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ABSTRACT

Mitochondria form dynamic, filamentous networks whose architecture is shaped
by a continuous interplay between fusion and fission. Understanding how these
structural transformations evolve over time and under different cellular conditions
remains a key challenge in mitochondrial biology. In this study, we present a
computational framework that simulates mitochondrial network remodeling by
integrating particle-based diffusion with both structural and spatial reaction
mechanisms. The model encodes biologically inspired rules for fusion and fission
based on node connectivity and spatial proximity, enabling topological events such as

branching, elongation, and fragmentation to emerge naturally over time.

The simulation system is initialized from experimental image-derived skeleton
graphs and evolves through a dual-layer reaction scheme: structural reactions
restructure internal topology based on local graph rules, while spatial reactions merge
separate components when proximity criteria are met. A series of detailed outputs—
including particle trajectories, topology files, reaction logs, and degree distributions,
both visualization and quantitative analysis. Single-run simulations reveal dynamic
transitions in network complexity, such as increases in endpoint frequency and
reductions in average polymer length. Multi-run statistical averaging across 100
replicates demonstrates robust convergence of degree probabilities and allows for

direct comparison with experimental data.

Quantitative verification of timing microscopy images showed high consistency
under the control group conditions, but errors occurred under other drugs such as
FCCP and Mdivi-1. These results suggest that while capturing metaphysical
remodeling, the model also points to the need to incorporate other possible potential
biological mechanisms, such as local degradation or biochemical feedback, in order to
achieve complete accuracy. Overall, this simulation platform provides an analytical
tool for exploring metasoma dynamics, with application value in systematic research
on experimental hypothesis assays, drug response modeling, and cell energy.
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1. Chapter 1: Introduction

1.1 Background and Motivation

Mitochondria are not static organelles; rather, they form highly dynamic,
interconnected networks that constantly adapt to the physiological demands of the
cell. These networks exhibit continuous remodeling through coordinated cycles of
fusion and fission, processes that balance connectivity with modularity to maintain
cellular health. The dynamic restructuring of mitochondria plays essential roles in
regulating energy metabolism, calcium signaling, redox balance, and apoptosis. Under
physiological conditions, a finely tuned fusion—fission balance ensures proper
mitochondrial function. However, disruptions to this balance—such as those caused
by genetic mutations, toxins, or metabolic stress—can lead to fragmented or
hyperfused networks, ultimately contributing to the pathogenesis of numerous

diseases.

Computational modeling offers a powerful means to study mitochondrial
morphology and its changes under various perturbations. Yet, many existing models
remain either too abstract to capture spatial and topological details, or too detailed to
allow for large-scale analysis or integration with imaging data. This work addresses
this gap by developing a particle-based, graph-aware simulation framework that
combines structural logic, spatial dynamics, and image-driven initialization to explore
mitochondrial network evolution under different conditions. Our goal is to bridge
mechanistic modeling with experimental validation, providing a platform that is both

biologically grounded and computationally tractable.

1.1.1 The Importance of Mitochondria in Human Health

Often described as the "powerhouses" of the cell (fig 1.1.), mitochondria are vital
for generating ATP through oxidative phosphorylation [1]. Beyond energy production,
mitochondria are central to a wide array of cellular processes including apoptosis [2],

ROS signaling [3], and lipid metabolism [4]. Their proper functioning is critical for
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maintaining tissue homeostasis, particularly in energy-demanding systems such as the

brain, heart, and skeletal muscles [5].

Importantly, dysfunction in mitochondrial dynamics has been implicated in a
broad spectrum of diseases. Neurodegenerative disorders such as Parkinson’s and
Alzheimer’s disease [6], metabolic syndromes [7], certain forms of cancer [8], and
rare mitochondrial myopathies [9] all share characteristic changes in mitochondrial
morphology and connectivity. Understanding the physical and regulatory principles
underlying mitochondrial network behavior is therefore of critical importance—not
only for basic cell biology, but also for developing diagnostic tools and therapeutic

interventions [10].

Biological Background: Mitochondrial Dynamics

1. 4 Powerhouse of the Cell 3. [2] Guardians of Cellular Health & Quality

¢ Generates ATP through oxidative phosphorylation Control
* Fuels energy-demanding organs (brain, heart, muscles) « Fission isolates damaged parts; fusion restores
 Essential for cellular processes like signaling and transport functionality

* Maintains mitochondrial DNA integrity

* Supports resistance to oxidative stress and aging

2. == Regulators of Cell Death and Survival 4. @ Linked to a Broad Range of Diseases

* Control apoptosis by releasing signaling proteins * Implicated in Alzheimer’s, Parkinson’s, and epilepsy
* Remove damaged or infected cells through programmed death®  Contributes to metabolic and cardiovascular disorders
» Dysregulation linked to cancer or neurodegeneration * Mitochondrial decline is a hallmark of aging

Figure 1.1. Biological roles of mitochondrial dynamics

This figure summarizes the multifaceted functions of mitochondria in cellular biology.
Mitochondria act as the cell’s energy hub through ATP production (1), regulate
apoptosis and survival mechanisms (2), preserve cellular integrity via quality control
processes such as fission and fusion (3), and are implicated in a wide spectrum of

diseases and aging-related decline (4).
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1.1.2 Mitochondrial Fusion and Fission

Mitochondrial morphology is controlled by a balance between two opposing
processes: fusion, which promotes interconnectivity and mitochondrial
complementation, and fission, which facilitates mitophagy and organelle distribution
[11]. Fusion allows individual mitochondria to merge, sharing contents and diluting
damage, while fission enables segregation of damaged segments and their subsequent
degradation (fig 1. 2.) These processes are regulated by conserved GTPases—such as
MFN1/2 and OPA1 for fusion, and DRP1 for fission—and are responsive to
biochemical signals including changes in membrane potential, energy status, and

reactive oxygen species [12].

At the structural level, fusion and fission events give rise to a range of
topological motifs, from extended tubules and branching junctions to small, punctuate
fragments [13]. Capturing this diversity requires a model that accounts not only for
spatial proximity but also for the local connectivity of network nodes [14].
Additionally, many stress conditions or drug treatments, for instance, depolarizing
agents like FCCP—can disrupt the balance and trigger widespread network
fragmentation [15]. Mutations in MFN2 or altered DRP1 activity, as seen in some

neuropathies and degenerative conditions, further exacerbate such disruptions [16].

Recent advances in computational modeling have enabled simulations of
mitochondrial dynamics using network theory and time-resolved imaging, though
incorporating biophysical parameters like membrane tension and curvature remains

challenging [17],[18].

doi:10.6342/NTU202503815



Biological Background: Mitochondrial Dynamics

Fusion / {\\
Fission —
_f,.,‘j‘ )

Figure 1.2. Schematic illustration of mitochondrial dynamics.

Mitochondrial morphology is shaped by the opposing processes of fission and fusion.
Fusion combines fragmented mitochondria to form interconnected networks, while
fission divides mitochondria to isolate damaged segments or facilitate distribution.
These dynamic structural changes are visualized on the right, where red arrows

indicate fusion events and blue arrows mark fission sites.

1.1.3 Physiological Determinants of the Fusion—Fission Equilibrium

The choreography of mitochondrial fusion and fission is inseparable from the
cell’s physiological milieu. Bioenergetic cues—such as membrane potential (AW),
ATP/ADP ratio, and local redox balance—feed directly into the activity of the core
GTPases MFN1/2, OPA1, and DRP1 that govern membrane merger or scission [12].
High AY and ample ATP bias MFN- and OPA1-mediated fusion, fostering tubular
interconnectivity that maximizes metabolic complementation, whereas depolarization
or oxidative stress recruits DRP1 to promote fission and facilitate mitophagy [15].
Calcium spikes, cytoskeletal tension, and cell-cycle checkpoints provide additional
layers of regulation, ensuring that network remodeling is synchronized with metabolic

demand and organelle inheritance [11].

doi:10.6342/NTU202503815



Disruption of these physiological signals—through genetic lesions (e.g., MFN2
mutations) or pharmacological insults such as the uncoupler FCCP—shifts the
balance toward fragmentation and can precipitate neuropathies or degenerative
phenotypes [15, 16]. Capturing such state-dependent toggling between fusion and
fission therefore requires models that integrate not only spatial proximity and
topology [14] but also dynamic, physiology-linked reaction propensities. This
mechanistic underpinning sets the stage for the computational simulations described
in Section 1.1.4, where parameterized fusion and fission rates are varied
systematically to reproduce—and ultimately predict—how physiological

perturbations reshape the mitochondrial network [19-22].

1.1.4 The Importance of Computational Simulation for Mitochondria Network

While high-resolution fluorescence microscopy can capture striking snapshots of
mitochondrial morphology, any single frame (Fig 1.3.) freezes only a moment of an
intrinsically dynamic reticulum. Limited temporal resolution means that entire rounds
of repositioning, fusion, or fission may pass unrecorded, so microscopy alone seldom
reveals the full trajectory of network remodeling [19]. Even in time-lapse sequences,
individual fusion and fission events often unfold at—or below—the diffraction limit
and are therefore difficult to recognize by eye. Automated tracking algorithms are thus

indispensable for detecting these events, but they, too, require validation.

Computational simulation provides that missing ground truth. By explicitly
modeling the underlying particle interactions, simulations let us probe how local bond
formation or breakage scales up to affect global properties such as network size,
fragmentation, and complexity [20]. They also support systematic parameter
sweeps—e.g., varying fusion rates or bond stiffness—to uncover critical thresholds
that would be experimentally impractical to explore [21]. Because simulations deliver
unrestricted temporal and spatial access to every particle and interaction, they furnish
reference trajectories against which tracking algorithms can be benchmarked, thereby

closing the experimental-computational loop. Advances in GPU acceleration and

5
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open-source libraries now make it feasible to construct multi-scale, data-initialized
models that not only deepen theoretical understanding but also guide experimental
design—for instance, by predicting mitochondrial responses to metabolic stress, drug

treatment, or disease-associated mutations [22].

Biological Background: Mitochondrial Dynamics

/ {\\ ‘

Figure 1.3. Mapping mitochondrial dynamics to experimental imaging.

The left panel illustrates the dynamic processes of mitochondrial fission (blue arrows)
and fusion (red arrows). These structural transitions correspond to morphological
features observed in live-cell fluorescence microscopy (right panel), where question
marks highlight candidate regions undergoing fusion (red) or fission (blue). This
visual link demonstrates the feasibility of identifying dynamic mitochondrial events

from static images.

1.1.5 Development of Quantitative Network Analysis

In parallel with advances in computational modeling, new tools for image
analysis have transformed our ability to quantify mitochondrial networks. Techniques
such as skeletonization, graph extraction, and degree distribution analysis now allow
researchers to convert microscopy images into structured, analyzable data. These tools
make it possible to compare mitochondrial networks across conditions, track changes

over time, and link morphological metrics to functional outcomes.

6
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However, most experimental studies remain descriptive, and few integrate
network analysis with predictive modeling. The ability to simulate networks
initialized from real images, and to track their structural evolution using graph-
theoretic measures creates a powerful synergy between computation and
experimentation. This integration enables not only the generation of hypotheses but
also the formal testing of how well a model reproduces biologically observed

dynamics.

The present work leverages this integration by initializing simulations from
image-derived graphs, simulating topological evolution with particle and reaction
rules, and quantitatively comparing outputs to experimental benchmarks. In doing so,
it provides a complete pipeline for understanding mitochondrial behavior from both a

mechanistic and a system-level perspective.

1.2 Literature Review

The dynamic behavior of mitochondrial networks—driven by the fundamental
processes of fusion, fission, biogenesis, and degradation—plays a crucial role in
cellular homeostasis, signaling, and stress response. As direct experimental access to
these processes remains limited by spatial and temporal resolution constraints,
computational modeling has become an indispensable methodology for probing
mitochondrial dynamics across scales. Over the past decade, the modeling paradigm
has undergone a marked evolution, progressing from highly abstract, topology-based
representations to sophisticated, data-informed simulations capable of capturing
spatial heterogeneity, temporal continuity, and agent-level physiological variability.
This literature review provides a structured examination of this progression,
beginning with foundational graph-theoretical models and advancing through recent
developments in mechanical, spatiotemporal, and agent-based frameworks. Through a
comparative analysis of seminal contributions—including those of Sukhorukov et al.

(2012), Holt et al. (2024), Wang et al. (2023), and—we delineate how successive

7
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generations of models have incrementally relaxed core assumptions, integrated
empirical data, and expanded the explanatory and predictive scope of mitochondrial

network simulations.

1.2.1 The Fundamental Logic of Computational Modeling

Computational modeling has become an essential methodology across the
physical, life, and social sciences, providing a systematic framework for simulating,
explaining, and predicting the behavior of complex systems [23][24]. A computational
model is fundamentally an abstraction of a real-world system, constructed through
mathematical or algorithmic representations of entities and their interactions. These
models enable researchers to explore how system-level phenomena arise from
localized rules, often under conditions that are analytically intractable or

experimentally inaccessible.

At the core of computational modeling lies the principle of simplification and
abstraction. Rather than attempting to replicate every molecular or environmental
detail, models isolate and encode the essential rules that govern system behavior [25].
This formalization of hypotheses turns simulation into a laboratory for thought
experiments, letting investigators probe the logical consequences of assumptions

before turning to the bench.

Computational models typically serve three interrelated purposes: explanatory,
predictive, and exploratory [26][27]. As explanatory tools, models help illuminate the
mechanisms underlying observed phenomena—such as pattern formation, emergent
organization, or non-linear feedback. Predictively, they can be used to forecast system
behavior under new conditions, guiding experimental design or policy decisions.
Exploratorily, models allow for the simulation of hypothetical scenarios that are

impractical to study experimentally due to ethical, financial, or technical constraints.
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The utility of a computational model lies not in its capacity to replicate every
detail of a system, but in its ability to generate insight through tractable
approximations. Effective models often rely on assumptions such as discretizing time
and space, lumping molecular species into classes, or limiting interactions to nearest
neighbors. While these assumptions introduce simplifications, they are justified
insofar as they preserve the dynamics of interest. As Ellis and Kopel (2015) argue, the
value of a model is ultimately measured by its ability to connect micro-level

mechanisms with macro-level observations in a coherent and testable framework.

In the context of biological systems—such as mitochondrial networks,
computational models are particularly powerful because they can encode both spatial
and topological features. Agent-based models and reaction-diffusion systems, for
instance, allow the simulation of dynamic morphologies driven by local interactions
such as fusion and fission. When initialized from empirical data, such as microscopy-
derived skeletons, and validated through statistical comparison, these models offer a

rigorous yet flexible approach for hypothesis testing and system-level inference.

The framework developed in this study reflects these modeling principles. It
combines a particle-based reaction-diffusion environment with graph-based structural
logic, enabling the simulation of mitochondrial network evolution under user-defined
conditions. Through repeated simulation, parameter sensitivity analysis, and
comparison to experimental data, the model exemplifies how computational
abstraction can yield biologically meaningful insights—without requiring an

exhaustive description of every molecular event.

1.2.2 Assumptions Underlying Mitochondrial Network Models

Modeling the mitochondrial network at the cellular scale involves several
simplifying assumptions that are critical for tractability and simulation efficiency

[20]. These assumptions are not arbitrary; rather, they are motivated by experimental
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observations and carefully tuned to reflect biologically plausible constraints. The aim
is not to simulate mitochondria in exhaustive molecular detail, but to capture the
essential mechanisms—namely fusion and fission—that govern network formation

and transformation.

A foundational assumption in mitochondrial network modeling is that the
structural state of the reticulum can be adequately represented as a discrete graph,
where nodes correspond to specific functional or topological features (e.g., free ends,
internal segments, branching points), and edges represent mitochondrial tubules. This
abstraction enables the application of graph-theoretical and kinetic modeling tools

while sidestepping the complexities of membrane dynamics or continuous mechanics.

One key simplification is the restriction of node degrees to three fundamental
types—k = 1 (end points), k = 2 (linear connections), and k = 3 (branching
nodes)(fig.1 4.). Higher-degree nodes (e.g., k > 3) are rare in fluorescence microscopy
images and often result from optical artifacts or accidental projections of unrelated
segments along the z-axis. Studies have shown that >96% of branching nodes in well-
segmented mitochondrial skeletons are of degree 3[28], making this a robust

constraint for modeling efforts.

The reaction mechanisms themselves are also idealized into four archetypal
transformations: tip-to-tip fusion/fission and tip-to-side fusion/fission(fig 1.4.) . These
are mapped onto changes in node degree within the network and represented through
simple kinetic rules. For example, two free ends may merge to form a linear segment
(2X1 — X>), or a free end may attach to a linear segment to form a branch (Xi + X —
Xs). Corresponding fission events reverse these transformations. This minimalist
reaction scheme effectively reproduces the observed network morphologies across

multiple conditions.

10
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Spatial effects are treated implicitly rather than explicitly in many formulations.
While real mitochondria move along cytoskeletal filaments and exhibit spatially
heterogeneous behavior, the well-mixed approximation is often adopted, assuming a
homogeneous intracellular environment [29]. This is justified by experimental
simulations showing that frequent interactions with differently oriented cytoskeletal
fibers result in rapid randomization of movement, making localized correlations

negligible over longer timescales.

Another assumption is the time-scale separation between fusion/fission events
and other mitochondrial processes, such as biogenesis, degradation (mitophagy), or
signaling. These slower processes are excluded from the core dynamic equations,
allowing the model to focus exclusively on topological evolution. However, the
framework remains extensible and could incorporate these factors in future studies

targeting long-term dynamics.

Finally, reaction rates are often assumed to be constant, independent of
intracellular protein gradients or local biochemical conditions. Although more detailed
models may include time- and concentration-dependent rate functions, constant-rate
kinetics remain useful for evaluating general network behavior and for identifying
phase transitions such as percolation, where small changes in rate ratios (e.g.,

fusion/fission) yield large structural reorganizations.

Together, these assumptions yield a robust, generalizable framework that enables
the simulation of mitochondrial network evolution under various physiological and
pathological conditions. By abstracting away unnecessary complexity, the model
allows for focused investigation of the reticulum’s structural dynamics, paving the
way for hypothesis testing and eventual parameter calibration against experimental

data.

11
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One-degree Node Two-degree Node  Three-degree Node

Node type:

Reaction type:

Tip-to-tip reaction: .—. + .'. - m

Tip-to-side reaction: .—. + § “ .§

Figure 1.4. Topological classification of nodes and structural reaction types in

mitochondrial networks.

This schematic defines node types based on connectivity: one-degree (red), two-
degree (green), and three-degree nodes (blue). Two key structural reactions are
illustrated—tip-to-tip fusion, which joins two linear segments to form a continuous
path, and tip-to-side fusion, which creates a branched three-way junction. These

reactions are reversible and underpin mitochondrial network remodeling.

1.2.3 Simulation focus on spatial constraints and mechanical forces

In this section, we critically assess the simulation strategy presented in Holt et al.
(2024) [30] to evaluate how it aligns with or diverges from the modeling assumptions
outlined in prior mitochondrial network frameworks, such as those in Sukhorukov et

al. (2012) [20].

The model presented in Holt et al. represents a significant expansion of previous
non-spatial and deterministic models by incorporating spatiotemporally resolved,

stochastic simulations governed by a mechanistic Langevin dynamics framework (fig

12
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1.5.). In contrast to earlier formulations that assumed a homogeneous, well-mixed
cellular environment with implicitly averaged fusion/fission interactions, the current
simulation explicitly tracks individual mitochondrial segments in 3D or 2D space

using mechanical rules for bending, stretching, steric interaction, and confinement.

Where earlier models encoded mitochondrial fission and fusion as
phenomenological rules operating on a graph of node degrees 1-3, Holt et al. derive
their interactions from a physically grounded scheme, modeling fusion as a
probabilistic bond formation between well-aligned mitochondrial ends within a
reaction radius and fission as a rate-dependent bond breakage determined by local
mechanical constraints. Crucially, fusion is conditional not only on proximity but also
on angular alignment—a departure from earlier topological rules that abstracted these

mechanics away.

The assumptions about node degrees are preserved—both models limit network
topology to nodes of degrees 1-3, excluding higher-order junctions due to their
experimental rarity. However, Holt et al. challenges the assumption of uncorrelated
reaction events. While previous models assumed that the stochastic independence of
fusion and fission was adequate within a mean-field environment, the newer
framework introduces time-delayed reactivation (“recharge”) mechanisms after
fission events. This refinement acknowledges that newly fissioned mitochondria are
not instantly fusion-competent—an insight aligned with empirical observations but

absent from traditional models.

Another key divergence lies in how simulations relate to measurable quantities.
Holt et al. directly calibrates their simulation using empirical fusion/fission rates and
mitochondrial density data from mammalian and yeast cells [31], allowing
dimensionless parameters like k¢ to be interpreted in minutes. Furthermore, they map

microscopic parameters to macroscopic observables (e.g., segment length, cluster

13
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size, connectivity) using a combination of agent-based simulation and mean-field

reduction, thereby creating a bridge between local dynamics and emergent structure.

In sum, the simulation set up by Holt et al. does not violate the assumptions in
earlier models but rather *extends and refines* them. It transforms a
phenomenological system into a mechanically consistent, biophysically realistic
model that remains compatible with the topological constraints established in prior
work, while introducing time-dependent, geometry-sensitive rules that better reflect

the physical and biochemical realities of mitochondrial remodeling.

Node Position Dynamics
dr - o
A F(B) 4 F(mv(:h)
Hat

Brownian Force Mechanical Force
(B) @(B) _ o1 s s = (mech \
F(ilAJ'x)F('inz) kaTO(”‘Q)OU"J?) F(mec ) = _a?(Ebend =t Estretch + Esteric e Econf;
Bending Energy

B B 2
Ebend:_e_(i Zcosf),-—e—; Z 2005(9[‘”—%)-

ie{deg 2} ie{deg 3} j=1

Figure 1.5. Forces governing node position dynamics in the mitochondrial network

model.

The Node movement is governed by a combination of stochastic Brownian forces and
deterministic mechanical forces. The total force includes contributions from bending

energy, stretching, steric repulsion, and conformational constraints. Bending energy is
specifically defined for two- and three-degree nodes to penalize deviations from linear

or Y-shaped configurations, respectively.
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1.2.4 Advances in Dynamic Simulation and Temporal Network Tracking

Building upon earlier graph-based representations of mitochondrial networks that
were largely static or limited to topology without spatial-temporal integration, Wang
et al. (2023) introduce MitoTNT, a temporal network tracking framework designed to
extract and quantify four-dimensional (4D) mitochondrial dynamics from live-cell
lattice light-sheet microscopy data [32][20]. Their work notably extends prior
assumptions and modeling limitations described by Sukhorukov et al. (2012), who
modeled mitochondrial networks through discrete tip-to-tip and tip-to-side
fusion/fission events within a non-spatial, well-mixed graph-based formalism. The
primary innovation in the MitoTNT framework is the explicit integration of spatial
coordinates and time stamps to reconstruct dynamic mitochondrial behavior at

sub-second resolution, enabled by lattice light-sheet imaging [34].

To validate the tracking algorithm, Wang et al. implement a reaction-diffusion
simulation using ReaDDy?22, a particle-based platform that captures motion,
branching structure, and remodeling events at a mesoscopic scale [33][38]. Unlike
earlier assumptions of spatial homogeneity or well-mixed conditions, their model
includes spatial heterogeneity and explicitly simulates motility of skeleton nodes
under realistic reaction constraints. Notably, fission and fusion are implemented as
structural reactions—where bonds are created or deleted between connected
mitochondrial particles—and these reactions are calibrated to match experimental

observations of network morphology and dynamics.

This approach relaxes several of the simplifying assumptions from earlier

models:

®  Spatial tracking is no longer abstracted; each mitochondrial segment,
including bulk (degree-2) nodes, is discretized and tracked frame-by-frame

in 3D space.

15
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® Temporal correlations and motion patterns are explicitly measured,
revealing patterns such as rotational or diffusive motility, and dynamic

remodeling consistent with asymmetric fission and fusion events [36].

® The simulation incorporates topology-informed tracking via optimization
(linear assignment problem with spatial and topological cost terms),
ensuring continuity in temporal graphs even in dense or complex network

regions.[37]

® [t also captures non-trivial effects of pharmacological perturbations, such as
reduced network resilience or increased reachability after drug treatment—

phenomena not modeled in previous theoretical frameworks.

Hence, while the foundational principles from earlier models (e.g., importance of
tip-mediated events, emphasis on node degree distributions, and reaction-based
remodeling) are preserved, the MitoTNT framework extends them into a full
spatiotemporal domain and enables high-throughput validation against experimental
data. In doing so, it bridges the gap between conceptual graph models and empirical

network behavior observed in live cells.

1.3 Research Significance and Impact

As outlined in the preceding literature review, the modeling of mitochondrial
networks has progressed from simplified, topology-driven abstractions toward
increasingly detailed frameworks that incorporate spatial, temporal, and dynamic
remodeling processes. This evolution has enabled more biologically meaningful
simulations of mitochondrial behavior; however, many existing models are

constrained by fixed assumptions, limited parameter flexibility, or dependence on
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specific experimental datasets. These limitations can restrict their utility in
exploratory studies or theoretical investigations of network behavior under diverse or

hypothetical conditions.

This thesis addresses these challenges by developing a flexible computational
framework for simulating mitochondrial network dynamics. The model is designed to
incorporate key structural and behavioral features of mitochondria—such as fusion
and fission processes, spatial topology, and network remodeling—while allowing
users to assign parameter values freely based on theoretical considerations or intended
experimental scenarios. This parameter flexibility facilitates a broad range of
investigations, including sensitivity analysis, phase-space exploration, and hypothesis

generation, without requiring direct integration of experimental datasets.

The significance of this work lies in its ability to support exploratory and
theoretical studies of mitochondrial networks across a variety of physiological and
pathological conditions. By simulating how different fusion/fission rates, node
configurations, or spatial constraints influence global network properties—such as
degree distribution, connectivity, or fragmentation, the model provides insights into
the fundamental mechanisms governing mitochondrial morphology and stability.
Furthermore, the framework enables researchers to test how shifts in model
parameters may mimic stress responses or therapeutic interventions, thereby

generating predictions that can inform future empirical studies.

In summary, this thesis contributes a generalizable and customizable simulation
platform for studying mitochondrial network dynamics. By balancing structural
realism with parameter flexibility, it offers a valuable tool for probing the emergent
behavior of mitochondrial systems and for guiding experimental inquiry through

computational experimentation.
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1.4 Specific Aim

The overarching goal of this research is to construct a Python-based
computational pipeline that couples segmented fluorescence microscopy with
particle-level reaction—diffusion simulation (ReaDDy?2) to analyze and predict
mitochondrial network dynamics. At its core, the framework links image-derived
structure to a physics-grounded model so that hypotheses about fusion—fission

regulation can be tested quantitatively across pharmacological conditions.

This aim is pursued through a six-stage methodology. First, high-resolution
mitochondrial images in proprietary. czi format are converted into analysis-ready
stacks, eliminating user bias by directly importing segmented skeletons rather than
relying on manual tracing. Second, skeletonisation and graph reconstruction in Python
(using scikit-image, skan, and NetworkX) translate pixel data into explicit node—edge
lists, providing a precise topological description ready for simulation. Third, these
graphs are instantiated in ReaDDy?2 as three-dimensional networks of bonded
particles, creating a flexible platform capable of simulating fusion and fission under
diverse treatment regimes. Fourth, stochastic reaction rules govern bond formation
and dissociation, while diffusion and bending forces drive spatial reconfiguration;
throughout, the engine records heterogeneous data stream coordinates, bond states,
reaction counts, and event positions—to maximise downstream analytical
robustness. Fifth, the evolving topology is rendered as PDB/PSF sequences, enabling
visualisation that can be fed into tracking algorithms for independent validation of
reconstruction accuracy. Finally, statistical ensemble runs perform cross-validation
between simulated ground truth and microscopy observations, allowing the
identification of latent mitochondrial states that may underlie observed image

variability.

By integrating unbiased image import, treatment-agnostic simulation,

multi-modal data logging, high-fidelity visualisation, and systematic cross-validation,

18
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the pipeline delivers a reproducible and extensible environment for probing how

molecular interventions reshape mitochondrial architecture over time.
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2. Chapter 2: Methods and Materials

2.1 ReaDDy2 Package Overview

ReaDDy2[33] (Reaction-Diffusion Dynamics) is a particle-based simulation

framework designed for modeling reaction-diffusion systems at a spatially minimal

scale. It is particularly useful for simulating biochemical and biophysical processes

where spatial diversity and stochastic effects play a significant role. Unlike traditional

mean-field or continuum-based reaction-diffusion models, ReaDDy?2 explicitly

represents particles as discrete entities and simulates their movement and interactions

within a defined environment.

2.1.1 Key Features and Capabilities

1. Particle-Based Modeling

ReaDDy2 using individual particles with distinct properties to simulate
molecules, proteins, or other biological entities.
To simulate the realistic biological entities through space, Particles diffuse,

or transport follow by the Brownian motion.

2. Reaction Pathways and Kinetics

Users can define complex reaction networks, naming reaction rules no
matter if they are unimolecular or bimolecular reaction.
To show reaction event is stochastic, the framework includes reaction

propensity calculations.

3. Diffusion and Spatial Constraints

Each particle species is assigned a diffusion coefficient, allowing particles
to have different mobility properties in the simulation.

To reflect biological or physical constraints or to avoid edge effects, the
environment can be constrained with boundary conditions, obstacles, and

classified regions.

4. Stochastic Reaction-Diffusion Dynamics

To ensuring precise capturing reaction kinematic at microscopic scales,
ReaDDy?2 package implement stochastic simulation algorithms such as the

Gillespie reaction handler.
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® Because of rare or noise-sensitive biochemical, this method generally more
useful than a deterministic model when capturing reaction.
5. Topology and Coarse-Grained Modeling
® ReaDDy?2 package supports the representation of macromolecular
structures, such as polymers, networks, or protein complexes, through
topology-based modeling.
® This feature allows users to model complex biomolecular modification and
dynamic rearrangements.
6. High-Performance Computing and Parallelization

®  ReaDDy?2 using CPU-based parallel computing to provide efficient
2.1.2 Simple System Setup

The simulation environment was defined as a 10 x 10 x 10 nm3 cubic box with
periodic boundary conditions to prevent boundary effect. The system initially contains

N particles distributed randomly within the box size. The primary species include:

® A:represents as reactant molecule
® B: represents as second reaction molecule

® (: Product formed via fusion of A and B
Each species was assigned a diffusion constant

® A,B:Dyp=0.1um?/s
® C:D,=0.05um?/s

The primary reaction modeled was a fusion event:

A+B - C

This reaction was implemented at a reaction rate constant ks, = 1.0 and
reaction radius of 1 nm. Reaction kinetics were simulated by the Gillespie reaction

handler, ensuring precise stochastic reaction events happen.
2.1.3 Simulation Workflow

The simulation followed a structured workflow:

21

doi:10.6342/NTU202503815



1. System Initialization: defined the simulation area, particles or topologies species,
potential, structural topology, reaction parameters, and placed initial particles
randomly.

2. Execution Phase: the simulation was executed for 5000 steps with a timestep of
le-3 ns.

3. Data Collection: Tracked species observes such as number of particles, reaction
count, and spatial distribution over time.

4. Post-processing: Analyzed the system using particle count statistics and spatial

visualization using VMD software
2.1.4 Implementation in Python

The simulation was implemented in Python using ReaDDy?2, A simplified version

of the implementation is shown below:

import ReaDDy2

# Define the Reaction-Diffusion System

system = ReaDDy2.ReactionDiffusionSystem(box size=[10, 10, 10])

# Add particle species with their respective diffusion constants
system.add species("A", diffusion_constant=0.1)
system.add species("B", diffusion_constant=0.1)

system.add species("C", diffusion_constant=0.05)

# Define a binary fusion reaction: A + B -> C

# - rate: how likely the reaction is to occur when particles are c
lose

# - radius: max distance within which A and B can react

system.reactions.add("fusion: A + B -> C", rate=1.0, radius=1.0)

# Set Up the Simulation

simulation = system.simulation(kernel="CPU")

# Use 16 CPU threads for better performance

simulation.kernel_configuration.n_threads = 16
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# Add initial positions of A and B particles
simulation.add_particles("A", positions=[[1, 1, 1], [2, 2, 2]])
simulation.add_particles("B", positions=[[3, 3, 3], [4, 4, 4]])

# Define output file for the simulation trajectory

simulation.output_file = 'simple_system.h5'

# Use Euler-Brownian Dynamics integrator for particle motion

simulation.integrator = "EulerBDIntegrator"

# Use Gillespie algorithm to handle stochastic reactions

simulation.reaction_handler = "Gillespie"

# Set observables:

# - Save full particle trajectories every 300 steps
simulation.record trajectory(stride=300)

# - Observe and log individual particle positions every step
simulation.observe.particles(stride=1)

# - Topology tracking not used here but included for completeness

simulation.observe.topologies(stride=300)
# Show simulation progress every 10 steps
simulation.progress output stride = 10

simulation.show progress = True

# Run the Simulation

simulation.run(n_steps=5000, timestep=1le-3)

# Convert Output for Visualization in VMD
trajectory = ReaDDy2.Trajectory('simple_system.h5")

trajectory.convert_to_xyz()

2.1.5 ReaDDy?2 Package Function Explanation

1. The box size
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system = ReaDDy2.ReactionDiffusionSystem([X, Y, Z]

If we set box_size = (X, Y, Z), the center of box will be set at (0, 0, 0) and span
® x-axis: [-X/2, X/2)
® y-axis: [-Y/2,Y/2)
® z-axis: [-Z/2,7/2)

2. Periodic boundary conditions

system = ReaDDy2.ReactionDiffusionSystem([1,1,1], periodic_boundar

y_conditions=[False, True, True]) #[X, Y, Z]

In most cases, if we the set box size also needs set the boundary conditions avoid
boundary effect.

3. Temperature

Temperature = T * ReaDDy2.units.kelvin

® T: represents as the variable of the temperature in Kelvin

® ReaDDy2.units.kelvin: represents as the unit conversion to make sure the
temperature is implemented correctly.

If you do not set the specified temperature, the default temperature will be 293K

4. Particle species

# default unit: [(nm)] ~2 s~(-1)
system.add_species("A", diffusion_constant=1.)
# set up the new physical unit: [km)] 22 [hour] ~(-1)

system.add_species("B", diffusion_constant=2. * ReaDDy2.units.km**

2 / ReaDDy2.units.hour)

This is one of the most important functions in ReaDDy?2 package. To add particles
in the simulation, we given particle “name” and its diffusion constant D with units of

length?*time 1. The purpose of diffusion constant is deciding the magnitude of
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random displacement follow by the governing dynamics using overdamped Langevin

equation:

dx(t) D VV(x(t))

dt ot @

®  Xx(t): represents as a vector € R related to the instantaneous position of a
particle at time t.
V: represents external potential field
-VV: represents the gradient of the potential, the negative sign means the
force will push the particle toward lower energy area.
kj: represents the Boltzmann constants.
T: represent the kelvin temperature.
&(t): represents random noise of velocity with formula and condition:

(@) =0, () =2D5(t - t")
B The first term means the noise has no bias, totally random.
B The second term means the noise is time-uncorrelated, meaning that it
changes randomly and does not depend on past value.
5. Reaction (this function only involved isolated particles interaction) (unused)

A. Conversion:

system.reactions.add_conversion(name="conv", type_from="A", type_to=
"B", rate=0.1)

An isolated particle of type A can be transferred into type B with fixed rate

constant A:
A
A—->B
B. Decay:
system.reactions.add _decay(name="decay of A", particle type="A", rate=0.

1)

An isolated particle can be vanished with fixed rate constant A:
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A
A- 0
C. Fusion:

system.reactions.add_fusion( name="fus", type_froml="A", type_from2=

"B", type_to="C", rate=0.1, educt_distance=2.)

An isolated particle of type A can be fused with another isolated particle of type

B to produce a particle of type C with fixed rate constant A and fixed react radius R.
R A
A+B - C
D. Fission:

system.reactions.add_fission( name="fis", type_from="C", type_tol="A

", type_to2="B", rate=0.1, product_distance=2.)

An isolated particle of type C can be dissociated into two particles of type A and
B with a fixed constant rate A and fixed distance R between two particles after the

fission happens.
A R
C - A+B
E. Enzymatic:

system.reactions.add_enzymatic( name="enz", type_catalyst="C", type_

from="A", type_to="B", rate=0.1, educt_distance=2.)

An isolated particle of type A can be reacted with enzyme of type C to produce a

particle of type B with fixed rate constant A and fixed reaction radius R.

R 2
A+C -»> B+C

6. Potentials
A. External potential

a. box potentials

system.box_size=[3, 3, 3]

26

doi:10.6342/NTU202503815



2. system.potentials.add box( particle type="A", force_constant=10.,
origin= [-1, -1, -1], extent= [2, 2, 2]) # note that box size and

box potential size are totally independent.

0.5

Figure 2.1. Visualization of an external box potential in 3D space.

This plot illustrates the spatial profile of a box potential applied to particles of
type "A" in a simulation domain of size [3, 3, 3]. The box potential is defined
independently by its own origin ([-1, -1, -1]) and extent ([2, 2, 2]), generating a
harmonic confinement with force constant 10. The color scale represents the potential

energy magnitude across the 3D space.

Since if we don’t want a periodic boundary and try avoiding boundary effect, we
usually set box potential inside the box (fig 2.1.). The logic of the code is we can
define every single type of particle’s box potential with different force constant and
coverage. And the logic of setting coverage is you have origin locate at front lower
left and extend to the back upper right. From the above code example, the coverage of

the potential will be x: [-1, 1], y: [-1, 1], z: [-1, 1]. The potential energy term given by:
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V(x) = Z

=1

d 0, lf X; € Ci
1
{E kd(x;, C)?, otherwise

C;: represents three-dimension interval with [origin;, origin; + extent;]
k: represents the force constant
d(x;, C;):represent the shortest distance between the particle’s position x; and

the nearest boundary of the box.

Since the box potential is soft potential, it means particles may go through the
boundary of box potentials and drag back immediately. Beware setting the size and

the force constant.
b. Spherical potential (unused)
This kind of potential can be divided into three types:

I. Spherical exclusion

1. system.box_size = [3, 3, 3]
2. system.potentials.add_sphere_out(particle_type="A", force_constan

t=10., origin=[0, 0, 0], radius=3.)

15
Z 10
_ 5
\1\
Y o2 N &
% 9.

Figure 2.2. Visualization of a spherical exclusion potential in 3D space.
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The figure visualizes a radial potential applied using add sphere out, where particles
of type "A" experience a repulsive harmonic force outside a spherical boundary of
radius 3.0 centered at the origin. The system box size is set to [3, 3, 3], and the force
constant is 10. The color scale indicates the increasing potential energy as particles

approach or exceed the boundary.

Add this kind of potential to prevent particles of a specific type from entering the
interior of a defined sphere(fig 2.2.). The associated energy contribution is described

by the following expression:

1
Z _ — 2 _
Ve = Jgkllx—cll =2 if llx—cll, <7
0, otherwise

® k: represent the force constant.
® c: € R3 , represent the center of the sphere.

® 1 € R, ,represent the radius of sphere.
This potential is also soft potential.

II. Spherical inclusion

system.box_size = [3, 3, 3]
system.potentials.add_sphere_in(particle_type="A", force_constant

=10., origin=[0, @, 0], radius=1.)
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Figure 2.3. Visualization of a spherical inclusion potential in 3D space.

The figure visualizes a radial potential applied using add sphere in, where particles
of type "A" experience a repulsive harmonic force inside a spherical boundary of
radius 3.0 centered at the origin. The system box size is set to [3, 3, 3], and the force
constant is 10. The color scale indicates the increasing potential energy as particles

approach or exceed the boundary.

Applies a spherical potential that confines particles of a designated type within
the boundary of a defined sphere (fig 2.3.). The corresponding energy expression is as

follows:

1
— — — 2 g —
V(x) = Zk(”x clla— 1% ifllx—cllz =,

0,otherwise
®  k: represent the force constant.
® c: € R3, represent the center of the sphere.

® 1 € R, ,represent the radius of sphere.

This potential is also soft potential.
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II1. Spherical barrier

system.box_size = [3, 3, 3]

# as a barrier
system.potentials.add_spherical_barrier(particle_type="A", height=1.
0, width=0.1, origin=[0, 0, 0], radius=1.)

# sticky

system.potentials.add_spherical_barrier(particle_type="A", height=-1.
0, width=0.1, origin=[0, 0, 0], radius=1.)

a Custom Radial Potential Custom Radial Potential

0.8 -0.2 1

0.6

Potential V
Potential v

0.4 4

0.2 4 —0.8 A

0.0 1 —1.0 A

T T T T T T T T T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 050 075 1.00 125 1.50 175 2.00
Distance from origin |x —c| Distance from origin |x —c|

Figure 2.4. Custom spherical barrier potentials in ReaDDy2 simulations.

(a) A repulsive spherical barrier centered at radius 1.0 with height = +1.0 and width =

0.1 creates a sharp energy peak, preventing particles from crossing the defined shell.

(b) An attractive (“sticky”) barrier with height = —1.0 forms a narrow energy well at

the same radius, allowing localization of particles near the shell.

Both potentials are defined radially from the origin in a box of size [3, 3, 3] using

add_spherical barrier.

This potential creates a radial barrier centered at a specified origin, defined by a
particular radius. It is characterized by an energy height and a finite width. If the
height is negative, the potential functions as an attractive or "adhesive" spherical

region. The potential is constructed using segments of harmonic functions, ensuring
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that the energy profile remains smooth and continuous, while the resulting force is

continuous but not differentiable. The corresponding energy expression is:

r 0, if llx—cll,<r—w
2h . . w
F(||x—c||2—r+w), ifr—w < ||x—c||2<r——7
2 2
| h—W—};(||x—c||2—r) ,ifr—% < ||x—c||2<r+g
2h 2 w w
m(“x—c”z—r—w) , lfr+§ < ||x—c||2< r+§

\ 0, otherwise
This potential is also soft potential.
B. Pair potentials

a. Harmonic repulsion

# we can set the pair potential between same particle type with sa
me radius

system.potentials.add_harmonic_repulsion("A", "A", force_constant
=10., interaction_distance=5.)
system.potentials.add_harmonic_repulsion("B", "B", force_constant
=10., interaction_distance=6.)

#or we can set the pair potential between different particle types
with its own radius.
system.potentials.add_harmonic_repulsion("A", "B", force_constant

=10., interaction_distance=2.5+3.)

To avoid particles overlapping or to simulate a radius of a particle type, we can

add potential pairs between them. The potential formula given by:

1 2
V) = k([ =xll, =), il —xll, <
0, otherwise

® k: represents the force constant.

L ||x1 — Xy |2: represents the shortest distance between particles

® 1: represents the radius set in the code
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The harmonic repulsion is also soft potential.

Harmonic repulsion

0.5 4

0.4 4

0.3 1

energy

0.2 1

0.1 4

0.0+

0.4

0.0 0.2

T
0.6 0.8 1.0 1.2 1.4

distance

Figure 2.5. Harmonic repulsion pair potential.

This plot illustrates the energy profile of a harmonic repulsion potential, which

penalizes close-range interactions between particles. The potential energy decreases

smoothly with increasing interparticle distance, reaching zero beyond the cutoff

range. This interaction is typically used to prevent particles overlapping in

simulations.

b. Weak interaction piecewise harmonic (unused)

system.potentials.add_weak_interaction_piecewise_harmonic( "A", "

B", force_constant=10., desired_distance=0.5, depth=1., cutoff=1.)

V(|lx = xall,) = V) =5

\

1
Ek(r—d)z—h, ifr<d

® k: represents the force constant.

h(r,—d\ 2 ) _ r.—d
E( - ) (r—d?—h ifd<r <d+ =
hr, —d\ ? , r.—d
_E( - ) (r—1)? ifd+ <r<r
0, otherwise
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[1x1 — x5 ||,: denotes the Euclidean distance between two particles,
r: represents the interparticle distance.
d: represents the preferred equilibrium distance.

h: represents the depth of the potential well.

1.: represents the cutoff radius beyond which the interaction is zero.

Piecewise harmonic interaction

0.2 1

0.0 1

—0.2 1

energy

—0.4 4

—0.6

—0.8 1

—1.0 1

T
0.0 0.2 0.4 0.6 0.8 1.0 12 1.4
distance

Figure 2.6. Piecewise harmonic interaction potential.

This potential defines a short-range attractive interaction that transitions smoothly to
zero beyond a cutoff distance. The energy well promotes moderate attraction between

particles, while ensuring bounded interaction strength and computational stability.

c. Lennard-Jones (unused)

system.potentials.add lennard jones("A", "B", m=12, n=6, cutoff=2.5, s

hift=True, epsilon=1.0, sigma=1.9)

Vi) = {" )

m

_ (g)n] =V, (), ifr <rc

0, otherwise

where:

o vym=ki(%) ~()]

r
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—&
™ i
Tmin Tmin

Parameter Descriptions:

r= ||x; — x,||,: denotes distance between two particles.

o: represents distance at which the potential is zero.

e: represents depth of the potential well, with V;(rn) = —e.

Tmin: represents the distance at which the potential reaches its minimum.

1.: represents the cutoff radius.

m, n: represents exponents controlling repulsive (m) and attractive (n)
strength, usually m =12, n=6.
®  k: represents the force constant derived to ensure the correct potential depth at

r = Vmin-
This potential is not soft potential.

20 Lennard-Jones potential with m =12, n=6 (Zoomed)

—— Shifted L) Potential
15 e
. —-=- =250

£
1.0

0.5

0.0

energy

—0.5

—

T T T
15 2.0 2.5 3.0 3.5
distance r

-1.0 1

—-1.5 4

-2.0 T
0.0 0.5

Figure 2.7. Zoomed-in view of a shifted Lennard-Jones potential (m = 12, n = 6)

This figure shows a shifted Lennard-Jones potential, highlighting its minimum energy
(&), interaction range (o), and cutoff distance (1, = 2.50). The potential captures both
short-range repulsion and mid-range attraction but was ultimately not used in the final

model.

d. Screened electrostatics (unused)
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system.potentials.add_screened_electrostatics( "A", "B", electrostatic_s
trength=-1., inverse_screening_depth=2., repulsion_strength=0.5, repulsi

on_distance=1., exponent=12, cutoff=2.5.)

—KT
e o\

V(||x1—x2||2)=V(r)= ¢ r +D(;) , ifr<r,
0, otherwise

r = ||x; — x3||,: represents the distance between two particles.

C € R: represents electrostatic interaction strength.

K € R: represents inverse screening length, controls how quickly the
electrostatic interaction decays.

D € R: represents strength of the core repulsion (units: energy).

o0 € R: represents radius where the core repulsion term becomes significant.
n € N: represents exponent of the repulsive term(dimensionless), determines
how sharply the repulsion increases.

® 1. € R: represents cutoff radius beyond which the potential is zero.

o Screened Electrostatics (Yukawa) with Repulsion and Cutoff

1.5+

1.0

0.5 A

0.0

energy V(r)

—0.5
=1.0 4

1.5 7 — screened Electrostatics + Repulsion

-

2.0 T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

distance r

Figure 2.8. Screened electrostatic (Yukawa) potential with repulsion and cutoff = 2.5.

This plot shows a repulsive Yukawa potential truncated at a cutoff distance r, = 2.5,
representing short-range screened electrostatic interactions. Although tested, this
potential was not incorporated into the final simulation due to its limited relevance to

mitochondrial dynamics.
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7. Topology

system.topologies.add_type("My topology type")
system.add_topology_species("T", diffusion_constant=2.0)

This is also very import function of ReaDDy?2 package, since when we try to
simulate the molecular level or any bio system, we may encounter big and complex
structures and networks. In code, we can define the structure or network type which
relates to how interact when particles react to it, and after that we can add the particle

type which allows us to react to the structure and network.

A. Topology Potential
Since ReaDDy?2 is particle-base model, even the particles been connected and
became the structure and network. The ReaDDy?2 still allowing particles which in the

structure have their own potential with others.

a. Harmonic bonds

system.add_topology species("T1", diffusion_constant=2.)
system.add_topology species("T2", diffusion_constant=4.)

# define the bond with same particle type
system.topologies.configure_harmonic_bond("T1", "T1", force_const
ant=10., length=2.)

# define the bond with different particle type
system.topologies.configure_harmonic_bond( "T1", "T2", force_cons

tant=10., length=2. )

This potential is very similar to the pair potential, to avoid the particle overlapping
in the structure, since harmonic bond is also soft potential, the distance between the

particles will slightly change from time to time. The formula given by:
V (|l = xall,) = V) =k (r —1p)?

® 1,: represents the preferred distance we set.
® [ represents the force constant
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b. Harmonic angles

system.add_topology_species("T1", diffusion_constant=2.)
system.add_topology_species("T2", diffusion_constant=4.)
system.add_topology_species("T3", diffusion_constant=4.)

# This potential also be defined with same particle type
system.topologies.configure_harmonic_angle("T1", "T1", "T1", force
_constant=1., equilibrium_angle=3.141)

# This potential also be defined with different particle type
system.topologies.configure_harmonic_angle("T1", "T2", "T3", force

_constant=1., equilibrium_angle=3.141)

Harmonic angle is a potential which involves three particles instead of two. We
can define a preferred angle degree and force between three connected particles in
the structure and network; this function helps maintain structural stability and
prevent unexpected distortions. This potential is also soft potential. The formula

given by:

2
V(6:x) = k(61jx — 60)
® 0,: represent the preferred angle.

® [ represent the force constant.

c. Cosine dihedrals (unused)

system.add_topology species("T1", diffusion_constant=2.)
system.add_topology species("T2", diffusion_constant=4.)
system.add_topology species("T3", diffusion_constant=4.)
system.add_topology species("T4", diffusion_constant=4.)
system.topologies.configure_cosine_dihedral(

“T1", “T2", "T3", "T4", force_constant=10, multiplicity=1., ph
ie=0.
)

proper dihedral angle ¢ is defined between four particles with positions x;, xj, Xk, and

x1. The associated potential energy is given by:

V(g) = k(1 +38€08(n¢ = ¢0))
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® ¢ denotes dihedral angle spanned by force particles with positions
X;, Xj, Xx, X;; measured between two planes formed by (xl-, Xj, xk) and
(xj, X, xl).
k € R: represents force constants.
n € Nso: Multiplicity, the number of energy minima over a full 360" rotation
of the dihedral.
® (¢, €[ —m, m]: represents phase offset angle (in radians), shifts the location of

the minima.

The iy, minimum of potential occurs at:

¢i=%(g— o+in), ieZ

B. Topology Reaction

Since in realistic bio systems, any kind of network, structure, chain or larger
complex is may not static, they can evolve reaction dynamically over time. In

ReaDDy2, we can use topology reaction function to achieve:

1. Changing particle types within a topology, which can alter interaction forces.

2. Breaking and forming bonds, leading to topology separation or reorganization.
3. Attaching free particles to existing topologies.
4

Connecting different topologies by adding new edges.

To handle the interaction between the particle and the topologies, this function has

two categories.

a. Structural reaction:

This function focuses on the adjustment of the structure and network when fission
happens. For example, there are four particles that are connected, they should have
three bonds and two angles. When fission happens on the right most of the particles,

in ReaDDy?2 package, it will automatically delete the bond and the angle of that
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particle to avoid unexpected error. It can be seen as a default function without extra
coding. If you want to customize the structural reaction section, it can be divided into

three steps:

1. The reaction function:

def no_op_reaction_function(topology):
recipe = ReaDDy2.StructuralReactionRecipe(topology)

return recipe

In this section, there are two important components that must be clarified which
are topology and recipe. If you want to know information about the topology, the code
will start from topology...etc. When we start collecting information from topology.
There are two basic datasets we need to build:
® cdges = topology.get graph().get edges(): get the all edge from the topology.
® vertices = topology.get graph().get vertices(): get the all vertex from the

topology.

We can use these two datasets to get the specific particle and then type this line
of code to preserve it: pix1 = e[0].get().particle_index. Once we have index of

particle, we finally get more information such as:

® topology.position of vertex(vertices[pix1]): get the position of particle with
specific index ([X, y, z]).

® topology.particle type of vertex(vertice[pix1]): get the type of particle with
specific index.

® topology.particle id of vertex(vertice[pix1]): get the unique id of particle with

specific index.

Once we have this information, we can combine it to get the particle or edge we

want and then use recipe code function to change its property such as:

® Recipe.change particle type(vertices[pix1]), type): change the particle with
specific index to the type you choose.
® Recipe.add edge(vertice[pix1], vertice[pix2]): add edge between two different

particles with specific index if they didn’t have edge previously.
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® Recipe.remove edge(vertice[pix1], vertice[pix2]): remove edge between two
different particles with specific index.

® Recipe.remove.edge(edge):same function as the last one but choose the specific
edge instead of the particle.

® Recipe.separate_vertex(vertice[pix1]): isolate the particle from the topology i.e.
remove all edge from the particle. It must be careful when using this function. It
may let the topology fall apart if the particle is in the critical position.

® Recipe.change topology type(type): change the entire topology by the type you
choose.

® Recipe.append particle(list_of neighbor vertices, particle type, position):
implant the particle to the topology by given position, particle type, the list of the

particles which try to connect and become one node of the topology.

2. The rate function

def my_rate_function(topology):
n = len(topology.get_graph().get_vertices())
if n > 3:
return .5 * n
else:

return 20.

This section decides how fast the speed of the reaction section happens following

the probability formula:

T

p=1—e*
® 1 € R,,: represent the rection rate.
® 1 time step.
This section operation is very similar to the rection function section, we extract
the information from the topology (edges or vertices) to get the rate we want.
Example from above, we can get the total length of edges from the whole topology,

and we set the rate base on that.
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3. Adding a structural reaction

system.topologies.add_structural_reaction(
name="my_ structural reaction",
topology type="TType",
reaction function=no_op reaction_ function,
rate_function=my_rate_function,

raise if invalid=True, expect connected=False

Once we finish the reaction and rate section , finally we can import this structural
reaction into simulation with extra information: what name is this reaction, what
topology type will happen this reaction, when reaction is invalid will raise an error or
just skip it , and after reaction happen will let the topology connected as the same or

fall apart into two or more independent topology.

b. Spatial reaction

system.topologies.add_spatial_reaction('TT-Fusion: T1(pl)+T2(p2)
-> T3(p3--p4)', rate=1., radius=1.)

Spatial reactions occur when particles are near each other and depend on both

particles and topology types. There are two main types:
® Fusion reactions: which form a bond between particles.
® Enzymatic reactions: which alter particles or topology types without bonding.

Each spatial reaction is defined by:
® A rate constant: indicating how often it occurs per time step.
® A radius constant: defining the search area for potential reactants.

To deal with complicate situation when spatial reaction happen, ReaDDy?2
package have multiple reaction type, let T; represent topology types and P;
represents particles:

® TT-Fusion: T1(p1)+T2(p2) -> T3(p3--p4)
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Merges a topology of type T1 with another of type T2 by bonding p1 and p2,
resulting in a new topology T3 with p3 and p4 as the bonded particle types.

® TT-Fusion-self: T1(p1)+T1(p2) -> T3(p3--p4) [self=true]
Similar to the previous case but allows particles within the same topology of

type T1 to fuse.

® TP-Fusion: T1(pl) +(p2) -> T2(p3--p4)
A free particle of type p2 bonds with a particle of type pl in topology T1,
forming topology T2 with the bonded particles becoming p3 and p4.

® TT-Enzymatic: T1(p1)+T2(p2) -> T3(p3)+T4(p4)
Alters particle and topology types without changing graph structure, potentially
modifying interaction dynamics.

® TP-Enzymatic: T1(p1)+(p2) -> T2(p3)+(p4)

Similar to TT-Enzymatic, but involves one topology and a single free particle.

2.2 Mitochondrial Dynamic Network Simulation Framework

To model the dynamics of mitochondrial networks observed in single-cell
microscopy experiments, we developed a reaction-diffusion simulation framework
using ReaDDy?2, a particle-based simulation package. This framework captures the
essential behaviors of mitochondrial structures by simulating particles with both
spatial and structural interactions—allowing for movement, diffusion, and
biochemical reactions over time. It is specifically designed to reflect the topological
evolution of mitochondria, including fission and fusion events that alter the network’s

connectivity.

Our simulation integrates empirical imaging data with computational modeling
to enable direct comparison between experimental observations and silico dynamics.
The following workflow outlines the complete process from image acquisition to

simulation and validation (fig 2.9.).

43

doi:10.6342/NTU202503815



44

doi:10.6342/NTU202503815



Fusion M wesp /
Fission

@

d.

@

Figure 2.9. End-to-end workflow for translating experimental mitochondrial images

into a particle-based ReaDDy simulation.

(a) Mitochondrial reaction schematic — Conceptual diagram summarizing the
elementary structural reactions (tip-to-tip fusion, tip-to-side fusion, and fission) and
their kinetic parameters. Arrows illustrate how the same tubular segment can merge,

branch, or split, establishing the rule set later used in the simulation.

(b) Mitochondrial network-structure schematic — Abstract network view in which each

tubule is represented as an edge and each junction/end-point as a node. Edge colors
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encode segment identity (e.g., parent branch vs. newly fused branch), clarifying how

local reactions remodel global topology.

(c) Raw fluorescence image — A greyscale live-cell frame showing a dense
mitochondrial reticulum. Individual fusion or fission events are difficult to discern
because neighboring tubules overlap optically, yielding a visually continuous sheet of

signal.

(d) Processed binary mask — The raw image is thresholder, denoised, and
morphologically cleaned to isolate the mitochondrial foreground (white) from
background (black). This representation preserves overall geometry while suppressing

intensity fluctuations.

(e) Skeleton-derived graph — Using scikit-image’s skeletonization and NetworkX, the
binary mask is reduced to a one-pixel-wide skeleton and converted into a node-edge
graph. Blue dots mark detected branch points and end-points; thin lines depict the

extracted edges, providing precise coordinates for every segment.

(f) Simulation snapshot with particle typing — A ReaDDy simulation initialized from
the graph in (e). Each skeleton node is replaced by a particle whose color encodes its
current role (e.g., red = end-point, teal = internal tubule node). The scene illustrates
how the experimental geometry is mapped onto a dynamic particle system where

fusion and fission rules from (a) can operate quantitatively.

Together, panels (a—f) trace the pipeline from raw microscopy data to a fully specified,

rule-based simulation ready for hypothesis testing and parameter sweeps.

2.3 Workflow Overview

1. Microscopy Image Extraction

High-resolution time-lapse fluorescence microscopy images of a single cell's
mitochondrial network are processed using ImageJ. This step involves extracting the

image stack representing sequential frames of mitochondrial morphology over time.
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2. Image Processing and Network Reconstruction

The image stack is processed using scikit-image, skan, and networkx to perform

skeletonization and convert the mitochondrial structures into node-edge graphs.

® Nodes represent branching or terminal points of the mitochondrial
network.
Edges represent the mitochondrial tubes connecting these points.
This graph-based representation is exported as CSV files storing node
coordinates and edge connectivity.

® Additionally, the degree of each node (i.e., its connectivity) is recorded and
logged across all frames, generating a reference dataset of real

mitochondrial network dynamics.

3. Simulation Initialization and Relaxation with ReaDDy2

Using the exported node and edge CSV files, we initialize a static mitochondrial
network in the ReaDDy?2 simulation environment. Each node from the CSV is added
as a particle with its corresponding spatial coordinate, while each edge defines a

bonded interaction between particles, effectively reconstructing the network topology.

At this stage, no reactions (e.g., fusion or fission) are introduced. Instead, the
system is allowed to relax dynamically under the influence of physical constraints
such as bond lengths, repulsion forces, and diffusion. This ensures the network
reaches a stable initial configuration—free of overlaps or unrealistic geometries—

before enabling reactive events in later simulation phases.

4. Dynamic Reaction-Diffusion Simulation

Once the initial network is constructed and relaxed, we introduce reaction rules—
including fission, fusion, fragmentation, and reassociation—into the ReaDDy?2
simulation environment. These reactions allow the mitochondrial network to evolve

over time through both spatial diffusion and topological changes.
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To analyze dynamic behavior, we employ two complementary simulation

strategies:
a. Single-run Full Data Simulation:

In one script, the simulation is run once, but with a rich set of observables

recorded over time, including:

Node degree changes, capturing local structural evolution,
Reaction event counts (e.g., number of fissions and fusions),

Particle positions and trajectories for spatial analysis,

Topology-level statistics, such as the number of connected components and

network fragmentation.

This run generates a detailed time series that provides insights into how the

network evolves and reorganizes during the simulation.

b. Multi-run Statistical Averaging

In the second script, the simulation is repeated 100 times, each starting from

the same initial network.
Only the node degree distribution is recorded for each run, focusing on:

Degree-1 (endpoints),
Degree-2 (linear connections),

® Degree-3 (branch points).

By averaging the degree probabilities across all runs, we obtain a robust,
statistically smoothed trajectory of network connectivity that helps mitigate

random fluctuations and better reflect overall trends.

This dual approach ensures both deep temporal insight from a single run
and quantitative reliability from multiple replicates, enabling cross-validation

between simulated outcomes and experimentally observed network dynamics.
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5. Visualization and Post-Simulation Validation

Following the Single-run Full Data Simulation, an .xyz file is automatically
generated and visualized using VMD (Visual Molecular Dynamics). This quick
rendering allows for initial quality control, confirming that the simulation ran

successfully and that the mitochondrial topology evolved without errors or crashes.

After verifying simulation integrity, we use the more detailed PDB and PSF
files—also generated from this run—for high-resolution, frame-by-frame
visualization in VMD. These snapshots provide an accurate visual timeline of the

network’s structural evolution.
The resulting image sequences can be:

® Compiled into videos for presentations or documentation,
® Used as synthetic benchmark data for testing and validating mitochondrial

tracking algorithms in downstream image analysis pipelines.

This visualization step is critical for both qualitative inspection and quantitative
image-processing validation, ensuring that the simulated mitochondrial dynamics

align with experimental expectations.

6. Quantitative Comparison with Experimental Data

This analysis is based on the results of the Multi-run Statistical Averaging
simulation, where the degree distribution of the mitochondrial network is tracked over
repeated runs. From these simulations, we compute the average probabilities of node

degrees (e.g., degree 1, 2, 3) at each time step.

These averaged simulation results are then directly compared to the degree

distribution logs extracted from time-series microscopy images of real mitochondrial
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networks. This quantitative comparison serves as a validation step to evaluate how

well the simulation captures the key features of biological mitochondrial dynamics.

By aligning trends between simulated and experimental degree distributions, we

can:

Assess the realism of the modeled reactions and structural behavior,
Identify discrepancies between model and biology,
Tune simulation parameters (e.g., fusion/fission rates, diffusion constants) to

better reflect observed cellular behavior.

This step bridges silico modeling and experimental observation, providing a data-

driven foundation for iterative model refinement.

2.4 Microscopy Image Extraction

This section introduces how to extract image from real cell mitochondria
network using ImageJ [39].

1. Open ImageJ and select czi file

[ (Fiji Is Just) ImageJ - o X ,
Edit Image Process Analyge Plugins  Window Help ) a. File Edit Image Process Analyze Plugins Window Help
MA@ o o]4]0] 1> G Ol o]/l A D0 o] oo

Open... (o4t YoMl lait or long click for menu) Running command: Select path

Open Next Ctrl+Shift+O

wio]slal |>

4 Choose afile

Open Samples >
Open Recent » WBHEQ: [ insl_tox 040122 time_check S «emekE-
Import ’ O zE B EHAS
=R [[] time_ins1_10uM_FCCP.czi 2022/4/1 T4 03:58
Show Folder > [ time_ins1_10uM_FCCP_1_2.czi 2022/4/1 T4 04:00
‘ [ time_ins1_10uM_oligomycin.czi 2022/4/1 T4 02:34
Close Ctri+W A& [) time_ins1_10uM_rotenone.czi 2022/4/1 T4 03:09
Close All Ctri+Shift+W [ time_ins1_control.czi 2022/4/1 T4 01:42
[ time_ins1_control_1_2_nodefinitefocus.czi 2022/4/1 T 01:52
Save Ctrl+S
Save As >
Revert Ctrl+Shift+R
Page Setup...
LS Ui EERBW):  [time_ins]_10uM_FCCPezi ~] F3ER(0)
Export , WG [FAER 09 - mE |
Quit

Fix Funny Filenames

Make Screencast

Figure 2.10. Loading microscopy data in Imagel.

(a) The File > Open option is used to import raw microscopy images into FIJI.
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(b) A .czi file is selected from the directory, representing time-series mitochondrial

fluorescence data under various pharmacological treatments (e.g., FCCP, oligomycin,

rotenone, control). These files serve as the input for downstream image processing

and network extraction.

2. Check and adjust czi file properties

Once you select and open czi file there should come up with this window, there

few functions that should be understand:

o
B Stack order XYCZT:

B Specify the axis order of the data:

Hyperstack: Enables multi-dimensional image viewing in a structured format.

€ X =horizontal pixels, Y = vertical pixels, C = channel (e.g., red, green,

blue, or different stains), Z = depth (z-stack), T = time (frames over

time).

Color mode Grayscale: Opens the image in grayscale mode.

Display metadata (Check): his will open a separate window showing

embedded metadata from the image file

g:, Bio-Formats Import Options

Split channels(check): Separates each channel into individual windows.

|

x

Stack viewing

View stackwith:  |Hyperstack hd

Stack order:

IMetadata viewing

v Display metadata
[™ Display OME-XML metadata

KYCEIT

[ Display ROls

ROIs Import Made: ’W‘

Dataset organization Memaory management

[~iGroup files with simiiar names [~ Use virtual stack

[™ Open files individually [” Specify range for each series

[~ Swap dimensions [~ Crop onimport
[~ Open all series

[~ Concatenate series when compatible  Split into separate windows

[ Stitch tiles v Split channels

Color options [™ Splitfocal planes

Color mode: [ Splittimepoints

Grayscale -

| Autoscale

Information

Group files with similar names - Parses
filenames in the selected folder to open files
with similar names as planes in the same
datasst.

The base filename and path is presented
befare opening for editing

Example: Suppose you have a collection of
12 TIFF files numbered data.tif, data2.tif, ...,
datal2.tif, with each file representing one
timepoint, and containing the 9 focal planes
at that timepoint. If you leave this option
unchecked and attempt to import data.tif,
Bio-Formats will create an image stack with 9
planes. But if you enable this option,
Bio-Formats will automatically detect the
other similarly named files and present a
confirmation dialog with the detected file
pattern, which in this example would be
data<l 12 1i1. You can then edit the pattern
in case it is incorrect. Bio-Formats will then
import all 12 x 9 = 108 planes of the dataset.

oK Cancel

Figure 2.11. Bio-Formats Import Options in ImageJ for .czi image loading.
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The Bio-Formats importer provides flexible options for viewing and organizing
multidimensional microscopy datasets. Key settings include View stack with:
Hyperstack, Stack order: XYZCT, and enabling grayscale mode. Options such as
Group files with similar names, Split channels, and Split timepoints ensure proper
segmentation of image series for subsequent analysis. Metadata display and

autoscaling are enabled to facilitate standardized preprocessing.

3. Resulting Windows After Import.

Once press the ok button. In this czi file, there should came up with 4

windows:

ImagelJ control panel: Main toolbar for navigating and analyzing images.
Metadata panel: Displays detailed image metadata (e.g., dimensions, pixel
size, number of channels, bit depth).

® Channel 1 (cell): first image window showing the cell structure (e.g., phase
contrast or cytoplasm stain).

® Channel 2 (mitochondria network structure): second image window
displaying mitochondria-specific fluorescence, revealing dynamic network

structures.

Since the image windows don’t display useful details initially and need

adjustment for better visibility.
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Fie Edt Font
Value
BitsPerPixel 8

DimensionOrder XYCzZT
Isinterleaved false
IsRGB false

true

uint8
time_ins1_10uM_FCCP.czi #1
2
145
691
691
4

Figure 2.12. Resulting windows after importing a .czi microscopy file in Image].

(a) The ImageJ control panel and metadata viewer provide information of image (e.g.,

dimension order XYZCT, channel count, and bit depth).
(b) Channel 1 shows cell morphology.
(c) Channel 2 displays mitochondria network structures.

Brightness/contrast adjustment is typically required to enhance visibility upon initial

loading.

4. image adjustment: Channel 1

a. please press to the channel 1 window first, to make sure to process correct target,

then we adjust its type to 8 bits.
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"I (5 s Just) Image) - o X
File Edit [[REREN Process Analyze Plugins Window Help
6 o A TR /| /| |

Freehand sel -]
Adust .| 16-bit
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Show Info.. ci+t | 32t

Properties Ctri+shift+p | 8-bit Color

Color RGB Color
Stacks RGB Stack
Hyperstacks HSB Stack
HSB (32-bit)
Lab Stack

Crop Ctrl+Shift+X
Duplicate Ctrl+Shift+D
Rename

Scale... Ctri+E
Transform

Zoom

Overlay

Lookup Tables

Annotate

Drawing

Video Editing

Figure 2.13. Bit-depth adjustment for Channel 1 in Imagel.

To enhance image compatibility and visualization, the active window corresponding
to Channel 1 (cell morphology) is selected. Under the Image > Type menu, the image
is converted to 8-bit format. This standardization step facilitates consistent processing

and downstream analysis.

b. And we find the contrast function; after press it, there should come up with another
window, then press its auto button to do automatically adjust and press it apply button

to finish the contrast adjustment.
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Rename...
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Drawing
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Figure 2.14. Automatic brightness and contrast adjustment for Channel 1 in Imagel.

With Channel 1 selected, the Image > Adjust > Brightness/Contrast function is used to
enhance image visibility. The Brightness/Contrast control window is opened, and the
Auto button is applied to automatically optimize display settings. The Apply button
finalizes the adjustment, improving contrast for clearer visualization of cellular

features.
5. image adjustment channel 2

Like channel 1, we just need change its type to 8 bits
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Figure 2.15. Bit-depth adjustment for Channel 2 in Image].

Like Channel 1, the mitochondrial fluorescence image (Channel 2) is selected and
converted to 8-bit format via Image > Type > 8-bit in ImageJ. This step ensures
compatibility for subsequent processing and analysis, such as thresholding and

segmentation.

6.observe windows to find mitochondria network of single cells.

According to the windows, we can cross-comparison to find the network we

want.
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Figure 2.16. Cross-comparison of cell morphology and mitochondrial fluorescence in

Imagel.

Two synchronized windows display Channel 1 (left, cell morphology) and Channel 2
(right, mitochondrial network) from the same .czi image stack. By cross-referencing
these views, single-cell mitochondrial networks can be accurately located and selected

for further analysis.
7. Extract the network of single cells from window

Once we select the network, we can frame the network and click the mouse right
button to find Duplicate function, and then there should be come up with another
window, we check duplicate stack to create image with time series, finally we press

ok button another window shows up to display the network of single cells.

We can scroll time slide at bottom of windows to make sure the branch of network

1sn’t out of bound.
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Figure 2.17. Extraction of a single-cell mitochondrial network using the Duplicate

function in ImageJ.

(a) A mitochondrial network region is selected by drawing a rectangular region of

single cell in Channel 2.

(b) The Duplicate option is accessed via right-click, and the Duplicate stack box is

checked in the dialog to preserve all time frames in the stack.

(c) A new window is generated showing the extracted time series of the selected

mitochondrial network.

8. Save network of single cell as multiple frame tiff

Press the window of the single cell network and find save as => image sequence.

After pressing it, there should be came up with another window, you choose the folder

you want to save multiple tiff file, finally press ok to finish this section.
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Figure 2.18. Exporting the single-cell mitochondrial network as a multi-frame TIFF

sequence in ImagelJ.
(a) The extracted single-cell mitochondrial network stack is selected.
(b) Under File > Save As > Image Sequence, the user initiates the export process.

(c) In the dialog window, the output directory, filename prefix, format (TIFF), and
frame index settings are specified. Clicking OK saves each time frame as an

individual TIFF file, enabling compatibility with downstream image processing tools.

2.5 Image Processing and Network Reconstruction

In this section, the image data imported using ImagelJ is processed to extract the
underlying mitochondrial network structure. Using tools such as scikit-image, skan,
and networkx, the processed images are skeletonized and converted into a node-edge

graph representation.

® Nodes represent key structural points such as branch points or endpoints.

® Edges represent the mitochondrial tubules connecting these nodes.

The resulting graph is exported as two CSV files: one containing node
coordinates and the other defining edge connectivity. These files serve as the input to
initialize the mitochondrial network in the ReaDDy?2 simulation environment (fig
2.19.).
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Figure 2.19. Image Processing and Mitochondrial Network Reconstruction Pipeline.

This panel zooms into the middle stage of the end-to-end pipeline introduced in
Fig. 2.9, detailing how the experimental image in Fig 2.9 (c) is transformed into the

graph that sees the simulation shown in Fig. 2.9(f).

1. Noise removal — The raw frame is first denoised (green arrow, “Remove Noise”)
using median filtering and adaptive thresholding to suppress photon shot noise and

background speckle while preserving true mitochondrial signal.

2. Branch smoothing — A morphological opening/closing sequence
(“Smooth Branch”) eliminates jagged edges and fills sub-pixel gaps, yielding cleaner,

contiguous tubules.

3. Skeletonization — The refined binary mask is reduced to a one-pixel-wide skeleton
(blue downward arrow), preserving topology while stripping away thickness

information.

4. Graph construction — Skeleton nodes (branch points and termini) and edges (tubular
segments) are identified with scikit-image’s skan and imported into NetworkX

(“Construct Node-Edge graph”).
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5. Graph refinement — Short stubs and artifactual fragments are pruned, and missing
links are bridged to restore continuity (“Refine Graph Detail”), producing a

biologically plausible topology.

6.Data export & diagnostics — The final graph is exported as Node CSV and
Edge CSV files, accompanied by summary metrics such as the
degree-distribution-over-time trace. These files are the direct inputs that initialise

particle positions and connectivity in the simulation stage that follows (Fig 2.9. (f)).

2.5.1. filter and smooth image
a. Remove Background Noise to Isolate Mitochondrial Structures

In the initial step of image processing, we aim to reduce background noise and
highlight the true mitochondrial network (fig 2.20.). This is crucial for accurate

skeletonization and graph reconstruction in later steps.

from skimage.filters import threshold otsu
# Step 1: Compute the optimal threshold using Otsu's method
thresh

threshold _otsu(image)

# Step 2: adjust the threshold slightly to remove faint noise
adjusted thresh = thresh * 0.6

# Step 3: Create a binary image by applying the adjusted threshold

filter _image = image > adjusted thresh
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Original Image After Adjusted Otsu Threshold
_4:*5;' N

Figure 2.20. Background removal and enhancement of mitochondrial structures using

Otsu thresholding.

The left panel shows the original mitochondrial fluorescence image, containing both
signal and background noise. The right panel displays the result after applying and
manually adjusting Otsu’s thresholding method to isolate high-intensity mitochondrial
structures. This preprocessing step enhances contrast and prepares the image for

accurate binarization, skeletonization, and network extraction.

b. Refine Mitochondrial Structure to Avoid Noise Artifacts in Skeletonization

After filtering out background noise, the next step is to smooth the binary image
to eliminate small irregularities or jagged edges—often referred to as “hairy”
structures(fig 2.21.). These artifacts can negatively impact the skeletonization process,

leading to false or fragmented branches in the final network graph.

from skan.pre import threshold
# Smooth the image
bin_image = threshold(
filter_image,
sigma=2, # Controls the strength of Gaussian smoothing

radius=0 # No local neighborhood dilation)
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Before Gaussian Smoothing After Gaussian Smoothing (skan.threshold)

Figure 2.21. Refinement of binarized mitochondrial structures using Gaussian

smoothing.

The left panel shows the binarized image after thresholding, still containing fine-
grained noise and irregular contours. The right panel presents the result after applying
Gaussian smoothing via the skan.threshold module, which reduces spurious edges and
sharp protrusions. This refinement step improves the accuracy of subsequent
skeletonization by minimizing artifacts that could lead to false branches or

misidentified connections in the network.

c. Eliminate Noise and Isolated Fragments to Ensure Structural Consistency

After smoothing the binary image, we perform a small object removal step to
eliminate minor artifacts or isolated blobs that are not part of the actual mitochondrial
network(fig 2.22.). These small components may arise from background noise or
disconnected pixels and can lead to the creation of isolated nodes when constructing

the node-edge graph.

In our simulation, isolated nodes violate the assumption of a connected network
and could distort the dynamics of mitochondrial behavior. To prevent this, we filter

out small components based on their area.
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from skimage.morphology import remove_small_objects

# Remove small disconnected regions

mini size = 20 # Minimum number of pixels to be considered a vali
d object

cleaned = remove_small objects(bin_image, min_size=mini_size))

Before Small Object Removal After Small Object Removal

Figure 2.22. Removal of small, disconnected objects to ensure mitochondrial network

integrity.

The left panel shows the binary image after smoothing, which may still contain small
noise-induced fragments. The right panel displays the result after applying an area-
based small object removal filter. This step eliminates minor isolated blobs that could
otherwise generate erroneous nodes in the skeletonized graph. Ensuring a structurally
consistent and connected network is essential for accurate simulation of mitochondrial

dynamics.

2.5.2 Skeletonize the image

After filtering, smoothing, and removing unwanted structures, the cleaned binary
image is now ready for skeletonization(fig 2.23.). This step reduces the thick, blob-
like mitochondrial shapes into their central axes—thin, one-pixel-wide lines—while

preserving the overall topology and connectivity.
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This is essential for extracting the graph structure of the mitochondrial network

(nodes and edges) in a form suitable for simulation.

from skimage.morphology import skeletonize
# Perform skeletonization

skeleton = skeletonize(final mask)

before skeletonization skeleton

Figure 2.23. Skeletonization of the binarized mitochondrial network.

The left panel shows the pre-processed binary image representing the mitochondrial
structures of a single cell. The right panel displays the result of skeletonization, where
thick regions are reduced to one-pixel-wide medial axes. This process preserves the
topology and connectivity of the network, enabling downstream conversion into a

graph structure of nodes and edges for quantitative simulation.

2.5.3 Construct Node-Edge Graph from Skeleton

After skeletonizing the image into 1-pixel-wide paths, the next step is to
transform the skeleton into a graph structure (fig 2.24.). This allows the mitochondrial

network to be represented as a set of nodes (branch points and endpoints) and edges
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(connections between nodes), which is ideal for quantitative analysis and simulation

in ReaDDy?2.

We use the skan package to analyze the skeleton and extract its structural

geometry and then use networkX to build the graph.

from skan import Skeleton, summarize

import networkx as nx

# Step 1: Create a Skeleton object and summarize it

skeleton _obj = Skeleton(skeleton)

skeleton_summary = summarize(skeleton obj, find main_branch=True)
# Step 2: Initialize a NetworkX graph

graph = nx.Graph()

# Step 3: Add nodes with their coordinates

for node_id in np.unique(skeleton_summary|[[ ‘node-id-src', ‘'node-id

-dst']]):
rows = skeleton_summary[ (skeleton_summary|[ ‘node-id-src'] == no
de_id) |
(skeleton summary[ 'node-id-dst'] == node
_id)]

for _, row in rows.iterrows():
if row[ 'node-id-src'] == node_id:

coord = (row['image-coord-src-1'], row['image-coord-src

-0'])
else:
coord = (row['image-coord-dst-1'], row['image-coord-dst
-0'])
break

graph.add_node(node_id, coord=coord)
# Step 4: Add edges with their branch distances
for , row in skeleton_summary.iterrows():

src

dst

row[ 'node-id-src’]

row[ 'node-id-dst’]
distance = row[ 'branch-distance’]
graph.add_edge(src, dst, weight=distance)

# Step 5: Extract node coordinates for visualization
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node_positions = {node: data['coord'] for node, data in graph.node
s(data=True)}
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Figure 2.24. Conversion of the mitochondrial skeleton into a node-edge graph.

The left panel shows the one-pixel-wide skeletonized representation of the
mitochondrial network. The right panel depicts the corresponding graph structure,
where nodes represent endpoints and branch points, and edges represent linear
connections between them. This transformation is achieved using the skan library for
skeleton analysis and networkx for graph construction, enabling quantitative

simulation and topological analysis in ReaDDy?2.

2.5.4 Refine the Graph by Adding Intermediate Nodes

The initial node-edge graph only includes skeleton endpoints and branching
points, which results in a sparse network. This limited resolution can restrict the
accuracy of downstream simulations—particularly when modeling fission and fusion

events, which may occur anywhere along a mitochondrial tubule.

To better mimic the continuous nature of real mitochondrial structures, we refine

the graph by inserting additional nodes along each edge at regular intervals (e.g.,
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every 10 pixels) (fig 2.25.). This makes the network denser and more realistic for

reaction-diffusion simulations.
import networkx as nx

# Step 1: Create a copy of the original graph
modified_graph = nx.Graph()
modified_graph.add_nodes_from(graph.nodes(data=True))

# Step 2: Define parameters

image_height = skeleton.shape[9]

new_node_id_gen = itertools.count(start=max(graph.nodes) + 1) # U
nique node IDs

bond_length = 10 # Desired spacing between intermediate nodes

# Step 3: Loop over edges and insert intermediate nodes

for u, v, data in graph.edges(data=True):

x0, y0 = graph.nodes[u][ 'coord"]

x1, yl = graph.nodes[v][ 'coord"]
dx, dy = x1 - x0, yl - yo
edge_length = math.hypot(dx, dy)
num_segments = int(edge_length // bond_length)
if num_segments ==
modified_graph.add_edge(u, v, weight=edge_length)
continue
ux, uy = dx / edge_length, dy / edge_length
prev_node = u
for i in range(1, num_segments):
new x = x0 + ux * i * bond_length
new y = y0 + uy * i * bond_length
new_id = next(new_node_id_gen)
modified_graph.add_node(new_id, coord=(new_x, new_y))
modified_graph.add_edge(prev_node, new_id, weight=bond_len
gth)
prev_node = new_id

modified graph.add_edge(prev_node, v, weight=bond_length)
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Figure 2.25. Refinement of the mitochondrial graph by inserting intermediate nodes.

The left panel shows the original node-edge graph derived from the skeleton,
composed only of branch points and endpoints. The right panel illustrates the refined
graph, where intermediate nodes are inserted along each edge at uniform spatial
intervals (e.g., every 10 pixels). This refinement increases spatial resolution and
structural fidelity, enabling more realistic simulation of mitochondrial fission, fusion,

and diffusion processes in ReaDDy?2.

2.5.5 Export Refined Graph as Node and Edge CSV Files

After refining the mitochondrial network graph by adding intermediate nodes,
the final step in image-based preprocessing is to export the graph structure into CSV
files (fig 2.26.). These files serve as input to reconstruct the network topology in the

ReaDDy2 simulation environment.

We extract and save two components:

® A node CSV: Contains unique node IDs and their 2D coordinates.

import csv
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# Save node information
with open('FCCP_image_single cell 4 nodes.csv', mode='w', newline
='"') as file:
writer = csv.writer(file)
writer.writerow([ 'node_id', 'x_coord', 'y _coord'])
for node, data in modified_graph.nodes(data=True):
X, y = data[ 'coord']

writer.writerow([node, x, y])

® An edge CSV: Describes the connectivity between node pairs (source—

target).

import csv
with open('FCCP_image_single cell 4 edges.csv', mode='w', newline
='') as file:

writer = csv.writer(file)

writer.writerow([ 'source', 'target'])

for u, v, data in modified_graph.edges(data=True):

writer.writerow([u, v])

Figure 2.26. Exported mitochondrial graph data as node and edge CSV files.
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(a) The node file (_nodes.csv) lists each node's unique ID along with its 2D spatial

coordinates.

(b) The edge file (_edges.csv) specifies the connectivity between nodes as source—

target pairs.

These CSV files encode the refined mitochondrial network structure and serve as

standardized input for initializing topology-based simulations in ReaDDy?2.

2.5.6 Process Time-Series Images to Generate Degree Distribution Log

The previous steps process only a single image (one timepoint) of the
mitochondrial network. However, to study temporal changes in network topology, we
apply the same pipeline to each frame in a time-series image stack. For each frame,
we compute the degree distribution of the graph and track how it evolves over time

(fig 2.27.).

# Initialize lists to store probabilities
[]
[]
[]

degree 1 probs

degree 2 probs

degree 3 probs

# Open a log file to write the results
with open("FCCP_image_single cell 4 degree_distrubution_log.txt",
"w") as log_file:

# Write header

log file.write("TimeStep,Degreel Prob,Degree2 Prob,Degree3 Pro

b\n")

# Iterate through each graph

for t, graph in enumerate(modified graphs):
degrees = [deg for _, deg in graph.degree()]
total nodes = len(degrees)

degree counts = Counter(degrees)

# Normalize counts to probabilities
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degree_1 = degree_counts.get(1l, ©) / total nodes
degree_2 = degree_counts.get(2, 0) / total nodes
degree_3 = degree_counts.get(3, 9) / total nodes

degree_1 probs.append(degree_1)
degree_2 probs.append(degree_2)
degree_ 3 probs.append(degree_3)

# Log the results
log file.write(f"{t},{degree 1:.6f},{degree 2:.6f},{degree
_3:.6f}\n")

# Optionally print
print(f"Time {t}:")
print(f" 1-degree nodes (endpoints): {degree 1}")
print(f" 2-degree nodes (linear path points): {degree 2}")
print(f" 3-degree nodes (branching points): {degree 3}\n
")
# Plotting
plt.figure(figsize=(10, 6))
plt.plot(degree 1 probs, label='Degree 1')
plt.plot(degree_2_probs, label='Degree 2')
plt.plot(degree 3 probs, label='Degree 3')
plt.title("Degree Probabilities Over Time")
plt.xlabel("Time Step")
plt.ylabel("Probability")
plt.legend(title="Degree")
plt.grid(True)
plt.tight_layout()
plt.show()
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Figure 2.27. Temporal analysis of degree distribution in a mitochondrial network.

(a) The time-resolved log file records the probability of nodes having degrees 1, 2, or

3 for each frame in the image stack.

(b) The corresponding plot shows how these probabilities fluctuate over time,
reflecting dynamic topological remodeling of the mitochondrial network. This time-
series analysis enables quantitative comparison between experimental observations

and simulated mitochondrial behavior under different conditions.

2.5.7 Cross-Validation of Initial Network Structure

To ensure that your simulation input (node and edge CSV files) and the degree
distribution log from time-series images are aligned at the first time point, it is critical
to cross-validate their contents. Since these files are often generated by different
scripts or parameter settings, mismatches can occur—especially after changing

thresholds, smoothing, or refinement settings (fig 2.28.).

This check allows you to verify that the simulated network starts from the same

structure observed in the microscopy image stack.

from collections import Counter

# Count degrees of all nodes
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3. degrees = dict(modified _graph.degree())

4. degree _counts = Counter(degrees.values())

5. # Print sorted full histogram

6. print("Degree Distribution (sorted):")

7. for deg in sorted(degree_counts):

8. print(f"Degree {deg}: {degree_counts[deg]} nodes")
9. # Optionally: Pie chart for visualization

10. plt.figure(figsize=(5, 5))

11. labels = [f'Degree {k}' for k in degree_counts.keys()]
12. sizes = list(degree counts.values())

13. plt.pie(sizes, labels=1abels, autopct="%1.1f%%")

14. plt.title('Node Degree Distribution")

15. plt.show()

Node Degree Distribution

TimeStep, Degree2 Prob,
e, 0.313559,

1
Degree1 4a.

Degree 3

Degree 2
Degree 4

Figure 2.28. Cross-validation of initial degree distribution between simulation input

and image-derived data.

(a) A pie chart summarizes the degree distribution of the initial mitochondrial network

used in the simulation, computed directly from the node-edge graph.

(b) The first row of the time-series log file records the degree probabilities at time

step 0, derived from the microscopy image stack.

By comparing these two sources, consistency in network structure at initialization is

verified, ensuring alignment between experimental observations and simulation setup.
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2.6 Simulation Workflow Overview

To investigate the dynamic remodeling of mitochondrial networks, this study
employs a particle-based reaction—diffusion simulation framework built in ReaDDy?2.
The simulation domain is initialized using the graph extracted in the previous step of
“Image Processing and Network Reconstruction”. Specifically, the node and edge data
shown in the green box of Fig. 2.30. are imported directly into the simulation,
ensuring that the starting topology precisely reflects the experimentally observed
mitochondrial skeleton. Each node is represented as a diffusing particle, and each
edge is treated as a harmonic bond, thereby reconstructing the in-cellular filament
architecture in silico. The particles interact through a combination of physical forces:
harmonic bond and angular potentials maintain local segment length and bending
stiffness, soft repulsion prevents overlapping between nonbonded particles, and

reflective box boundaries confine the system to the cytoplasmic region.

Dynamic remodeling of the network emerges from explicit reaction rules that
operate throughout the simulation. Structural fission reactions selectively remove
internal edges away from endpoints, which causes fragmentation by reducing the
connectivity of the affected vertices (degree 3 nodes are downgraded to degree 2, and
degree 2 to degree 1). Fusion processes operate through two independent mechanisms:
spatial fusion events merge distinct topologies when particles approach within a
defined capture radius, and structural fusion detection reactions adjust node types
when new junctions are formed. These reaction mechanisms collectively reproduce
the interplay between elongation and fragmentation that defines mitochondrial
morphology. Individual simulation runs track the time evolution of the network, while
multiple replicates are used to calculate ensemble-averaged degree distributions for

comparison with experimental observations.

Figure 2.29. summarizes this workflow. The green box on the left corresponds to
the imported experimental graph obtained from the previous reconstruction step. The

center panel illustrates the force-field representation of bonds, angles, and repulsive
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interactions that preserve network geometry. The right panel highlights the reaction
engine that applies fission and fusion rules to modify topology over time. The
resulting outputs include particle trajectories, reaction event logs, and time-resolved
degree distributions, which together form the basis for validating the simulated

network dynamics against experimental data.

Edge CSV

Edge CSV

v ;
[ ] [ ] Degree distribution over time

v v

Figure 2.29 . Workflow of the ReaDDy2-based mitochondrial network simulation.

Image-derived node and edge data from the previous reconstruction step (green box)
are imported as the initial network. Physical interactions (bond, angle, repulsion, and
confinement) govern particle motion, while reaction modules implement fission and
fusion to remodel network topology. Outputs include particle trajectories, reaction

event logs, and time-resolved degree distributions.

2.6.1 Simulation Initialization and Relaxation with ReaDDy?2

To construct the initial mitochondrial network for simulation, we employ a multi-
stage pipeline that translates node and edge data extracted from microscopy images
into a particle-based topological structure in ReaDDy?2. This preparatory step ensures
a stable and physically meaningful configuration before enabling dynamic reactions

such as fission and fusion in subsequent phases.
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1. Data Import and Graph Construction

We begin by importing two CSV files: one specifying node coordinates
(node id, x_coord, y coord) and another defining pairwise connections (source,
target). Using the NetworkX library, these entries are used to reconstruct the
undirected graph of the mitochondrial network. Each connected component within

this graph is treated as an independent mitochondrial structure (topology).
2. Particle-Based Topology Generation
For each connected component:

® Nodes are initialized as ReaDDy?2 particles (mito_node 1) with
corresponding 2D spatial coordinates (z = 0 to model a quasi-2D
network).

® Edges between nodes are translated into harmonic bonds within
ReaDDy2 using its topology API.

® Each topology is added to the simulation using
simulation.add_topology(...), automatically invoking predefined bonding

and angular.

3. System Configuration

The create ReaDDy2 system() routine assembles a ReactionDiffusionSystem
whose numerical specification is captured in Table 2.1. and Fig 2.29. below. All
geometric quantities are expressed in nanometers (nm) because the skeleton extracted
from fluorescence microscopy has pixel-to-pixel distances on that scale (= 100 nm);
keeping the simulation grid in the same units avoids unnecessary conversions and
preserves sub-pixel precision. Energetic parameters are given in kilojoules per mole
per square-nanometer (kJ mol™' nm™2), the natural unit for harmonic spring constants.

In a harmonic potential,

1
E= Ek(r —1)?
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So the spring constant k (100 kJ mol™ nm™2) specifies the energy cost of
stretching a bond by 1 nm per mole of identical bonds; higher values make bonds
stiffer. Equilibrium bond lengths (Lo = 10 nm) are set equal to the average center-to-
center distance between neighboring skeleton pixels after isotropic voxel scaling,
ensuring that the simulated filament matches the physical length measured in the

processed image.

According to Table 2.1., every skeleton node is instantiated as mito_node 1,
mito_node 2, or mito_node 3, each diffusing at rate D. Pairwise repulsion eliminates
overlaps, harmonic bonds of length o and strength k bond preserve segment
integrity, and angular springs of constant k angle reproduce the semiflexible nature of
mitochondrial tubules. The confining box, enforced by k box, maintains the network
inside the imaged cytoplasmic area. Collectively, these parameters convert the static
graph into a mechanically faithful, Brownian-driven model that underpins the

stochastic fusion-and-fission reactions introduced in the next section (Fig. 2.30.).

Table 2.1. ReaDDy2 simulation-box and interaction parameters.

Category Parameter Value Unit Description / Note
Simulation 2-D slice of the 3-D
Box size [1000, 1000, 0.01] nm
Box simulation volume
Soft wall that prevents
100 kJ mol™!
Box potential 100 particles from leaving
nm™
the field of view
Represents a node of
Particle Types mito node 1 — —
degree 1 (endpoint)
Represents a node of
mito_node 2 — — degree 2 (linear
segment)
Represents a node of
mito_node 3 — — degree 3 (branch
point)
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Sets Brownian

Diffusion Diffusion constant 0.02 nm? ps~'* mobility of all node
types
Pairwise Repulsion force 100 kJ mol™* Soft-core interaction to
10
Interaction constant nm-2 avoid overlap
Target distance
Bonded Bond length
10 nm between connected
Interaction (equilibrium)
nodes
100 kJ mol™ Strength of harmonic
Bond force constant 100
nm 2 bond potential
Angular Angle force 100 kJ mol™! Bending stiffness of
10
Interaction constant rad? consecutive bonds

Table concisely lists the numerical settings of the ReaDDy system. A 1 000 nm X

1 000 nm 2-D box with a soft wall potential confines three node species that differ

only in their graph degree. All nodes diffuse at 0.02 nm? ps™!, repel each other via a

gentle harmonic potential (k = 10), and connect through 10 nm bonds stiffened by 100

and regulated in bending by an angular constant of 10. These values anchor the

simulated network to experimentally observed segment lengths, flexibility, and

cytoplasmic viscosity while eliminating edge effects.
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Figure 2.30. ReaDDy?2 force-field and boundary situating the physical parameters

schematic used in the simulation stage.

This schematic clarifies how the abstract graph iranslated into concrete mechanical

interactions inside ReaDDy?2:

® Particle representation — Each blue disc corresponds to a skeleton node from the
Node CSV. Radii are set by experimental tubule thickness and determine
excluded-volume effects.

® Bond force & bond length (red arrows) — Every black line reflects an edge from
the Edge CSV. A harmonic bond force maintains the experimental segment
length while allowing thermal fluctuation.

® Angle force (green brackets) — Consecutive bonds along a tubule experience a
harmonic angle potential that penalizes sharp bending, preserving the
semi-flexible nature of mitochondrial membranes.

® Repulsion force & diffusion constant (orange arrows/purple trace) — Non-bonded
particles interact via a soft-core repulsion, and each particle’s diffusion constant
controls its Brownian motion; both parameters are calibrated from literature
values and single-particle tracking data.

® Box potential & box size (orange frame) — The simulation volume (blue

background) imposes reflective boundaries to mimic the cytoplasmic confines
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observed in live-cell imaging. The box size is chosen to encompass the full

skeleton with a safety margin, preventing artificial compression.

4. Dynamic Relaxation
The simulation is then executed using the run_simulation() function:

® An EulerBDIntegrator integrates Brownian motion with harmonic
constraints.

® Trajectory recording and topology observation are enabled at fixed strides
to capture network configurations over time.

® The system is allowed to evolve for 10,000 steps, permitting geometric
relaxation under the influence of diffusion, bond/angle forces, and steric

repulsion.

This pre-reaction equilibration phase ensures that all particles and bonds settle

into physically plausible configurations without overlaps or unrealistic tensions.

2.6.2 Dynamic Reaction-Diffusion Simulation

Following initialization and geometric relaxation, we enable reactive behavior in
the system to model the dynamic reorganization of mitochondrial networks. The
simulation incorporates spatial diffusion, structural changes (fission and fusion), and
topological transformations governed by a well-defined reaction scheme. This section
outlines the reaction-driven simulation protocol and the dual analysis strategies

employed to capture both detailed temporal dynamics and statistically robust trends.

1. Reaction Scheme

To model the dynamic behavior of mitochondrial networks, we adopt a minimal
topological reaction framework inspired by prior work [32]. This framework captures

two fundamental fusion-fission motifs based on local connectivity: tip-to-tip and tip-
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to-side interactions. These abstractions represent simplified but biophysically relevant

approximations of mitochondrial morphological remodeling.
a. Tip-to-Tip Fusion and Fission

This scheme assumes two terminal (degree-1) nodes, denoted as X;, can undergo
a pairwise fusion to form a degree-2 node X,, and conversely, X, can undergo fission

to revert into two endpoints:

2X, S¢ X,

® Fusion rate (a): Reflects the probability of two endpoints approaching and
connecting.
® Fission rate (b): Encodes the likelihood of a linear segment breaking into two

terminal fragments.

b. Tip-to-Side Fusion and Fission

In this scheme, a terminal node X; fuses with a linear node X,, forming a

degree-3 branch point X3.

The reverse reaction models the detachment of an arm from a branched structure:

X+ X, st X

® Fusion: Reflects lateral attachment of a tip to the side of an existing segment,
creating a Y-junction.

® Fission: Represents the retraction or detachment of a branch.

These two reactions provide a minimal yet expressive vocabulary for simulating
mitochondrial network plasticity through topology-level events. In our simulations,
we map these schematic reactions onto particle-level transformations governed by

spatial proximity, connectivity rules, and rate functions
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2. Implementation in ReaDDy2

Before detailing the structural- and spatial-reaction kernels, we recall how
reaction_rate is defined inside ReaDDy?2. In the engine, a user-supplied rate constant
A is interpreted as the instantaneous Poisson hazard for a qualified particle pair;
during each integration step of length 7 the corresponding event is accepted with

probability:
P=1—e"*

® JL€eR (>0): represent the rection rate.

® T time step.

Because this quantity is ultimately a per-step acceptance probability, and to avoid
confusion with biological fusion or fission rates that are usually reported as events -
cell™! - s7!, we hereafter refer to every ReaDDy?2 rate parameter simply as a reaction

probability (P_fus, P_fis, ...).

In cell biology, mitochondrial fusion and fission rates are experimentally defined
as the number of observable events (branch joining or fragment splitting) per cell per
unit time, often on the scale of minutes. These biological rates are emergent properties
of the network and depend on organelle size, protein machinery activity (e.g., Drpl
for fission, Mfn1/2 and OPA1 for fusion), and local cellular conditions. They are
measured statistically from live-cell imaging and are typically in the range of 0.01-0.1
events per mitochondrion per minutefilePRXLife.2.043002. By contrast, in ReaDDy?2
the user-specified A does not directly represent such a per-cell rate; it controls the per-

step probability that a qualified particle pair will undergo a reaction.

With this convention, the experimentally calibrated probabilities are mapped
onto one of two independent reaction classes in ReaDDy?2: (a) spatial reactions that
check whether two candidate particles which do not share the same topology fall

within the prescribed capture radius with probability Pgy,qtiq; decides whether they
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instantaneously create a bond between them and change their particle type or not, and
(b) structural reactions by contrast, act inside an existing topology: with probability
Pstructruar @ rule rewires the internal graph. These two mechanisms are evaluated
separately each time-step. This separation enables us to couple detailed topological
updates to a distance-based encounter filter while retaining a transparent

correspondence between simulation parameters and their biological counterparts.

a. Spatial Reactions: Topology Merging
For internal modifications, topology merging is enabled through spatial rules:

® "mito node 1+ mito node 1" — merged topology (tip-to-tip fusion) (fig 2.31.)

fusion_probability 1

radius_reaction_1

Figure 2.31. Tip-to-tip fusion triggered by a spatial reaction in ReaDDy?2.

Two linear mitochondrial fragments approach each other, and when the reactive zones
(radius_reaction 1) around their terminal nodes overlap, a probabilistic fusion event
may occur with a likelihood defined by fusion probability 1. Successful fusion
merges the two fragments into a single continuous filament, thereby enabling dynamic

remodeling of the mitochondrial network through tip-to-tip spatial reactions.
® "mito node 1+ mito node 2" — merged topology (tip-to-side fusion) (fig

2.32)).
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fusion_probability 2

=) 0@

radius_reaction 2

Figure 2.32. Tip-to-side fusion mediated by spatial reactions in ReaDDy?2.

A terminal node (red) of one mitochondrial fragment approaches the inear fragment
composed of two-degree nodes (green). When their reactive zones (radius_reaction_2)
overlap, a fusion event can occur with a probability determined by fusion_ probability
2. Successful fusion attaches the tip to the side of the filament, forming a Y-shaped
structure in which the contacted site becomes a higher-degree branching node. This
spatial reaction allows the mitochondrial network to develop complex branching

architectures through tip-to-side connections.

These spatial reactions are registered via ReaDDy2’s add_spatial reaction API:

1. system.topologies.add spatial reaction(
2. "fusion_1: mitochondria(mito node 1) + mitochondria(mito node_

1) -> mitochondria(mito_node_1--mito_node _1)",

3. rate=FUSION_PROBABILITY_1,
4. radius=RADIUS_REACTION
5. )

The spatial proximity constraint (controlled by RADIUS REACTION) ensures
these reactions only occur when particles are physically near each other, preserving

spatial realism.

b. Structural Reactions: Topology-Based Logic
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In addition to fission logic via ReaDDy2's structural reaction framework, which

operates on particle connectivity:

® Fusion Detection: Encoded via fusion detect function. The function scans all
vertices for specific degree motifs:
B Two mito node 1 with 2 connections — both upgraded to mito node 2
(tip-to-tip fusion) (fig 2.33.).
B Mito node 2 (deg=3) and mito node 1 (deg=2) — upgraded to
mito_node 3 and mito node 2 respectively (tip-to-side fusion) (fig 2.34.).

B Export fusion position — record data to validate the tracking algorithm.

This function mirrors the forward reaction logic of the schemes above.

if current_type == "mito_node_1" and num_connections == 2:

if neighbor_type == "mito_node_1" and neighbor_connections ==

# Tip-to-tip fusion
change both to mito_node_2
elif current_type == "mito node 2" and num_connections == 3:

if neighbor_type == "mito_node_1" and neighbor_connections ==

# Tip-to-side fusion

change to mito_node 3 and mito_node 2

Violate

dectection_probability
export fusion position

0‘-0-0 =) @000

Go through all particles in topologies

Figure 2.33. Structural reaction: detection of tip-to-tip fusion sites in ReaDDy?2.

During structural reaction processing, the algorithm iterates over all particles within
each topology to identify degree patterns that violate fusion criteria. When two

terminal nodes (mito_node 1) are detected at adjacent positions with a connectivity
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pattern corresponding to tips, a fusion detection step is triggered with a probability
defined by detection_probability. If successful, the local connectivity is updated,
converting the involved nodes into internal nodes (mito_node 2) and exporting the

fusion position for subsequent topological rewiring.

dectection_probability
export fusion positio

—

violate

through all particles in topologies

Figure 2.34. Structural reaction: detection of tip-to-side fusion sites in ReaDDy?2.

Within the structural reaction framework, the algorithm iterates through all particles
in each topology to identify branching violations that correspond to tip-to-side fusion
motifs. When a terminal node (mito_node 1) is detected adjacent to the lateral
position of a filament containing an internal node (mito_node 2), a fusion detection
step is triggered with a probability determined by detection_probability. Upon a
successful event, the node at the contact site is converted into a higher-degree
branching node (mito_node 3), while the tip is reclassified as mito_node 2, and the

updated fusion position is exported for topological rewiring.

® Fission: Implemented using dissociation reaction_function. A topology is
scanned for internal edges (excluding endpoints and their neighbors), and a
randomly chosen one is removed. After edge removal:

B The vertex types are downgraded based on degree:
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X, - X; (fig2.35), X; - X, (fig2.36.)
B This maps directly onto the reverse of both tip-to-tip and tip-to-side
schemes.

B Export fission position — record data to validate the tracking algorithm.

1. if current_type == "mito_node_ 3":

2. recipe.change _particle_type(vertex, "mito_node 2")
3. elif current_type == "mito_node 2":

4. recipe.change _particle_type(vertex, "mito_node 1")

Random Pick

fission_probability
export fission position

”&0‘““

Figure 2.35. Structural reaction: fission of a linear mitochondrial fragment in

ReaDDy2.

For fission events, the algorithm identifies internal edges within a filament (excluding
endpoints and their immediate neighbors) and randomly selects one as the cut site.
With a probability defined by fission_probability, the selected edge is removed,
splitting the filament into two smaller fragments. Following edge removal, the node
degrees are updated: internal nodes (mito _node 2) at the cut location are downgraded
to terminal nodes (mito_node 1). The position of the fission event is recorded to

support network topology tracking.
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fission_probability

export fission position . ‘

Random Pick

Figure 2.36. Structural reaction: fission of a branched mitochondrial fragment in

ReaDDy2.

In branched topologies, the fission algorithm randomly selects an internal edge
connected to a branching node (mito_node 3). With a probability determined by
fission_probability, this edge is removed, detaching one branch from the network.
Following the disconnection, the branching node is downgraded from mito _node 3 to
mito_node 2, reflecting its reduced connectivity. The location of the fission event is

recorded for downstream analysis and validation of network evolution.

Together, these implementations form a unified framework for simulating network
morphogenesis. Each observed fusion or fission event corresponds to a direct
mapping of the abstract reaction schemes, grounded in dynamic spatial interactions
and topological evolution. This structure allows the simulation to explore
mitochondrial fragmentation, branching, and reassembly in a biologically

interpretable way.

2.6.3 Single-Run Full Data Simulation

To capture the temporal evolution of mitochondrial morphology, we conduct a

single, long simulation with comprehensive logging of system observables:
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® Topology Tracking: Particle connectivity and fragmentation are tracked at every
stride, enabling analysis of structural evolution.

® Reaction Event Logging: Every fission and fusion event is logged, including
timestamp, positions, and particle IDs. This allows spatial-temporal mapping of
network remodeling.

® Trajectory Recording: Full 3D coordinates of all particles are saved per frame,
facilitating downstream spatial visualization and rendering (e.g., PDB, PSF
output for VMD).

®  Statistical Metrics:
B Node degree probabilities (degree-1, 2, 3) over time.
B Fragment count and fragment size distribution, characterizing network

breakdown or merging.

B Average polymer length per time step.

These results are written to human-readable logs and plotted to visualize trends
such as increasing fragmentation, emergence of branching motifs, or stabilization of

topology complexity.

2.6.4 Multi-Run Statistical Averaging (Secondary Script)

To quantify the robustness of observed trends, a second script performs repeated

simulations (e.g., 100 replicates), each starting from the same relaxed network:

Only node degree distributions are computed for each run.
Outputs include time-averaged probabilities for degree-1 (endpoints), degree-2

(chains), and degree-3 (branch points).

By averaging across runs, this approach smooths stochastic fluctuations and
allows comparison to experimental data or theoretical baselines. This strategy is
particularly effective for validating network topology models under variable

conditions such as drug treatments (e.g., FCCP exposure).
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2.7 Visualization and Post-Simulation Validation

In this section we will teach how to use VMD (Visual Molecular Dynamics)[40]
with Single-Run Full Data Simulation’s output (e.g. XYZ file, PDB file, PSF file) to
examine whether the simulation crashes or not with XYZ file first, then we use PSF

file and PDB file to produce accurate image.
2.7.1 Validation with XYZ file

We assume you already downloaded VMD, and we use MobaXterm as Linux

platform with remote server to operate.
a. Open VMD with XYZ.file

After running the simulation, there should be an output called “*.h5.xyz”, then
type linux command “vmd *.h5.xyz”, it should come up with two windows (fig
2.37.). We can see that the visualization is barely seen in default status, so you need to

change the representation of the network.

X VMD Main a i x
File Molecule Graphics Display Mouse Extensions Help

ID T A D F Molecule Atoms Frames Vol

0 T ADF mito_final.hSxyz 140 101 ]
Mef1o0] || 1] 9

Figure 2.37. Initial visualization of simulation output in VMD using XYZ format.

(a) The VMD Main window shows the successful loading of a simulation output file

(mito_final.h5.xyz) containing 140 atoms across 101 frames.

(b) The OpenGL Display window renders the particle positions, though visibility is

limited due to default representation settings.
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To enhance interpretability of the mitochondrial network, representation styles (e.g.,
particle size, color, rendering method) must be manually adjusted in the VMD

graphical interface.

b. adjusts representation of the network

After you press representations, it should come up with another window as

well(fig 2.38.).

X VMD Main a. - X X VMD Main b. - X
File Molecule @ Display house Extensions Help File holecule RelEbhIdN Display house Extensions Help
S —— .
ID T A D F Molecule Atoms Frames Vol I TADF SOresenatonsy Atoms Frames Vol
0 T ADF mito_finalhSxyz 140 101 a 0 TADFm 140 101 i}
Materials...
Labels...
Tools...

beji00] L. BT 1]
4 |d]| zoom ™ Loop ¥| step 1!1 _>| speed| [ » 44| zoom Loop v| step ‘|1 :l speed i p»

Figure 2.38. Accessing the graphical representation settings in VMD.

(a) To enhance visualization of simulation output, the user navigates to the Graphics

menu in the VMD Main window.

(b) From the dropdown, the Representations... option is selected to open the display

settings panel

This panel allows users to adjust rendering styles (e.g., particle shape, size, and color)

to make mitochondrial network structures clearly visible in the OpenGL display.
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X Graphical Representations ~ — ] X

Selected Molecule

‘D: mite_final.hS.xyz ﬂ
Create Rep Delete Rep
Style Color Selection

Lines Mame all

Selected Atoms

[enl

Draw style‘ Se\ectiuns\ Trajectury| Periodic\
Coloring hethod hiaterial

|Name j |Opaque j

Drawing Method

Lines - Default

Thicknessﬂﬂ 1 M

& Apply Changes Automatically  Apphy

Figure 2.39. Graphical Representations panel in VMD for customizing network

visualization.

This panel allows users to adjust how particles are rendered in the OpenGL display.
Users can define which atoms to display (e.g., using the selection keywords all),
choose a coloring method (e.g., by Name), set material appearance (Opaque), and
select a drawing method such as Lines, VDW, or Points. Line thickness and other
visual parameters can be fine-tuned for clarity. These settings help highlight

mitochondrial network structures for qualitative inspection and presentation.
This window (fig 2.39.) can be divided into four parts:

® Rep section (can decide what type of particle you want to change its shape):
B Dby press create Rep and type “name type *” in line of Selected Atoms to
select specific particle type. In VMD, particle types are automatically
named as type_O(mito_node 1), type 1(mito_node 2),
type 2(mito_node 3), and so on, based on the order they appear in the
input file (like. xyz or .pdb).
® Coloring Method: Change particle color (except Name and Type, they are same
color

® Drawing Method: Change particle representation.
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®  Material: change the texture of the particle.

Here is the window (fig 2.40.) when I choose dynamicBonds in Drawing Method
(branch-like).

X Graphical Representations ~ — ] X
Selected IWolecule
|D: mito_final.hS.xyz j
Create Rep Delete Rep |
Style Color Selection
DynamicBonds  Mame all

Selected Atoms

|a|||

Draw Sty\e| Selections | Trajectory | Periodic |
Coloring hethod Material

IName j IOpaque j
Drawing hethod
DynamicBonds VI Default

Distance CutnﬁWM
Bond Radius 4 1| 0.3 M
Bond Resolution 4 1| 1z M

& Apply Changes Automatically  Applhy

Figure 2.40. Enhanced mitochondrial network rendering using DynamicBonds in

VMD.

The Graphical Representations panel is configured to use the DynamicBonds drawing
method, which visually connects nearby particles based on a distance criterion. The
Distance Cutoff is set to 1.6, meaning bonds are drawn between particles within this
range. The Bond Radius and Bond Resolution control the visual thickness and
smoothness of the bonds. This setting improves interpretability by emphasizing

network connectivity and structure in 3D mitochondrial simulations.
There are three parameters we can adjust:

® Distance cutoff: setting determines how close two atoms must be to visually
form a bond. If two atoms are within this distance, VMD draws a bond between
them. Since the ReaDDy?2 define the bond in topology is spring-like, so that is

why bond is unstable in visualization, if you want you bond more stable, please
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set the distance cutoff more than bond length in ReaDDy?2, for example:
bond length =3.5 , distance cutoff should above 4.0.
Bond radius: setting bond thickness

Bond resolution: I didn’t see any change from visualization.

After you press apply result should like this (fig 2.41.).

X Graphical Representations a= [m] X

Selected Molecule
|D: mito_final.hS.xyz l]

Create Rep Delete Rep

Style Color Selection
DynamicBonds MName all

Selected Atoms

|a|||

Draw style | Selections | Trajectory| Periodic |
Coloring Method Material

|Name _ﬂ |Opaque ﬂ

Drawing Method

DynamicBonds » Default

Distance Cutoff §|4| 46 Lm
Bond Radius 4[4 | 1.5 M
Bond Resolution 4|4 u 12 _)J_»_l

& Apply Changes Automatically  Apply

Figure 2.41 Final visualization of the mitochondrial network using VMD

DynamicBonds representation.

(a) The Graphical Representations panel is configured with the DynamicBonds
drawing method. A higher Distance Cutoff (4.6), Bond Radius (1.5), and bond

resolution (12) are used to enhance visual continuity and clarity of network segments.
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(b) The OpenGL Display window shows a clearly connected mitochondrial network
structure rendered with smooth cylindrical bonds, allowing for intuitive inspection of

topology and dynamics across simulation frames.

Then we can scroll the time slide to check whether simulation is crash or not (fig

2.42).

VMD Main -~ X
X

File Molecule Graphics Display hkouse Extensions Help

I T A D F Molecule Atoms Frames Vol
0 T ADF mito_finalhSxyz 140 101 0

Mmf100]
44| zoom 0 [Loop x| step 1 M speed|

Figure 2.42. Time navigation in VMD for simulation frame inspection.

The VMD Main window includes a timeline slider (circled in red) that allows users to
scroll through simulation frames. By manually advancing through the trajectory, users
can visually inspect the mitochondrial network across time steps to verify structural

continuity and detect potential simulation crashes, discontinuities, or anomalies.

c. removes the axis from window (optional)

If you want an axis to disappear (fig 2.43.).
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X VMD 1.9.4257 OpenGL Display

X VMD Main - X
File Mholecule Graphics Mouse Extensions Help
ID T ADF Molecule  eoet View = |Frames Vol
T T ADF mio_finalhs,oiop Rotation EE
@® Perspective
© Orthographic
[ Antialiasing
V' Depth Cueing
Mjo]  [¥——————I"FPS Indicator e
44| zoom T [Loop > [ Light D 1 b
V! Light 1
[ Light 2
[ Light 3
3
Background » | © Crigin
Stage » | O Lowerleft
Stereo » | © LowerRight
Stereo Eye Swap  » | O Upperleft
Rendermode » | © UpperRight
Display Settings...

Figure 2.43. Optional removal of coordinate axes in VMD display.

(a) In the VMD Main window, the user accesses the Display menu and selects Axes >

Off to hide the coordinate axes.

(b) The OpenGL Display window then presents a cleaner visualization of the

mitochondrial network without distraction from axis indicator

d. import simulation visualization as tiff file

Finally, let’s make a tiff file, if you want to know how many frames you make.

So here how it goes (fig 2.44.).

_
X VMD Main

X VMD Main .7 X b. - X
File Molecule Graphics Display Mouse Extensions Help
ID T A D F Molecule atoms  (Framed) Vol | 1D T A D F Molecule Atoms_ £nvsIS :
i .hS. 0 T ADF mito_finalhs. 140
0 T ADF mito_finalhSxyz 140 N1/ 0 mito_final.hS.xyz Modeling .
Simulation »
isuekeati »
Tk Console
Mol [uf wijkefo] [af fences ’!I
lT{” zoom [ Loop ¥] step (H 1 _>| speed [ D[y 4] z00m O Loop ;l step 1' 1 _F{ speed | »

Figure 2.44. Preparing to export simulation frames as TIFF images in VMD.
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(a) The Frames column in the VMD Main window indicates the total number of

simulation frames available for export (e.g., 101 frames).

(b) To begin exporting images, the user accesses the Tk Console via the Extensions
menu. The console allows scripted batch export of each frame as a TIFF file, enabling
frame-by-frame visualization or construction of time-lapse animations for

mitochondrial network dynamics.

After that, it should come up with another window (fig 2.45.).

X VMD TkConsole — O X

File Console Edit Interp Prefs History Help

loading history file ... 48 events added A |
buffer line limit: 512 max line length: unlimited
Main console display active (TclB3.5.6 7 TkE.5.62
{readdyy 49 % |
e
4

kdain slave 4.1

Figure 2.45. Using the VMD TkConsole to export mitochondrial simulation frames as
TIFF images.

The TkConsole window in VMD enables scripted control over visualization export.
After setting the desired graphical representation and checking the total number of
frames (see previous figure), the user enters a Tcl script into the console to export
each frame as a .tiff image. This step facilitates generation of high-resolution image

sequences for time-lapse analysis or movie creation.

Type command below:
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# Create the folder if it doesn't exist
file mkdir image_tiff_final_branch
# Get the total number of frames
set num_frames [molinfo top get numframes]
# Render every frame and convert to TIFF with LZW compression
for {set i 0} {$i < $num frames} {incr i 1} {

animate goto $i ;# Go to frame i

set bmp_file "image_tiff_final branch/frame_$i.bmp" ;# Temp
orary BMP file

set tiff_file "image_tiff_final _branch/frame_$i.tiff" ;# Fina
1 TIFF file

render snapshot $bmp_file ;# Render current frame as
BMP

exec convert $bmp_file -compress LZW $tiff_file ;# Convert BMP
to TIFF with LZW compression

file delete $bmp_file ;# Remove temporary BMP fil

puts "Saved frame $i to $tiff file" ;# Print progress

If code runs successfully, the window should be like this (fig 2.46.).
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X VMD TkConscle - O e

File Console Edit Interp  Prefs  History Help
i |
treaddyr 50 % 101

treaddy?r 51 % Saved frame O to image_tiff_final_branchAframe_0,Liff

Saved frame 1 to image_tiff_final_branch frame_1.tiff

Saved frame 2 to image_tiff_final_branch/frame_2, tiff

Saved frame 3 to image_tiff_final_branch/frame_3,tiff |
Saved frame 4 to image_tiff_final_branch/frame_d, tiff

Saved frame 5 to image_tiff_final_branch/frame_5,tiff

Saved frame b to image_tiff_final_branch/frame_b, Liff

Saved frame 7 to image_tiff_final_branch/frame_7 . Liff

Saved frame 8 to image_tiff_final_branch/frame_8 ., tLiff

Saved frame 9 to image_tiff_final_branch/frame_9,tiff

Saved frames
Saved frames
Saved frames
Saved frames
Saved frames
Saved frames
Saved frames

Main slave (123.14]

to image_tiff_final_branch A rame_10 Liff
to image_tiff_final_branch A rame_11 . Liff
to image_tiff_final_branch A rame_12 Liff
to image_tiff_final_branchAframe_13 . Liff
to image_tiff_final_branch A rame_1d Liff
to image_tiff_final_branch A rame_15 . Liff
to image_tiff_final_branch A rame_16 Liff T

e T s el o
IRy I = L ]

Figure 2.46. Batch export of simulation frames to TIFF images via the VMD
TkConsole.

Upon running a loop script in the TkConsole, each frame of the trajectory is
sequentially saved as a high-resolution .tiff file in the specified output directory
(image _tiff final branch/). Successful execution is confirmed by a log of messages

indicating the saved frame numbers and corresponding filenames.

There should be a folder call image tiff final branch in your terminal.

2.7.2 Import Simulation Visualization as tiff with PDB file and PSF file.

If we want an accurate tiff, you need to make sure that you have a two folders
keep PDB files and PSF files separately. Once confirm, type “vmd” in your terminal

and open tk console and type command below:

# Directories containing the PDB and PSF files
set pdb_dir "mito_final pdb files/"

set psf_dir "mito_final psf files/"

set output_dir "image tiff final branch/"

# Ensure the output directory exists
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file mkdir $output_dir

# Set the rendering window size

display resize 672 848

# Turn off the axes

axes location off

# Loop over the time indices
for {set i 0} {$i <= 1000} {incr i 10} {
# Format the time index

set time_index [format "%d" $i]

# Construct file paths
set pdb_file "${pdb_dir}mito_final time_${time_index}.pdb"
set psf_file "${psf dir}mito_final time_${time_index}.psf"

# Check if both files exist

if {[file exists $pdb_file] && [file exists $psf file]} {
# Load the PSF and PDB files into a new molecule
set molid [mol new $psf file]
mol addfile $pdb _file molid $molid

# Apply Bonds representation with specified radius and reso
lution

mol delrep © $molid

mol representation Bonds 13.0 12

mol color Name

mol addrep $molid

# Calculate the frame index by dividing time_index by 10

set frame_index [expr {$time_index / 10}]

# Render and save the image as TIFF
set bmp file "${output dir}frame ${frame_index}.bmp"
set tiff file "${output dir}frame_${frame_ index}.tiff"

render snapshot $bmp file

101

doi:10.6342/NTU202503815



# Ensure ImageMagick's 'convert' tool is available for this
command

exec convert $bmp_file -compress LZW $tiff file

file delete $bmp file

# Delete the molecule to free memory

mol delete $molid

puts "Rendered and saved: $tiff_file"
} else {

puts "Warning: Missing files for time index $time_index"

2.8 Quantitative Comparison with Experimental Data

To validate the fidelity of our reaction-diffusion simulation against biological
behavior, we conduct a quantitative comparison between the simulated and
experimentally observed mitochondrial network structures. Specifically, we focus on
node degree distributions—a coarse-grained yet informative metric reflecting

topological complexity and branching behavior over time.

1. Data Source and Processing

This analysis leverages outputs from the multi-run statistical averaging
simulation, in which each mitochondrial network is simulated 100 times under
identical initial conditions. For each replicate, the simulation tracks the probability of
node degrees 1, 2, and 3 at every time step. These replicate-level logs are saved as:
degree probabilities rep*.txt and Averaging across these replicates yields one

consolidated file per cell: degree probabilities_average.txt.

Each row corresponds to a time step, and each column reports the probability of

encountering nodes of a specific degree.
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2. Experimental Data Extraction

Experimental data consists of time-lapse microscopy images of mitochondrial
networks. These are processed using skeletonization and graph-based methods (e.g.,
via the skan package) to extract degree logs over time. Each processed file is named

according to the corresponding simulation: <cell id> degree probabilities log.txt

This file mirrors the simulated format with columns for degree-1, -2, and -3

probabilities over time.

3. Simulation vs. Experiment Comparison

To evaluate the fidelity of the simulation outputs against experimental
observations, a structured comparison pipeline was established. For each cell, the first
step involved matching simulation results with the corresponding experimental
dataset using a shared cell identifier. Once the file pairs were identified, a validation
procedure was applied to confirm that the time-series data from both sources were
directly comparable. This validation ensured that the temporal sampling intervals
were consistent, that the data arrays were aligned in length, and that both datasets

were free from missing or undefined values (Nans).

After validation, quantitative discrepancies between simulation and experiment
were assessed through a time-resolved computation of the mean absolute error (MAE)
across the three primary node degree classes. At each time step $t$, the error was

defined as:

3
1 .
MAE, =3 ) IPIm(©) — PP (O
d=1

Where P§™(t) and P;*P(t) represent the degree-d probabilities obtained from

simulation and experimental measurements, respectively.
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Following the calculation of time-resolved errors, the pipeline aggregated these
values at two levels. First, a per-cell mean error was computed to evaluate how well
the simulation reproduced the temporal evolution of network structure for each
individual cell. Second, to summarize performance across the dataset, the distribution
of per-cell errors was used to report overall statistics, expressed as the mean error and
its associated standard error. This two-tiered approach provided a robust metric for
assessing the agreement between simulated and experimental mitochondrial network

dynamics at both single-cell and population levels.

4. Visualization and Reporting

The analysis pipeline incorporates a standardized procedure for visualization and
data reporting. For each individual cell, time-resolved degree probabilities are plotted
to depict the evolution of the network structure throughout the simulation. To
summarize model performance at the population level, a scatter plot is generated in
which each point represents the per-cell mean absolute error; superimposed on these
points, the overall mean and associated standard error of the mean (SEM) are shown
as error bars. In addition, the computed per-cell errors are exported as a structured
CSV file (e.g., 02_control single cell error summary.csv), enabling further
statistical analyses and facilitating comparisons across different experimental or

pharmacological conditions.

5. Model Evaluation and Refinement

This quantitative evaluation framework provides an objective basis for assessing
the realism of the computational model. By directly comparing simulation-derived
degree distributions to their experimental counterparts, it becomes possible to
determine whether the current parameterization and reaction schemes reproduce the
key features of mitochondrial network dynamics. Furthermore, systematic
deviations—such as consistent underestimation of degree-3 branching events—can be
readily detected. These insights guide iterative refinement of the model through

targeted adjustments to fission and fusion rates, reaction probabilities, and structural
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constraints, with the goal of improving the biological fidelity of the simulation

outputs.

6. Multi-Condition Summary Analysis

The final script generalizes this analysis ins_1 cell across six experimental

conditions:

Table 2.1 . Summary of experimental conditions and cell models used in this study.
Five treatments (Control, FCCP, Mdivi-1, Oligomycin, Rotenone) were applied to
Ins-1 cell to examine mitochondrial network remodeling. Treatments differentially

shift the fission—fusion balance.

.. ) ) Expected Network
Condition Main Function
Impact
‘ . Balanced
Control Baseline, no perturbation ] ]
fission/fusion[7]
FCCP A¥m uncoupler 1 Fission / | Fusion[10]
o DRPI1 inhibitor (blocks o i
Mdivi-1 . | Fission / 1 Fusion[11]
fission)
Oligomycin ATP synthase inhibitor 1 Fission[10]
Rotenone Complex I inhibitor 1 Fission / | Fusion[6]

And three different three types of cells.

Table 2.2 . Baseline characteristics of the three cell types (Ins-1, PANC-1, AC-16) and

their intrinsic mitochondrial network states.

o Mitochondrial Network
Cell Type Cell State / Characteristics
Status
Rat pancreatic B-cell; Moderately
Ins-1 glucose-responsive, high oxidative interconnected; balanced
phosphorylation fission/fusion[7]
PANC.1 Human pancreatic ductal carcinoma; Highly fragmented;
high metabolic plasticity 1 Fission / | Fusion[8]
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] ) ) Dense small
Human ventricular cardiomyocyte; high . y -
AC-16 S mitochondria; Slightly
ATP demand, oxidative stress -

1 Fission[ 15]

For each experimental condition, the corresponding summary file (e.g.,
02 FCCP single cell error summary.csv) containing the per-cell mean absolute
error values is imported and processed. These data are aggregated to produce a
condition-specific distribution of errors, which is subsequently visualized in a
comparative plot. In this plot, individual black points represent the error values for
each cell, while blue markers with error bars denote the mean error and its associated
standard error (SE) for that condition. This comparative visualization facilitates
quantitative evaluation of model performance across different pharmacological
perturbations. It enables direct ranking of model fidelity between experimental
conditions, highlights outlier behaviors or inconsistent simulation fits, and provides a
data-driven basis for refining reaction rate parameters in response to specific cellular

perturbations.
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3. Chapter 3: Results

This study implements a two-pronged simulation framework to explore the
structural evolution of mitochondrial networks under varying conditions. The first
approach focuses on a high-resolution single-run simulation, offering insight into
detailed topological and particle-level behavior. The second adopts a multi-run
statistical averaging strategy to extract reliable trends and assess the reproducibility of
dynamic outcomes. Together, these approaches balance mechanistic clarity with

statistical robustness.

3.1 Single-Run Simulation — Comprehensive Structural and Topological

Analysis

The single-run simulation captures the dynamics of mitochondrial morphology
by explicitly modeling particle diffusion, topological fusion and fission, and structural
constraints (bonds, angles, repulsion). The system is initialized using real skeletonized
network data, and reactions are governed by spatial proximity and graph-based logic

rules. The output captures both particle-level and topology-level observables.

3.1.1 Particle Trajectories and 3D Structure Files

At every observation step, the 3D position and particle type of each node are
recorded. Each node begins as mito_node 1 and may transition to mito_node 2 or
mito_node 3 depending on its local connectivity (fig 3.1.). The .csv position logs
offer an accessible numeric representation, while .pdb and .psf files provide structured
3D geometry and bond connectivity for external rendering. The resulting PDB-PSF
pairs can be loaded into VMD to reconstruct mitochondrial filament arrangements
with atomic-style precision, showing the continuous spatial deformation of the
network over time. These spatial outputs are essential for visual validation and

qualitative interpretation of fusion-fission cycles.
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Figure 3.1. 3D rendering of mitochondrial network structure

Each node's spatial position and identity (e.g., mito_node 1, mito node 2,
mito_node 3) are recorded at each observation step and rendered using VMD. The
color-coded atoms represent different node types, with connectivity defined by bond
information in the PSF file. This high-resolution visualization captures the evolving
topology and spatial deformation of mitochondrial filaments, allowing qualitative

validation of fusion—fission dynamics modeled in the simulation.

3.1.2 Fusion and Fission Event Logging

Topological remodeling events are logged explicitly, with fusion reactions
triggered by local degree constraints—such as two mito _node 1 particles converting
into mito_node 2—and fission occurring via selective removal of internal (non-
terminal) edges based on a topology-aware dissociation rate function. Each event
includes the 3D coordinates of the affected particles, allowing reconstruction of the
event landscape in physical space. This spatial logging reveals not only the frequency
of reactions but also their localization and spatial distribution, which is crucial for

identifying structurally sensitive zones or edge cases in the network dynamics.
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Figure 3.2. Spatial logging of mitochondrial network remodeling events during

simulation.

(a) Fusion events and (b) fission events are recorded in separate .log files, each entry
capturing the 3D coordinates of the involved nodes. Fusion typically involves the
merging of two mito_node 1 particles into a higher-order node (e.g., mito_node 2),
while fission reflects the disassembly of internal bonds leading to node separation.
The logs enable precise reconstruction of dynamic topological transitions, offering
spatial context for each event and supporting downstream visualization or clustering

analyses to identify preferential sites of remodeling activity.

3.1.3 Temporal Degree Probability Tracking

Node degrees, interpreted as the number of neighbors in the topology graph, are
dynamically tracked and binned into degree-1, -2, or -3 categories. These degrees
represent linear endpoints, internal chain particles, and branched junctions,

respectively. By calculating the frequency of each degree class at every time point, we
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quantify the shift in network complexity as the simulation evolves. For instance, a
monotonic increase in degree-1 nodes signifies fragmentation, while a sustained
presence of degree-3 nodes would indicate retained branching. These probabilities are
exported to .txt files for downstream comparison and plotted to show time-resolved

topological simplification.
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Figure 3.3. Time evolution of topological complexity in the mitochondrial network.

The plot shows the probability of nodes possessing degree 1 (blue), degree 2 (orange),
and degree 3 (green) at each simulation time step. Degree-1 nodes correspond to
terminal ends, degree-2 to internal linear segments, and degree-3 to branching
junctions. Over time, an increasing trend in degree-1 probability and decreasing
degree-2 frequency suggests progressive fragmentation. The relatively stable degree-3
proportion indicates that while linearity dominates, occasional branching structures
persist. This temporal tracking of node degree distribution provides quantitative

insight into mitochondrial network simplification dynamics.

3.1.4 Average Topology Length per Time Step

To further quantify structural degradation, the average number of bonds per

connected topology (i.e., average polymer length) is computed at each time step. This
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metric accounts for both fragmentation and internal connectivity. The simulation

reveals a consistent downward trend in this quantity, suggesting that large, complex
filaments are progressively replaced by shorter segments or isolated particles. Since
this measure is topology-based rather than particle-based, it serves as a higher-order

indicator of network disintegration.
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Figure 3.4. Temporal evolution of average mitochondrial network segment length.

The plot shows the average number of beads per connected topology (i.e., polymer
segment) over time. Despite fluctuations, a generally stable but lower-bound average
length is maintained, with intermittent drops suggesting transient fragmentation
events. This measure reflects the evolving integrity of the mitochondrial network
structure, where shorter polymers indicate degradation and loss of extended
connectivity. As this metric aggregates structural information at the topology level, it

provides a high-level view of network simplification trends.

3.1.5 Final Degree Distribution
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At the conclusion of the simulation, the system’s topological state is analyzed by
computing the full histogram of node degrees and normalizing it to obtain a degree
probability distribution. This is visualized in log—log space to capture both frequent
and rare degree values. The dominance of degree-1 nodes confirms the collapse of the
network into disconnected or linear elements. Importantly, this distribution is the basis

for quantitative comparison with experimental image-derived networks.
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Figure 3.5. Final degree distribution of the simulated mitochondrial network.

The histogram shows the normalized probability of each node degree at the end of the
simulation, plotted on a log—log scale to emphasize both common and rare topological
states. Degree-1 nodes dominate the distribution, indicating a fragmentation-
dominated regime with a predominance of terminal elements. The sharp decay in
higher-degree nodes reflects the loss of complex junctions and branching points,
consistent with network disintegration under FCCP treatment. This distribution serves

as a benchmark for comparing simulation outcomes with experimental imaging data.

3.1.6 Fragment Size Distribution
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Each fragment (connected component) is characterized by its size—the number
of particles it contains. The simulation computes the frequency of each fragment size
and displays it as a distribution. A broad distribution, particularly one with a heavy
tail, suggests that while many small fragments exist, some larger structures remain.
This analysis reveals the system’s heterogeneity: complete fragmentation into isolated
monomers results in a narrow peak, while mixed-size fragments suggest partial

preservation of higher-order structure.
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Figure 3.6. Fragment size distribution of the simulated mitochondrial network at the

final time point.

The probability distribution of fragment sizes—measured as the number of particles
per connected component—is shown on a log—log scale. The presence of a wide range
of fragment sizes, including both small and moderately large clusters, indicates a
heterogeneous fragmentation process. The heavy-tailed nature of the distribution
implies that while many filaments break into small pieces, some larger substructures

persist. This pattern supports a model of partial network collapse with residual
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topological complexity, potentially reflecting biologically relevant subnetwork

stabilization mechanisms.

3.1.7 Fragment Count Over Time

To assess how the network disassembles over time, the simulation tracks the
number of fragments at each time point. This directly reflects the balance between
fusion and fission events. The increasing number of fragments over time confirms a
fission-dominated regime and serves as a macroscopic signature of mitochondrial
network collapse. It also helps identify transient equilibrium phases, where the

fragment count temporarily plateaus before resuming its rise.
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Figure 3.7. Temporal evolution of fragment count during the mitochondrial network

simulation.
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The number of disconnected topological fragments is plotted against simulation time
steps (scaled to 1000). An initial drop followed by persistent fluctuations around a
higher baseline indicates progressive fragmentation driven by fission events. Despite
transient dips, the absence of a consistent downward trend suggests a lack of sustained
fusion activity. This behavior is consistent with a system undergoing structural
disintegration, and it offers a coarse-grained view of topological breakdown dynamics

complementary to degree and size-based metrics.

3.1.8 Reaction Count Dynamics

In parallel, all reactions—both spatial and structural—are monitored and
recorded in real-time. This includes fusion_1, fusion 2, and any internally triggered
structural transitions. By parsing reaction_counts.log, the system reconstructs the
kinetic landscape of the simulation. Changes in reaction rates over time provide
insight into the system’s phase behavior, such as initial bursts of activity during early
reconfiguration, followed by a steady state where fewer eligible reactions remain due

to increasing fragmentation.
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Figure 3.8. Temporal evolution of reaction events

The plot depicts the aggregated counts of fission, fusion 1, and fusion 2 reactions

across the simulation timeline, binned every 50 steps for clarity. Fission reactions
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(blue) dominate throughout the simulation, reflecting a fragmentation-prone regime.
In contrast, fusion_1 (orange) and fusion_2 (green) events occur sporadically and at
lower frequencies. This kinetic profile underscores the imbalance between network-
building and network-breaking processes, which contributes to the overall structural
degradation observed in topological metrics. The declining frequency of all events
toward later stages reflects a reduction in eligible reaction sites as the network

disintegrates.

3.2 Multi-Run Statistical Averaging — Reproducibility and Error Quantification

To ensure reproducibility and account for stochastic variation in the simulation
outcomes, we conducted 100 independent simulations using a batch pipeline (Multi-
run Statistical Averaging.py). Each replicate uses identical initial network conditions
and parameters and produces its own trajectory (h5), XYZ file, and degree

distribution log (degree probabilities_rep*txt).

3.2.1 Degree Probability Averaging Across Replicates

All replicate logs are aggregated and processed to compute the mean degree
probability for each class (degree 1, 2, 3) at each time point. The standard deviation
across replicates is also calculated, capturing the run-to-run variability of topological
evolution. These statistics are visualized as mean +1c bands using
01 mito FCCP_image error analyzepy.py. This analysis provides an error-aware
backbone of system dynamics and serves as a reference point when comparing against
single-run results or experimental measurements. Notably, the low variability across

runs indicates consistent simulation behavior and a well-defined dynamic trajectory.
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Figure 3.9. Mean degree probabilities over time with replicate variability.

The plot shows the mean probability of each topological degree class—degree 1
(blue), degree 2 (orange), and degree 3 (green)—across multiple simulation replicates.
Shaded regions represent +1 standard deviation at each time step, quantifying the
variability of network evolution. A clear upward trend in degree-1 nodes indicates
persistent fragmentation, while the decline in degree-2 nodes reflects a reduction in
internal filament segments. The relatively stable profile of degree-3 nodes suggests a
residual presence of branching structures. The narrow error bands indicate consistent

dynamics across replicates, supporting the reliability of simulation outcomes.

3.2.2 Quantitative Comparison of Experimental Image Data

To evaluate how well the simulation captures real mitochondrial dynamics, we
directly compare simulated degree trajectories with those extracted from time-series
microscopy images. The image data, processed through skan, yields skeletonized
networks and corresponding degree logs. For quantitative comparison, per-frame

absolute errors are computed for each degree class and averaged to obtain a mean
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absolute error (MAE) for every simulated—experimental cell pair. This matching is
automated using the 01 mito FCCP image error analyze.py script. Figure 3.10
illustrates the validation process under FCCP treatment. Panel (c) shows the
distribution of MAEs from 100 simulation runs across all individual cells. Each black
dot represents the MAE for a single simulated cell, and the red star denotes the
simulation with the smallest error, selected as the best-fit case. Based on this
selection, panel (a) presents the temporal evolution of degree probabilities

(mean + SD) for this best-fit simulation, demonstrating close agreement with the
experimental dynamics. Panel (b) focuses on this same single cell, providing a
detailed view of its degree distributions throughout the simulation. These results
indicate that the simulation framework accurately reproduces mitochondrial network
dynamics for the chosen best-fit replicate, providing a robust basis for interpreting

treatment-induced deviations in subsequent analyses.
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Figure 3.10. Validation of simulation against experimental image-derived dynamics

under FCCP treatment.

(a) Temporal evolution of degree probabilities (mean + SD) for this best-fit replicate,

showing close alignment with experimental trends.

(b) Degree distribution of the same single cell across the simulation, illustrating how

the best-fit replicate captures mitochondrial network dynamics under FCCP treatment.
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(c) Mean absolute errors (MAEs) from 100 simulations compared with experimental
degree distributions; each black dot represents an individual simulated—experimental

cell pair, and the red star marks the best-fit simulation with the smallest error.

3.3 Results of Simulation—Experiment Validation

This section presents the outcomes of the quantitative comparisons introduced in
Section 3.2. For each treatment condition and cell type, the temporal evolution of
degree distributions from simulations is evaluated against experimental image-derived
data. Both best-fit single-cell replicates, and aggregate analyses are provided to

illustrate model performance and treatment-specific deviations.

Before presenting the validation results, it is important to clarify the rationale
behind using the mean absolute error (MAE) as our evaluation metric. In the
ReaDDy2 simulations, all parameters except the fission and fusion probabilities were
kept constant. These two parameters were iteratively adjusted for each single cell to
minimize the difference between simulated and experimental degree distributions.
The parameter set that yielded the lowest MAE for a cell was recorded as its “best-fit”
configuration. For each treatment, these best-fit parameters were then averaged and
reapplied to evaluate whether a common parameter set could robustly reproduce the
dynamics of all cells in that group. MAE distributions within a treatment provide two
key pieces of information: (i) whether the resulting errors are highly dispersed—
indicating large variability between cells—and (i1) whether the overall MAE values
remain low. In general, an MAE below approximately 0.1-0.15 for degree
probabilities is considered to represent good agreement, whereas values approaching
0.3 or higher imply a substantial mismatch that may require additional model
assumptions or mechanisms. Based on these evaluations, we focus on analyzing the
best-fit simulations as representative cases for each treatment to explore possible
network behaviors under that condition. Presentation of the worst-fit cases was not
emphasized, as our primary aim was to identify the range of dynamics that can be

captured when the model performs optimally.
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To present the results systematically, we first summarize the fixed ReaDDy2
parameters all simulations in a table 3.1. These baseline values remain constant across
conditions, this table is shown once for reference, and for each treatment only the

adjusted fusion/fission probabilities are noted when introduced.

Table 3.1. Fixed ReaDDy2 simulation parameters.

Values define the simulation box geometry, diffusion properties, interaction forces,
angular constraints, and detection probability which is extremely high to insure can
detect fusion in every step. These parameters are held constants for all conditions;
only fusion probabilities, capture radii for spatial fusion reactions and fission

probabilities are adjusted for each treatment.

parameter value description (concise)
. simulation box dimensions (X, y,
box_size [1000, 1000, 0.01] )
z
origin [-500, -500, -0.005] box center coordinates
force constant box 100.0 reflective boundary strength
diffusion_constant 0.02 particle diffusion constant
force constant repulsion 10.0 soft-core repulsion strength
) ] ] repulsion interaction cutoff
interaction distance 10.0 )
- distance
force constant _bond 100.0 harmonic bond force constant
length bond 10 equilibrium bond length
force constant angle 10.0 angle potential force constant
target angle for degree-2
two_degree angle T .
connections
target angle for degree-3
three degree angle /3 . .
junctions
) . rate factor for fission site
detection_probability 4 .
detection
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We then present the average degree distributions over time, aggregated across all
cells within each treatment, to provide an overview of the typical temporal evolution
of mitochondrial network topology. Following this, error analysis plots (such as
Fig. 3.10) are used to assess the overall fit quality between simulations and
experimental data, considering both group-level variability and individual best-fit
performance. Finally, for each treatment, we examine the network behaviors captured
by the best-fit simulations through detailed time-course visualizations and structural

analyses, focusing on how well these simulations reproduce key experimental trends.

1. Ins-1 Control Network Condition (n = 15) (baseline value).

Ins-1 Control Mean Degree Distributions with Variability
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Figure 3.11. Temporal evolution of mean degree distributions for the Ins-1 control

condition.

Figure 3.11. illustrates the temporal evolution of the mean degree distributions

for the Ins-1 control group, aggregated across all single-cell simulations. Under
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control conditions, the mitochondrial networks maintain a relatively balanced

topology over time. Degree 1 nodes dominate, with probabilities fluctuating around

0.40-0.45, indicating the presence of numerous endpoints and short branches.

Degree 2 nodes remain moderately prevalent, maintaining values near 0.30-0.35,

consistent with linear chain segments. Degree 3 nodes are less frequent, with

probabilities around 0.20-0.25, reflecting a limited but stable number of branching

points. The variability bands indicate moderate cell-to-cell heterogeneity, but no

major shifts or instabilities are observed over the 140 simulation steps. These results

suggest that, in the absence of treatment, the Ins-1 mitochondrial networks exhibit a

stable, moderately connected architecture with limited branching complexity.

X

Table 3.2. Adjustable ReaDDy?2 parameters for Ins-1 Control.

parameter value description (concise)
Fusion_probability 1 0.3 tip-to-tip fusion probability
Fusion_probability 2 0.4 tip-to-side fusion probability
Fission_base probability 0.15 base probability of fission events
radius_reaction_1 15 capture radius for fusion reaction_1
radius_reaction_2 15 capture radius for fusion reaction_2
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Figure 3.12 . Control Condition Analysis for Ins-1 Cells

Panels (a—c) present quantitative comparisons between simulated and experimental

mitochondrial network properties under control conditions.

(a) Time-averaged degree probabilities (+ standard deviation) for the best-fit

simulation replicate.

(b) Degree probabilities from the corresponding experimental image that the best-fit

simulation was matched against.

(c) Mean absolute error (MAE) between experimental data and 100 simulation
replicates. The red star marks the simulation with the lowest MAE, selected as the
best fit; the blue point and error bar indicate the overall mean + standard error (SE)
across all replicates.

(d) Raw confocal fluorescence image of a representative untreated Ins-1 cells.
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(e) Corresponding segmentation mask.

(f) Skeletonized mitochondrial network used for graph extraction and degree

quantification.

Under control conditions, the mitochondrial network exhibits relatively stable
structural dynamics over time. As shown in Fig. 3.12(a), the best-fit simulation
demonstrates a dominant presence of degree 1 nodes (terminal ends), indicating a
fragmented but steady morphology. Degree 2 nodes (linear segments) show a slight
decline, while degree 3 nodes (branch points) gradually increase, reflecting mild
network remodeling. The corresponding experimental degree probabilities used to

evaluate the best-fit case are shown in Fig. 3.12(b).

This evolving pattern suggests a slow but persistent incorporation of linear
segments into branched structures, consistent with physiological turnover rather than
stress-induced restructuring. The network maintains a quasi-steady state characterized
by balanced fusion and fission activity, without signs of extreme fragmentation or

hyper fusion.

As quantified in Fig. 3.12(c), the best-fit simulation achieves the lowest MAE
among 100 replicates, while the overall mean MAE remains below 0.1, indicating a
strong agreement between the model and experimental data. This control condition
provides a reliable baseline for assessing the effects of pharmacological perturbations

in subsequent sections.
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Figure 3.13. Temporal evolution of average fragment length of Ins-1 Cell Control.
(measured by node count per topology) indicates continuous remodeling without

strong directional trends.

Figure 3.13 remains relatively stable throughout the simulation, fluctuating
between approximately 7 and 13 beads per structure. No consistent increasing or
decreasing trend is observed, indicating a dynamic equilibrium between fusion and
fission events. This variability reflects continuous remodeling activity characteristics
of a physiologically balanced mitochondrial network. The preservation of average
segment length over time suggests that the system is maintaining morphological
homeostasis, with neither excessive fragmentation nor elongation dominating the

network dynamics.
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Final Degree Distribution in control condition
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Figure 3.14. Final Degree distribution of Ins-1 Cell Control (log-log scale) reveals a
dominant presence of degree-1 nodes, consistent with fragmented and linear

structures.

Figure 3.14 is a predominance of low-degree nodes, with degree 1 and degree 2
being the most frequent. Degree 1 nodes (terminal ends) exhibit the highest
probability, indicating that fragmented or end-point structures are common within the
network. Degree 2 nodes (linear segments) are slightly less frequent, while degree 3
nodes (branch points) occur at lower probability, reflecting moderate network
complexity. Nodes with degrees 4 or higher are rare, suggesting limited over-
branching. This distribution consists of a homeostatic mitochondrial network
characterized by a balance between fragmentation and fusion, supporting moderate

connectivity without excessive branching.
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Fragment Size Distribution in control condition
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Figure 3.15. Fragment size distribution follows a heavy-tailed profile of Ins-1 Cell

Control, with numerous small fragments and a few large clusters, reflecting network

heterogeneity.

Figure 3.15 follows a broad-tailed, right-skewed profile. Most mitochondrial
fragments are relatively small, but a wide range of larger structures is also present at
lower probabilities. The distribution suggests that while fragmentation events are
frequent, a subset of mitochondria remains connected as extended structures. This
balance reflects the dynamic interplay between fission and fusion in a homeostatic
network, allowing both isolated fragments and moderately large mitochondrial
clusters to coexist. The presence of a long-tailed distribution is indicative of structural

heterogeneity, characteristic of healthy mitochondrial populations.
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Number of Fragments Over Time in control condition
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Figure 3.16. The number of fragments tracked over time of Ins-1 Cell Control shows

fluctuations around a stable average, indicating a dynamic steady state.

Figure 3.16. remains relatively stable over time under control conditions,
fluctuating around a mean of approximately 9 to 11 fragments. No consistent upward
or downward trend is observed, indicating that the rates of fission and fusion are well
balanced. The fluctuations reflect the stochastic nature of individual reaction events,
but the overall fragment count remains within a narrow range. This stability in
fragment numbers supports the notion of a homeostatic network, where mitochondrial
remodeling occurs dynamically but without net accumulation or loss of structural

units.
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Aggregated Reaction Counts Over Simulation Steps in control condition
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Figure 3.17. Aggregated reaction counts for fission, fusion_1, and fusion_2 events
across the simulation of Ins-1 Cell Control. The relatively balanced rates reinforce the

notion of a homeostatic regime with ongoing but non-disruptive restructuring.

Figure 3.17. Reaction dynamics remain active and balanced throughout the
simulation. Fission events (green) occur frequently and stochastically, maintaining a

moderate to high level across all simulation steps.

Fusion 1 events are consistently present and follow a frequency pattern like
fission, though slightly lower in count. In contrast, fusion_2 events occur less
frequently and display sporadic behavior with many intervals of inactivity. This
asymmetry suggests that the primary fusion mechanism under homeostatic conditions

is fusion_1, while fusion_2 plays a more limited role.

Overall, the interplay between fission and fusion reactions remains dynamically
balanced, supporting the maintenance of a stable mitochondrial network. The
persistent activity of all reaction types reflects ongoing remodeling typical of healthy

mitochondrial populations.
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2. Ins-1 FCCP Network Condition (n =11)
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Degree
—— Degreel
Degree2
—— Degree3

0.7 1

0.6

0.5

o
IS

Probability

0.3+

0.2 1

0.1 4

6 2‘0 4‘0 6‘0 8‘0 160 léO 1“‘&0
Time Step
Figure 3.18. Temporal evolution of mean degree distributions for Ins-1 cells under

FCCP treatment.

The plot shows the average degree probabilities (mean + SD) across all single-cell
simulations. Degree 1 nodes increase over time, indicating enhanced fragmentation.
Degree 2 nodes decline steadily, while degree 3 nodes rise gradually, reflecting local

branching amid overall network destabilization caused by FCCP-induced stress.

Figure 3.18 illustrates the temporal evolution of degree distributions in Ins-1
cells treated with FCCP, averaged across all single-cell simulations. The network
exhibits a pronounced shift toward increased fragmentation over time. Degree 1 nodes
(terminal ends) dominate throughout the simulation, maintaining probabilities above
0.5 and showing a slight upward trend, indicating a growing number of isolated or
disconnected segments. In contrast, degree 2 nodes (linear segments) steadily decline,

suggesting loss of continuity in tubule structures. Most notably, degree 3 nodes
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(branch points) show a gradual and continuous increase, reaching near 0.3 by the end

of the time course. This trend suggests that, despite FCCP-induced fragmentation,

some local branching persists—potentially due to compensatory fusion events.

These patterns reflect a network that undergoes progressive destabilization under

FCCP, consistent with the drug's known role as a mitochondrial uncoupler that

collapses membrane potential and biases dynamics toward fission. The overall

variability also increases over time, suggesting a loss of structural uniformity among

the simulated networks.

Table 3.3. Adjustable ReaDDy?2 parameters for Ins-1 FCCP

parameter value description (concise)
Fusion_probability 1 2 tip-to-tip fusion probability
Fusion_probability 2 5 tip-to-side fusion probability
Fission_base probability 0.1 base probability of fission events
radius_reaction 1 15 capture radius for fusion reaction 1
radius_reaction_2 20 capture radius for fusion reaction_2
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C. FCCP Image Degree Error
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Figure 3.19. FCCP Treatment Analysis for Ins-1 Cells.

Panels (a—c) show comparisons between simulated and experimental mitochondrial

network properties under FCCP treatment.

(a) Time-averaged degree probabilities (mean + SD) for the best-fit simulation,

reflecting fragmentation trends.

(b) Degree probabilities from the experimental image used for best-fit evaluation,

representing the real mitochondrial network dynamics.
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(c) Mean absolute error (MAE) between experimental data and 100 simulation
replicates. The red star indicates the simulation with the lowest MAE (best fit), and

the blue point with error bar represents the overall mean =+ SE.
(d) Raw confocal image of a single FCCP-treated Ins-1 cell.
(e) Corresponding segmentation mask.

(f) Skeletonized network used for graph extraction and degree quantification.

Under FCCP treatment, the mitochondrial network undergoes progressive
fragmentation. As shown in Fig. 3.19(a), the best-fit simulation demonstrates a strong
increase in degree 1 nodes (terminal ends), consistent with excessive fission activity
and suppressed fusion due to membrane potential collapse. Degree 2 nodes remain

moderate but slowly decline, while degree 3 nodes (branch points) remain relatively

flat.

The corresponding experimental degree probabilities (Fig. 3.19(b)) reveal a more
complex dynamic: while fragmentation dominates, there is also a noticeable and
continuous increase in degree 3 nodes. This pattern implies ongoing structural
complexity and suggests that under stress, mitochondria may still undergo non-

canonical or compensatory fusion attempts that form disordered branches.

The quantitative comparison in Fig. 3.19(c) shows that although the best-fit
simulation yields a low MAE (red star) relative to other replicates, the overall
distribution of MAE values is more dispersed and higher than in control conditions

(see Fig. 3.12(c)), indicating reduced model robustness under extreme perturbation.

This discrepancy, particularly the model’s failure to capture the experimental
increase in degree 3—highlights a limitation of the current framework. As currently
implemented, the agent-based model does not support conversions from linear
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segments (degree 2) to branch points (degree 3) unless explicitly triggered by
predefined fusion events. It lacks mechanisms for unstructured or stress-induced
remodeling pathways, which may account for the experimental complexity observed

under FCCP treatment. This situation will explain detailly in the discussion section.

average length of topologies under FCCP treatment
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Figure 3.20. The average length of topologies of Ins-1 Cell under FCCP treatment
remains consistently high, indicating elongated but disconnected mitochondrial

fragments.

Figure 3.20. remains consistently high, fluctuating around 16 to 19 beads, with
brief and infrequent drops. This suggests that the network is composed of a small
number of elongated structures rather than fragmented units. The sustained high
values imply that once fragmentation occurs, few individual topologies persist and

grow in length, possibly due to a collapse into fewer surviving structures.
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This behavior contrasts with the more balanced remodeling observed under
control conditions. FCCP, a mitochondrial uncoupler, disrupts membrane potential
and suppresses mitochondrial function, which may impair normal fission activity,
allowing elongated fragments to persist abnormally. The observed topology length

suggests dysfunctional network dynamics, with impaired fragmentation and abnormal

elongation.
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Figure 3.21. The Final degree distribution of Ins-1 Cell under FCCP treatment is

dominated by lower-degree nodes, with reduced branching complexity relative to

control.

Figure 3.21. is skewed toward low-degree nodes, with degree 1 remaining the
most dominant. However, unlike the control condition, degree 3 nodes occur at

comparable frequency to degree 2, indicating an unusual accumulation of branch
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points despite overall network disruption. Higher-degree nodes (degree > 4) are

present but rare, reflecting isolated instances of abnormal connectivity.

This distribution suggests paradoxical behavior: while the network is overall

fragmented due to mitochondrial stress, branching still occurs, possibly due to

disorganized or non-physiological fusion events. The combination of high

fragmentation (degree 1) and non-trivial branching (degree 3) may reflect a

pathological remodeling process, characteristic of mitochondrial dysfunction under

FCCP-induced depolarization.
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Figure 3.22. The fragment size distribution of Ins-1 Cell under FCCP treatment

exhibits a widespread with an abundance of small fragments, reflecting network

fragmentation and disassembly.
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Figure 3.22. is highly irregular and dispersed, lacking a clear monotonic decay.
While small fragments remain dominant, a broad range of larger fragments appears
with non-negligible probability, including several outliers at high fragment sizes.
Unlike the control condition, where the distribution showed a smooth decline, the
FCCP distribution is noisy and discontinuous, indicative of disorganized

fragmentation and abnormal aggregation.

This irregularity suggests that the network undergoes pathological remodeling,
where fusion and fission are not well regulated. The coexistence of very small and
large fragments likely results from FCCP-induced mitochondrial dysfunction, where
loss of membrane potential leads to both uncontrolled fission and compensatory or

mis regulated fusion, producing a wide range of fragment sizes.
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Number of Fragments Over Time under FCCP Treatment
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Figure 3.23. The number of fragments over time of Ins-1 Cell under FCCP treatment

stabilizes at a higher baseline than control, consistent with persistent fission activity.

Figure 3.23. rapidly decreases and stabilizes at a low value. After an initial
transient phase, the fragment count settles around 6—7 fragments, with minimal
fluctuation throughout the rest of the simulation. This behavior contrasts sharply with
the control condition, where fragment counts remained more variable and higher on

average.

The consistently low fragment count suggests that FCCP leads to the collapse of
network diversity, possibly through the elimination of smaller fragments or
aggregation into a few abnormally large structures. This outcome reflects a
dysfunctional dynamic state, in which normal mitochondrial turnover is suppressed,

and the network fails to maintain typical levels of fragmentation and remodeling.
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Aggregated Reaction Counts Over Simulation Steps under FCCP Treatment
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Figure 3.24. Aggregated reaction counts over time of Ins-1 Cell under FCCP
treatment show a predominance of fission events with infrequent fusion 1 and

fusion_2 events, highlighting a strong fission-dominant regime.

Figure 3.24. leads to an elevated and persistent level of fission activity (green),
with reaction counts frequently reaching 6—10 events per aggregation window. In
contrast, both fusion reaction types are reduced: fusion 2 (blue) declines gradually
over time and occasionally drops to zero, while fusion_1 (orange) remains sporadic

and consistently low throughout the simulation.

This imbalance between high fission and suppressed fusion supports the
observed fragmentation of the mitochondrial network and the decline in fragment
diversity. The depletion of fusion events, particularly fusion 2, suggests that network
repair and reconnection mechanisms are impaired, consistent with FCCP's role in

dissipating membrane potential and inhibiting fusion machinery.

Overall, these dynamics indicate that FCCP induces a pathological shift in

mitochondrial remodeling, dominated by fission and largely unopposed by
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compensatory fusion, resulting in structural collapse and fragmentation.

3.Mdivil Network Condition (n = 6)
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Figure 3.25 . Temporal evolution of mean degree distributions for Ins-1 cells under

Mdivi-1 treatment.

Degree 1 (blue) and degree 2 (orange) nodes dominate and remain tightly coupled
across time, while degree 3 nodes (green) remain consistently low. The network
exhibits morphological stability, reflecting Mdivi-1’s inhibition of fission without

inducing excessive branching or fusion-driven remodeling.

Figure 3.25 displays the temporal evolution of degree distributions in Ins-1 cells
treated with Mdivi-1, a pharmacological inhibitor of mitochondrial fission. The
network topology remains notably stable over time. Degree 1 and degree 2 nodes
dominate and closely overlap throughout the simulation, each fluctuating around a
probability of ~0.40, suggesting a balance between terminal ends and linear segments.
Degree 3 nodes (branch points) remain consistently lower, with average probabilities

near 0.20 and minimal upward or downward trend.
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This behavior indicates that Mdivi-1 treatment preserves the existing

mitochondrial architecture and prevents excessive fragmentation. The suppression of

fission likely inhibits network breakdown, but without a strong fusion drive, the

system does not exhibit extensive branching or elongation either. The narrow

variability of bands further suggests reduced dynamical changes and higher

topological uniformity among cells. Overall, the mitochondrial network appears

morphologically stable and structurally constrained, consistent with a fission-inhibited

but fusion-limited condition.

Table 3.4. Adjustable ReaDDy?2 parameters for Ins-1 Mdivil

parameter value description (concise)
Fusion_probability 1 0.6 tip-to-tip fusion probability
Fusion_probability 2 0.4 tip-to-side fusion probability
Fission_base probability 0.15 base probability of fission events
radius_reaction 1 15 capture radius for fusion reaction 1
radius_reaction 2 15 capture radius for fusion reaction 2
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Figure 3.26. Mdivil Treatment Analysis for Ins-1 Cells.

Panels (a—c) compare simulation results with experimental mitochondrial network

properties following Mdivi-1 treatment.

(a) Degree probability trajectory from the best-fit simulation shows stabilization of

degree 1 and 2 nodes with low and declining degree 3, indicating limited remodeling.

(b) Degree probability from the corresponding experimental dataset used for best-fit

evaluation.

(c) Mean absolute error (MAE) comparison across 100 simulation replicates. The red
star marks the lowest MAE (best fit), while the blue point and error bar indicate the

group mean + SE.

(d) Confocal image of a single Mdivi-1 treated Ins-1 cell showing compact and fused

mitochondrial clusters.

(e) Segmentation results in capturing the enhanced mitochondrial mass.
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(f) Extracted skeleton network, showing a prevalence of linear and terminal segments

with sparse branching.

Under Mdivi-1 treatment results in a stabilized mitochondrial network structure,
as illustrated in Fig. 3.26(a). The best-fit simulation shows persistent dominance of
degree 1 and degree 2 nodes, both fluctuating near 0.4, with limited changes over
time. Degree 3 nodes remain low and show a slight downward trend, indicating

minimal new branching activity.

The real experimental degree probabilities from the matched dataset, shown in
Fig. 3.26(b), support this observation. Terminal and linear segments are prevalent,
while branch points remain sparse and steady. This morphology reflects a condition
where fission is pharmacologically suppressed, and the network remains in a

structurally constrained state.

As shown in Fig. 3.26(c), the best-fit simulation achieves a low MAE (red star),
indicating strong alignment with the experimental profile. The narrow MAE
distribution across 100 replicates (blue point with small SE) further confirms that this

behavior is reproducible and not limited to one simulation instance.

Overall, Mdivi-1 effectively inhibits fragmentation, as expected from its role as a
fission inhibitor. However, without additional cues promoting fusion, the network
does not undergo extensive elongation or branching. This results in a topological
stasis characterized by balanced terminal and linear segments with low complexity,
consistent with the subdued dynamics of a fusion-competent but fission-impaired

mitochondrial state.
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Figure 3.27. The average length of topological fragments of Ins-1 Cell under Mdivil
treatment fluctuates around a higher mean compared to control, suggesting reduced

breakage and enhanced elongation.

Figure 3.27. fluctuates between 8 and 13 beads, with no consistent increasing or
decreasing trend over time. While short-term variability is evident, the values remain
within a moderate range, suggesting that the network avoids both excessive

fragmentation and elongation.

The relatively stable average length observed here suggests that fission
suppression may lead to moderate elongation, but compensatory mechanisms—such
as reduced fusion or passive fragmentation—may limit unchecked network growth.
Overall, the network appears to maintain moderate structural integrity, consistent with

partial remodeling under fission inhibition.
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Final Degree Distribution under Mdivi-1 Treatment
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Figure 3.28. Final Degree distribution of Ins-1 Cell under Mdivil treatment shows a
dominance of linear (degree 2) and terminal (degree 1) nodes, while branch points

(degree > 3) are infrequent, consistent with suppressed network complexity.

Figure 3.28. is dominated by degree 1 and degree 2 nodes, which occur with
similar and highest probabilities. Degree 3 nodes are less frequent but clearly present,

while higher-degree nodes (>4) are rare.

This distribution suggests that despite the inhibition of fission via fission
suppression, the network does not shift toward excessive branching or hyper-
connectivity. Instead, it maintains a moderately linear and weakly branched structure,
with limited morphological complexity. The presence of degree 3 nodes indicates

residual branching capacity, potentially driven by low-level fusion or incomplete
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fission suppression. Overall, the network topology remains structured yet restrained,

consistent with a partially remodeled state under Mdivi-1 influence.

Fragment Size Distribution under Mdivi-1 Treatment
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Figure 3.29. Fragment size distribution of Ins-1 Cell under Mdivil treatment indicates

a wider spread of sizes with a tendency toward larger, fused structures.

Figure 3.29 displays a broad, heterogeneous range of fragment sizes. While small
fragments remain the most probable, a wide spread of medium and larger fragments is
observed with non-negligible probability. The absence of a sharp drop-off and the

dispersed distribution suggest that fragmentation is suppressed but not eliminated.

This distribution aligns with the known action of Mdivi-1 as a fission inhibitor
that impairs mitochondrial fission. The persistence of larger fragments reflects

reduced fission activity, while the presence of smaller fragments indicates that some
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division still occurs—potentially through passive mechanisms or incomplete
inhibition. Overall, the network exhibits a structurally diverse but non-collapsing

topology, characteristic of partially stabilized mitochondrial dynamics.

Number of Fragments Over Time under Mdivi-1 Treatment
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Figure 3.30. The number of network fragments of Ins-1 Cell under Mdivil treatment
remains moderately stable over time, with higher baseline counts than FCCP,

reflecting balanced but reduced fission activity.

Figure 3.30. fluctuates between 10 and 17, showing moderate variability without
a clear long-term trend. The fragment count remains relatively stable, suggesting that
network turnover continues, albeit with a less dynamic range compared to untreated

conditions.
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These observations are consistent with Mdivi-1’s inhibition of fission -mediated
fission. However, the persistent fluctuations indicate that fission is not fully abolished,
and compensatory or residual mechanisms may sustain a moderate level of network
remodeling. The system appears to settle into a partially remodeled state, maintaining

structure without collapsing into hyper fusion or excessive fragmentation.

Aggregated Reaction Counts Over Simulation Steps under Mdivi-1 Treatment
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Figure 3.31. Aggregated reaction dynamics of Ins-1 Cell under Mdivil treatment
reveal a distinct profile in which fusion_2 events are infrequent, whereas fission and
fusion_1 remain active. This dynamic is consistent with a network favoring

stabilization and elongation without significant remodeling.

Figure 3.31, all three reaction types—fission, fusion_ 1, and fusion 2—remain
active throughout the simulation. Fission events (blue) are consistently present,
though rarely dominant, suggesting that fission inhibition only partially suppresses
fission activity. Fusion 1 events (green) occur with comparable frequency, indicating
a maintained level of tip-to-tip fusion. In contrast, fusion 2 events (orange) occur

infrequently and remain at low levels, showing occasional gaps of inactivity.

The relatively balanced presence of fission and fusion 1 suggests that the

network remains remodeling-capable, despite pharmacological inhibition of fission.
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The diminished fusion 2 activity may reflect a shift toward simpler reconnection
mechanisms, as more complex fusion modes are underutilized. Overall, these
dynamics support the emergence of a stabilized but still plastic mitochondrial
network, consistent with the intermediate morphological features observed under

Mdivi-1.

4. Ins-1 Oligomycin Network Condition (n = 7)
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Figure 3.32 . Temporal evolution of mean degree distributions for Ins-1 cells under

oligomycin treatment.

Degree 1 nodes (blue) increase over time, indicating growing network fragmentation.
Degree 2 nodes (orange) decline in later stages, while degree 3 nodes (green) remain
consistently low. These trends reflect impaired fusion and persistent structural

disintegration in energy-compromised cells.

Figure 3.32. depicts the time evolution of degree distributions in Ins-1 cells

exposed to oligomycin, an ATP synthase inhibitor that alters mitochondrial
149

doi:10.6342/NTU202503815



bioenergetics. The network structure is characterized by a strong and sustained
dominance of degree 1 nodes (terminal ends), with probabilities consistently above
0.5 and increasing slightly over time. This trend indicates progressive fragmentation

of the network and accumulation of disconnected tubules.

Degree 2 nodes (linear segments) initially remain relatively stable but gradually
decline in prevalence, particularly after step 120, suggesting breakdown of continuous
segments. Meanwhile, degree 3 nodes (branch points) remain low and fluctuate within
a narrow band, indicating that complex branching events are largely absent under this

condition.

These dynamics suggest that oligomycin disrupts mitochondrial structure by
suppressing energy production, which reduces fusion competence and favors fission-
like phenotypes. The consistent increase in fragmentation without compensatory
branching supports the interpretation of an energy-deficient, disorganized network
state. Variability bands are wider toward later time points, reflecting increased

heterogeneity across cells in response to energetic collapse.

Table 3.5. Adjustable ReaDDy?2 parameters for Ins-1 Oligomycin

parameter value description (concise)
Fusion probability 1 0.3 tip-to-tip fusion probability
Fusion_probability 2 5 tip-to-side fusion probability
Fission_base probability 0.15 base probability of fission events
radius_reaction 1 15 capture radius for fusion reaction 1
radius_reaction 2 15 capture radius for fusion reaction 2
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Figure 3.33. Oligomycin treatment analysis for Ins-1 cells.

Panels (a—c) compare simulated and experimental mitochondrial network properties

following Oligomycin treatment.

(a) Time-averaged degree probabilities (mean = SD) from the best-fit simulation
replicate, showing persistent dominance of degree 1 nodes and suppression of

branching.
(b) Degree probabilities from the experimental image used for best-fit evaluation.

(c) Mean absolute error (MAE) between 100 simulations and the experimental data.
The red star marks the simulation with the lowest MAE, and the blue dot with error

bar indicates the overall mean + SE.

(d) Raw fluorescence image of a mitochondrion-labeled Ins-1 cell under Oligomycin

treatment.

(e) Corresponding segmentation mask used to extract mitochondrial structure.
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(f) Skeletonized network derived from the segmentation, used for graph-based

analysis.

Under Oligomycin treatment, the mitochondrial network maintains a fragmented
but morphologically stable state. As shown in Fig. 3.33(a), the best-fit simulation
features high and consistent levels of degree 1 nodes (terminal ends), with minimal
changes over time—reflecting the persistence of disconnected mitochondrial
structures. Degree 2 nodes (linear segments) remain at moderate levels, and degree 3

nodes (branch points) stay consistently low.

The experimental degree distribution from the matched dataset, shown in
Fig. 3.33(b), closely mirrors this topology, reinforcing the validity of the simulation’s
structural predictions. This morphology reflects impaired network remodeling, as
mitochondria remain energy-deficient due to ATP synthase inhibition but are not

subjected to membrane depolarization or acute stress.

The MAE comparison in Fig. 3.33(c) shows a tightly clustered error distribution
across replicates, with the best-fit simulation (red star) achieving a very low MAE and

the group mean (blue marker) indicating strong model reproducibility.

Taken together, these findings suggest that oligomycin induces a metabolically
constrained condition in which both fission and fusion activities are limited. The
mitochondrial network exhibits neither catastrophic fragmentation nor compensatory

branching, but instead stabilizes in a low-dynamic, low-complexity configuration.
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Figure 3.34. The average length of topologies of Ins-1 Cell under Oligomycin
treatment remains moderately variable over time, reflecting ongoing dynamic

remodeling despite treatment.

Figure 3.34. fluctuates between 7 and 11.5 beads, with no consistent trend of
elongation or fragmentation over time. The trajectory shows moderate variability,
suggesting that the network undergoes continuous remodeling while maintaining

overall structural balance.

Oligomycin, an ATP synthase inhibitor, disrupts mitochondrial energy production
without directly altering membrane potential. The observed topology length pattern
reflects a partially suppressed but not severely impaired network, where energy

limitation slightly constrains fission—fusion dynamics but still allows for moderate
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remodeling. The resulting topology indicates a metabolically stressed but

morphologically stable mitochondrial state.

Final Degree Distribution under Oligomycin Treatment
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Figure 3.35. The final degree distribution of Ins-1 Cell under Oligomycin treatment
shows a pronounced medium peak at degree 3, consistent with a highly branched

morphology.

Figure 3.35. reveals a skewed pattern dominated by degree-1 and degree-2
nodes, with probabilities of approximately 0.45 and 0.35, respectively. Degree-3

nodes account for the remaining ~0.2, while higher-order connections are absent.

This configuration reflects a moderately connected network, with limited
branching. The dominance of lower-degree nodes suggests that the mitochondrial
network remains mostly linear or slightly branched under Oligomycin, which is

consistent with reduced fusion activity or a mild constraint on network complexity.
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This pattern supports the notion that ATP depletion under Oligomycin subtly restricts
mitochondrial remodeling, yielding a structure that is more fragmented than control

but more connected than FCCP-induced collapse.

Fragment Size Distribution under Oligomycin Treatment
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Figure 3.36. Fragment size distribution of Ins-1 Cell under Oligomycin treatment

follows a broad-tailed pattern, indicating heterogeneous fragment populations.

Figure 3.36. demonstrates a broad spectrum of fragment sizes, with a long-tail
trend extending beyond 30 nodes. Although smaller fragments are more frequent, the
presence of larger clusters at lower probabilities indicates intermittent connectivity

and partial fusion within the network.

This distribution suggests that Oligomycin treatment, while impairing ATP

synthesis, does not completely inhibit fusion events. Instead, the network exhibits
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coexisting small and moderately large fragments, possibly resulting from localized

energy preservation or spatial clustering of active mitochondria. Compared to FCCP,

which collapses the network into smaller units, and Mdivi-1, which enhances

connectivity, Oligomycin induces an intermediate fragmentation regime reflective of

its partial energetic inhibition.

Number of Fragments Over Time under Oligomycin Treatment
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Figure 3.37. The number of network fragments of Ins-1 Cell under Oligomycin

treatment fluctuates between 7 and 10 over the course of simulation, indicating partial

network preservation.

Figure 3.37. fluctuates within a narrow range between 6 and 10, suggesting a

relatively stable network topology throughout the simulation. Unlike FCCP, which

leads to persistent fragmentation, or Mdivi-1, which promotes gradual reconnection,

Oligomycin maintains a moderate fragmentation state over time.
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This behavior reflects the partial inhibitory effect of Oligomycin on
mitochondrial function, where fission is not strongly enhanced and fusion is not
entirely suppressed. The system remains in a dynamic but steady regime, potentially
due to ATP depletion slowing down both fusion and fission reactions without

drastically altering network balance.

Aggregated Reaction Counts Over Simulation Steps under Oligomycin Treatment
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Figure 3.38. Aggregated reaction counts reveal a clear imbalance: fusion_1 reactions
dominate, while fusion_2 is nearly absent, and fission events occur sporadically. This

kinetic profile aligns with the sustained branching morphology observed.

Figure 3.38. reveals moderate but consistent mitochondrial remodeling activity.
Fission reactions occur more frequently than both types of fusion events, particularly

fusion_1, which remains largely suppressed throughout the simulation.

While fusion 2 events do persist intermittently, their frequency is relatively
lower and lacks prolonged surges, suggesting that intermediate-scale fusion is not
dominant in this condition. The overall trend reflects a mild fragmentation bias,
consistent with the steady but fragmented network observed in the fragment count and

fragment size distribution data.

157

doi:10.6342/NTU202503815



These results support the hypothesis that Oligomycin, by inhibiting ATP synthase
and reducing cellular ATP levels, partially impairs energy-dependent fusion
mechanisms while allowing baseline fission to continue. The resulting dynamics favor
network maintenance over drastic reorganization, reinforcing a steady-state topology

with moderate connectivity.

5. Ins-1 Rotenone Network Condition (n = 6)
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Figure 3.39 . Temporal evolution of mean degree distributions for Ins-1 cells under

rotenone treatment.

Degree 1 (blue) nodes dominate but show broad fluctuations, while degree 2 (orange)
and degree 3 (green) nodes remain balanced and highly variable. The mitochondrial
network exhibits structural heterogeneity and instability, reflecting dysregulated

remodeling dynamics under oxidative stress.

Figure 3.39 illustrates the time evolution of degree probabilities in Ins-1 cells

subjected to rotenone treatment, a complex I inhibitor known to impair mitochondrial
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respiration and increase oxidative stress. The mitochondrial network exhibits notable

heterogeneity, with relatively balanced distributions across all three degree classes.

Degree 1 nodes (blue) maintain the highest proportion but fluctuate widely over
time, indicating inconsistent fragmentation behavior across cells. Degree 2 (orange)
and degree 3 (green) nodes remain moderately represented and largely overlap, with
both showing considerable temporal and inter-replicate variability. This pattern
suggests that under rotenone treatment, mitochondrial networks do not converge on a
single structural outcome but rather oscillate between fragmented, linear, and

moderately branched states.

The increased variability across all degrees implies that rotenone induces a
dysregulated network state, where mitochondria respond inconsistently to metabolic
stress. Some networks undergo excessive fission, while others may attempt
compensatory remodeling. This stochastic or heterogeneous behavior is consistent
with the pathological complexity observed in rotenone-exposed systems, where
bioenergetic failure and ROS accumulation disrupt mitochondrial dynamics in cell-

specific ways.

Table 3.6. Adjustable ReaDDy2 parameters for Ins-1 Rotenone

parameter value description (concise)
Fusion probability 1 3 tip-to-tip fusion probability
Fusion_probability 2 2 tip-to-side fusion probability
Fission_base probability 0.025 base probability of fission events
radius_reaction_1 15 capture radius for fusion reaction_1
radius_reaction 2 20 capture radius for fusion reaction 2
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Figure 3.40. Rotenone treatment analysis for Ins-1 cells.

Panels (a—c) compare simulated and experimental mitochondrial network dynamics

under rotenone exposure.
(a) Degree probabilities (mean = SD) over time from the best-fit simulation replicate.

(b) Degree probabilities extracted from the corresponding experimental dataset used

for best-fit evaluation.

(c) Mean absolute error (MAE) comparison across 100 simulation replicates. The red
star highlights the best-fit case with the lowest MAE, while the blue dot and error bar

represent the overall mean + SE.

(d) Confocal image of a representative Ins-1 cell under Rotenone treatment.

(e) Image segmentation mask highlighting mitochondrial morphology.

(f) Extracted skeleton network used for topological comparison with simulations.
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Under Rotenone treatment, Fig. 3.40(a), the best-fit simulation predicts stable
and dominant degree 1 nodes (terminal ends), indicating a sustained fragmented
network. Degree 2 and degree 3 nodes remain lower but display modest fluctuations

throughout the time course.

In contrast to prior figures showing simulation-wide trends, Fig. 3.40(b) depicts
the experimental degree probabilities from the single cell most closely matched to the
best-fit simulation. These experimental data confirm a structurally fragmented state,
with persistent terminal ends and a small but non-negligible proportion of branching
(degree 3) over time. The presence of degree 3 nodes suggests incomplete or

disordered remodeling events in response to rotenone-induced stress.

The MAE comparison in Fig. 3.40(c) supports the simulation’s accuracy under
this condition: the best-fit replicate (red star) achieves minimal deviation from
experimental observations, and the overall distribution of errors is relatively narrow,

indicating good reproducibility.

Rotenone disrupts mitochondrial respiration by inhibiting complex I, increasing
ROS production and impairing network regulation. This condition leads to a
fragmented, variably branched network with high inter-cell variability—captured by
both simulation and experiment. The data point to a stress-induced phenotype in
which fission dominates but stochastic fusion attempts introduce heterogeneity,

resulting in a structurally unstable mitochondrial network.
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average length of topologies under Rotenone Treatment
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Figure 3.41. Time-series of the average number of topologies of Ins-1 Cell under
Rotenone treatment shows a gradual increase in mitochondrial segment length with

limited fluctuation, indicating stabilized elongation behavior.

Figure 3.41. exhibits a progressive increase in average topology length
throughout the simulation. Initially, the average length stabilizes around ~7.6 beads,
indicating the formation of short mitochondrial fragments. However, after
approximately 800 simulation steps, a gradual elongation is observed, culminating in

an average of ~9.3 beads in the latter part of the simulation.

This upward trend suggests a suppression of fission activity or enhanced stability
of existing network structures, potentially reflecting Rotenone’s known effects on
disrupting mitochondrial respiration and promoting oxidative stress, which may

impair the energetic requirements for fission.
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Final Degree Distribution under Rotenone Treatment
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Figure 3.42. The final degree distribution of Ins-1 Cell under Rotenone treatment
reveals a predominance of lower-degree nodes with reduced network branching,

consistent with fragmented or less connected morphology.

Figure 3.42 reveals a predominance of low-degree nodes, with degree 1 nodes being
the most frequent (~44%). The probability declines progressively for higher-degree
nodes, with degree 2 nodes comprising ~33%, and degree 3 nodes contributing the

least.

This skew toward lower connectivity suggests a fragmented and sparsely
connected mitochondrial network, in line with a system undergoing minimal fusion
events or incomplete structural recovery. Such a distribution reflects the impairment
of network complexity and interconnectivity, which may be attributed to
mitochondrial dysfunction induced by Rotenone’s inhibitory effect on complex I of

the electron transport chain.
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Fragment Size Distribution under Rotenone Treatment
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Figure 3.43. Fragment size distribution of Ins-1 Cell under Rotenone treatment on a
log-log scale shows a widespread with heavy tail, highlighting the coexistence of

small and intermediate-size fragments.

Figure 3.43. displays a bimodal-like pattern with a dominant peak at small
fragment sizes and a secondary cluster around intermediate sizes (=10-20 beads). The
highest probability occurs at the smallest fragment size, indicating a prevalence of
highly fragmented mitochondrial elements. Beyond this peak, the distribution spreads

across a range of larger sizes but with considerably lower probabilities.

This skewed distribution aligns with a system experiencing excessive fission or
suppressed fusion, resulting in structural fragmentation. The scarcity of large

fragments supports the observation that Rotenone impairs mitochondrial dynamics,
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likely through its inhibition of oxidative phosphorylation, which disrupts the

bioenergetic balance needed for network maintenance and elongation.

Number of Fragments Over Time under Rotenone Treatment
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Figure 3.44. The number of fragments over time of Ins-1 Cell under Rotenone
treatment demonstrates a rapid decline in the early simulation phase, followed by

stabilization, reflecting early fusion-driven coalescence.

Figure 3.44. exhibits an initial sharp decline, followed by a plateau phase with
limited fluctuations. The system rapidly transitions from 15 fragments to
approximately 11 within the first few steps, and then stabilizes, maintaining a
relatively constant fragment count between 9 and 11 for the majority of the

simulation.
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This behavior indicates a reduction in fission events or a mild increase in fusion
efficiency, leading to a slight consolidation of mitochondrial segments. Unlike other
stressors that may promote dynamic instability or fragmentation, Rotenone appears to
result in a relatively static mitochondrial network after an initial reorganization

period.

Aggregated Reaction Counts Over Simulation Steps under Rotenone Treatment
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Figure 3.45. Aggregated reaction counts of Ins-1 Cell under Rotenone treatment

reveal minimal reaction activity, particularly low fusion and fission frequencies.

Figure 3.45. shows a striking suppression of both fission and fusion events
throughout the simulation. Most time intervals exhibit no recorded activity, with only
a few sparse reaction spikes—typically of low magnitude (1-2 events per 50 steps)—

appearing sporadically across the timeline.

This result suggests a severely diminished dynamic turnover within the
mitochondrial network, reflecting a state of reduced remodeling capacity. The
minimal activity of both fusion (types 1 and 2) and fission indicates that the network
likely stabilizes early and remains static, consistent with the low ATP availability and

energy collapse caused by complex I inhibition under Rotenone exposure.
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The overall quiescence aligns with the previously observed fragment number
plateau and slow evolution of topology length, reinforcing the hypothesis that

Rotenone induces a mitochondrial freezing effect in the simulated model.

6. PANC-1 Network Condition (n = 6)
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Figure 3.46. Temporal evolution of mean degree distributions for PANC-1 cells.

Degree 1 nodes (blue) remain dominant and stable, while degree 3 nodes (green)
consistently surpass degree 2 nodes (orange), indicating persistent network branching.
The distribution shows structural stability over time with moderate fragmentation and
sustained branching, characteristic of the baseline mitochondrial morphology in

PANC-1 cells.

Figure 3.46 displays the time evolution of degree probabilities in PANC-1 cells

under baseline conditions. The mitochondrial network exhibits a relatively well-
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balanced but structured topology, with three clearly separated degree classes and low

overall temporal fluctuation.

Degree 1 nodes (blue), representing terminal ends, dominate throughout the time
course with probabilities ranging around 0.45—0.50. This reflects a moderately
fragmented state where disconnected tubules are prevalent. Degree 3 nodes (green),
associated with branching points, consistently occupy the second-highest proportion,
maintaining a stable probability near 0.33. Their prominence suggests that PANC-1
mitochondria possess a relatively higher degree of branching than seen in other cell
lines. Degree 2 nodes (orange), corresponding to linear segments, remain the least

abundant and show low variability, hovering around 0.20.

This network configuration implies that PANC-1 cells maintain a mixed
morphological phenotype: a population of fragmented mitochondria coexisting with
moderately complex branches. The low variability in all three-degree classes indicates
structural stability over time, and the elevated degree 3 presence may reflect cell-type-

specific differences in mitochondrial organization or metabolic demand.

Table 3.7. Adjustable ReaDDy2 parameters for PANC-1

parameter value description (concise)
Fusion probability 1 2 tip-to-tip fusion probability
Fusion_probability 2 5 tip-to-side fusion probability
Fission_base probability 0.1 base probability of fission events
radius_reaction 1 15 capture radius for fusion reaction 1
radius_reaction 2 20 capture radius for fusion reaction 2
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Figure 3.47. PANC-1 condition analysis.

Panels (a—c) present quantitative evaluation and image-derived topology for the best-

fit simulation under control conditions in the PANC-1 cell line.

(a) Time-averaged degree probabilities (+ SD) from the best-fit simulation, illustrating

separation and stability across all degree classes.

(b) Experimental degree probabilities from the single PANC-1 cell that best matches

the simulation shown in (a), used for MAE calculation.

(c) Mean absolute error (MAE) across 100 simulation replicates. The red star
indicates the best-fit simulation with the lowest MAE, while the blue dot and bar

show the population mean + SE.

(d) Raw fluorescence image of mitochondria from a representative untreated PANC-1

cell.
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(e) Corresponding segmentation mask showing mitochondrial regions.

(f) Skeletonized mitochondrial network used for graph extraction and topological

analysis.

Under the PANC-1 condition, In Fig. 3.47(a), the best-fit simulation reveals a
fragmented but structurally consistent network: degree 1 nodes dominate with a stable
probability near 0.48, while degree 3 nodes (branch points) persistently exceed
degree 2 (linear segments). This indicates that despite fragmentation, the network

retains considerable branching capacity.

Panel (b) shows the degree probability trajectories extracted from the
experimental image used for best-fit comparison. The strong alignment between
simulation and experiment supports the conclusion that PANC-1 networks exhibit a

hybrid phenotype: branched yet non-elongated.

The MAE distribution in Fig. 3.47(c) demonstrates excellent overall model
performance, with the best-fit simulation (red star) achieving a low MAE of
approximately 0.0225, and the group also remains below 0.035. This narrow error
distribution highlights robust reproducibility across independent runs and suggests
that the simulation framework effectively captures PANC-1 mitochondrial dynamics

under baseline conditions.

Overall, the network morphology in PANC-1 cells reflects a cell-type-specific
configuration: fragmented mitochondria with structurally discrete yet branched

patterns, potentially shaped by metabolic specialization or cytoskeletal architecture.

170

doi:10.6342/NTU202503815



average length of topologies under PANC-1 Conditions
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Figure 3.48. Average number of topologies over time of PANC-1 condition, reflecting

network elongation and transient fluctuations in filament length.

Figure 3.48. quantified by the number of beads per topology, exhibits high
variability over time, indicating a dynamic and fluctuating mitochondrial network.
Initially, the network shows a steady elongation phase, reaching a peak average length

exceeding 26 beads, which likely reflects an early dominance of fusion activity.

However, this is followed by a pronounced destabilization period marked by
frequent oscillations and sharp declines in length. The system settles into a phase
characterized by intermittent contraction and extension cycles, with average lengths
fluctuating between 12 and 18 beads. This reflects a highly active remodeling regime,

potentially mirroring cell-type-specific mitochondrial dynamics inherent to PANC-1

171

doi:10.6342/NTU202503815



cells, such as elevated basal fusion-fission turnover or sensitivity to fluctuating

metabolic cues.

Final Degree Distribution under PANC-1 Conditions
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Figure 3.49. Final degree distribution of PANC-1 condition plotted on a log-log scale,

indicating dominant degree classes within the simulated network topology.

Figure 3.49. displays a broader and more heterogeneous topology compared to
control or drug-treated states. As shown in the log-log plot, nodes of degree 1 and 3
dominate, each contributing significantly to the overall network architecture, while
degree 2 nodes are present but less prevalent. A small fraction of nodes with degree 4

are also observed, indicating the presence of higher-order branching events.

This diverse range of connectivity suggests an environment where complex
network structures emerge dynamically, likely driven by frequent remodeling through

fusion and fission. The occurrence of degree-4 nodes—though rare—hints at localized
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regions of dense mitochondrial interconnectivity, a feature often linked to metabolic

adaptation or stress resistance in cancerous cells.

Fragment Size Distribution under PANC-1 Conditions
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Figure 3.50. Fragment size distribution of PANC-1 condition from the simulation,

revealing a broad heterogeneity in mitochondrial segment sizes

Figure 3.50. reveals a broad and dispersed spectrum of mitochondrial segment
sizes. The log-log plot demonstrates a heavy-tailed distribution, indicating the
presence of both small and large mitochondrial fragments with varying frequencies.
Notably, no single fragment size dominates, and the probability is distributed across a

wide range, from short fragments (2—5 beads) to extended structures exceeding 20

beads.
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This distribution suggests high dynamic heterogeneity, likely reflecting an active
balance between mitochondrial fission and fusion processes. The frequent presence of
larger fragments may be indicative of elevated fusion activity or suppressed fission,
characteristic of cancer cells adapting their mitochondrial networks for metabolic

flexibility and resilience.

Number of Fragments Over Time under PANC-1 Conditions
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Figure 3.51. Time evolution of the total number of disconnected fragments of PANC-

1 condition, indicating partial stabilization following an initial decrease.

Figure 3.51. demonstrates an initial sharp decline from 11 to approximately 6
fragments, followed by sustained fluctuations throughout the simulation. The number
of fragments stabilizes within a range of 5 to 9, indicating the system reaches a quasi-

steady-state dynamic regime.
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This stable fragmentation profile suggests a balanced interplay between fission
and fusion events, where neither process dominates persistently. The recurring
fluctuations imply ongoing remodeling of the mitochondrial network, which may
reflect adaptive bioenergetic regulation in response to the metabolic demands of

PANC-1 cells.

Aggregated Reaction Counts Over Simulation Steps under PANC-1 Conditions
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Figure 3.52. Aggregated counts of fusion and fission events over simulation steps of
PANC-1 condition, showing active remodeling dynamics with alternating fusion and

fission rates.

Figure 3.52. reveals a highly dynamic interplay among mitochondrial fission and
fusion events. Fission events (green) occur consistently throughout the simulation,
often exceeding both fusion types in frequency, suggesting ongoing network

fragmentation pressure.

Fusion-2 reactions (blue), which likely represent fusion between longer
fragments, occur more frequently than fusion-1 (orange), consistent with elongation
and network consolidation mechanisms. However, neither fusion process fully

suppresses fission, leading to a fluctuating balance.
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This ongoing competition between fusion and fission maintains a dynamic steady
state. The presence of all three reaction types at relatively steady levels suggests a
non-terminal, adaptable mitochondrial network, potentially reflecting the enhanced

plasticity and metabolic demands of PANC-1 cells.

7. AC-16 Network Condition (n = 15)
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Figure 3.53. Simulated mitochondrial network dynamics in AC-16 cells under control

conditions.

Time-averaged degree probabilities (mean = SD) from the best-fit simulation. Degree
1 nodes dominate the network structure, followed by degree 2 and degree 3 nodes,
which remain stable and lower in proportion. The consistent ordering and low
variability indicate a steady-state mitochondrial topology with limited remodeling

activity.

176

doi:10.6342/NTU202503815



Figure 3.53 illustrates the simulated temporal evolution of mitochondrial
network topology in AC-16 cells under control conditions. The degree probability
trajectories derived from the best-fit simulation show a distinct and stable separation

across node types.

Degree 1 nodes (terminal ends) exhibit the highest and steadily increasing
probabilities, stabilizing around 50-55% over the 30-time steps, indicating a
fragmented network architecture. This consistent dominance suggests minimal fusion-

driven network elongation or integration.

Degree 2 nodes (linear segments) maintain a moderate presence, approximately
28-30%, with slight downward fluctuation. The absence of significant growth or

decline suggests limited remodeling via linear elongation or breakdown.

Degree 3 nodes (branch points) are the least prevalent and remain consistently
around 20%, with a narrow range of variability. This low and stable level of branching
implies that AC-16 mitochondrial networks under baseline conditions do not engage

in significant topological restructuring.

The relatively small standard deviations across all degree classes confirm robust
simulation convergence and suggest that the modeled network behavior is
representative of a steady-state physiological condition in cardiomyocyte-like cells.
This pattern reflects a structurally conservative mitochondrial phenotype, where
fragmentation dominates, and branching or elongation events are tightly regulated or

infrequent.

Table 3.8. Adjustable ReaDDy?2 parameters for AC-16

parameter value description (concise)
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Fusion probability 1 2 tip-to-tip fusion probability
Fusion probability 2 5 tip-to-side fusion probability
Fission_base probability 0.1 base probability of fission events
radius_reaction_1 15 capture radius for fusion reaction 1
radius_reaction_2 20 capture radius for fusion reaction 2
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Figure 3.54. AC-16 condition analysis

Panels (a—c) present quantitative and image-derived analyses of mitochondrial
networks under the AC-16 cell condition, using the best-fit simulation result for

comparison.
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(a) Mean degree probabilities (+ standard deviation) from 100 simulation replicates
show high prevalence of degree 1 nodes and low variability, indicating persistent

fragmentation.

(b) Degree probabilities extracted from the real AC-16 image that most closely
matches the simulation result (lowest MAE), revealing a topology dominated by

terminal ends with sparse branching.

(c) Mean absolute error (MAE) between simulated and experimental degree
distributions across all cells. The red star marks the simulation with the lowest MAE
(used in a—b), while the blue marker and error bar represent the population mean +

SE.
(d) Raw high-resolution mitochondrial fluorescence image (confocal microscopy).
(e) Segmented mitochondrial regions after preprocessing.

(f) Extracted network structure with nodes and edges, used for simulation input and

statistical comparison.

Under AC-16 conditions, the mitochondrial network maintains a highly
fragmented architecture with minimal branching or elongation. As shown in
fig. 3.54(a), the simulated degree dynamics are characterized by a consistently high
prevalence of degree 1 nodes, moderate levels of degree 2 nodes, and a persistent
scarcity of degree 3 nodes. The real network topology extracted from the best-fit AC-
16 image (fig. 3.54(b)) mirrors this trend, with dominant terminal structures and

limited connectivity.

This pattern reflects a stable but structurally constrained mitochondrial state, in
which fusion events and network remodeling are either suppressed or ineffective. The
overall error between simulation and experimental data remains low (fig. 3.54(c)),
with the best-fit replicate exhibiting a minimal MAE of ~0.017. This tight fit confirms
the model’s capacity to reproduce key structural features of the AC-16 mitochondrial

network under baseline conditions.
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average length of topologies under AC 16 conditions
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Figure 3.55. Average topologies length over time of AC-16 conditions, measured as

the number of connected beads per mitochondrial fragment.

Figure 3.55. shows a gradual increasing trend over time, rising from
approximately 4.9 to over 6 beads per structure. This indicates a progressive

elongation of mitochondrial segments.

The data exhibits mild fluctuations but maintains a steady upward trajectory,
suggesting that fusion events dominate over fission, albeit without abrupt shifts. The
absence of sharp fragmentation events points to a moderate but sustained network
growth, potentially reflective of restorative or adaptive processes in mitochondrial

morphology under this condition.
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Final Degree Distribution under AC 16 Conditions
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Figure 3.56. Final degree distribution of AC-16 condition plotted in log-log scale,
showing the relative probability of encountering nodes of varying connectivity

(degree 1-4).

Figure 3.56. reveals a predominance of lower-degree nodes, with degree 1 nodes
exhibiting the highest probability. This indicates a prevalence of terminal ends in the

network structure, suggesting limited connectivity.

However, a non-negligible fraction of nodes with degrees 2 and 3 are also
present, reflecting the existence of linear and branching segments within the network.
The probabilities drop sharply for higher degrees (4 and above), indicating that highly

connected junctions are rare.

181

doi:10.6342/NTU202503815



Fragment Size Distribution under AC_16 Conditions
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Figure 3.57. Fragment size distribution of AC-16 condition on a log-log scale,

reflecting the structural heterogeneity of mitochondrial networks formed during

simulation.

Figure 3.57. demonstrates a right-skewed profile with a broad range of fragment sizes.
Most fragments are small, with a high probability associated with low fragment sizes,

reflecting frequent breakage or limited fusion.

As fragment size increases, the probability declines exponentially, indicating that

larger mitochondrial networks are less frequent. However, the distribution extends
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over two orders of magnitude, suggesting that a subset of highly fused or elongated

structures persists within the population.

Number of Fragments Over Time under AC_16 Conditions
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Figure 3.58. Temporal evolution of the number of mitochondrial fragments of AC-16

conditions, indicating a slight decrease followed by stabilization

Figure 3.58. initially declines rapidly, decreasing from over 130 to approximately
105 within the first 100-time steps. This trend suggests an early dominance of fusion

events, leading to network consolidation.

After the initial drop, the fragment count exhibits moderate fluctuations between

105 and 120, indicating a dynamic balance between fusion and fission. The absence
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of drastic shifts in fragment number after the early phase implies that the system
reaches a quasi-steady state, where the network maintains a relatively stable

fragmentation profile.

Aggregated Reaction Counts Over Simulation Steps under AC_16 Conditions
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Figure 3.59. Reaction activity over time of AC-16, with fission, fusion 1, and

fusion_2 event counts aggregated every 50 simulation steps. Fission events dominate,

contributing to persistent fragmentation and shorter structures.

Figure 3.59, fission reactions consistently dominate throughout the simulation,
maintaining a high frequency of 610 events per aggregated window. This persistent
elevation in fission activity supports the elevated fragment count observed in the

corresponding morphology data.

In contrast, fusion reactions (both fusion 1 and fusion 2) display lower and
more fluctuating frequencies. Fusion 2 events show intermittent bursts (notably
around steps 90 and 180) but generally remain under 5 per window. Fusion 1 events
are even sparser and irregularly distributed, indicating limited rejoining of small

fragments.
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The overall pattern reveals that fission outweighs fusion, especially during later
phases, reinforcing the fragmentation-prone phenotype of mitochondrial networks
under AC-16 exposure. These dynamics suggest that AC-16 disrupts the

mitochondrial homeostasis by skewing the fusion—fission balance in favor of fission.

3.2.3 Final Condition-Level Summary

Finally, the MAEs across multiple replicates and experimental treatments are
summarized using 01 mito final image error analyze.py, which aggregates
condition-level performance. Each condition—such as control or drug treatment—is
associated with a distribution of simulation-image errors. This high-level comparison
provides a metric of model generalizability across different biological contexts and

offers guidance for parameter tuning or model refinement.
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Figure 3.60. Summary of Simulation-Image Degree Error across Experimental

Conditions
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To quantitatively assess how well the simulation replicates mitochondrial
network topology, we computed the mean absolute error (MAE) between the
experimental and simulated degree distributions across all cells for each treatment

condition.

Among the conditions, PANC-1 yielded the lowest MAE (~0.03 + SE),
indicating the highest fidelity between simulated and experimental topologies.
Similarly, Mdivi-1, and AC-16 conditions also demonstrated low error (< 0.045),
suggesting that the simulation model effectively captures the structural patterns under

these treatments.

In contrast, FCCP conditions exhibited much higher variability and increased
error (up to ~0.08-0.13 for some cells), indicating reduced simulation accuracy. This
is attributed to the nature of agent-based models and the assumption of the reaction,
which are challenging to reproduce under the current reaction scheme or model

assumptions, and we will explain in discussion section.

Overall, the error profile highlights both the strength and limitation of the current
modeling framework—it reproduces network structures robustly under mild or
baseline conditions but diverges under highly disruptive treatments such as FCCP and

Rotenone.

This multi-run simulation strategy, combined with image-based validation,
provides a robust framework to evaluate both stochastic consistency and biological

plausibility of the modeled mitochondrial network dynamics.

3.2.4 Simulation Responses to Drug-Induced Mitochondrial Network.

186

doi:10.6342/NTU202503815



Furthermore, we summarize the parameters of ins-1 cells under different

treatment.

Table 3.9. Treatment-Specific Adjustments of Fusion/Fission Probabilities in
ReaDDy2 Simulations

Fusion_probablity | Fusion probabilit | Fission base probabli | Radius_fusion | Radius_fusion

Category:
! y 2 ty 1 2
Control (n
0.3 0.4 0.15 15 15
=15)
FCCP (n=
2 5 0.1 15 20
11)
Mdivil (n
0.6 0.4 0.15 15 15
=6)
Oligomyci
0.3 5 0.15 15 15
n(n=7)
Rotenone
3 2 0.025 15 20
(n=0)

While table 3.9. lists the key adjusted parameters—namely the two types of
fusion probabilities (tip-to-tip and tip-to-side), the base fission probability, and their
associated reaction radii—it is not immediately intuitive how these numerical

differences map onto phenotypic outcomes.

We also make a ratio of reaction summary to provide insight into the prevailing

regime of mitochondrial remodeling
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Table 3.10 Normalized Fusion-to-Fission Ratios and Functional Interpretation of Each

Treatment Conditions.

Cat Fusion_probability 1/ Fusion_probability 2/
atego
oy Fission_base probability Fission base probability
2.00 2.67
FCCP (n=
10.00 50.00
11)
4.00 2.67
Oli i
somyem 2.00 3.33
(n=7)
120.00 80.00

Table 3.10. presents the translated ratios of fusion-to-fission probabilities derived
from calibrated ReaDDy?2 simulations. By converting the raw values into ratios, the
intent is to facilitate cross-condition comparison by placing fusion and fission on a

common scale.

However, despite this normalization, several inconsistencies emerge between
numerical ratios and biological outcomes. For instance, FCCP and Rotenone, both
shown in red, exhibit extremely high fusion-to-fission ratios which typically suggest
hyper fusion—but are experimentally characterized by pronounced fragmentation.
This apparent contradiction arises because fusion probabilities remain high while
fission is suppressed, yet the actual network architecture reflects the failure of fusion

due to disrupted membrane potential or ROS-induced instability.

Likewise, Oligomycin (highlighted in orange) presents a more moderate ratio,
but its morphological outcome is ambiguous, with mitochondria remaining

fragmented yet not severely deteriorated.
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These discrepancies underscore an important modeling insight: while ratio-based
normalization improves numerical clarity, it can mask qualitative divergence from

physiological behavior.

There we find another measurement to verify our prediction of treatment

Table 3.11. Event Frequency per Time Step for Fusion and Fission Events Across

treatment conditions.

Cat Fusion 1 _Count/ Fusion 2 Count/ Fission_Count /
atego
SoLY Total Time Step Total Time Step Total Time Step
0.098 0.026 0.156
0.027 0.042 0.117
0.137 0.054 0.211
0.053 0.004 0.166
0.004 0.007 0.010

To better capture the dynamic behavior of mitochondrial remodeling, table 3. 11.
summarizes the absolute frequency of each event type—tip-to-tip fusion (fusion_1),
tip-to-side fusion (fusion_2), and fission—normalized by total simulation steps for

each treatment condition.

Unlike the previous ratio-based comparisons (e.g., fusion probability divided by
fission probability), which yielded misleading or inflated values (e.g., fusion/fission
ratios >100 in stress groups), this count-based approach reflects realized behavior

over time and enables direct, interpretable comparisons across conditions.
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Finally, we also go through the entire analysis of different types of cells

Table 3.12 Cell-Specific Adjustments of Fusion/Fission Probabilities in ReaDDy?2

Simulations

Fusion_ Fusion_
Category: Fission_base_probability | Radius_fusion_1 | Radius_fusion 2
probability 1 | probability 2

Ins-1(n =
0.3 0.4 0.15 15 15
15)
Panc-1 (n=
0.02 1 0.05 15 20
0)
AC-16 (n=
0.05 0.1 1 15 20
15)

Same as before, it is not immediately intuitive how these numerical differences map

onto phenotypic outcomes according to table 3.12.

Table 3.13 Normalized Fusion-to-Fission Ratios and Functional Interpretation of Each

Cell Conditions.

c Fusion_ probability 1/ Fusion_ probability 2/
ategory:
Fission base probability & Fission base probability

2.0 2.67
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Panc-1 (n=06) 0.4 20.0

0.05 0.1

Same as before, table 3.13. shows some results are inconsistencies. For instance,
Panc-1 displays an anomalously low ratio in the tip-to-tip pathway (0.4) but an
extremely high ratio (20.0) in the tip-to-side route, implying an unbalanced or
potentially unstable network formation bias. Conversely, AC-16 exhibits uniformly
low ratios (<0.1), aligning with its experimentally observed fragmented and static
morphology. Although Ins-1 maintains moderate, symmetric ratios (~2), the
disparities in Panc-1 highlight parameter mismatches that may stem from under
sampled dynamics or cell-line-specific constraints not captured in the current model.
As with drug-based comparisons, normalized values help clarify trends but do not

always resolve underlying fitting inaccuracies.

Table 3.14. Normalized Event Frequencies per Time Step across Cell Lines

c Fusion 1 Count/ | Fusion 2 Count/ Fission Count/
ategory: ‘ )
Total Time Step Total Time Step Total Time Step

0.098 0.026 0.156

0.005 0.086 0.107
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0.241 0.270 0.733

To more clearly quantify and compare mitochondrial remodeling dynamics
across cell lines, table 3.14. show raw event counts were normalized by simulation
time steps. This approach eliminates the unit scaling ambiguity observed in previous

parameter-ratio tables and provides a direct view of functional remodeling trends.

In this normalized framework, clear distinctions emerge: AC-16 cells exhibit the
highest overall activity, with markedly elevated fission (0.733) and balanced
contributions from both fusion pathways, aligning with their dense and fragmented
network morphology. Ins-1 displays a moderate remodeling regime, dominated by
fission (0.156) but with meaningful fusion-1 activity (0.098), reflecting a
conditionally stable network. In contrast, Panc-1 shows asymmetric fusion
contributions—fusion-2 dominates (0.086) while fusion-1 is nearly absent (0.005)—

suggesting an unbalanced and possibly non-canonical remodeling pattern.

Overall, this frequency-based representation offers a clearer and more
interpretable view of network dynamics than raw parameter ratios, helping to resolve

previously noted inconsistencies in simulation calibration.
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4. Chapter 4: Discussion

4.1 Fusion—Fission Reaction Architecture

Our simulation framework emulates mitochondrial network remodeling by
combining structural (graph-level) reactions with spatial (distance-triggered)
reactions. The network is represented as a dynamic topology whose nodes carry
discrete degree-encoded particle types (mito_node 1, 2, 3). Structural reactions

operate deterministically on graph logic:

Fusion detection functions scan local neighborhoods and retype participating

particles when tip-to-tip or tip-to-side eligibility criteria are met.

Dissociation (fission) functions selectively delete bonds—typically non-terminal
internal edges—to create new fragments and “downgrade” node types where degrees

fall (e.g., mito_node 3 — mito node 2).

These graph edits are not purely geometric; they encode biological assumptions

about how mitochondrial tubules connect, split, and reclassify their junction states.

Structural logic is coupled with spatial reactions that allow previously
disconnected topologies to fuse when reactive particle pairs fall within an interaction
radius. Reactions such as fusion_1 and fusion 2 are executed stochastically with
user-specified rate constants, introducing a proximity- and concentration-dependent

channel for network growth, branch formation, and loop closure.

By running both structural and spatial channels in tandem, the framework
captures a range of mitochondrial behaviors observed in live-cell microscopy:

filament elongation, branching, progressive fragmentation under stress, and (when
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allowed by parameters) reaggregation toward more reticulated geometries. This
dual-layer reaction design mirrors the biological interplay between physical encounter
frequency and the internal molecular machinery that governs mitochondrial fusion

and fission.

4.2 Parameter Sensitivity and Biological Control Knobs

Model behavior is highly sensitive to a small number of tunable parameters that

map cleanly onto interpretable biological or mechanical levers:

Table 4.1. Key Model Parameters and Their Biological Interpretations

Parameter Controls Biological/Modeling Interpretation
Base fission Frequency of bond Stress-induced fragmentation; Drp1
rate removal activity surrogacy

. Likelihood that eligible MitoFusin/ OPA1 dependent fusion
Fusion rates

pairs fuse competence
Interaction Spatial encounter eligibility Organelle crowding;
radius eligibility effective tether reach
Bond force - . :
Segment extensibility Membrane tension / tether stiffness

constant

Angular Bending stiffness & Curvature regulation; cristae/outer
constraints branching geometry membrane mechanics proxy

Systematic sweeps over these parameters reproduce qualitatively distinct
morphologies—from sparse puncta to branched reticula—matching trends seen across
pharmacological perturbations (e.g., fragmentation under FCCP vs.
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maintenance/elongation under control). Given the multi-parameter coupling and
stochasticity, future work should incorporate automated parameter estimation
(Bayesian optimization, likelihood-free inference, or ML-guided search) to more

rigorously fit condition-specific datasets.

4.3 Emergent Topological Dynamics

Single-run time series illuminate how local reaction rules scale to global network

outcomes. A common trajectory under fragmentation-favoring settings shows:

Rising degree-1 fractions (terminal tips) as filaments sever.
Falling degree-3 fractions (branch points) reflecting junction loss.
Convergent fragment size distributions where many small motifs outcompete

large reticula.

Reaction logs reveal bursty temporal structure: fusion and fission events cluster
when geometry and concentration briefly align, separated by quiescent intervals
where topology is sterically locked or diffusion-limited. Tracking fragment counts,
mean component size, and node degree histograms together provides a mechanistic
narrative—networks either relax toward a quasi-steady branching frequency or
cascade into sustained fragmentation depending on the fusion: fission balance and

encounter radius.

4.4 Quantitative Validation Against Image-Derived Data

To benchmark biological realism, we compared simulations to degree
distributions extracted from time-lapse microscopy across multiple treatments
(Control, Glucose, FCCP, Mdivi-1, etc.). Each simulation condition was run in 100
replicates; per-frame degree probabilities were averaged across replicates and
matched to experimental time points. We computed mean absolute error (MAE)

trajectories cell-by-cell, then aggregated errors at the condition level.
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Agreement was strongest under Control and Glucose conditions, indicating that
the core fusion—fission + diffusion machinery is sufficient to recapitulate baseline
mitochondrial topology. Larger discrepancies emerged under stronger perturbations
(e.g., FCCP, Mdivi-1), suggesting missing biology: altered fusion competence,
selective degradation, or metabolic feedback not yet encoded. The validation scripts
also produce per-cell “best fit” traces (minimum MAE) that highlight heterogeneity

within conditions and guide targeted model refinement.

4.5 Semi-Synthetic Ground-Truth for Tracking Validation

The simulation produces a semi-synthetic ground-truth dataset that looks like
microscopy output yet retains complete knowledge of the underlying mitochondrial
topology and event history. This capability underpins one of the framework’s key
strengths (Section 4.5 Strengths #5: robust data to validate tracking algorithms). By
starting from rule-driven network dynamics rather than hand-drawn cartoons, we
obtain image sequences whose complexity—branching, fragmentation, intermittent

fusion—closely resembles real cells while remaining perfectly annotated.

The ground truth is multi-layered. Lightweight XYZ frames allow rapid sanity
checks (did the run complete, did reactions fire), but the PDB/PSF exports provide
bonded structure and node-degree typing that can be rendered in VMD to produce
realistic image stacks for algorithm testing. Crucially, every simulation step also
writes reaction count trajectories (how many fusions/fissions per time point) and
event-level fusion/fission logs with particle/topology IDs and spatial coordinates.
Together, these outputs let us score a tracker along complementary axes: (i) temporal
detection accuracy (does the algorithm call the right number of events at the right
times?), (i1) spatial localization error relative to logged coordinates, and (iii) topology
recovery fidelity (degree distributions reconstructed from tracked skeletons vs. known

simulation graph; comparable to the MAE analyses in Section 4.4).
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Because the imagery is generated from known structure, any discrepancy
between tracker output and ground truth reflects limitations in the analysis pipeline
rather than biological variability. This gives a high-confidence environment for
debugging segmentation thresholds, branch-merging heuristics, and event-linking
logic before applying the pipeline to experimental movies. The same dataset can be
shared openly, enabling reproducible cross-group benchmarking and parameter
sweeps (e.g., varying noise, blur, or sampling frequency) to probe algorithm
robustness. In this way, the semi-synthetic ground-truth resource closes the loop
between the emergent simulation behavior described in Section 4.3 and the
quantitative comparisons to real data in Section 4.4, strengthening the overall

validation chain.

4.6 Contributions and Limitations

4.6.1 Contributions

The simulation environment developed in this study provides a flexible and
biologically informed platform for exploring mitochondrial network dynamics.
Because simulation initial conditions can be seeded from microscopy-derived
skeletons, the in-silico networks retain a realistic structural context, narrowing the gap
between experimental observation and computational modeling. This imaged driven
linkage reduces arbitrary initialization bias and allows condition-specific modeling

directly from observed cell states.

A second strength lies in the transparency of the rule set. All biological
assumptions governing fusion eligibility, fission logic, node retyping, and bond
mechanics are encoded in explicit reaction functions that can be inspected,
version-controlled, and systematically modified. This clarity supports hypothesis
testing: specific molecular hypotheses (e.g., impaired fusion under drug treatment)
can be expressed as rate changes, eligibility filters, or altered retyping behavior and

then evaluated against data.
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The framework is also highly adaptable. Modest parameter adjustments—fusion
and fission rates, interaction radius, bond force constants, angular stiffness—produce
qualitatively different morphologies, from highly reticulated networks to fragmented
puncta. This responsiveness enables efficient parameter sweeps and facilitates

condition-wise comparisons across pharmacological or genetic perturbations.

Quantitative comparison to experimental datasets shows that, when appropriately
tuned, the model reproduces baseline metrics with good fidelity. Degree distributions,
segment length statistics, and fusion: fission ratios fall within experimental variation
under Control and other moderately perturbed conditions, indicating that the core
mechanisms encoded in the model capture essential features of unstressed

mitochondrial remodeling.

Finally, the simulation generates rich, multi-layer outputs—coordinate
trajectories, bonded structural files (PDB/PSF), per-step reaction counts, and spatially
resolved fusion/fission event logs—that together constitute a semi-synthetic
ground-truth resource for validating tracking and skeletonization algorithms (see
Section 4.5). Because the underlying topology and event history are known exactly,
discrepancies between analysis output and truth can be attributed to algorithm
performance rather than biological uncertainty. Coupled with the open Python code
and parameter files, this ecosystem supports reproducible benchmarking and

community extension.

4.6.2 Limitations

Table 4.2. Current Model Limitations and Future Considerations

Limitation _
Description
Category
Topological Cannot simulate degree-2 to degree-3 transitions (e.g., under
Constraints FCCP treatment).
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S Unable to capture large-scale mass movement of
Kinetic Limitations i )
mitochondrial components.
Dimensional e .
o Model validation is limited to 2D experimental data only.
Restriction
Parameter Simulated fusion/fission rates do not always match
Mapping biologically observed rates.
. . No support for mitophagy or biogenesis; particles cannot be
Particle Lifecycle
added or removed.
. . Requires parameter tuning to avoid static networks in large
Scaling Artifacts i ]
spatial domains.
Segmentation DIC masks are required for cell segmentation; mitochondrial
Caution smoothing must be avoided to preserve network details.
. Spatial validation should include pixel-wise graph-image
Spatial Accuracy _
comparisons.
Nucleus Nucleus should be modeled as a static “mega particle” to
Representation influence network behavior.
Reaction A full workflow for defining and explaining structural/spatial
Documentation reactions is needed.

To provide a comprehensive evaluation of the simulation framework, it is

essential to systematically address its current limitations and areas requiring

refinement. While the model successfully recapitulates major topological trends and

treatment-specific mitochondrial behaviors, several intrinsic constraints remain. These

include limitations in reaction rule expressiveness, spatial fidelity, scalability, and

biological realism. The following table summarizes key technical and conceptual

limitations, along with implications for future model development and experimental

integration.

1. Topological Constraints — Degree Conversion Limitations

The first constraint concerns node-degree bookkeeping under the implemented

tip-to-side fusion rule. In Figure 4.1., when a degree-1 terminal tip attaches to a

degree-2 side node, the side node becomes degree-3 while the former tip becomes

degree-2; one degree-2 is lost and one is gained, yielding no net reduction in the

global degree-2 population. Consequently, experimental trajectories show a
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coordinated decline in degree-2 nodes alongside an increase in higher-order junctions
cannot be reproduced solely through repeated tip-to-side fusion events. Additional
structural processes—such as side-to-side consolidation or post-fusion pruning that

consumes degree-2 intermediates—would be needed to match those patterns.

Original assumption reaction

.-.-I-iﬁ.i -1-1+1

Adjusted assumption reaction

..J‘.»; L

Figure 4.1. Comparison of original and adjusted fusion assumptions in node-degree

48

transitions.

In the original assumption (top), tip-to-side fusion converts a degree-1 tip and a
degree-2 node into a new degree-3 node, effectively shifting one degree-1 and one
degree-2 into a new configuration without reducing overall degree-2 prevalence. In
contrast, the adjusted assumption (bottom) introduces a more complex fusion scheme
that directly removes a degree-1 node and consolidates the structure, enabling a net
loss of degree-2 nodes and better alignment with experimental observations of

coordinated topological remodeling.

2. Kinetic Limitations — Immobilization of Large Components

A second limitation arises from the mechanical treatment of bonded particles.
Each particle carries its own stochastic motion; when many are linked into an
extended topology, internal spring forces and opposing random displacements tend to

cancel at the level of the whole object. The effective center-of-mass diffusion of large
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components is therefore markedly reduced, and extended networks can appear
unrealistically stationary. This "stand-still" artifact becomes especially apparent in
larger simulation domains, where biological mitochondria would normally translate or

drift through the cytoplasm.

3. Spatial Dimensionality — Restricted to 2D Simulations

The framework is currently restricted to quasi-two-dimensional geometries,
chosen to reflect the projected nature of most fluorescence microscopy datasets and to
simplify rendering. While this design is sufficient for validating 2D tracking pipelines,
it limits biological realism by underrepresenting vertical stacking, out-of-plane
reactions, and 3D spatial exclusions. Extension to full 3D initialization and topology

evolution remains a critical direction for future development.
4. Scaling Sensitivity — Fixed Parameter Effects Across Domain Sizes

Scaling also introduces challenges. Simply enlarging the simulation box without
tuning encounter radii, reaction propensities, or diffusion constants leads to reduced
encounter frequency and worsens the immobilization of large components. As
demonstrated in AC-16 simulations, fixed-parameter schemes can produce static
network behavior in large regions. Implementing scale-aware strategies, such as
density-normalized reaction probabilities or incorporating active transport, will be

necessary for realistic modeling at whole-cell resolution.
5. Reaction Rate Discrepancies — Parameter Misalignment with Experimental Rates

In some cases, the event frequencies derived from simulations diverge from
expected biological rates. For example, certain conditions yield improbably high
fusion-to-fission ratios or inverted network outcomes when compared to experimental
data. This suggests that the current fusion/fission rules and tuning protocols may not
fully capture condition-specific mitochondrial kinetics, highlighting a need for more

mechanistically grounded parameterization.

6. Missing Mitochondrial Turnover — No Biogenesis or Mitophagy
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The model does not currently support the creation or removal of mitochondrial
particles during runtime. This limits its application to steady-state conditions and
prevents simulation of mitochondrial turnover mechanisms such as biogenesis,
mitophagy, or stress-induced degradation. Extending the reaction scheme to allow for
dynamic particle birth and death will be essential for modeling long-term

mitochondrial maintenance.

7. Image Processing Limitations — Cell Masking and Boundary Effects

The simulation environment relies on DIC-based segmentation to define cellular
boundaries, which are subsequently applied to fluorescence data. Inaccuracies in
segmentation can lead to artifacts in confinement behavior or simulation initialization.
Moreover, cellular features such as the nucleus are not explicitly represented and may

need to be treated as inert or repulsive "mega-particles" to improve spatial accuracy.
8. Preprocessing Artifacts — Loss of Fine Network Features

Skeleton smoothing steps in the image-processing pipeline can remove small
branches or subtle network undulations, potentially biasing the input topology. While
smoothing may help reduce noise and clarify connectivity, it risks eliminating
important structural heterogeneity, especially near filament termini or in densely
packed regions. Strategies to denoise without oversimplifying remain a key area for

refinement.
9. Spatial Validation — Lack of Pixel-Level Similarity Metrics

Although topological degree distributions provide one layer of validation, the
spatial fidelity between simulated and real networks has not yet been quantified. A
useful approach would involve panelizing both simulated and experimental networks
and computing similarity scores (e.g., Dice coefficient or IoU). Such metrics would
help assess how well the simulated network replicates real mitochondrial architecture

beyond node statistics.

10. Unaccounted Structures — Nuclear Exclusion Not Modeled
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The current simulation does not explicitly account for the presence of the nucleus
or other large subcellular structures, which act as physical obstacles. Simulating these
as repulsive or static boundaries could better constrain particle movement and prevent

unphysical overlaps, particularly in central cytoplasmic zones.
11. Missing Model Visualization — Reaction Rule Workflow Not Illustrated

Finally, the framework lacks a clear schematic or flowchart that communicates
how reactions are triggered, prioritized, or executed in each simulation step. Including
such a visual overview would improve transparency and reproducibility, particularly

for readers unfamiliar with the rule-based structure of ReaDDy.
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5. Chapter 5: Conclusion and Future Work

5.1 Overall Conclusions

This thesis introduced a computational framework for simulating mitochondrial
network dynamics that unifies graph-based structural reactions with spatial,
proximity-driven interactions. By encoding fusion eligibility, selective internal bond
fission, and node retyping rules directly on a dynamic topology—and coupling these
with distance-dependent stochastic fusion channels—the model generates
time-evolving filament networks that reproduce hallmark mitochondrial behaviors,
including tip-to-tip reconnection, tip-to-side branch formation, and progressive
fragmentation. Parameterized mechanical elements (bond stiffness, angular
constraints) further shape filament geometry, allowing the emergence of loop closure,
branch thickening, or collapse into punctate fragments under fragmentation-biased

regimes.

Quantitative comparison to microscopy-derived skeleton graphs demonstrated
that the framework could recover condition-specific mitochondrial phenotypes. When
tuned to baseline or moderately perturbed cellular states, simulated degree
distributions, segment length statistics, and fusion: fission ratios closely tracked
experimental measurements. Multi-run ensemble averaging reduced stochastic noise
and enabled statistical error assessment across conditions, revealing robust agreement
under Control and Glucose while exposing systematic deviations under strong
pharmacological perturbations (e.g., FCCP, Mdivi-1). These deviations are
biologically informative: they point to processes—altered fusion machinery, selective
degradation, metabolic feedback—mnot yet represented in the current rule set and

therefore guide targeted model extension.

Beyond reproducing individual trajectories, the framework contributes a
reproducible analytic workflow. Simulation outputs are exported in formats that
bridge visualization, quantitative analysis, and algorithm testing: lightweight XYZ

coordinates for quick integrity checks; bonded PDB/PSF structures suitable for
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high-fidelity VMD rendering; and complete temporal logs of fusion and fission
events. As shown in Chapter 4, these exports support direct frame-wise comparison to
experimental data and enable a semi-synthetic ground-truth resource against which
image-analysis pipelines can be objectively validated. Together, these capabilities
position the framework as a versatile tool for probing mitochondrial responses to

genetic, metabolic, or pharmacological modulation.

The work also surfaced several modeling boundaries. Degree bookkeeping under
the current tip-to-side fusion scheme conserves the global count of degree-2 nodes,
limiting the model’s ability to capture experimental trajectories in which degree-2
frequencies decline as higher-order junctions form. Likewise, emergent kinetic
cancellation within large, bonded components suppresses center-of-mass motion,
producing “stand-still” aggregates unless mobility is re-scaled. Finally, the
quasi-two-dimensional simulation geometry, while matched to most projected
microscopy datasets, underrepresents vertical intertwining and out-of-plane
encounters that occur in full cellular volumes. These limitations define the frontier for

the next phase of development.

5.2 Future Work

Table 5.1. Proposed Extensions for Enhanced Mitochondrial Network Modeling

Future Extension Description

Import 3D z-stack segmentations to reconstruct
3D Initialization layered topology and resolve projection artifacts

from 2D imaging.

Introduce a per-segment metabolic variable (e.g.,
Metabolic Coupling Layer | A¥) to modulate fusion/fission behavior based on

local energetic state.

Simulate network turnover by enabling removal
mitophagy) or creation (biogenesis) of

Mitophagy & Biogenesis ( . P gy? (biog ) .
mitochondrial segments based on quality control

rules.
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Apply optimization methods (e.g., ABC-SMC,

Automated Parameter Bayesian inference) to fit simulation parameters
Tuning against experimental statistics efficiently and
reproducibly.

Scale framework to screen large datasets by

. . automating initialization, simulation, and scoring of
High-Content Integration
treatment effects across hundreds of cells or

conditions.

Future extensions will focus on increasing biological realism, improving
parameter identifiability, and scaling the framework for large-scale screening and

benchmarking applications. Five directions are outlined below.

1. 3-D Initialization from Z-Stack Imaging

Extending initialization from 2D projections to volumetric z-stack
reconstructions will allow the model to capture vertical crossings, layered branching,
and depth-dependent encounter frequencies that are lost in projected geometries. A 3D
import pipeline would ingest voxel-level segmentations, skeletonize in three
dimensions, and generate topology species with full xyz coordinates. Comparisons
between 2D-projected and 3D-resolved simulations would help disentangle apparent

fragmentation caused by projection artifacts from true structural disassembly.

2. Metabolic Coupling Layer

Mitochondrial fusion competence is strongly influenced by energetic status,
membrane potential (AY), and redox balance. Incorporating a light-weight metabolic
state variable—tracked per topology, per segment, or per spatial sub volume—would
enable state-conditioned reaction propensities: high AY could raise fusion probability;
energetic collapse (e.g., FCCP-like uncoupling) could suppress fusion or bias fission.

Coupling structural dynamics to metabolic feedback would provide mechanistic
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traction on stress responses and could reconcile simulation—experiment discrepancies

observed under pharmacological treatments [41].

Table 5.2. Time-Resolved Mitochondrial Metabolic States Across Ischemia—

Reperfusion Phases.

t=0~10 t=10~40 t=40~70 T=70"~100
Baseline Ischemia Early Reperfusion Late Reperfusion
Ischemia-ROS AW=0% Ox=0%  AW=-50%, Ox=50% AW =-20%,Ox=20% AW =-20%, Ox =20%
Hyperpol.-ROS AW = 0%, Ox = 0% AW =-50%, Ox =20% AW =-20%, 0x=70% AW =-20%, Ox = 20%
Reperfusion-ROS AW=0%, 0x=0% AW =-50%, Ox=20% AW =-20%, Ox=70% AW =-20%, Ox = 40%

3. Mitophagy and Biogenesis Modules

Network turnover is governed not only by fusion and fission but also by selective
removal of damaged fragments (mitophagy) and the birth of new mitochondrial
elements through biogenesis. Adding rules that mark, segregate, and remove
slow-quality segments—optionally triggered by loss of A¥ or accumulation of
fragmentation events—would permit study of quality control pathways.
Complementary biogenesis rules could nucleate new tubes at specified rates or
locations, supporting steady-state turnover studies and modeling of recovery after

acute stress.

4. Automated Parameter Tuning

Manual parameter fitting is time-consuming and subjective. Bayesian

optimization, likelithood-free inference (e.g., ABC-SMC), or differentiable surrogate
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models could be used to optimize fusion/fission rates, interaction radii, and
mechanical constants directly against experimental time-series statistics (degree
distributions, fragment counts, event rates). Automated calibration would accelerate
cross-condition studies, reduce user bias, and provide credible intervals on fitted

parameters, improving interpretability of condition-to-condition differences.

5. Integration with High-Content Screening Pipelines

The modular export/analysis stack makes the framework well suited for scale-up.
Batch initialization from hundreds of microscopy fields could be paired with
automated parameter fitting to rank perturbations (drug compounds, genetic hits) by
their ability to rescue or degrade network integrity relative to control baselines.
Semi-synthetic ground-truth datasets—generated by varying known reaction
parameters and adding controlled imaging noise—could serve as benchmarking
panels for evaluating image-analysis tools used in screening workflows. Such
integration would move the framework from single-cell mechanistic studies toward

population-scale discovery applications.

5.3 Final Remarks

In sum, this thesis advances an extensible, data-connected modeling platform
that links mitochondrial structure, stochastic reaction dynamics, and image-driven
validation within a single reproducible workflow. By exposing the mapping between
biological assumptions and emergent network behavior, the framework supports
mechanistic hypothesis testing today and sets the stage for coupled
metabolic-structural simulations tomorrow. Continued development along the future
directions outlined above should enable more faithful modeling of mitochondrial life
cycles, improved interpretation of pharmacological screens, and deeper insight into

how organelle connectivity supports cellular health.
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