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摘要 

 

粒線體形成動態的絲狀網絡，其結構由融合和裂變之間的持續相互作用所

塑造。了解這些結構轉變如何隨時間和在不同細胞條件下演變仍然是粒線體生

物學領域的關鍵挑戰。在本研究中，我們提出了一個計算框架，該框架透過將

基於粒子的擴散與結構和空間反應機制相結合來模擬粒線體網絡重塑。該模型

基於節點連通性和空間鄰近性，編碼了受生物學啟發的融合和裂變規則，使分

支、伸長和碎片化等拓撲事件能夠隨著時間的推移自然發生。 

 

此模擬系統由實驗影像產生的骨架圖初始化，並透過雙層反應方案演化：

結構反應基於局部圖規則重建內部拓撲結構，而空間反應在滿足鄰近性標準時

合併各個組件。一系列詳細的輸出包括:粒子軌跡、拓撲檔案、反應日誌和度分

佈:支援可視化和定量分析。單次運行模擬揭示了網路複雜性的動態變化，例如

端點頻率的增加和平均聚合物長度的減少。對 100 次重複實驗進行多重運行統

計平均，證明了度機率的穩健收斂性，並允許與實驗數據直接比較。 

 

透過時序性顯微鏡影像的定量驗證，在對照組條件下表現出高度一致性，

但在其他藥物如 FCCP 和 Mdivi-1 等條件下，會有誤差產生。這些結果表明，

該模型雖然能捕捉粒線體重塑，但也指出了需要納入其他可能潛在的生物學機

制，例如局部降解或生化回饋，才能獲得完全的準確性。總體而言，此模擬平

台為探索粒線體動力學提供了一個分析的工具，在實驗假設檢定、藥物反應建

模和細胞能量學的系統級研究中具有應用價值。 

 

關鍵字：粒線體動力學、融合-裂變、網路建模、基於粒子的模擬、反應擴散、

結構拓撲、ReaDDy2、基於圖的生物學、基於影像的驗證、粒線體碎片化、基

於代理的建模、系統生物物理學 
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ABSTRACT 

Mitochondria form dynamic, filamentous networks whose architecture is shaped 

by a continuous interplay between fusion and fission. Understanding how these 

structural transformations evolve over time and under different cellular conditions 

remains a key challenge in mitochondrial biology. In this study, we present a 

computational framework that simulates mitochondrial network remodeling by 

integrating particle-based diffusion with both structural and spatial reaction 

mechanisms. The model encodes biologically inspired rules for fusion and fission 

based on node connectivity and spatial proximity, enabling topological events such as 

branching, elongation, and fragmentation to emerge naturally over time. 

 

The simulation system is initialized from experimental image-derived skeleton 

graphs and evolves through a dual-layer reaction scheme: structural reactions 

restructure internal topology based on local graph rules, while spatial reactions merge 

separate components when proximity criteria are met. A series of detailed outputs—

including particle trajectories, topology files, reaction logs, and degree distributions, 

both visualization and quantitative analysis. Single-run simulations reveal dynamic 

transitions in network complexity, such as increases in endpoint frequency and 

reductions in average polymer length. Multi-run statistical averaging across 100 

replicates demonstrates robust convergence of degree probabilities and allows for 

direct comparison with experimental data. 

 

Quantitative verification of timing microscopy images showed high consistency 

under the control group conditions, but errors occurred under other drugs such as 

FCCP and Mdivi-1. These results suggest that while capturing metaphysical 

remodeling, the model also points to the need to incorporate other possible potential 

biological mechanisms, such as local degradation or biochemical feedback, in order to 

achieve complete accuracy. Overall, this simulation platform provides an analytical 

tool for exploring metasoma dynamics, with application value in systematic research 

on experimental hypothesis assays, drug response modeling, and cell energy. 
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1. Chapter 1: Introduction 

1.1 Background and Motivation 

Mitochondria are not static organelles; rather, they form highly dynamic, 

interconnected networks that constantly adapt to the physiological demands of the 

cell. These networks exhibit continuous remodeling through coordinated cycles of 

fusion and fission, processes that balance connectivity with modularity to maintain 

cellular health. The dynamic restructuring of mitochondria plays essential roles in 

regulating energy metabolism, calcium signaling, redox balance, and apoptosis. Under 

physiological conditions, a finely tuned fusion–fission balance ensures proper 

mitochondrial function. However, disruptions to this balance—such as those caused 

by genetic mutations, toxins, or metabolic stress—can lead to fragmented or 

hyperfused networks, ultimately contributing to the pathogenesis of numerous 

diseases. 

 

Computational modeling offers a powerful means to study mitochondrial 

morphology and its changes under various perturbations. Yet, many existing models 

remain either too abstract to capture spatial and topological details, or too detailed to 

allow for large-scale analysis or integration with imaging data. This work addresses 

this gap by developing a particle-based, graph-aware simulation framework that 

combines structural logic, spatial dynamics, and image-driven initialization to explore 

mitochondrial network evolution under different conditions. Our goal is to bridge 

mechanistic modeling with experimental validation, providing a platform that is both 

biologically grounded and computationally tractable. 

 

1.1.1 The Importance of Mitochondria in Human Health 

Often described as the "powerhouses" of the cell (fig 1.1.), mitochondria are vital 

for generating ATP through oxidative phosphorylation [1]. Beyond energy production, 

mitochondria are central to a wide array of cellular processes including apoptosis [2], 

ROS signaling [3], and lipid metabolism [4]. Their proper functioning is critical for 
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maintaining tissue homeostasis, particularly in energy-demanding systems such as the 

brain, heart, and skeletal muscles [5]. 

 

Importantly, dysfunction in mitochondrial dynamics has been implicated in a 

broad spectrum of diseases. Neurodegenerative disorders such as Parkinson’s and 

Alzheimer’s disease [6], metabolic syndromes [7], certain forms of cancer [8], and 

rare mitochondrial myopathies [9] all share characteristic changes in mitochondrial 

morphology and connectivity. Understanding the physical and regulatory principles 

underlying mitochondrial network behavior is therefore of critical importance—not 

only for basic cell biology, but also for developing diagnostic tools and therapeutic 

interventions [10]. 

 

Figure 1.1. Biological roles of mitochondrial dynamics 

This figure summarizes the multifaceted functions of mitochondria in cellular biology. 

Mitochondria act as the cell’s energy hub through ATP production (1), regulate 

apoptosis and survival mechanisms (2), preserve cellular integrity via quality control 

processes such as fission and fusion (3), and are implicated in a wide spectrum of 

diseases and aging-related decline (4). 

 

                                             

1. Powerhouse of the Cell

 Generates ATP through oxidative phosphorylation

 Fuels energy-demanding organs (brain, heart, muscles)

 Essential for cellular processes like signaling and transport

2. Regulators of Cell Death and Survival
 Control apoptosis by releasing signaling proteins

 Remove damaged or infected cells through programmed death

 Dysregulation linked to cancer or neurodegeneration

3. Guardians of Cellular Health   Quality

Control
 Fission isolates damaged parts; fusion restores

functionality

 Maintains mitochondrial DNA integrity

 Supports resistance to oxidative stress and aging

4. Linked to a Broad Range of Diseases

 Implicated in Alzheimer s, Parkinson s, and epilepsy

 Contributes to metabolic and cardiovascular disorders

 Mitochondrial decline is a hallmark of aging
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1.1.2 Mitochondrial Fusion and Fission 

Mitochondrial morphology is controlled by a balance between two opposing 

processes: fusion, which promotes interconnectivity and mitochondrial 

complementation, and fission, which facilitates mitophagy and organelle distribution 

[11]. Fusion allows individual mitochondria to merge, sharing contents and diluting 

damage, while fission enables segregation of damaged segments and their subsequent 

degradation (fig 1. 2.) These processes are regulated by conserved GTPases—such as 

MFN1/2 and OPA1 for fusion, and DRP1 for fission—and are responsive to 

biochemical signals including changes in membrane potential, energy status, and 

reactive oxygen species [12]. 

 

At the structural level, fusion and fission events give rise to a range of 

topological motifs, from extended tubules and branching junctions to small, punctuate 

fragments [13]. Capturing this diversity requires a model that accounts not only for 

spatial proximity but also for the local connectivity of network nodes [14]. 

Additionally, many stress conditions or drug treatments, for instance, depolarizing 

agents like FCCP—can disrupt the balance and trigger widespread network 

fragmentation [15]. Mutations in MFN2 or altered DRP1 activity, as seen in some 

neuropathies and degenerative conditions, further exacerbate such disruptions [16]. 

 

Recent advances in computational modeling have enabled simulations of 

mitochondrial dynamics using network theory and time-resolved imaging, though 

incorporating biophysical parameters like membrane tension and curvature remains 

challenging [17],[18]. 
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Figure 1.2. Schematic illustration of mitochondrial dynamics. 

Mitochondrial morphology is shaped by the opposing processes of fission and fusion. 

Fusion combines fragmented mitochondria to form interconnected networks, while 

fission divides mitochondria to isolate damaged segments or facilitate distribution. 

These dynamic structural changes are visualized on the right, where red arrows 

indicate fusion events and blue arrows mark fission sites. 

 

1.1.3 Physiological Determinants of the Fusion–Fission Equilibrium 

The choreography of mitochondrial fusion and fission is inseparable from the 

cell’s physiological milieu. Bioenergetic cues—such as membrane potential (ΔΨ), 

ATP/ADP ratio, and local redox balance—feed directly into the activity of the core 

GTPases MFN1/2, OPA1, and DRP1 that govern membrane merger or scission [12]. 

High ΔΨ and ample ATP bias MFN‑ and OPA1‑mediated fusion, fostering tubular 

interconnectivity that maximizes metabolic complementation, whereas depolarization 

or oxidative stress recruits DRP1 to promote fission and facilitate mitophagy [15]. 

Calcium spikes, cytoskeletal tension, and cell‑cycle checkpoints provide additional 

layers of regulation, ensuring that network remodeling is synchronized with metabolic 

demand and organelle inheritance [11]. 

 

                                             

Fission

Fusion
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Disruption of these physiological signals—through genetic lesions (e.g., MFN2 

mutations) or pharmacological insults such as the uncoupler FCCP—shifts the 

balance toward fragmentation and can precipitate neuropathies or degenerative 

phenotypes [15, 16]. Capturing such state‑dependent toggling between fusion and 

fission therefore requires models that integrate not only spatial proximity and 

topology [14] but also dynamic, physiology‑linked reaction propensities. This 

mechanistic underpinning sets the stage for the computational simulations described 

in Section 1.1.4, where parameterized fusion and fission rates are varied 

systematically to reproduce—and ultimately predict—how physiological 

perturbations reshape the mitochondrial network [19–22]. 

 

1.1.4 The Importance of Computational Simulation for Mitochondria Network 

While high‑resolution fluorescence microscopy can capture striking snapshots of 

mitochondrial morphology, any single frame (Fig 1.3.) freezes only a moment of an 

intrinsically dynamic reticulum. Limited temporal resolution means that entire rounds 

of repositioning, fusion, or fission may pass unrecorded, so microscopy alone seldom 

reveals the full trajectory of network remodeling [19]. Even in time‑lapse sequences, 

individual fusion and fission events often unfold at—or below—the diffraction limit 

and are therefore difficult to recognize by eye. Automated tracking algorithms are thus 

indispensable for detecting these events, but they, too, require validation. 

 

Computational simulation provides that missing ground truth. By explicitly 

modeling the underlying particle interactions, simulations let us probe how local bond 

formation or breakage scales up to affect global properties such as network size, 

fragmentation, and complexity [20]. They also support systematic parameter 

sweeps—e.g., varying fusion rates or bond stiffness—to uncover critical thresholds 

that would be experimentally impractical to explore [21]. Because simulations deliver 

unrestricted temporal and spatial access to every particle and interaction, they furnish 

reference trajectories against which tracking algorithms can be benchmarked, thereby 

closing the experimental‑computational loop. Advances in GPU acceleration and 
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open‑source libraries now make it feasible to construct multi‑scale, data‑initialized 

models that not only deepen theoretical understanding but also guide experimental 

design—for instance, by predicting mitochondrial responses to metabolic stress, drug 

treatment, or disease‑associated mutations [22].

 

Figure 1.3. Mapping mitochondrial dynamics to experimental imaging. 

The left panel illustrates the dynamic processes of mitochondrial fission (blue arrows) 

and fusion (red arrows). These structural transitions correspond to morphological 

features observed in live-cell fluorescence microscopy (right panel), where question 

marks highlight candidate regions undergoing fusion (red) or fission (blue). This 

visual link demonstrates the feasibility of identifying dynamic mitochondrial events 

from static images. 

 

1.1.5 Development of Quantitative Network Analysis 

In parallel with advances in computational modeling, new tools for image 

analysis have transformed our ability to quantify mitochondrial networks. Techniques 

such as skeletonization, graph extraction, and degree distribution analysis now allow 

researchers to convert microscopy images into structured, analyzable data. These tools 

make it possible to compare mitochondrial networks across conditions, track changes 

over time, and link morphological metrics to functional outcomes. 
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However, most experimental studies remain descriptive, and few integrate 

network analysis with predictive modeling. The ability to simulate networks 

initialized from real images, and to track their structural evolution using graph-

theoretic measures creates a powerful synergy between computation and 

experimentation. This integration enables not only the generation of hypotheses but 

also the formal testing of how well a model reproduces biologically observed 

dynamics. 

 

The present work leverages this integration by initializing simulations from 

image-derived graphs, simulating topological evolution with particle and reaction 

rules, and quantitatively comparing outputs to experimental benchmarks. In doing so, 

it provides a complete pipeline for understanding mitochondrial behavior from both a 

mechanistic and a system-level perspective. 

 

1.2 Literature Review 

The dynamic behavior of mitochondrial networks—driven by the fundamental 

processes of fusion, fission, biogenesis, and degradation—plays a crucial role in 

cellular homeostasis, signaling, and stress response. As direct experimental access to 

these processes remains limited by spatial and temporal resolution constraints, 

computational modeling has become an indispensable methodology for probing 

mitochondrial dynamics across scales. Over the past decade, the modeling paradigm 

has undergone a marked evolution, progressing from highly abstract, topology-based 

representations to sophisticated, data-informed simulations capable of capturing 

spatial heterogeneity, temporal continuity, and agent-level physiological variability. 

This literature review provides a structured examination of this progression, 

beginning with foundational graph-theoretical models and advancing through recent 

developments in mechanical, spatiotemporal, and agent-based frameworks. Through a 

comparative analysis of seminal contributions—including those of Sukhorukov et al. 

(2012), Holt et al. (2024), Wang et al. (2023), and—we delineate how successive 
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generations of models have incrementally relaxed core assumptions, integrated 

empirical data, and expanded the explanatory and predictive scope of mitochondrial 

network simulations. 

 

1.2.1 The Fundamental Logic of Computational Modeling 

Computational modeling has become an essential methodology across the 

physical, life, and social sciences, providing a systematic framework for simulating, 

explaining, and predicting the behavior of complex systems [23][24]. A computational 

model is fundamentally an abstraction of a real-world system, constructed through 

mathematical or algorithmic representations of entities and their interactions. These 

models enable researchers to explore how system-level phenomena arise from 

localized rules, often under conditions that are analytically intractable or 

experimentally inaccessible. 

 

At the core of computational modeling lies the principle of simplification and 

abstraction. Rather than attempting to replicate every molecular or environmental 

detail, models isolate and encode the essential rules that govern system behavior [25]. 

This formalization of hypotheses turns simulation into a laboratory for thought 

experiments, letting investigators probe the logical consequences of assumptions 

before turning to the bench. 

 

Computational models typically serve three interrelated purposes: explanatory, 

predictive, and exploratory [26][27]. As explanatory tools, models help illuminate the 

mechanisms underlying observed phenomena—such as pattern formation, emergent 

organization, or non-linear feedback. Predictively, they can be used to forecast system 

behavior under new conditions, guiding experimental design or policy decisions. 

Exploratorily, models allow for the simulation of hypothetical scenarios that are 

impractical to study experimentally due to ethical, financial, or technical constraints. 
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The utility of a computational model lies not in its capacity to replicate every 

detail of a system, but in its ability to generate insight through tractable 

approximations. Effective models often rely on assumptions such as discretizing time 

and space, lumping molecular species into classes, or limiting interactions to nearest 

neighbors. While these assumptions introduce simplifications, they are justified 

insofar as they preserve the dynamics of interest. As Ellis and Kopel (2015) argue, the 

value of a model is ultimately measured by its ability to connect micro-level 

mechanisms with macro-level observations in a coherent and testable framework. 

 

In the context of biological systems—such as mitochondrial networks, 

computational models are particularly powerful because they can encode both spatial 

and topological features. Agent-based models and reaction-diffusion systems, for 

instance, allow the simulation of dynamic morphologies driven by local interactions 

such as fusion and fission. When initialized from empirical data, such as microscopy-

derived skeletons, and validated through statistical comparison, these models offer a 

rigorous yet flexible approach for hypothesis testing and system-level inference. 

 

The framework developed in this study reflects these modeling principles. It 

combines a particle-based reaction-diffusion environment with graph-based structural 

logic, enabling the simulation of mitochondrial network evolution under user-defined 

conditions. Through repeated simulation, parameter sensitivity analysis, and 

comparison to experimental data, the model exemplifies how computational 

abstraction can yield biologically meaningful insights—without requiring an 

exhaustive description of every molecular event. 

 

1.2.2 Assumptions Underlying Mitochondrial Network Models 

 Modeling the mitochondrial network at the cellular scale involves several 

simplifying assumptions that are critical for tractability and simulation efficiency 

[20]. These assumptions are not arbitrary; rather, they are motivated by experimental 
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observations and carefully tuned to reflect biologically plausible constraints. The aim 

is not to simulate mitochondria in exhaustive molecular detail, but to capture the 

essential mechanisms—namely fusion and fission—that govern network formation 

and transformation. 

 

 A foundational assumption in mitochondrial network modeling is that the 

structural state of the reticulum can be adequately represented as a discrete graph, 

where nodes correspond to specific functional or topological features (e.g., free ends, 

internal segments, branching points), and edges represent mitochondrial tubules. This 

abstraction enables the application of graph-theoretical and kinetic modeling tools 

while sidestepping the complexities of membrane dynamics or continuous mechanics. 

 

 One key simplification is the restriction of node degrees to three fundamental 

types—k = 1 (end points), k = 2 (linear connections), and k = 3 (branching 

nodes)(fig.1 4.). Higher-degree nodes (e.g., k > 3) are rare in fluorescence microscopy 

images and often result from optical artifacts or accidental projections of unrelated 

segments along the z-axis. Studies have shown that >96% of branching nodes in well-

segmented mitochondrial skeletons are of degree 3[28], making this a robust 

constraint for modeling efforts. 

 

 The reaction mechanisms themselves are also idealized into four archetypal 

transformations: tip-to-tip fusion/fission and tip-to-side fusion/fission(fig 1.4.) . These 

are mapped onto changes in node degree within the network and represented through 

simple kinetic rules. For example, two free ends may merge to form a linear segment 

(2X₁ → X₂), or a free end may attach to a linear segment to form a branch (X₁ + X₂ → 

X₃). Corresponding fission events reverse these transformations. This minimalist 

reaction scheme effectively reproduces the observed network morphologies across 

multiple conditions. 
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 Spatial effects are treated implicitly rather than explicitly in many formulations. 

While real mitochondria move along cytoskeletal filaments and exhibit spatially 

heterogeneous behavior, the well-mixed approximation is often adopted, assuming a 

homogeneous intracellular environment [29]. This is justified by experimental 

simulations showing that frequent interactions with differently oriented cytoskeletal 

fibers result in rapid randomization of movement, making localized correlations 

negligible over longer timescales. 

 

 Another assumption is the time-scale separation between fusion/fission events 

and other mitochondrial processes, such as biogenesis, degradation (mitophagy), or 

signaling. These slower processes are excluded from the core dynamic equations, 

allowing the model to focus exclusively on topological evolution. However, the 

framework remains extensible and could incorporate these factors in future studies 

targeting long-term dynamics. 

 

 Finally, reaction rates are often assumed to be constant, independent of 

intracellular protein gradients or local biochemical conditions. Although more detailed 

models may include time- and concentration-dependent rate functions, constant-rate 

kinetics remain useful for evaluating general network behavior and for identifying 

phase transitions such as percolation, where small changes in rate ratios (e.g., 

fusion/fission) yield large structural reorganizations. 

 

Together, these assumptions yield a robust, generalizable framework that enables 

the simulation of mitochondrial network evolution under various physiological and 

pathological conditions. By abstracting away unnecessary complexity, the model 

allows for focused investigation of the reticulum’s structural dynamics, paving the 

way for hypothesis testing and eventual parameter calibration against experimental 

data. 
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Figure 1.4. Topological classification of nodes and structural reaction types in 

mitochondrial networks.  

This schematic defines node types based on connectivity: one-degree (red), two-

degree (green), and three-degree nodes (blue). Two key structural reactions are 

illustrated—tip-to-tip fusion, which joins two linear segments to form a continuous 

path, and tip-to-side fusion, which creates a branched three-way junction. These 

reactions are reversible and underpin mitochondrial network remodeling. 

 

1.2.3 Simulation focus on spatial constraints and mechanical forces  

In this section, we critically assess the simulation strategy presented in Holt et al. 

(2024) [30] to evaluate how it aligns with or diverges from the modeling assumptions 

outlined in prior mitochondrial network frameworks, such as those in Sukhorukov et 

al. (2012) [20]. 

 

The model presented in Holt et al. represents a significant expansion of previous 

non-spatial and deterministic models by incorporating spatiotemporally resolved, 

stochastic simulations governed by a mechanistic Langevin dynamics framework (fig 

Node type:

One-degree Node Two-degree Node Three-degree Node

Reaction type:

Tip-to-tip reaction:

Tip-to-side reaction:
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1.5.). In contrast to earlier formulations that assumed a homogeneous, well-mixed 

cellular environment with implicitly averaged fusion/fission interactions, the current 

simulation explicitly tracks individual mitochondrial segments in 3D or 2D space 

using mechanical rules for bending, stretching, steric interaction, and confinement. 

 

Where earlier models encoded mitochondrial fission and fusion as 

phenomenological rules operating on a graph of node degrees 1–3, Holt et al. derive 

their interactions from a physically grounded scheme, modeling fusion as a 

probabilistic bond formation between well-aligned mitochondrial ends within a 

reaction radius and fission as a rate-dependent bond breakage determined by local 

mechanical constraints. Crucially, fusion is conditional not only on proximity but also 

on angular alignment—a departure from earlier topological rules that abstracted these 

mechanics away. 

 

The assumptions about node degrees are preserved—both models limit network 

topology to nodes of degrees 1–3, excluding higher-order junctions due to their 

experimental rarity. However, Holt et al. challenges the assumption of uncorrelated 

reaction events. While previous models assumed that the stochastic independence of 

fusion and fission was adequate within a mean-field environment, the newer 

framework introduces time-delayed reactivation (“recharge”) mechanisms after 

fission events. This refinement acknowledges that newly fissioned mitochondria are 

not instantly fusion-competent—an insight aligned with empirical observations but 

absent from traditional models. 

 

Another key divergence lies in how simulations relate to measurable quantities. 

Holt et al. directly calibrates their simulation using empirical fusion/fission rates and 

mitochondrial density data from mammalian and yeast cells [31], allowing 

dimensionless parameters like 𝑘𝑓 to be interpreted in minutes. Furthermore, they map 

microscopic parameters to macroscopic observables (e.g., segment length, cluster 
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size, connectivity) using a combination of agent-based simulation and mean-field 

reduction, thereby creating a bridge between local dynamics and emergent structure. 

 

In sum, the simulation set up by Holt et al. does not violate the assumptions in 

earlier models but rather *extends and refines* them. It transforms a 

phenomenological system into a mechanically consistent, biophysically realistic 

model that remains compatible with the topological constraints established in prior 

work, while introducing time-dependent, geometry-sensitive rules that better reflect 

the physical and biochemical realities of mitochondrial remodeling. 

 

 

Figure 1.5.  Forces governing node position dynamics in the mitochondrial network 

model. 

The Node movement is governed by a combination of stochastic Brownian forces and 

deterministic mechanical forces. The total force includes contributions from bending 

energy, stretching, steric repulsion, and conformational constraints. Bending energy is 

specifically defined for two- and three-degree nodes to penalize deviations from linear 

or Y-shaped configurations, respectively. 

Node Position Dynamics

Brownian Force Mechanical Force

Bending Energy
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1.2.4 Advances in Dynamic Simulation and Temporal Network Tracking 

Building upon earlier graph-based representations of mitochondrial networks that 

were largely static or limited to topology without spatial-temporal integration, Wang 

et al. (2023) introduce MitoTNT, a temporal network tracking framework designed to 

extract and quantify four-dimensional (4D) mitochondrial dynamics from live-cell 

lattice light-sheet microscopy data [32][20]. Their work notably extends prior 

assumptions and modeling limitations described by Sukhorukov et al. (2012), who 

modeled mitochondrial networks through discrete tip-to-tip and tip-to-side 

fusion/fission events within a non-spatial, well-mixed graph-based formalism. The 

primary innovation in the MitoTNT framework is the explicit integration of spatial 

coordinates and time stamps to reconstruct dynamic mitochondrial behavior at 

sub‑second resolution, enabled by lattice light‑sheet imaging [34]. 

 

To validate the tracking algorithm, Wang et al. implement a reaction-diffusion 

simulation using ReaDDy22, a particle-based platform that captures motion, 

branching structure, and remodeling events at a mesoscopic scale [33][38]. Unlike 

earlier assumptions of spatial homogeneity or well-mixed conditions, their model 

includes spatial heterogeneity and explicitly simulates motility of skeleton nodes 

under realistic reaction constraints. Notably, fission and fusion are implemented as 

structural reactions—where bonds are created or deleted between connected 

mitochondrial particles—and these reactions are calibrated to match experimental 

observations of network morphology and dynamics. 

 

This approach relaxes several of the simplifying assumptions from earlier 

models: 

⚫ Spatial tracking is no longer abstracted; each mitochondrial segment, 

including bulk (degree-2) nodes, is discretized and tracked frame-by-frame 

in 3D space. 
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⚫ Temporal correlations and motion patterns are explicitly measured, 

revealing patterns such as rotational or diffusive motility, and dynamic 

remodeling consistent with asymmetric fission and fusion events [36]. 

 

⚫ The simulation incorporates topology-informed tracking via optimization 

(linear assignment problem with spatial and topological cost terms), 

ensuring continuity in temporal graphs even in dense or complex network 

regions.[37] 

 

⚫ It also captures non-trivial effects of pharmacological perturbations, such as 

reduced network resilience or increased reachability after drug treatment—

phenomena not modeled in previous theoretical frameworks. 

 

Hence, while the foundational principles from earlier models (e.g., importance of 

tip-mediated events, emphasis on node degree distributions, and reaction-based 

remodeling) are preserved, the MitoTNT framework extends them into a full 

spatiotemporal domain and enables high-throughput validation against experimental 

data. In doing so, it bridges the gap between conceptual graph models and empirical 

network behavior observed in live cells. 

 

1.3 Research Significance and Impact 

As outlined in the preceding literature review, the modeling of mitochondrial 

networks has progressed from simplified, topology-driven abstractions toward 

increasingly detailed frameworks that incorporate spatial, temporal, and dynamic 

remodeling processes. This evolution has enabled more biologically meaningful 

simulations of mitochondrial behavior; however, many existing models are 

constrained by fixed assumptions, limited parameter flexibility, or dependence on 
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specific experimental datasets. These limitations can restrict their utility in 

exploratory studies or theoretical investigations of network behavior under diverse or 

hypothetical conditions. 

 

This thesis addresses these challenges by developing a flexible computational 

framework for simulating mitochondrial network dynamics. The model is designed to 

incorporate key structural and behavioral features of mitochondria—such as fusion 

and fission processes, spatial topology, and network remodeling—while allowing 

users to assign parameter values freely based on theoretical considerations or intended 

experimental scenarios. This parameter flexibility facilitates a broad range of 

investigations, including sensitivity analysis, phase-space exploration, and hypothesis 

generation, without requiring direct integration of experimental datasets. 

 

The significance of this work lies in its ability to support exploratory and 

theoretical studies of mitochondrial networks across a variety of physiological and 

pathological conditions. By simulating how different fusion/fission rates, node 

configurations, or spatial constraints influence global network properties—such as 

degree distribution, connectivity, or fragmentation, the model provides insights into 

the fundamental mechanisms governing mitochondrial morphology and stability. 

Furthermore, the framework enables researchers to test how shifts in model 

parameters may mimic stress responses or therapeutic interventions, thereby 

generating predictions that can inform future empirical studies. 

 

In summary, this thesis contributes a generalizable and customizable simulation 

platform for studying mitochondrial network dynamics. By balancing structural 

realism with parameter flexibility, it offers a valuable tool for probing the emergent 

behavior of mitochondrial systems and for guiding experimental inquiry through 

computational experimentation. 
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1.4 Specific Aim 

The overarching goal of this research is to construct a Python‑based 

computational pipeline that couples segmented fluorescence microscopy with 

particle‑level reaction–diffusion simulation (ReaDDy2) to analyze and predict 

mitochondrial network dynamics. At its core, the framework links image‑derived 

structure to a physics‑grounded model so that hypotheses about fusion–fission 

regulation can be tested quantitatively across pharmacological conditions. 

 

This aim is pursued through a six‑stage methodology. First, high‑resolution 

mitochondrial images in proprietary. czi format are converted into analysis‑ready 

stacks, eliminating user bias by directly importing segmented skeletons rather than 

relying on manual tracing. Second, skeletonisation and graph reconstruction in Python 

(using scikit‑image, skan, and NetworkX) translate pixel data into explicit node–edge 

lists, providing a precise topological description ready for simulation. Third, these 

graphs are instantiated in ReaDDy2 as three‑dimensional networks of bonded 

particles, creating a flexible platform capable of simulating fusion and fission under 

diverse treatment regimes. Fourth, stochastic reaction rules govern bond formation 

and dissociation, while diffusion and bending forces drive spatial reconfiguration; 

throughout, the engine records heterogeneous data stream coordinates, bond states, 

reaction counts, and event positions—to maximise downstream analytical 

robustness. Fifth, the evolving topology is rendered as PDB/PSF sequences, enabling 

visualisation that can be fed into tracking algorithms for independent validation of 

reconstruction accuracy. Finally, statistical ensemble runs perform cross‑validation 

between simulated ground truth and microscopy observations, allowing the 

identification of latent mitochondrial states that may underlie observed image 

variability. 

 

By integrating unbiased image import, treatment‑agnostic simulation, 

multi‑modal data logging, high‑fidelity visualisation, and systematic cross‑validation, 
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the pipeline delivers a reproducible and extensible environment for probing how 

molecular interventions reshape mitochondrial architecture over time. 
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2. Chapter 2: Methods and Materials 

2.1 ReaDDy2 Package Overview 

ReaDDy2[33] (Reaction-Diffusion Dynamics) is a particle-based simulation 

framework designed for modeling reaction-diffusion systems at a spatially minimal 

scale. It is particularly useful for simulating biochemical and biophysical processes 

where spatial diversity and stochastic effects play a significant role. Unlike traditional 

mean-field or continuum-based reaction-diffusion models, ReaDDy2 explicitly 

represents particles as discrete entities and simulates their movement and interactions 

within a defined environment. 

2.1.1 Key Features and Capabilities 

1. Particle-Based Modeling 

⚫ ReaDDy2 using individual particles with distinct properties to simulate 

molecules, proteins, or other biological entities. 

⚫ To simulate the realistic biological entities through space, Particles diffuse, 

or transport follow by the Brownian motion. 

2. Reaction Pathways and Kinetics 

⚫ Users can define complex reaction networks, naming reaction rules no 

matter if they are unimolecular or bimolecular reaction. 

⚫ To show reaction event is stochastic, the framework includes reaction 

propensity calculations. 

3. Diffusion and Spatial Constraints 

⚫ Each particle species is assigned a diffusion coefficient, allowing particles 

to have different mobility properties in the simulation. 

⚫ To reflect biological or physical constraints or to avoid edge effects, the 

environment can be constrained with boundary conditions, obstacles, and 

classified regions. 

4. Stochastic Reaction-Diffusion Dynamics 

⚫ To ensuring precise capturing reaction kinematic at microscopic scales, 

ReaDDy2 package implement stochastic simulation algorithms such as the 

Gillespie reaction handler. 
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⚫ Because of rare or noise-sensitive biochemical, this method generally more 

useful than a deterministic model when capturing reaction. 

5. Topology and Coarse-Grained Modeling 

⚫ ReaDDy2 package supports the representation of macromolecular 

structures, such as polymers, networks, or protein complexes, through 

topology-based modeling. 

⚫ This feature allows users to model complex biomolecular modification and 

dynamic rearrangements. 

6. High-Performance Computing and Parallelization 

⚫  ReaDDy2 using CPU-based parallel computing to provide efficient 

2.1.2 Simple System Setup 

The simulation environment was defined as a 10 x 10 x 10 𝑛𝑚3 cubic box with 

periodic boundary conditions to prevent boundary effect. The system initially contains 

N particles distributed randomly within the box size. The primary species include: 

⚫ A: represents as reactant molecule 

⚫ B: represents as second reaction molecule 

⚫ C: Product formed via fusion of A and B 

Each species was assigned a diffusion constant 

⚫ A, B: 𝐷𝐴,𝐵 = 0.1 𝜇𝑚2/𝑠 

⚫ C: 𝐷𝑐 = 0.05 𝜇𝑚
2/𝑠 

The primary reaction modeled was a fusion event: 

𝐴 + 𝐵 → 𝐶 

This reaction was implemented at a reaction rate constant 𝑘𝑓𝑢 = 1.0 and 

reaction radius of 1 nm. Reaction kinetics were simulated by the Gillespie reaction 

handler, ensuring precise stochastic reaction events happen. 

2.1.3 Simulation Workflow 

The simulation followed a structured workflow: 
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1. System Initialization: defined the simulation area, particles or topologies species, 

potential, structural topology, reaction parameters, and placed initial particles 

randomly. 

2. Execution Phase: the simulation was executed for 5000 steps with a timestep of 

1e-3 ns. 

3. Data Collection: Tracked species observes such as number of particles, reaction 

count, and spatial distribution over time. 

4. Post-processing: Analyzed the system using particle count statistics and spatial 

visualization using VMD software 

2.1.4 Implementation in Python 

The simulation was implemented in Python using ReaDDy2, A simplified version 

of the implementation is shown below: 

1. import ReaDDy2 

2.  

3. # Define the Reaction-Diffusion System 

4. system = ReaDDy2.ReactionDiffusionSystem(box_size=[10, 10, 10]) 

5.  

6. # Add particle species with their respective diffusion constants 

7. system.add_species("A", diffusion_constant=0.1) 

8. system.add_species("B", diffusion_constant=0.1) 

9. system.add_species("C", diffusion_constant=0.05) 

10.  

11. # Define a binary fusion reaction: A + B -> C 

12. # - rate: how likely the reaction is to occur when particles are c

lose 

13. # - radius: max distance within which A and B can react 

14. system.reactions.add("fusion: A + B -> C", rate=1.0, radius=1.0) 

15.  

16. # Set Up the Simulation 

17. simulation = system.simulation(kernel="CPU") 

18.  

19. # Use 16 CPU threads for better performance 

20. simulation.kernel_configuration.n_threads = 16 

21.  
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22. # Add initial positions of A and B particles 

23. simulation.add_particles("A", positions=[[1, 1, 1], [2, 2, 2]]) 

24. simulation.add_particles("B", positions=[[3, 3, 3], [4, 4, 4]]) 

25.  

26. # Define output file for the simulation trajectory 

27. simulation.output_file = 'simple_system.h5' 

28.  

29. # Use Euler–Brownian Dynamics integrator for particle motion 

30. simulation.integrator = "EulerBDIntegrator" 

31.  

32. # Use Gillespie algorithm to handle stochastic reactions 

33. simulation.reaction_handler = "Gillespie" 

34.  

35. # Set observables: 

36. # - Save full particle trajectories every 300 steps 

37. simulation.record_trajectory(stride=300) 

38. # - Observe and log individual particle positions every step 

39. simulation.observe.particles(stride=1) 

40. # - Topology tracking not used here but included for completeness 

41. simulation.observe.topologies(stride=300) 

42.  

43. # Show simulation progress every 10 steps 

44. simulation.progress_output_stride = 10 

45. simulation.show_progress = True 

46.  

47. # Run the Simulation 

48. simulation.run(n_steps=5000, timestep=1e-3) 

49.  

50. # Convert Output for Visualization in VMD 

51. trajectory = ReaDDy2.Trajectory('simple_system.h5') 

52. trajectory.convert_to_xyz() 

 

2.1.5 ReaDDy2 Package Function Explanation 

1. The box size 



doi:10.6342/NTU202503815

24 

 

1. system = ReaDDy2.ReactionDiffusionSystem([X, Y, Z] 

If we set box_size = (X, Y, Z), the center of box will be set at (0, 0, 0) and span 

⚫ x-axis: [-X/2, X/2) 

⚫ y-axis: [-Y/2, Y/2) 

⚫ z-axis: [-Z/2, Z/2) 

2. Periodic boundary conditions 

1. system = ReaDDy2.ReactionDiffusionSystem([1,1,1], periodic_boundar

y_conditions=[False, True, True]) #[X, Y, Z] 

In most cases, if we the set box size also needs set the boundary conditions avoid 

boundary effect. 

3. Temperature 

1. Temperature = T * ReaDDy2.units.kelvin 

 

⚫ T: represents as the variable of the temperature in Kelvin 

⚫ ReaDDy2.units.kelvin: represents as the unit conversion to make sure the 

temperature is implemented correctly. 

If you do not set the specified temperature, the default temperature will be 293K 

4. Particle species 

1. # default unit: 〖nm〗^2 s^(-1) 

2. system.add_species("A", diffusion_constant=1.)  

3. # set up the new physical unit:〖km〗^2 〖hour〗^(-1) 

4. system.add_species("B", diffusion_constant=2. * ReaDDy2.units.km**

2 / ReaDDy2.units.hour) 

This is one of the most important functions in ReaDDy2 package. To add particles 

in the simulation, we given particle “name” and its diffusion constant D with units of 

𝑙𝑒𝑛𝑔𝑡ℎ2𝑡𝑖𝑚𝑒−1. The purpose of diffusion constant is deciding the magnitude of 
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random displacement follow by the governing dynamics using overdamped Langevin 

equation: 

𝑑𝑥(𝑡)

𝑑𝑡
=  −𝐷

∇𝑉(𝑥(𝑡))

𝑘𝑏𝑇
+ 𝜉(𝑡) 

⚫ x(t): represents as a vector ∈  𝑅3 related to the instantaneous position of a 

particle at time t. 

⚫ V: represents external potential field 

⚫ -∇V: represents the gradient of the potential, the negative sign means the 

force will push the particle toward lower energy area. 

⚫ 𝑘𝑏: represents the Boltzmann constants. 

⚫ T: represent the kelvin temperature. 

⚫ 𝜉(𝑡): represents random noise of velocity with formula and condition: 

〈𝜉(𝑡)〉 = 0, 〈𝜉(𝑡)𝜉(𝑡′)〉 = 2𝐷𝛿(𝑡 − 𝑡′) 

◼ The first term means the noise has no bias, totally random. 

◼ The second term means the noise is time-uncorrelated, meaning that it 

changes randomly and does not depend on past value. 

5. Reaction (this function only involved isolated particles interaction) (unused) 

A. Conversion: 

1. system.reactions.add_conversion(name="conv", type_from="A", type_to=

"B", rate=0.1) 

An isolated particle of type A can be transferred into type B with fixed rate 

constant 𝜆: 

𝐴 
𝜆
→  𝐵 

B. Decay:  

1. system.reactions.add_decay(name="decay of A", particle_type="A", rate=0.

1) 

An isolated particle can be vanished with fixed rate constant 𝜆: 
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𝐴 
𝜆
→  ∅ 

C. Fusion:  

1. system.reactions.add_fusion( name="fus", type_from1="A", type_from2=

"B", type_to="C", rate=0.1, educt_distance=2.) 

An isolated particle of type A can be fused with another isolated particle of type 

B to produce a particle of type C with fixed rate constant λ and fixed react radius R. 

𝐴 +
𝑅
 𝐵 

𝜆
→  𝐶 

D. Fission:  

1. system.reactions.add_fission( name="fis", type_from="C", type_to1="A

", type_to2="B", rate=0.1, product_distance=2.) 

An isolated particle of type C can be dissociated into two particles of type A and 

B with a fixed constant rate λ and fixed distance R between two particles after the 

fission happens. 

𝐶 
𝜆
→  𝐴 +

𝑅
 𝐵 

E. Enzymatic:  

1. system.reactions.add_enzymatic( name="enz", type_catalyst="C", type_

from="A", type_to="B", rate=0.1, educt_distance=2.) 

An isolated particle of type A can be reacted with enzyme of type C to produce a 

particle of type B with fixed rate constant λ and fixed reaction radius R. 

𝐴 +
𝑅
 𝐶 

𝜆
→  𝐵 + 𝐶  

 

6. Potentials 

A. External potential  

a. box potentials 

1. system.box_size=[3, 3, 3] 
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2. system.potentials.add_box( particle_type="A", force_constant=10.,

 origin= [-1, -1, -1], extent= [2, 2, 2]) # note that box size and 

box potential size are totally independent. 

 

Figure 2.1. Visualization of an external box potential in 3D space. 

This plot illustrates the spatial profile of a box potential applied to particles of 

type "A" in a simulation domain of size [3, 3, 3]. The box potential is defined 

independently by its own origin ([-1, -1, -1]) and extent ([2, 2, 2]), generating a 

harmonic confinement with force constant 10. The color scale represents the potential 

energy magnitude across the 3D space. 

 

Since if we don’t want a periodic boundary and try avoiding boundary effect, we 

usually set box potential inside the box (fig 2.1.). The logic of the code is we can 

define every single type of particle’s box potential with different force constant and 

coverage. And the logic of setting coverage is you have origin locate at front lower 

left and extend to the back upper right. From the above code example, the coverage of 

the potential will be x: [-1, 1], y: [-1, 1], z: [-1, 1]. The potential energy term given by: 
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𝑉(𝑥) =  ∑{
0, 𝑖𝑓 𝑥𝑖 ∈  𝐶𝑖  

1

2
𝑘𝑑(𝑥𝑖, 𝐶𝑖)

2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

𝑑

𝑖=1

 

⚫ 𝐶𝑖: represents three-dimension interval with [𝑜𝑟𝑖𝑔𝑖𝑛𝑖 ,  𝑜𝑟𝑖𝑔𝑖𝑛𝑖 + 𝑒𝑥𝑡𝑒𝑛𝑡𝑖] 

⚫ k: represents the force constant 

⚫ 𝑑(𝑥𝑖, 𝐶𝑖): represent the shortest distance between the particle’s position 𝑥𝑖 and 

the nearest boundary of the box. 

Since the box potential is soft potential, it means particles may go through the 

boundary of box potentials and drag back immediately. Beware setting the size and 

the force constant. 

b. Spherical potential (unused) 

This kind of potential can be divided into three types: 

I. Spherical exclusion  

1. system.box_size = [3, 3, 3] 

2. system.potentials.add_sphere_out(particle_type="A", force_constan

t=10., origin=[0, 0, 0], radius=3.) 

 

Figure 2.2. Visualization of a spherical exclusion potential in 3D space. 
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The figure visualizes a radial potential applied using add_sphere_out, where particles 

of type "A" experience a repulsive harmonic force outside a spherical boundary of 

radius 3.0 centered at the origin. The system box size is set to [3, 3, 3], and the force 

constant is 10. The color scale indicates the increasing potential energy as particles 

approach or exceed the boundary. 

 

Add this kind of potential to prevent particles of a specific type from entering the 

interior of a defined sphere(fig 2.2.). The associated energy contribution is described 

by the following expression: 

𝑉(𝑥) =  {
1

2
𝑘(||𝑥 − 𝑐 ||2 −  𝑟)

2,   𝑖𝑓 ||𝑥 − 𝑐 ||2 < 𝑟

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

⚫ k: represent the force constant. 

⚫ c: ∈  𝑅3 , represent the center of the sphere. 

⚫ r: ∈  𝑅>0 , represent the radius of sphere. 

This potential is also soft potential. 

II. Spherical inclusion  

1. system.box_size = [3, 3, 3] 

2. system.potentials.add_sphere_in(particle_type="A", force_constant

=10., origin=[0, 0, 0], radius=1.) 
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Figure 2.3. Visualization of a spherical inclusion potential in 3D space. 

The figure visualizes a radial potential applied using add_sphere_in, where particles 

of type "A" experience a repulsive harmonic force inside a spherical boundary of 

radius 3.0 centered at the origin. The system box size is set to [3, 3, 3], and the force 

constant is 10. The color scale indicates the increasing potential energy as particles 

approach or exceed the boundary. 

 

Applies a spherical potential that confines particles of a designated type within 

the boundary of a defined sphere (fig 2.3.). The corresponding energy expression is as 

follows: 

𝑉(𝑥) =  {
1

2
𝑘(||𝑥 − 𝑐 ||2 −  𝑟)

2,   𝑖𝑓||𝑥 − 𝑐||2 ≥ 𝑟,

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

⚫ k: represent the force constant. 

⚫ c: ∈ 𝑅3, represent the center of the sphere. 

⚫ r: ∈ 𝑅>0 , represent the radius of sphere. 

This potential is also soft potential. 
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III. Spherical barrier  

1. system.box_size = [3, 3, 3] 

2. # as a barrier 

3. system.potentials.add_spherical_barrier(particle_type="A", height=1.

0, width=0.1, origin=[0, 0, 0], radius=1.) 

4. # sticky 

5. system.potentials.add_spherical_barrier(particle_type="A", height=-1.

0, width=0.1, origin=[0, 0, 0], radius=1.) 

 

 

Figure 2.4. Custom spherical barrier potentials in ReaDDy2 simulations. 

(a) A repulsive spherical barrier centered at radius 1.0 with height = +1.0 and width = 

0.1 creates a sharp energy peak, preventing particles from crossing the defined shell. 

(b) An attractive (“sticky”) barrier with height = –1.0 forms a narrow energy well at 

the same radius, allowing localization of particles near the shell. 

Both potentials are defined radially from the origin in a box of size [3, 3, 3] using 

add_spherical_barrier. 

 

This potential creates a radial barrier centered at a specified origin, defined by a 

particular radius. It is characterized by an energy height and a finite width. If the 

height is negative, the potential functions as an attractive or "adhesive" spherical 

region. The potential is constructed using segments of harmonic functions, ensuring 
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that the energy profile remains smooth and continuous, while the resulting force is 

continuous but not differentiable. The corresponding energy expression is: 

{
 
 
 

 
 
 

0,   𝑖𝑓 ||𝑥 − 𝑐||2 < 𝑟 − 𝑤
2ℎ

𝑤2
(||𝑥 − 𝑐||

2
− 𝑟 + 𝑤)2,   𝑖𝑓 𝑟 − 𝑤 ≤  ||𝑥 − 𝑐||

2
< 𝑟 −

𝑤

2

ℎ − 
2ℎ

𝑤2
(||𝑥 − 𝑐||

2
− 𝑟)

2

, 𝑖𝑓 𝑟 −
𝑤

2
 ≤  ||𝑥 − 𝑐||

2
< 𝑟 +

𝑤

2
2ℎ

𝑤2
(||𝑥 − 𝑐||

2
− 𝑟 − 𝑤 )

2

,   𝑖𝑓 𝑟 +
𝑤

2
 ≤  ||𝑥 − 𝑐||

2
<  𝑟 +

𝑤

2
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This potential is also soft potential. 

B. Pair potentials 

a. Harmonic repulsion 

1. # we can set the pair potential between same particle type with sa

me radius 

2. system.potentials.add_harmonic_repulsion("A", "A", force_constant

=10., interaction_distance=5.) 

3. system.potentials.add_harmonic_repulsion("B", "B", force_constant

=10., interaction_distance=6.) 

4. #or we can set the pair potential between different particle types

 with its own radius. 

5. system.potentials.add_harmonic_repulsion("A", "B", force_constant

=10., interaction_distance=2.5+3.) 

To avoid particles overlapping or to simulate a radius of a particle type, we can 

add potential pairs between them. The potential formula given by: 

𝑉(𝑥1, 𝑥2) =  {
1

2
𝑘 (||𝑥1 − 𝑥2||2 − 𝑟)

2

,   𝑖𝑓||𝑥1 − 𝑥2||2 <  𝑟

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

⚫ k: represents the force constant. 

⚫ ||𝑥1 − 𝑥2||2: represents the shortest distance between particles 

⚫ r: represents the radius set in the code 



doi:10.6342/NTU202503815

33 

 

The harmonic repulsion is also soft potential. 

 

Figure 2.5. Harmonic repulsion pair potential. 

This plot illustrates the energy profile of a harmonic repulsion potential, which 

penalizes close-range interactions between particles. The potential energy decreases 

smoothly with increasing interparticle distance, reaching zero beyond the cutoff 

range. This interaction is typically used to prevent particles overlapping in 

simulations. 

 

b. Weak interaction piecewise harmonic (unused) 

1. system.potentials.add_weak_interaction_piecewise_harmonic( "A", "

B", force_constant=10., desired_distance=0.5, depth=1., cutoff=1.) 

𝑉 (||𝑥1 − 𝑥2||2) = 𝑉
(𝑟) =

{
 
 
 

 
 
 

1

2
𝑘(𝑟 − 𝑑)2 − ℎ,   𝑖𝑓 𝑟 < 𝑑

ℎ

2
(
𝑟𝑐 − 𝑑

2
)
−2

(𝑟 − 𝑑)2 − ℎ,   𝑖𝑓 𝑑 ≤ 𝑟 < 𝑑 + 
𝑟𝑐 − 𝑑

2

−
ℎ

2
(
𝑟𝑐 − 𝑑

2
)
−2

(𝑟 − 𝑟𝑐)
2,   𝑖𝑓 𝑑 + 

𝑟𝑐 −  𝑑

2
≤ 𝑟 < 𝑟𝑐

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

⚫ k: represents the force constant. 
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⚫ ||𝑥1 − 𝑥2||2: denotes the Euclidean distance between two particles, 

⚫ r: represents the interparticle distance. 

⚫ d: represents the preferred equilibrium distance. 

⚫ h: represents the depth of the potential well. 

⚫ 𝑟𝑐: represents the cutoff radius beyond which the interaction is zero. 

 

Figure 2.6. Piecewise harmonic interaction potential. 

This potential defines a short-range attractive interaction that transitions smoothly to 

zero beyond a cutoff distance. The energy well promotes moderate attraction between 

particles, while ensuring bounded interaction strength and computational stability. 

 

c. Lennard-Jones (unused) 

1. system.potentials.add_lennard_jones("A", "B", m=12, n=6, cutoff=2.5, s

hift=True, epsilon=1.0, sigma=1.0) 

𝑉𝐿𝐽𝑡𝑟𝑢𝑛𝑐(𝑟) = {
𝑘 [(

𝜎

𝑟
)
𝑚

− (
𝜎

𝑟
)
𝑛

] − 𝑉𝐿𝐽(𝑟𝑐),   𝑖𝑓 𝑟 ≤ 𝑟𝐶

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑤ℎ𝑒𝑟𝑒: 

⚫ 𝑉𝐿𝐽(𝑟) = 𝑘 [(
𝜎

𝑟
)
𝑚

− (
𝜎

𝑟
)
𝑛

] 
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⚫ 𝑘 =  
−𝜀

(
𝜎

𝑟𝑚𝑖𝑛
)
𝑚

−(
𝜎

𝑟𝑚𝑖𝑛
)
𝑛 

Parameter Descriptions: 

⚫ r = ||𝑥1 − 𝑥2||2: denotes distance between two particles. 

⚫ 𝜎: represents distance at which the potential is zero. 

⚫ 𝜀: represents depth of the potential well, with 𝑉𝐿𝐽(𝑟𝑚𝑖𝑛) =  −𝜀. 

⚫ 𝑟𝑚𝑖𝑛: represents the distance at which the potential reaches its minimum. 

⚫ 𝑟𝑐: represents the cutoff radius. 

⚫ 𝑚, 𝑛: represents exponents controlling repulsive (m) and attractive (n) 

strength, usually m = 12, n = 6. 

⚫ 𝑘: represents the force constant derived to ensure the correct potential depth at 

𝑟 = 𝑟𝑚𝑖𝑛. 

This potential is not soft potential. 

 

Figure 2.7. Zoomed-in view of a shifted Lennard-Jones potential (m = 12, n = 6) 

This figure shows a shifted Lennard-Jones potential, highlighting its minimum energy 

(𝜀), interaction range (𝜎), and cutoff distance (𝑟𝑐 = 2.5𝜎). The potential captures both 

short-range repulsion and mid-range attraction but was ultimately not used in the final 

model. 

 

d. Screened electrostatics (unused) 
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1. system.potentials.add_screened_electrostatics( "A", "B", electrostatic_s

trength=-1., inverse_screening_depth=2., repulsion_strength=0.5, repulsi

on_distance=1., exponent=12, cutoff=2.5.) 

𝑉 (||𝑥1 − 𝑥2||2) = 𝑉(𝑟) =  { 𝐶
𝑒−𝜅𝑟

𝑟
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

+ 𝐷 (
𝜎

𝑟
)
𝑛

,   𝑖𝑓 𝑟 ≤ 𝑟𝑐 

⚫ 𝑟 = ||𝑥1 − 𝑥2||2: represents the distance between two particles. 

⚫ 𝐶 ∈ 𝑅: represents electrostatic interaction strength. 

⚫ 𝜅 ∈ 𝑅: represents inverse screening length, controls how quickly the 

electrostatic interaction decays. 

⚫ 𝐷 ∈ 𝑅: represents strength of the core repulsion (units: energy). 

⚫ 𝜎 ∈ 𝑅: represents radius where the core repulsion term becomes significant. 

⚫ 𝑛 ∈ 𝑁: represents exponent of the repulsive term(dimensionless), determines 

how sharply the repulsion increases. 

⚫ 𝑟𝑐 ∈ 𝑅: represents cutoff radius beyond which the potential is zero. 

 

Figure 2.8. Screened electrostatic (Yukawa) potential with repulsion and cutoff = 2.5. 

This plot shows a repulsive Yukawa potential truncated at a cutoff distance 𝑟𝑐 = 2.5, 

representing short-range screened electrostatic interactions. Although tested, this 

potential was not incorporated into the final simulation due to its limited relevance to 

mitochondrial dynamics. 
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7. Topology 

1. system.topologies.add_type("My topology type") 

2. system.add_topology_species("T", diffusion_constant=2.0) 

This is also very import function of ReaDDy2 package, since when we try to 

simulate the molecular level or any bio system, we may encounter big and complex 

structures and networks. In code, we can define the structure or network type which 

relates to how interact when particles react to it, and after that we can add the particle 

type which allows us to react to the structure and network. 

 

A. Topology Potential  

Since ReaDDy2 is particle-base model, even the particles been connected and 

became the structure and network. The ReaDDy2 still allowing particles which in the 

structure have their own potential with others. 

 

a. Harmonic bonds 

1. system.add_topology_species("T1", diffusion_constant=2.) 

2. system.add_topology_species("T2", diffusion_constant=4.) 

3. # define the bond with same particle type 

4. system.topologies.configure_harmonic_bond("T1", "T1", force_const

ant=10., length=2.) 

5. # define the bond with different particle type 

6. system.topologies.configure_harmonic_bond( "T1", "T2", force_cons

tant=10., length=2. ) 

This potential is very similar to the pair potential, to avoid the particle overlapping 

in the structure, since harmonic bond is also soft potential, the distance between the 

particles will slightly change from time to time. The formula given by: 

𝑉 (||𝑥1 − 𝑥2||2) =  𝑉(𝑟) = 𝑘 (𝑟 − 𝑟0)
2 

⚫ 𝑟0: represents the preferred distance we set. 

⚫ 𝑘: represents the force constant 
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b. Harmonic angles 

1. system.add_topology_species("T1", diffusion_constant=2.) 

2. system.add_topology_species("T2", diffusion_constant=4.) 

3. system.add_topology_species("T3", diffusion_constant=4.) 

4. # This potential also be defined with same particle type 

5. system.topologies.configure_harmonic_angle("T1", "T1", "T1", force

_constant=1., equilibrium_angle=3.141) 

6. # This potential also be defined with different particle type 

7. system.topologies.configure_harmonic_angle("T1", "T2", "T3", force

_constant=1., equilibrium_angle=3.141) 

Harmonic angle is a potential which involves three particles instead of two. We 

can define a preferred angle degree and force between three connected particles in 

the structure and network; this function helps maintain structural stability and 

prevent unexpected distortions. This potential is also soft potential. The formula 

given by: 

𝑉(𝜃𝑖,𝑗,𝑘) = 𝑘(𝜃𝑖,𝑗,𝑘 − 𝜃0)
2
 

⚫ 𝜃0: represent the preferred angle. 

⚫ 𝑘: represent the force constant. 

 

c. Cosine dihedrals (unused) 

1. system.add_topology_species("T1", diffusion_constant=2.) 

2. system.add_topology_species("T2", diffusion_constant=4.) 

3. system.add_topology_species("T3", diffusion_constant=4.) 

4. system.add_topology_species("T4", diffusion_constant=4.) 

5. system.topologies.configure_cosine_dihedral( 

6.     "T1", "T2", "T3", "T4", force_constant=10, multiplicity=1., ph

i0=0. 

7. ) 

proper dihedral angle ϕ is defined between four particles with positions xᵢ, xⱼ, xₖ, and 

xₗ. The associated potential energy is given by: 

𝑉(𝜙) = 𝑘(1 + cos(𝑛𝜙 − 𝜙0)) 
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⚫ 𝜙: denotes dihedral angle spanned by force particles with positions 

𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘 , 𝑥𝑙; measured between two planes formed by (𝑥𝑖, 𝑥𝑗 , 𝑥𝑘) and 

(𝑥𝑗 , 𝑥𝑘, 𝑥𝑙). 

⚫ 𝑘 ∈ 𝑅: represents force constants. 

⚫ 𝑛 ∈ 𝑁>0: Multiplicity, the number of energy minima over a full 360° rotation 

of the dihedral. 

⚫ 𝜙0  ∈ [ −𝜋, 𝜋]: represents phase offset angle (in radians), shifts the location of 

the minima. 

The 𝑖𝑡ℎ minimum of potential occurs at: 

𝜙𝑖 =
1

𝑛
(
𝜋

2
− 𝜙0 + 𝑖𝜋) , 𝑖 𝜖 𝑍 

 

B. Topology Reaction 

Since in realistic bio systems, any kind of network, structure, chain or larger 

complex is may not static, they can evolve reaction dynamically over time. In 

ReaDDy2, we can use topology reaction function to achieve: 

1. Changing particle types within a topology, which can alter interaction forces. 

2. Breaking and forming bonds, leading to topology separation or reorganization. 

3. Attaching free particles to existing topologies. 

4. Connecting different topologies by adding new edges. 

 

To handle the interaction between the particle and the topologies, this function has 

two categories. 

 

a. Structural reaction: 

This function focuses on the adjustment of the structure and network when fission 

happens. For example, there are four particles that are connected, they should have 

three bonds and two angles. When fission happens on the right most of the particles, 

in ReaDDy2 package, it will automatically delete the bond and the angle of that 
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particle to avoid unexpected error. It can be seen as a default function without extra 

coding. If you want to customize the structural reaction section, it can be divided into 

three steps: 

1. The reaction function: 

1. def no_op_reaction_function(topology): 

2.     recipe = ReaDDy2.StructuralReactionRecipe(topology) 

3.     return recipe 

In this section, there are two important components that must be clarified which 

are topology and recipe. If you want to know information about the topology, the code 

will start from topology…etc. When we start collecting information from topology. 

There are two basic datasets we need to build: 

⚫ edges = topology.get_graph().get_edges(): get the all edge from the topology. 

⚫ vertices = topology.get_graph().get_vertices(): get the all vertex from the 

topology. 

We can use these two datasets to get the specific particle and then type this line 

of code to preserve it: pix1 = e[0].get().particle_index. Once we have index of 

particle, we finally get more information such as: 

⚫ topology.position_of_vertex(vertices[pix1]): get the position of particle with 

specific index ([x, y, z]). 

⚫ topology.particle_type_of_vertex(vertice[pix1]): get the type of particle with 

specific index. 

⚫ topology.particle_id_of_vertex(vertice[pix1]): get the unique id of particle with 

specific index. 

Once we have this information, we can combine it to get the particle or edge we 

want and then use recipe code function to change its property such as: 

⚫ Recipe.change_particle_type(vertices[pix1]), type): change the particle with 

specific index to the type you choose. 

⚫ Recipe.add_edge(vertice[pix1], vertice[pix2]): add edge between two different 

particles with specific index if they didn’t have edge previously. 
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⚫ Recipe.remove_edge(vertice[pix1], vertice[pix2]): remove edge between two 

different particles with specific index. 

⚫ Recipe.remove.edge(edge):same function as the last one but choose the specific 

edge instead of the particle. 

⚫ Recipe.separate_vertex(vertice[pix1]): isolate the particle from the topology i.e. 

remove all edge from the particle. It must be careful when using this function. It 

may let the topology fall apart if the particle is in the critical position. 

⚫ Recipe.change_topology_type(type): change the entire topology by the type you 

choose. 

⚫ Recipe.append_particle(list_of_neighbor_vertices, particle type, position): 

implant the particle to the topology by given position, particle type, the list of the 

particles which try to connect and become one node of the topology. 

 

2. The rate function 

1. def my_rate_function(topology): 

2.     n = len(topology.get_graph().get_vertices()) 

3.     if n > 3: 

4.       return .5 * n 

5.     else: 

6.       return 20. 

This section decides how fast the speed of the reaction section happens following 

the probability formula: 

𝑝 =  1 − 𝑒−𝜆𝜏 

⚫ 𝜆 ∈ 𝑅≥0: represent the rection rate. 

⚫ 𝜏: time step. 

This section operation is very similar to the rection function section, we extract 

the information from the topology (edges or vertices) to get the rate we want. 

Example from above, we can get the total length of edges from the whole topology, 

and we set the rate base on that. 
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3. Adding a structural reaction 

1. system.topologies.add_structural_reaction( 

2.     name="my_structural_reaction", 

3.     topology_type="TType",  

4.     reaction_function=no_op_reaction_function,  

5.     rate_function=my_rate_function,  

6.     raise_if_invalid=True, expect_connected=False 

7. ) 

 

Once we finish the reaction and rate section , finally we can import this structural 

reaction into simulation with extra information: what name is this reaction, what 

topology type will happen this reaction, when reaction is invalid will raise an error or 

just skip it , and after reaction happen will let the topology connected as the same or 

fall apart into two or more independent topology. 

 

b. Spatial reaction 

1. system.topologies.add_spatial_reaction('TT-Fusion: T1(p1)+T2(p2) 

-> T3(p3--p4)', rate=1., radius=1.) 

Spatial reactions occur when particles are near each other and depend on both 

particles and topology types. There are two main types: 

⚫ Fusion reactions: which form a bond between particles. 

⚫ Enzymatic reactions: which alter particles or topology types without bonding. 

Each spatial reaction is defined by: 

⚫ A rate constant: indicating how often it occurs per time step. 

⚫ A radius constant: defining the search area for potential reactants.  

To deal with complicate situation when spatial reaction happen, ReaDDy2 

package have multiple reaction type, let 𝑇𝑖 represent topology types and 𝑃𝑖 

represents particles:  

⚫ TT-Fusion: T1(p1)+T2(p2) -> T3(p3--p4) 
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Merges a topology of type T1 with another of type T2 by bonding p1 and p2, 

resulting in a new topology T3 with p3 and p4 as the bonded particle types. 

 

⚫ TT-Fusion-self: T1(p1)+T1(p2) -> T3(p3--p4) [self=true] 

Similar to the previous case but allows particles within the same topology of 

type T1 to fuse. 

 

⚫ TP-Fusion: T1(p1) +(p2) -> T2(p3--p4) 

A free particle of type p2 bonds with a particle of type p1 in topology T1, 

forming topology T2 with the bonded particles becoming p3 and p4. 

⚫ TT-Enzymatic: T1(p1)+T2(p2) -> T3(p3)+T4(p4) 

Alters particle and topology types without changing graph structure, potentially 

modifying interaction dynamics. 

⚫ TP-Enzymatic: T1(p1)+(p2) -> T2(p3)+(p4) 

Similar to TT-Enzymatic, but involves one topology and a single free particle. 

 

2.2 Mitochondrial Dynamic Network Simulation Framework 

To model the dynamics of mitochondrial networks observed in single-cell 

microscopy experiments, we developed a reaction-diffusion simulation framework 

using ReaDDy2, a particle-based simulation package. This framework captures the 

essential behaviors of mitochondrial structures by simulating particles with both 

spatial and structural interactions—allowing for movement, diffusion, and 

biochemical reactions over time. It is specifically designed to reflect the topological 

evolution of mitochondria, including fission and fusion events that alter the network’s 

connectivity. 

 

Our simulation integrates empirical imaging data with computational modeling 

to enable direct comparison between experimental observations and silico dynamics. 

The following workflow outlines the complete process from image acquisition to 

simulation and validation (fig 2.9.). 
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Figure 2.9. End‑to‑end workflow for translating experimental mitochondrial images 

into a particle‑based ReaDDy simulation. 

(a) Mitochondrial reaction schematic – Conceptual diagram summarizing the 

elementary structural reactions (tip‑to‑tip fusion, tip‑to‑side fusion, and fission) and 

their kinetic parameters. Arrows illustrate how the same tubular segment can merge, 

branch, or split, establishing the rule set later used in the simulation. 

(b) Mitochondrial network‑structure schematic – Abstract network view in which each 

tubule is represented as an edge and each junction/end‑point as a node. Edge colors 
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encode segment identity (e.g., parent branch vs. newly fused branch), clarifying how 

local reactions remodel global topology. 

(c) Raw fluorescence image – A greyscale live‑cell frame showing a dense 

mitochondrial reticulum. Individual fusion or fission events are difficult to discern 

because neighboring tubules overlap optically, yielding a visually continuous sheet of 

signal. 

(d) Processed binary mask – The raw image is thresholder, denoised, and 

morphologically cleaned to isolate the mitochondrial foreground (white) from 

background (black). This representation preserves overall geometry while suppressing 

intensity fluctuations. 

(e) Skeleton‑derived graph – Using scikit‑image’s skeletonization and NetworkX, the 

binary mask is reduced to a one‑pixel‑wide skeleton and converted into a node‑edge 

graph. Blue dots mark detected branch points and end‑points; thin lines depict the 

extracted edges, providing precise coordinates for every segment. 

(f) Simulation snapshot with particle typing – A ReaDDy simulation initialized from 

the graph in (e). Each skeleton node is replaced by a particle whose color encodes its 

current role (e.g., red = end‑point, teal = internal tubule node). The scene illustrates 

how the experimental geometry is mapped onto a dynamic particle system where 

fusion and fission rules from (a) can operate quantitatively. 

Together, panels (a–f) trace the pipeline from raw microscopy data to a fully specified, 

rule‑based simulation ready for hypothesis testing and parameter sweeps. 

 

2.3 Workflow Overview 

1. Microscopy Image Extraction 

High-resolution time-lapse fluorescence microscopy images of a single cell's 

mitochondrial network are processed using ImageJ. This step involves extracting the 

image stack representing sequential frames of mitochondrial morphology over time. 
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2. Image Processing and Network Reconstruction 

The image stack is processed using scikit-image, skan, and networkx to perform 

skeletonization and convert the mitochondrial structures into node-edge graphs. 

⚫ Nodes represent branching or terminal points of the mitochondrial 

network. 

⚫ Edges represent the mitochondrial tubes connecting these points. 

⚫ This graph-based representation is exported as CSV files storing node 

coordinates and edge connectivity. 

⚫ Additionally, the degree of each node (i.e., its connectivity) is recorded and 

logged across all frames, generating a reference dataset of real 

mitochondrial network dynamics. 

 

3. Simulation Initialization and Relaxation with ReaDDy2 

Using the exported node and edge CSV files, we initialize a static mitochondrial 

network in the ReaDDy2 simulation environment. Each node from the CSV is added 

as a particle with its corresponding spatial coordinate, while each edge defines a 

bonded interaction between particles, effectively reconstructing the network topology. 

At this stage, no reactions (e.g., fusion or fission) are introduced. Instead, the 

system is allowed to relax dynamically under the influence of physical constraints 

such as bond lengths, repulsion forces, and diffusion. This ensures the network 

reaches a stable initial configuration—free of overlaps or unrealistic geometries—

before enabling reactive events in later simulation phases. 

 

4. Dynamic Reaction-Diffusion Simulation 

Once the initial network is constructed and relaxed, we introduce reaction rules—

including fission, fusion, fragmentation, and reassociation—into the ReaDDy2 

simulation environment. These reactions allow the mitochondrial network to evolve 

over time through both spatial diffusion and topological changes. 
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To analyze dynamic behavior, we employ two complementary simulation 

strategies: 

a. Single-run Full Data Simulation: 

In one script, the simulation is run once, but with a rich set of observables 

recorded over time, including: 

⚫ Node degree changes, capturing local structural evolution, 

⚫ Reaction event counts (e.g., number of fissions and fusions), 

⚫ Particle positions and trajectories for spatial analysis, 

⚫ Topology-level statistics, such as the number of connected components and 

network fragmentation. 

This run generates a detailed time series that provides insights into how the 

network evolves and reorganizes during the simulation. 

 

b. Multi-run Statistical Averaging 

In the second script, the simulation is repeated 100 times, each starting from 

the same initial network. 

Only the node degree distribution is recorded for each run, focusing on: 

⚫ Degree-1 (endpoints), 

⚫ Degree-2 (linear connections), 

⚫ Degree-3 (branch points). 

By averaging the degree probabilities across all runs, we obtain a robust, 

statistically smoothed trajectory of network connectivity that helps mitigate 

random fluctuations and better reflect overall trends. 

 

This dual approach ensures both deep temporal insight from a single run 

and quantitative reliability from multiple replicates, enabling cross-validation 

between simulated outcomes and experimentally observed network dynamics. 
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5. Visualization and Post-Simulation Validation 

Following the Single-run Full Data Simulation, an .xyz file is automatically 

generated and visualized using VMD (Visual Molecular Dynamics). This quick 

rendering allows for initial quality control, confirming that the simulation ran 

successfully and that the mitochondrial topology evolved without errors or crashes. 

 

After verifying simulation integrity, we use the more detailed PDB and PSF 

files—also generated from this run—for high-resolution, frame-by-frame 

visualization in VMD. These snapshots provide an accurate visual timeline of the 

network’s structural evolution. 

The resulting image sequences can be: 

⚫ Compiled into videos for presentations or documentation, 

⚫ Used as synthetic benchmark data for testing and validating mitochondrial 

tracking algorithms in downstream image analysis pipelines. 

This visualization step is critical for both qualitative inspection and quantitative 

image-processing validation, ensuring that the simulated mitochondrial dynamics 

align with experimental expectations. 

 

6. Quantitative Comparison with Experimental Data 

This analysis is based on the results of the Multi-run Statistical Averaging 

simulation, where the degree distribution of the mitochondrial network is tracked over 

repeated runs. From these simulations, we compute the average probabilities of node 

degrees (e.g., degree 1, 2, 3) at each time step. 

 

These averaged simulation results are then directly compared to the degree 

distribution logs extracted from time-series microscopy images of real mitochondrial 
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networks. This quantitative comparison serves as a validation step to evaluate how 

well the simulation captures the key features of biological mitochondrial dynamics. 

By aligning trends between simulated and experimental degree distributions, we 

can: 

⚫ Assess the realism of the modeled reactions and structural behavior, 

⚫ Identify discrepancies between model and biology, 

⚫ Tune simulation parameters (e.g., fusion/fission rates, diffusion constants) to 

better reflect observed cellular behavior. 

 

This step bridges silico modeling and experimental observation, providing a data-

driven foundation for iterative model refinement. 

 

2.4 Microscopy Image Extraction 

This section introduces how to extract image from real cell mitochondria 

network using ImageJ [39].  

1. Open ImageJ and select czi file 

 

Figure 2.10.  Loading microscopy data in ImageJ. 

(a) The File > Open option is used to import raw microscopy images into FIJI. 
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(b) A .czi file is selected from the directory, representing time-series mitochondrial 

fluorescence data under various pharmacological treatments (e.g., FCCP, oligomycin, 

rotenone, control). These files serve as the input for downstream image processing 

and network extraction. 

 

2. Check and adjust czi file properties 

Once you select and open czi file there should come up with this window, there 

few functions that should be understand: 

⚫ Hyperstack: Enables multi-dimensional image viewing in a structured format. 

◼ Stack order XYCZT: 

◼ Specify the axis order of the data: 

◆ X = horizontal pixels, Y = vertical pixels, C = channel (e.g., red, green, 

blue, or different stains), Z = depth (z-stack), T = time (frames over 

time). 

◼ Color mode Grayscale: Opens the image in grayscale mode. 

◼ Display metadata (Check): his will open a separate window showing 

embedded metadata from the image file 

◼ Split channels(check): Separates each channel into individual windows. 

 

Figure 2.11. Bio-Formats Import Options in ImageJ for .czi image loading. 
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The Bio-Formats importer provides flexible options for viewing and organizing 

multidimensional microscopy datasets. Key settings include View stack with: 

Hyperstack, Stack order: XYZCT, and enabling grayscale mode. Options such as 

Group files with similar names, Split channels, and Split timepoints ensure proper 

segmentation of image series for subsequent analysis. Metadata display and 

autoscaling are enabled to facilitate standardized preprocessing. 

 

3. Resulting Windows After Import. 

Once press the ok button. In this czi file, there should came up with 4 

windows: 

⚫ ImageJ control panel: Main toolbar for navigating and analyzing images. 

⚫ Metadata panel: Displays detailed image metadata (e.g., dimensions, pixel 

size, number of channels, bit depth). 

⚫ Channel 1 (cell): first image window showing the cell structure (e.g., phase 

contrast or cytoplasm stain). 

⚫ Channel 2 (mitochondria network structure): second image window 

displaying mitochondria-specific fluorescence, revealing dynamic network 

structures. 

Since the image windows don’t display useful details initially and need 

adjustment for better visibility. 
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Figure 2.12. Resulting windows after importing a .czi microscopy file in ImageJ. 

(a) The ImageJ control panel and metadata viewer provide information of image (e.g., 

dimension order XYZCT, channel count, and bit depth). 

(b) Channel 1 shows cell morphology. 

(c) Channel 2 displays mitochondria network structures. 

Brightness/contrast adjustment is typically required to enhance visibility upon initial 

loading. 

 

4. image adjustment: Channel 1 

a. please press to the channel 1 window first, to make sure to process correct target, 

then we adjust its type to 8 bits. 
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Figure 2.13. Bit-depth adjustment for Channel 1 in ImageJ. 

To enhance image compatibility and visualization, the active window corresponding 

to Channel 1 (cell morphology) is selected. Under the Image > Type menu, the image 

is converted to 8-bit format. This standardization step facilitates consistent processing 

and downstream analysis. 

 

b. And we find the contrast function; after press it, there should come up with another 

window, then press its auto button to do automatically adjust and press it apply button 

to finish the contrast adjustment. 
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Figure 2.14. Automatic brightness and contrast adjustment for Channel 1 in ImageJ. 

With Channel 1 selected, the Image > Adjust > Brightness/Contrast function is used to 

enhance image visibility. The Brightness/Contrast control window is opened, and the 

Auto button is applied to automatically optimize display settings. The Apply button 

finalizes the adjustment, improving contrast for clearer visualization of cellular 

features. 

5. image adjustment channel 2 

Like channel 1, we just need change its type to 8 bits  
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Figure 2.15. Bit-depth adjustment for Channel 2 in ImageJ. 

Like Channel 1, the mitochondrial fluorescence image (Channel 2) is selected and 

converted to 8-bit format via Image > Type > 8-bit in ImageJ. This step ensures 

compatibility for subsequent processing and analysis, such as thresholding and 

segmentation. 

 

6.observe windows to find mitochondria network of single cells. 

According to the windows, we can cross-comparison to find the network we 

want. 
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Figure 2.16. Cross-comparison of cell morphology and mitochondrial fluorescence in 

ImageJ. 

Two synchronized windows display Channel 1 (left, cell morphology) and Channel 2 

(right, mitochondrial network) from the same .czi image stack. By cross-referencing 

these views, single-cell mitochondrial networks can be accurately located and selected 

for further analysis. 

7. Extract the network of single cells from window 

Once we select the network, we can frame the network and click the mouse right 

button to find Duplicate function, and then there should be come up with another 

window, we check duplicate stack to create image with time series, finally we press 

ok button another window shows up to display the network of single cells. 

We can scroll time slide at bottom of windows to make sure the branch of network 

isn’t out of bound. 
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Figure 2.17. Extraction of a single-cell mitochondrial network using the Duplicate 

function in ImageJ. 

(a) A mitochondrial network region is selected by drawing a rectangular region of 

single cell in Channel 2. 

(b) The Duplicate option is accessed via right-click, and the Duplicate stack box is 

checked in the dialog to preserve all time frames in the stack. 

(c) A new window is generated showing the extracted time series of the selected 

mitochondrial network. 

 

8. Save network of single cell as multiple frame tiff 

Press the window of the single cell network and find save as => image sequence. 

After pressing it, there should be came up with another window, you choose the folder 

you want to save multiple tiff file, finally press ok to finish this section. 
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Figure 2.18. Exporting the single-cell mitochondrial network as a multi-frame TIFF 

sequence in ImageJ. 

(a) The extracted single-cell mitochondrial network stack is selected. 

(b) Under File > Save As > Image Sequence, the user initiates the export process. 

(c) In the dialog window, the output directory, filename prefix, format (TIFF), and 

frame index settings are specified. Clicking OK saves each time frame as an 

individual TIFF file, enabling compatibility with downstream image processing tools. 

 

2.5 Image Processing and Network Reconstruction 

In this section, the image data imported using ImageJ is processed to extract the 

underlying mitochondrial network structure. Using tools such as scikit-image, skan, 

and networkx, the processed images are skeletonized and converted into a node-edge 

graph representation. 

⚫ Nodes represent key structural points such as branch points or endpoints. 

⚫ Edges represent the mitochondrial tubules connecting these nodes. 

The resulting graph is exported as two CSV files: one containing node 

coordinates and the other defining edge connectivity. These files serve as the input to 

initialize the mitochondrial network in the ReaDDy2 simulation environment (fig 

2.19.). 
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Figure 2.19. Image Processing and Mitochondrial Network Reconstruction Pipeline. 

This panel zooms into the middle stage of the end‑to‑end pipeline introduced in 

Fig. 2.9, detailing how the experimental image in Fig 2.9 (c) is transformed into the 

graph that sees the simulation shown in Fig. 2.9(f). 

1. Noise removal – The raw frame is first denoised (green arrow, “Remove Noise”) 

using median filtering and adaptive thresholding to suppress photon shot noise and 

background speckle while preserving true mitochondrial signal. 

2. Branch smoothing – A morphological opening/closing sequence 

(“Smooth Branch”) eliminates jagged edges and fills sub‑pixel gaps, yielding cleaner, 

contiguous tubules. 

3. Skeletonization – The refined binary mask is reduced to a one‑pixel‑wide skeleton 

(blue downward arrow), preserving topology while stripping away thickness 

information. 

4. Graph construction – Skeleton nodes (branch points and termini) and edges (tubular 

segments) are identified with scikit‑image’s skan and imported into NetworkX 

(“Construct Node‑Edge graph”). 
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5. Graph refinement – Short stubs and artifactual fragments are pruned, and missing 

links are bridged to restore continuity (“Refine Graph Detail”), producing a 

biologically plausible topology. 

6.Data export   diagnostics – The final graph is exported as Node CSV and 

Edge CSV files, accompanied by summary metrics such as the 

degree‑distribution‑over‑time trace. These files are the direct inputs that initialise 

particle positions and connectivity in the simulation stage that follows (Fig 2.9. (f)). 

 

2.5.1. filter and smooth image 

a. Remove Background Noise to Isolate Mitochondrial Structures 

In the initial step of image processing, we aim to reduce background noise and 

highlight the true mitochondrial network (fig 2.20.). This is crucial for accurate 

skeletonization and graph reconstruction in later steps. 

 

1. from skimage.filters import threshold_otsu 

2. # Step 1: Compute the optimal threshold using Otsu's method 

3. thresh = threshold_otsu(image) 

4. # Step 2: adjust the threshold slightly to remove faint noise 

5. adjusted_thresh = thresh * 0.6 

6. # Step 3: Create a binary image by applying the adjusted threshold 

7. filter_image = image > adjusted_thresh 
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Figure 2.20. Background removal and enhancement of mitochondrial structures using 

Otsu thresholding. 

The left panel shows the original mitochondrial fluorescence image, containing both 

signal and background noise. The right panel displays the result after applying and 

manually adjusting Otsu’s thresholding method to isolate high-intensity mitochondrial 

structures. This preprocessing step enhances contrast and prepares the image for 

accurate binarization, skeletonization, and network extraction. 

 

b. Refine Mitochondrial Structure to Avoid Noise Artifacts in Skeletonization 

After filtering out background noise, the next step is to smooth the binary image 

to eliminate small irregularities or jagged edges—often referred to as “hairy” 

structures(fig 2.21.). These artifacts can negatively impact the skeletonization process, 

leading to false or fragmented branches in the final network graph.  

1. from skan.pre import threshold 

2. # Smooth the image 

3. bin_image = threshold( 

4.     filter_image, 

5.     sigma=2,   # Controls the strength of Gaussian smoothing 

6.     radius=0   # No local neighborhood dilation) 
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Figure 2.21. Refinement of binarized mitochondrial structures using Gaussian 

smoothing. 

The left panel shows the binarized image after thresholding, still containing fine-

grained noise and irregular contours. The right panel presents the result after applying 

Gaussian smoothing via the skan.threshold module, which reduces spurious edges and 

sharp protrusions. This refinement step improves the accuracy of subsequent 

skeletonization by minimizing artifacts that could lead to false branches or 

misidentified connections in the network. 

 

c. Eliminate Noise and Isolated Fragments to Ensure Structural Consistency 

After smoothing the binary image, we perform a small object removal step to 

eliminate minor artifacts or isolated blobs that are not part of the actual mitochondrial 

network(fig 2.22.). These small components may arise from background noise or 

disconnected pixels and can lead to the creation of isolated nodes when constructing 

the node-edge graph. 

 

In our simulation, isolated nodes violate the assumption of a connected network 

and could distort the dynamics of mitochondrial behavior. To prevent this, we filter 

out small components based on their area. 
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1. from skimage.morphology import remove_small_objects 

2. # Remove small disconnected regions 

3. mini_size = 20  # Minimum number of pixels to be considered a vali

d object 

4. cleaned = remove_small_objects(bin_image, min_size=mini_size)) 

 

Figure 2.22. Removal of small, disconnected objects to ensure mitochondrial network 

integrity. 

The left panel shows the binary image after smoothing, which may still contain small 

noise-induced fragments. The right panel displays the result after applying an area-

based small object removal filter. This step eliminates minor isolated blobs that could 

otherwise generate erroneous nodes in the skeletonized graph. Ensuring a structurally 

consistent and connected network is essential for accurate simulation of mitochondrial 

dynamics. 

 

2.5.2 Skeletonize the image 

After filtering, smoothing, and removing unwanted structures, the cleaned binary 

image is now ready for skeletonization(fig 2.23.). This step reduces the thick, blob-

like mitochondrial shapes into their central axes—thin, one-pixel-wide lines—while 

preserving the overall topology and connectivity. 



doi:10.6342/NTU202503815

65 

 

 

This is essential for extracting the graph structure of the mitochondrial network 

(nodes and edges) in a form suitable for simulation. 

1. from skimage.morphology import skeletonize 

2. # Perform skeletonization 

3. skeleton = skeletonize(final_mask) 

 

Figure 2.23. Skeletonization of the binarized mitochondrial network. 

The left panel shows the pre-processed binary image representing the mitochondrial 

structures of a single cell. The right panel displays the result of skeletonization, where 

thick regions are reduced to one-pixel-wide medial axes. This process preserves the 

topology and connectivity of the network, enabling downstream conversion into a 

graph structure of nodes and edges for quantitative simulation. 

  

2.5.3 Construct Node-Edge Graph from Skeleton 

After skeletonizing the image into 1-pixel-wide paths, the next step is to 

transform the skeleton into a graph structure (fig 2.24.). This allows the mitochondrial 

network to be represented as a set of nodes (branch points and endpoints) and edges 
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(connections between nodes), which is ideal for quantitative analysis and simulation 

in ReaDDy2. 

 

We use the skan package to analyze the skeleton and extract its structural 

geometry and then use networkX to build the graph. 

1. from skan import Skeleton, summarize 

2. import networkx as nx 

3. # Step 1: Create a Skeleton object and summarize it 

4. skeleton_obj = Skeleton(skeleton) 

5. skeleton_summary = summarize(skeleton_obj, find_main_branch=True) 

6. # Step 2: Initialize a NetworkX graph 

7. graph = nx.Graph() 

8. # Step 3: Add nodes with their coordinates 

9. for node_id in np.unique(skeleton_summary[['node-id-src', 'node-id

-dst']]): 

10.     rows = skeleton_summary[(skeleton_summary['node-id-src'] == no

de_id) | 

11.                             (skeleton_summary['node-id-dst'] == node

_id)] 

12.     for _, row in rows.iterrows(): 

13.         if row['node-id-src'] == node_id: 

14.             coord = (row['image-coord-src-1'], row['image-coord-src

-0']) 

15.         else: 

16.             coord = (row['image-coord-dst-1'], row['image-coord-dst

-0']) 

17.         break 

18.     graph.add_node(node_id, coord=coord) 

19. # Step 4: Add edges with their branch distances 

20. for _, row in skeleton_summary.iterrows(): 

21.     src = row['node-id-src'] 

22.     dst = row['node-id-dst'] 

23.     distance = row['branch-distance'] 

24.     graph.add_edge(src, dst, weight=distance) 

25. # Step 5: Extract node coordinates for visualization 
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26. node_positions = {node: data['coord'] for node, data in graph.node

s(data=True)} 

 

Figure 2.24. Conversion of the mitochondrial skeleton into a node-edge graph. 

The left panel shows the one-pixel-wide skeletonized representation of the 

mitochondrial network. The right panel depicts the corresponding graph structure, 

where nodes represent endpoints and branch points, and edges represent linear 

connections between them. This transformation is achieved using the skan library for 

skeleton analysis and networkx for graph construction, enabling quantitative 

simulation and topological analysis in ReaDDy2. 

 

2.5.4 Refine the Graph by Adding Intermediate Nodes 

The initial node-edge graph only includes skeleton endpoints and branching 

points, which results in a sparse network. This limited resolution can restrict the 

accuracy of downstream simulations—particularly when modeling fission and fusion 

events, which may occur anywhere along a mitochondrial tubule. 

 

To better mimic the continuous nature of real mitochondrial structures, we refine 

the graph by inserting additional nodes along each edge at regular intervals (e.g., 



doi:10.6342/NTU202503815

68 

 

every 10 pixels) (fig 2.25.). This makes the network denser and more realistic for 

reaction-diffusion simulations. 

1. import networkx as nx 

2.  

3. # Step 1: Create a copy of the original graph 

4. modified_graph = nx.Graph() 

5. modified_graph.add_nodes_from(graph.nodes(data=True)) 

6.  

7. # Step 2: Define parameters 

8. image_height = skeleton.shape[0] 

9. new_node_id_gen = itertools.count(start=max(graph.nodes) + 1)  # U

nique node IDs 

10. bond_length = 10  # Desired spacing between intermediate nodes 

11.  

12. # Step 3: Loop over edges and insert intermediate nodes 

13. for u, v, data in graph.edges(data=True): 

14.     x0, y0 = graph.nodes[u]['coord'] 

15.     x1, y1 = graph.nodes[v]['coord'] 

16.     dx, dy = x1 - x0, y1 - y0 

17.     edge_length = math.hypot(dx, dy) 

18.     num_segments = int(edge_length // bond_length) 

19.     if num_segments == 0: 

20.         modified_graph.add_edge(u, v, weight=edge_length) 

21.         continue 

22.     ux, uy = dx / edge_length, dy / edge_length 

23.     prev_node = u 

24.     for i in range(1, num_segments): 

25.         new_x = x0 + ux * i * bond_length 

26.         new_y = y0 + uy * i * bond_length 

27.         new_id = next(new_node_id_gen) 

28.         modified_graph.add_node(new_id, coord=(new_x, new_y)) 

29.         modified_graph.add_edge(prev_node, new_id, weight=bond_len

gth) 

30.         prev_node = new_id 

31.     modified_graph.add_edge(prev_node, v, weight=bond_length) 
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Figure 2.25. Refinement of the mitochondrial graph by inserting intermediate nodes. 

The left panel shows the original node-edge graph derived from the skeleton, 

composed only of branch points and endpoints. The right panel illustrates the refined 

graph, where intermediate nodes are inserted along each edge at uniform spatial 

intervals (e.g., every 10 pixels). This refinement increases spatial resolution and 

structural fidelity, enabling more realistic simulation of mitochondrial fission, fusion, 

and diffusion processes in ReaDDy2. 

 

2.5.5 Export Refined Graph as Node and Edge CSV Files 

After refining the mitochondrial network graph by adding intermediate nodes, 

the final step in image-based preprocessing is to export the graph structure into CSV 

files (fig 2.26.). These files serve as input to reconstruct the network topology in the 

ReaDDy2 simulation environment. 

 

We extract and save two components: 

⚫ A node CSV: Contains unique node IDs and their 2D coordinates. 

1. import csv 
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2. # Save node information 

3. with open('FCCP_image_single_cell_4_nodes.csv', mode='w', newline

='') as file: 

4.     writer = csv.writer(file) 

5.     writer.writerow(['node_id', 'x_coord', 'y_coord']) 

6.     for node, data in modified_graph.nodes(data=True): 

7.         x, y = data['coord'] 

8.         writer.writerow([node, x, y]) 

 

⚫ An edge CSV: Describes the connectivity between node pairs (source–

target). 

1. import csv 

2. with open('FCCP_image_single_cell_4_edges.csv', mode='w', newline

='') as file: 

3.     writer = csv.writer(file) 

4.     writer.writerow(['source', 'target']) 

5.     for u, v, data in modified_graph.edges(data=True): 

6.         writer.writerow([u, v]) 

 

Figure 2.26. Exported mitochondrial graph data as node and edge CSV files. 
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(a) The node file (_nodes.csv) lists each node's unique ID along with its 2D spatial 

coordinates. 

(b) The edge file (_edges.csv) specifies the connectivity between nodes as source–

target pairs. 

These CSV files encode the refined mitochondrial network structure and serve as 

standardized input for initializing topology-based simulations in ReaDDy2. 

 

2.5.6 Process Time-Series Images to Generate Degree Distribution Log 

The previous steps process only a single image (one timepoint) of the 

mitochondrial network. However, to study temporal changes in network topology, we 

apply the same pipeline to each frame in a time-series image stack. For each frame, 

we compute the degree distribution of the graph and track how it evolves over time 

(fig 2.27.). 

1. # Initialize lists to store probabilities 

2. degree_1_probs = [] 

3. degree_2_probs = [] 

4. degree_3_probs = [] 

5.  

6. # Open a log file to write the results 

7. with open("FCCP_image_single_cell_4_degree_distrubution_log.txt",

 "w") as log_file: 

8.     # Write header 

9.     log_file.write("TimeStep,Degree1_Prob,Degree2_Prob,Degree3_Pro

b\n") 

10.  

11.     # Iterate through each graph 

12.     for t, graph in enumerate(modified_graphs): 

13.         degrees = [deg for _, deg in graph.degree()] 

14.         total_nodes = len(degrees) 

15.         degree_counts = Counter(degrees) 

16.  

17.         # Normalize counts to probabilities 
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18.         degree_1 = degree_counts.get(1, 0) / total_nodes 

19.         degree_2 = degree_counts.get(2, 0) / total_nodes 

20.         degree_3 = degree_counts.get(3, 0) / total_nodes 

21.  

22.         degree_1_probs.append(degree_1) 

23.         degree_2_probs.append(degree_2) 

24.         degree_3_probs.append(degree_3) 

25.  

26.         # Log the results 

27.         log_file.write(f"{t},{degree_1:.6f},{degree_2:.6f},{degree

_3:.6f}\n") 

28.  

29.         # Optionally print 

30.         print(f"Time {t}:") 

31.         print(f"  1-degree nodes (endpoints): {degree_1}") 

32.         print(f"  2-degree nodes (linear path points): {degree_2}") 

33.         print(f"  3-degree nodes (branching points): {degree_3}\n

") 

34. # Plotting 

35. plt.figure(figsize=(10, 6)) 

36. plt.plot(degree_1_probs, label='Degree 1') 

37. plt.plot(degree_2_probs, label='Degree 2') 

38. plt.plot(degree_3_probs, label='Degree 3') 

39. plt.title("Degree Probabilities Over Time") 

40. plt.xlabel("Time Step") 

41. plt.ylabel("Probability") 

42. plt.legend(title='Degree') 

43. plt.grid(True) 

44. plt.tight_layout() 

45. plt.show() 
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Figure 2.27. Temporal analysis of degree distribution in a mitochondrial network. 

(a) The time-resolved log file records the probability of nodes having degrees 1, 2, or 

3 for each frame in the image stack. 

(b) The corresponding plot shows how these probabilities fluctuate over time, 

reflecting dynamic topological remodeling of the mitochondrial network. This time-

series analysis enables quantitative comparison between experimental observations 

and simulated mitochondrial behavior under different conditions. 

 

2.5.7 Cross-Validation of Initial Network Structure 

To ensure that your simulation input (node and edge CSV files) and the degree 

distribution log from time-series images are aligned at the first time point, it is critical 

to cross-validate their contents. Since these files are often generated by different 

scripts or parameter settings, mismatches can occur—especially after changing 

thresholds, smoothing, or refinement settings (fig 2.28.). 

 

This check allows you to verify that the simulated network starts from the same 

structure observed in the microscopy image stack. 

1. from collections import Counter 

2. # Count degrees of all nodes 

  
  



doi:10.6342/NTU202503815

74 

 

3. degrees = dict(modified_graph.degree()) 

4. degree_counts = Counter(degrees.values()) 

5. # Print sorted full histogram 

6. print("Degree Distribution (sorted):") 

7. for deg in sorted(degree_counts): 

8.     print(f"Degree {deg}: {degree_counts[deg]} nodes") 

9. # Optionally: Pie chart for visualization 

10. plt.figure(figsize=(5, 5)) 

11. labels = [f'Degree {k}' for k in degree_counts.keys()] 

12. sizes = list(degree_counts.values()) 

13. plt.pie(sizes, labels=labels, autopct='%1.1f%%') 

14. plt.title('Node Degree Distribution') 

15. plt.show() 

 

 

Figure 2.28. Cross-validation of initial degree distribution between simulation input 

and image-derived data. 

(a) A pie chart summarizes the degree distribution of the initial mitochondrial network 

used in the simulation, computed directly from the node-edge graph. 

(b) The first row of the time-series log file records the degree probabilities at time 

step 0, derived from the microscopy image stack. 

By comparing these two sources, consistency in network structure at initialization is 

verified, ensuring alignment between experimental observations and simulation setup. 
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2.6 Simulation Workflow Overview 

  To investigate the dynamic remodeling of mitochondrial networks, this study 

employs a particle‑based reaction–diffusion simulation framework built in ReaDDy2. 

The simulation domain is initialized using the graph extracted in the previous step of 

“Image Processing and Network Reconstruction”. Specifically, the node and edge data 

shown in the green box of Fig. 2.30. are imported directly into the simulation, 

ensuring that the starting topology precisely reflects the experimentally observed 

mitochondrial skeleton. Each node is represented as a diffusing particle, and each 

edge is treated as a harmonic bond, thereby reconstructing the in‑cellular filament 

architecture in silico. The particles interact through a combination of physical forces: 

harmonic bond and angular potentials maintain local segment length and bending 

stiffness, soft repulsion prevents overlapping between nonbonded particles, and 

reflective box boundaries confine the system to the cytoplasmic region. 

 

  Dynamic remodeling of the network emerges from explicit reaction rules that 

operate throughout the simulation. Structural fission reactions selectively remove 

internal edges away from endpoints, which causes fragmentation by reducing the 

connectivity of the affected vertices (degree 3 nodes are downgraded to degree 2, and 

degree 2 to degree 1). Fusion processes operate through two independent mechanisms: 

spatial fusion events merge distinct topologies when particles approach within a 

defined capture radius, and structural fusion detection reactions adjust node types 

when new junctions are formed. These reaction mechanisms collectively reproduce 

the interplay between elongation and fragmentation that defines mitochondrial 

morphology. Individual simulation runs track the time evolution of the network, while 

multiple replicates are used to calculate ensemble‑averaged degree distributions for 

comparison with experimental observations. 

 

  Figure 2.29. summarizes this workflow. The green box on the left corresponds to 

the imported experimental graph obtained from the previous reconstruction step. The 

center panel illustrates the force‑field representation of bonds, angles, and repulsive 
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interactions that preserve network geometry. The right panel highlights the reaction 

engine that applies fission and fusion rules to modify topology over time. The 

resulting outputs include particle trajectories, reaction event logs, and time‑resolved 

degree distributions, which together form the basis for validating the simulated 

network dynamics against experimental data. 

 

Figure 2.29 . Workflow of the ReaDDy2-based mitochondrial network simulation. 

Image-derived node and edge data from the previous reconstruction step (green box) 

are imported as the initial network. Physical interactions (bond, angle, repulsion, and 

confinement) govern particle motion, while reaction modules implement fission and 

fusion to remodel network topology. Outputs include particle trajectories, reaction 

event logs, and time-resolved degree distributions. 

 

2.6.1 Simulation Initialization and Relaxation with ReaDDy2 

To construct the initial mitochondrial network for simulation, we employ a multi-

stage pipeline that translates node and edge data extracted from microscopy images 

into a particle-based topological structure in ReaDDy2. This preparatory step ensures 

a stable and physically meaningful configuration before enabling dynamic reactions 

such as fission and fusion in subsequent phases. 
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1. Data Import and Graph Construction 

We begin by importing two CSV files: one specifying node coordinates 

(node_id, x_coord, y_coord) and another defining pairwise connections (source, 

target). Using the NetworkX library, these entries are used to reconstruct the 

undirected graph of the mitochondrial network. Each connected component within 

this graph is treated as an independent mitochondrial structure (topology). 

2. Particle-Based Topology Generation 

For each connected component: 

⚫ Nodes are initialized as ReaDDy2 particles (mito_node_1) with 

corresponding 2D spatial coordinates (z = 0 to model a quasi-2D 

network). 

⚫ Edges between nodes are translated into harmonic bonds within 

ReaDDy2 using its topology API. 

⚫ Each topology is added to the simulation using 

simulation.add_topology(...), automatically invoking predefined bonding 

and angular. 

 

3. System Configuration 

The create_ReaDDy2_system() routine assembles a ReactionDiffusionSystem 

whose numerical specification is captured in Table 2.1. and Fig 2.29. below. All 

geometric quantities are expressed in nanometers (nm) because the skeleton extracted 

from fluorescence microscopy has pixel-to-pixel distances on that scale (≈ 100 nm); 

keeping the simulation grid in the same units avoids unnecessary conversions and 

preserves sub-pixel precision. Energetic parameters are given in kilojoules per mole 

per square-nanometer (kJ mol⁻¹ nm⁻²), the natural unit for harmonic spring constants. 

In a harmonic potential, 

𝐸 =
1

2
𝑘(𝑟 − 𝑟0)

2 
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So the spring constant k (100 kJ mol⁻¹ nm⁻²) specifies the energy cost of 

stretching a bond by 1 nm per mole of identical bonds; higher values make bonds 

stiffer. Equilibrium bond lengths (ℓ₀ = 10 nm) are set equal to the average center-to-

center distance between neighboring skeleton pixels after isotropic voxel scaling, 

ensuring that the simulated filament matches the physical length measured in the 

processed image. 

 

According to Table 2.1., every skeleton node is instantiated as mito_node_1, 

mito_node_2, or mito_node_3, each diffusing at rate D. Pairwise repulsion eliminates 

overlaps, harmonic bonds of length ℓ₀ and strength k_bond preserve segment 

integrity, and angular springs of constant k_angle reproduce the semiflexible nature of 

mitochondrial tubules. The confining box, enforced by k_box, maintains the network 

inside the imaged cytoplasmic area. Collectively, these parameters convert the static 

graph into a mechanically faithful, Brownian-driven model that underpins the 

stochastic fusion-and-fission reactions introduced in the next section (Fig. 2.30.). 

 

Table 2.1. ReaDDy2 simulation-box and interaction parameters. 

Category Parameter Value Unit Description / Note 

Simulation 

Box 
Box size [1000, 1000, 0.01] nm 

2-D slice of the 3-D 

simulation volume 

 Box potential 100 
100 kJ mol⁻¹ 

nm⁻² 

Soft wall that prevents 

particles from leaving 

the field of view 

Particle Types mito_node_1 — — 
Represents a node of 

degree 1 (endpoint) 

 mito_node_2 — — 

Represents a node of 

degree 2 (linear 

segment) 

 mito_node_3 — — 

Represents a node of 

degree 3 (branch 

point) 
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Diffusion Diffusion constant 0.02 nm² ps⁻¹* 

Sets Brownian 

mobility of all node 

types 

Pairwise 

Interaction 

Repulsion force 

constant 
10 

100 kJ mol⁻¹ 

nm⁻² 

Soft-core interaction to 

avoid overlap 

Bonded 

Interaction 

Bond length 

(equilibrium) 
10 nm 

Target distance 

between connected 

nodes 

 Bond force constant 100 
100 kJ mol⁻¹ 

nm⁻² 

Strength of harmonic 

bond potential 

Angular 

Interaction 

Angle force 

constant 
10 

100 kJ mol⁻¹ 

rad⁻² 

Bending stiffness of 

consecutive bonds 

 

Table concisely lists the numerical settings of the ReaDDy system. A 1 000 nm × 

1 000 nm 2-D box with a soft wall potential confines three node species that differ 

only in their graph degree. All nodes diffuse at 0.02 nm² ps⁻¹, repel each other via a 

gentle harmonic potential (k = 10), and connect through 10 nm bonds stiffened by 100 

and regulated in bending by an angular constant of 10. These values anchor the 

simulated network to experimentally observed segment lengths, flexibility, and 

cytoplasmic viscosity while eliminating edge effects. 
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Figure 2.30. ReaDDy2 force‑field and boundary situating the physical parameters 

schematic used in the simulation stage. 

This schematic clarifies how the abstract graph iranslated into concrete mechanical 

interactions inside ReaDDy2: 

⚫ Particle representation – Each blue disc corresponds to a skeleton node from the 

Node CSV. Radii are set by experimental tubule thickness and determine 

excluded‑volume effects. 

⚫ Bond force   bond length (red arrows) – Every black line reflects an edge from 

the Edge CSV. A harmonic bond force maintains the experimental segment 

length while allowing thermal fluctuation. 

⚫ Angle force (green brackets) – Consecutive bonds along a tubule experience a 

harmonic angle potential that penalizes sharp bending, preserving the 

semi‑flexible nature of mitochondrial membranes. 

⚫ Repulsion force   diffusion constant (orange arrows/purple trace) – Non‑bonded 

particles interact via a soft‑core repulsion, and each particle’s diffusion constant 

controls its Brownian motion; both parameters are calibrated from literature 

values and single‑particle tracking data. 

⚫ Box potential   box size (orange frame) – The simulation volume (blue 

background) imposes reflective boundaries to mimic the cytoplasmic confines 

Box size

Box Potential
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observed in live‑cell imaging. The box size is chosen to encompass the full 

skeleton with a safety margin, preventing artificial compression. 

 

4. Dynamic Relaxation 

The simulation is then executed using the run_simulation() function: 

⚫ An EulerBDIntegrator integrates Brownian motion with harmonic 

constraints. 

⚫ Trajectory recording and topology observation are enabled at fixed strides 

to capture network configurations over time. 

⚫ The system is allowed to evolve for 10,000 steps, permitting geometric 

relaxation under the influence of diffusion, bond/angle forces, and steric 

repulsion. 

This pre-reaction equilibration phase ensures that all particles and bonds settle 

into physically plausible configurations without overlaps or unrealistic tensions. 

 

2.6.2 Dynamic Reaction-Diffusion Simulation 

Following initialization and geometric relaxation, we enable reactive behavior in 

the system to model the dynamic reorganization of mitochondrial networks. The 

simulation incorporates spatial diffusion, structural changes (fission and fusion), and 

topological transformations governed by a well-defined reaction scheme. This section 

outlines the reaction-driven simulation protocol and the dual analysis strategies 

employed to capture both detailed temporal dynamics and statistically robust trends. 

 

1. Reaction Scheme 

To model the dynamic behavior of mitochondrial networks, we adopt a minimal 

topological reaction framework inspired by prior work [32]. This framework captures 

two fundamental fusion-fission motifs based on local connectivity: tip-to-tip and tip-
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to-side interactions. These abstractions represent simplified but biophysically relevant 

approximations of mitochondrial morphological remodeling. 

a. Tip-to-Tip Fusion and Fission 

This scheme assumes two terminal (degree-1) nodes, denoted as 𝑋1, can undergo 

a pairwise fusion to form a degree-2 node 𝑋2, and conversely, 𝑋2 can undergo fission 

to revert into two endpoints: 

2𝑋1 ⇆𝑏
𝑎  𝑋2 

 
⚫ Fusion rate (a): Reflects the probability of two endpoints approaching and 

connecting. 

⚫ Fission rate (b): Encodes the likelihood of a linear segment breaking into two 

terminal fragments. 

 

b. Tip-to-Side Fusion and Fission 

In this scheme, a terminal node 𝑋1 fuses with a linear node 𝑋2, forming a 

degree-3 branch point 𝑋3. 

The reverse reaction models the detachment of an arm from a branched structure: 

𝑋1 + 𝑋2 ⇆𝑏
𝑎  𝑋3 

⚫ Fusion: Reflects lateral attachment of a tip to the side of an existing segment, 

creating a Y-junction. 

⚫ Fission: Represents the retraction or detachment of a branch. 

These two reactions provide a minimal yet expressive vocabulary for simulating 

mitochondrial network plasticity through topology-level events. In our simulations, 

we map these schematic reactions onto particle-level transformations governed by 

spatial proximity, connectivity rules, and rate functions 
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2. Implementation in ReaDDy2 

Before detailing the structural‐ and spatial‐reaction kernels, we recall how 

reaction_rate is defined inside ReaDDy2. In the engine, a user-supplied rate constant 

𝜆 is interpreted as the instantaneous Poisson hazard for a qualified particle pair; 

during each integration step of length 𝜏 the corresponding event is accepted with 

probability: 

𝑃 =  1 − 𝑒−𝜆𝜏 

⚫ λ∈R_(≥0): represent the rection rate. 

⚫ τ: time step. 

Because this quantity is ultimately a per-step acceptance probability, and to avoid 

confusion with biological fusion or fission rates that are usually reported as events · 

cell⁻¹ · s⁻¹, we hereafter refer to every ReaDDy2 rate parameter simply as a reaction 

probability (P_fus, P_fis, …). 

 

In cell biology, mitochondrial fusion and fission rates are experimentally defined 

as the number of observable events (branch joining or fragment splitting) per cell per 

unit time, often on the scale of minutes. These biological rates are emergent properties 

of the network and depend on organelle size, protein machinery activity (e.g., Drp1 

for fission, Mfn1/2 and OPA1 for fusion), and local cellular conditions. They are 

measured statistically from live-cell imaging and are typically in the range of 0.01–0.1 

events per mitochondrion per minutefilePRXLife.2.043002. By contrast, in ReaDDy2 

the user-specified λ does not directly represent such a per-cell rate; it controls the per-

step probability that a qualified particle pair will undergo a reaction. 

 

With this convention, the experimentally calibrated probabilities are mapped 

onto one of two independent reaction classes in ReaDDy2: (a) spatial reactions that 

check whether two candidate particles which do not share the same topology fall 

within the prescribed capture radius with probability 𝑃𝑠𝑝𝑎𝑡𝑖𝑎𝑙 decides whether they 
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instantaneously create a bond between them and change their particle type or not, and 

(b) structural reactions by contrast, act inside an existing topology: with probability 

𝑃𝑠𝑡𝑟𝑢𝑐𝑡𝑟𝑢𝑎𝑙 a rule rewires the internal graph. These two mechanisms are evaluated 

separately each time-step. This separation enables us to couple detailed topological 

updates to a distance-based encounter filter while retaining a transparent 

correspondence between simulation parameters and their biological counterparts. 

 

a. Spatial Reactions: Topology Merging 

For internal modifications, topology merging is enabled through spatial rules: 

⚫ "mito_node_1 + mito_node_1" → merged topology (tip-to-tip fusion) (fig 2.31.) 

 

Figure 2.31. Tip‑to‑tip fusion triggered by a spatial reaction in ReaDDy2. 

Two linear mitochondrial fragments approach each other, and when the reactive zones 

(radius_reaction_1) around their terminal nodes overlap, a probabilistic fusion event 

may occur with a likelihood defined by fusion_probability_1. Successful fusion 

merges the two fragments into a single continuous filament, thereby enabling dynamic 

remodeling of the mitochondrial network through tip‑to‑tip spatial reactions. 

 

⚫ "mito_node_1 + mito_node_2" → merged topology (tip-to-side fusion) (fig 

2.32.). 

ReaDDy Reaction Section:

1.Spatial Reaction(focus on particle or two independent topologies):

 tip-to-tip fusion (fusion_rate_1, radius_reaction_1)

                                          

radius_reaction_1

fusion_probability_1
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Figure 2.32. Tip‑to‑side fusion mediated by spatial reactions in ReaDDy2. 

A terminal node (red) of one mitochondrial fragment approaches the inear fragment 

composed of two-degree nodes (green). When their reactive zones (radius_reaction_2) 

overlap, a fusion event can occur with a probability determined by fusion_ probability 

_2. Successful fusion attaches the tip to the side of the filament, forming a Y‑shaped 

structure in which the contacted site becomes a higher‑degree branching node. This 

spatial reaction allows the mitochondrial network to develop complex branching 

architectures through tip‑to‑side connections. 

 

These spatial reactions are registered via ReaDDy2’s add_spatial_reaction API: 

1. system.topologies.add_spatial_reaction( 

2.     "fusion_1: mitochondria(mito_node_1) + mitochondria(mito_node_

1) -> mitochondria(mito_node_1--mito_node_1)", 

3.     rate=FUSION_PROBABILITY_1,  

4.     radius=RADIUS_REACTION 

5. ) 

 

The spatial proximity constraint (controlled by RADIUS_REACTION) ensures 

these reactions only occur when particles are physically near each other, preserving 

spatial realism. 

b. Structural Reactions: Topology-Based Logic 

ReaDDy Reaction Section:

1.Spatial Reaction(focus on particle or two independent topologies):

 tip-to-side fusion (fusion_rate_2, radius_reaction_2)

                                          

radius_reaction_2

fusion_probability_2
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In addition to fission logic via ReaDDy2's structural reaction framework, which 

operates on particle connectivity:  

⚫ Fusion Detection: Encoded via fusion_detect_function. The function scans all 

vertices for specific degree motifs: 

◼ Two mito_node_1 with 2 connections → both upgraded to mito_node_2 

(tip-to-tip fusion) (fig 2.33.). 

◼ Mito_node_2 (deg=3) and mito_node_1 (deg=2) → upgraded to 

mito_node_3 and mito_node_2 respectively (tip-to-side fusion) (fig 2.34.). 

◼ Export fusion position → record data to validate the tracking algorithm. 

This function mirrors the forward reaction logic of the schemes above. 

1. if current_type == "mito_node_1" and num_connections == 2: 

2.     if neighbor_type == "mito_node_1" and neighbor_connections == 

2: 

3.         # Tip-to-tip fusion 

4.         change both to mito_node_2 

5. elif current_type == "mito_node_2" and num_connections == 3: 

6.     if neighbor_type == "mito_node_1" and neighbor_connections == 

2: 

7.         # Tip-to-side fusion 

8.         change to mito_node_3 and mito_node_2 

 

 

Figure 2.33. Structural reaction: detection of tip‑to‑tip fusion sites in ReaDDy2. 

During structural reaction processing, the algorithm iterates over all particles within 

each topology to identify degree patterns that violate fusion criteria. When two 

terminal nodes (mito_node_1) are detected at adjacent positions with a connectivity 

ReaDDy Reaction Section:

2. Structural Reaction(focus on topology itself):

 Fusion detection (dectection_rate, export fusion position)

                                          

Go through all particles in topologies

dectection_probability

export fusion position

violate

32
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pattern corresponding to tips, a fusion detection step is triggered with a probability 

defined by detection_probability. If successful, the local connectivity is updated, 

converting the involved nodes into internal nodes (mito_node_2) and exporting the 

fusion position for subsequent topological rewiring. 

 

 

Figure 2.34. Structural reaction: detection of tip‑to‑side fusion sites in ReaDDy2. 

Within the structural reaction framework, the algorithm iterates through all particles 

in each topology to identify branching violations that correspond to tip‑to‑side fusion 

motifs. When a terminal node (mito_node_1) is detected adjacent to the lateral 

position of a filament containing an internal node (mito_node_2), a fusion detection 

step is triggered with a probability determined by detection_probability. Upon a 

successful event, the node at the contact site is converted into a higher‑degree 

branching node (mito_node_3), while the tip is reclassified as mito_node_2, and the 

updated fusion position is exported for topological rewiring. 

 

⚫ Fission: Implemented using dissociation_reaction_function. A topology is 

scanned for internal edges (excluding endpoints and their neighbors), and a 

randomly chosen one is removed. After edge removal: 

◼ The vertex types are downgraded based on degree: 

ReaDDy Reaction Section:

2. Structural Reaction(focus on topology itself):

 Fusion detection (dectection_rate, export fusion position)

                                          

Go through all particles in topologies

dectection_probability

export fusion position

violate
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◼ 𝑋2  →  𝑋1 (fig 2.35.) , 𝑋3  → 𝑋2 (fig 2.36.)   

◼ This maps directly onto the reverse of both tip-to-tip and tip-to-side 

schemes. 

◼ Export fission position → record data to validate the tracking algorithm. 

1. if current_type == "mito_node_3": 

2.     recipe.change_particle_type(vertex, "mito_node_2") 

3. elif current_type == "mito_node_2": 

4.     recipe.change_particle_type(vertex, "mito_node_1") 

 

Figure 2.35. Structural reaction: fission of a linear mitochondrial fragment in 

ReaDDy2. 

For fission events, the algorithm identifies internal edges within a filament (excluding 

endpoints and their immediate neighbors) and randomly selects one as the cut site. 

With a probability defined by fission_probability, the selected edge is removed, 

splitting the filament into two smaller fragments. Following edge removal, the node 

degrees are updated: internal nodes (mito_node_2) at the cut location are downgraded 

to terminal nodes (mito_node_1). The position of the fission event is recorded to 

support network topology tracking. 

 

ReaDDy Reaction Section:

2. Structural Reaction(focus on topology itself):

 Fission (fission_rate, export fission position)

                                          

fission_probability

export fission position

Random Pick

34
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Figure 2.36. Structural reaction: fission of a branched mitochondrial fragment in 

ReaDDy2. 

In branched topologies, the fission algorithm randomly selects an internal edge 

connected to a branching node (mito_node_3). With a probability determined by 

fission_probability, this edge is removed, detaching one branch from the network. 

Following the disconnection, the branching node is downgraded from mito_node_3 to 

mito_node_2, reflecting its reduced connectivity. The location of the fission event is 

recorded for downstream analysis and validation of network evolution. 

 

Together, these implementations form a unified framework for simulating network 

morphogenesis. Each observed fusion or fission event corresponds to a direct 

mapping of the abstract reaction schemes, grounded in dynamic spatial interactions 

and topological evolution. This structure allows the simulation to explore 

mitochondrial fragmentation, branching, and reassembly in a biologically 

interpretable way. 

 

2.6.3 Single-Run Full Data Simulation 

To capture the temporal evolution of mitochondrial morphology, we conduct a 

single, long simulation with comprehensive logging of system observables: 

ReaDDy Reaction Section:

2. Structural Reaction(focus on topology itself):

 Fission (fission_rate, export fission position)

                                          

fission_probability

export fission position

Random Pick
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⚫ Topology Tracking: Particle connectivity and fragmentation are tracked at every 

stride, enabling analysis of structural evolution. 

⚫ Reaction Event Logging: Every fission and fusion event is logged, including 

timestamp, positions, and particle IDs. This allows spatial-temporal mapping of 

network remodeling. 

⚫ Trajectory Recording: Full 3D coordinates of all particles are saved per frame, 

facilitating downstream spatial visualization and rendering (e.g., PDB, PSF 

output for VMD). 

⚫ Statistical Metrics: 

◼ Node degree probabilities (degree-1, 2, 3) over time. 

◼ Fragment count and fragment size distribution, characterizing network 

breakdown or merging. 

◼ Average polymer length per time step. 

These results are written to human-readable logs and plotted to visualize trends 

such as increasing fragmentation, emergence of branching motifs, or stabilization of 

topology complexity. 

 

2.6.4 Multi-Run Statistical Averaging (Secondary Script) 

To quantify the robustness of observed trends, a second script performs repeated 

simulations (e.g., 100 replicates), each starting from the same relaxed network: 

⚫ Only node degree distributions are computed for each run. 

⚫ Outputs include time-averaged probabilities for degree-1 (endpoints), degree-2 

(chains), and degree-3 (branch points). 

By averaging across runs, this approach smooths stochastic fluctuations and 

allows comparison to experimental data or theoretical baselines. This strategy is 

particularly effective for validating network topology models under variable 

conditions such as drug treatments (e.g., FCCP exposure). 
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2.7 Visualization and Post-Simulation Validation 

In this section we will teach how to use VMD (Visual Molecular Dynamics)[40] 

with Single-Run Full Data Simulation’s output (e.g. XYZ file, PDB file, PSF file) to 

examine whether the simulation crashes or not with XYZ file first, then we use PSF 

file and PDB file to produce accurate image. 

2.7.1 Validation with XYZ file 

 We assume you already downloaded VMD, and we use MobaXterm as Linux 

platform with remote server to operate. 

a. Open VMD with XYZ.file 

After running the simulation, there should be an output called “*.h5.xyz”, then 

type linux command “vmd *.h5.xyz”, it should come up with two windows (fig 

2.37.). We can see that the visualization is barely seen in default status, so you need to 

change the representation of the network. 

 

Figure 2.37. Initial visualization of simulation output in VMD using XYZ format. 

(a) The VMD Main window shows the successful loading of a simulation output file 

(mito_final.h5.xyz) containing 140 atoms across 101 frames. 

(b) The OpenGL Display window renders the particle positions, though visibility is 

limited due to default representation settings. 
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To enhance interpretability of the mitochondrial network, representation styles (e.g., 

particle size, color, rendering method) must be manually adjusted in the VMD 

graphical interface. 

 

b. adjusts representation of the network 

After you press representations, it should come up with another window as 

well(fig 2.38.). 

 

Figure 2.38. Accessing the graphical representation settings in VMD. 

(a) To enhance visualization of simulation output, the user navigates to the Graphics 

menu in the VMD Main window. 

(b) From the dropdown, the Representations... option is selected to open the display 

settings panel 

This panel allows users to adjust rendering styles (e.g., particle shape, size, and color) 

to make mitochondrial network structures clearly visible in the OpenGL display. 
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Figure 2.39. Graphical Representations panel in VMD for customizing network 

visualization. 

This panel allows users to adjust how particles are rendered in the OpenGL display. 

Users can define which atoms to display (e.g., using the selection keywords all), 

choose a coloring method (e.g., by Name), set material appearance (Opaque), and 

select a drawing method such as Lines, VDW, or Points. Line thickness and other 

visual parameters can be fine-tuned for clarity. These settings help highlight 

mitochondrial network structures for qualitative inspection and presentation. 

This window (fig 2.39.) can be divided into four parts:  

⚫ Rep section (can decide what type of particle you want to change its shape): 

◼ by press create Rep and type “name type_*” in line of Selected Atoms to 

select specific particle type. In VMD, particle types are automatically 

named as type_0(mito_node_1), type_1(mito_node_2), 

type_2(mito_node_3), and so on, based on the order they appear in the 

input file (like. xyz or .pdb). 

⚫ Coloring Method: Change particle color (except Name and Type, they are same 

color 

⚫ Drawing Method: Change particle representation. 
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⚫ Material: change the texture of the particle. 

Here is the window (fig 2.40.) when I choose dynamicBonds in Drawing Method 

(branch-like). 

 

Figure 2.40. Enhanced mitochondrial network rendering using DynamicBonds in 

VMD. 

The Graphical Representations panel is configured to use the DynamicBonds drawing 

method, which visually connects nearby particles based on a distance criterion. The 

Distance Cutoff is set to 1.6, meaning bonds are drawn between particles within this 

range. The Bond Radius and Bond Resolution control the visual thickness and 

smoothness of the bonds. This setting improves interpretability by emphasizing 

network connectivity and structure in 3D mitochondrial simulations. 

There are three parameters we can adjust: 

⚫ Distance cutoff: setting determines how close two atoms must be to visually 

form a bond. If two atoms are within this distance, VMD draws a bond between 

them. Since the ReaDDy2 define the bond in topology is spring-like, so that is 

why bond is unstable in visualization, if you want you bond more stable, please 
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set the distance cutoff more than bond_length in ReaDDy2, for example: 

bond_length =3.5 , distance cutoff should above 4.0. 

⚫ Bond radius: setting bond thickness 

⚫ Bond resolution: I didn’t see any change from visualization. 

After you press apply result should like this (fig 2.41.). 

 

Figure 2.41 Final visualization of the mitochondrial network using VMD 

DynamicBonds representation. 

(a) The Graphical Representations panel is configured with the DynamicBonds 

drawing method. A higher Distance Cutoff (4.6), Bond Radius (1.5), and bond 

resolution (12) are used to enhance visual continuity and clarity of network segments. 
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(b) The OpenGL Display window shows a clearly connected mitochondrial network 

structure rendered with smooth cylindrical bonds, allowing for intuitive inspection of 

topology and dynamics across simulation frames. 

 

 Then we can scroll the time slide to check whether simulation is crash or not (fig 

2.42.).   

 

Figure 2.42. Time navigation in VMD for simulation frame inspection. 

The VMD Main window includes a timeline slider (circled in red) that allows users to 

scroll through simulation frames. By manually advancing through the trajectory, users 

can visually inspect the mitochondrial network across time steps to verify structural 

continuity and detect potential simulation crashes, discontinuities, or anomalies. 

 

c. removes the axis from window (optional) 

 If you want an axis to disappear (fig 2.43.). 
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Figure 2.43. Optional removal of coordinate axes in VMD display. 

(a) In the VMD Main window, the user accesses the Display menu and selects Axes > 

Off to hide the coordinate axes. 

(b) The OpenGL Display window then presents a cleaner visualization of the 

mitochondrial network without distraction from axis indicator 

 

d. import simulation visualization as tiff file  

Finally, let’s make a tiff file, if you want to know how many frames you make. 

So here how it goes (fig 2.44.). 

 

 

Figure 2.44. Preparing to export simulation frames as TIFF images in VMD. 
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(a) The Frames column in the VMD Main window indicates the total number of 

simulation frames available for export (e.g., 101 frames). 

(b) To begin exporting images, the user accesses the Tk Console via the Extensions 

menu. The console allows scripted batch export of each frame as a TIFF file, enabling 

frame-by-frame visualization or construction of time-lapse animations for 

mitochondrial network dynamics. 

 

After that, it should come up with another window (fig 2.45.). 

 

Figure 2.45. Using the VMD TkConsole to export mitochondrial simulation frames as 

TIFF images. 

The TkConsole window in VMD enables scripted control over visualization export. 

After setting the desired graphical representation and checking the total number of 

frames (see previous figure), the user enters a Tcl script into the console to export 

each frame as a .tiff image. This step facilitates generation of high-resolution image 

sequences for time-lapse analysis or movie creation. 

 

 Type command below: 
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1. # Create the folder if it doesn't exist 

2. file mkdir image_tiff_final_branch 

3. # Get the total number of frames 

4. set num_frames [molinfo top get numframes] 

5. # Render every frame and convert to TIFF with LZW compression 

6. for {set i 0} {$i < $num_frames} {incr i 1} { 

7.     animate goto $i                      ;# Go to frame i 

8.     set bmp_file "image_tiff_final_branch/frame_$i.bmp"    ;# Temp

orary BMP file 

9.     set tiff_file "image_tiff_final_branch/frame_$i.tiff"  ;# Fina

l TIFF file 

10.     render snapshot $bmp_file            ;# Render current frame as

 BMP 

11.     exec convert $bmp_file -compress LZW $tiff_file ;# Convert BMP

 to TIFF with LZW compression 

12.     file delete $bmp_file                ;# Remove temporary BMP fil

e 

13.     puts "Saved frame $i to $tiff_file"  ;# Print progress 

14. } 

If code runs successfully, the window should be like this (fig 2.46.). 
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Figure 2.46. Batch export of simulation frames to TIFF images via the VMD 

TkConsole. 

Upon running a loop script in the TkConsole, each frame of the trajectory is 

sequentially saved as a high-resolution .tiff file in the specified output directory 

(image_tiff_final_branch/). Successful execution is confirmed by a log of messages 

indicating the saved frame numbers and corresponding filenames. 

There should be a folder call image_tiff_final_branch in your terminal. 

 

2.7.2 Import Simulation Visualization as tiff with PDB file and PSF file. 

If we want an accurate tiff, you need to make sure that you have a two folders 

keep PDB files and PSF files separately. Once confirm, type “vmd” in your terminal 

and open tk console and type command below: 

1. # Directories containing the PDB and PSF files 

2. set pdb_dir "mito_final_pdb_files/" 

3. set psf_dir "mito_final_psf_files/" 

4. set output_dir "image_tiff_final_branch/" 

5.  

6. # Ensure the output directory exists 
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7. file mkdir $output_dir 

8.  

9. # Set the rendering window size 

10. display resize 672 848 

11.  

12. # Turn off the axes 

13. axes location off 

14.  

15. # Loop over the time indices 

16. for {set i 0} {$i <= 1000} {incr i 10} { 

17.     # Format the time index 

18.     set time_index [format "%d" $i] 

19.  

20.     # Construct file paths 

21.     set pdb_file "${pdb_dir}mito_final_time_${time_index}.pdb" 

22.     set psf_file "${psf_dir}mito_final_time_${time_index}.psf" 

23.  

24.     # Check if both files exist 

25.     if {[file exists $pdb_file] && [file exists $psf_file]} { 

26.         # Load the PSF and PDB files into a new molecule 

27.         set molid [mol new $psf_file] 

28.         mol addfile $pdb_file molid $molid 

29.  

30.         # Apply Bonds representation with specified radius and reso

lution 

31.         mol delrep 0 $molid 

32.         mol representation Bonds 13.0 12 

33.         mol color Name 

34.         mol addrep $molid 

35.  

36.         # Calculate the frame index by dividing time_index by 10 

37.         set frame_index [expr {$time_index / 10}] 

38.  

39.         # Render and save the image as TIFF 

40.         set bmp_file "${output_dir}frame_${frame_index}.bmp" 

41.         set tiff_file "${output_dir}frame_${frame_index}.tiff" 

42.         render snapshot $bmp_file 
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43.         # Ensure ImageMagick's 'convert' tool is available for this

 command 

44.         exec convert $bmp_file -compress LZW $tiff_file 

45.         file delete $bmp_file 

46.  

47.         # Delete the molecule to free memory 

48.         mol delete $molid 

49.  

50.         puts "Rendered and saved: $tiff_file" 

51.     } else { 

52.         puts "Warning: Missing files for time index $time_index" 

53.     } 

 

 

2.8 Quantitative Comparison with Experimental Data 

To validate the fidelity of our reaction-diffusion simulation against biological 

behavior, we conduct a quantitative comparison between the simulated and 

experimentally observed mitochondrial network structures. Specifically, we focus on 

node degree distributions—a coarse-grained yet informative metric reflecting 

topological complexity and branching behavior over time. 

 

1. Data Source and Processing 

This analysis leverages outputs from the multi-run statistical averaging 

simulation, in which each mitochondrial network is simulated 100 times under 

identical initial conditions. For each replicate, the simulation tracks the probability of 

node degrees 1, 2, and 3 at every time step. These replicate-level logs are saved as: 

degree_probabilities_rep*.txt and Averaging across these replicates yields one 

consolidated file per cell: degree_probabilities_average.txt. 

Each row corresponds to a time step, and each column reports the probability of 

encountering nodes of a specific degree. 
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2. Experimental Data Extraction 

Experimental data consists of time-lapse microscopy images of mitochondrial 

networks. These are processed using skeletonization and graph-based methods (e.g., 

via the skan package) to extract degree logs over time. Each processed file is named 

according to the corresponding simulation: <cell_id>_degree_probabilities_log.txt 

This file mirrors the simulated format with columns for degree-1, -2, and -3 

probabilities over time. 

 

3. Simulation vs. Experiment Comparison 

To evaluate the fidelity of the simulation outputs against experimental 

observations, a structured comparison pipeline was established. For each cell, the first 

step involved matching simulation results with the corresponding experimental 

dataset using a shared cell identifier. Once the file pairs were identified, a validation 

procedure was applied to confirm that the time-series data from both sources were 

directly comparable. This validation ensured that the temporal sampling intervals 

were consistent, that the data arrays were aligned in length, and that both datasets 

were free from missing or undefined values (Nans). 

 

After validation, quantitative discrepancies between simulation and experiment 

were assessed through a time-resolved computation of the mean absolute error (MAE) 

across the three primary node degree classes. At each time step $t$, the error was 

defined as: 

𝑀𝐴𝐸𝑡 =
1

3
 ∑ |𝑃𝑑

𝑠𝑖𝑚(𝑡) − 𝑃𝑑
𝑒𝑥𝑝(𝑡)|

3

𝑑=1

 

Where 𝑃𝑑
𝑠𝑖𝑚(𝑡) and 𝑃𝑑

𝑒𝑥𝑝(𝑡) represent the degree-𝑑 probabilities obtained from 

simulation and experimental measurements, respectively. 
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Following the calculation of time-resolved errors, the pipeline aggregated these 

values at two levels. First, a per-cell mean error was computed to evaluate how well 

the simulation reproduced the temporal evolution of network structure for each 

individual cell. Second, to summarize performance across the dataset, the distribution 

of per-cell errors was used to report overall statistics, expressed as the mean error and 

its associated standard error. This two-tiered approach provided a robust metric for 

assessing the agreement between simulated and experimental mitochondrial network 

dynamics at both single-cell and population levels. 

 

4. Visualization and Reporting 

The analysis pipeline incorporates a standardized procedure for visualization and 

data reporting. For each individual cell, time-resolved degree probabilities are plotted 

to depict the evolution of the network structure throughout the simulation. To 

summarize model performance at the population level, a scatter plot is generated in 

which each point represents the per-cell mean absolute error; superimposed on these 

points, the overall mean and associated standard error of the mean (SEM) are shown 

as error bars. In addition, the computed per-cell errors are exported as a structured 

CSV file (e.g., 02_control_single_cell_error_summary.csv), enabling further 

statistical analyses and facilitating comparisons across different experimental or 

pharmacological conditions. 

 

5. Model Evaluation and Refinement 

This quantitative evaluation framework provides an objective basis for assessing 

the realism of the computational model. By directly comparing simulation-derived 

degree distributions to their experimental counterparts, it becomes possible to 

determine whether the current parameterization and reaction schemes reproduce the 

key features of mitochondrial network dynamics. Furthermore, systematic 

deviations—such as consistent underestimation of degree‑3 branching events—can be 

readily detected. These insights guide iterative refinement of the model through 

targeted adjustments to fission and fusion rates, reaction probabilities, and structural 
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constraints, with the goal of improving the biological fidelity of the simulation 

outputs. 

 

6. Multi-Condition Summary Analysis 

The final script generalizes this analysis ins_1 cell across six experimental 

conditions: 

Table 2.1 . Summary of experimental conditions and cell models used in this study. 

Five treatments (Control, FCCP, Mdivi‑1, Oligomycin, Rotenone) were applied to 

Ins‑1 cell to examine mitochondrial network remodeling. Treatments differentially 

shift the fission–fusion balance. 

Condition Main Function 
Expected Network 

Impact 

Control Baseline, no perturbation 
Balanced 

fission/fusion[7] 

FCCP ΔΨm uncoupler ↑ Fission / ↓ Fusion[10] 

Mdivi-1 
DRP1 inhibitor (blocks 

fission) 
↓ Fission / ↑ Fusion[11] 

Oligomycin ATP synthase inhibitor ↑ Fission[10] 

Rotenone Complex I inhibitor ↑ Fission / ↓ Fusion[6] 

 

And three different three types of cells. 

Table 2.2 . Baseline characteristics of the three cell types (Ins‑1, PANC‑1, AC‑16) and 

their intrinsic mitochondrial network states. 

Cell Type Cell State / Characteristics 
Mitochondrial Network 

Status 

Ins-1 

Rat pancreatic β-cell; 

glucose-responsive, high oxidative 

phosphorylation 

Moderately 

interconnected; balanced 

fission/fusion[7] 

PANC-1 
Human pancreatic ductal carcinoma; 

high metabolic plasticity 

Highly fragmented; 

↑ Fission / ↓ Fusion[8] 
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AC-16 
Human ventricular cardiomyocyte; high 

ATP demand, oxidative stress 

Dense small 

mitochondria; Slightly 

↑ Fission[15] 

 

For each experimental condition, the corresponding summary file (e.g., 

02_FCCP_single_cell_error_summary.csv) containing the per-cell mean absolute 

error values is imported and processed. These data are aggregated to produce a 

condition-specific distribution of errors, which is subsequently visualized in a 

comparative plot. In this plot, individual black points represent the error values for 

each cell, while blue markers with error bars denote the mean error and its associated 

standard error (SE) for that condition. This comparative visualization facilitates 

quantitative evaluation of model performance across different pharmacological 

perturbations. It enables direct ranking of model fidelity between experimental 

conditions, highlights outlier behaviors or inconsistent simulation fits, and provides a 

data-driven basis for refining reaction rate parameters in response to specific cellular 

perturbations. 
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3. Chapter 3: Results 

This study implements a two-pronged simulation framework to explore the 

structural evolution of mitochondrial networks under varying conditions. The first 

approach focuses on a high-resolution single-run simulation, offering insight into 

detailed topological and particle-level behavior. The second adopts a multi-run 

statistical averaging strategy to extract reliable trends and assess the reproducibility of 

dynamic outcomes. Together, these approaches balance mechanistic clarity with 

statistical robustness.  

 

3.1 Single-Run Simulation — Comprehensive Structural and Topological 

Analysis 

The single-run simulation captures the dynamics of mitochondrial morphology 

by explicitly modeling particle diffusion, topological fusion and fission, and structural 

constraints (bonds, angles, repulsion). The system is initialized using real skeletonized 

network data, and reactions are governed by spatial proximity and graph-based logic 

rules. The output captures both particle-level and topology-level observables. 

 

3.1.1 Particle Trajectories and 3D Structure Files 

At every observation step, the 3D position and particle type of each node are 

recorded. Each node begins as mito_node_1 and may transition to mito_node_2 or 

mito_node_3 depending on its local connectivity (fig 3.1.). The .csv position logs 

offer an accessible numeric representation, while .pdb and .psf files provide structured 

3D geometry and bond connectivity for external rendering. The resulting PDB-PSF 

pairs can be loaded into VMD to reconstruct mitochondrial filament arrangements 

with atomic-style precision, showing the continuous spatial deformation of the 

network over time. These spatial outputs are essential for visual validation and 

qualitative interpretation of fusion-fission cycles. 
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.  

Figure 3.1. 3D rendering of mitochondrial network structure 

Each node's spatial position and identity (e.g., mito_node_1, mito_node_2, 

mito_node_3) are recorded at each observation step and rendered using VMD. The 

color-coded atoms represent different node types, with connectivity defined by bond 

information in the PSF file. This high-resolution visualization captures the evolving 

topology and spatial deformation of mitochondrial filaments, allowing qualitative 

validation of fusion–fission dynamics modeled in the simulation. 

 

3.1.2 Fusion and Fission Event Logging 

Topological remodeling events are logged explicitly, with fusion reactions 

triggered by local degree constraints—such as two mito_node_1 particles converting 

into mito_node_2—and fission occurring via selective removal of internal (non-

terminal) edges based on a topology-aware dissociation rate function. Each event 

includes the 3D coordinates of the affected particles, allowing reconstruction of the 

event landscape in physical space. This spatial logging reveals not only the frequency 

of reactions but also their localization and spatial distribution, which is crucial for 

identifying structurally sensitive zones or edge cases in the network dynamics. 
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Figure 3.2. Spatial logging of mitochondrial network remodeling events during 

simulation. 

(a) Fusion events and (b) fission events are recorded in separate .log files, each entry 

capturing the 3D coordinates of the involved nodes. Fusion typically involves the 

merging of two mito_node_1 particles into a higher-order node (e.g., mito_node_2), 

while fission reflects the disassembly of internal bonds leading to node separation. 

The logs enable precise reconstruction of dynamic topological transitions, offering 

spatial context for each event and supporting downstream visualization or clustering 

analyses to identify preferential sites of remodeling activity. 

 

3.1.3 Temporal Degree Probability Tracking 

Node degrees, interpreted as the number of neighbors in the topology graph, are 

dynamically tracked and binned into degree-1, -2, or -3 categories. These degrees 

represent linear endpoints, internal chain particles, and branched junctions, 

respectively. By calculating the frequency of each degree class at every time point, we 
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quantify the shift in network complexity as the simulation evolves. For instance, a 

monotonic increase in degree-1 nodes signifies fragmentation, while a sustained 

presence of degree-3 nodes would indicate retained branching. These probabilities are 

exported to .txt files for downstream comparison and plotted to show time-resolved 

topological simplification. 

 

Figure 3.3. Time evolution of topological complexity in the mitochondrial network. 

The plot shows the probability of nodes possessing degree 1 (blue), degree 2 (orange), 

and degree 3 (green) at each simulation time step. Degree-1 nodes correspond to 

terminal ends, degree-2 to internal linear segments, and degree-3 to branching 

junctions. Over time, an increasing trend in degree-1 probability and decreasing 

degree-2 frequency suggests progressive fragmentation. The relatively stable degree-3 

proportion indicates that while linearity dominates, occasional branching structures 

persist. This temporal tracking of node degree distribution provides quantitative 

insight into mitochondrial network simplification dynamics. 

 

3.1.4 Average Topology Length per Time Step 

To further quantify structural degradation, the average number of bonds per 

connected topology (i.e., average polymer length) is computed at each time step. This 
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metric accounts for both fragmentation and internal connectivity. The simulation 

reveals a consistent downward trend in this quantity, suggesting that large, complex 

filaments are progressively replaced by shorter segments or isolated particles. Since 

this measure is topology-based rather than particle-based, it serves as a higher-order 

indicator of network disintegration. 

 

Figure 3.4. Temporal evolution of average mitochondrial network segment length. 

The plot shows the average number of beads per connected topology (i.e., polymer 

segment) over time. Despite fluctuations, a generally stable but lower-bound average 

length is maintained, with intermittent drops suggesting transient fragmentation 

events. This measure reflects the evolving integrity of the mitochondrial network 

structure, where shorter polymers indicate degradation and loss of extended 

connectivity. As this metric aggregates structural information at the topology level, it 

provides a high-level view of network simplification trends. 

 

3.1.5 Final Degree Distribution 
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At the conclusion of the simulation, the system’s topological state is analyzed by 

computing the full histogram of node degrees and normalizing it to obtain a degree 

probability distribution. This is visualized in log–log space to capture both frequent 

and rare degree values. The dominance of degree-1 nodes confirms the collapse of the 

network into disconnected or linear elements. Importantly, this distribution is the basis 

for quantitative comparison with experimental image-derived networks. 

 

Figure 3.5. Final degree distribution of the simulated mitochondrial network. 

The histogram shows the normalized probability of each node degree at the end of the 

simulation, plotted on a log–log scale to emphasize both common and rare topological 

states. Degree-1 nodes dominate the distribution, indicating a fragmentation-

dominated regime with a predominance of terminal elements. The sharp decay in 

higher-degree nodes reflects the loss of complex junctions and branching points, 

consistent with network disintegration under FCCP treatment. This distribution serves 

as a benchmark for comparing simulation outcomes with experimental imaging data. 

 

3.1.6 Fragment Size Distribution 
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Each fragment (connected component) is characterized by its size—the number 

of particles it contains. The simulation computes the frequency of each fragment size 

and displays it as a distribution. A broad distribution, particularly one with a heavy 

tail, suggests that while many small fragments exist, some larger structures remain. 

This analysis reveals the system’s heterogeneity: complete fragmentation into isolated 

monomers results in a narrow peak, while mixed-size fragments suggest partial 

preservation of higher-order structure. 

 

Figure 3.6. Fragment size distribution of the simulated mitochondrial network at the 

final time point. 

The probability distribution of fragment sizes—measured as the number of particles 

per connected component—is shown on a log–log scale. The presence of a wide range 

of fragment sizes, including both small and moderately large clusters, indicates a 

heterogeneous fragmentation process. The heavy-tailed nature of the distribution 

implies that while many filaments break into small pieces, some larger substructures 

persist. This pattern supports a model of partial network collapse with residual 
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topological complexity, potentially reflecting biologically relevant subnetwork 

stabilization mechanisms. 

 

3.1.7 Fragment Count Over Time 

To assess how the network disassembles over time, the simulation tracks the 

number of fragments at each time point. This directly reflects the balance between 

fusion and fission events. The increasing number of fragments over time confirms a 

fission-dominated regime and serves as a macroscopic signature of mitochondrial 

network collapse. It also helps identify transient equilibrium phases, where the 

fragment count temporarily plateaus before resuming its rise. 

 

Figure 3.7. Temporal evolution of fragment count during the mitochondrial network 

simulation. 
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The number of disconnected topological fragments is plotted against simulation time 

steps (scaled to 1000). An initial drop followed by persistent fluctuations around a 

higher baseline indicates progressive fragmentation driven by fission events. Despite 

transient dips, the absence of a consistent downward trend suggests a lack of sustained 

fusion activity. This behavior is consistent with a system undergoing structural 

disintegration, and it offers a coarse-grained view of topological breakdown dynamics 

complementary to degree and size-based metrics. 

 

3.1.8 Reaction Count Dynamics 

In parallel, all reactions—both spatial and structural—are monitored and 

recorded in real-time. This includes fusion_1, fusion_2, and any internally triggered 

structural transitions. By parsing reaction_counts.log, the system reconstructs the 

kinetic landscape of the simulation. Changes in reaction rates over time provide 

insight into the system’s phase behavior, such as initial bursts of activity during early 

reconfiguration, followed by a steady state where fewer eligible reactions remain due 

to increasing fragmentation. 

 

Figure 3.8. Temporal evolution of reaction events 

The plot depicts the aggregated counts of fission, fusion_1, and fusion_2 reactions 

across the simulation timeline, binned every 50 steps for clarity. Fission reactions 
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(blue) dominate throughout the simulation, reflecting a fragmentation-prone regime. 

In contrast, fusion_1 (orange) and fusion_2 (green) events occur sporadically and at 

lower frequencies. This kinetic profile underscores the imbalance between network-

building and network-breaking processes, which contributes to the overall structural 

degradation observed in topological metrics. The declining frequency of all events 

toward later stages reflects a reduction in eligible reaction sites as the network 

disintegrates. 

 

3.2 Multi-Run Statistical Averaging — Reproducibility and Error Quantification 

To ensure reproducibility and account for stochastic variation in the simulation 

outcomes, we conducted 100 independent simulations using a batch pipeline (Multi-

run Statistical Averaging.py). Each replicate uses identical initial network conditions 

and parameters and produces its own trajectory (h5), XYZ file, and degree 

distribution log (degree_probabilities_rep*txt). 

 

3.2.1 Degree Probability Averaging Across Replicates 

All replicate logs are aggregated and processed to compute the mean degree 

probability for each class (degree 1, 2, 3) at each time point. The standard deviation 

across replicates is also calculated, capturing the run-to-run variability of topological 

evolution. These statistics are visualized as mean ±1σ bands using 

01_mito_FCCP_image_error_analyzepy.py. This analysis provides an error-aware 

backbone of system dynamics and serves as a reference point when comparing against 

single-run results or experimental measurements. Notably, the low variability across 

runs indicates consistent simulation behavior and a well-defined dynamic trajectory. 
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Figure 3.9. Mean degree probabilities over time with replicate variability. 

The plot shows the mean probability of each topological degree class—degree 1 

(blue), degree 2 (orange), and degree 3 (green)—across multiple simulation replicates. 

Shaded regions represent ±1 standard deviation at each time step, quantifying the 

variability of network evolution. A clear upward trend in degree-1 nodes indicates 

persistent fragmentation, while the decline in degree-2 nodes reflects a reduction in 

internal filament segments. The relatively stable profile of degree-3 nodes suggests a 

residual presence of branching structures. The narrow error bands indicate consistent 

dynamics across replicates, supporting the reliability of simulation outcomes. 

 

3.2.2 Quantitative Comparison of Experimental Image Data 

To evaluate how well the simulation captures real mitochondrial dynamics, we 

directly compare simulated degree trajectories with those extracted from time-series 

microscopy images. The image data, processed through skan, yields skeletonized 

networks and corresponding degree logs. For quantitative comparison, per-frame 

absolute errors are computed for each degree class and averaged to obtain a mean 
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absolute error (MAE) for every simulated–experimental cell pair. This matching is 

automated using the 01_mito_FCCP_image_error_analyze.py script. Figure 3.10 

illustrates the validation process under FCCP treatment. Panel (c) shows the 

distribution of MAEs from 100 simulation runs across all individual cells. Each black 

dot represents the MAE for a single simulated cell, and the red star denotes the 

simulation with the smallest error, selected as the best-fit case. Based on this 

selection, panel (a) presents the temporal evolution of degree probabilities 

(mean ± SD) for this best-fit simulation, demonstrating close agreement with the 

experimental dynamics. Panel (b) focuses on this same single cell, providing a 

detailed view of its degree distributions throughout the simulation. These results 

indicate that the simulation framework accurately reproduces mitochondrial network 

dynamics for the chosen best-fit replicate, providing a robust basis for interpreting 

treatment-induced deviations in subsequent analyses. 

 

Figure 3.10. Validation of simulation against experimental image-derived dynamics 

under FCCP treatment. 

(a) Temporal evolution of degree probabilities (mean ± SD) for this best-fit replicate, 

showing close alignment with experimental trends. 

(b) Degree distribution of the same single cell across the simulation, illustrating how 

the best-fit replicate captures mitochondrial network dynamics under FCCP treatment. 
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(c) Mean absolute errors (MAEs) from 100 simulations compared with experimental 

degree distributions; each black dot represents an individual simulated–experimental 

cell pair, and the red star marks the best-fit simulation with the smallest error. 

 

3.3 Results of Simulation–Experiment Validation 

This section presents the outcomes of the quantitative comparisons introduced in 

Section 3.2. For each treatment condition and cell type, the temporal evolution of 

degree distributions from simulations is evaluated against experimental image-derived 

data. Both best-fit single-cell replicates, and aggregate analyses are provided to 

illustrate model performance and treatment-specific deviations. 

 

Before presenting the validation results, it is important to clarify the rationale 

behind using the mean absolute error (MAE) as our evaluation metric. In the 

ReaDDy2 simulations, all parameters except the fission and fusion probabilities were 

kept constant. These two parameters were iteratively adjusted for each single cell to 

minimize the difference between simulated and experimental degree distributions. 

The parameter set that yielded the lowest MAE for a cell was recorded as its “best-fit” 

configuration. For each treatment, these best-fit parameters were then averaged and 

reapplied to evaluate whether a common parameter set could robustly reproduce the 

dynamics of all cells in that group. MAE distributions within a treatment provide two 

key pieces of information: (i) whether the resulting errors are highly dispersed—

indicating large variability between cells—and (ii) whether the overall MAE values 

remain low. In general, an MAE below approximately 0.1–0.15 for degree 

probabilities is considered to represent good agreement, whereas values approaching 

0.3 or higher imply a substantial mismatch that may require additional model 

assumptions or mechanisms. Based on these evaluations, we focus on analyzing the 

best-fit simulations as representative cases for each treatment to explore possible 

network behaviors under that condition. Presentation of the worst-fit cases was not 

emphasized, as our primary aim was to identify the range of dynamics that can be 

captured when the model performs optimally. 
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To present the results systematically, we first summarize the fixed ReaDDy2 

parameters all simulations in a table 3.1. These baseline values remain constant across 

conditions, this table is shown once for reference, and for each treatment only the 

adjusted fusion/fission probabilities are noted when introduced.  

 

Table 3.1. Fixed ReaDDy2 simulation parameters. 

Values define the simulation box geometry, diffusion properties, interaction forces, 

angular constraints, and detection probability which is extremely high to insure can 

detect fusion in every step. These parameters are held constants for all conditions; 

only fusion probabilities, capture radii for spatial fusion reactions and fission 

probabilities are adjusted for each treatment. 

parameter value description (concise) 

box_size [1000, 1000, 0.01] 
simulation box dimensions (x, y, 

z) 

origin [-500, -500, -0.005] box center coordinates 

force_constant_box 100.0 reflective boundary strength 

diffusion_constant 0.02 particle diffusion constant 

force_constant_repulsion 10.0 soft-core repulsion strength 

interaction_distance 10.0 
repulsion interaction cutoff 

distance 

force_constant_bond 100.0 harmonic bond force constant 

length_bond 10 equilibrium bond length 

force_constant_angle 10.0 angle potential force constant 

two_degree_angle π 
target angle for degree-2 

connections 

three_degree_angle π / 3 
target angle for degree-3 

junctions 

detection_probability 4 
rate factor for fission site 

detection 
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We then present the average degree distributions over time, aggregated across all 

cells within each treatment, to provide an overview of the typical temporal evolution 

of mitochondrial network topology. Following this, error analysis plots (such as 

Fig. 3.10) are used to assess the overall fit quality between simulations and 

experimental data, considering both group-level variability and individual best-fit 

performance. Finally, for each treatment, we examine the network behaviors captured 

by the best-fit simulations through detailed time-course visualizations and structural 

analyses, focusing on how well these simulations reproduce key experimental trends. 

 

1. Ins-1 Control Network Condition (n = 15) (baseline value). 

 

 

Figure 3.11. Temporal evolution of mean degree distributions for the Ins-1 control 

condition. 

 

Figure 3.11. illustrates the temporal evolution of the mean degree distributions 

for the Ins-1 control group, aggregated across all single-cell simulations. Under 
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control conditions, the mitochondrial networks maintain a relatively balanced 

topology over time. Degree 1 nodes dominate, with probabilities fluctuating around 

0.40–0.45, indicating the presence of numerous endpoints and short branches. 

Degree 2 nodes remain moderately prevalent, maintaining values near 0.30–0.35, 

consistent with linear chain segments. Degree 3 nodes are less frequent, with 

probabilities around 0.20–0.25, reflecting a limited but stable number of branching 

points. The variability bands indicate moderate cell-to-cell heterogeneity, but no 

major shifts or instabilities are observed over the 140 simulation steps. These results 

suggest that, in the absence of treatment, the Ins-1 mitochondrial networks exhibit a 

stable, moderately connected architecture with limited branching complexity. 

x 

Table 3.2. Adjustable ReaDDy2 parameters for Ins-1 Control. 

parameter value description (concise) 

Fusion_probability_1 0.3 tip‑to‑tip fusion probability 

Fusion_probability_2 0.4 tip‑to‑side fusion probability 

Fission_base_probability 0.15 base probability of fission events 

radius_reaction_1 15 capture radius for fusion_reaction_1 

radius_reaction_2 15 capture radius for fusion_reaction_2 
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Figure 3.12 . Control Condition Analysis for Ins-1 Cells 

Panels (a–c) present quantitative comparisons between simulated and experimental 

mitochondrial network properties under control conditions. 

(a) Time-averaged degree probabilities (± standard deviation) for the best-fit 

simulation replicate. 

(b) Degree probabilities from the corresponding experimental image that the best-fit 

simulation was matched against. 

(c) Mean absolute error (MAE) between experimental data and 100 simulation 

replicates. The red star marks the simulation with the lowest MAE, selected as the 

best fit; the blue point and error bar indicate the overall mean ± standard error (SE) 

across all replicates. 

(d) Raw confocal fluorescence image of a representative untreated Ins-1 cells. 
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(e) Corresponding segmentation mask. 

(f) Skeletonized mitochondrial network used for graph extraction and degree 

quantification. 

 

Under control conditions, the mitochondrial network exhibits relatively stable 

structural dynamics over time. As shown in Fig. 3.12(a), the best-fit simulation 

demonstrates a dominant presence of degree 1 nodes (terminal ends), indicating a 

fragmented but steady morphology. Degree 2 nodes (linear segments) show a slight 

decline, while degree 3 nodes (branch points) gradually increase, reflecting mild 

network remodeling. The corresponding experimental degree probabilities used to 

evaluate the best-fit case are shown in Fig. 3.12(b). 

 

This evolving pattern suggests a slow but persistent incorporation of linear 

segments into branched structures, consistent with physiological turnover rather than 

stress-induced restructuring. The network maintains a quasi-steady state characterized 

by balanced fusion and fission activity, without signs of extreme fragmentation or 

hyper fusion. 

 

As quantified in Fig. 3.12(c), the best-fit simulation achieves the lowest MAE 

among 100 replicates, while the overall mean MAE remains below 0.1, indicating a 

strong agreement between the model and experimental data. This control condition 

provides a reliable baseline for assessing the effects of pharmacological perturbations 

in subsequent sections. 
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Figure 3.13. Temporal evolution of average fragment length of Ins-1 Cell Control. 

(measured by node count per topology) indicates continuous remodeling without 

strong directional trends. 

  

Figure 3.13 remains relatively stable throughout the simulation, fluctuating 

between approximately 7 and 13 beads per structure. No consistent increasing or 

decreasing trend is observed, indicating a dynamic equilibrium between fusion and 

fission events. This variability reflects continuous remodeling activity characteristics 

of a physiologically balanced mitochondrial network. The preservation of average 

segment length over time suggests that the system is maintaining morphological 

homeostasis, with neither excessive fragmentation nor elongation dominating the 

network dynamics. 



doi:10.6342/NTU202503815

126 

 

 

Figure 3.14. Final Degree distribution of Ins-1 Cell Control (log-log scale) reveals a 

dominant presence of degree-1 nodes, consistent with fragmented and linear 

structures. 

 

Figure 3.14 is a predominance of low-degree nodes, with degree 1 and degree 2 

being the most frequent. Degree 1 nodes (terminal ends) exhibit the highest 

probability, indicating that fragmented or end-point structures are common within the 

network. Degree 2 nodes (linear segments) are slightly less frequent, while degree 3 

nodes (branch points) occur at lower probability, reflecting moderate network 

complexity. Nodes with degrees 4 or higher are rare, suggesting limited over-

branching. This distribution consists of a homeostatic mitochondrial network 

characterized by a balance between fragmentation and fusion, supporting moderate 

connectivity without excessive branching. 
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Figure 3.15. Fragment size distribution follows a heavy-tailed profile of Ins-1 Cell 

Control, with numerous small fragments and a few large clusters, reflecting network 

heterogeneity. 

 

Figure 3.15 follows a broad-tailed, right-skewed profile. Most mitochondrial 

fragments are relatively small, but a wide range of larger structures is also present at 

lower probabilities. The distribution suggests that while fragmentation events are 

frequent, a subset of mitochondria remains connected as extended structures. This 

balance reflects the dynamic interplay between fission and fusion in a homeostatic 

network, allowing both isolated fragments and moderately large mitochondrial 

clusters to coexist. The presence of a long-tailed distribution is indicative of structural 

heterogeneity, characteristic of healthy mitochondrial populations. 
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Figure 3.16. The number of fragments tracked over time of Ins-1 Cell Control shows 

fluctuations around a stable average, indicating a dynamic steady state. 

 

Figure 3.16. remains relatively stable over time under control conditions, 

fluctuating around a mean of approximately 9 to 11 fragments. No consistent upward 

or downward trend is observed, indicating that the rates of fission and fusion are well 

balanced. The fluctuations reflect the stochastic nature of individual reaction events, 

but the overall fragment count remains within a narrow range. This stability in 

fragment numbers supports the notion of a homeostatic network, where mitochondrial 

remodeling occurs dynamically but without net accumulation or loss of structural 

units. 
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Figure 3.17. Aggregated reaction counts for fission, fusion_1, and fusion_2 events 

across the simulation of Ins-1 Cell Control. The relatively balanced rates reinforce the 

notion of a homeostatic regime with ongoing but non-disruptive restructuring.  

 

Figure 3.17. Reaction dynamics remain active and balanced throughout the 

simulation. Fission events (green) occur frequently and stochastically, maintaining a 

moderate to high level across all simulation steps.  

 

Fusion_1 events are consistently present and follow a frequency pattern like 

fission, though slightly lower in count. In contrast, fusion_2 events occur less 

frequently and display sporadic behavior with many intervals of inactivity. This 

asymmetry suggests that the primary fusion mechanism under homeostatic conditions 

is fusion_1, while fusion_2 plays a more limited role. 

 

Overall, the interplay between fission and fusion reactions remains dynamically 

balanced, supporting the maintenance of a stable mitochondrial network. The 

persistent activity of all reaction types reflects ongoing remodeling typical of healthy 

mitochondrial populations. 
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2. Ins-1 FCCP Network Condition (n =11) 

 

Figure 3.18. Temporal evolution of mean degree distributions for Ins-1 cells under 

FCCP treatment. 

The plot shows the average degree probabilities (mean ± SD) across all single-cell 

simulations. Degree 1 nodes increase over time, indicating enhanced fragmentation. 

Degree 2 nodes decline steadily, while degree 3 nodes rise gradually, reflecting local 

branching amid overall network destabilization caused by FCCP-induced stress. 

 

Figure 3.18 illustrates the temporal evolution of degree distributions in Ins-1 

cells treated with FCCP, averaged across all single-cell simulations. The network 

exhibits a pronounced shift toward increased fragmentation over time. Degree 1 nodes 

(terminal ends) dominate throughout the simulation, maintaining probabilities above 

0.5 and showing a slight upward trend, indicating a growing number of isolated or 

disconnected segments. In contrast, degree 2 nodes (linear segments) steadily decline, 

suggesting loss of continuity in tubule structures. Most notably, degree 3 nodes 
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(branch points) show a gradual and continuous increase, reaching near 0.3 by the end 

of the time course. This trend suggests that, despite FCCP-induced fragmentation, 

some local branching persists—potentially due to compensatory fusion events. 

 

These patterns reflect a network that undergoes progressive destabilization under 

FCCP, consistent with the drug's known role as a mitochondrial uncoupler that 

collapses membrane potential and biases dynamics toward fission. The overall 

variability also increases over time, suggesting a loss of structural uniformity among 

the simulated networks. 

 

Table 3.3. Adjustable ReaDDy2 parameters for Ins-1 FCCP 

parameter value description (concise) 

Fusion_probability_1 2 tip‑to‑tip fusion probability 

Fusion_probability_2 5 tip‑to‑side fusion probability 

Fission_base_probability 0.1 base probability of fission events 

radius_reaction_1 15 capture radius for fusion_reaction_1 

radius_reaction_2 20 capture radius for fusion_reaction_2 
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Figure 3.19. FCCP Treatment Analysis for Ins-1 Cells. 

Panels (a–c) show comparisons between simulated and experimental mitochondrial 

network properties under FCCP treatment. 

(a) Time-averaged degree probabilities (mean ± SD) for the best-fit simulation, 

reflecting fragmentation trends. 

(b) Degree probabilities from the experimental image used for best-fit evaluation, 

representing the real mitochondrial network dynamics. 
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(c) Mean absolute error (MAE) between experimental data and 100 simulation 

replicates. The red star indicates the simulation with the lowest MAE (best fit), and 

the blue point with error bar represents the overall mean ± SE. 

(d) Raw confocal image of a single FCCP-treated Ins-1 cell. 

(e) Corresponding segmentation mask. 

(f) Skeletonized network used for graph extraction and degree quantification. 

 

Under FCCP treatment, the mitochondrial network undergoes progressive 

fragmentation. As shown in Fig. 3.19(a), the best-fit simulation demonstrates a strong 

increase in degree 1 nodes (terminal ends), consistent with excessive fission activity 

and suppressed fusion due to membrane potential collapse. Degree 2 nodes remain 

moderate but slowly decline, while degree 3 nodes (branch points) remain relatively 

flat. 

 

The corresponding experimental degree probabilities (Fig. 3.19(b)) reveal a more 

complex dynamic: while fragmentation dominates, there is also a noticeable and 

continuous increase in degree 3 nodes. This pattern implies ongoing structural 

complexity and suggests that under stress, mitochondria may still undergo non-

canonical or compensatory fusion attempts that form disordered branches. 

 

The quantitative comparison in Fig. 3.19(c) shows that although the best-fit 

simulation yields a low MAE (red star) relative to other replicates, the overall 

distribution of MAE values is more dispersed and higher than in control conditions 

(see Fig. 3.12(c)), indicating reduced model robustness under extreme perturbation. 

 

This discrepancy, particularly the model’s failure to capture the experimental 

increase in degree 3—highlights a limitation of the current framework. As currently 

implemented, the agent-based model does not support conversions from linear 
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segments (degree 2) to branch points (degree 3) unless explicitly triggered by 

predefined fusion events. It lacks mechanisms for unstructured or stress-induced 

remodeling pathways, which may account for the experimental complexity observed 

under FCCP treatment. This situation will explain detailly in the discussion section. 

 

Figure 3.20. The average length of topologies of Ins-1 Cell under FCCP treatment 

remains consistently high, indicating elongated but disconnected mitochondrial 

fragments. 

 

Figure 3.20. remains consistently high, fluctuating around 16 to 19 beads, with 

brief and infrequent drops. This suggests that the network is composed of a small 

number of elongated structures rather than fragmented units. The sustained high 

values imply that once fragmentation occurs, few individual topologies persist and 

grow in length, possibly due to a collapse into fewer surviving structures. 
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This behavior contrasts with the more balanced remodeling observed under 

control conditions. FCCP, a mitochondrial uncoupler, disrupts membrane potential 

and suppresses mitochondrial function, which may impair normal fission activity, 

allowing elongated fragments to persist abnormally. The observed topology length 

suggests dysfunctional network dynamics, with impaired fragmentation and abnormal 

elongation. 

 

 

Figure 3.21. The Final degree distribution of Ins-1 Cell under FCCP treatment is 

dominated by lower-degree nodes, with reduced branching complexity relative to 

control. 

 

Figure 3.21. is skewed toward low-degree nodes, with degree 1 remaining the 

most dominant. However, unlike the control condition, degree 3 nodes occur at 

comparable frequency to degree 2, indicating an unusual accumulation of branch 
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points despite overall network disruption. Higher-degree nodes (degree ≥ 4) are 

present but rare, reflecting isolated instances of abnormal connectivity. 

 

This distribution suggests paradoxical behavior: while the network is overall 

fragmented due to mitochondrial stress, branching still occurs, possibly due to 

disorganized or non-physiological fusion events. The combination of high 

fragmentation (degree 1) and non-trivial branching (degree 3) may reflect a 

pathological remodeling process, characteristic of mitochondrial dysfunction under 

FCCP-induced depolarization. 

 

 

Figure 3.22. The fragment size distribution of Ins-1 Cell under FCCP treatment 

exhibits a widespread with an abundance of small fragments, reflecting network 

fragmentation and disassembly. 



doi:10.6342/NTU202503815

137 

 

 

Figure 3.22. is highly irregular and dispersed, lacking a clear monotonic decay. 

While small fragments remain dominant, a broad range of larger fragments appears 

with non-negligible probability, including several outliers at high fragment sizes. 

Unlike the control condition, where the distribution showed a smooth decline, the 

FCCP distribution is noisy and discontinuous, indicative of disorganized 

fragmentation and abnormal aggregation. 

 

This irregularity suggests that the network undergoes pathological remodeling, 

where fusion and fission are not well regulated. The coexistence of very small and 

large fragments likely results from FCCP-induced mitochondrial dysfunction, where 

loss of membrane potential leads to both uncontrolled fission and compensatory or 

mis regulated fusion, producing a wide range of fragment sizes. 
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Figure 3.23. The number of fragments over time of Ins-1 Cell under FCCP treatment 

stabilizes at a higher baseline than control, consistent with persistent fission activity. 

 

Figure 3.23. rapidly decreases and stabilizes at a low value. After an initial 

transient phase, the fragment count settles around 6–7 fragments, with minimal 

fluctuation throughout the rest of the simulation. This behavior contrasts sharply with 

the control condition, where fragment counts remained more variable and higher on 

average. 

 

The consistently low fragment count suggests that FCCP leads to the collapse of 

network diversity, possibly through the elimination of smaller fragments or 

aggregation into a few abnormally large structures. This outcome reflects a 

dysfunctional dynamic state, in which normal mitochondrial turnover is suppressed, 

and the network fails to maintain typical levels of fragmentation and remodeling. 
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Figure 3.24. Aggregated reaction counts over time of Ins-1 Cell under FCCP 

treatment show a predominance of fission events with infrequent fusion_1 and 

fusion_2 events, highlighting a strong fission-dominant regime. 

 

Figure 3.24. leads to an elevated and persistent level of fission activity (green), 

with reaction counts frequently reaching 6–10 events per aggregation window. In 

contrast, both fusion reaction types are reduced: fusion_2 (blue) declines gradually 

over time and occasionally drops to zero, while fusion_1 (orange) remains sporadic 

and consistently low throughout the simulation. 

 

This imbalance between high fission and suppressed fusion supports the 

observed fragmentation of the mitochondrial network and the decline in fragment 

diversity. The depletion of fusion events, particularly fusion_2, suggests that network 

repair and reconnection mechanisms are impaired, consistent with FCCP's role in 

dissipating membrane potential and inhibiting fusion machinery. 

 

Overall, these dynamics indicate that FCCP induces a pathological shift in 

mitochondrial remodeling, dominated by fission and largely unopposed by 
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compensatory fusion, resulting in structural collapse and fragmentation. 

 

3.Mdivi1 Network Condition (n = 6) 

 

Figure 3.25 . Temporal evolution of mean degree distributions for Ins-1 cells under 

Mdivi-1 treatment. 

Degree 1 (blue) and degree 2 (orange) nodes dominate and remain tightly coupled 

across time, while degree 3 nodes (green) remain consistently low. The network 

exhibits morphological stability, reflecting Mdivi-1’s inhibition of fission without 

inducing excessive branching or fusion-driven remodeling. 

 

Figure 3.25 displays the temporal evolution of degree distributions in Ins-1 cells 

treated with Mdivi-1, a pharmacological inhibitor of mitochondrial fission. The 

network topology remains notably stable over time. Degree 1 and degree 2 nodes 

dominate and closely overlap throughout the simulation, each fluctuating around a 

probability of ~0.40, suggesting a balance between terminal ends and linear segments. 

Degree 3 nodes (branch points) remain consistently lower, with average probabilities 

near 0.20 and minimal upward or downward trend. 
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This behavior indicates that Mdivi-1 treatment preserves the existing 

mitochondrial architecture and prevents excessive fragmentation. The suppression of 

fission likely inhibits network breakdown, but without a strong fusion drive, the 

system does not exhibit extensive branching or elongation either. The narrow 

variability of bands further suggests reduced dynamical changes and higher 

topological uniformity among cells. Overall, the mitochondrial network appears 

morphologically stable and structurally constrained, consistent with a fission-inhibited 

but fusion-limited condition. 

 

Table 3.4. Adjustable ReaDDy2 parameters for Ins-1 Mdivi1 

parameter value description (concise) 

Fusion_probability_1 0.6 tip‑to‑tip fusion probability 

Fusion_probability_2 0.4 tip‑to‑side fusion probability 

Fission_base_probability 0.15 base probability of fission events 

radius_reaction_1 15 capture radius for fusion_reaction_1 

radius_reaction_2 15 capture radius for fusion_reaction_2 
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Figure 3.26. Mdivi1 Treatment Analysis for Ins-1 Cells. 

Panels (a–c) compare simulation results with experimental mitochondrial network 

properties following Mdivi-1 treatment. 

(a) Degree probability trajectory from the best-fit simulation shows stabilization of 

degree 1 and 2 nodes with low and declining degree 3, indicating limited remodeling. 

(b) Degree probability from the corresponding experimental dataset used for best-fit 

evaluation. 

(c) Mean absolute error (MAE) comparison across 100 simulation replicates. The red 

star marks the lowest MAE (best fit), while the blue point and error bar indicate the 

group mean ± SE.  

(d) Confocal image of a single Mdivi-1 treated Ins-1 cell showing compact and fused 

mitochondrial clusters. 

(e) Segmentation results in capturing the enhanced mitochondrial mass. 
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(f) Extracted skeleton network, showing a prevalence of linear and terminal segments 

with sparse branching. 

 

 Under Mdivi-1 treatment results in a stabilized mitochondrial network structure, 

as illustrated in Fig. 3.26(a). The best-fit simulation shows persistent dominance of 

degree 1 and degree 2 nodes, both fluctuating near 0.4, with limited changes over 

time. Degree 3 nodes remain low and show a slight downward trend, indicating 

minimal new branching activity. 

 

The real experimental degree probabilities from the matched dataset, shown in 

Fig. 3.26(b), support this observation. Terminal and linear segments are prevalent, 

while branch points remain sparse and steady. This morphology reflects a condition 

where fission is pharmacologically suppressed, and the network remains in a 

structurally constrained state. 

 

As shown in Fig. 3.26(c), the best-fit simulation achieves a low MAE (red star), 

indicating strong alignment with the experimental profile. The narrow MAE 

distribution across 100 replicates (blue point with small SE) further confirms that this 

behavior is reproducible and not limited to one simulation instance. 

 

Overall, Mdivi-1 effectively inhibits fragmentation, as expected from its role as a 

fission inhibitor. However, without additional cues promoting fusion, the network 

does not undergo extensive elongation or branching. This results in a topological 

stasis characterized by balanced terminal and linear segments with low complexity, 

consistent with the subdued dynamics of a fusion-competent but fission-impaired 

mitochondrial state. 
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Figure 3.27. The average length of topological fragments of Ins-1 Cell under Mdivi1 

treatment fluctuates around a higher mean compared to control, suggesting reduced 

breakage and enhanced elongation.  

 

Figure 3.27. fluctuates between 8 and 13 beads, with no consistent increasing or 

decreasing trend over time. While short-term variability is evident, the values remain 

within a moderate range, suggesting that the network avoids both excessive 

fragmentation and elongation. 

 

The relatively stable average length observed here suggests that fission 

suppression may lead to moderate elongation, but compensatory mechanisms—such 

as reduced fusion or passive fragmentation—may limit unchecked network growth. 

Overall, the network appears to maintain moderate structural integrity, consistent with 

partial remodeling under fission inhibition. 
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Figure 3.28. Final Degree distribution of Ins-1 Cell under Mdivi1 treatment shows a 

dominance of linear (degree 2) and terminal (degree 1) nodes, while branch points 

(degree ≥ 3) are infrequent, consistent with suppressed network complexity. 

 

Figure 3.28. is dominated by degree 1 and degree 2 nodes, which occur with 

similar and highest probabilities. Degree 3 nodes are less frequent but clearly present, 

while higher-degree nodes (≥4) are rare. 

 

This distribution suggests that despite the inhibition of fission via fission 

suppression, the network does not shift toward excessive branching or hyper-

connectivity. Instead, it maintains a moderately linear and weakly branched structure, 

with limited morphological complexity. The presence of degree 3 nodes indicates 

residual branching capacity, potentially driven by low-level fusion or incomplete 
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fission suppression. Overall, the network topology remains structured yet restrained, 

consistent with a partially remodeled state under Mdivi-1 influence. 

 

Figure 3.29. Fragment size distribution of Ins-1 Cell under Mdivi1 treatment indicates 

a wider spread of sizes with a tendency toward larger, fused structures. 

 

Figure 3.29 displays a broad, heterogeneous range of fragment sizes. While small 

fragments remain the most probable, a wide spread of medium and larger fragments is 

observed with non-negligible probability. The absence of a sharp drop-off and the 

dispersed distribution suggest that fragmentation is suppressed but not eliminated. 

 

This distribution aligns with the known action of Mdivi-1 as a fission inhibitor 

that impairs mitochondrial fission. The persistence of larger fragments reflects 

reduced fission activity, while the presence of smaller fragments indicates that some 
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division still occurs—potentially through passive mechanisms or incomplete 

inhibition. Overall, the network exhibits a structurally diverse but non-collapsing 

topology, characteristic of partially stabilized mitochondrial dynamics. 

 

Figure 3.30. The number of network fragments of Ins-1 Cell under Mdivi1 treatment 

remains moderately stable over time, with higher baseline counts than FCCP, 

reflecting balanced but reduced fission activity. 

 

Figure 3.30. fluctuates between 10 and 17, showing moderate variability without 

a clear long-term trend. The fragment count remains relatively stable, suggesting that 

network turnover continues, albeit with a less dynamic range compared to untreated 

conditions. 
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These observations are consistent with Mdivi-1’s inhibition of fission -mediated 

fission. However, the persistent fluctuations indicate that fission is not fully abolished, 

and compensatory or residual mechanisms may sustain a moderate level of network 

remodeling. The system appears to settle into a partially remodeled state, maintaining 

structure without collapsing into hyper fusion or excessive fragmentation. 

 

Figure 3.31. Aggregated reaction dynamics of Ins-1 Cell under Mdivi1 treatment 

reveal a distinct profile in which fusion_2 events are infrequent, whereas fission and 

fusion_1 remain active. This dynamic is consistent with a network favoring 

stabilization and elongation without significant remodeling. 

 

Figure 3.31, all three reaction types—fission, fusion_1, and fusion_2—remain 

active throughout the simulation. Fission events (blue) are consistently present, 

though rarely dominant, suggesting that fission inhibition only partially suppresses 

fission activity. Fusion_1 events (green) occur with comparable frequency, indicating 

a maintained level of tip-to-tip fusion. In contrast, fusion_2 events (orange) occur 

infrequently and remain at low levels, showing occasional gaps of inactivity. 

 

The relatively balanced presence of fission and fusion_1 suggests that the 

network remains remodeling-capable, despite pharmacological inhibition of fission. 
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The diminished fusion_2 activity may reflect a shift toward simpler reconnection 

mechanisms, as more complex fusion modes are underutilized. Overall, these 

dynamics support the emergence of a stabilized but still plastic mitochondrial 

network, consistent with the intermediate morphological features observed under 

Mdivi-1. 

 

4. Ins-1 Oligomycin Network Condition (n = 7) 

 

Figure 3.32 . Temporal evolution of mean degree distributions for Ins-1 cells under 

oligomycin treatment. 

Degree 1 nodes (blue) increase over time, indicating growing network fragmentation. 

Degree 2 nodes (orange) decline in later stages, while degree 3 nodes (green) remain 

consistently low. These trends reflect impaired fusion and persistent structural 

disintegration in energy-compromised cells. 

 

Figure 3.32. depicts the time evolution of degree distributions in Ins-1 cells 

exposed to oligomycin, an ATP synthase inhibitor that alters mitochondrial 
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bioenergetics. The network structure is characterized by a strong and sustained 

dominance of degree 1 nodes (terminal ends), with probabilities consistently above 

0.5 and increasing slightly over time. This trend indicates progressive fragmentation 

of the network and accumulation of disconnected tubules. 

 

Degree 2 nodes (linear segments) initially remain relatively stable but gradually 

decline in prevalence, particularly after step 120, suggesting breakdown of continuous 

segments. Meanwhile, degree 3 nodes (branch points) remain low and fluctuate within 

a narrow band, indicating that complex branching events are largely absent under this 

condition. 

 

These dynamics suggest that oligomycin disrupts mitochondrial structure by 

suppressing energy production, which reduces fusion competence and favors fission-

like phenotypes. The consistent increase in fragmentation without compensatory 

branching supports the interpretation of an energy-deficient, disorganized network 

state. Variability bands are wider toward later time points, reflecting increased 

heterogeneity across cells in response to energetic collapse. 

 

Table 3.5. Adjustable ReaDDy2 parameters for Ins-1 Oligomycin 

parameter value description (concise) 

Fusion_probability_1 0.3 tip‑to‑tip fusion probability 

Fusion_probability_2 5 tip‑to‑side fusion probability 

Fission_base_probability 0.15 base probability of fission events 

radius_reaction_1 15 capture radius for fusion_reaction_1 

radius_reaction_2 15 capture radius for fusion_reaction_2 
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Figure 3.33. Oligomycin treatment analysis for Ins-1 cells. 

Panels (a–c) compare simulated and experimental mitochondrial network properties 

following Oligomycin treatment. 

(a) Time-averaged degree probabilities (mean ± SD) from the best-fit simulation 

replicate, showing persistent dominance of degree 1 nodes and suppression of 

branching. 

(b) Degree probabilities from the experimental image used for best-fit evaluation. 

(c) Mean absolute error (MAE) between 100 simulations and the experimental data. 

The red star marks the simulation with the lowest MAE, and the blue dot with error 

bar indicates the overall mean ± SE.  

(d) Raw fluorescence image of a mitochondrion-labeled Ins-1 cell under Oligomycin 

treatment. 

(e) Corresponding segmentation mask used to extract mitochondrial structure. 
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(f) Skeletonized network derived from the segmentation, used for graph-based 

analysis. 

 

 Under Oligomycin treatment, the mitochondrial network maintains a fragmented 

but morphologically stable state. As shown in Fig. 3.33(a), the best-fit simulation 

features high and consistent levels of degree 1 nodes (terminal ends), with minimal 

changes over time—reflecting the persistence of disconnected mitochondrial 

structures. Degree 2 nodes (linear segments) remain at moderate levels, and degree 3 

nodes (branch points) stay consistently low. 

 

The experimental degree distribution from the matched dataset, shown in 

Fig. 3.33(b), closely mirrors this topology, reinforcing the validity of the simulation’s 

structural predictions. This morphology reflects impaired network remodeling, as 

mitochondria remain energy-deficient due to ATP synthase inhibition but are not 

subjected to membrane depolarization or acute stress. 

 

The MAE comparison in Fig. 3.33(c) shows a tightly clustered error distribution 

across replicates, with the best-fit simulation (red star) achieving a very low MAE and 

the group mean (blue marker) indicating strong model reproducibility. 

 

Taken together, these findings suggest that oligomycin induces a metabolically 

constrained condition in which both fission and fusion activities are limited. The 

mitochondrial network exhibits neither catastrophic fragmentation nor compensatory 

branching, but instead stabilizes in a low-dynamic, low-complexity configuration. 
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Figure 3.34. The average length of topologies of Ins-1 Cell under Oligomycin 

treatment remains moderately variable over time, reflecting ongoing dynamic 

remodeling despite treatment. 

 

Figure 3.34. fluctuates between 7 and 11.5 beads, with no consistent trend of 

elongation or fragmentation over time. The trajectory shows moderate variability, 

suggesting that the network undergoes continuous remodeling while maintaining 

overall structural balance. 

 

Oligomycin, an ATP synthase inhibitor, disrupts mitochondrial energy production 

without directly altering membrane potential. The observed topology length pattern 

reflects a partially suppressed but not severely impaired network, where energy 

limitation slightly constrains fission–fusion dynamics but still allows for moderate 



doi:10.6342/NTU202503815

154 

 

remodeling. The resulting topology indicates a metabolically stressed but 

morphologically stable mitochondrial state. 

 

Figure 3.35. The final degree distribution of Ins-1 Cell under Oligomycin treatment 

shows a pronounced medium peak at degree 3, consistent with a highly branched 

morphology. 

 

Figure 3.35. reveals a skewed pattern dominated by degree-1 and degree-2 

nodes, with probabilities of approximately 0.45 and 0.35, respectively. Degree-3 

nodes account for the remaining ~0.2, while higher-order connections are absent. 

 

This configuration reflects a moderately connected network, with limited 

branching. The dominance of lower-degree nodes suggests that the mitochondrial 

network remains mostly linear or slightly branched under Oligomycin, which is 

consistent with reduced fusion activity or a mild constraint on network complexity. 
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This pattern supports the notion that ATP depletion under Oligomycin subtly restricts 

mitochondrial remodeling, yielding a structure that is more fragmented than control 

but more connected than FCCP-induced collapse. 

 

Figure 3.36. Fragment size distribution of Ins-1 Cell under Oligomycin treatment 

follows a broad-tailed pattern, indicating heterogeneous fragment populations. 

 

Figure 3.36. demonstrates a broad spectrum of fragment sizes, with a long-tail 

trend extending beyond 30 nodes. Although smaller fragments are more frequent, the 

presence of larger clusters at lower probabilities indicates intermittent connectivity 

and partial fusion within the network. 

 

This distribution suggests that Oligomycin treatment, while impairing ATP 

synthesis, does not completely inhibit fusion events. Instead, the network exhibits 
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coexisting small and moderately large fragments, possibly resulting from localized 

energy preservation or spatial clustering of active mitochondria. Compared to FCCP, 

which collapses the network into smaller units, and Mdivi-1, which enhances 

connectivity, Oligomycin induces an intermediate fragmentation regime reflective of 

its partial energetic inhibition. 

 

Figure 3.37. The number of network fragments of Ins-1 Cell under Oligomycin 

treatment fluctuates between 7 and 10 over the course of simulation, indicating partial 

network preservation. 

 

Figure 3.37. fluctuates within a narrow range between 6 and 10, suggesting a 

relatively stable network topology throughout the simulation. Unlike FCCP, which 

leads to persistent fragmentation, or Mdivi-1, which promotes gradual reconnection, 

Oligomycin maintains a moderate fragmentation state over time. 
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This behavior reflects the partial inhibitory effect of Oligomycin on 

mitochondrial function, where fission is not strongly enhanced and fusion is not 

entirely suppressed. The system remains in a dynamic but steady regime, potentially 

due to ATP depletion slowing down both fusion and fission reactions without 

drastically altering network balance. 

 

Figure 3.38. Aggregated reaction counts reveal a clear imbalance: fusion_1 reactions 

dominate, while fusion_2 is nearly absent, and fission events occur sporadically. This 

kinetic profile aligns with the sustained branching morphology observed. 

 

Figure 3.38. reveals moderate but consistent mitochondrial remodeling activity. 

Fission reactions occur more frequently than both types of fusion events, particularly 

fusion_1, which remains largely suppressed throughout the simulation. 

 

While fusion_2 events do persist intermittently, their frequency is relatively 

lower and lacks prolonged surges, suggesting that intermediate-scale fusion is not 

dominant in this condition. The overall trend reflects a mild fragmentation bias, 

consistent with the steady but fragmented network observed in the fragment count and 

fragment size distribution data. 
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These results support the hypothesis that Oligomycin, by inhibiting ATP synthase 

and reducing cellular ATP levels, partially impairs energy-dependent fusion 

mechanisms while allowing baseline fission to continue. The resulting dynamics favor 

network maintenance over drastic reorganization, reinforcing a steady-state topology 

with moderate connectivity. 

 

5. Ins-1 Rotenone Network Condition (n = 6) 

 

Figure 3.39 . Temporal evolution of mean degree distributions for Ins-1 cells under 

rotenone treatment. 

Degree 1 (blue) nodes dominate but show broad fluctuations, while degree 2 (orange) 

and degree 3 (green) nodes remain balanced and highly variable. The mitochondrial 

network exhibits structural heterogeneity and instability, reflecting dysregulated 

remodeling dynamics under oxidative stress. 

 

Figure 3.39 illustrates the time evolution of degree probabilities in Ins-1 cells 

subjected to rotenone treatment, a complex I inhibitor known to impair mitochondrial 
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respiration and increase oxidative stress. The mitochondrial network exhibits notable 

heterogeneity, with relatively balanced distributions across all three degree classes. 

 

Degree 1 nodes (blue) maintain the highest proportion but fluctuate widely over 

time, indicating inconsistent fragmentation behavior across cells. Degree 2 (orange) 

and degree 3 (green) nodes remain moderately represented and largely overlap, with 

both showing considerable temporal and inter-replicate variability. This pattern 

suggests that under rotenone treatment, mitochondrial networks do not converge on a 

single structural outcome but rather oscillate between fragmented, linear, and 

moderately branched states. 

 

The increased variability across all degrees implies that rotenone induces a 

dysregulated network state, where mitochondria respond inconsistently to metabolic 

stress. Some networks undergo excessive fission, while others may attempt 

compensatory remodeling. This stochastic or heterogeneous behavior is consistent 

with the pathological complexity observed in rotenone-exposed systems, where 

bioenergetic failure and ROS accumulation disrupt mitochondrial dynamics in cell-

specific ways. 

 

Table 3.6. Adjustable ReaDDy2 parameters for Ins-1 Rotenone 

parameter value description (concise) 

Fusion_probability_1 3 tip‑to‑tip fusion probability 

Fusion_probability_2 2 tip‑to‑side fusion probability 

Fission_base_probability 0.025 base probability of fission events 

radius_reaction_1 15 capture radius for fusion_reaction_1 

radius_reaction_2 20 capture radius for fusion_reaction_2 
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Figure 3.40. Rotenone treatment analysis for Ins-1 cells. 

Panels (a–c) compare simulated and experimental mitochondrial network dynamics 

under rotenone exposure. 

(a) Degree probabilities (mean ± SD) over time from the best-fit simulation replicate. 

(b) Degree probabilities extracted from the corresponding experimental dataset used 

for best-fit evaluation. 

(c) Mean absolute error (MAE) comparison across 100 simulation replicates. The red 

star highlights the best-fit case with the lowest MAE, while the blue dot and error bar 

represent the overall mean ± SE.  

(d) Confocal image of a representative Ins-1 cell under Rotenone treatment. 

(e) Image segmentation mask highlighting mitochondrial morphology. 

(f) Extracted skeleton network used for topological comparison with simulations. 
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 Under Rotenone treatment, Fig. 3.40(a), the best-fit simulation predicts stable 

and dominant degree 1 nodes (terminal ends), indicating a sustained fragmented 

network. Degree 2 and degree 3 nodes remain lower but display modest fluctuations 

throughout the time course. 

 

In contrast to prior figures showing simulation-wide trends, Fig. 3.40(b) depicts 

the experimental degree probabilities from the single cell most closely matched to the 

best-fit simulation. These experimental data confirm a structurally fragmented state, 

with persistent terminal ends and a small but non-negligible proportion of branching 

(degree 3) over time. The presence of degree 3 nodes suggests incomplete or 

disordered remodeling events in response to rotenone-induced stress. 

 

The MAE comparison in Fig. 3.40(c) supports the simulation’s accuracy under 

this condition: the best-fit replicate (red star) achieves minimal deviation from 

experimental observations, and the overall distribution of errors is relatively narrow, 

indicating good reproducibility. 

 

Rotenone disrupts mitochondrial respiration by inhibiting complex I, increasing 

ROS production and impairing network regulation. This condition leads to a 

fragmented, variably branched network with high inter-cell variability—captured by 

both simulation and experiment. The data point to a stress-induced phenotype in 

which fission dominates but stochastic fusion attempts introduce heterogeneity, 

resulting in a structurally unstable mitochondrial network. 
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Figure 3.41. Time-series of the average number of topologies of Ins-1 Cell under 

Rotenone treatment shows a gradual increase in mitochondrial segment length with 

limited fluctuation, indicating stabilized elongation behavior. 

 

Figure 3.41. exhibits a progressive increase in average topology length 

throughout the simulation. Initially, the average length stabilizes around ~7.6 beads, 

indicating the formation of short mitochondrial fragments. However, after 

approximately 800 simulation steps, a gradual elongation is observed, culminating in 

an average of ~9.3 beads in the latter part of the simulation. 

 

This upward trend suggests a suppression of fission activity or enhanced stability 

of existing network structures, potentially reflecting Rotenone’s known effects on 

disrupting mitochondrial respiration and promoting oxidative stress, which may 

impair the energetic requirements for fission. 
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Figure 3.42. The final degree distribution of Ins-1 Cell under Rotenone treatment 

reveals a predominance of lower-degree nodes with reduced network branching, 

consistent with fragmented or less connected morphology. 

 

Figure 3.42 reveals a predominance of low-degree nodes, with degree 1 nodes being 

the most frequent (~44%). The probability declines progressively for higher-degree 

nodes, with degree 2 nodes comprising ~33%, and degree 3 nodes contributing the 

least. 

 

This skew toward lower connectivity suggests a fragmented and sparsely 

connected mitochondrial network, in line with a system undergoing minimal fusion 

events or incomplete structural recovery. Such a distribution reflects the impairment 

of network complexity and interconnectivity, which may be attributed to 

mitochondrial dysfunction induced by Rotenone’s inhibitory effect on complex I of 

the electron transport chain. 
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Figure 3.43. Fragment size distribution of Ins-1 Cell under Rotenone treatment on a 

log-log scale shows a widespread with heavy tail, highlighting the coexistence of 

small and intermediate-size fragments. 

 

Figure 3.43. displays a bimodal-like pattern with a dominant peak at small 

fragment sizes and a secondary cluster around intermediate sizes (≈10–20 beads). The 

highest probability occurs at the smallest fragment size, indicating a prevalence of 

highly fragmented mitochondrial elements. Beyond this peak, the distribution spreads 

across a range of larger sizes but with considerably lower probabilities. 

 

This skewed distribution aligns with a system experiencing excessive fission or 

suppressed fusion, resulting in structural fragmentation. The scarcity of large 

fragments supports the observation that Rotenone impairs mitochondrial dynamics, 
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likely through its inhibition of oxidative phosphorylation, which disrupts the 

bioenergetic balance needed for network maintenance and elongation. 

 

Figure 3.44. The number of fragments over time of Ins-1 Cell under Rotenone 

treatment demonstrates a rapid decline in the early simulation phase, followed by 

stabilization, reflecting early fusion-driven coalescence. 

 

Figure 3.44. exhibits an initial sharp decline, followed by a plateau phase with 

limited fluctuations. The system rapidly transitions from 15 fragments to 

approximately 11 within the first few steps, and then stabilizes, maintaining a 

relatively constant fragment count between 9 and 11 for the majority of the 

simulation. 
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This behavior indicates a reduction in fission events or a mild increase in fusion 

efficiency, leading to a slight consolidation of mitochondrial segments. Unlike other 

stressors that may promote dynamic instability or fragmentation, Rotenone appears to 

result in a relatively static mitochondrial network after an initial reorganization 

period. 

 

Figure 3.45. Aggregated reaction counts of Ins-1 Cell under Rotenone treatment 

reveal minimal reaction activity, particularly low fusion and fission frequencies. 

 

Figure 3.45. shows a striking suppression of both fission and fusion events 

throughout the simulation. Most time intervals exhibit no recorded activity, with only 

a few sparse reaction spikes—typically of low magnitude (1–2 events per 50 steps)—

appearing sporadically across the timeline. 

 

This result suggests a severely diminished dynamic turnover within the 

mitochondrial network, reflecting a state of reduced remodeling capacity. The 

minimal activity of both fusion (types 1 and 2) and fission indicates that the network 

likely stabilizes early and remains static, consistent with the low ATP availability and 

energy collapse caused by complex I inhibition under Rotenone exposure. 
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The overall quiescence aligns with the previously observed fragment number 

plateau and slow evolution of topology length, reinforcing the hypothesis that 

Rotenone induces a mitochondrial freezing effect in the simulated model. 

 

 

6. PANC-1 Network Condition (n = 6) 

 

Figure 3.46. Temporal evolution of mean degree distributions for PANC-1 cells. 

Degree 1 nodes (blue) remain dominant and stable, while degree 3 nodes (green) 

consistently surpass degree 2 nodes (orange), indicating persistent network branching. 

The distribution shows structural stability over time with moderate fragmentation and 

sustained branching, characteristic of the baseline mitochondrial morphology in 

PANC-1 cells. 

 

Figure 3.46 displays the time evolution of degree probabilities in PANC-1 cells 

under baseline conditions. The mitochondrial network exhibits a relatively well-
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balanced but structured topology, with three clearly separated degree classes and low 

overall temporal fluctuation. 

 

Degree 1 nodes (blue), representing terminal ends, dominate throughout the time 

course with probabilities ranging around 0.45–0.50. This reflects a moderately 

fragmented state where disconnected tubules are prevalent. Degree 3 nodes (green), 

associated with branching points, consistently occupy the second-highest proportion, 

maintaining a stable probability near 0.33. Their prominence suggests that PANC-1 

mitochondria possess a relatively higher degree of branching than seen in other cell 

lines. Degree 2 nodes (orange), corresponding to linear segments, remain the least 

abundant and show low variability, hovering around 0.20. 

 

This network configuration implies that PANC-1 cells maintain a mixed 

morphological phenotype: a population of fragmented mitochondria coexisting with 

moderately complex branches. The low variability in all three-degree classes indicates 

structural stability over time, and the elevated degree 3 presence may reflect cell-type-

specific differences in mitochondrial organization or metabolic demand. 

 

Table 3.7. Adjustable ReaDDy2 parameters for PANC-1 

parameter value description (concise) 

Fusion_probability_1 2 tip‑to‑tip fusion probability 

Fusion_probability_2 5 tip‑to‑side fusion probability 

Fission_base_probability 0.1 base probability of fission events 

radius_reaction_1 15 capture radius for fusion_reaction_1 

radius_reaction_2 20 capture radius for fusion_reaction_2 
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Figure 3.47. PANC-1 condition analysis. 

Panels (a–c) present quantitative evaluation and image-derived topology for the best-

fit simulation under control conditions in the PANC-1 cell line. 

(a) Time-averaged degree probabilities (± SD) from the best-fit simulation, illustrating 

separation and stability across all degree classes. 

(b) Experimental degree probabilities from the single PANC-1 cell that best matches 

the simulation shown in (a), used for MAE calculation. 

(c) Mean absolute error (MAE) across 100 simulation replicates. The red star 

indicates the best-fit simulation with the lowest MAE, while the blue dot and bar 

show the population mean ± SE.  

(d) Raw fluorescence image of mitochondria from a representative untreated PANC-1 

cell. 
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(e) Corresponding segmentation mask showing mitochondrial regions. 

(f) Skeletonized mitochondrial network used for graph extraction and topological 

analysis. 

 

 Under the PANC-1 condition, In Fig. 3.47(a), the best-fit simulation reveals a 

fragmented but structurally consistent network: degree 1 nodes dominate with a stable 

probability near 0.48, while degree 3 nodes (branch points) persistently exceed 

degree 2 (linear segments). This indicates that despite fragmentation, the network 

retains considerable branching capacity. 

 

Panel (b) shows the degree probability trajectories extracted from the 

experimental image used for best-fit comparison. The strong alignment between 

simulation and experiment supports the conclusion that PANC-1 networks exhibit a 

hybrid phenotype: branched yet non-elongated. 

 

The MAE distribution in Fig. 3.47(c) demonstrates excellent overall model 

performance, with the best-fit simulation (red star) achieving a low MAE of 

approximately 0.0225, and the group also remains below 0.035. This narrow error 

distribution highlights robust reproducibility across independent runs and suggests 

that the simulation framework effectively captures PANC-1 mitochondrial dynamics 

under baseline conditions. 

 

Overall, the network morphology in PANC-1 cells reflects a cell-type-specific 

configuration: fragmented mitochondria with structurally discrete yet branched 

patterns, potentially shaped by metabolic specialization or cytoskeletal architecture. 
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Figure 3.48. Average number of topologies over time of PANC-1 condition, reflecting 

network elongation and transient fluctuations in filament length. 

 

Figure 3.48. quantified by the number of beads per topology, exhibits high 

variability over time, indicating a dynamic and fluctuating mitochondrial network. 

Initially, the network shows a steady elongation phase, reaching a peak average length 

exceeding 26 beads, which likely reflects an early dominance of fusion activity. 

 

However, this is followed by a pronounced destabilization period marked by 

frequent oscillations and sharp declines in length. The system settles into a phase 

characterized by intermittent contraction and extension cycles, with average lengths 

fluctuating between 12 and 18 beads. This reflects a highly active remodeling regime, 

potentially mirroring cell-type-specific mitochondrial dynamics inherent to PANC-1 
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cells, such as elevated basal fusion-fission turnover or sensitivity to fluctuating 

metabolic cues. 

 

Figure 3.49. Final degree distribution of PANC-1 condition plotted on a log-log scale, 

indicating dominant degree classes within the simulated network topology. 

 

Figure 3.49. displays a broader and more heterogeneous topology compared to 

control or drug-treated states. As shown in the log-log plot, nodes of degree 1 and 3 

dominate, each contributing significantly to the overall network architecture, while 

degree 2 nodes are present but less prevalent. A small fraction of nodes with degree 4 

are also observed, indicating the presence of higher-order branching events. 

 

This diverse range of connectivity suggests an environment where complex 

network structures emerge dynamically, likely driven by frequent remodeling through 

fusion and fission. The occurrence of degree-4 nodes—though rare—hints at localized 
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regions of dense mitochondrial interconnectivity, a feature often linked to metabolic 

adaptation or stress resistance in cancerous cells. 

 

 

Figure 3.50. Fragment size distribution of PANC-1 condition from the simulation, 

revealing a broad heterogeneity in mitochondrial segment sizes 

 

Figure 3.50. reveals a broad and dispersed spectrum of mitochondrial segment 

sizes. The log-log plot demonstrates a heavy-tailed distribution, indicating the 

presence of both small and large mitochondrial fragments with varying frequencies. 

Notably, no single fragment size dominates, and the probability is distributed across a 

wide range, from short fragments (2–5 beads) to extended structures exceeding 20 

beads. 
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This distribution suggests high dynamic heterogeneity, likely reflecting an active 

balance between mitochondrial fission and fusion processes. The frequent presence of 

larger fragments may be indicative of elevated fusion activity or suppressed fission, 

characteristic of cancer cells adapting their mitochondrial networks for metabolic 

flexibility and resilience. 

 

Figure 3.51. Time evolution of the total number of disconnected fragments of PANC-

1 condition, indicating partial stabilization following an initial decrease. 

 

Figure 3.51. demonstrates an initial sharp decline from 11 to approximately 6 

fragments, followed by sustained fluctuations throughout the simulation. The number 

of fragments stabilizes within a range of 5 to 9, indicating the system reaches a quasi-

steady-state dynamic regime. 
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This stable fragmentation profile suggests a balanced interplay between fission 

and fusion events, where neither process dominates persistently. The recurring 

fluctuations imply ongoing remodeling of the mitochondrial network, which may 

reflect adaptive bioenergetic regulation in response to the metabolic demands of 

PANC-1 cells. 

 

 

Figure 3.52. Aggregated counts of fusion and fission events over simulation steps of 

PANC-1 condition, showing active remodeling dynamics with alternating fusion and 

fission rates. 

 

Figure 3.52. reveals a highly dynamic interplay among mitochondrial fission and 

fusion events. Fission events (green) occur consistently throughout the simulation, 

often exceeding both fusion types in frequency, suggesting ongoing network 

fragmentation pressure. 

 

Fusion-2 reactions (blue), which likely represent fusion between longer 

fragments, occur more frequently than fusion-1 (orange), consistent with elongation 

and network consolidation mechanisms. However, neither fusion process fully 

suppresses fission, leading to a fluctuating balance. 
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This ongoing competition between fusion and fission maintains a dynamic steady 

state. The presence of all three reaction types at relatively steady levels suggests a 

non-terminal, adaptable mitochondrial network, potentially reflecting the enhanced 

plasticity and metabolic demands of PANC-1 cells. 

 

7. AC-16 Network Condition (n = 15) 

 

Figure 3.53. Simulated mitochondrial network dynamics in AC-16 cells under control 

conditions. 

Time-averaged degree probabilities (mean ± SD) from the best-fit simulation. Degree 

1 nodes dominate the network structure, followed by degree 2 and degree 3 nodes, 

which remain stable and lower in proportion. The consistent ordering and low 

variability indicate a steady-state mitochondrial topology with limited remodeling 

activity. 
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Figure 3.53 illustrates the simulated temporal evolution of mitochondrial 

network topology in AC-16 cells under control conditions. The degree probability 

trajectories derived from the best-fit simulation show a distinct and stable separation 

across node types. 

 

Degree 1 nodes (terminal ends) exhibit the highest and steadily increasing 

probabilities, stabilizing around 50–55% over the 30-time steps, indicating a 

fragmented network architecture. This consistent dominance suggests minimal fusion-

driven network elongation or integration. 

 

Degree 2 nodes (linear segments) maintain a moderate presence, approximately 

28–30%, with slight downward fluctuation. The absence of significant growth or 

decline suggests limited remodeling via linear elongation or breakdown. 

 

Degree 3 nodes (branch points) are the least prevalent and remain consistently 

around 20%, with a narrow range of variability. This low and stable level of branching 

implies that AC-16 mitochondrial networks under baseline conditions do not engage 

in significant topological restructuring. 

 

The relatively small standard deviations across all degree classes confirm robust 

simulation convergence and suggest that the modeled network behavior is 

representative of a steady-state physiological condition in cardiomyocyte-like cells. 

This pattern reflects a structurally conservative mitochondrial phenotype, where 

fragmentation dominates, and branching or elongation events are tightly regulated or 

infrequent. 

 

Table 3.8. Adjustable ReaDDy2 parameters for AC-16  

parameter value description (concise) 
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Fusion_probability_1 2 tip‑to‑tip fusion probability 

Fusion_probability_2 5 tip‑to‑side fusion probability 

Fission_base_probability 0.1 base probability of fission events 

radius_reaction_1 15 capture radius for fusion_reaction_1 

radius_reaction_2 20 capture radius for fusion_reaction_2 

 

 

 

Figure 3.54. AC-16 condition analysis 

Panels (a–c) present quantitative and image-derived analyses of mitochondrial 

networks under the AC-16 cell condition, using the best-fit simulation result for 

comparison. 
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(a) Mean degree probabilities (± standard deviation) from 100 simulation replicates 

show high prevalence of degree 1 nodes and low variability, indicating persistent 

fragmentation. 

(b) Degree probabilities extracted from the real AC-16 image that most closely 

matches the simulation result (lowest MAE), revealing a topology dominated by 

terminal ends with sparse branching. 

(c) Mean absolute error (MAE) between simulated and experimental degree 

distributions across all cells. The red star marks the simulation with the lowest MAE 

(used in a–b), while the blue marker and error bar represent the population mean ± 

SE.  

(d) Raw high-resolution mitochondrial fluorescence image (confocal microscopy). 

(e) Segmented mitochondrial regions after preprocessing. 

(f) Extracted network structure with nodes and edges, used for simulation input and 

statistical comparison. 

 

Under AC-16 conditions, the mitochondrial network maintains a highly 

fragmented architecture with minimal branching or elongation. As shown in 

fig. 3.54(a), the simulated degree dynamics are characterized by a consistently high 

prevalence of degree 1 nodes, moderate levels of degree 2 nodes, and a persistent 

scarcity of degree 3 nodes. The real network topology extracted from the best-fit AC-

16 image (fig. 3.54(b)) mirrors this trend, with dominant terminal structures and 

limited connectivity. 

 

This pattern reflects a stable but structurally constrained mitochondrial state, in 

which fusion events and network remodeling are either suppressed or ineffective. The 

overall error between simulation and experimental data remains low (fig. 3.54(c)), 

with the best-fit replicate exhibiting a minimal MAE of ~0.017. This tight fit confirms 

the model’s capacity to reproduce key structural features of the AC-16 mitochondrial 

network under baseline conditions. 
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Figure 3.55. Average topologies length over time of AC-16 conditions, measured as 

the number of connected beads per mitochondrial fragment. 

 

Figure 3.55. shows a gradual increasing trend over time, rising from 

approximately 4.9 to over 6 beads per structure. This indicates a progressive 

elongation of mitochondrial segments. 

 

The data exhibits mild fluctuations but maintains a steady upward trajectory, 

suggesting that fusion events dominate over fission, albeit without abrupt shifts. The 

absence of sharp fragmentation events points to a moderate but sustained network 

growth, potentially reflective of restorative or adaptive processes in mitochondrial 

morphology under this condition. 
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Figure 3.56. Final degree distribution of AC-16 condition plotted in log-log scale, 

showing the relative probability of encountering nodes of varying connectivity 

(degree 1–4). 

 

Figure 3.56. reveals a predominance of lower-degree nodes, with degree 1 nodes 

exhibiting the highest probability. This indicates a prevalence of terminal ends in the 

network structure, suggesting limited connectivity. 

 

However, a non-negligible fraction of nodes with degrees 2 and 3 are also 

present, reflecting the existence of linear and branching segments within the network. 

The probabilities drop sharply for higher degrees (4 and above), indicating that highly 

connected junctions are rare. 
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Figure 3.57. Fragment size distribution of AC-16 condition on a log-log scale, 

reflecting the structural heterogeneity of mitochondrial networks formed during 

simulation. 

 

Figure 3.57. demonstrates a right-skewed profile with a broad range of fragment sizes. 

Most fragments are small, with a high probability associated with low fragment sizes, 

reflecting frequent breakage or limited fusion. 

 

As fragment size increases, the probability declines exponentially, indicating that 

larger mitochondrial networks are less frequent. However, the distribution extends 
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over two orders of magnitude, suggesting that a subset of highly fused or elongated 

structures persists within the population. 

 

 

 

Figure 3.58. Temporal evolution of the number of mitochondrial fragments of AC-16 

conditions, indicating a slight decrease followed by stabilization 

 

Figure 3.58. initially declines rapidly, decreasing from over 130 to approximately 

105 within the first 100-time steps. This trend suggests an early dominance of fusion 

events, leading to network consolidation. 

 

After the initial drop, the fragment count exhibits moderate fluctuations between 

105 and 120, indicating a dynamic balance between fusion and fission. The absence 



doi:10.6342/NTU202503815

184 

 

of drastic shifts in fragment number after the early phase implies that the system 

reaches a quasi-steady state, where the network maintains a relatively stable 

fragmentation profile. 

 

 

 

Figure 3.59. Reaction activity over time of AC-16, with fission, fusion_1, and 

fusion_2 event counts aggregated every 50 simulation steps. Fission events dominate, 

contributing to persistent fragmentation and shorter structures. 

 

Figure 3.59, fission reactions consistently dominate throughout the simulation, 

maintaining a high frequency of 6–10 events per aggregated window. This persistent 

elevation in fission activity supports the elevated fragment count observed in the 

corresponding morphology data. 

 

In contrast, fusion reactions (both fusion_1 and fusion_2) display lower and 

more fluctuating frequencies. Fusion_2 events show intermittent bursts (notably 

around steps 90 and 180) but generally remain under 5 per window. Fusion_1 events 

are even sparser and irregularly distributed, indicating limited rejoining of small 

fragments. 
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The overall pattern reveals that fission outweighs fusion, especially during later 

phases, reinforcing the fragmentation-prone phenotype of mitochondrial networks 

under AC-16 exposure. These dynamics suggest that AC-16 disrupts the 

mitochondrial homeostasis by skewing the fusion–fission balance in favor of fission. 

 

3.2.3 Final Condition-Level Summary 

Finally, the MAEs across multiple replicates and experimental treatments are 

summarized using 01_mito_final_image_error_analyze.py, which aggregates 

condition-level performance. Each condition—such as control or drug treatment—is 

associated with a distribution of simulation-image errors. This high-level comparison 

provides a metric of model generalizability across different biological contexts and 

offers guidance for parameter tuning or model refinement. 

 

Figure 3.60. Summary of Simulation-Image Degree Error across Experimental 

Conditions 
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To quantitatively assess how well the simulation replicates mitochondrial 

network topology, we computed the mean absolute error (MAE) between the 

experimental and simulated degree distributions across all cells for each treatment 

condition. 

 

Among the conditions, PANC-1 yielded the lowest MAE (~0.03 ± SE), 

indicating the highest fidelity between simulated and experimental topologies. 

Similarly, Mdivi-1, and AC-16 conditions also demonstrated low error (< 0.045), 

suggesting that the simulation model effectively captures the structural patterns under 

these treatments. 

 

In contrast, FCCP conditions exhibited much higher variability and increased 

error (up to ~0.08–0.13 for some cells), indicating reduced simulation accuracy. This 

is attributed to the nature of agent-based models and the assumption of the reaction, 

which are challenging to reproduce under the current reaction scheme or model 

assumptions, and we will explain in discussion section. 

 

Overall, the error profile highlights both the strength and limitation of the current 

modeling framework—it reproduces network structures robustly under mild or 

baseline conditions but diverges under highly disruptive treatments such as FCCP and 

Rotenone. 

 

This multi-run simulation strategy, combined with image-based validation, 

provides a robust framework to evaluate both stochastic consistency and biological 

plausibility of the modeled mitochondrial network dynamics. 

 

3.2.4 Simulation Responses to Drug-Induced Mitochondrial Network. 
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Furthermore, we summarize the parameters of ins-1 cells under different 

treatment.  

Table 3.9. Treatment-Specific Adjustments of Fusion/Fission Probabilities in 

ReaDDy2 Simulations 

Category: 

Fusion_probablity

_1 

Fusion_probabilit

y _2 

Fission_base_probabli

ty 

Radius_fusion_

1 

Radius_fusion_

2 

Control (n 

= 15) 

0.3 0.4 0.15 15 15 

FCCP (n = 

11) 

2 5 0.1 15 20 

Mdivi1 (n 

= 6) 

0.6 0.4 0.15 15 15 

Oligomyci

n (n = 7) 

0.3 5 0.15 15 15 

Rotenone 

(n = 6) 

3 2 0.025 15 20 

 

While table 3.9. lists the key adjusted parameters—namely the two types of 

fusion probabilities (tip-to-tip and tip-to-side), the base fission probability, and their 

associated reaction radii—it is not immediately intuitive how these numerical 

differences map onto phenotypic outcomes. 

 

We also make a ratio of reaction summary to provide insight into the prevailing 

regime of mitochondrial remodeling 
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Table 3.10 Normalized Fusion-to-Fission Ratios and Functional Interpretation of Each 

Treatment Conditions. 

Category 
Fusion_probability_1 / 

Fission_base_probability 

Fusion_probability_2 / 

Fission_base_probability 

Control (n = 

15) 
2.00 2.67 

FCCP (n = 

11) 
10.00 50.00 

Mdivi1 (n = 

6) 
4.00 2.67 

Oligomycin 

(n = 7) 
2.00 3.33 

Rotenone (n = 

6) 
120.00 80.00 

 

Table 3.10. presents the translated ratios of fusion-to-fission probabilities derived 

from calibrated ReaDDy2 simulations. By converting the raw values into ratios, the 

intent is to facilitate cross-condition comparison by placing fusion and fission on a 

common scale. 

 

However, despite this normalization, several inconsistencies emerge between 

numerical ratios and biological outcomes. For instance, FCCP and Rotenone, both 

shown in red, exhibit extremely high fusion-to-fission ratios which typically suggest 

hyper fusion—but are experimentally characterized by pronounced fragmentation. 

This apparent contradiction arises because fusion probabilities remain high while 

fission is suppressed, yet the actual network architecture reflects the failure of fusion 

due to disrupted membrane potential or ROS-induced instability. 

 

Likewise, Oligomycin (highlighted in orange) presents a more moderate ratio, 

but its morphological outcome is ambiguous, with mitochondria remaining 

fragmented yet not severely deteriorated. 
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These discrepancies underscore an important modeling insight: while ratio-based 

normalization improves numerical clarity, it can mask qualitative divergence from 

physiological behavior.  

 

 There we find another measurement to verify our prediction of treatment 

Table 3.11. Event Frequency per Time Step for Fusion and Fission Events Across 

treatment conditions. 

Category 
Fusion_1_Count / 

Total Time Step 

Fusion_2_Count / 

Total Time Step 

Fission_Count / 

Total Time Step 

Control (n = 

15) 
0.098 0.026 0.156 

FCCP (n = 

11) 
0.027 0.042 0.117 

Mdivi1 (n = 

6) 
0.137 0.054 0.211 

Oligomycin 

(n = 7) 
0.053 0.004 0.166 

Rotenone (n 

= 6) 
0.004 0.007 0.010 

 

To better capture the dynamic behavior of mitochondrial remodeling, table 3. 11. 

summarizes the absolute frequency of each event type—tip-to-tip fusion (fusion_1), 

tip-to-side fusion (fusion_2), and fission—normalized by total simulation steps for 

each treatment condition. 

 

Unlike the previous ratio-based comparisons (e.g., fusion probability divided by 

fission probability), which yielded misleading or inflated values (e.g., fusion/fission 

ratios >100 in stress groups), this count-based approach reflects realized behavior 

over time and enables direct, interpretable comparisons across conditions. 
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Finally, we also go through the entire analysis of different types of cells 

Table 3.12 Cell-Specific Adjustments of Fusion/Fission Probabilities in ReaDDy2 

Simulations 

Category: 

Fusion_ 

probability _1 

Fusion_ 

probability _2 

Fission_base_probability Radius_fusion_1 Radius_fusion_2 

Ins-1(n = 

15) 

0.3 0.4 0.15 15 15 

Panc-1 (n = 

6) 

0.02 1 0.05 15 20 

AC-16 (n = 

15) 

0.05 0.1 1 15 20 

 

Same as before, it is not immediately intuitive how these numerical differences map 

onto phenotypic outcomes according to table 3.12. 

 

Table 3.13 Normalized Fusion-to-Fission Ratios and Functional Interpretation of Each 

Cell Conditions. 

Category: 
Fusion_ probability _1 / 

Fission_ base_probability 

Fusion_ probability _2 / 

Fission_base_ probability 

Ins-1 (n = 15) 2.0 2.67 
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Panc-1 (n = 6) 0.4 20.0 

AC-16 (n = 15) 0.05 0.1 

 

Same as before, table 3.13. shows some results are inconsistencies. For instance, 

Panc-1 displays an anomalously low ratio in the tip-to-tip pathway (0.4) but an 

extremely high ratio (20.0) in the tip-to-side route, implying an unbalanced or 

potentially unstable network formation bias. Conversely, AC-16 exhibits uniformly 

low ratios (<0.1), aligning with its experimentally observed fragmented and static 

morphology. Although Ins-1 maintains moderate, symmetric ratios (~2), the 

disparities in Panc-1 highlight parameter mismatches that may stem from under 

sampled dynamics or cell-line-specific constraints not captured in the current model. 

As with drug-based comparisons, normalized values help clarify trends but do not 

always resolve underlying fitting inaccuracies. 

 

Table 3.14. Normalized Event Frequencies per Time Step across Cell Lines 

Category: 
Fusion_1_Count / 

Total Time Step 

Fusion_2_Count / 

Total Time Step 

Fission_Count/ 

Total Time Step 

Ins-1 (n = 15) 0.098 0.026 0.156 

Panc-1 (n = 6) 0.005 0.086 0.107 
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AC-16 (n = 15) 0.241 0.270 0.733 

 

To more clearly quantify and compare mitochondrial remodeling dynamics 

across cell lines, table 3.14. show raw event counts were normalized by simulation 

time steps. This approach eliminates the unit scaling ambiguity observed in previous 

parameter-ratio tables and provides a direct view of functional remodeling trends. 

 

In this normalized framework, clear distinctions emerge: AC-16 cells exhibit the 

highest overall activity, with markedly elevated fission (0.733) and balanced 

contributions from both fusion pathways, aligning with their dense and fragmented 

network morphology. Ins-1 displays a moderate remodeling regime, dominated by 

fission (0.156) but with meaningful fusion-1 activity (0.098), reflecting a 

conditionally stable network. In contrast, Panc-1 shows asymmetric fusion 

contributions—fusion-2 dominates (0.086) while fusion-1 is nearly absent (0.005)—

suggesting an unbalanced and possibly non-canonical remodeling pattern. 

 

Overall, this frequency-based representation offers a clearer and more 

interpretable view of network dynamics than raw parameter ratios, helping to resolve 

previously noted inconsistencies in simulation calibration. 
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4. Chapter 4: Discussion 

4.1 Fusion–Fission Reaction Architecture 

Our simulation framework emulates mitochondrial network remodeling by 

combining structural (graph‑level) reactions with spatial (distance‑triggered) 

reactions. The network is represented as a dynamic topology whose nodes carry 

discrete degree-encoded particle types (mito_node_1, _2, _3). Structural reactions 

operate deterministically on graph logic: 

 

Fusion detection functions scan local neighborhoods and retype participating 

particles when tip‑to‑tip or tip‑to‑side eligibility criteria are met. 

 

Dissociation (fission) functions selectively delete bonds—typically non‑terminal 

internal edges—to create new fragments and “downgrade” node types where degrees 

fall (e.g., mito_node_3 → mito_node_2). 

 

These graph edits are not purely geometric; they encode biological assumptions 

about how mitochondrial tubules connect, split, and reclassify their junction states. 

 

Structural logic is coupled with spatial reactions that allow previously 

disconnected topologies to fuse when reactive particle pairs fall within an interaction 

radius. Reactions such as fusion_1 and fusion_2 are executed stochastically with 

user‑specified rate constants, introducing a proximity- and concentration-dependent 

channel for network growth, branch formation, and loop closure. 

 

By running both structural and spatial channels in tandem, the framework 

captures a range of mitochondrial behaviors observed in live-cell microscopy: 

filament elongation, branching, progressive fragmentation under stress, and (when 
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allowed by parameters) reaggregation toward more reticulated geometries. This 

dual‑layer reaction design mirrors the biological interplay between physical encounter 

frequency and the internal molecular machinery that governs mitochondrial fusion 

and fission. 

 

4.2 Parameter Sensitivity and Biological Control Knobs 

Model behavior is highly sensitive to a small number of tunable parameters that 

map cleanly onto interpretable biological or mechanical levers: 

 

Table 4.1. Key Model Parameters and Their Biological Interpretations 

Parameter Controls Biological/Modeling Interpretation 

Base fission 

rate 

Frequency of bond 

removal 

Stress‑induced fragmentation; Drp1 

activity surrogacy 

Fusion rates 
Likelihood that eligible 

pairs fuse 

MitoFusin/ OPA1 dependent fusion 

competence 

Interaction 

radius 

Spatial encounter 

eligibility 

eligibility Organelle crowding; 

effective tether reach 

Bond force 

constant 
Segment extensibility Membrane tension / tether stiffness 

Angular 

constraints 

Bending stiffness   

branching geometry 

Curvature regulation; cristae/outer 

membrane mechanics proxy 

 

Systematic sweeps over these parameters reproduce qualitatively distinct 

morphologies—from sparse puncta to branched reticula—matching trends seen across 

pharmacological perturbations (e.g., fragmentation under FCCP vs. 
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maintenance/elongation under control). Given the multi‑parameter coupling and 

stochasticity, future work should incorporate automated parameter estimation 

(Bayesian optimization, likelihood‑free inference, or ML‑guided search) to more 

rigorously fit condition‑specific datasets. 

 

4.3 Emergent Topological Dynamics 

Single‑run time series illuminate how local reaction rules scale to global network 

outcomes. A common trajectory under fragmentation‑favoring settings shows: 

⚫ Rising degree‑1 fractions (terminal tips) as filaments sever. 

⚫ Falling degree‑3 fractions (branch points) reflecting junction loss. 

⚫ Convergent fragment size distributions where many small motifs outcompete 

large reticula. 

 

Reaction logs reveal bursty temporal structure: fusion and fission events cluster 

when geometry and concentration briefly align, separated by quiescent intervals 

where topology is sterically locked or diffusion‑limited. Tracking fragment counts, 

mean component size, and node degree histograms together provides a mechanistic 

narrative—networks either relax toward a quasi‑steady branching frequency or 

cascade into sustained fragmentation depending on the fusion: fission balance and 

encounter radius. 

 

4.4 Quantitative Validation Against Image‑Derived Data 

To benchmark biological realism, we compared simulations to degree 

distributions extracted from time‑lapse microscopy across multiple treatments 

(Control, Glucose, FCCP, Mdivi‑1, etc.). Each simulation condition was run in 100 

replicates; per‑frame degree probabilities were averaged across replicates and 

matched to experimental time points. We computed mean absolute error (MAE) 

trajectories cell‑by‑cell, then aggregated errors at the condition level. 
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Agreement was strongest under Control and Glucose conditions, indicating that 

the core fusion–fission + diffusion machinery is sufficient to recapitulate baseline 

mitochondrial topology. Larger discrepancies emerged under stronger perturbations 

(e.g., FCCP, Mdivi‑1), suggesting missing biology: altered fusion competence, 

selective degradation, or metabolic feedback not yet encoded. The validation scripts 

also produce per‑cell “best fit” traces (minimum MAE) that highlight heterogeneity 

within conditions and guide targeted model refinement. 

 

4.5 Semi‑Synthetic Ground‑Truth for Tracking Validation 

The simulation produces a semi‑synthetic ground‑truth dataset that looks like 

microscopy output yet retains complete knowledge of the underlying mitochondrial 

topology and event history. This capability underpins one of the framework’s key 

strengths (Section 4.5 Strengths #5: robust data to validate tracking algorithms). By 

starting from rule‑driven network dynamics rather than hand‑drawn cartoons, we 

obtain image sequences whose complexity—branching, fragmentation, intermittent 

fusion—closely resembles real cells while remaining perfectly annotated. 

 

The ground truth is multi‑layered. Lightweight XYZ frames allow rapid sanity 

checks (did the run complete, did reactions fire), but the PDB/PSF exports provide 

bonded structure and node‑degree typing that can be rendered in VMD to produce 

realistic image stacks for algorithm testing. Crucially, every simulation step also 

writes reaction count trajectories (how many fusions/fissions per time point) and 

event‑level fusion/fission logs with particle/topology IDs and spatial coordinates. 

Together, these outputs let us score a tracker along complementary axes: (i) temporal 

detection accuracy (does the algorithm call the right number of events at the right 

times ), (ii) spatial localization error relative to logged coordinates, and (iii) topology 

recovery fidelity (degree distributions reconstructed from tracked skeletons vs. known 

simulation graph; comparable to the MAE analyses in Section 4.4). 
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Because the imagery is generated from known structure, any discrepancy 

between tracker output and ground truth reflects limitations in the analysis pipeline 

rather than biological variability. This gives a high‑confidence environment for 

debugging segmentation thresholds, branch‑merging heuristics, and event‑linking 

logic before applying the pipeline to experimental movies. The same dataset can be 

shared openly, enabling reproducible cross‑group benchmarking and parameter 

sweeps (e.g., varying noise, blur, or sampling frequency) to probe algorithm 

robustness. In this way, the semi‑synthetic ground‑truth resource closes the loop 

between the emergent simulation behavior described in Section 4.3 and the 

quantitative comparisons to real data in Section 4.4, strengthening the overall 

validation chain. 

 

4.6 Contributions and Limitations 

4.6.1 Contributions 

The simulation environment developed in this study provides a flexible and 

biologically informed platform for exploring mitochondrial network dynamics. 

Because simulation initial conditions can be seeded from microscopy‑derived 

skeletons, the in‑silico networks retain a realistic structural context, narrowing the gap 

between experimental observation and computational modeling. This imaged driven 

linkage reduces arbitrary initialization bias and allows condition‑specific modeling 

directly from observed cell states. 

 

A second strength lies in the transparency of the rule set. All biological 

assumptions governing fusion eligibility, fission logic, node retyping, and bond 

mechanics are encoded in explicit reaction functions that can be inspected, 

version‑controlled, and systematically modified. This clarity supports hypothesis 

testing: specific molecular hypotheses (e.g., impaired fusion under drug treatment) 

can be expressed as rate changes, eligibility filters, or altered retyping behavior and 

then evaluated against data. 
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The framework is also highly adaptable. Modest parameter adjustments—fusion 

and fission rates, interaction radius, bond force constants, angular stiffness—produce 

qualitatively different morphologies, from highly reticulated networks to fragmented 

puncta. This responsiveness enables efficient parameter sweeps and facilitates 

condition‑wise comparisons across pharmacological or genetic perturbations. 

 

Quantitative comparison to experimental datasets shows that, when appropriately 

tuned, the model reproduces baseline metrics with good fidelity. Degree distributions, 

segment length statistics, and fusion: fission ratios fall within experimental variation 

under Control and other moderately perturbed conditions, indicating that the core 

mechanisms encoded in the model capture essential features of unstressed 

mitochondrial remodeling. 

 

Finally, the simulation generates rich, multi‑layer outputs—coordinate 

trajectories, bonded structural files (PDB/PSF), per‑step reaction counts, and spatially 

resolved fusion/fission event logs—that together constitute a semi‑synthetic 

ground‑truth resource for validating tracking and skeletonization algorithms (see 

Section 4.5). Because the underlying topology and event history are known exactly, 

discrepancies between analysis output and truth can be attributed to algorithm 

performance rather than biological uncertainty. Coupled with the open Python code 

and parameter files, this ecosystem supports reproducible benchmarking and 

community extension. 

 

4.6.2 Limitations 

Table 4.2. Current Model Limitations and Future Considerations 

Limitation 

Category 
Description 

Topological 

Constraints 

Cannot simulate degree-2 to degree-3 transitions (e.g., under 

FCCP treatment). 
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Kinetic Limitations 
Unable to capture large-scale mass movement of 

mitochondrial components. 

Dimensional 

Restriction 
Model validation is limited to 2D experimental data only. 

Parameter 

Mapping 

Simulated fusion/fission rates do not always match 

biologically observed rates. 

Particle Lifecycle 
No support for mitophagy or biogenesis; particles cannot be 

added or removed. 

Scaling Artifacts 
Requires parameter tuning to avoid static networks in large 

spatial domains. 

Segmentation 

Caution 

DIC masks are required for cell segmentation; mitochondrial 

smoothing must be avoided to preserve network details. 

Spatial Accuracy 
Spatial validation should include pixel-wise graph-image 

comparisons. 

Nucleus 

Representation 

Nucleus should be modeled as a static “mega particle” to 

influence network behavior. 

Reaction 

Documentation 

A full workflow for defining and explaining structural/spatial 

reactions is needed. 

 

To provide a comprehensive evaluation of the simulation framework, it is 

essential to systematically address its current limitations and areas requiring 

refinement. While the model successfully recapitulates major topological trends and 

treatment-specific mitochondrial behaviors, several intrinsic constraints remain. These 

include limitations in reaction rule expressiveness, spatial fidelity, scalability, and 

biological realism. The following table summarizes key technical and conceptual 

limitations, along with implications for future model development and experimental 

integration. 

1. Topological Constraints — Degree Conversion Limitations 

The first constraint concerns node-degree bookkeeping under the implemented 

tip-to-side fusion rule. In Figure 4.1., when a degree-1 terminal tip attaches to a 

degree-2 side node, the side node becomes degree-3 while the former tip becomes 

degree-2; one degree-2 is lost and one is gained, yielding no net reduction in the 

global degree-2 population. Consequently, experimental trajectories show a 
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coordinated decline in degree-2 nodes alongside an increase in higher-order junctions 

cannot be reproduced solely through repeated tip-to-side fusion events. Additional 

structural processes—such as side-to-side consolidation or post-fusion pruning that 

consumes degree-2 intermediates—would be needed to match those patterns. 

 

Figure 4.1. Comparison of original and adjusted fusion assumptions in node-degree 

transitions. 

In the original assumption (top), tip-to-side fusion converts a degree-1 tip and a 

degree-2 node into a new degree-3 node, effectively shifting one degree-1 and one 

degree-2 into a new configuration without reducing overall degree-2 prevalence. In 

contrast, the adjusted assumption (bottom) introduces a more complex fusion scheme 

that directly removes a degree-1 node and consolidates the structure, enabling a net 

loss of degree-2 nodes and better alignment with experimental observations of 

coordinated topological remodeling. 

 

2. Kinetic Limitations — Immobilization of Large Components 

A second limitation arises from the mechanical treatment of bonded particles. 

Each particle carries its own stochastic motion; when many are linked into an 

extended topology, internal spring forces and opposing random displacements tend to 

cancel at the level of the whole object. The effective center-of-mass diffusion of large 
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components is therefore markedly reduced, and extended networks can appear 

unrealistically stationary. This "stand-still" artifact becomes especially apparent in 

larger simulation domains, where biological mitochondria would normally translate or 

drift through the cytoplasm. 

 

3. Spatial Dimensionality — Restricted to 2D Simulations 

The framework is currently restricted to quasi-two-dimensional geometries, 

chosen to reflect the projected nature of most fluorescence microscopy datasets and to 

simplify rendering. While this design is sufficient for validating 2D tracking pipelines, 

it limits biological realism by underrepresenting vertical stacking, out-of-plane 

reactions, and 3D spatial exclusions. Extension to full 3D initialization and topology 

evolution remains a critical direction for future development. 

4. Scaling Sensitivity — Fixed Parameter Effects Across Domain Sizes 

Scaling also introduces challenges. Simply enlarging the simulation box without 

tuning encounter radii, reaction propensities, or diffusion constants leads to reduced 

encounter frequency and worsens the immobilization of large components. As 

demonstrated in AC-16 simulations, fixed-parameter schemes can produce static 

network behavior in large regions. Implementing scale-aware strategies, such as 

density-normalized reaction probabilities or incorporating active transport, will be 

necessary for realistic modeling at whole-cell resolution. 

5. Reaction Rate Discrepancies — Parameter Misalignment with Experimental Rates 

In some cases, the event frequencies derived from simulations diverge from 

expected biological rates. For example, certain conditions yield improbably high 

fusion-to-fission ratios or inverted network outcomes when compared to experimental 

data. This suggests that the current fusion/fission rules and tuning protocols may not 

fully capture condition-specific mitochondrial kinetics, highlighting a need for more 

mechanistically grounded parameterization. 

6. Missing Mitochondrial Turnover — No Biogenesis or Mitophagy 
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The model does not currently support the creation or removal of mitochondrial 

particles during runtime. This limits its application to steady-state conditions and 

prevents simulation of mitochondrial turnover mechanisms such as biogenesis, 

mitophagy, or stress-induced degradation. Extending the reaction scheme to allow for 

dynamic particle birth and death will be essential for modeling long-term 

mitochondrial maintenance. 

 

7. Image Processing Limitations — Cell Masking and Boundary Effects 

The simulation environment relies on DIC-based segmentation to define cellular 

boundaries, which are subsequently applied to fluorescence data. Inaccuracies in 

segmentation can lead to artifacts in confinement behavior or simulation initialization. 

Moreover, cellular features such as the nucleus are not explicitly represented and may 

need to be treated as inert or repulsive "mega-particles" to improve spatial accuracy. 

8. Preprocessing Artifacts — Loss of Fine Network Features 

Skeleton smoothing steps in the image-processing pipeline can remove small 

branches or subtle network undulations, potentially biasing the input topology. While 

smoothing may help reduce noise and clarify connectivity, it risks eliminating 

important structural heterogeneity, especially near filament termini or in densely 

packed regions. Strategies to denoise without oversimplifying remain a key area for 

refinement. 

9. Spatial Validation — Lack of Pixel-Level Similarity Metrics 

Although topological degree distributions provide one layer of validation, the 

spatial fidelity between simulated and real networks has not yet been quantified. A 

useful approach would involve panelizing both simulated and experimental networks 

and computing similarity scores (e.g., Dice coefficient or IoU). Such metrics would 

help assess how well the simulated network replicates real mitochondrial architecture 

beyond node statistics. 

10. Unaccounted Structures — Nuclear Exclusion Not Modeled 
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The current simulation does not explicitly account for the presence of the nucleus 

or other large subcellular structures, which act as physical obstacles. Simulating these 

as repulsive or static boundaries could better constrain particle movement and prevent 

unphysical overlaps, particularly in central cytoplasmic zones. 

11. Missing Model Visualization — Reaction Rule Workflow Not Illustrated 

Finally, the framework lacks a clear schematic or flowchart that communicates 

how reactions are triggered, prioritized, or executed in each simulation step. Including 

such a visual overview would improve transparency and reproducibility, particularly 

for readers unfamiliar with the rule-based structure of ReaDDy. 
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5. Chapter 5: Conclusion and Future Work 

5.1 Overall Conclusions 

This thesis introduced a computational framework for simulating mitochondrial 

network dynamics that unifies graph‑based structural reactions with spatial, 

proximity‑driven interactions. By encoding fusion eligibility, selective internal bond 

fission, and node retyping rules directly on a dynamic topology—and coupling these 

with distance‑dependent stochastic fusion channels—the model generates 

time‑evolving filament networks that reproduce hallmark mitochondrial behaviors, 

including tip‑to‑tip reconnection, tip‑to‑side branch formation, and progressive 

fragmentation. Parameterized mechanical elements (bond stiffness, angular 

constraints) further shape filament geometry, allowing the emergence of loop closure, 

branch thickening, or collapse into punctate fragments under fragmentation‑biased 

regimes. 

 

Quantitative comparison to microscopy‑derived skeleton graphs demonstrated 

that the framework could recover condition‑specific mitochondrial phenotypes. When 

tuned to baseline or moderately perturbed cellular states, simulated degree 

distributions, segment length statistics, and fusion: fission ratios closely tracked 

experimental measurements. Multi‑run ensemble averaging reduced stochastic noise 

and enabled statistical error assessment across conditions, revealing robust agreement 

under Control and Glucose while exposing systematic deviations under strong 

pharmacological perturbations (e.g., FCCP, Mdivi‑1). These deviations are 

biologically informative: they point to processes—altered fusion machinery, selective 

degradation, metabolic feedback—not yet represented in the current rule set and 

therefore guide targeted model extension. 

 

Beyond reproducing individual trajectories, the framework contributes a 

reproducible analytic workflow. Simulation outputs are exported in formats that 

bridge visualization, quantitative analysis, and algorithm testing: lightweight XYZ 

coordinates for quick integrity checks; bonded PDB/PSF structures suitable for 
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high‑fidelity VMD rendering; and complete temporal logs of fusion and fission 

events. As shown in Chapter 4, these exports support direct frame‑wise comparison to 

experimental data and enable a semi‑synthetic ground‑truth resource against which 

image‑analysis pipelines can be objectively validated. Together, these capabilities 

position the framework as a versatile tool for probing mitochondrial responses to 

genetic, metabolic, or pharmacological modulation. 

 

The work also surfaced several modeling boundaries. Degree bookkeeping under 

the current tip‑to‑side fusion scheme conserves the global count of degree‑2 nodes, 

limiting the model’s ability to capture experimental trajectories in which degree‑2 

frequencies decline as higher‑order junctions form. Likewise, emergent kinetic 

cancellation within large, bonded components suppresses center‑of‑mass motion, 

producing “stand‑still” aggregates unless mobility is re‑scaled. Finally, the 

quasi‑two‑dimensional simulation geometry, while matched to most projected 

microscopy datasets, underrepresents vertical intertwining and out‑of‑plane 

encounters that occur in full cellular volumes. These limitations define the frontier for 

the next phase of development. 

 

5.2 Future Work 

Table 5.1. Proposed Extensions for Enhanced Mitochondrial Network Modeling 

Future Extension Description 

3D Initialization 

Import 3D z-stack segmentations to reconstruct 

layered topology and resolve projection artifacts 

from 2D imaging. 

Metabolic Coupling Layer 

Introduce a per-segment metabolic variable (e.g., 

ΔΨ) to modulate fusion/fission behavior based on 

local energetic state. 

Mitophagy   Biogenesis 

Simulate network turnover by enabling removal 

(mitophagy) or creation (biogenesis) of 

mitochondrial segments based on quality control 

rules. 
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Automated Parameter 

Tuning 

Apply optimization methods (e.g., ABC-SMC, 

Bayesian inference) to fit simulation parameters 

against experimental statistics efficiently and 

reproducibly. 

High-Content Integration 

Scale framework to screen large datasets by 

automating initialization, simulation, and scoring of 

treatment effects across hundreds of cells or 

conditions. 

 

Future extensions will focus on increasing biological realism, improving 

parameter identifiability, and scaling the framework for large‑scale screening and 

benchmarking applications. Five directions are outlined below. 

 

1. 3‑D Initialization from Z‑Stack Imaging 

Extending initialization from 2D projections to volumetric z‑stack 

reconstructions will allow the model to capture vertical crossings, layered branching, 

and depth‑dependent encounter frequencies that are lost in projected geometries. A 3D 

import pipeline would ingest voxel‑level segmentations, skeletonize in three 

dimensions, and generate topology species with full xyz coordinates. Comparisons 

between 2D‑projected and 3D‑resolved simulations would help disentangle apparent 

fragmentation caused by projection artifacts from true structural disassembly. 

 

2. Metabolic Coupling Layer 

Mitochondrial fusion competence is strongly influenced by energetic status, 

membrane potential (ΔΨ), and redox balance. Incorporating a light‑weight metabolic 

state variable—tracked per topology, per segment, or per spatial sub volume—would 

enable state‑conditioned reaction propensities: high ΔΨ could raise fusion probability; 

energetic collapse (e.g., FCCP‑like uncoupling) could suppress fusion or bias fission. 

Coupling structural dynamics to metabolic feedback would provide mechanistic 
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traction on stress responses and could reconcile simulation–experiment discrepancies 

observed under pharmacological treatments [41]. 

 

Table 5.2. Time-Resolved Mitochondrial Metabolic States Across Ischemia–

Reperfusion Phases. 

 

 

3. Mitophagy and Biogenesis Modules 

Network turnover is governed not only by fusion and fission but also by selective 

removal of damaged fragments (mitophagy) and the birth of new mitochondrial 

elements through biogenesis. Adding rules that mark, segregate, and remove 

slow‑quality segments—optionally triggered by loss of ΔΨ or accumulation of 

fragmentation events—would permit study of quality control pathways. 

Complementary biogenesis rules could nucleate new tubes at specified rates or 

locations, supporting steady‑state turnover studies and modeling of recovery after 

acute stress. 

 

4. Automated Parameter Tuning 

Manual parameter fitting is time‑consuming and subjective. Bayesian 

optimization, likelihood‑free inference (e.g., ABC‑SMC), or differentiable surrogate 
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models could be used to optimize fusion/fission rates, interaction radii, and 

mechanical constants directly against experimental time‑series statistics (degree 

distributions, fragment counts, event rates). Automated calibration would accelerate 

cross‑condition studies, reduce user bias, and provide credible intervals on fitted 

parameters, improving interpretability of condition‑to‑condition differences. 

 

5. Integration with High‑Content Screening Pipelines 

The modular export/analysis stack makes the framework well suited for scale‑up. 

Batch initialization from hundreds of microscopy fields could be paired with 

automated parameter fitting to rank perturbations (drug compounds, genetic hits) by 

their ability to rescue or degrade network integrity relative to control baselines. 

Semi‑synthetic ground‑truth datasets—generated by varying known reaction 

parameters and adding controlled imaging noise—could serve as benchmarking 

panels for evaluating image‑analysis tools used in screening workflows. Such 

integration would move the framework from single‑cell mechanistic studies toward 

population‑scale discovery applications. 

 

5.3 Final Remarks 

In sum, this thesis advances an extensible, data‑connected modeling platform 

that links mitochondrial structure, stochastic reaction dynamics, and image‑driven 

validation within a single reproducible workflow. By exposing the mapping between 

biological assumptions and emergent network behavior, the framework supports 

mechanistic hypothesis testing today and sets the stage for coupled 

metabolic‑structural simulations tomorrow. Continued development along the future 

directions outlined above should enable more faithful modeling of mitochondrial life 

cycles, improved interpretation of pharmacological screens, and deeper insight into 

how organelle connectivity supports cellular health. 
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