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Abstract

The pretrain-then-finetune approach has been shown to be an effective direction for
speech processing, with successful results in speech recognition, speaker verification, and
a wide variety of other speech-related tasks. Combined with self-supervised learning,
the paradigm brings major attractive advantages to speech technologies in addition to im-
proved task performance, including reducing the dependency on large quantities of labeled
data, and simplifying the task-specific components. This implies we are one step closer to
constructing human-like models, able to perform different multi-modal tasks by learning

from vast amounts of unlabeled data plus some limited labeled data.

This thesis focuses on two different directions towards the above goal: First, the
unsupervised spoken constituency parsing task is proposed to examine the possibility of
learning high-level linguistic structural information, such as syntax, directly from speech
without any paired data. Experiments show that while it is still difficult at this moment for

machines to learn to produce correct syntax trees from speech without any supervision, the
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model does indicate some initial evidence of being able to learn the branching direction

of the language used for training.

Second, existing self-supervised audio-visual learning frameworks are broadly ex-

amined under a wider multi-modal, multi-task framework to determine how capable the

existing approaches are on five speech and audio understanding tasks. For each model,

three types of internal representations are obtained from auditory, visual, and both inputs,

respectively. Next, model performance is measured by finetuning a small prediction head

for each task, using each type of representation as input. The results of such an unified

evaluation show that no single model can sufficiently generalize to all tasks.

By analyzing the applicability of self-supervised learning approaches to more diffi-

cult and broader tasks, this thesis aims to demonstrate the potential and shortcomings of

existing technologies, in order to facilitate more research towards human-like audio-visual

learning.

Keywords: self-supervised learning, constituency parsing, audio-visual learning
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® Lo Ty A HFEE B £ (query vector) ~ 4+ & (key vector) ~ fr

@ ¥ (valuevector): 2 ¢ d, éﬁfﬁiﬁﬁﬂﬁiﬁﬂir&»fﬁ%fi v dp =d/h -
MR- BEEATEEORIE A S RPRFRE 0 B - BEERRITF DAF
e R B R AL B RNt BAFT RN s Bége £ &L AT

£

RAEA F2 B M) §AXF L RELFEY - k5 s BH D
HE

”Fld’?él’—"“i'ﬂ_hﬁf‘”" B o 755‘5—"'1'}1 éﬁ'ﬁ' - B AT x dh e R Sd AP N IB‘%J > ik

T -wT £A I o 12 KA 2 A S - Y .
A E 2 &7 505 softmax(ZU) 0 RIH — BEROE ¢ BE AR UBRET S

LKLY

V3,

softmax

BB SEH RILWHNT L BN (RRZ ) FRFOT L BN (AR
Ady) B EA S o SER B2 EF O B BAORE AT
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T2FFEAA P M B P BEd]Y hE - BET A R

BF e b EHY Y T SFH BB B EEE R

( positional embedding ) #> ;% ¥ £ ,iﬁi%] >R e R - B e

ek

R E R Lk LR

AR ? o BEEL - % E 28 % (encoder-decoder) % 0
e R E 2 & Lk S B A (transformer encoder layer) 27 d 3 3 A5 E A
(transformer decoder layer) @ #F o o »" 3% f3 58 BAL K 195 2 E 2 m@?]:'
BAAT - BRI EA DT A B A R

v erd {mylt >t} R ER L R o

23 BAEEXZE (Self-Supervised Learning, SSL)

. Efglx;u%*fsés g - %ﬁj&_ﬁ;ﬁk;\] B ;s'gﬁ._o 2 oen

il F R T 0 fE

,-E»;m g AV, ;E.;E,]gvz ,’3,\113?] ~ Fﬁf}im%q/lr; %‘yll‘gﬁﬁﬁqg Jfg\_\g’,g{ o iF 3 ,g:r;i';f B 3

s

BT %z»—\ I > LBEp T JE»\ g P R L9 A (pretraining ) 0 ¥

SR TR AP R E B AR R[5, 23] o

T T E e e B ASEE S e SRR TR TR 2y

2R ] R AR P AR Sl

231 BAEBEBEXZE#

A2 ¢ D ehp

= TE‘;“ 33 7] ¢ 45 wav2vece 2.0[5] ¥2 HuBERT [23] -
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WABERN

\\%ﬁﬁwwm%//
I FETTE

V FEMOER50%

oo

Bt mis e R A
§ORE«
1 00 =t g i
) 4

Bl 2.2: wav2vec 2.0 78 4§ % FE 2" ﬁﬁﬁﬂ-r LR HP ug ML AR e
T mAEL AL YA e B T PR BT B 4 R REL
= a5 4 77 ¥ 38 (contrastive ) P & n—hﬁ”zi i % & (negative sample ) °

4oRl 2.2 0 wav2vec 2.0 shZEfEd - A SRR B EE ERRB IR L o

F] & }aﬁzﬁ?ﬂ B e B Il%»q,ﬁ,ﬂlltpﬁﬂ)\ D MESMNBETERED - B B A

FloHP AR EEHRI20FHNER c BF > e BRI B
BATeE S A M (TS Nm B IERI P o BN SRR ev’ﬂﬁi;f] e g R

PR RERE - L e R TER 0 M- FYRDEF e RPN o AR T
die B B 7 € AT L 3 N BB f'ﬂﬁisa] > o wav2vec 2.0 #=A) cnp R S B & §
1 08 Y (contrastive learning ) 97 5% 0 EAEHSE Tehe £ 9 0 FRRI B
R TE O FERAGE S A o BT RINCE p P2 2 hBRAGE S A M 03
WAL BUEARE Y EE G Y AT R

Bowav2vec 20 % ¢ o @ % 12 K 4 hss B epiicd) &g £ @@ % Librispeech

AR [42] ¥ 960 | P e fRiriE 5 FAL A TR RS 0 £ 10 4
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GefR i TR T Jﬁ“\ DR W U A test-clean PR B F I 9.1 eiE § R
4% % (word error rate, WER ) o 4p#2. T » { § 7 7 Bl themk TR T W4 i

Jl63m\ﬂ“ \’—'ﬁ"f[]

WAB SR
B BISAEE R
\ %F;%HWMHE% VA

BI—PFEERHUBERTXR

ﬂ%@ﬁUDUDﬂDD joaaaa

l KRB

ER L Rt

_— BHZRS|
DDDDD ——> 5023 1 31947

Bl 2.3: HuBERT 7 # 2 fg 3" iz LB > # ¢ §F m ML &2 F2240 & - Hu-
BERT##Q*vaF)»f'}M‘)"'ﬁ }%‘]émTJ-’ﬁrﬁfEr@,i& _ ’tﬁ,\.%%faﬁ'u'l*fﬁ’%“*

-7

#c (mel-frequency cepstral coefficients, MFCC ) » {& P B R & * o5 — FFE AT3E 2
e HUBERT H07) 4 % B ¢ 1 iy 1 o

4ol 2.3 » HuBERT i3] 7% $&7 wav2vec 2.0 25 i » FE3" JUE AR * 0 p %
S s AIFRPIMATTE R A REBATE S AR BN E IR DI NI R oo
HuBERT #73g R chdp 7t 5 2 Mg "EF T RAPEE D 3 9T H I o fdrdoin¥ -
P4 B pF > HuBERT % fﬁxﬁ:}& #-¥x f mHE 3 2 8ic (mel-frequency cepstral coefficients,
MFCC) 12 k T 354 # % ¥ ;4 (k-means clustering) #4c i » ¥ 2 22 4 &
Bt B FE R A F IS DBATE E EAE G B 45 3 (codebook) 2 ¢ ik 3l
(indices) ° % — FFERFE P % = {6 > #7) m%] MAfce By - TEDFTA R
HuBERT #% < ¥ I > ¥ 10 #m5 — FEE TR 2 JUAiE A 4R 5 33 cdd B~ B (feature
extractor ) » 14 B A 4k B B ¥R A b’“rﬂi%] IR BN R Rl TREET
Fe B edf 2 3 o
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4 HuBERT % = *# > ;r'fﬂz IR A 960 ) PFam fEiriE 4 chp § E» A FF R

A G 10 A BT R OE RN RE  RY RAERRBEDS R

HuBERT #-34] 2 I 3% % wav2vec 2.0 B4 AR Y 0 35 3 #eadend AT L o 2 35
VRFREBRA TS F LB DR 1 4 R EERB T R Z R

VRS > R IR € HE P Rk =024 & wav2vec 2.0 3] o

232 FR-BBRAEBERXLT

e IE P ¥ L McGurk 2ol [38] B 0 AP A RGE S ¢ BT B o
AN AI DTN+ o5 Wi AR RTERET AT T Lo

# FCE TR AP PG AR e B TR B Al A g

PG B FEFERE FRK 3 eh- 04 5 6] 0 AV-HUBERT #-7] .19 % HuBERT %
HorB g o — R EE A o ATEY IF A 0 AV-HuBERT #:3) € 0
PRI T i s Bl o & % Blen A FE R 5 0 8 7 58 02 HuBERT #23) cndt 47 & H3Eip] -
50 PR BHE T A > AV-HUBERT 7] @ % - 5 g4 g ik

R G AT A - B R AT T - AP RS HERERD - 3B
Brledm BRI E - v 8 PR P IR AAFHEIM0 DT F
AV-HUBERT § £ #-4f [l $PF A cng e B2 R o B8 58 0 05~ B4k 5rb

PRI

BIE D REARY 0 AV-HUBERT H:3] 3 ) P 15 Fe 18 B30 k T 394 315 ehd
Bz Bacagd 29 o R L0 WL RCAE IR E - - AR T 0 FEPIRGE
f2¢ g3 - WA T %52 (modality dropout) » 12 0.1 e F #-3 e £ B 5

BRI BAIRTEE -

2 LRS3-TED F A2 & [1] ¢ 433 /[ prens < B3 i 7 1 FEE hp B RS 77
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Bis o £ 230 f PEORE 2 F EH TR KN 9 5 AV-HuBERT 3] » 7
RIFFE T IR SIR B F RS ES - PR T > (Y AR RIE T

AT E 1] 719 dne g RS [30] o

2.4 % 9 %)M (Constituency Parsing)

241 MAEABHA

PEITE B ERGP DI AN - BT anER B DHTH LT HEF
TEFETH N FIERP o ¥ R aniEiE R ¢ £ & 2 (constituency grammar )

27 i% 33 ¢;2 (dependency grammar) % > @ A% F L3 0 72 247 o

S EIATERER - BF2EE e+ 0 FRa 00— B 347 4 (parse
tree) %7 HF2 B4 a 34T F - BEERARF S >4 (X fLs@e
constituent) o o 5 3] ek & B FHELE > T U FFFE P H R DaF o Br
T4 XX FEAL | ip- A3 TN heB245rF T 4% WTE L VTSR
iy A A o fe TR g BI2 Ao B 0230 E (parser) @ T35 4
AL R N AE 5 & = (speech synthesis) ~ 3w & (word embedding )

$iEir) o ¢ JERE B AR R R B2 0P R Cinterpretability ) -

24.2 JFEHXARLS9EHM (Unsupervised Constituency Parsing)

dONIERARRIE G BRI AR A S AR Alag - T
Z &z ?# ERT o drim kbR %";“ T N BACAE B oA A e
ST 0 T H 5 - BER LR AR RS N0 MRS 2 A
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/N

NP VP

NP

/\

SR OB ORR H E
Nd DE Na D VH

4 Trxha B4 - BoFhydare Ry T4x v Tx g, 2
PoTE AR TA ) SRET R SRR

BYF7 olAes B o Flt 2 RS2 ETTTP‘ ( grammar induction ) » % 7 % M i
e e R o A Y < 5 UH2 TS = 4 (binary tree ) 0 B F F bR

¥4 (non-projective tree ) » Fr PFx % Z| 470 & aa s o

U RIS R sl S REI S e o T A TR K S
SN E B2 247 B (Probabilistic Context Free Grammar, PCFG) 12 % H %
i ERINEFRFZINTERRT AR OEFRLELT AL D

A MY 3 - B S E o MBS ¥ (expectation-maximization, EM) FEEA

MEFFIRARNTIEAPPRBEIRS o Bl - R BE
TEY AL L EPM ARG E o AL N [I] RN SER AUFET Y o
= 4 jpl3# (constituency test ) #‘é#ﬁiﬁl NP F P IR A A o R - 2 E i R
3] (grammaticality model ) & & 3 (s cher F 2 2 £ F 08 > Efs 0 2 23 gl
A E BBt e @ ¥ - B BT AR E G LR B A % Bic (latent
variable ) 2. 7 S HE 1T (latent structure model ) [31,52] » 1 &2+ & %= (sentence
reconstruction ) [16] & 23F % 2 # (language modeling) [47] ¥ 2L& -3¢ 24517 5
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EE SR SN AR RS ER g = RN SR I RR N F

BER PSSR FRFT2INTE Y [30,54,57]» &1 ik - g g AP o

IR N EFRFR I B Y BRI R S w2

i ‘“@%‘mﬂf%ﬁiﬁﬂj > Fpt A2 $3F S DIORA % i 7:c 2 » & 2
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F2F RIABBETFABEHENZIRE
ZH IFEE XA kF
# (Unsupervised Spoken

Constituency Parsing)

3.1 FTERHR

Ry
q
:“
D

Pt
1
=
oL
b
=
4%‘
a:
>}.
#
W
s
7
=
o
RN
ml4
o
&
~=h
7&
A=
3
(%
bl

acquisition) F 3F 5 AR I Z o B2 T A K EARY 0 g BRI ORES Y

e 0 m2bd 3% 7 (unwritten language ) 7% & 0 Bt ie— BRSNS

VEERLR 2 FRFR 2 FSHTEA ok R Y AL R anE
T @A QR RES PHEAR DL PN FRFS (low-resource language ) ©

~

PEFAGS LW RGP A A pERNES AR R
(phonemes) ~ 2 # (words) T2 F 7 H ApM L % [17,23,40]° F|p > M p &

~

FAES A AR A R A PR BT RN T LA BRI

¥rend B [4,35] ¢ G F 4ot 0 3% (syntax) ~ 35 & (semantics) ig#ft 2B F¥
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SETHAR R 0 fTRSEE AMER S FET IR A A G

=

FLIMTAERSER AT B2 FATRIERS  ERFERAT R

z-a
I

Mo i E g [40] e T AR

=
'.D._
‘-\-2\53
*‘“‘}&

Sl EE 2T s e 1 2 ETE‘;\'A

R AGEE Y BV R RS AT PR BERE SR

AERE AR KGEF P MR %";‘ I EE A= ﬁ_m}’p o iy =

—

He FFEROFRT > BROIL DB INTFERFLI LR > FAFER
TEFF I A o3 ER > TR - TR AR R HEE S L oA
Fo¥ o AR BNABINTERRAILF N L - FRFGIRRE Y F
EITREA IR IR BRS IR V- FERFEPERTNFS Ak 2R

Bat oA AR DR R

32 MAXREEEESEE

A cat is on the ground

/\
Acat is on the ground
N _—
A cat is on the ground
j N
on the ground
the ground
(@) - v at e+ 2 34T (b) Bl () ® B~ F 2374

@&kii%i%ﬁ%ﬁﬁbﬁéwﬁﬁwﬁéijﬂﬁﬁﬁw’ﬁﬁi%ﬂi
Ehek (leaf) cn& 8Ly € 5 & B3 &2 (childnode) o & &35 4 24747 > & -
BEBK - T R - BGFF 0 ApHaS BF éf%;!;&&r’ﬁﬂ@m;% FELE FA
LUt BT AT G UL -

=3

b A A P R R e 3 W T

T
iy

ﬁ;f])\ o ’é_'%iﬁ‘g’ry
RHERT o FHHY S0F BEREHEIEE R o REE R - F -

3 A A o

\4

T EL R E LB B %} ~ i (7 A B (segmentation ) » £ | %o
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ER- RV g R

RSP AT - BRI BR AR I I k¥
i % ehdg iR A A SRR 03] TR B 34T A2 B & BE el e % (precision ) ~
v F (recall) ~ & Fy »#k (~ 5 PARSEVAL Fi[7]) « fe 338 g B3R 3147 B
HSETTRR 2L R B2 R BRI RMFE R A EFE L OEE T AR ETRLF

F oA A T R AR

TR REEEITAE RS A R AR HE P A g S e
B eV RECATERIS RS D L PP AR o R I - SRR
7 fie. (maximum weight bipartite matching ) [19] £ 4% 3| & B ffenzg gLz fF & if eh-
¥ - ¥ & (one-to-one mapping ) » # (¥ BAEF B2 B REOE AR K
AR e E eNELs B o M G T S B g E A R~ B A
By B RERCAERIR R E L T O THAT LT LR e A 2 F 0T

R EE DL TR B 2 AP P o g B RAh ) AR 2

33 AEHRAGIANBER

Yo H 2428 9tk > BEAREL B/ F S A e enzb T B Sraz3 g n
W F LR TP AR FFRITAE BN G LT K R E S

By~ o Bt AR 4R 012 DIORA 3147 B 2 45 [10] & 175 9 end 47 -

DIORA #_# 2019 & 4 4% ~ (Andrew Drozdov) % % #71d& ) en— 2L B2t 3
TR d SRR B EE - BB EES o HI B iEARS B ad
247 B (chart parser) #f it - DIORA e%o 873 5 0 % % $70 Bfmes & & &
SRR s T NREe S o RIERINTHS LT REE Rk T
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e

0
S @ @

The cat is eating The cat is eating The cat is eating
{the cat is},{eating} {the cat}, {is eating} {the}, {cat is eating}
' ' '
0.1 x + 0.8 x + 0.1 x
The cat is eating

B 3.2: DIORA 2|47 B » %fb B2 - B EAER o 2 f42nsd - BRI PHET - B
XA @RI PES ESARAI - R RIS LR o

AR RBEE e E (word embedding) A 7T % ﬁ?] »~ood Toa b
A -V sty d- 2 sw g (composition vector) » B P IR A RS
Gt BB o - AL e R AE BV LAY 0 5 ML B8 Bk
T35 o ho§3.2%7F > [ The catis eating | i&— = A £ F = A7 it 247 o b B
g¥iEz BT E P E - w28 - 49 F 124 dkc (compatibility score ) » i 12 4p

MABITLEETE » a4 T 35 (85 T The catis eating | i&— =+ 4 i &

I

B

LB ETENE RIS nu b e B U R E EF B kAT

(toot) 4o > d + A TH LE - F i s 0y - a8 p2tE 0o
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O
S | KD

{the cat}, {is eating}
'

eating cat cat is

{cat}, {is eating}
'

0.8 || - 02 ||

The cat is eating

Bl 3.3: DIORA 247 B ¢ 275 B2 3- 5 BAR - & filchs - BRI FHRII- B
HA A RT RS AR AR R e A e b B o FIOE A R4
‘fnﬁ%%fi‘l‘ﬁ@"&ﬁ »om ko d {—»ﬂ}@%ﬁ’;g@;gﬁﬁg & B o

4o B3.3%77 0 Niseating ) i&— =~ jp G EF A FBF i 0 - ;ﬁ, 4 Tthe
caty> ¥ - ¥ 5 Mcat, - BBEEHEA BAA L E - 2o - A&

(compatibility score) » ¥ 124 F A HiF A EEF B 2 chbefi T35 @3] Tis

eating | iH— £ A Lo E o

BERENE L RIS T EFE - A S

P L FEFLR] D ds BH 0 B LY g B
B e N A S goeiE AR Y 0 B0 € s Dl Ae i 4953
R RS - RIS (T R Y CYK W E E [28,55] Ak AR

4] (dynamic programming ) » [ % BerfE & ¢ 21 5 A48 5 B3 ch2 |47 o
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34 ThRF*

341 FHEXAL  UEFHRBFTERE AR BRN

FREF IR A T - B DR LY S R

Y
&
u

o

-
45
_

®

S BER L - M S PRI ELE T o B b

24— 3R AGES AR S HE R PR T 0 E S R 4 0

~

AT T RN R e B A TR SRR Y 25 (Alexe
Baevski) # A A F %z FLF N (Fldp) gms (mF3) X998 B G

A e [11,35] 0 i H A e wav2vec-U 255 438 3 4 [4]

wav2vec-U {278 ¢ i G E T L R TRk s B et 3 F
LT A o d v EAANE A A fog FF R RPMIE 2 X AFRT
VL = kST R IT S B R G R AE R TR N TR R A s d o
£ P dp 4 S (adversarial loss) '3 - 4 = g (generator) o oIzt
G S GETIS S 4 A RSB A G0 4 RUGES TRES 3

Bl @FF ZA7 M T+ % N (N-gram) & £7F K 37 #03]%

FAAEELPRE RE PR EASETENGFE R AR RS KT

ol

=
UASR - ¥ ¢t » 23 % A RBF T 4] % wav2vec-U g B #1182 5 17 5 Bk
#L (pseudolabel ) » £ % ¥ 5 ¥ — HCA| PR RIS % > * 3B EFEANDR o 2@

AT FEReaA L 0 A F #% T4 5 UASR-ST -

SURBES BB EIHIL O L AT L PE A ER

SE

wav2vec-U (-7 UASR & UASR-ST & f& K %> 'R B 2L5 E‘ PR g FERHCA o

mls

B SRR IR B G BB SR RSE BRI E RS

TR EL %]7‘ °
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342 HAEXARG UEFTABAEARS 9 EIMERMA

RIETEITER

IADIORAZRI&EETT
EEER T ESIN

FIB L IIMEF LY

(0] M eseees
|
- E" *ﬁ:::ﬁz

!A! cat ! is!on ! the -

B340 34550 5 e 3 5 AL - 35 5 0~ AR R et R R
S 1T R e BT B N - RER L A TE B B L
o3 Hivl RliEY -

d %?%'J’f‘rﬁiﬁi;f])» Lo BB T LR ‘fﬁ?—’:ﬁﬂ? , E#%-»fk?%%ﬁ%]
> B3 % & (word-level ) e S & B (7 2 A S12 2047 o 8 % @ eniE Y £ Ak
kA FErFoD R {ER RTES Y PRETR BT ET Rl e
HER] o e @I3.4 0 B HSS A g A1 T AN E S SRR [6,27] #3E
FAR ¥ LREY ERSFR AR A
EHBI R - R R YE FART 5 WP R g L e fE T 02 i
T RAIARTFTAC A I AR TEL Mg RN E S AR
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3.5 FEEX

Wi

TR RS B %S 2 AE R Y S4B TR (high-resource)

F TR kT % A W 5 SpokenCOCO[24] ¥2 Zeroth-Korean'iz & i 7 4l

-—&'—

f - SpokenCOCO FH# § ¢ § 742 | Prehi = 5 T K p A F & BFH
MSCOCO F#L & [34] 42 R 4548 (image caption) 2. F 3§ » H ¢ &R P H &
FIT BAAL A AR FRAR Y HEUDT A PR BT - AR RES (T
¥ 837 5+ S5 F B [50] kA NIRRT BRIEE T FT
3.1 FRP G RALY FELE 2 F TR AL BN E S rRRcd

fE~ F s @& % i Zeroth-Korean T B 2 2322 plzd & 4 51.6 /1.6 /| pFenii

FE 0 kP 105,10 B3EF o AR A NPRE S0 BIEE TIHRTH -

d 3 biens BERETF FF —2 Fao= TR 2 4@ £33
ks FIPAF R Y - 24T B E E [32] H L R (normalized ) e F i (7 A

.
A2 ES

\4

qﬁo*é%%ﬁwfmﬂ+ﬁ%w’ﬁfﬂ R R AT @
BESSETIRIINA > A F (¢ * — 3318 $H8 (forced-alignment) % [37] K {EFF|FE ¢

& '[3/"’"741"’]’7@; | EpF R R EC o

¥ ¢ 5 4 DIORA 245 B2 Rish< @ » X % 4 & % 1 ¥ k21 ELMo

FP ra,ﬂ[ ]j\:}i—Jf*"“] or}quLMOFF?_ﬂ%Q_‘—_Q_}IF "'fzﬁ?%ﬁi’
FOLMIRTARFZVEDEE S A3 4T F X (BoWan) ¥ 4 2 7 5% [50]

(AR I3 Lt TR S FEEE S T3 BIEE S NSRS

SR 32 BY R 5x1070.

- g AR R AR B3 T enieE [50, 56] 0 # R

B EA¥ M- g B4 (vocabulary set) » 3 4 11 b enFE * 5 (rare

Uhttps://github.com/goodatlas/zeroth
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words) % § M EIIF - TRw, @ AP RHRET > - KTPFHEG L

BB EIHPE N MRTEARE A RRILT FE AR

=3 SURE RIECE- - SRR RS

HEA1E * (model selection) P E 4945 s f F o] chif & Snlek A2 - ¢
B ARRE P00 By FEE (epoch) > @ B Nk Sjcachul o Tl 530

2000 4+ =x ©

3.6 ER&EXR

3.6.1 FEXAHKER

e 34185 > AR Y 100 | B REEE S o IS At 3T
PRF A 134 wav2vec-U £ UASR £ UASR-ST & 463k 2.4 3 225 #5838 3
FERBCA R RS FRRAL O QV UHYREEFED - A A A
SpokenCOCO 2" 3 & el 8 & % 2_ 245 225 (word error rate, WER ) 4 %] 5 28.25%
12 13.15% » £3.1¢ % (A)~ (C)~ (E) 7leh % i » SEF 8 5 48 % » 247 B

SRR B 6 MRS T

BIRGK R F TRERT I BAAT A G A BE G E B
PIRE R FURINTE A A Rt e F TR RINTE o &30
% B)/(C)s2% D),/ (B) 5| eas L pdgr > T HEBIRENER > F

I

7
~

R

AR FEHGZ R o P R R Y 3 E RN R DR
E ek o M3 UASR-ST R T T il B B %40 G w2 8 % 37 g
MoEBRFERY T RAVREDIOFBPAY h8F 5 B A o Fpi
HR2 3L RTRIINTERZAILF * 7 { § ERKAL DL B
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P RF AL SE Sy 41 Rk 3 F

(A FRsEk Gl 2 L 57.15 £ 2.09
(B) gﬁ FEHR LT UASR-ST # 8 & % 44.08 + 1.64
(C) 2t UASR-ST# 8 %% UASR-ST# 8 %% 40.53+1.65
(D) FEh e F TR L E & UASR # 8 %% 3497+ 1.32
(E) B 3e UASR ## B & & UASR # 8 2%  31.01 +1.17
F03.010 B BN BRI YR P AT SR Y USRS RITER
F éﬁ;: A2 2 PaFEE TYRFHR ) - Ao IR ELR YA FF

PR B B L DT AOEEETEESE eSS
(groundtruth) < F & {7 /E 3 F7enid % > 8 3\ ki sant Lo

362 ABEXALKER

JeH 3428 Tik 0 B RS kM Z BIMA A IEE Ak TR BT
o 0 x EE RN TR RCA] o BT & Bt o A F - % %< (multilingual )
e XLSR-53 #0412 % 14 & #4 B & 8 11 17 5 35 3 4 4 > XLSR-53 € * wav2vec

A TSI EET FREFRYR O FY R R RILT RS O ﬂﬁkj

* gy #

#7323
PIRIE B RIGRIEE
(A) BEFE HEEFS 57.11+0.00

B) #05#% fEEFE%X 57.1040.01
(C) %054 4054 3.88+0.00

(D) UAST-ST UAST-ST 40.44 +1.72
(E) UASR  UASR  28.49 +0.57

Fy

320 @ % A R N ehE B k2 By Ao\ﬁfco B¥ % (B) 785 (C) 734
P R 05 £ g B0 ARG - B A B (D) 2% R (B) 2 Y 5E S r :;-H&?
B~ UL R IR TE L R 5 (A) 717 Jﬂ%ier% AT g%k

E #Q—}\‘ f é«um" Kq o

fORTETERCA A T 0 AR T o0 BAET Fen¥e S e A F %Y o A
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FALERE B [ H S N BE 05§ @]Maﬁa B2 ke @4es
g% (327 5 (C) 7)) & > § RIEAFEREHCA e /e c¥Tepr (2327
FB)7l) T AVRIFET R GH 2T A LM AT 1 F ]
e e BT RAEES N RER AR R S E # AT RS SR
[18]fFmf > B %2 FIMfE o Ft > Ak - &7 P2 T HNF 3 5%
WA KRB AETPHER o 24327 5 (D)~ (B) 57 > € BE S SRS HR
A&ﬁ% FaMEBEFRFIEA FREIRLEY FERROFFRE I
BESEFE o RA32Y 5 (D) A2 A3 5 (C) 50 A E 4327 ¥ (E) 5
2319 5 (BE) 7|V M AR Y AR FTHNEET 5 B R0 kg Bk

et RARE e P P e AR R T R R R

LA ] 3 I 4

363 HEXAHKISXT®A

B iE
A X,
AN 24.68 27.15
+ A AR 57.11 7.60
BEELX

* 05y~ F 57.10+0.01 18.53 £8.99
4 33 #4327 % (C) 7]eE £ k% 2220038 (rule-based) % stfim =~ (+
& 3% % o right-branching ) 3% 5 iz%l »qrgg v (24 £ 3F 35 o left-branching) 3% 4 @?J

r Feant i gk oo

wFE P wFw E A (head-initial ) #3F 3 o TR A2 f%—r—,ﬁ‘%
fd-%ﬂtblg"?’#fkra,"‘,g\imo#ﬁifj\;b’]g\ﬁ?\#&?\B?{.ﬁéalupgl‘ ']

(head-final ) 3% 3 (3| FTHTE ¥ Eo 24 & o

% SpokenCOCO FALf } B {748 F S PF > FIRE 30 LA AP RIEETF R
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f e AT A e FERRAE- R % A B % AR icAl # F (model
collapse ) » #% i & Zeroth-Korean i&— §&5 = FAL & + £4F £3.2¢ % (C) 7| e0f %% >
RS SRR EEEE ST TR S RS R E UERY
P (ArB13.5) o FRH 4Rl B F st B AR A TRad 00 B RS0 ks B

WEARY PDART UEIET AL ik AEETA

\
!—‘—\
ot o o m o e

T2 HEo| P2 oo MO|7} EXT 20| = SEEH HRIAIZH0| S E Z P2 OfLiolo| ZEYEO| sl HRHQ XIMIE RXISHs A2 2 LIEHCD HYHCt

( B R R 2 — 3T AR B

ﬁﬂ

o PEIS LEHo| Z2 oflel ALO|7H E01El S0l = SE3H £0A|ZH0| BHEIEl ZQatH OfLiRte] ZE MBI s LBl XM S QXI5Hs Ho = LIENITHD MEsict
(=) W E 2 - F1TAE b
b ZerothKorsan 4B 1 -~ JETHL B S SO § 301
~
]

R W 2 é?Tﬁ%m?*wﬁ ORI
SRR - R A L P AT TE -

\

W
e S U‘
F.

\._¢

e
el
o
A
ey
|
%
ml4
! -—
4}_
&
W
by
J
N
)
PN}
é;o

*71; F&'& ]/E "«I— E”f ,#;\‘ Eﬁ/':g o

TRAT o AFHRNT A FFRE- PR D FF IR I Ee

ml4

Neh- PN A B RHREE S AAGEF T BN ko R Nk

o

3
|
?\_
iy
K
R
N~

q

CERFEH VRN E S G AR AFEF
PEFFHIVHINTEREE A HI RS LRRR AR ROERT > AR

R B AR RTIERIDIPTATE AR B B Rt K AApT o B E ARG kK
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FUE KIBEBABAREIZIBE
—BERAETR - BREFHZ
X ARk

4.1 FTERIHR

PERSEYRAENARF T BRI TR i e 82
S S EFTRT 0 BB HCY A B E P A o AL A 1 ® P enih B el i
AP LR AREIELE [5,15,20] 0 st 0 RATY P AR AR LA T R
S B HCRE TR o Fl e g B 58 SREETI A 4 et - RS R

ALY #Y (multimodal learning) » if & 5 - B {%p Rt Wy 2 % o

AEEEBEASHEEY Y o — P k& #E ¥ (audio-visual representa-
tion learning ) o f§ M AJSEZ FE 5 RJZAEE Y 0 F S E R ahiT iR SR B R
PRI HMGEE N3 AT EANE 6 2 Fefd gt L v g
% g BRATAL o FIMRERES BRAOTAEFGATE R FAAT
R AR e i) [25,260] ¢ £ 4o3F 4 7% (speech recognition) #

AT 0 ) Rk ¢ P ERE 7 A e |

2 ] °

EEAER AN BN AT Y CREP A B A rE g T
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PR RO FERFIEFLTGINE) EESAEEY -HEG A
AR FET B IRE SRR RTRE R

Bt e B w E KA

(downstream tasks ) & 2 o e M — B A HeiEA] 22 - EE L E o

42 FHREZ

UD*EEFﬁJW
)

( %Eﬂﬁﬁﬁ%%& \ %gﬂﬁ%

=
(SHERE)
-
J\/\/\,v >la O \ s

RIS BEAERE
\ ) (BHEE)
[ GRS )

0 O
=
(BHER) E%
Lo o /
R —
. =
-
-
A

S
Juu
Juu

- 0000

N

]

)

SLGREA \ C ) AL ELE

B4l 2H 2Nt R AR T R T AFE R R F ER x&“.fé
PRGHRE AP PER Y S AR TR A e AR SUPERB A 53]
it o B RS R BREARP DA E BT T IFLHE BB Y f£§z~
T P R (T A ﬁ;,]  MEFPIR o F 4228w P 1 TR AR S F TG T F
E 7% o

deBl415r7 0 - BR M- ARSI 2Bt el A BAIEE -

St

HAFHORBE  Z- P P FARETATREHMBE - &7 2 ¢ wRfE -

G

Bl Sy F el 2 0 B RS B AR B A 0 IR B R £
G E DAY R A AR EHEZBA LT FERPLR RFE

- B A GNLY 2R FPREHE LD T %«‘;\ 2o AR RO i o

oAl AR AL A BT TR FRL N — AL L s a7

AEBERIPEREHER ) FP AFERE B AP E A 2 F
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TR R DEHE BT IR B 08 Sl A A

THERAl e R g R MT FERSYREAET EARZPE e P

FBrL b s w5 3R 47 28k (hyperparameter) F F_ 0 F 4% 8 ¥ & (learning
rate) £ 107" 3] 107° chge FIp B (TR o

421 PFFFEXBEREXAHBER

A F e BN — Bt A e 7= E > A % 5 AV-HuBERT [48] ~
RepLAI[39] ~ % < (Sangho Lee) % 4 4% {1 ehfiC3) [33] (12T # 5 AVBERT) > 1
% MAVIL [25] iz BHCAS 50 7 b @903 o Faital B SR
AR~ B ARIES R AR o d LY DA LA g s §
FTRAFE AR S THHEET - BH TR AT R FTE 0 F g2
BB R AT IR R R - ) %#j; Fld si- o 27 F L7 FRIEVIR
B BHRF R ER > AF S % ¢ HUBERT - f £ 4 5% 38 3 4 0

A end I 0 & 230 B 5 4p 0760 AV-HUBERT #0341 4p 0t © 5 7 S A ER A EY
A E A RA RN > NS B IEY S 8l AL i o 4 W L K
¥ ik B & #c (log-mel filterbank, FBANK) 12 %2 = % #: & & * B (histogram of

oriented gradients, HoG ) »

422 1EHREHREBA

FOFER MR A AR L B AR R RE TS B NI TS
WEZBERARILEFREF > R AT 2 AR s & (TR (action

recognition ) ~ 3 § FEE - ;%'ﬁ 5% 7% (speaker verification ) ~ 12 % - 7% (emotion

NS

recognition) o 1 b & - B Eir A Y F AL Ap I SR S BRI v
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BRI LD AFEH T > %03

o
mly
Ny
i
B
7
o
je
hns
o
5}

71| ('sequence-to-
sequence, seq2seq ) EFE11 vk > Hogpw B iEiR Y 5 E ok % (utterance-wise) 4
BiEi o FMER R ERR Y A K e e g s B B

Eirg R A KO TEER -

M RES D E BT I AT 5 m? FL B 2120 Uk & o

L ¥RFHLPBE: A F A BFTRERTER A MPE AT LA HLR A
| E_AudioSet [20] 4= VGGSound [10] » & FHLE ¢ A ¥ £ R ¥ ~ 5§ 5 10
Fyo wd FAE M5 2 F o VGGSound P e BB T g NI AR
FFE e ¢ o e AudioSet ¥ g HRA G - T MR AEFEG P o AR R

AudioSet #f | T ffren+ B2 7 T AR A 3 2L

3
3
P

PrRVTARFEG IBFATE - ERTHEAAEE AT 2 MR
% (Dbinary cross entropy ) % 5 4f 4 Snfic> KRB T HEAEF F KL
# (multi-label classification ) » & 12 A p|3E & + enT 354 #72 ¥ (mean average
precision, mAP) % i = § ip 1% - VGGSound ¢ % ¥ 20 FELEREY  REBETH
Bendl s B I83FLTLREIC IS FL T2 REE - 5 2 PPty
- BEAFE S - X 309EF AF R o AR UREEPFEL AT (top-1

accuracy, Acc.) 74 =8 1% o

2 MAERR: AR A BEHE KGER L B SR AR A Y
4_Kinetics-Sounds [2] f= UCFI101 [49] c & FH & aF e ki 3 2 F o>
Kinetics-Sounds #2 5% » %5 fvd o 2 BB B E > & UCFI0L 2 % ¢ o
feg ¥ iy &8 i@ M o Kinetics-Sounds #_f€_Kinetics 400 [29] 741§ ¢ 4 %)

GEN DT E o AR HREE PIEE LB 23 ~16F 30 F

e

BT e mR BRIEELINVERTAFFIRAER 250
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B BRI HE e UCFIOL Bl e 5 13 X% o A 5 101 B (e475] o
AERYFIREDT - BUPRPIEEI L RFITRG oA BHITIER Fﬁ FLE e
<RI PR LA B ¥ 0L R B R (5 8

A

ki

. FEPRK AT ¥ LRS3-TED Fft fb [1] ko= & feeinig § Featac 4 o 3%

ke AR R RPN ERAERY c AR Y AR E

=

B /4 % (connectionist temporal classification, CTC [21]) 1% 5 4f % Sofic > iR i
- BERE LG 1024 A Fr L e cRhMEL £EFFFES
(character-level ) &3 § 388 o A F RIS b enF #4538 % (character error
rate, CER) 17 2 s= 8 4pth o @G @EAzy » 3 & * fpoh g o #A £ AT

Boom A B #&i* g4 2l (greedy decoding) -

CREHERE : A% @7 VoxCeleb2 TAL R [13] %38 A pimE F SRS 4 0

FRES ZACE 100 @AM 2 H o 50 RAFERI I L SR> K 2g

\4

%13"% IMPFERIDRTHF > -

AR Aot BRI E R AR T A R R A Sk

SRR T B R R %

(additive margin softmax [51]) 1T 5 45 4 Sfck i T 484 > & IR E P

4P I 45 3% % (equal error rate, EER ) 1% 5 =& ;}F‘ L

Brag sk 0 A% @ 7 IEMOCAP T4 & [8] % 328 4 gecnlFyedi 4 o 49
BA P OFRR L AR EE RS L BRI T 2
B e A AT (B8 S B R S IR S Y ) - kg
G- TR RER TR TR R g
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43 FTHRERHANH

43.1 ZABERAZIFSER

TR A § AR E R IL AR YT A 415420 i
Fedp 2 BERI B e 0 R AL LT B 6 [43, 53] 0 Bt A et
PR RBESR IS B ARG E - TR T (FLE B EaaT
PRI B o B BT 02 B E R AT I B Y 0 8 T R0 &
Bo- FAABL « AP BERE O AL S P A P R g R W -
2 di r BB BT R TOA A G R - BIR & AP RS
ﬁﬁ@ﬁéﬁ»’%ﬁﬁ@%mgiﬁﬁib%%oz@éﬁﬁ%iéi%w@
HuBERT % AV-HuBERT > #3* ¥ AV-HuBERT 3 3 4 e (o aeps (@41 ~
420 *PE R ) T - HRBBEORIRLLE > LR L HBEL A

Hci® i H - #O8 % x> ¢ HuBERT 2 AV-HuBERT &7k @_{ 5 £iT o

FAAIT TREF S d R FRE RS F AT RDLRRF 0 A
g n A hd AEE AR B &0 B PRTROEL Y

B o T A IRA B B ok A d A L RAF o o 4228 7t > VGGSound
fr Kinetics-Sounds iz B FAL & ¢ F A F AR G F OB IR F o A F
RETREAEEE - HRAKRTUFR 5 FRY IR ERROMEE R F

KRS AT AL T nE D { F i o ApHa & AudioSet &
UCFIOl iz @ 2 P it IR E M ong A8 @ foen ot - B & & il 3 - 2t

- Wi A L 4 e

ook o A A A M AIE TG iR s AR E s & A4 ehE_MAVIL
#-A] 0 % iF R E_AVBERT #:3)] » i&@ B X d ghast > 3 iﬁ ATig * g P
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FME o #o (s

LBV 2 SR A“gg’;et' VGGSound Iggsg;: UCF101
(mAP 1) (Acc. 1) (Acc. 1) (Acc. 1)

T &K
FBANK 0 2.8 7.76 24.73 19.91
HuBERT 95M 14.3 30.21 51.46 36.06
AV-HuBERT* 90M 12.6 31.14 49.02 38.58
RepLAI 5M 12.3 27.01 45.90 33.85
AVBERT 10M 20.5 37.67 55.28 43.26
MAViIL 86M 21.6 39.91 57.28 45.68

Y
HoG 0 1.5 3.81 18.70 25.67
AV-HuBERT* 103M 24 5.90 24.73 37.55
RepLAI 15M 5.5 13.5 46.68 56.69
AVBERT 37M 11.5 28.73 62.67 77.42
MAViIL 8T™M 18.0 32.08 74.01 79.37

R E Kk
AV-HuBERT 103M 13.3 32.69 52.23 41.46
AVBERT 43M 229 44.54 71.31 71.76
MAViIL 187M 26.7 47.22 79.51 77.98

AENHES TR RS 3 ER I AP S i E R A RE RN

ﬁ*@wF%wﬁﬁkaaﬁ’ﬂT%ﬁﬁﬁaﬁﬁ%o’ﬁxﬁé;ﬁnki&m&

te kI RET &, é%ﬂl'l%ﬁép‘r c S EFY MR EA-FH o FIEER
"J MAVIL £ 20 AT 275} 4 T iE « Bl ¥ * 813 & 4 AV-HUBERT 3 23U 4 2 ¥ i
EVE R R B REE SR I

éﬁ F ‘}' ¥ {AUleSCt AudioSet m’F\"‘}«'—'_E_ = ’F"“}—'— A (dOI’l’l&ll’l) L ﬁ)LELL @ —‘%

WAL EiE 0 T AR E L @ P W TR T A  AE kT

RT3 AUR Eba = 0 2427 112 5| HuBERT £ AV-HuBERT # #°3] th
F P iE o 4o %2325 #7if » HUBERT £2 AV-HuBERT & #-7] # % i) 2 ﬂ]‘#_i\ﬁ
o FETHRP R Sofes ApiT o F]pt b i HUBERT 2 AV-HuBERT 04 20 4 fc# 14
BLED] DIEVRIGE Y AP e AT RS A ek o W RET
r1g¢ > AV-HuBERT 5 3 % #ic# 722 HUBERT #4p £ 7 i > ¥ 3 & VoxCeleb2 -
VGGSound ~ 2 UCF101 * #% &> HuBERT » ]t o %7 = $H 2 0 2 5 4 24§ 3
% phE Y o
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o > = > 4
g TR EERE R

8 Y 32 4#¥ LRS3-TED VoxCeleb2 IEMOCAP
(CER])  (EERJ)  (Acc. )

5 3 % fik

FBANK 0 21.43 27.16 51.52
HuBERT 95M 2.96 15.58 62.14
AV-HuBERT* 90M 3.01 14.45 58.54
RepLAI M 66.09 32.58 57.53
AVBERT 10M 80.23 23.74 60.94
MAViIL 86M 24.43 20.71 59.46

B3 M
HoG 0 71.46 36.32 35.83
AV-HuBERT*  103M 50.91 11.90 26.59
RepLAI 15M 71.33 36.95 40.72
AVBERT 37M 72.29 20.00 45.8
MAViL 87T™M 74.03 24.58 43.03

R E A
AV-HuBERT 103M 2.75 9.46 46.45
AVBERT 43M 70.12 18.31 61.87
MAViL 187M 30.18 19.67 54.94

242 T ERN A E A TR s Y EF L g e

%17?4\5:4\@ ARAF > F T AT A FAR AR o F B IR AT AR R E e

Wl o T EREPUARRAET c FHEFY MO E-FH o7 URET HuBERT

#AvmmmULqu* 575 b A TLgF o B¢ * 8L B & 4 AVLHUBERT 4 2t 4 s
P iR e e a2 2 0d 3 2 o

BRI T EA AR N2 ATy Eart BT i
oo G 3EF FFR A HuBERT £7 AV-HUBERT HAl @ i2 {75 s ix 40 @ g
TR ¢ & g S MAVIL 22 AVBERT #5340 % 7 i § cAJ2iE 5 2% o

432 BEARESH

Yo R 43080 JE BT HEETRA G 0 T A m%J/\“"fS AR F Al
St R AR Y B A ST o d SN ET I0aRE E € & T SR £
- FARR > T U R IEP & - 3 v @%ﬁ%ﬂ;a’ﬁr&hﬁﬁgg IO B R o o5
P T IR G o - k¢ Bk %J?é:?;‘t/;%}iﬁ& [12] 2% a5 - ¢ FR 4
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AS-20K-

VGGSound- .
0.3

Kinetics-Sounds-
0.2

UCF101-
-0.1

LRS3-TED-
-0.0

VoxCeleb?2 -

IEMOCAP-

0 1 2 3 4 6 7 8 9 10 11 12

5
(-) 5tk

0.3
0.2

LRS3-TED-
-0.1
VoxCeleb?2 -
o 1 2 3 4 5 6 7 8 9 10 11 12 00
(z) %@L%\'ﬁﬁ:
VGGSound -
0.3
Kinetics-Sounds. .
0.2
UCF101-
0.1
-0.0
VoxCeleb?2 - .
IEMOCAP- -

o 1 2 3 6 7 8 9 10 11 12

.

4 5

(z)RE&ik

B 4.2: AV-HUBERT 73 = f6 4 #cchie i T30 €2 B A Bl o & 0 & 3 % B
Koengg » o RILY T2 FH BB % (4o AV-HUBERT # i #ct AudioSet-
20K) = A ’,f o W OUBLE T4 gL 3¢ ?i[]?eﬁx«’ SV mﬁi%] Ao

<\

Il

Mo T 5 g e (norm) ifﬁﬂ oo A7 @ LR € 8 & fin T 30 Ly 5 ficdp

o G FELEHT AT

¥ AV-HuBERT # fizm 3 > Bl4.27 2 !F_' 3 “,ﬁ% TR FERE o xSk
b AR mﬁ?] 4 m?}ﬁk}ii T o WFmEkfkn 3 0 % kT ?E)}%ﬁx%
R Bk - K RS 28 T PE o o§ R A AR A k2 AP
(VGGSound ~ Kinetics-Sound ~ UCF101 ~ VoxCeleb2) » & & % fic® fow en§ K 2
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AS-20K-
VGGSound- 0.4
Kinetics-Sounds- I
0.2
UCF101-
-0.0

VoxCeleb?2 -

IEMOCAP.

0 1 2 3 4 5 6 7 8 9 10 11 12

IO.4
0.2

VoxCeleb?2 - -0.0

(=) 334
AS-20K -
VGGSound-

Kinetics-Sounds -

UCF101-

IEMOCAP-
0 1 2 3 4 5 6 7 8 9 10 11 12
(z) Bt
AS-20K
VGGSound
Kinetics-Sounds

0.4
IO.Z

-0.0

UCF101

VoxCeleb?2

IEMOCAP

0o 1 2
::)1&@%\2;5:

Bl 4.3: MAVIL #7) = f64 flccnse BT o € 2 2R B o 5 0 K & 4 i3k 5048 & o
B oo AMF T2 FHE LS (Bho MAVIL B4 A2t LRS3-TED) = 444
eV BB T T 2 ?ﬂ%&ﬂ’ SRV M R msi%] dh o

FRER g%« ©F 7 4 & AV-HUBERT ¥ el s ol i s 5 4

Bom RisenB AR gL FehgaFR oo

B ¥ MAVIL £ fic k36 0 d Bl437 LRB I TR o i 25 U B

B2k MERAHBEERERBEDEREA R o G Aot 0 F A MK

40 doi:10.6342/NTU202500549


http://dx.doi.org/10.6342/NTU202500549

t IEMOCAP sl s 53 i 74+ e A~ B 6] o $22 IEMOCAP @ 5 » F
Rde g LA e 0] - B el ~ o M@ S 0 AV-HUBERT 8 MAVIL % gk
SHE R TR F AR BMA 0 R Y PR R B0 R A R A

433 EREXINGHFEAEZARZIZE

2 v

AREDL PSR OSSR TR S SR ] o B
ERNIRAR DS AR LR FLERNRE o« ¢ B L
HeenE % e foh Hgp bR S T RSN 9 LTS ¢ AV-HUBERT £ MAVIL & HC
A TS RN A43 0 £ ¢ 5 AV-HUBERT A1 3 3R & 433 0] P e 3482
fo—2 FFHL 2RSS ) i ARY AR P AF o @ & ¢ I MAVIL

A B L0 Ak B AudioSet TR & 05800 /] PEE I o i TS E A KT o

"2 AV-HUBERT @ 3 > & % % 7 LR T8 ¥ B3 7 & B4R o feehid
G AT > R H B AL PR o BT A R AR AR R
Eoprde 2 7 AR AT 4 o A 2 MAVIL B0 A 2 0 EAE SRR 0 A
B 5 3 g2 T 55 ZIF s oo (SR R e F]' SRt e 3 Mg
Ao RFFFBARMNEFT > FHEFFRSARM S T c GRS EEFNEY
VRS AL E ¢ ERmA R R RS VA g R ERY ik ]
BOEF o FP o ARARFRLIATHE R BN BN A E R
SRR SuBE P S S ¢ A
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B B (E 5
o AudioSet- Kinetics-
2 B E FR 20K VGGSound Sounds UCF101
(mAP 1) (Acc. 1) (Acc. 1) (Acc. 1)
AV-HuBERT
Audio 12.6(-0.6) 22.83(-8.31) 38.19(-10.83)  28.70(-9.88)
Video e 3E 7R 2.5(+0.1) 6.12(+0.22)  25.35(+0.62)  42.03(+4.43)
Fusion 5.1(-8.2) 17.11(-15.58) 38.52(-13.71)  40.74(-0.72)
MAVIL
Audio 28.3(+6.7)  44.79(+4.89) 62.93(+5.65) 50.10(+4.42)
Video HAEE LN 20.9(+2.9)  36.68(+4.58) 77.39(+3.38)  86.93(+7.56)
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