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ABSTRACT

The impact of climate change on the environment is intensifying, leading to an
international trend towards energy transition and the development of green energy.
Hydropower has remained the largest renewable energy source since the 1990s due to its
high energy efficiency. In recent years, the development of traditional dam-based
hydropower has slowed down due to ecological and social issues. Instead, hydrokinetic
energy conversion systems, which offer advantages such as minimal environmental
impact and low cost, have gained attention. Nonetheless, hydrokinetic energy conversion
systems are still in the early stages of development, leaving many research gaps in areas
such as turbine design and deflector devices.

This study aims to enhance the power efficiency of vertical-axis hydrokinetic
turbines by investigating crucial parameters in deflector device design through a
combination of flume experiments and CFD model simulations. The research focuses on
a lift-based vertical-axis hydrokinetic turbine designed with a NACA-0015 airfoil, a
solidity of 0.398, and an aspect ratio of 1.0. The flow conditions and relevant parameters
investigated from the flume experiment were utilized as boundary conditions and
validation processes for FLOW-3D simulations to evaluate the accuracy of different mesh
resolutions and validate the FLOW-3D model. After determining the mesh resolution, 18
different configurations of deflector devices were designed, varying in length, angle, and
width between the plates. These configurations were simulated using the verified FLOW-
3D to observe the changes in the turbine's three-dimensional detailed velocity and
pressure fields and analyze the impact of the deflector devices on the flow field. Finally,
a comprehensive analysis and discussion of the angular velocity, torque, power, and

power coefficient of the 18 configurations were conducted to identify the critical
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parameters of the deflector device design and evaluate their effects on improving turbine
performance.

The flow field analysis results indicate that, in addition to the turbine's blockage
effect, the contraction caused by the deflector devices also increases the water elevation
difference, leading to a larger pressure difference between upstream and downstream.
Additionally, the deflector devices direct the flow close to their surfaces, increasing the
flow velocity. This causes a greater velocity difference on both sides of the turbine blades,
enhancing lift and thus improving turbine efficiency. The efficiency analysis of the
turbine shows that the original power coefficient was 0.057. With the addition of deflector
devices, the power coefficient increased from 0.1 to approximately 0.335 as the deflector
devices were placed closer to the turbine, indicating an enhancement ranging from about
66% to 450%. Moreover, the variation in turbine power with blade angles exhibited a
distinct three-lobed pattern, with the power peaks gradually shifting from 60°/180°/300°
to approximately 90°/210°/330° as the deflector devices approached the turbine. This
indicates that the deflector devices not only increase the velocity difference and power
coefficient but also alter the flow field distribution, thereby changing the optimal blade
angle positions. The final results indicate that the distance between the two plates
significantly influences the flow field around the turbine compared to the length and angle
of the deflector devices. Therefore, it also contributes significantly more to improving

turbine efficiency than the other two parameters.

Keywords: Hydropower, Deflector device, Hydrokinetic turbine, Flow analysis,

Efficiency enhancement
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4N EF Lk s 5 Savonius o d 2 B 42EF S.J. Savonius *t 1920 £ § =t 4% )
IR A BT o A4 N g ks gk 2t R E_G.J.M. Darrieus 71926 # 2% 3t eh
Darrieus - ¥ 7= & z 3 % % 4% > 4= Gorlov = Lucid % (Yadav et al., 2023) -

H A FURERHRE @ T RIZAT R 6 77 o BREREE AR o g 0 BlAp

-8-
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HEAWL P AEREVENPERAUZ 2B L o HER L WAL g fof ki
g3 ¥ Al (hydrofoil) A 4 2 3 8% > d 2 F A4 G R4 LT R 4 Fa
A iEr A L PLiEF S TR B LG4 0 L w524 (liftforce, FL)fore 4
(drag force, Fp) o = 4 2 & d A4 5 R4 LA 4 > L2 WlpHE R w0 i
e B s B NERP AL BB EA R DA RIEY 4 o e i
R RS e T AEA L Ra FL R NRAKE FAA L e g A

4 (Reddy et al., 2022) -

KGR e

R: @518
w: BEE
FL:#A
Fo:FEA

B 6 <4 58-kf 4 iE 8T 7R 2 (Reddy etal., 2022)
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222 RIBHRER 2k
HAGULE kB SN E A b R BB PR RS (R L8

TSR AR PPN TR SRk

\\\?{r

B A HHEE- N

® Xl

=
i

P
*kiER ’]5%#&'? R 3( ractlce)f‘?” W T EF (Ptheory)Nj"L Fl=x

SUALE P F G, E B E B R 4dc0 2 258407 (Reddy etal., 2022)

C. = Ppractice T w

= S\
Ptheory % v3pA 3

o

He ST (N-m)siFhtsiE; o(rad/s)s s & E R ;v (m/s)s %
Tiagiig 5 p (kg/m®) 5 M A A (M) 5 E s E e -

AR RRE Y H - k4 SURRY A T 0 RO R S B

h

BT ] 0 G B KR (Betz limit) o d 48 R4 5 7 Albert Betz & 1919

. 16

ER D BB AC, BN B 52~ 593% A $ BRS N A G BIREE SER

#% > P2 At *(Yuce and Muratoglu, 2015) -

® % i# v (Tip Speed Ratio, TSR)
Exdv (TSR ¥ - B L 5l i S LA FHIBE » 2 oo
@R e Mg gt @ 2N e o

R- .
TSR = — = —— 4
v v

HY su(m/s)i 4> RER S R(M) S FHIB LI o (rad/s) s Fith &
@R v(m/s) s b EIRE o

Kirke and Lazauskas (2011)F= 5 47 81 &7 e F1ET » 2 & (i, ) frE 4 i v
(TSR)2. B eBf 2 > 4ol 7547 « 2% M7 afpk S PRI T AR EL i (¥

B R i) §F 7 R Gl 2 BILEE Yo n CF AR AR

-10 -
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3o Gl g2 R o

0.5 ‘ | |

=4—prediction, solidity = 0.3

-@-prediction, solidity = 0.4 ﬁ\
0.4

’ prediction, solidity = 0.5
=>=prediction, solidity = 0.6
—=field test, solidity = 0.84 / \
0.3 7 ¢

performance coefficient Cp

2.5 3 3.5 4 4.5
tipspeed ratio

Bl 7 7 F BiE 2T 2 Qg -2 5 3R] (Kirke and Lazauskas, 2011)

® F M (solidity, o)
FM(0) T & 5 iFwmBE » § FwmipF Y ot & B FE R R § X AR

Foogm e gEmdantian o oA Fﬁéif%’ﬁ ? k%> 3% 4r(Bachant and

Wosnik, 2015; Li et al., 2017) :

N-c
O':
n-D .
$ 5
N-c
or o =—
R

O NEZE P8R c(m)i ¥ A5 £ (chord length) s D (m) 3 iF s 2 i%
R(m) s iFmts 2 /s -

R FIREE A G B AN EF RS sk g

P

I

F.

Bog MR BRLHE Lt 2 Bl O 2R A BRI

-11 -
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o Er&i
TS S S ECRE S AP RSERE AR A TR AT R
PR ARG RIS R G R 2 PR B E e B RS

o RS g st e BRSO BN dR B e § E R B

MR v E ViR ) > BRELE I E K - i #F % HE K(Yadav et
al., 2023) -
o Erwe

EVRPEN A GEOBE A o B F AP LR
NACA ¥ A (NACA airfoil) » 2 % 2 W R 7dnz 3539 4% B € (National Advisory
Committee for Aeronautics, NACA)#1 B % «— % 7| ¥ 7] (Jacobsetal., 1933) - H# ¢
554 (camber line)ehsd B frd b T 2 chE B A G R EE K05 B MR
RipL o220 - JrpnanE 32k ¥ 8 5 BRGEFRIF B OE A
4o NACA v i #ic % 7|[4fe NACA T = 5 7% « H P w 8 k5|8 7 i & il &
AR B

% — @it ® B+ 5% & (camber) ¢ 3% & (chord length, ¢) e &

Fo A AR DGR Lt a2 8

B R AT BERAER T ZE DT Ao

4o 8 #9170 B ¢ ik (camberline) £ E AL £ 6 foT £ 5 ohP i A F
5% (chord) E_¥ A % 4 22 & S e 51 5 & 3% & (camber) 8338 S fe ¥ 52 2. ¥ engedp
BABERME LG doT 4G 2 Bk R o

-12 -
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T L&
BAEE PP Surf
) /// Max. thickness o -
// ’sﬁ?’mﬁ‘\' ne - T L
cam0EE 7T L
Higg | - _,,ZZTI’M/:I'raiIiI;

Leading [amfuemmsmsssstesesssssaneisessisisso o g
edge | 54 edge

“._  Chod o B

Te— i B \,O\Ner S!

¥l 8 NACA ¥ 47+ & B (Jacobsetal., 1933)
NACA E Al kd 4 3 iFwmisr 737 5 &+ - 29 Ay h¥Aa

NACA0012 ~ NACAO0015 - NACA0018 §= NACA63-018(Yadav et al., 2023) -

® 43 v (Aspect ratio, AR)
% - (Aspect ratio, AR) 2 & & Fats 8 A (H)frif i 2 (D)t & 250
4T L
H \
== 6
AR =

gk Lietal (017)F7 5 % » X GH VRS > # 3 GRELH 4o 0 BV A

“

L EFA AR L2 deB] 9 AT o

041 HID=0.4(H=1.2[m], D=3[m], ¢=0.3[m])
—e— HID=0.6(H=1.2[m], D=2[m], ¢=0.2[m])
—a— H/D=0.9(H=1.8[m], D=2[m], c=0.2[m])
—v— HID=1.2(H=2.4[m], D=2[m], ¢=0.2[m])

"X

T
(U8
T

Power Coefficient CP
= S
— ()

0005 10 15 20 25 30 35
Tip Speed Ratio 4

B O 7 f gedf st iE 2 T i -7 3 A (Li etal., 2017)
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® T ##k(Reynolds number, R,)
% % #ic(Reynolds number) £ 2 FERIRF B b4 d 2 - cH TR RE

4 (Inertial force)£2 &k7% 4 (Viscous force) et & » 2 38 40

B pkg/m®) i %Rk v (m/s)s t PFind s d (m) LR B i

L j= (D) % (Benchikh Le Hocine et al., 2019) ; u (kg/m/s) & & k% 14 o
MEFFRERF AT Fab K R FiEmB L AFRL IR
Ea B Gl R EF T HRBH o R { A FP o e AR B adpA

FC S RER S HIERPLEL OB FL ARG -

® jiH4t #(Froude number, F,)
w4+ #c(Froude number) 7 £ 5 € % # R kb4 m Fl= i Sl - 0B A G

7424 (Inertial force)sr & 4 (Gravity) st @ > 2> 38 4o

=
I

v
[00)

‘:lv(m/s)ﬂ,,, i g(m/SZ)szaf’; Seig B y(m)ﬁv = o
1995 Consul et al. (2013)4 5 » “E FAmis et = » R+ F GoT § H &

2o

R fg%’%@ﬁi'l‘ o 454-,3,; B it +—k'\—I-]—- LR ;-,ta 7]( ,:_m%« Lo
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2.3 kW #E%

Aop @RI RRN F 0 7 R Wk E SRR R R el T2
kiR EBE R E SR SER > 2 ERPREDR Y 2 {olidpies s e
231 FEmisR

RERFET P T AF LR IFERITLE pokE 4 FRRI R o 03
L d = B NACA-0015 ¥ A1 7 ~ F Tawm~ @ ghfot T dhF Lk worie= - § 10
Al R B A B BT AL AR ISO Bl 2 R4S P Sdenfe § oo

ME# s E 2 (D)X 5 120mm > & 4345 Senguptaetal. (2016)F 3 &1 > H-KidE
WK RS 100 oA AL E fhiR RIS ol o SR RN IR IR R E R
(H)Fe 2% 2.5 120mm o ¥ % 3% NACA-0015 ¥ 4z R 7l s H 43 § %8st
FORE hF S Tl P G FEEONET 4 1 44 it (Yosry etal., 2023) -
ErEE S 3 FAEEXR TS 50mme 14550 5 7B A FHME o 5 0398 it H
MAe F RE nF R B T3 xfEiaA-p g B AE(Yosry et al., 2023) o

~ -4 * Autodesk FF ¥ e Fusion 360 #rd¥:2 733+ » 2 ¢ NACA-0015 ¥
A4 Airfoil Tools 7 B P~ 17 4p B S#ic > K3+ = % @ * STL (STereoLithography)
RGN R AT N MR AN F o STL 5N ihz et R € i dE N d 35 5
ZhENE At G B2 N AR AR E 2 R (F kR AT WO
W) 7558 REF o B3 * Fused deposition modeling (FDM) 3 e #-% 5 & (PLA) 4

Fensipt sl er S F R A > KAl 11407
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50 |

T ff ol g s

O R 5

vy
Bl : mm
v
X 10 v
7y A 5
T A
200
vy
= | i

B 10 i 8 50202 5 B

2v

W 11 s 07
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232 ki

R L R S R A - R (RFRERAE ) Y i X %
B BN R AT AR L Bk 25 T (NTUHRI)E 7K 285% o
B kol 12 90 0 ) BAETE BIFEY Bk kA Mok E LR
kfh o B R 12 o0% 58K 0015 ¥g 503 2% > 3052% > EkFERFART
KO3 025 22 pd Ao ‘Jﬁ%#‘ﬁﬁ&’%iﬁ&iﬁ 3R ZE o NEERHREE L
WP EHMBR AT EERERE (4o 13) o

TREEE A W L AR B (Q) A 0.016 (M¥s)s F s (v) & 1.315  (mfs);

Bok4E# R G 0.025(m) o 12 ko % 2R E RS T K (W.L) & 0.205(m)-

HIE
23 i
0.5m wH E:]

R EERE

12m

Bl 12 k4B ek W
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i

Bl 13 Fipis L F el X8 7 HEA
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233 ERRE

KRS R e Zond o RIE S RS ES FRHRBEE > L NS N
R-B BRI EEEAEIE IR T HRE-AP L ERRE

¢ % TFlowatch | £33\ hi & » e /& 60 F 5K 2 i FFep Rl Bk on ik
(Bl 14 £) o AWEFEERF £33 12 22 e HE 02 2% 5 3 5/6.0 2% » £
HEro ¢ g > XX BRI T Ll Vb 0.0 o 8 A B pHE R
MiekR P PEAR K %ﬁ’ ﬁ F_mak o

it RARK AR L T c AR FBGE LS ASRP E c RED k2 2R
PR TR Y SR L RF R G EE AT R M e T 2N R AR
P e

Veorr = 0.4699V, 0041, + 0.0700 FA
B P Vogrr (M/$) 5 KB 553E 5 Vigaaing(M/s) & & B of B i fF " #R? 5 0.9981 -

% 1 jnig &k (Flowatch) 42 £

HoFe HiE

2R F 0.1 ~ 10 (m/s)

B AR 0.1 (m/s)

HrEE + 2% FS

¥ = knots, mph, km/h, m/s, fps §= cm/s
o Wiy

%?iﬁfé‘ﬁﬁgﬁf‘#?\él FokphiE o gEAe TR B VC6236P | it (B 14 +)
RIR PR 5 R T S - PR e 2 sha o 8

5B L e o
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% 2 #i# 3+ (VC6236P) 4%

S BiE

7 OREEHE 50 ~ 500 (mm)
R 7 10 ~ 99999 (RPM)
247 B 0.1 (RPM)

A FE R + 0.5%

) sERIE£%E (Rope Brake Dynamometer)

Ik

;jg._
%+ Golecha et al. (2011)4- Singh et al. (2015)2_ 77 3 » B 7F&K 3% K= &P
¥ FAoF BRACR 15977 o R B oo
T=(S—W)xgx(Rs+Drope) ;¢ 10
BATIN-m)iE W (kg i#BTE Sk s+ H#k:g@m/sH):
T4 RIR (M) =12-1073 5 T L 2 Dyope (M) =15-103 5 B % 8 jT o
R P A PR o SR TP 2a A3 b L MR =7 - A DoV oo
fE (FPRFERPFRERSER ) V. 134558 1035528 VL - 5w e %

#FoVIL ARRBEL > LEP L ERB > 2B FREHRZ G FEE
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o

B 14 (=) @ kFHES (+) g7 HF

T

AU 5 E]

1%
g
b
=

Bl 15 Rl A ¥ R & F
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2.3.4 By Xt

AR R RSRA R ook ik i R S AR MM LR 0 TR h
Wy (FE 7T E o TR A EF TR U me AL E N2
VA dr et BUS EAmAR ORI KGR ] RER SR ALY NI o

Niebuhr et al. (2019)>+ = 2t Groblershoop 4#2_ Boegoeberg B % /& /&g % £
EiEmEs e (& 25 S B Smart Hydropower GmbH = @ B 4 5 Smart Freestream -k
Tpho Rt R AR e S ) o RHE ~ RITE EfoiF AR M Sl 4 3 e
B 16 757 -Boegoeberg 5 - > & 172 =2 >4 B 0.0021 sR 45 2 4225475 B »
BiEETH R 48 2% 0 F 17 % o By 2 ETINE 6.6 (M) BB Y
8.06 (M¥s) » @ Tt Lixd > Hife T3ng 95 L1(ms) > a 2/ FiFH

B Tkt AB G RE BN LR o 4B 16(0)5rF 0 @ B 85 B R A

242 % s kA R R D 2.8 (M) hK @ F RS F 2 B9KW > A i
AP F L 156KW e A d R R el GIEEEFE B A2 EY £ 5

M FEEMBP > FlpEE G BOWERLREEFER  FrERFTENE

121623.84 (KW-hr) -

# 3 Groblershoop % %k #fed ~ KIZiE 2 {rifihtd 2 BT £

FiEpi i R #ie IR RS BB
%A (M) 4.8 ki (m) 1.5 ® 4% (m) 1.0
% A& (m) 1.7 I sain £ (m3fs) 6.6 A % £ (m) 1.7
#®AEM) 00021 | Tzinik(mls) 1.1 £ 2% 3(m) 1.1
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Debris
Protection

Generator

Rotor |

¥ 16 (a) Boegoeberg & # # B (D)% % ¥4 pe i v L B () Smart Freestream ifs #% 7+ Z. B

(Niebubhr et al., 2019)
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24 FEHHR

~F27 #& * Flow Science = @ #7 B 4 chf * 3 5 /48 4 & (Computational Fluid
Dynamics, CFD)#x %8 FLOW-3D ver. 2022R2 & 7 #ic & -t °

rLT ) g kg4 FLOW-3D 2 #4423 ~ F o icd] ~ VOF ks ~ FAVOR #
P B HE - 4 5 TP AT ABE RO M SR o
2.4.1 FLOW-3D %

FLOW-3D 2 #ic i i# & i# 8>t & 5 *T L 4 ;2 (finite-difference method, FDM) » %
B et ? RfEAEL Z BT R 54 M- 5 #r(Unsteady Reynolds-averaged
Navier-Stokes equations, URANS) = #25% o @ &4t p d /& o (free surface) » < 5 §§ &2
Rt K6 0 FLOW-3D i * ji 48 48 4% (Volume Of Fluid, VOF) # e (7 5% & o g
*t » 1% 48 Hirt and Nichols (1981) # B % = FAVOR™ (Fractional Area Volumes
Obstacle Representation)#t i > A = #-73] e B Rt R TR AR R

SR o (TR 2 R {4 B e o

o it
FLOW-3D 7ff £ 2 4 A2 (@3 AER) i ke
v, g’t’ —(pud) + R~ (vay)+ (prz)+€ = Rpyp + Reog &1
OV AR A e s AR Wrw) S (py D) bR A R
(A Ay Ay) 5 (x,y,2) il £ 6 A BORET ¥ o F8H» &+ F Rk 4
R=1;§=0; Rop 5 ¥/ 4B4CT 5 Reo & FEMI - #9037 Riitia 5 > %

BB T AFTERIE AT G

—(qu)+ (vAy)+ (WAZ)=O 12

=24 -
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$ETES R (YRS PR LT S T R

6u+1{A6u+ A6u+ Aau}_ 10dp
gt Ty Mgy T VAV gy WA = e T G ke
6v+ 1{ y 6v+ " 6v+ A Ov} 10dp G X 13
at Ty Mg TVt WA = o G ?
6W+1{A6 4 A6W+ OW}_ 10dp
ot Ty, Mgy TV, TWA G, 0oz Gz e
HephinhB4 5 (GGG )i tgted 5 (fufy fy) 5 2bF 4 o

® k-wFinHd
BB T HET IS R REF S o REA L R e iE
B0 I g% LA ] (scale)shiffinm A4 Koo o m ABCERGY Y > BRI

Todp sl FEEEE TS AR kA B R 2 3% (full spectrum) sn ¥ R 6

‘u
N
a

Raied &R R LI o] i RE] 0 B 2 L5 B i ot (Direct
Numerical Simulation, DNS) - e d ** DNS F 4% < £ 8 FREPFRF & & > Fpt
TRE S kB TR R

& FLOW-3D ¢hz SH B » § 2 7 * chF im0 A ul s 4 iF R
(Smagorinsky, 1963) - RNG(Yakhot and Orszag, 1986) - k—¢(Harlow and Nakayama,
1967)frk—w(Wilcox, 2008) - +24x Rezaeiha etal. (2019) cruE 3% » ¥+ L2 qﬁe‘v;fﬁﬁ%

f e k- B SHATR N { Fae AT BN e B R T s

Bm i g o B AR D H Y k-ofEA] o 0T g Fin gl mam e

¢ Finteaw xT@ﬁJ" 25

GKT 1 0Kp 0Ky 0Ky . .
T F{qu I +UAyW+WAz e } Pr + Gy — Diffi.,, — B xrwr ;14
H P ki K onde i (turbulent Kinetic energy) o A2 ¥ i £ S
B* = Bofp: 15
#¢ B =0.09
-25.
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1, X <0

. =11+ 680y2 S\
e —Xk. X >0 5 16
1+ 400y;
1 /0k;0w 0Kk 0w Ok 0w
Xk5—3<—T T, r-T,-7 T) 717
wy \ 0x 0Ox dy dy dz 0z

Prisd Tir g4 g ehfinsd S8 ¢

2 2

w2 v ow
2A<>+2A<>+2A<)
d0x 6y

+ <6v + 6u> (A >
") dx dy Ay ay 18
Pr r ¥
pVe + <6u 6W> (A 6u + A 6W)
0z 0 ? 0z * ox
<6v 6w) (A av N aw>
0z dy/\"%0z 7oy

Grad FAdaamiomd 23 (FRHZ0 R T RBFnmp] 338 )
Dif fiy s WATH % 77 ¢
. 1(0 0Ky 0 6KT> 6( 6KT>} N
N — - 19
Dif fir Ve {ax (UkAx 6x) dy (UkAy dy +62 Ui 0z !

BP oy A il 1R IRE R IVERAEF S A F .

¢ X‘iﬁ%iﬁi‘-#’{fﬁ‘wT@ﬁ]* 250

aa)T 1

dwr dwr 6wT} wr 5 N
= a—P. — Diff. — ;20
o +vA, 3y + w4, 57 a . Pr — Diff,, — Bw% 3

L,

HY »wp s FindF a4 > A F e | (scale) ; @ = 13/25;

B = Bof; & 21
#¥ B, =9/125
1+ 70y .
_ w 22
To 1+ 80y, !
QiijkSki \
= |—= ;v 23
Xo = (Brw)? ’

c‘QUﬁlj’:ﬁﬁv@Eﬁ ; Sklf li’)}j’%% CBEF o

ﬁx ?_/n %ﬂ“ 5(—1 E = B KTwar /r 3@ Eéf}ivT = KT/CUT'V-T K_{fig“’% m /fg, o
_26_
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B 17 % FLOW-3D f2 5 dpd4l > A2t 2 jndz » e 0T B3l Lg* @

PERRL A ERH L L BFI Y FERF OETH RS B S
BEF Y RATELRS FR N ke R (X 13) VEFYFEAD
rESIV. BYBFEREG T EN @242 (58 12) » #F1) FRA B ESR

4 a2 425% (Poisson's equation) ; V. & * GMRES /% & /# $f2/& 4 jpf>> 42 {8
FIRA B EET - RS BV BT - 3RS B e RS AN (RN 13)
PRE T-omERA RS VI kGRS ETac A Jear i p B30
BERERHE > EFIBEcaciE BH o VIIL 37 - 3eg B H{oBR 4 31858

WA SEF (A7 -2 d 25 feiml o PR{ATE © %o

e BIARRIEE | RE$ESES RABESER GMRESREREEEE A T2,
BESE 0w EEPEEE EEENEEAER MEENETENT—E A
GRS R
A o RERFEH - REGESER
T—EMs BENREE 5 E ERE REWH BT — 2R By,

B 17 FLOW-3D f& & ¥4 > 4258 /i 428

® XARAR A% /2 (Volume of Fluid, VOF)

d Hirt and Nichols (1981)#+#% ! &1 VOF £ =it s * ? FLOW-3D » 2 £z ¥
- (pd i) AAafEaizR sz B o 2 2k VOF 3kF(x,y,2t)
A H AN REF A S o B 187 oF Z LA RN LBRMOF S0

Pdom it MBI AT A FAROfo L2 B pldmefp s 3

3

%k > W5 A d %o (free surface) Tz = % o
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B 18 VOF #jts7r &, B (Santa Fe, 2022)

® FAVOR (Fraction Area/Volume Obstacle Representation)

FAVOR 2% % % & & o #§73) eh— 58 $iw > FLOW-3D & * 54 e g5 e
B T R Y AR TAS PR B 1997 o H T A& S A N 5
F¥E BRERG FERNS ALK AR L (QF R G e B & AR S Ak
RooRIEE S NS (D) F R G e BAIRAB R R E S ()
FRte e - B E I - LRI P RB Ao g T
Bep LB E AR o RS E S B an AR

Flit o FAVOR $psfod @ 8472 2 - > S e REir R OB 5 8P
AT ERREG G T IR - BRRRTER AR AN bR 19T

e[ ah o BRI B REITRE AR -

(b)

> | - / T

B 19 FAVOR #:.jt7 % B (Santa Fe, 2022)
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® & # 4 f $-3] (General Moving Objects Model, GMO)

FLOW-3D % i-— B H-A] * »0 3 B 2 b |8 > L5 GMO o ¢ k488

g &

GREAS L SRR RS FTEE AR LSRR RS R R
(DOF) > & Zip X Y~ Z fofs o 8 g de o b #h > BF X BORY 407 b T4 5
B2 AP ER S N o

BRI AR BERAEY AT Ed RS P o s A RS e

BECRFYRAR LS (FF L EE SRS R Rl el )
& f-

ST > KRR L B BT G

.y.
r?z‘ii

B de 2 4250 o e F R ATORG 2§ fo

R C L R R FEE SR = LY d U LIRS A
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242 H:V2 §

FLOW-3D z_ #-3 3%k #n4z s @ > 8 — TR R TR A B R
AEr BRI, REAIERFER T oA F R Lo SR T B
Bkt o T ORE - P o R AF B[P 2w &R i o

& RS EK

B L DR AL 754 E IR O

PR fRATA R AL E 0Lyt - AL

BABFT SN ITEFGHES AAPEES S AREHERA R4 2T @S

~ % § /&(1.013%10° Pa) -

FLOW-3D £ % 21 4 @37 & * - T s L R * €4 §Fale ¥
ARl A L BRI E e & H o E B B B 5 B0 (GMO) BC)
PZAEA Y RR AT FI BRI AR o

A A E A qeid Rg(1/sD)A B (XY,2) 5 (0, 0,-9.81) 5 Fin Aok

241 % &t 0 F %o S¥ck-0 $53) ) GMO B33 72 6 4 8 e 23] & o

o ik

R AR SR R B 20CHE BT 2 BeE (R ) o hok 4t o

# 4 FLOW-3D /i 48 4-#icik 4
S ¥ B iE H i
o8 B R (density) 998.2 kg / md
iR R 45 th dic (Compressibility)  4.56123x107° 1/Pa
AL 12 (Viscosity) 0.001 kg/m/s
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P2 el 2RISR 4o Bl 20 4T o Bthdh R BER L RiE g2 P oo
FUTHS e A4X e N EEF IR BERE R B A Y 12m X 03m X
05m > 2 &4EEFRh o HABE AP 6 2% A B A L 00155 ffral
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+
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# SFLOW-3D ek e+ 4 (3 %-)

Xo@k Xbotd Yok Y4 Zod@h Zwe

C S
(m) (m) (m) (m) (m) (m)
-6 ~ -0.16 ~ 0~
UP 0.005 0.005 0.005
-3.825 0.16 0.3
-3.825~  0.004 ~
-3.15 0.002
-3.15 ~ -0.16 ~ 0~
MID 0.002 0.002 0.002
-2.85 0.16 0.3
-2.85 ~ 0.004 ~
-2.175 0.002
-2.175 ~ -0.16 ~ 0~
DOWN 0.005 0.005 0.005
0.16 0.3
% B6FLOW-3D ek el e 44 (2 %)
o XeEh Xwer+ Yol Yoo+ Zefh Zo2
A3 R B
(m) (m) (m) (m) (m) (m)
-6 ~ -0.16 ~ 0~
UpP 0.005 0.005 0.005
-3.825 0.16 0.3
-3.825~  0.004 ~ -0.16 ~ 0~
MIDUP 0.004 0.004
-3.1 0.002 0.16 0.3
3.1~ -0.16 ~ 0~
MID 0.001 0.001 0.001
-2.9 0.16 0.3
-2.9~ 0.004 ~ -0.16 ~ 0~
MIDOWN 0.004 0.004
-2.175 0.002 0.16 0.3
-2.175 ~ -0.16 ~ 0~
DOWN 0.005 0.005 0.005
0 0.16 0.3
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FLOW-3D e A i 2 2 &8 45 B iia BER e Lo mn &7 F Rt
FRHABAILT G A H T FERPEER L FWE BB P RGER
(inter-block boundary) - *# 3 2_ B B i% i+ bR i85 2 Bdy > R 4ok T e
F 8475 o (8 % Flenif B iE A AP Ao T o
o g # A (Volume flow rate) : U ReRTS AR iR o
e pH.ERA(nter-block) : R * 2w B AFLANIEE > B 250Kk p 4p
MEREFERDERNFE D TO%RD BA PSR E FER
B o B BER AL e (L4 QP BER fad)
. m o A (Wall) @ 2 %) @& * g f 4 (no-slip)fe@ A iz e B 2 F 5 B

BEERoBFBELLT AFMER i H A G RARR  HF L D

o JRA4 iR (Specified pressure) : & * B4 (FL R G A AR N H -
H_@ % jngl e dc(fluid fraction) "0 2 7R 2554 ° T 5 2 5 RPOL LS
1478k = 280088 - 8 - £ * 483 42(fluid elevation) » * pFif
FefR A RIS B om0 KA KRR Mo

n -

S

MR R ok Es 2 R 0.016 (MYS) ; BT AR E g R R
B2 T 5K 0.205 (M) 5 Ymin s Ymax ~ Zmin 3 B ARG 0 F]M K TG EEG 2R 0 A
Zmax i B oo FtR s F R (kA kG 0) o
m -

7=

PR R R R R BT LR F R Rk
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g
uP moBE R Eeao e Be <5 R
0.016(m?%/s)
MID N idi.i%ﬁ”r R~ iﬁn;%)‘} RE® RE® RE® = ép’fi
ki
DOWN N i&.«\% Vi RE® RE® RE® = éf? &R
0.205 (m)

% BFLOW-3D R ist %k 24 (5 %-)

PR B Xmin Xmax Ymin  Ymax Zmin  Zmax
~ing
UP mOHL R R e BEw Lt B S
0.016(m?%/s)
MIDUP LS e B FE o FE FE < 5 R
MID e s e B FE o FE FE < F R
MIDOWN LY et N FE FE FE < 5 R
g
DOWN moBLigE R FE BE o BE o S F R
0.205 (m)

® it
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% 9FLOW-3D #icid %#ck % %

PR 9% K 2k (time step)

A7 e P K 10 (s)
B PR G K 107 (s)
PERR £ #2 %< a¢ Stability and convergence

# & = 4738 1T 17;# (momentum equation approximation)

R+ BERIE r@f AR g TE A
Tinrk ik = F# H 3 14 Second order monotonicity preserving
TR R Y 2238 % Immersed boundary

B+ 25 3E 78 (Pressure solver)
R RSl £ 14 Implicit
e ERRE R GMRES (Generalized minimal residual method)
NEEIE D eSS 0.25

H Ry g

VR4 R E A 57 4+ Explicit
Bod e B4 FRE A & 1+ Explicit

T (Advection) 2 & 554 &1+ Explicit

GMO /i~ H48 & £ 14 Implicit
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2 OL2 5 REHEARERE KA VREED TF R B BN (T
) EmB L L A ERE S Y T R AN A A E
NV B G s dof] 23977 o B ¢ F Bt B dot 30 Faw

-~
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% 10 Jn3 T s R acdy £

=% (m) k= (m) ik (mis)
0 0.205 -
6 0.224 0.408
4 11 §#3civieit it B Rkt
A (kg/m®) R (mls) R ES(m)  #ARFR(kaimis)  F ()
998.2 0.408 0.12 0.001 48871
- g (mls) ki (m) 4 4ot B (MY AR Bk(H)
- 0.408 0.134 9.81 0.356
Fo12 R RS W A Bl A
ID #4&(N-m) i (Rad/s) # % (W) A k() Eai()
| - 8.67 - - 1.28
Il 3.31E-03 7.46 2.47E-02 5.06E-02 1.10
Il 3.97E-03 5.72 2.27E-02 4.65E-02 0.84
IV 5.30E-03 4.15 2.20E-02 4.45E-02 0.61
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‘ ) FE PR ki i big &
* kR s e o s e o e
(HR) B EPEA (%) G IEPREA(%) B AL (%)
- 13,276,800  54.95 0.267 0.873 0.381
= 24,712,800  356.77 0.254 0.908 0.277
M ] 1.86 6.49 - - -
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Case
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2 14 Hind Sl Rk

LTS S S B %
EoEs R () AN (0) ~ 30 ~ 45 ~ 60
EiFE R (M) LEN 0.075 ~ 0.12 -~ (0.15)
ERXERFELR () LEN/R 1.25R ~ 2R - (2.5R)
LS 125 (11) DIST 0.065 - 0.075 ~ 0.08 ~ 0.1 ~ 0.12
& T PR R (-) DIST/R 1.08R ~ 1.25R ~ 1.33R ~ 1.67R ~ 2R

3015 Wi hoR S AT A

KL AN (°) LEN (m) DIST (m)
BASE - - -
0_150_80 0 0.15 0.08
30_75_65 30 0.075 0.065
30_75_75 30 0.075 0.075
30_75_80 30 0.075 0.08
30_75_100 30 0.075 0.1
30_75_120 30 0.075 0.12
30_120_65 30 0.12 0.065
30_120_80 30 0.12 0.08
45 75 65 45 0.075 0.065
45 75 80 45 0.075 0.08
60_75_65 60 0.075 0.065
60_75_75 60 0.075 0.075
60_75_80 60 0.075 0.08
60_75_100 60 0.075 0.1
60_75_120 60 0.075 0.12
60_120_65 60 0.12 0.065
60_120_80 60 0.12 0.08
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Waterproof - floating

Operating temperature : from -20°C to 70°C
Accuracy according to Swiss standards

Fields of applications

Measure rivers flows

Ocean flows
Sewage flows
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Chimney flues
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Air conditioning conduits

Ventilation shafts
Aerological studies
Etc...

Technical specifications

Flow speed measurement
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Speed resolution
Maximum speed

Diameter
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Measuring range
Minimum sensitivity
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“off-axis” error
Operating temperature

Temperature
Units

Accuracy
Resolution
Functions

knots, mph, km/h, m/s, fps and cnm/s
0.1 for all units (except im cm/s: 3cm/s)
150km/h (except in cm/s : 999cmis)
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wind speed wind speed

impeller impeller Water impeller
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@ 33m @ 18m
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+ 2% FS + 2% FS + 2% FS
+30°/+3%FS +10°/+£3%FS +20°/+3%FS
-50°C to +100°C -50°C to +100°C

°C, °F, °C felt et °F felt

+0.2°C

+0.1°C

ambient temperature measurement, felt, minimurm,
average and maximum

- 80 -

Display

Temperature
Instant speed
Average (3s - 24h), minimum and maximum speed

Air & Water Impeller

NN R

Airimpeller Air impeller
@ 12mm @ 20mm

Water impeller
@ 60mm

Aluminium telescopic rod

Aluminium telescopic rod 1.2m
(with 2m cable)

Probe
10 cm

Water Speed Impeller

Water speed impeller with
15 meter sounding cable,

Carrying case

Carrying case for all
accessories

Carrying bag

Carrying bag for the
accessories except
the sounding cable
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© Dynamically computed
© Constant

Turbulent diffusion multipliers

Fluid fraction 0

Fluid internal energy 0
Fluid density 0
Scalar species 0

Coefficient of buoyancy in
turbulent production

Model options
Turbulence model Two-equation (k-w) model v
‘Wall shear stress boundary condition Calculate wall shear stress v

Maximum turbulent mixing length for RANS models

Cancel Help

Moving Object Setup

-83 -

OK

Component 2: turbine

Motion Constraints  Mass Properties  Initial/Prescribed Velocities  Control Forces and Torques  Reference Pressure
Type of constraint Translational and rotational options
Fixed z-axis rotation  ~ (In space system) (In body system)
(In space system)
X translation v X rotation Coupled motion v
Fixed axisfpoint X coordinate -3.005 m Y translation Coupled » hoa Y rotation Coupled motion v
Fixed axisfpoint Y coordinate 0 n Z translation  Coupled ¥ Z rotation  Coupled motion v
Fixed axis/point Z coordinate m
Limits for rotation Limits for translation
Maximum rotational angle (degrees) Maximum displacements of mass center
Negative direction Positive direction Negative direction Positive direction
degree(s) degree(s) X displacement n m
Y displacement m m
Z displacement m m

Cancel
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