/s) along YW direction

3. Fast: v = 0.15 ∼ 0.30 (m/s) along YW direction.

Table 5.1: Case study of the experiments.

No control Control, no obs. Control, 1 obs. Control, 3 obs.

Stationary 0-1 1-1 2-1 3-1
Slow 0-2 1-2 2-2 3-2
Fast 0-3 1-3 2-3 3-3

In Figure 5.2, it shows the experiment setup and Figure 5.3 shows the real object in Figure

5.2(a). For tasks 0-1 ∼ 0-3 and 1-1 ∼ 1-3, the 3D positions of the landmarks with IDs 7,

46

http://dx.doi.org/10.6342/NTU202404031


doi:10.6342/NTU202404031

5, and 8 are (0, 0.5, 0.054), (0, 0, 0.075), and (0,−0.4, 0.003) (m) respectively. For tasks

2-1 ∼ 2-3, the 3D positions of the landmarks with IDs 7, 5, and 8 are (0, 0.5, 0.054),

(0, 0, 0.075), and (0,−0.4, 0.415) (m) respectively. For tasks 3-1 ∼ 3-3, the 3D positions

of the landmarks with IDs 7, 5, and 8 are (0, 0.7, 0.355), (0, 0, 0.428), and (0,−0.4, 0.415)

(m) respectively. Note that all the positions are defined in frame {W} Simultaneously,

the height of the target (ID=0) is 0.2 (m) for all cases and the height of the drones can

be obtained by IMU information. As a result, in Figure 5.3, the objects in the red boxes

are the obstacles higher than the target, which may result in some occlusions of the target

from the perspective of the drones. The process will go through 4 steps, including

(a) Experiment setup from the
side view.

(b) Experiment setup from the
top view.

(c) Experiment setup in real
scenario.

Figure 5.2: Experiment setup.

1. Tello motor on (10 sec)

2. Takeoff and hovering (5 sec)

3. Controlling the planar motion in XW and YW (30 sec)

4. Hovering (5 sec)

5. Landing.

Each process can be identified in the figures of this chapter.
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Figure 5.3: The real objects as the landmarks and obstacles in Figure 5.2(a).

5.3 Quadrotor Positions by Onboard Localization/RGB

Camera Estimation within Time

In this section, we will demonstrate accuracy of the onboard localization framework

using KF-based localization with the landmarks and IMU velocity measurement. Further-

more, we will compare the localization result with the result of the ground truth with RGB

camera motion capture system using the evaluation of the error, where the error is defined

as

error(%) =
position(onboard)− position(RGB)

height
× 100%. (5.1)

Note that in the first two graphs for each case, the curves formed by (red) circles, (blue)

crosses and (green) triangles are the ground truth of tello_1, tello_2 and tello_3 respec-

tively, and the (red) dashed, (blue) dotted and (green) dashed-dotted curves are the po-

sition result of onboard localization using the fusion of landmark and IMU information

with KF. Furthermore, for the last two graphs in each case, the the curves formed by (red)

circles, (blue) crosses and (green) triangles are the errors of tello_1, tello_2 and tello_3
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respectively.

5.3.1 Results of 0-1 ∼ 0-3, Non-Control Cases, without Obstacles

In this section, we will demonstrate the result of the non-control cases. In these cases,

the result will show that without control of the agents, they will lose the information of

the target after certain time period. The results of non-control cases are shown in Figure

5.4, Figure 5.5 and Figure 5.6.

For the case 0-1 referring to Figure 5.4, there is the comparison of the onboard local-

ization with KF algorithm and the position result estimated by RGB camera, which is the

ground truth. In Figure 5.4(a) and Figure 5.4(b), the result shows the position comparison

inXW and YW directions respectively. In Figure 5.4(c) and Figure 5.4(d), the result shows

the position error (%) comparison inXW and YW directions respectively. We can observe

that the onboard localization error is in±10 % range inXW direction and in±15 % range

in YW direction.

For the case 0-2 referring to Figure 5.5, there is the comparison of the onboard local-

ization with KF algorithm and the position result estimated by RGB camera, which is the

ground truth. In Figure 5.5(a) and Figure 5.5(b), the result shows the position compari-

son in XW and YW directions respectively. In Figure 5.5(c) and Figure 5.5(d), the result

shows the position error (%) comparison in XW and YW directions respectively. We can

observe that the onboard localization error (%) is in -5% to 10% range in XW direction

and in -15% to 10% range in YW direction, which has not much difference between case

0-1.

For the case 0-3 referring to Figure 5.6, there is the comparison of the onboard local-

ization with KF algorithm and the position result estimated by RGB camera, which is the
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(a) Drone positions by onboard/RGB camera estimation in XW

direction.

(b) Drone positions by onboard/RGB camera estimation in YW

direction.

(c) Drone position errors by onboard/RGB camera estimation in
XW direction.

(d) Drone position errors by onboard/RGB camera estimation
in YW direction.

Figure 5.4: The comparison of drone positions by onboard/RGB camera estimation within
time of case 0-1.
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(a) Drone positions by onboard/RGB camera estimation in XW

direction.

(b) Drone positions by onboard/RGB camera estimation in YW

direction.

(c) Drone position errors by onboard/RGB camera estimation in
XW direction.

(d) Drone position errors by onboard/RGB camera estimation
in YW direction.

Figure 5.5: The comparison of drone positions by onboard/RGB camera estimation within
time of case 0-2.
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(a) Drone positions by onboard/RGB camera estimation in XW

direction.

(b) Drone positions by onboard/RGB camera estimation in YW

direction.

(c) Drone position errors by onboard/RGB camera estimation in
XW direction.

(d) Drone position errors by onboard/RGB camera estimation
in YW direction.

Figure 5.6: The comparison of drone positions by onboard/RGB camera estimation within
time of case 0-3.
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ground truth. In Figure 5.6(a) and Figure 5.6(b), the result shows the position comparison

inXW and YW directions respectively. In Figure 5.6(c) and Figure 5.6(d), the result shows

the position error (%) comparison inXW and YW directions respectively. We can observe

that the onboard localization error (%) is in ±5 % range in XW direction and in -30% to

10% range but mostly ±10 % in YW direction, which has not much difference between

case 0-1 and 0-2.

In summary, for case 0-1∼ 0-3, we can observe that because there is no active motion

of the drones, the motions are similar among the cases, and the errors are about ±5∼±15

% for most cases.

5.3.2 Results of 1-1 ∼ 1-3, Control Cases, without Obstacles

In this section, we demonstrate the onboard localization according to ground land-

marks and the height of ground landmarks are lower than the target so that the landmarks

will not occlude the target as in the empty scenario. The results the control cases of 1-

1, 1-2 and 1-3 from stationary to fast speed of the target without obstacles are shown in

Figure 5.7, Figure 5.8 and Figure 5.9.

For the case 1-1 referring to Figure 5.7, there is the comparison of the onboard local-

ization with KF algorithm and the position result estimated by RGB camera, which is the

ground truth. In Figure 5.7(a) and Figure 5.7(b), the result shows the position comparison

inXW and YW directions respectively. In Figure 5.7(c) and Figure 5.7(d), the result shows

the position error (%) comparison inXW and YW directions respectively. We can observe

that the onboard localization error (%) is in -10% to 15% range in XW direction and in

-20% to 10% range in YW direction.

For the case 1-2 referring to Figure 5.8, there is the comparison of the onboard local-
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(a) Drone positions by onboard/RGB camera estimation in XW

direction.

(b) Drone positions by onboard/RGB camera estimation in YW

direction.

(c) Drone position errors by onboard/RGB camera estimation in
XW direction.

(d) Drone position errors by onboard/RGB camera estimation
in YW direction.

Figure 5.7: The comparison of drone positions by onboard/RGB camera estimation within
time of case 1-1.
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(a) Drone positions by onboard/RGB camera estimation in XW

direction.

(b) Drone positions by onboard/RGB camera estimation in YW

direction.

(c) Drone position errors by onboard/RGB camera estimation in
XW direction.

(d) Drone position errors by onboard/RGB camera estimation
in YW direction.

Figure 5.8: The comparison of drone positions by onboard/RGB camera estimation within
time of case 1-2.
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ization with KF algorithm and the position result estimated by RGB camera, which is the

ground truth. In Figure 5.8(a) and Figure 5.8(b), the result shows the position comparison

inXW and YW directions respectively. In Figure 5.8(c) and Figure 5.8(d), the result shows

the position error (%) comparison inXW and YW directions respectively. We can observe

that the onboard localization error (%) is in -10% to 20% range in XW direction and in

±20 % range in YW direction.

For the case 1-3 referring to Figure 5.9, there is the comparison of the onboard local-

ization with KF algorithm and the position result estimated by RGB camera, which is the

ground truth. In Figure 5.9(a) and Figure 5.9(b), the result shows the position comparison

inXW and YW directions respectively. In Figure 5.9(c) and Figure 5.9(d), the result shows

the position error (%) comparison inXW and YW directions respectively. We can observe

that the onboard localization error (%) is in ±10 % range inXW direction and in -20% to

10% range in YW direction.

We can observe that although there is nonzero formation control speed, the accuracy

of onboard localization is not such obvious. In this case, for the cases with control and

without obstacles (1-1 ∼ 1-3), there is not much difference among these cases.

5.3.3 Results of 2-1 ∼ 2-3, Control Cases, with an Obstacle

The objective of this section is to imitate the scenario with an obstacle which will

sometimes occlude the target. In these cases, the flight of the quadrotors will be more

unstable than the cases without obstacles (1-1 ∼ 1-3). The onboard localization accuracy

results of the control cases of 2-1, 2-2 and 2-3 with an obstacle are shown in Figure 5.10,

Figure 5.11 and Figure 5.12.

For the case 2-1 referring to Figure 5.10, there is the comparison of the onboard
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(a) Drone positions by onboard/RGB camera estimation in XW

direction.

(b) Drone positions by onboard/RGB camera estimation in YW

direction.

(c) Drone position errors by onboard/RGB camera estimation in
XW direction.

(d) Drone position errors by onboard/RGB camera estimation
in YW direction.

Figure 5.9: The comparison of drone positions by onboard/RGB camera estimation within
time of case 1-3.
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(a) Drone positions by onboard/RGB camera estimation in XW

direction.

(b) Drone positions by onboard/RGB camera estimation in YW

direction.

(c) Drone position errors by onboard/RGB camera estimation in
XW direction.

(d) Drone position errors by onboard/RGB camera estimation
in YW direction.

Figure 5.10: The comparison of drone positions by onboard/RGB camera estimation within
time of case 2-1.
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localization with KF algorithm and the position result estimated by RGB camera, which

is the ground truth. In Figure 5.10(a) and Figure 5.10(b), the result shows the position

comparison in XW and YW directions respectively. In Figure 5.10(c) and Figure 5.10(d),

the result shows the position error (%) comparison inXW and YW directions respectively.

We can observe that the onboard localization error (%) is in±15 % range inXW direction

and in ±10 % range in YW direction.

For the case 2-2 referring to Figure 5.11, there is the comparison of the onboard

localization with KF algorithm and the position result estimated by RGB camera, which

is the ground truth. In Figure 5.11(a) and Figure 5.11(b), the result shows the position

comparison in XW and YW directions respectively. In Figure 5.11(c) and Figure 5.11(d),

the result shows the position error (%) comparison inXW and YW directions respectively.

We can observe that the onboard localization error (%) is in -20% to 10% range in XW

direction and in -20% to 15% range in YW direction.

For the case 2-3 referring to Figure 5.12, there is the comparison of the onboard

localization with KF algorithm and the position result estimated by RGB camera, which

is the ground truth. In Figure 5.12(a) and Figure 5.12(b), the result shows the position

comparison in XW and YW directions respectively. In Figure 5.12(c) and Figure 5.12(d),

the result shows the position error (%) comparison inXW and YW directions respectively.

We can observe that the onboard localization error (%) is in -20% to 15% range in XW

direction and in ±20 % range in YW direction.

Obviously, for case 2-1∼ 2-3, we can observe that if there is nonzero formation con-

trol speed, the accuracy of onboard localization decreases, whichmeans the error increases
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(a) Drone positions by onboard/RGB camera estimation in XW

direction.

(b) Drone positions by onboard/RGB camera estimation in YW

direction.

(c) Drone position errors by onboard/RGB camera estimation in
XW direction.

(d) Drone position errors by onboard/RGB camera estimation
in YW direction.

Figure 5.11: The comparison of drone positions by onboard/RGB camera estimation within
time of case 2-2.

60

http://dx.doi.org/10.6342/NTU202404031


doi:10.6342/NTU202404031

(a) Drone positions by onboard/RGB camera estimation in XW

direction.

(b) Drone positions by onboard/RGB camera estimation in YW

direction.

(c) Drone position errors by onboard/RGB camera estimation in
XW direction.

(d) Drone position errors by onboard/RGB camera estimation
in YW direction.

Figure 5.12: The comparison of drone positions by onboard/RGB camera estimation within
time of case 2-3.

61

http://dx.doi.org/10.6342/NTU202404031


doi:10.6342/NTU202404031

because of more unstable flight.

5.3.4 Results of 3-1 ∼ 3-3, Control Cases, with three Obstacles

In these cases of 3-1∼ 3-3 for imitating the complex scenario withmultiple obstacles,

the flight of the quadrotors will be more unstable than the previous cases including 1-1

∼ 1-3 and 2-1 ∼ 2-3 due to the less information of the target in FOV. The results of the

control cases of 3-1, 3-2 and 3-3 with three obstacles are shown in Figure 5.13, Figure

5.14 and Figure 5.15.

For the case 3-1 referring to Figure 5.13, there is the comparison of the onboard

localization with KF algorithm and the position result estimated by RGB camera, which

is the ground truth. In Figure 5.13(a) and Figure 5.13(b), the result shows the position

comparison in XW and YW directions respectively. In Figure 5.13(c) and Figure 5.13(d),

the result shows the position error (%) comparison inXW and YW directions respectively.

We can observe that the onboard localization error (%) is in±15 % range inXW direction

and in ±20 % range in YW direction.

For the case 3-2 referring to Figure 5.13, there is the comparison of the onboard

localization with KF algorithm and the position result estimated by RGB camera, which

is the ground truth. In Figure 5.14(a) and Figure 5.14(b), the result shows the position

comparison in XW and YW directions respectively. In Figure 5.14(c) and Figure 5.14(d),

the result shows the position error (%) comparison inXW and YW directions respectively.

We can observe that the onboard localization error (%) is in±20 % range inXW direction

and in -30% to 20% range in YW direction.

For the case 3-3 referring to Figure 5.15, there is the comparison of the onboard

localization with KF algorithm and the position result estimated by RGB camera, which

62

http://dx.doi.org/10.6342/NTU202404031


doi:10.6342/NTU202404031

(a) Drone positions by onboard/RGB camera estimation in XW

direction.

(b) Drone positions by onboard/RGB camera estimation in YW

direction.

(c) Drone position errors by onboard/RGB camera estimation in
XW direction.

(d) Drone position errors by onboard/RGB camera estimation
in YW direction.

Figure 5.13: The comparison of drone positions by onboard/RGB camera estimation within
time of case 3-1.
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(a) Drone positions by onboard/RGB camera estimation in XW

direction.

(b) Drone positions by onboard/RGB camera estimation in YW

direction.

(c) Drone position errors by onboard/RGB camera estimation in
XW direction.

(d) Drone position errors by onboard/RGB camera estimation
in YW direction.

Figure 5.14: The comparison of drone positions by onboard/RGB camera estimation within
time of case 3-2.
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(a) Drone positions by onboard/RGB camera estimation in XW

direction.

(b) Drone positions by onboard/RGB camera estimation in YW

direction.

(c) Drone position errors by onboard/RGB camera estimation in
XW direction.

(d) Drone position errors by onboard/RGB camera estimation
in YW direction.

Figure 5.15: The comparison of drone positions by onboard/RGB camera estimation within
time of case 3-3.
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is the ground truth. In Figure 5.15(a) and Figure 5.15(b), the result shows the position

comparison in XW and YW directions respectively. In Figure 5.15(c) and Figure 5.15(d),

the result shows the position error (%) comparison inXW and YW directions respectively.

We can observe that the onboard localization error (%) is in -25% to 20% range in XW

direction and in ±30 % range in YW direction.

Similar to the previous cases, for case 3-1∼ 3-3, we can observe that if there is more

unstable flight or fast flight and less target information, the accuracy of onboard localiza-

tion decreases, which means the error increases.

The comparison of the range of error for each case is shown in Figure 5.16. We can

observe that from Figure 5.16(a) inXW direction and Figure 5.16(b) in YW direction, cases

with nonzero control command will cause larger localization error than the cases without

control. Nonetheless, for control cases, the onboard localization error is not such obvious

among these cases.

5.4 Estimated/PredictedTarget PositionswithinTimewith-

out/with Curve Fitting

Prediction of the target motion is an vital essence in this system since we need to deal

with the unpredictable estimation failure of the target result from unpredictable signal or

obstacle occlusions. In this section, we will demonstrate the capability of curve fitting to

predict the position of the target with some estimation failure from the drones. In each

figure of this section, the first two subfigures are the directly estimation of the target from

the image and the last two subfigures are the predicted position of the target using curve

fitting. The (blue) circles, (green) crosses and (red) triangles are the estimated/predicted

target positions of tello_1, tello_2 and tello_3 respectively. Furthermore, the prediction
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(a) Box plot of the onboard localization errors for every case in
XW direction.

(b) Box plot of the onboard localization errors for every case in
YW direction.

Figure 5.16: The box plot comparison of the onboard localization errors for every case
during control process.
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error of this method will be discussed in the next section.

5.4.1 Results of 0-1 ∼ 0-3, Non-Control Cases, without Obstacles

For case 0-1∼ 0-3 of the non-control cases, we will see the target out of all FOVs of

the quadrotors if the target is moving. Nonetheless, we can also use curve fitting to predict

the position of the target. The result of the estimated positions in XW direction and YW

direction, and predicted positions inXW direction and YW direction for case 0-1 ∼ 0-3 is

shown in Figure 5.17, Figure 5.18 and Figure 5.19.

For case 0-1 referring to Figure 5.17 without control and with stationary target, the

estimation of the target is relatively stable. Although there might be some estimation in

a small time interval, we can predict the target positions using curve fitting, as shown in

Figure 5.17(c) and Figure 5.17(d).

However, for case 0-2 referring to Figure 5.18 without control and with moving tar-

get, the target will be out of FOVs of the drones because there is no control command.

We can also predict the target positions using curve fitting, as shown in Figure 5.18(c) and

Figure 5.18(d).

Similar to case 0-2, the result of case 0-3 referring to Figure 5.19 without control

and with moving target, the target will be out of FOVs of the drones because there is no

control command along XW and YW directions. We can also predict the target positions

using curve fitting, as shown in Figure 5.19(c) and Figure 5.19(d).

5.4.2 Results of 1-1 ∼ 1-3, Control Cases, without Obstacles

For case 1-1∼ 1-3 with no obstacles, the situation only depends on the signal occlu-

sion and positions of the quadrotors, which means there is no occlusion by obstacles in
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(a) Target positions estimated by the drones in XW direction.

(b) Target positions estimated by the drones in YW direction.

(c) Target positions predicted using curve fitting in XW

direction.

(d) Target positions predicted using curve fitting in YW

direction.

Figure 5.17: The comparison of target positions using directly estimation and curve fitting
within time of case 0-1.
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(a) Target positions estimated by the drones in XW direction.

(b) Target positions estimated by the drones in YW direction.

(c) Target positions predicted using curve fitting in XW

direction.

(d) Target positions predicted using curve fitting in YW

direction.

Figure 5.18: The comparison of target positions using directly estimation and curve fitting
within time of case 0-2.
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(a) Target positions estimated by the drones in XW direction.

(b) Target positions estimated by the drones in YW direction.

(c) Target positions predicted using curve fitting in XW

direction.

(d) Target positions predicted using curve fitting in YW

direction.

Figure 5.19: The comparison of target positions using directly estimation and curve fitting
within time of case 0-3.
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these cases. The result of case 1-1 ∼ 1-3 is shown in Figure 5.20, Figure 5.21 and Figure

5.22.

For case 1-1 referring to Figure 5.20, we can observe that although there is no target

detected at some time intervals such as 30s∼ 32s in Figure 5.20(a) and Figure 5.20(b), we

can compensate these estimation errors by curve fitting 1st order polynomials. As a result,

the predicted trajectories will be 1st order polynomials if there is no new estimation point

of the target, as shown in Figure 5.20(c) and Figure 5.20(d).

For case 1-2 referring to Figure 5.21, we can observe that although there is no target

detected at some time intervals such as 20s ∼ 28s in Figure 5.21(a) and Figure 5.21(b),

we can also compensate these estimation errors by curve fitting 1st order polynomials and

if there is no new estimation point of the target, the predicted trajectories will be 1st order

polynomials as well, as shown in Figure 5.21(c) and Figure 5.21(d).

For case 1-3 referring to Figure 5.22, we can observe that although there is no target

detected at some time intervals such as 17s ∼ 21s, 21s ∼ 23s and 23s ∼ 26s in Figure

5.22(a) and Figure 5.22(b), We can use curve fitting 1st order polynomials to compensate

the data loss of the target position, as shown in Figure 5.22(c) and Figure 5.22(d).

5.4.3 Results of 2-1 ∼ 2-3, Control Cases, with an Obstacle

For case 2-1 ∼ 2-3 with an obstacle, the data obtaining is harder than case 1-1∼ 1-3

since there is the situation of the occlusions by obstacles added. The result of case 2-1

∼ 2-3 is shown in Figure 5.23, Figure 5.24 and Figure 5.25. Similarly, although there is

some estimation failure at some time intervals, we can use curve fitting to solve this kind

of problem and obtain the target positions in real time.

For case 2-1 referring to Figure 5.23, we can observe that although there is no target
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(a) Target positions estimated by the drones in XW direction.

(b) Target positions estimated by the drones in YW direction.

(c) Target positions predicted using curve fitting in XW

direction.

(d) Target positions predicted using curve fitting in YW

direction.

Figure 5.20: The comparison of target positions using directly estimation and curve fitting
within time of case 1-1.
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(a) Target positions estimated by the drones in XW direction.

(b) Target positions estimated by the drones in YW direction.

(c) Target positions predicted using curve fitting in XW

direction.

(d) Target positions predicted using curve fitting in YW

direction.

Figure 5.21: The comparison of target positions using directly estimation and curve fitting
within time of case 1-2.
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(a) Target positions estimated by the drones in XW direction.

(b) Target positions estimated by the drones in YW direction.

(c) Target positions predicted using curve fitting in XW

direction.

(d) Target positions predicted using curve fitting in YW

direction.

Figure 5.22: The comparison of target positions using directly estimation and curve fitting
within time of case 1-3.
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(a) Target positions estimated by the drones in XW direction.

(b) Target positions estimated by the drones in YW direction.

(c) Target positions predicted using curve fitting in XW

direction.

(d) Target positions predicted using curve fitting in YW

direction.

Figure 5.23: The comparison of target positions using directly estimation and curve fitting
within time of case 2-1.
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detected at some time intervals such as 40s ∼ 42s in Figure 5.23(a) and Figure 5.23(b),

We can use curve fitting 1st order polynomials to compensate the data loss of the target

position, as shown in Figure 5.23(c) and Figure 5.23(d).

For case 2-2 referring to Figure 5.24when the target is moving slowly, we can observe

that although there is no target detected at some time intervals such as 32s∼ 34s in Figure

5.24(a) and Figure 5.24(b), We can use curve fitting 1st order polynomials to compensate

the data loss of the target position, as shown in Figure 5.24(c) and Figure 5.24(d).

For case 2-3 referring to Figure 5.25 when the target is moving fast, In this case, the

agents lose most of the target information before 30s except tello_1. We can observe that

although there is no target detected at some time intervals such as 18s ∼ 20s, 30s ∼ 31s,

40s∼ 41s and 42s∼ 44s in Figure 5.25(a) and Figure 5.25(b), We can use curve fitting 1st

order polynomials to compensate the data loss of the target position, as shown in Figure

5.25(c) and Figure 5.25(d).

5.4.4 Results of 3-1 ∼ 3-3, Control Cases, with three Obstacles

The result of case 3-1 ∼ 3-3 is shown in Figure 5.26, Figure 5.27 and Figure 5.28.

We can observe that the variety information of the target positions is less than the case

without obstacles (1-1∼1-3) and with an obstacle (2-1∼2-3) . However, we can also use

curve fitting to solve the problem of unpredictable estimation failure.

For case 3-1 referring to Figure 5.26, in this case, target information appears with

intermittent. We can observe that although there is no target detected at some time intervals

such as 15s ∼ 18s in Figure 5.26(a) and Figure 5.26(b), We can use curve fitting 1st order

polynomials to compensate the data loss of the target position, as shown in Figure 5.26(c)
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(a) Target positions estimated by the drones in XW direction.

(b) Target positions estimated by the drones in YW direction.

(c) Target positions predicted using curve fitting in XW

direction.

(d) Target positions predicted using curve fitting in YW

direction.

Figure 5.24: The comparison of target positions using directly estimation and curve fitting
within time of case 2-2.
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(a) Target positions estimated by the drones in XW direction.

(b) Target positions estimated by the drones in YW direction.

(c) Target positions predicted using curve fitting in XW

direction.

(d) Target positions predicted using curve fitting in YW

direction.

Figure 5.25: The comparison of target positions using directly estimation and curve fitting
within time of case 2-3.
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(a) Target positions estimated by the drones in XW direction.

(b) Target positions estimated by the drones in YW direction.

(c) Target positions predicted using curve fitting in XW

direction.

(d) Target positions predicted using curve fitting in YW

direction.

Figure 5.26: The comparison of target positions using directly estimation and curve fitting
within time of case 3-1.
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(a) Target positions estimated by the drones in XW direction.

(b) Target positions estimated by the drones in YW direction.

(c) Target positions predicted using curve fitting in XW

direction.

(d) Target positions predicted using curve fitting in YW

direction.

Figure 5.27: The comparison of target positions using directly estimation and curve fitting
within time of case 3-2.
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and Figure 5.26(d).

For case 3-2 referring to Figure 5.27 for slow speed of the target, in this case, tello_2

and tello_3 could not obtain the target information due to occlusions by obstacles. We

can observe that although there is no target detected at some time intervals such as 31s ∼

33s in Figure 5.27(a) and Figure 5.27(b), We can use curve fitting 1st order polynomials

to compensate the data loss of the target position, as shown in Figure 5.27(c) and Figure

5.27(d).

For case 3-3 referring to Figure 5.28 for fast speed of the target, in this case, tello_2

and tello_3 are hard to obtain the target information due to occlusions by obstacles until

35s. We can observe that although there is no target detected at some time intervals such

as 29s∼ 32s and 34s∼ 36s in Figure 5.28(a) and Figure 5.28(b), We can use curve fitting

1st order polynomials to compensate the data loss of the target position, as shown in Figure

5.28(c) and Figure 5.28(d).

In this section, we demonstrate the solution of unpredictable estimation failure of the

target using trajectory-based motion prediction method. We will discuss the accuracy of

the onboard prediction with averaging method in the next section.

5.5 Onboard Prediction/RGB Camera Estimation of the

Target Position within Time

Obtaining the target position is one of the vital task for tactical ISR. With accurate

target information, it will help and enhance the whole police team on the ground find the

target more easily.

In the previous section, we discuss the trajectory-based method to predict the target
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(a) Target positions estimated by the drones in XW direction.

(b) Target positions estimated by the drones in YW direction.

(c) Target positions predicted using curve fitting in XW

direction.

(d) Target positions predicted using curve fitting in YW

direction.

Figure 5.28: The comparison of target positions using directly estimation and curve fitting
within time of case 3-3.
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motion. In this section, we will discuss the accuracy of the unique position of the target by

onboard prediction and averaging algorithm in Equation 4.20 and 4.21 as the formation

control reference. For each case in this section, the first two subfigures are the comparison

of the reference target position by onboard prediction and averaging (black solid curves)

and the actual target position by RGB camera-based motion capture system from the third

perspective (purple dashed curves). The last two subfigures are the onboard prediction

error in XW and YW direction respectively where the error is defined as

error(%) =
position(onboard)− position(RGB)

height
× 100%. (5.2)

5.5.1 Results of 0-1 ∼ 0-3, Non-Control Cases, without Obstacles

For non-control cases of 0-1 ∼ 0-3, because the flight of quadrotors are relatively

stable and the target is stationary or in nearly constant speed, the accuracy of the target

position should be higher. The result of case 0-1 ∼ 0-3 is shown in Figure 5.29, Figure

5.30 and Figure 5.31.

For case 0-1 referring to Figure 5.29, in this case, all agents are stationary. We can

observe that in Figure 5.29(a) and Figure 5.29(b), the actual target position by RGB camera

is nearly stationary, and the position by the algorithm for extracting the target reference is

not such stable. Nonetheless, the error is about ±15 % inXW direction and -15% to 10%

in YW direction, as shown in Figure 5.29(c) and Figure 5.29(d).

For case 0-2 referring to Figure 5.30, in this case, the target is moving slowly but

the quadrotors are nearly stationary. We can observe that in Figure 5.30(a) and Figure

5.30(b), the actual target position by RGB camera is nearly stationary in XW direction

and moving slowly with constant speed in YW direction, and the position by the algorithm
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(a) Comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(b) Comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

(c) Error comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(d) Error comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

Figure 5.29: The comparison of onboard prediction by averaging and estimation by RGB
camera as well as error within time of case 0-1.
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(a) Comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(b) Comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

(c) Error comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(d) Error comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

Figure 5.30: The comparison of onboard prediction by averaging and estimation by RGB
camera as well as error within time of case 0-2.
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for extracting the target reference is not such stable. The error is about -1% to 9% inXW

direction and -20% to 30% in YW direction. It has not much different in XW direction

but is much larger in YW direction than case 0-1 , as shown in Figure 5.30(c) and Figure

5.30(d).

For case 0-3 referring to Figure 5.31, in this case, the target is moving fast but the

quadrotors are nearly stationary. We can observe that in Figure 5.31(a) and Figure 5.31(b),

the actual target position by RGB camera is nearly stationary inXW direction and moving

fast with constant speed in YW direction, and the position by the algorithm for extracting

the target reference is not such stable. The error is about -8% to 1% in XW direction

and -45% to 75% in YW direction. It has not much different in XW direction as Figure

5.31(c) but is much larger than case 0-1 and 0-2 in YW direction as Figure 5.31(d) since

the quadrotors lose the target information in a short time , as shown in Figure 5.19(a) and

Figure 5.19(b).

5.5.2 Results of 1-1 ∼ 1-3, Control Cases, without Obstacles

For case 1-1 ∼ 1-3 without obstacles, since the quadrotors is moving with velocity

command in XW and YW directions, the accuracy of the target position should be less

than case 0-1 ∼ 0-3. The result of case 1-1 ∼ 1-3 is shown in Figure 5.32, Figure 5.33

and Figure 5.34.

For case 1-1 referring to Figure 5.32, in this case, the quadrotors are moving but the

target is nearly stationary. We can observe that in Figure 5.32(a) and Figure 5.32(b), the

actual target position by RGB camera is nearly stationary in XW and YW directions and

the position by the algorithm for extracting the target reference is not such stable than

case 0-1 ∼ 0-3. The error is about -10% to 20% in XW direction and -5% to 15% in YW
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(a) Comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(b) Comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

(c) Error comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(d) Error comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

Figure 5.31: The comparison of onboard prediction by averaging and estimation by RGB
camera as well as error within time of case 0-3.
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(a) Comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(b) Comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

(c) Error comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(d) Error comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

Figure 5.32: The comparison of onboard prediction by averaging and estimation by RGB
camera as well as error within time of case 1-1.
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direction , as shown in Figure 5.32(c) and Figure 5.32(d).

For case 1-2 referring to Figure 5.33, in this case, the quadrotors are moving and the

target is moving slowly. We can observe that in Figure 5.33(a) and Figure 5.33(b), since

the actual target position by RGB camera is nearly stationary inXW direction and slowly

moving YW direction, the position by the algorithm for extracting the target reference is

not such stable than case 1-1. The error is about -2% to 10% in XW direction and -30%

to 10% in YW direction , as shown in Figure 5.33(c) and Figure 5.33(d).

For case 1-3 referring to Figure 5.34, in this case, the quadrotors are moving and the

target is moving fast. We can observe that in Figure 5.34(a) and Figure 5.34(b), since the

actual target position by RGB camera is nearly stationary inXW direction and fast moving

YW direction, the position by the algorithm for extracting the target reference is not such

stable than case 1-1 and 1-2. The error is about -2% to 10% in XW direction and -5% to

40% in YW direction , as shown in Figure 5.34(c) and Figure 5.34(d).

5.5.3 Results of 2-1 ∼ 2-3, Control Cases, with an Obstacle

For case 2-1 ∼ 2-3 with an obstacle , since the quadrotors is moving with velocity

command in XW and YW directions and occlusion by an obstacle, the accuracy of the

target position should be less than case 0-1∼ 0-3 and 1-1∼ 1-3. The result of case 2-1∼

2-3 is shown in Figure 5.35, Figure 5.36 and Figure 5.37.

For case 2-1 referring to Figure 5.35, in this case, the quadrotors are moving but the

target is stationary. We can observe that in Figure 5.35(a) and Figure 5.35(b), the actual

target position by RGB camera is nearly stationary inXW and YW directions. Nonetheless,

since there is occlusion by an obstacle, the position by the algorithm for extracting the

target reference is not such stable than 1-1 for the stationary case of the target. The error

90

http://dx.doi.org/10.6342/NTU202404031


doi:10.6342/NTU202404031

(a) Comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(b) Comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

(c) Error comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(d) Error comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

Figure 5.33: The comparison of onboard prediction by averaging and estimation by RGB
camera as well as error within time of case 1-2.
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(a) Comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(b) Comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

(c) Error comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(d) Error comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

Figure 5.34: The comparison of onboard prediction by averaging and estimation by RGB
camera as well as error within time of case 1-3.
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(a) Comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(b) Comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

(c) Error comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(d) Error comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

Figure 5.35: The comparison of onboard prediction by averaging and estimation by RGB
camera as well as error within time of case 2-1.
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is about -5% to 10% in XW direction and ±10 % in YW direction , as shown in Figure

5.35(c) and Figure 5.35(d).

For case 2-2 referring to Figure 5.36, in this case, the quadrotors are moving and the

target is moving slowly. We can observe that in Figure 5.36(a) and Figure 5.36(b), since

the actual target position by RGB camera is nearly stationary inXW direction and moving

slowly in YW direction and there is occlusion in the scenario, the position by the algorithm

for extracting the target reference is not such stable than case 1-2 and 2-1. The error is

about -15% to 10% inXW direction and -20% to 10% in YW direction , as shown in Figure

5.36(c) and Figure 5.36(d).

For case 2-3 referring to Figure 5.37, in this case, the quadrotors are moving and the

target is moving fast. We can observe that in Figure 5.37(a) and Figure 5.37(b), since the

actual target position by RGB camera is nearly stationary inXW direction and moving fast

in YW direction and there is occlusion in the scenario, the position by the algorithm for

extracting the target reference is not such stable than case 1-3, 2-1 and 2-2. The error is

about -3% to 15% inXW direction and -15% to 30% in YW direction , as shown in Figure

5.37(c) and Figure 5.37(d).

5.5.4 Results of 3-1 ∼ 3-3, Control Cases, with three Obstacles

For case 3-1 ∼ 3-3, since there are more occlusions by multiple obstacles, it can be

thought of that the error should be larger than case 1 and 2 for the similar moving speeds.

The result of case 3-1 ∼ 3-3 is shown in Figure 5.38, Figure 5.39 and Figure 5.40.

For case 3-1 referring to Figure 5.38, in this case, the quadrotors are moving but the

target is stationary. We can observe that in Figure 5.38(a) and Figure 5.38(b), the actual

target position by RGB camera is nearly stationary inXW and YW directions. Nonetheless,
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(a) Comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(b) Comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

(c) Error comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(d) Error comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

Figure 5.36: The comparison of onboard prediction by averaging and estimation by RGB
camera as well as error within time of case 2-2.
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(a) Comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(b) Comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

(c) Error comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(d) Error comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

Figure 5.37: The comparison of onboard prediction by averaging and estimation by RGB
camera as well as error within time of case 2-3.

96

http://dx.doi.org/10.6342/NTU202404031


doi:10.6342/NTU202404031

(a) Comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(b) Comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

(c) Error comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(d) Error comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

Figure 5.38: The comparison of onboard prediction by averaging and estimation by RGB
camera as well as error within time of case 3-1.
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since the flight is not such stable due to the lack of target information, the position by the

algorithm for extracting the target reference is not such stable than case 1-1 and 2-1. The

error is about ±15 % in XW direction and -30% to 15% in YW direction , as shown in

Figure 5.38(c) and Figure 5.38(d).

For case 3-2 referring to Figure 5.39, in this case, the quadrotors are moving and the

target is moving slowly. We can observe that in Figure 5.39(a) and Figure 5.39(b), the

actual target position by RGB camera is nearly stationary in XW direction and moving

slow in YW direction. Nonetheless, since the flight is not such stable due to the lack of

target information and slowly movement of the target and quadrotors, the position by the

algorithm for extracting the target reference is not such stable than case 1-2, 2-2 and 3-1.

The error is about 0% to 10% inXW direction and -25% to 30% in YW direction , as shown

in Figure 5.39(c) and Figure 5.39(d).

For case 3-3 referring to Figure 5.40, in this case, the quadrotors are moving and the

target is moving fast. We can observe that in Figure 5.40(a) and Figure 5.40(b), the actual

target position by RGB camera is nearly stationary in XW direction and moving fast in

YW direction. Nonetheless, since the flight is not such stable due to the lack of target

information and fast movement of the target and quadrotors, the position by the algorithm

for extracting the target reference is not such stable than case 1-3, 2-3, 3-1 and 3-2. The

error is about -10% to 25% in XW direction and ±20 % in YW direction , as shown in

Figure 5.40(c) and Figure 5.40(d).

The comparison of the range of error for each case is shown in Figure 5.41. We can

observe that from Figure 5.41(a) inXW direction, there is no obvious tendency of the error

among control cases but less error for non-control cases. Furthermore, from Figure 5.41(b)
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(a) Comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(b) Comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

(c) Error comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(d) Error comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

Figure 5.39: The comparison of onboard prediction by averaging and estimation by RGB
camera as well as error within time of case 3-2.
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(a) Comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(b) Comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

(c) Error comparison of onboard prediction by averaging and
estimation by RGB camera in XW direction.

(d) Error comparison of onboard prediction by averaging and
estimation by RGB camera in YW direction.

Figure 5.40: The comparison of onboard prediction by averaging and estimation by RGB
camera as well as error within time of case 3-3.
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in YW direction, more occlusion will cause larger cooperative prediction error since there

is less information of the target, but it is not such obvious. Simultaneously, larger speed

of the target or drones and case without control will cause larger cooperative prediction

error.

(a) Box plot of the onboard target prediction errors for every
case in XW direction.

(b) Box plot of the onboard target prediction errors for every
case in YW direction.

Figure 5.41: The box plot comparison of the onboard target prediction errors for every case
during control process.

5.6 Actual Positions by RGB Camera within Time

Multi-agent formation tracking control is the main essence of the system to observe

the target we want to track. In this section, we will discuss the capability of formation

tracking algorithms in the system. The comparison of all the positions captured by RGB

camera is shown in this section. Furthermore, we will compare the position errors relative
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to the desired positions of the agents. The error is defined as

error(%) =
current position− desired position

desired distance
× 100%, (5.3)

where the desired distance = 0.2
√
3(m), which is also the distance between the center

and vertices of the desired triangle formation. Note that in the first two graphs for each

case, the curves formed by (red) circles, (blue) crosses, (green) triangles and (purple)

squares are the ground truth of tello_1, tello_2, tello_3 and the target respectively, and

the (black) solid curve is the center of the triangular formation. Furthermore, for the last

two graphs of the error in each case, the curves formed by (red) circles, (blue) crosses,

(green) triangles and (purple) squares are the ground truth of tello_1, tello_2, tello_3 and

the target respectively.

5.6.1 Results of 0-1 ∼ 0-3, Non-Control Cases, without Obstacles

We first examine that what will happen if there is no control command inXW and YW

directions in order to compare the cases with control. Figure 5.42, Figure 5.43 and Figure

5.44 denoted as the non-control cases show the positions of the drones and the target as

well as the errors with respect to the desired positions.

In Figure 5.42, since the target and quadrotors are not moving, the error will re-

mains nearly constant without convergence at ±20 % range in XW and YW directions.

Nonetheless, in case 0-2 and 0-3, since the target is moving, the absolute value of error

will increase.

In Figure 5.43, the target is moving slowly along YW direction with nearly stationary

in XW direction, so the error in YW direction will slowly decrease -60% without any

feedback control command while in XW direction it has not much difference than case

102

http://dx.doi.org/10.6342/NTU202404031


doi:10.6342/NTU202404031

(a) Drone and target positions by RGB camera estimation in
XW direction.

(b) Drone and target positions by RGB camera estimation in
YW direction.

(c) Drone position errors by RGB camera estimation in XW

direction.

(d) Drone position errors by RGB camera estimation in YW

direction.

Figure 5.42: The comparison of actual positions and errors by RGB camera estimation
within time of case 0-1.
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(a) Drone and target positions by RGB camera estimation in
XW direction.

(b) Drone and target positions by RGB camera estimation in
YW direction.

(c) Drone position errors by RGB camera estimation in XW

direction.

(d) Drone position errors by RGB camera estimation in YW

direction.

Figure 5.43: The comparison of actual positions and errors by RGB camera estimation
within time of case 0-2.
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0-1, as we can observe in Figure 5.43(c) and Figure 5.43(d).

In Figure 5.44, the target is moving fast along YW direction with nearly stationary in

XW direction, so the error in YW direction will drastically decrease to -80% without any

feedback control command while in XW direction it has not much difference than case

0-1 and 0-2, as we can observe in Figure 5.44(c) and Figure 5.44(d).

5.6.2 Results of 1-1 ∼ 1-3, Control Cases, without Obstacles

The purpose of this section is to demonstrate the scenario when there are no obstacles

such as buildings or other architectures. Even if there are no obstacles, some quadrotors

might not see the target. Nonetheless, we use the algorithms of the system to let the target

be in FOV of the quadrotors again. We then compare the case with no obstacles (1-1∼

1-3). The results can be shown in Figure 5.45, Figure 5.46 and Figure 5.47.

We observe that for case 1-1 referring to Figure 5.45, the position of all the drones

will not converge to the desired position. Instead, the positions of the drones will swing

around the desired positions. It is because that the control strategy aims to make the drones

converge to a desired positions as well as formation maintenance for group robustness [69:

Ren and Beard 2007]. However, we can also observe the center of the triangular formation

to verify the convergence of the entire formation. Other control cases including 1-2∼ 1-3,

2-1∼ 2-3 and 3-1∼ 3-3 will obey this rule as well.

For case 1-1, we can observe that inXW direction, the error of center of the formation

will converge into ±10% interval within 3s control at 18s and in YW direction, the error

of center of the formation will converge into ±10% interval within 4s control at 19s, as

shown in Figure 5.45(c) and Figure 5.45(c).

For case 1-2 referring to Figure 5.46, we can observe that in XW direction, the error
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(a) Drone and target positions by RGB camera estimation in
XW direction.

(b) Drone and target positions by RGB camera estimation in
YW direction.

(c) Drone position errors by RGB camera estimation in XW

direction.

(d) Drone position errors by RGB camera estimation in YW

direction.

Figure 5.44: The comparison of actual positions and errors by RGB camera estimation
within time of case 0-3.
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(a) Drone and target positions by RGB camera estimation in
XW direction.

(b) Drone and target positions by RGB camera estimation in
YW direction.

(c) Drone position errors by RGB camera estimation in XW

direction.

(d) Drone position errors by RGB camera estimation in YW

direction.

Figure 5.45: The comparison of actual positions and errors by RGB camera estimation
within time of case 1-1.
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(a) Drone and target positions by RGB camera estimation in
XW direction.

(b) Drone and target positions by RGB camera estimation in
YW direction.

(c) Drone position errors by RGB camera estimation in XW

direction.

(d) Drone position errors by RGB camera estimation in YW

direction.

Figure 5.46: The comparison of actual positions and errors by RGB camera estimation
within time of case 1-2.
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of center of the formation will converge into±10% interval within 5s control at 20s and in

YW direction, the error of center of the formation will converge into±10% interval within

8s control at 23s, as shown in Figure 5.46(c) and Figure 5.46(c).

For case 1-3 referring to Figure 5.47, we can observe that in XW direction, the error

of center of the formation will converge into±10% interval within 5s control at 20s and in

YW direction, the error of center of the formation will converge into±10% interval within

12s control at 27s, as shown in Figure 5.47(c) and Figure 5.47(c).

5.6.3 Results of 2-1 ∼ 2-3, Control Cases, with an Obstacle

For the case of 2-1 ∼ 2-3 with an obstacle in the semi-complex environment, the

results can be shown in Figure 5.48, Figure 5.49 and Figure 5.50.

For case 2-1 referring to Figure 5.48, we can observe that in XW direction, the error

of center of the formation will converge into±10% interval within 3s control at 18s and in

YW direction, the error of center of the formation will converge into±10% interval within

4s control at 19s, as shown in Figure 5.48(c) and Figure 5.48(c).

For case 2-2 referring to Figure 5.49, we can observe that in XW direction, the error

of center of the formation will converge into±10% interval within 6s control at 21s and in

YW direction, the error of center of the formation will converge into±10% interval within

7s control at 22s, as shown in Figure 5.49(c) and Figure 5.49(c).

For case 2-3 referring to Figure 5.50, we can observe that in XW direction, the error

of center of the formation will converge into±10% interval within 8s control at 23s and in

YW direction, the error of center of the formation will converge into±10% interval within
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(a) Drone and target positions by RGB camera estimation in
XW direction.

(b) Drone and target positions by RGB camera estimation in
YW direction.

(c) Drone position errors by RGB camera estimation in XW

direction.

(d) Drone position errors by RGB camera estimation in YW

direction.

Figure 5.47: The comparison of actual positions and errors by RGB camera estimation
within time of case 1-3.
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(a) Drone and target positions by RGB camera estimation in
XW direction.

(b) Drone and target positions by RGB camera estimation in
YW direction.

(c) Drone position errors by RGB camera estimation in XW

direction.

(d) Drone position errors by RGB camera estimation in YW

direction.

Figure 5.48: The comparison of actual positions and errors by RGB camera estimation
within time of case 2-1.
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(a) Drone and target positions by RGB camera estimation in
XW direction.

(b) Drone and target positions by RGB camera estimation in
YW direction.

(c) Drone position errors by RGB camera estimation in XW

direction.

(d) Drone position errors by RGB camera estimation in YW

direction.

Figure 5.49: The comparison of actual positions and errors by RGB camera estimation
within time of case 2-2.
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(a) Drone and target positions by RGB camera estimation in
XW direction.

(b) Drone and target positions by RGB camera estimation in
YW direction.

(c) Drone position errors by RGB camera estimation in XW

direction.

(d) Drone position errors by RGB camera estimation in YW

direction.

Figure 5.50: The comparison of actual positions and errors by RGB camera estimation
within time of case 2-3.
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8s control at 23s, as shown in Figure 5.50(c) and Figure 5.50(c).

5.6.4 Results of 3-1 ∼ 3-3, Control Cases, with three Obstacles

For the case of 3-1 ∼ 3-3 with multiple obstacles in the most complex environment,

the results can be shown in Figure 5.51, Figure 5.52 and Figure 5.53.

For case 3-1 referring to Figure 5.51, we can observe that in XW direction, the error

of center of the formation will converge into±10% interval within 4s control at 19s and in

YW direction, the error of center of the formation will converge into±10% interval within

3s control at 18s, as shown in Figure 5.51(c) and Figure 5.51(c).

For case 3-2 referring to Figure 5.52, we can observe that in XW direction, the error

of center of the formation will converge into±10% interval within 4s control at 19s and in

YW direction, the error of center of the formation will converge into±10% interval within

4s control at 19s but with out of range at 15s∼20s control at 30s∼35s, as shown in Figure

5.52(c) and Figure 5.52(c). Nonetheless, the data will return into ±10% interval at the

final of control process.

For case 3-3 referring to Figure 5.53, we can observe that in XW direction, the error

of center of the formation will converge into ±10% interval within 4s control at 19s but

with out of range at 19s∼24s control at 34s∼39s, and in YW direction, the error of center

of the formation will converge into ±10% interval within 18s control at 33s, as shown in

Figure 5.53(c) and Figure 5.53(c). Note that the data will also return into ±10% interval

at the final of control process.

In these cases from 3-1 to 3-3, there might be sometimes out of ±10% interval after

converging such as YW direction in case 3-2 Figure 5.52(d) and XW direction in case 3-3

Figure 5.53(c). We can compare the results in Figure 5.39(d) and Figure 5.40(c). There is
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(a) Drone and target positions by RGB camera estimation in
XW direction.

(b) Drone and target positions by RGB camera estimation in
YW direction.

(c) Drone position errors by RGB camera estimation in XW

direction.

(d) Drone position errors by RGB camera estimation in YW

direction.

Figure 5.51: The comparison of actual positions and errors by RGB camera estimation
within time of case 3-1.
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(a) Drone and target positions by RGB camera estimation in
XW direction.

(b) Drone and target positions by RGB camera estimation in
YW direction.

(c) Drone position errors by RGB camera estimation in XW

direction.

(d) Drone position errors by RGB camera estimation in YW

direction.

Figure 5.52: The comparison of actual positions and errors by RGB camera estimation
within time of case 3-2.
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(a) Drone and target positions by RGB camera estimation in
XW direction.

(b) Drone and target positions by RGB camera estimation in
YW direction.

(c) Drone position errors by RGB camera estimation in XW

direction.

(d) Drone position errors by RGB camera estimation in YW

direction.

Figure 5.53: The comparison of actual positions and errors by RGB camera estimation
within time of case 3-3.
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larger variation of estimation error than most of the cases during the certain time interval,

which will make the positions out of range during control process. That is, for some cases

with more occlusions, larger target estimation error will cause convergence error andmake

the formation center out of desired convergence range.

As shown in Table 5.2, in these cases from 1-1 to 3-3 for all control cases, we can

observe that inXW direction, since the target is nearly stationary, the time of convergence

has not much difference, while in YW direction, larger target/quadrotors speed will cause

larger control time of convergence obviously.

Table 5.2: Convergence time for all cases.

No control Control, no obs. Control, 1 obs. Control, 3 obs.
Direction XW YW XW YW XW YW XW YW

Stationary - - 3s 4s 3s 4s 4s 3s
Slow - - 5s 8s 6s 7s 4s 4s
Fast - - 5s 12s 8s 8s 4s 18s

5.7 Command Velocities within Time

In this section, we demonstrate the command velocity uif during the time interval of

control process.

5.7.1 Results of 0-1 ∼ 0-3, Non-Control Cases, without Obstacles

The results of 0-1∼ 0-3 are shown in Figure 5.54, Figure 5.55 and Figure 5.56 where

the (red) dashed curves, (blue) dotted curves and (green) dashed-dotted curves are the

command velocities (m/s) of tello_1, tello_2 and tello_3 respectively.

In Figure 5.54, Figure 5.55 and Figure 5.56, the result shows the command velocities

in XW and YW directions. Compared with Figure 5.42,Figure 5.43 and Figure 5.44, we

can observe that there is not any nonzero command velocity during control interval. As a
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(a) Command Velocity in XW direction.

(b) Command Velocity in YW direction.

Figure 5.54: The comparison of command velocity within time of case 0-1.

(a) Command Velocity in XW direction.

(b) Command Velocity in YW direction.

Figure 5.55: The comparison of command velocity within time of case 0-2.
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(a) Command Velocity in XW direction.

(b) Command Velocity in YW direction.

Figure 5.56: The comparison of command velocity within time of case 0-3.

result, the drones will not move actively.

5.7.2 Results of 1-1 ∼ 1-3, Control Cases, without Obstacles

The results of 1-1 ∼ 1-3 for the control cases are shown in Figure 5.57, Figure 5.58

and Figure 5.59.

In Figure 5.57, Figure 5.58 and Figure 5.59, the result shows the command velocities

in XW and YW directions. Compared with Figure 5.45,Figure 5.46 and Figure 5.47, we

can observe that the nonzero command only executes during control interval.

5.7.3 Results of 2-1 ∼ 2-3, Control Cases, with an Obstacle

The results of 2-1 ∼ 2-3 for the control cases are shown in Figure 5.60, Figure 5.61

and Figure 5.62.

In Figure 5.60, Figure 5.61 and Figure 5.62, the result shows the command velocities
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(a) Command Velocity in XW direction.

(b) Command Velocity in YW direction.

Figure 5.57: The comparison of command velocity within time of case 1-1.

(a) Command Velocity in XW direction.

(b) Command Velocity in YW direction.

Figure 5.58: The comparison of command velocity within time of case 1-2.
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(a) Command Velocity in XW direction.

(b) Command Velocity in YW direction.

Figure 5.59: The comparison of command velocity within time of case 1-3.

(a) Command Velocity in XW direction.

(b) Command Velocity in YW direction.

Figure 5.60: The comparison of command velocity within time of case 2-1.
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(a) Command Velocity in XW direction.

(b) Command Velocity in YW direction.

Figure 5.61: The comparison of command velocity within time of case 2-2.

(a) Command Velocity in XW direction.

(b) Command Velocity in YW direction.

Figure 5.62: The comparison of command velocity within time of case 2-3.
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in XW and YW directions. Similarly, compared with Figure 5.48,Figure 5.49 and Figure

5.50, we can observe that the nonzero command only executes during control interval.

5.7.4 Results of 3-1 ∼ 3-3, Control Cases, with three Obstacles

The results of 3-1 ∼ 3-3 for the control cases are shown in Figure 5.63, Figure 5.64

and Figure 5.65.

(a) Command Velocity in XW direction.

(b) Command Velocity in YW direction.

Figure 5.63: The comparison of command velocity within time of case 3-1.

In Figure 5.63, Figure 5.64 and Figure 5.65, the result shows the command velocities

inXW and YW directions. Similar to case 1-1∼ 1-3 and 2-1∼ 2-3, in 3-1∼ 3-3, compared

with Figure 5.51,Figure 5.52 and Figure 5.53, we can observe that the nonzero command

only executes during control interval.
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(a) Command Velocity in XW direction.

(b) Command Velocity in YW direction.

Figure 5.64: The comparison of command velocity within time of case 3-2.

(a) Command Velocity in XW direction.

(b) Command Velocity in YW direction.

Figure 5.65: The comparison of command velocity within time of case 3-3.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, we perform the consensus-basedmulti-agent formation trajectory track-

ing toward a ground target with occlusion by obstacles or signal transmission failures.

We use the downward vision with landmarks as well as IMU velocity measurement

to design an KF-based localization algorithm. Next, we estimate the target position ac-

cording to the relative positions of the quadrotors and the target.

In order to solve the unpredicted estimation failures, we perform an motion predic-

tion algorithm using sliding-window-based points selection for the last 10 or 9 estimation

points as well as curve fitting in the world frame and obtain the trajectory of the target for

each agent, which is a function of time. After obtaining the trajectory, we can obtain the

predicted position of the target for each agent.

Nonetheless, each agent has its predicted target position, so we use the algorithm to

select the reasonable states of the target and perform the averaging method to obtain the

unique target reference state including the position and velocity.

Finally, according to the unique target reference state, we apply the variables into

the consensus-based formation tracking controller to perform the objective of multi-agent

control.

In order to demonstrate the capability of the system, we perform 1 × 3 non-control

cases and 3×3 control cases from stationary to fast and from no obstacle to multiple obsta-
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cles for comparison which include onboard localization accuracy, estimation or prediction

of the target without/with sliding-window-based curve fitting, predicted target position ac-

curacy with range selection and averaging method, actual positions of the agents and the

target using RGB camera from the third perspective and command velocities of the agents

for validation of control command in the assigned time interval.

For onboard localization accuracy, because of the flight stability, non-control cases

have the most accurate performance. Speed of the target has not obvious effect on the

onboard localization accuracy for the contorl cases. Nonetheless, the distribution of error

is in ±20% for most cases. As a result, this localization algorithm is suitable for all cases

with and without control.

For estimation or prediction of the target without/with sliding-window-based curve

fitting with predicted target position accuracy with averaging method to extract the unique

target reference position, the predicted target position accuracy has not much difference

inXW direction (nearly stationary of the target) but increases from -15% ∼ 10% to -45%

∼ 75% as target speed increases in YW direction (from nearly stationary to fast speed

of the target) for non-control cases of 0-1 to 0-3. In XW direction of the control cases,

occlusions by obstacles dominate the condition of accuracy since the speed is nearly zero

in this direction. Nonetheless, it is not such obvious and has several exceptions. In YW

direction of the control cases, target speed dominates the condition of accuracy obviously

since the target and the formation of quadrotors is mainly moving along this direction. For

the comparison of occlusions, the error increases from -5% ∼ 15% to -30% ∼ 15% for

case 1-1 to 3-1 (stationary target) and -30% ∼ 10% to -25% ∼ 30% for case 1-2 to 3-2

(slow target). Nonetheless, for case 1-3 to 3-3, there is not much difference of the range

of error. We can infer that as speed of the target increases to a certain value, the range of
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error will be not such obvious.

For the actual position error of the quadrotor formation center, we assign the position

interval of convergence at±10%. For non-control cases of 0-1 to 0-3, the target is moving

along YW direction, so the error has not much difference in XW direction but increases

according to the target speed from 0% ∼ -20% to 0% ∼ -80%. For the control cases

in XW direction, since the target is nearly stationary in this direction, the control time to

converge into the±10% interval is not such obvious. For the control cases in YW direction,

the target speed dominates the condition of convergence time, which makes the control

time of convergence from 4s to 12s for case 1-1 to 1-3, from 4s to 8s for case 2-1 to 2-3 and

from 3s to 88s for case 3-1 to 3-3. Furthermore, more occlusions will also affect the error

of convergence. Because of larger onboard prediction of the target at some time intervals,

the actual position error might be out of±10% range sometimes such as at 15s-20s control

in case 3-2 in YW direction and at 19s-24s control in case 3-3 in XW direction.

6.2 Future Works

In the future, there might be some issues we can focus on. For example, due to the

hardware limitation, the motion of the quadrotors cannot be such prompt or it could cause

the inter-collision of the agents because of the capability of calculation, transmission or

velocity saturation of the command. Perhaps we can also apply the trajectory planning

algorithm as mentioned in Appendix E on the better hardware one day.

On the other hand, there are a lot of researches that focus on the collision avoidance

of the external obstacles, which can be one of our further research objectives.
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Appendix A

Image Processing for Target and

Landmark Detection with Calibrated

Downward Vision

A.1 Downward Vision Processing

The quadrotor ”Tello” has a front camera and a downward camera. In SDK, we can

switch the camera we want to use. However, we cannot use the downward camera while

using ROS which we use for communication. As a result, we need to deal with the field of

view (FOV) problem. As shown in Figure A.1, we modify the vision angle using a mirror

to reflect the image. The idea comes from the periscope which is common used in our life.

(a) The schematic concept for
downward vision acquisition.

(b) Real product in the market [70:
eBay ].

Figure A.1: The concept of downward vision acquisition.

Weuse a structurewith amirror to reflect the image, as shown in FigureA.2. Nonethe-

less, this method will make the image coordinate opposite. We flip the image by using

OpenCV library as well, as shown in Figure A.3. We can use the processed image to go
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(a) The CAD of the structure
[71: Works-Of-Claye ]. (b) Installation on Tello.

Figure A.2: The appearance of the structure with Tello.

(a) Original image (before). (b) Flipped image (after).

Figure A.3: Image before and after flipping by OpenCV.

on the further process.

A.2 Undistortion of the Image in Camera Calibration

In chapter 3, we introduce the pinhole model of a camera. There are some param-

eters we want to calibrate. As a result, in this section we will introduce the method for

calibration of camera parameters.

We use OpenCV with a checkerboard to obtain the parameters. Checkerboard is a

pattern with black and white grids. It is common in the applicaiton of camera calibra-

tion. As shown in Figure A.4, we take multiple (usually greater than 20) pictures of the

checkerboard from different distances and angles using the camera we want to calibrate.

By calculating the 2D distances of the corners of the grids, we can obtaint the parameters
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Figure A.4: The images of a checkboard from different distances angles.

of the specific camera.

In this framework, we assume we can take the pictures from all distances and angles.

Nonetheless, by during this method, the result may not be such ideal. As a result, we only

use the information of the parameters for solving the distortion problem. After undistor-

tion, the comparison can be shown in Figure A.5. We can see after the adjustment, we

(a) Distorted image (before). (b) Undistorted image (after).

Figure A.5: The result before and after distortion adjustment.

can solve the distortion of the image, especially around the edges of the image. We can

observe from the upper right of the images.

A.3 Target and LandmarkDetection Using ArUcoMark-

ers
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Figure A.6: ArUco marker of ID = 0.

We use ArUco markers as the object we want to detect. ArUco marker is a type

of fudicial marker of two-dimensional barcode and usually can be used for camera pose

estimation and localization in computer vision. They were developed by Rafael Muñoz

and others in 2014 and are part of the OpenCV library, making them easy to generate and

detect. As shown in Figure A.6 [72: ArUco markers generator! ], it has four corners

as feature points. We can obtain the center position by averaging the positions of four

corners.

In the OpenCV library, we can easily detect the ArUco markers by using the dictio-

nary inside it. By this framework, we can obtain the pixel values of the ArUco position in

the 2D image.
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Appendix B

Introduction of Nonlinear Kalman

Filters
For some cases, the traditional linear Kalman filter has the limitation that the al-

gorithm needs to be under the assumption that the noise, state and measurement are all

Gaussian distribution. As shown in Figure B.1 [73: Chadha 2018], in the linear system,

a Gaussian distribution after the transformation is also a Gaussian distribution, but if the

system is nonlinear, the transformation will not be a Gaussian distribution, which will

make the algorithm invalid. As a result, there are some modified Kalman filter algorithms

we can consider for nonlinear systems. These algorithms will be discuss in this chapter.

(a) Linear system case. (b) Nonlinear system case.

Figure B.1: The linear and nonlinear system transformation.

B.1 Extended Kalman Filter (EKF) Using Linearization
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In a nonlinear system, the motion model and the sensor model can be represented as

the continuously differentiable nonlinear functions f and h. They can be defined as

xk = f(xk−1, uk, wk), (B.1)

zk = h(xk, vk), (B.2)

where wk and vk are the term of the measurement and sensor noises respectively [74:

Wikipedia ].

Extended Kalman Filter (EKF) is one of the modified Kalman filter for nonlinear

system by linearization of the nonlinear function. We can define the state transformation

Jacobian matrix A(k) and the Jacobian matrix of the observation modelH(k), which can

be defines as

A(k) =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

... ... . . . ...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


, (B.3)

H(k) =



∂h1

∂x1

∂h1

∂x2
· · · ∂h1

∂xn

∂h2

∂x1

∂h2

∂x2
· · · ∂h2

∂xn

... ... . . . ...

∂hm

∂x1

∂hm

∂x2
· · · ∂hm

∂xn


, (B.4)

B.2 Unscented Kalman Filter (UKF) Using Points Fitting

Besides of extended Kalman filter (EKF), there are also several kinds of nonlinear
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Kalman filters. In this chapter, we introduce the Unscented Kalman Filter (UKF). It is also

a modified Kalman filter for the nonlinear system. Unlike EKF, UKF does exact function

transformation instead of linear approximation [75: Chadha 2018]. Similar to traditional

Kalman filter, UKF has the prediction and correction process. In the prediction process,

we first consider the set of sigma points for a more precise approximation.

χ[0] = µ, (B.5)

χ[i] = µ+ (
√
(n+ λ)Σ)i for i = 1, . . . , n, (B.6)

χ[i] = µ− (
√

(n+ λ)Σ)i−n for i = n+ 1, . . . , 2n, (B.7)

where χ is the sigma points matrix, µ is the mean of the Gaussian, n is the dimensionality

of the system, λ is the scaling factor, and Σ is the covariance matrix. Simultaneously, we

compute the weights of the sigma points

ω[0] =
λ

n+ λ
, (B.8)

ω[i] =
1

2(n+ λ)
for i = 1, . . . , 2n, (B.9)

and predicted mean and covariance of the approximate Gaussian

µ′ =
2n∑
i=0

ω[i]g(χ[i]), (B.10)

Σ′ =
2n∑
i=0

ω[i]
(
g(χ[i])− µ′) (g(χ[i])− µ′)T +Rt, (B.11)

where Rt is the noise covariance matrix.
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In the correction step, we calculate the matrices in the measurement space.

Z = h(χ), (B.12)

ẑ =
2n∑
i=0

ω[i]Z [i], (B.13)

S =
2n∑
i=0

ω[i](Z [i] − ẑ)(Z [i] − ẑ)T +Q, (B.14)

where Z is the sigma points after transformation, ẑ is the mean, S is the covariance in

measurement. As a result, we can calculate the cross correlation matrix T and obtain the

Kalman gainK.

T =
2n∑
i=0

ω[i](χ[i] − µ′)(Z [i] − ẑ)T , (B.15)

K = TS−1. (B.16)

Finally we can calculate mean of the Gaussian µ and obtain the corrected covariance Σ.

µ = µ′ +K(z − ẑ), (B.17)

Σ = (I −KT )Σ′. (B.18)

Consequently, UKF algorithms use multiple sigma points for transformation. Therefore,

although it is more complex in the math interpretation, it is more precise while calculating

the Kalman filter algorithms with similar computation.

B.3 Other Kinds of Kalman Filters

In this section, we introduce several the most common kinds of Kalman filters. As a

matter of fact, there are many kinds of Kalman filters and their applications. For instance,

in [76: Du et al. 2023], the authors proposed a Two-Stage Kalman Filter (TSKF) for
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state estimation, in [77: Yang et al. 2023], the authors proposed an Adaptive Extended

Kalman Filter (AEKF) to fuse the UWB (ultrawideband) and IMU data for high-precision

positioning of a UAV, and in [78: Guo et al. 2021], the authors use Cubature Kalman Filter

(CKF) for heave motion estimation. As a result, Kalman filter is an vital algorithm we can

consider in the state estimation or sensor fusion framework.

151

http://dx.doi.org/10.6342/NTU202404031


doi:10.6342/NTU202404031152

http://dx.doi.org/10.6342/NTU202404031


doi:10.6342/NTU202404031

Appendix C

Introduction of Other Mathematical

Optimization Problems

C.1 Convex Optimization Problems

C.1.1 Linear Programming (LP)

Linear programming (LP) is the problem when the objective function and inequality

constraints are all linear, as shown below.

min
x

cTlpx+ dlp

s.t. Glpx ⪯ hlp

Alpx = blp,

where Glp ∈ Rm×n, Alp ∈ Rp×n, and and blp ∈ Rp.

C.1.2 Second-order Cone Programming (SOCP)

Second-order cone programming (SOCP) provides a formalism to describe optimiza-

tion problems with second-order cone constraints , as the form below.

min
x

cTsocpx

s.t. ||Ai,socpx+ bi,socp||2 ≤ cTi,socp + di,socp i = 1, . . . ,m

Fsocpx = gsocp,
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where Ai,socp ∈ Rni×n, bi,socp ∈ Rni , ci,socp, csocp ∈ Rn, di,socp ∈ R, Fsocp ∈ Rp×n and

gsocp ∈ Rp.

C.1.3 Semidefinite Programming (SDP)

In semidefinite programming (SDP), semidefinite constraints on matrix variables are

applied, which has the form as

min
X∈Sn

⟨Csdp, X⟩

s.t. X ⪰ 0

⟨Ai,sdp, X⟩ = bi,sdp i = 1, . . . , p,

where ⟨•⟩ is the inner product, Csdp, Ai,sdp ∈ Sn, and bi,sdp ∈ R.

C.1.4 Conic Programming (CP)

Conic programming (CP) is optimize problem as the form

min
x∈D

cTcpx

s.t. Dcp(x) + dcp ∈ Kcp

Acpx = bcp,

where Dcp(x) : R
n → Rn is a linear mapping of x, Kcp ∈ Sn

+ is a closed convex cone,

Acp ∈ Rp×n, and bcp ∈ Rp.

C.2 OtherResearchFields ofMathematicalOptimization
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There are many research fields of mathematical optimization [79: Wikipedia ]. Inte-

ger programming aims to the linear optimization in which some or all variables are con-

strained to take on integer values. Fractional programming studies the problem of the ratio

of two nonlinear functions. Nonlinear programming has the condition that the objective

function or the constraints or both contain nonlinear parts. These research fields are also

being studied by people recently.
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Appendix D

Other Formation Tracking Control

Algorithms for Multi-Agent Systems
In Chapter 2, we briefly introduce some literature survey about the formation tracking

methods. In this section, we will introduce these multi-agent control strategies mentioned

before except the consensus-based algorithm we implement in the system.

D.1 Leader-Follower

Leader-follower is an algorithm to control with leaders and followers. The follow-

ers need to track the leaders according to the motion of the leaders. This methodology

isn’t restricted to robotics; it finds parallels in nature, such as migratory birds flying in a

leader-follower formation. While relatively straightforward to implement, it’s susceptible

to error propagation, particularly when leaders fail, leading to deviations in the followers’

trajectories.

D.2 Potential Function

Potential function is a method by designing potential field in the functions according

to the states of the target and plants which offers a flexible approach to guiding agents

towards desired states. By designing potential functions for the system dynamics and

objectives, virtual forces are generated to direct agents accordingly. Gradients of these

potential functions plays a key role in determining the direction and magnitude of these

forces. Thismethod allows for the creation of control methods that are adaptable to various
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environmental conditions and system constraints, making it a powerful tool for designing

autonomous systems capable of navigating complex environments and achieving desired

objectives.

D.3 Virtual Structure

Virtual structure is a method that each agent has its own trajectory. It aims at con-

trolling a group of robots to maintain a rigid formation, including defining the desired

dynamics of the virtual structure, translating this desired motion of the virtual structure

into individual motions for each robot, and deriving individual tracking controllers for

each robot to ensure they follow their assigned trajectories and coordinate with others to

maintain the overall formation stability to achieve the maintenance of the formation. It

solves the error propagation but cannot avoid collisions because there is no interaction

with each other. That is, an open-loop control is applied in the algorithm.

D.4 Behavior-Based

The behavior-based method is an approach to agent control that relies on defining

specific behaviors for agents to exhibit based on their environment. For instance, in the

context of a school of fish, individual fish follow simple rules governing their movement,

resulting in collective behavior such as clustering. It is usually combinedwith the potential

function method. One notable advantage of this method is its scalability, allowing for

the seamless addition of more agents by incorporating additional behaviors. However,

a limitation arises in the inability to guarantee a fixed pattern of behavior that ensures

the convergence of the formation to a desired configuration. This inherent uncertainty

underscores the need for careful design and monitoring of the behavioral rules to achieve
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desired outcomes in complex systems.

D.5 Intelligence

Intelligence method use artificial Intelligence method to control the agents. Different

with the previous algorithms, the intelligence-based algorithm applies data-driven meth-

ods on the formation. As a result, it can implement more kinds of actions, which will

make the diversity of the movements. However, it is hard to analyze with mathematical

derivations, so it is not such suitable on the vehicles with highly rigorous design such as

rockets nowadays.
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Appendix E

Two-Step Error-Based Trajectories

Planning of Quadrotors
In this section, we will introduce the strategies including how to construct the polyno-

mial trajectory of the target and do trajectory planning according to the known trajectories

of the target in x and y direction.

E.1 Sequential Quadratic Programming (SQP) for Solv-

ing Mathematical Optimization Problem

Sequential Quadratic Programming (SQP) is an iterative method for constrained non-

linear optimization which may be considered a quasi-Newton method. It is used on math-

ematical problems for which the objective function and the constraints are twice continu-

ously differentiable, but not necessarily convex [80: Wikipedia ].

We consider a nonlinear programming problem of the form

min
x

f(x)

s.t. g(x) ≥ 0

h(x) = 0.

The objective is to solve this kind of problem. In the traditional method, we first obtain
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the Lagrangian for this problem

L(x, λ, σ) = f(x)− λg(x)− σh(x),

where λ and σ are Lagrange multipliers. It has the characteristic that when the gradient of

Lagrangian▽L(x, λ, σ) approaches zero, we can find the solution. To solve the problem,

the standard Newton’s method can be applied to search for the solution by iterating the

equations below.


xk+1

λk+1

σk+1

 =


xk

λk

σk

−

▽xx

2L ▽g ▽h

▽gT 0 0

▽hT 0 0



−1 
▽f + λk▽g + σk▽h

g

h



=


xk

λk

σk

−▽
2L▽L,

(E.1)

where ▽2L is the Hessian matrix of L. However, because ▽2L is generally singular, it

is noninvertible. As a result, the Newton step dk = (▽2L)−1▽L cannot be solved by the

calculation of the matrices.

In order to solve the problem, the optimization problem can be modified as

min
d

f(xk) +▽f(xk)
Td+

1

2
dT▽2f(xk)d

s.t. g(xk) +▽g(xk)
Td ≥ 0

h(xk) +▽h(xk)
Td = 0.

It is because when we find the solution by using Newton’s method, the gradients▽f(xk),
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▽g(xk) and▽h(xk) and▽2f(xk)will all approach zero. Thus, the optimization problem

will be the same as the initial one.

The workflow is shown in Figure E.1. We first choose the initial value of (x0, λ0, σ0)

to calculate the gradient▽L andHessian▽2L of LagrangianL. We then iterate (xk, λk, σk)

by calculating the Newton step dk until satisfying the convergence requirement. That is,

we can set an error tolerance. If error is smaller than the tolerance, the iteration will stop.

Choose
(x0,λ0,σ0)

Calculate 
▽2L and ▽L

Iterate 
[xk+1,λk+1,σk+1]T=[xk,λk,σk]T+dk

until satisfy 
the convergence requirement

Figure E.1: The workflow for solving SQP by Newton’s method.

We use the library ”NLopt” to compute the optimization problem [81: Johnson 2007]

Figure E.2. It is an open-source library for nonlinear optimization, which is suitable to

solve optimization using C, C++, Fortran, Matlab or GNU Octave, Python, GNU Guile,

Julia, GNUR, Lua, OCaml, Rust and Crystal. We only need to type the objective function,

constraints, upper and lower bounds and tolerances and we can solve the optimization

problem, which is convenience for us.

E.2 Cost Function Based on Error

In [21: Thomas et al. 2017], the authors use multiple cost functions to construct the

algorithm. We will use this concept in the planning algorithm as well. The error of the
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Figure E.2: Logo of NLopt.

trajectory can be defined as

e(t) = g(t)− p(t), (E.2)

which means it is the difference between the trajectories of the target (g(t)) and quadrotor

(p(t)). The cost functions can be defined as

Jr =

∫ tf

t0

∥∥e(r)(t)∥∥2
dt, r = 0, 1, 2, 3, . . . , (E.3)

which is the integration of the square of the Euclidean norm of the rth derivative of the

error.

E.3 Two-Step Error-Based Planning

The whole planning algorithm can be formulated in Algorithm 1. We first define the

initial cost function and update the trajectories of the target, and then we can solve the SQP

problem to update the planning trajectory of the drone. After optimization, we update the

trajectory error, and select whether to update the cost function according to the error.

This algorithm use a switching method based on error. The reason is that when the

direction of error and difference of error are the same or when the error is small the position
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Algorithm 1 The Planning Algorithm
1: J ← λ1J1 + λ3J3
2: for Each Horizon do
3: update(g(t))
4: repeat
5: p(t)← iterateSQP(J , g(t), p(t))
6: until Out of Time
7: e(t)← g(t)− p(t)
8: if (e · ė ≥ 0 or ∥ė∥ ≤ thresh) then
9: J ← λ0J0 + λ1J1 + λ3J3
10: end if
11: end for

Figure E.3: Different situations according to the error condition.

is easier to track. However, when the the direction of error and difference of error are not

the same or when the error is large, the quadrotor will go through a process to fly back

and forth severely, which is not an ideal sutuation to track the position error, as shown in

Figure E.3. As a result, this algorithm provides an efficient tracking method to track the

ground target with onboard downward camera. However, due to computation limitation

of the hardware, we won’t use this method for trajectory planning of the quadrotors in the

implementation of this thesis.
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Appendix F

Motion Capture System from the Third

Perspective for Validation
In order to validate the strategies we applied, we need to obtain the information of

the objects from a third perspective. As a result, a motion capture system is what we can

do. In this section, we will introduce how to implement a motion capture system from the

third perspective.

F.1 HardwareDesign on theQuadrotors, anArUcoMarker

Based State Estimation

We design a structure using ArUco markers, as shown in Figure F.1. An 4x4 ArUco

(a) The schematic design with an ArUco marker. (b) The real appearance.

Figure F.1: The structure design of ArUco markers and Tellos.

marker is installed on a Tello with two pieces of straws with marker ID of 98 on tello_1,

marker ID of 99 on tello_2, and marker ID of 100 on tello_3. The side lengths of ArUco

markers are 10 centimeters and the side lengths of the styrene papers on the back are 14
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centimeters. The heights between the geometric centers of Tellos and ArUco markers are

9 centimeters. We use this structure as the motion capture target.

In order to validate whether it will affect much about the flight performance, we

use an electronic scale to measure the weights before and after installing the structure

individually. As shown in Table F.1, each initial weight including the drone itself and

battery is around 86 grams, and the whole system is around 94 grams. Each designed

structure has the weight less than 10 grams.

Table F.1: The weight of each drone (before and after).

Drone Initial Weight (Drone+Battery) Final Weight (Drone+Battery+Marker)

tello_1 86.3g 94.2g
tello_2 86.2g 94.2g
tello_3 85.4g 93.8g

F.2 Feature Extraction Using RGB Image and Markers

We use an RGB camera as our sensor to detect the ArUco markers. As shown in

Figure F.2 [82: OpenCV ], we use an RGB camera to observe the motion of the ArUco

marker(s) on the Tello(s). According to the function of OpenCV package, we can extract

the corners of the ArUco marker(s).

F.3 Perspective-n-Point (PnP)Algorithm forMotionCap-

turing from 2D RGB Image

We use Perspective-n-Point (PnP) method to obtain the relative 3D position using

several feature points. According to the coordinate transformation from Section 3.1, it
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Figure F.2: The schematic figure of PnP.

has the form as


xi

yi

1

 =


fx 0 cx

0 fy cy

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0





r11 r12 r13 Tx

r21 r22 r23 Ty

r31 r32 r33 Tz

0 0 0 1





XW

YW

ZW

1


, (F.1)

where cx and cy are the principle axes in the camera image in pixel. Now we know fx =

380.0, fy = 381.7, cx = 323.4 and cy = 249.5 in pixel, so we can obtain the camera

intrinsic matrix. Furthermore, we can extract four points of features in an ArUco marker

by usingOpenCV package such that we can obtain the positions in the RGB image. Finally

we define these four points in world frame. Since we know that the side length of the

marker is 0.1meter as shown in Figure F.2, we can use the "cv.SOLVEPNP_IPPE_SQUARE"

algorithm with the defined points below.
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• Point 0 :
[
− side length

2
, side length

2
, 0
]

• Point 1 :
[
side length

2
, side length

2
, 0
]

• Point 2 :
[
side length

2
,− side length

2
, 0
]

• Point 3 :
[
− side length

2
,− side length

2
, 0
]

This algorithm assumes that the object we want to detect is a square with the number of

feature points ≥ 4. We can use these points to obtain the PnP solution by calculating the

matrix equations. Thus, we can obtain the rotation and translation.

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (F.2)

T =


Tx

Ty

Tz

 . (F.3)

After obtaining the rotation and translation, we can solve themotion capture problem using

the 2D RGB image.
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Appendix G

Error Accumulation Validation
Figure 2.2 shows the effect of error accumulation of onboard IMU. In this chapter,

we will validate the problem to explain the necessity of KF-based state estimation.

G.1 Experiment Setup

We use an RGB camera to observe a Tello with an ArUco marker at MD 5F, as shown

in Figure G.1. We use PnP method to calculate the relative 3D position in world frame

(a) The overall setup. (b) Image snapshot of the RGB camera.

Figure G.1: Scenario to validate error accumulation of IMU.

using 2D RGB image. The process include

1. Tello and camera being launched at the same time

2. Tello motor on to wait for the camera turning on (10 sec)

3. Takeoff and Hovering (5 sec)

4. Moving with 0.3 m/sec open-loop command in YW direction (5 sec)

5. Landing.

We conducted 3 experiments in the same scenario.
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G.2 3D Motion and Position within Time

The comparison of 3D trajectory and measured by IMU and RGB camera is shown

in Figure G.2.

(a) 3D trajectories in Exp. 1. (b) Position v.s. time in Exp. 1.

(c) 3D trajectories in Exp. 2. (d) Position v.s. time in Exp. 2.

(e) 3D trajectories in Exp. 3. (f) Position v.s. time in Exp. 3.

Figure G.2: Comparison of 3D trajectory and position within time.

In Figure G.2(a), Figure G.2(c) and Figure G.2(e), the monochrome curves are the

measurement of IMU and the curves with color gradient from blue to yellow (from dark to
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light) are the measurement of RGB camera from the third perspective. In Figure G.2(b),

Figure G.2(d) and Figure G.2(f), the data from XW , YW and ZW is plotted in order. The

dashed curves are the measurement from IMU data and the solid curves are the measure-

ment by RGB camera using PnP, which is seen as the ground truth.

As we can see, when the scale of distance gets smaller, the error percentage gets

higher, as the XW data in the figure. Nonetheless, as it gets larger, we can easily observe

the tendency of the data. We can observe that as time goes, the error of IMUmeasurement

gets higher.

Additionally, in the data of ZW direction, the height before and after the flight is not

the same. It is because the IMU will turn on after taking off for a few time, which is

one of the main problem of the hardware. However, due the the difference of the IMU

velocities measurement between different agents. The calculation of the height often fails

to be accurate, so we won’t use this algorithm for the height control. Instead, we know

that the height while taking off is 1.3m for the inner loop controller, so we can use this

characteristic to design the estimation framework.
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Appendix H

Height and Yaw Control with PID

Controllers
In this section, we will introduce the control strategies to control the height and yaw.

H.1 Introduction of PID Controllers

Proportional-Integral-Derivative (PID) control is a common technique in control sys-

tems for achieving desired performance in various systems. It is particularly common in

industries like manufacturing, robotics, automotive, aerospace, etc. In PID control strat-

egy, we can divide the control input into three parts, including P, I and D, as shown in the

equation [83: Wikipedia ].

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ +Kd
de(t)

dt
, (H.1)

where the proportional, integral and derivative gainKp, Ki, Kd ≥ 0.

In Figure H.1, according to the sensor information or observation, we can obtain the

current state y(t). After obtain the state, we can compare it with the reference r(t) such

as the desired position and obtain the error e(t). Consequently, we can design a controller

to formulate the control input u(t) to control the plant. However, because our system is a

discrete-time system, we can modify the control input as

u(k) = Kpe(k) +Ki

k∑
i=0

e(i)T +Kd
e(k)− e(k − 1)

T
, (H.2)
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Figure H.1: The block diagram of PID controller.

where T is the sampling time.

H.2 Lowpass Filter for Highly-Jittering Signals

Lowpass filter is a filter to let the signal with low frequency pass and reject the high-

frequency term. It is widely used in signal processing such as image, audio or even in-

tegrated circuit (IC) design. Figure H.2 shows the frequency response of a first-order

lowpass filter, where x axis is the angular frequency (rad/s) and y axis is the gain (dB).

We can see as frequency get higher, the gain pass through the filter will decrease. As a

result, we can design it to reject the high-frequency noise.

H.2.1 Height Control with IMU Information

As for the height control, we use the IMU data directly to obtain the position in z

direction of the quadrotor. However, because the IMU velocity data is jittering, as shown

in Figure H.4 The integrated position data inZW direction is not such accurate. We induce

the first-order lowpass filter to reduce the problem, which can be defined as

heightf (k) = αh × height(k) + (1.0− αh)× heightf (k − 1), (H.3)

where αh is a constant we need to design, heightf (k) is the filtered height and height(k)
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Figure H.2: Frequency response of a first-order lowpass filter.

is the raw data measured by IMU at time k. We use the filtered data as the current state

y(k) to form a PID controller on the quadrotor.

The other problem we need to solve is that the height while taking off is a constant

and the IMU will function at the time during taking off, where we can see the initial

height before taking off and the final height after landing is not the same, as shown in A.2.

However, we can observe the takeoff height is about 1.3 meter. This information can be

a vital essence we can go further. We set the initial height at 1.3 meter and the desired

height at 1.5 meter and we can apply the PID controller on the height control.

H.2.2 Yaw Control with IMU Information

Similarly, yaw is also the data we want to improve. As shown in Figure H.5, it jitters

while fiying. The first-order lowpass filter on the information of yaw can be defined as

yawf (k) = αyaw × yaw(k) + (1.0− αyaw)× yawf (k − 1), (H.4)
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PID Height/Yaw
Controller Plant (Drone)

1st-Order 
Lowpass Filter

r(k) e(k) u(k) y(k)

yf(k)

-

+

Figure H.3: The workflow of height and yaw control using lowpass filter and PID controller.

we also design αyaw to make the data smoother. Now we want the yaw angle keep at

0 degree with initial yaw at 0 degree as well. We can also control it according to the

algorithm of PID controller.

Consequently, we design a lowpass filter to make the IMU data smoother, including

height and yaw. Furthermore, as shown in Figure H.3 we use the filtered data as the current

state yf (k) to compare with the desired state r(k) and design a PID controller to give the

linear/angular velocity command u(k) on the quadrotors.

H.3 ExperimentResults forHeight andYawControl with

IMU Information

In this section, we will demonstrate the capability to control the height and yaw with

IMU data. These states has the characteristic that the traveling distance is smaller. Thus,

relatively mild error accumulation occurs. In 4.4, we design a PID controller with a first-

order lowpass filter. As a result, this section demonstrate the capability of the control
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method for yaw and vertical direction.

H.3.1 Experiment Setup

We use an RGB camera to observe a Tello with an ArUco marker at MD 5F. Further-

more, we use PnP method to calculate the relative 3D position in world frame using 2D

RGB image as well. The process include

1. Tello and camera being launched at the same time

2. Tello motor on to wait for the camera turning on (10 sec)

3. Takeoff and controlling the height and yaw (10 sec)

4. Landing.

We conducted 3 experiments in the same scenario.

H.3.2 Comparison of Raw/Filtered Data of Height

The comparison of velocity and height in Zw direction is shown in Figure H.4 In Fig-

ure H.4(a), Figure H.4(c) and Figure H.4(e), the dotted curves are the raw velocity data

from IMU measurement. We can observe that according to the filtering process, the ve-

locity data will be smoothed as the solid curves. Figure H.4(b), Figure H.4(d) and Figure

H.4(f) shows the result of height control framework, where the dotted curves are the raw

data of height from IMU velocity measurement, the solid curves are the filtered height

data from integration of filtered velocity data, and the dashed curves are the height mea-

surement from the motion capture system using RGB image from the third perspective,

which is also the ground truth. We can observe that after filtering, the height data will be
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(a) Z velocity v.s. time (test 1). (b) Height v.s. time (test 1).

(c) Z velocity v.s. time (test 2). (d) Height v.s. time (test 2).

(e) Z velocity v.s. time (test 3). (f) Height v.s. time (test 3).

Figure H.4: Comparison of Z velocity and height within time.
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more accurate than the original one, which is our objective.

H.3.3 Comparison of Raw/Filtered Data of Yaw

The comparison of yaw rate and yaw is shown in Figure H.5 In Figure H.5(a), Figure

(a) Yaw rate v.s. time (test 1). (b) Yaw v.s. time (test 1).

(c) Yaw rate v.s. time (test 2). (d) Yaw v.s. time (test 2).

(e) Yaw rate v.s. time (test 3). (f) Yaw v.s. time (test 3).

Figure H.5: Comparison of yaw rate and yaw within time.

H.5(c) and Figure H.5(e), the dotted curves are the raw yaw rate data from IMU mea-

surement. We can observe that according to the filtering process, the velocity data will

181

http://dx.doi.org/10.6342/NTU202404031


doi:10.6342/NTU202404031

approach zero as the solid curves. Figure H.5(b), Figure H.5(d) and Figure H.5(f) shows

the result of yaw control framework, where the dotted curves are the raw data of yaw from

yaw rate measurement and the solid curves are the filtered yaw data from integration of

filtered yaw rate data, We can observe that after filtering, the yaw rate data will remain

near zero, which is our objective. Otherwise, the slight yaw rate error will accumulate,

which will result in the yaw offset after some certain time.
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Appendix I

KF-Based State Estimation
In this chapter, we will conduct some experiments about the capability of KF-based

state estimation according to the landmarks.

I.1 Simulation: Vision Unavailable Case

First we do some simulation inMatlab. Recalling from the workflow of Kalman filter

in Figure 3.4, the state space model to estimate the state can be defined as



x(k + 1) = Ax(k)

y(k) =

 ẊW

˙YW

 = Hx(k),
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where

x =



XW

YW

ẊW

˙YW


, (I.1)

A =



1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1


, (I.2)

H =

0 0 1 0

0 0 0 1

 , (I.3)

P =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (I.4)

Q =



q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4


, (I.5)

R =

1 0

0 1

 . (I.6)
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The notation dt = 1 is the calculation step and (q1, q2, q3, q4) = (1, 10, 1, 0.1). The for-

mulation of H is defined above because when vision unavailable, we can only obtain the

data of IMU as the measurement. That is, we can only obtain the velocity measured by

IMU.

For the actual model, the state space can represented as



x(k + 1) = Ax(k) + w

y(k) =

 ẊW

˙YW

 = Hx(k) + v,

where w is the state noise and v is the sensor noise. Both of them are random Gaussian

noises whose average are zero.

The simulation result of KF estimation is shown in Figure I.1. The dashed lines are

the real signals from the actual model and the solid lines are the values by KF estimation.

We can see in Figure I.1(a), Figure I.1(c), Figure I.1(e), Figure I.1(g) are the paths of the

cases with w and v, without w, without v and without w and v. Furthermore, in Figure

I.1(b), Figure I.1(f), Figure I.1(f), Figure I.1(h) the first and second columns are the term in

XW and YW directions, and the first and second rows are the term of velocity and position

estimation within time respectively.

The motions are all from the random noises w and v. If there is no motion as the case

in Figure I.1(g) and Figure I.1(h), the data will all be zero. We can observe that the KF

algorithm can estimate the state in the cases with and without noises.

I.2 Experiment Results
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(a) Path of normal case with w, v. (b) Velocity and position with time with w, v.

(c) Path of normal case without w. (d) Velocity and position with time without w.

(e) Path of normal case without v. (f) Velocity and position with time without v.

(g) Path of normal case without w, v. (h) Velocity and position with time without w, v.

Figure I.1: Simulation results of KF-based state estimation.

186

http://dx.doi.org/10.6342/NTU202404031


doi:10.6342/NTU202404031

In this section, a KF-based localization framework is used in the valization by ex-

periments. A drone will go through several points with open-loop command, where the

landmarks will be in the FOV of the drone. In this case, we can use the landmarks for

localization. Otherwise, we use the IMU velocity data for localization. For 1D case ex-

periment, a drone will fly along YW direction and the landmark (ID: 5, 6) at (0, 0, 0) and

(0, 1, 0.353) (m) in frame {W} will be in the FOV after certain time of flight and out of

FOV finally. For 2D case experiment, a drone will fly along a square clockwise each

landmark (ID: 5, 6, 7, 8) is at (0, 0, 0), (0, 2, 0.353), (2, 2, 0.355) and (2, 0, 0.415) (m)

respectively. We compare the localization result with the result from RGB camera-based

motion capture system from the third perspective.

I.2.1 Experiment: 1D Case, Linear Motion

In this experiment, as shown in Figure I.2, the process will go through 4 steps, in-

cluding

1. Tello motor on (5 sec)

2. Takeoff and hovering (5 sec)

3. 0.5 m/s command along YW direction (5 sec)

4. Hovering (5 sec) and landing.

We conduct the experiment three times for this case and label them by case 1, 2 and 3.

The result of the position of the drone by direct integration of IMU velocity, KF-based

onboard localization and RGB camera-based motion capture system for 1D motion case
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(a) Schematic scenario of KF experiemnt, 1D
motion case.

(b) Real scenario of KF experiemnt, 1D
motion case.

Figure I.2: Scenario of KF experiemnt, 1D motion case.

is shown in Figure I.3, Figure I.4 and Figure I.5, where the error is defined as

error(%) =
position(onboard or IMU)− position(RGB)

height
× 100%. (I.7)

In the first two subfigures in each figure for each experiment, the (red) solid curves are the

position by onboard KF-based localization, the (green) dotted curves are the position by

directly integration from IMU velocity , and (blue) dashed curves are the position by RGB

camera estimation, which is also seen as the ground truth. Furthermore, in the last two

subfigures in each figure, the (red) solid curves are the position error by onboard KF-based

localization and the (green) dotted curves are the position error by directly integration from

IMU velocity Same definitions are used in the next section of 2D motion cases.

Simultaneously, the error comparison of all 1D cases is shown in Figure I.6. We

examine the data from 9s to 16s because drone will see the landmark with high probability

during this time interval and use the box plot to compare these experiments. We can

observe that the position information from IMU velocity integration has less standard

deviation for each case but larger range between different cases. In summary, though KF-

based localizationmethod has larger standard deviation in the same case, we can guarantee

that the position data is in the certain range.
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(a) Drone position by onboard/direct integration of IMU
velocity/RGB camera estimation inXW direction.

(b) Drone position by onboard/direct integration of IMU
velocity/RGB camera estimation in YW direction.

(c) Drone position error by onboard/direct integration of IMU
velocity relative to RGB camera estimation inXW direction.

(d) Drone position error by onboard/direct integration of IMU
velocity relative to RGB camera estimation in YW direction.

Figure I.3: The comparison of drone positions by onboard/direct integration of IMU
velocity/RGB camera estimation within time of case 1, 1D motion.
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(a) Drone position by onboard/direct integration of IMU
velocity/RGB camera estimation inXW direction.

(b) Drone position by onboard/direct integration of IMU
velocity/RGB camera estimation in YW direction.

(c) Drone position error by onboard/direct integration of IMU
velocity relative to RGB camera estimation inXW direction.

(d) Drone position error by onboard/direct integration of IMU
velocity relative to RGB camera estimation in YW direction.

Figure I.4: The comparison of drone positions by onboard/direct integration of IMU
velocity/RGB camera estimation within time of case 2, 1D motion.
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(a) Drone position by onboard/direct integration of IMU
velocity/RGB camera estimation inXW direction.

(b) Drone position by onboard/direct integration of IMU
velocity/RGB camera estimation in YW direction.

(c) Drone position error by onboard/direct integration of IMU
velocity relative to RGB camera estimation inXW direction.

(d) Drone position error by onboard/direct integration of IMU
velocity relative to RGB camera estimation in YW direction.

Figure I.5: The comparison of drone positions by onboard/direct integration of IMU
velocity/RGB camera estimation within time of case 3, 1D motion.
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(a) Drone position error comparison by onboard/direct
integration of IMU velocity in XW direction for all 1D cases.

(b) Drone position error comparison by onboard/direct
integration of IMU velocity in YW direction for all 1D cases.

Figure I.6: The comparison of drone positions by onboard/direct integration of IMU
velocity within time for all 1D cases.

192

http://dx.doi.org/10.6342/NTU202404031


doi:10.6342/NTU202404031

I.2.2 Experiment: 2D Case, Square Motion

In this experiment, as shown in Figure I.7 the process will go through 4 steps, includ-

ing

1. Tello motor on (5 sec)

2. Takeoff and hovering (5 sec)

3. 0.5 m/s command along YW , XW , −YW , −XW directions (5 sec each)

4. Hovering (5 sec) and landing.

(a) Schematic scenario of KF experiemnt, 2D
motion case.

(b) Real scenario of KF experiemnt, 2D motion
case.

Figure I.7: Scenario of KF experiemnt, 2D motion case.

The result of the position of the drone by direct integration of IMU velocity, KF-based

onboard localization and RGB camera-based motion capture system for 2D motion case

is shown in Figure I.8, Figure I.9 and Figure I.10. Because the command is open-loop,

the motion of each case is unpredictable and has its characteristics. Figure I.8 lost the

information of landmark ID:7 and 8, Figure I.9 lost the information of landmark ID:8, and

Figure I.10 has the information of all landmarks. That is, in 2D motion cases, case 1 did

not see landmark 7 and 8, case 2 did not see landmark 8, and case 3 saw all the landmarks

during flight.
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Furthermore, the error comparison of all 2D cases is shown in Figure I.11. We ex-

amine the data from 9s to 31s because drone will see the landmark with high probability

during this time interval and use the box plot to compare these experiments.

We can observe that in Figure I.8, because the drone did not see landmark 7 and 8,

the position data of KF-based localization from 13s to 29s has larger error than IMU, and

until 29s when the drone see the landmark 5, the position by KF will be accurate than the

IMU data. In Figure I.9, because the drone did not see landmark 8, the position data of

KF-based localization after 25s has large error but less than IMU. Furthermore, from 13s

to 21s in case 2 between the detection of landmark 6 and 7, because it has been long time

without landmark adjustment, the error by KF will be larger than IMU error. In Figure

I.10, because the drone saw all the landmarks, the position data of KF-based localization

has larger accuracy than IMU. Same phenomenon can be also observed in Figure I.11.

In summary, as the landmarks are in the FOV more frequently, the position error by

KF-based localization is less than IMU but grows larger than IMU velocity integration

when not in FOV for a certain long time. As a result, in chapter 5 of the experiment result,

we use the landmarks as more as possible.
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(a) Drone position by onboard/direct integration of IMU
velocity/RGB camera estimation inXW direction.

(b) Drone position by onboard/direct integration of IMU
velocity/RGB camera estimation in YW direction.

(c) Drone position error by onboard/direct integration of IMU
velocity relative to RGB camera estimation inXW direction.

(d) Drone position error by onboard/direct integration of IMU
velocity relative to RGB camera estimation in YW direction.

Figure I.8: The comparison of drone positions by onboard/direct integration of IMU
velocity/RGB camera estimation within time of case 1, lost of LM 7, 8, 2D motion.
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(a) Drone position by onboard/direct integration of IMU
velocity/RGB camera estimation inXW direction.

(b) Drone position by onboard/direct integration of IMU
velocity/RGB camera estimation in YW direction.

(c) Drone position error by onboard/direct integration of IMU
velocity relative to RGB camera estimation inXW direction.

(d) Drone position error by onboard/direct integration of IMU
velocity relative to RGB camera estimation in YW direction.

Figure I.9: The comparison of drone positions by onboard/direct integration of IMU
velocity/RGB camera estimation within time of case 2, lost of LM 8, 2D motion.
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(a) Drone position by onboard/direct integration of IMU
velocity/RGB camera estimation inXW direction.

(b) Drone position by onboard/direct integration of IMU
velocity/RGB camera estimation in YW direction.

(c) Drone position error by onboard/direct integration of IMU
velocity relative to RGB camera estimation inXW direction.

(d) Drone position error by onboard/direct integration of IMU
velocity relative to RGB camera estimation in YW direction.

Figure I.10: The comparison of drone positions by onboard/direct integration of IMU
velocity/RGB camera estimation within time of case 3, lost of nothing, 2D motion.
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(a) Drone position error comparison by onboard/direct
integration of IMU velocity in XW direction for all 2D cases.

(b) Drone position error comparison by onboard/direct
integration of IMU velocity in YW direction for all 2D cases.

Figure I.11: The comparison of drone positions by onboard/direct integration of IMU
velocity within time for all 2D cases.
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Appendix J

Consensus-Based Formation Tracking

Control toward a Stationary Ground

Target
In this experiemnt, we demonstrate the capability of the consensus-based formation

controller of the planar motion toward a stationary ground target.

J.1 Experiment Setup

In this experiment, we utilize the marker of ID: 0 (at (0.175,−0.143, 0.031)(m)) as

the stationary target with themarkers of ID: 5 (at (0, 0, 0.075)(m)) and ID: 8 (at (0,−0.4, 0.415)(m))

on the obstacles as the landmarks with known 3D positions, as shown in Figure J.1. The

desired (XW , YW ) positions of tello_1, tello_2, and tello_3 are (0.175,−0.143 + 0.2
√
3)

(m), (0.175− 0.3,−0.143− 0.1
√
3) (m), and (0.175+ 0.3,−0.143− 0.1

√
3) (m) respec-

tively. The process will go through 4 steps, including

(a) The schematic figure of experiment
setup.

(b) The objects in
the scenario.

(c) The real scenario figure of
experiment setup.

Figure J.1: The experiment setup.
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Figure J.2: Planar trajectories of the agents by KF-based localization.

1. Tello motor on (10 sec)

2. Takeoff and hovering (5 sec)

3. Controlling the planar motion (10 sec)

4. Hovering (5 sec) and landing.

J.2 Planar Trajectories of the Agents

The trajectories of the agents is shown in Figure J.2. The square dot is the actual

position of the target and the circle, cross and triangle dots are the desired position of

the agents. Furthermore, the gradient curves are the trajectories of the tello_1, tello_2,

tello_3 and the average position, which can be obtained from KF-based localization. We

can observe that they converge to a certain formation according to the stationary target.
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J.3 Comparison of Tracking Positions within Time

The comparison of theXW and YW positions within time can be shown in Figure J.3.

The dashed, dotted and dashed-dotted curves and lines are the actual and desired positions

(a) XW positions v.s. time. (b) YW positions v.s. time.

Figure J.3: XW and YW positions of the agents within time.

of tello_1, tello_2, tello_3 respectively. The solid curves and lines represent the average

positions inXW and YW directions respectively and the actual positions of the target. We

can observe that during the control process, the agents can control itself according to their

desired positions with similar tendencies.

J.4 Command Velocities within Time

The command velocities inXW and YW directions are shown in Figure J.4, which is

also the designed control input uif . We can observe that the command will execute only

during the control process.

J.5 Comparison of Estimated/Predicted Target Position

v.s. Time without/with Curve Fitting

Figure J.5 shows the comparison of the target position without/with prediction using
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(a) XW command velocities v.s. time. (b) YW command velocities v.s. time.

Figure J.4: XW and YW command velocities of the agents within time.

curve fitting. Figure J.5(a) and Figure J.5(b) shows that during the detection process, the

estimation of the target from tello_1 (circle), tello_2 (cross), tello_3 (triangle) will be lost

at some time sequence unpredictably. For instance, at about 14s-16s and 22s-26s, the de-

tection of tello_2 will fail due to some incidents such as occlusion or correction failure.

Same problem occurs on tello_3 at 11s-20s and 21s-24s. However, we can compensate

this kind of problem by curve fitting and predict the position of the target even if some es-

timation failure occurs. Consequently, the predicted position data will approach the exact

position as the solid horizontal lines. Furthermore, we can observe that from about 21s-

26s during long time period of estimation failure on tello_2 which will make the control

process fail. Nonetheless, we can utilize the multi-agent control algorithm to make the

agent detect the target again, which is our objective.
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(a) Target position detected in XW direction v.s.
time.

(b) Target position detected in YW direction v.s.
time.

(c) Target position predicted by curve fitting in
XW direction v.s. time.

(d) Target position predicted by curve fitting in
YW direction v.s. time.

Figure J.5: Comparison of target position estimation/prediction without/with curve fitting
within time.
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Appendix K

LiDAR Odometry from the Pointcloud
LiDAR odometry is a method to localize itself from the pointcloud by offline SLAM.

After doing SLAM, we obtain the global map. The localization framework is demon-

strated based on the global map, as shown in the second part of Figure K.1. The concept

of this strategy is from [84: koide3 ]. We can refer to this reference for more informa-

tion. As for the first part of SLAM, we can refer to [85: ROS.org ] for more information,

including hardware and software installation. The overall steps for LiDAR odometry are

1. Performing pointcloud data (roslaunch velodyne_pointcloudVLP16_points.launch)

2. Recording the bag file with pointcloud data (rosbag record -a)

3. Performing localization package (roslaunch hdl_localization hdl_localization.launch)

4. Playing the bag file (rosbag play –clock current_bag_file_name.bag)

5. Recording the estimated LiDAR pose of in the map frame.

K.1 Experiment Setup

In this experiment, we use Velodyne VLP-16 LiDAR above the cart to perform lo-

Figure K.1: The overall workflow of SLAM, localization and people tracking.
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(a) VLP-16 LiDAR [86: Hot Robotics ]. (b) Experiment setup.

Figure K.2: The hardware for LiDAR-based localization.

calization for the ground truth of the target, as shown in Figure K.2(b). The cart will move

nearly straight along YW direction in the world frame and the LiDAR above the cart will

record the pointcloud data. We use the recorded pointcloud data for calculating the pose of

the LiDAR. Note that the coordinate of the LiDAR has no rotation from the world frame.

K.2 Experiment Results

The experiment result of the position of the LiDAR within time is shown in Figure

K.3. We can see in ZW direction, the position remains nearly constant because there is

no movement along this direction. In XW direction, there is not much movement, so the

position change is not such drastic as well. However, in YW direction, although there is

a larger movement, the position data will not increase as we want. On the contrary, the

position decreases, which is not an ideal situation. As a result, the localization frameworks

using LiDAR is not an ideal strategy for precise localization for obtaining the ground truth

of the target.
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Figure K.3: LiDAR position by the localization framework using pointcloud within time.
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Appendix L

Introduction of the Adjacency Matrix

and Control Method
Adjacency matrix is a representation to describe the information flow between the

agents in the multi-agent systems. We consider a graph defined as

G = (V , ε), (L.1)

where V(vertices) = 1, 2, ..., n is composed of the indices of agents and ε(edges) ⊆

V×V . If the two vertices are adjacent, an edge should exists between two vertices, which

means the information will exchange with each other.

Adjacency matrix is a matrix to define this kind of protocol, which can be defined as

Aadj =



av11 av12 · · · av1n

av21 av22 · · · av2n

... ... . . . ...

avn1 avn2 · · · avnn


, (L.2)

where avij = 1 if agent i and j are adjacent and avij = 0 if agent i and j are not adjacent.

The adjacency matrix can be designed in the consensus-based formation control algorithm

even if there is no information flow between some agents. That is, the control input can

be further described as

ui = ṙdi − αi(ri − rdi )−
n∑

j=1

avij[(ri − rdi )− (rj − rdj )], (L.3)
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where αi > 0 is a scalar, rdi is the desired state of the ith agent and avij is the (i, j) entry of

the adjacency matrix Aadj . We can design this matrix as the information flow to achieve

the desired control topology of the system. Here the states ri and rdi are the position

information with the velocity control input ui.
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Appendix M

Stability Analysis of the

Consensus-Based Formation Controller
To prove the stability of the consensus-based formation control input given by

ui = ṙdi − αi(ri − rdi )−
n∑

j=1

avij[(ri − rdi )− (rj − rdj )], (M.1)

we need to show that the system reaches the desired formation and remains stable around

it. The stability analysis of the system is shown below.

First we define the formation control error as

ei = ri − rdi . (M.2)

The desired goal is to let ei → 0 as t→∞.

Since the control input is a velocity command, the system dynamics can be written

as

ṙi = ui = ṙdi − αiei −
n∑

j=1

avij(ei − ej). (M.3)

Thus, the error dynamics is given by

ėi = ṙi − ṙdi = −αiei −
n∑

j=1

avij(ei − ej). (M.4)
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The error dynamics can be represented the in matrix form of

e = [e1, e2, . . . , en]
T . (M.5)

Simultaneously, we let Lv be the Laplacian matrix of the graph with edge weights avij . The

system of error dynamics can be written as

ė = −Aαe− Lve, (M.6)

where Aα = diag(α1, α2, . . . , αn).

We then consider the Lyapunov candidate function and take the time derivative of it.

V (e) =
1

2
eT e. (M.7)

Thus,

V̇ (e) = eT ė = eT (−Aαe− Lve). (M.8)

By simplifying it, we can obtain that

V̇ (e) = −eTAαe− eTLve. (M.9)

Since Aα is a diagonal matrix with positive entries αi, we have

eTAαe =
n∑

i=1

αie
2
i > 0 for e ̸= 0. (M.10)
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For the Laplacian matrix Lv, it is known that

eTLve =
1

2

n∑
i=1

n∑
j=1

avij(ei − ej)
2 ≥ 0. (M.11)

Therefore,

V̇ (e) = −
n∑

i=1

αie
2
i −

1

2

n∑
i=1

n∑
j=1

avij(ei − ej)
2 ≤ 0. (M.12)

Since V̇ (e) ≤ 0, the Lyapunov function V (e) is non-increasing, implying that ei will

not grow unbounded. Moreover, V̇ (e) = 0 if and only if e = 0, which means ei = 0

for all i. As a result, by Lyapunov stability analysis, the error dynamics are globally

asymptotically stable. As a result, the control law ensures that the agents achieve the

desired formation and remain stable around it.

213

http://dx.doi.org/10.6342/NTU202404031

	Verification Letter from the Oral Examination Committee
	誌謝
	摘要
	ABSTRACT
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Motivation for Using Multi-Agent System
	Problem Formulation of Aerial Multi-Agent Tracking
	Contributions of the Thesis
	Organization of the Thesis

	Literature Survey
	Accurate Localization with Vision Assistance
	Localization with Visual Odometry (VO) with Vision Directly
	Localization with Visual Inertial Odometry (VIO) Based on Fusion of Vision and IMU Information
	Landmark-Based Localization, a Modified Version of VIO

	Visual Servoing for Robots
	Position-Based Visual Servoing (PBVS) Based on Position Feedback
	Image-Based Visual Servoing (IBVS) Based on Image Features Feedback
	Hybrid Approach, Combination of PBVS and IBVS

	Formation Tracking for Multi-Agent Systems

	Related Works of the System
	Camera Pinhole Model, a Coordinate Transformation between Camera Image and World Frame
	Kalman Filter for State Estimation and Sensor Fusion
	Mathematical Optimization Problems
	Quadratic Programming (QP)

	Consensus-Based Formation Tracking Control Strategy

	Methodologies
	System Overview for Vision-Based Multi-Agent Trajectory Tracking System with Landmark-Based Localization
	Proposed KF-Based Localization with Landmarks
	Workflow of State Estimation According to Landmarks with Vision
	KF-Based State Estimation According to Landmarks

	Trajectory-Based Motion Prediction of the Target
	Target State Estimation with Downward Vision
	Trajectory Function Representation
	Target Motion Prediction with Curve Fitting

	Control Strategies of the Multi-Quadrotor System
	Planar Consensus-Based Formation Tracking Control for the Multi-Agent System
	Reference State Extraction
	Planar Consensus-Based Formation Tracking Control



	Experiment Results and Validations of the System
	Experiment Setup
	Task Overview
	Quadrotor Positions by Onboard Localization/RGB Camera Estimation within Time
	Results of 0-1   0-3, Non-Control Cases, without Obstacles
	Results of 1-1   1-3, Control Cases, without Obstacles
	Results of 2-1   2-3, Control Cases, with an Obstacle
	Results of 3-1   3-3, Control Cases, with three Obstacles

	Estimated/Predicted Target Positions within Time without/with Curve Fitting
	Results of 0-1   0-3, Non-Control Cases, without Obstacles
	Results of 1-1   1-3, Control Cases, without Obstacles
	Results of 2-1   2-3, Control Cases, with an Obstacle
	Results of 3-1   3-3, Control Cases, with three Obstacles

	Onboard Prediction/RGB Camera Estimation of the Target Position within Time
	Results of 0-1   0-3, Non-Control Cases, without Obstacles
	Results of 1-1   1-3, Control Cases, without Obstacles
	Results of 2-1   2-3, Control Cases, with an Obstacle
	Results of 3-1   3-3, Control Cases, with three Obstacles

	Actual Positions by RGB Camera within Time
	Results of 0-1   0-3, Non-Control Cases, without Obstacles
	Results of 1-1   1-3, Control Cases, without Obstacles
	Results of 2-1   2-3, Control Cases, with an Obstacle
	Results of 3-1   3-3, Control Cases, with three Obstacles

	Command Velocities within Time
	Results of 0-1   0-3, Non-Control Cases, without Obstacles
	Results of 1-1   1-3, Control Cases, without Obstacles
	Results of 2-1   2-3, Control Cases, with an Obstacle
	Results of 3-1   3-3, Control Cases, with three Obstacles


	Conclusions and Future Works
	Conclusions
	Future Works

	References
	Image Processing for Target and Landmark Detection with Calibrated Downward Vision
	Downward Vision Processing
	Undistortion of the Image in Camera Calibration
	Target and Landmark Detection Using ArUco Markers

	Introduction of Nonlinear Kalman Filters
	Extended Kalman Filter (EKF) Using Linearization
	Unscented Kalman Filter (UKF) Using Points Fitting
	Other Kinds of Kalman Filters

	Introduction of Other Mathematical Optimization Problems
	Convex Optimization Problems
	Linear Programming (LP)
	Second-order Cone Programming (SOCP)
	Semidefinite Programming (SDP)
	Conic Programming (CP)

	Other Research Fields of Mathematical Optimization

	Other Formation Tracking Control Algorithms for Multi-Agent Systems
	Leader-Follower
	Potential Function
	Virtual Structure
	Behavior-Based
	Intelligence

	Two-Step Error-Based Trajectories Planning of Quadrotors
	Sequential Quadratic Programming (SQP) for Solving Mathematical Optimization Problem
	Cost Function Based on Error
	Two-Step Error-Based Planning

	Motion Capture System from the Third Perspective for Validation
	Hardware Design on the Quadrotors, an ArUco Marker Based State Estimation
	Feature Extraction Using RGB Image and Markers
	Perspective-n-Point (PnP) Algorithm for Motion Capturing from 2D RGB Image

	Error Accumulation Validation
	Experiment Setup
	3D Motion and Position within Time

	Height and Yaw Control with PID Controllers
	Introduction of PID Controllers
	Lowpass Filter for Highly-Jittering Signals
	Height Control with IMU Information
	Yaw Control with IMU Information

	Experiment Results for Height and Yaw Control with IMU Information
	Experiment Setup
	Comparison of Raw/Filtered Data of Height
	Comparison of Raw/Filtered Data of Yaw


	KF-Based State Estimation
	Simulation: Vision Unavailable Case
	Experiment Results
	Experiment: 1D Case, Linear Motion
	Experiment: 2D Case, Square Motion


	Consensus-Based Formation Tracking Control toward a Stationary Ground Target
	Experiment Setup
	Planar Trajectories of the Agents
	Comparison of Tracking Positions within Time
	Command Velocities within Time
	Comparison of Estimated/Predicted Target Position v.s. Time without/with Curve Fitting

	LiDAR Odometry from the Pointcloud
	Experiment Setup
	Experiment Results

	Introduction of the Adjacency Matrix and Control Method
	Stability Analysis of the Consensus-Based Formation Controller



