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Abstract

In quantum field theory, we have learned how to calculate the scattering amplitude
by drawing Feynman diagrams and then using Feynman rules to calculate the contribution
of each diagram to the scattering amplitude. Besides, we have also learned how to use the
scattering amplitude to derive the cross section which is a classical observable. However,
in the (2+1) dimension, there are some special cases in which we can’t define Feynman
rules. For example, gravity in the (2+1) dimension has no dynamic degree of freedom.
However, we can see there are non-trivial physical observables that reflect the effect of
gravity such as the impulse of a particle going through a gravitational source. Another
example is the scattering amplitude of anyon which is a special kind of particle in (2+1)
dimension. Since the spin of anyon can be an arbitrary number, it is not an elementary
particle and we can’t define its Feynman rules either. As gravity in (2+1) dimension,
the impulse of particles going through a source composed of anyon is also non-trivial.

Therefore, we can calculate the scattering impulse of the above two cases and try to use
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the scattering impulse to derive the scattering amplitude of them.

Keywords: scattering amplitude, scattering impulse, anyon
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Chapter 1 Introduction

In this section, we will see (1) the dynamics of gravity in the (2+1) dimension[4] (2)
the reason why in the (2+1) dimension, we can have particles with arbitrary spin[9] (3)

how to derive the scattering impulse from scattering amplitude[6]

1.1 gravity in the (2+1) dimension

In this part, we can see the dynamics of gravity in (2+1) dimension which is written
down in S. Deser, R. Jackiw’s ”Three-Dimensional Einstein Gravity: Dynamics of Flat

Space”[4].

They use Einstein field equation to calculate the metric for a mass particle located at

the origin.

The stress energy tensor for a particle located in the origin is
T% = m,5%(0) (1.1)

where other components are equal to zero.
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The Einstein field equation is
G, = 87GT,, (1.2)
where the Einstein field tensor G,,, is
Guw =Ry — %R (1.3)
Consider the static case, since the system is rotationally invariant, the metric is
goo = A(SU) 90i =0 gij = Bz’j<x> (1.4)

Plug the stress energy tensor and Riemann tensor into the Einstein field equation, we can

find the metric for a particle located in the origin is

goo = —1

9ij = 6ijr*8GM (15)

from this metric, we can see the spacetime of a particle at the origin is flat except there
is a conical singularity at the origin. Therefore, we can see that the gravity in the (2+1)
dimension is topological, so there are no propagating gravitons and we can’t define the

Feynman rules.

1.2 anyon

Anyon is a special kind of particle in (2+1) dimension whose spin isn’t constrained

from being integer or half-integer. We can see why in the (2+1) dimension the particle
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spin can be an arbitrary number but in the (3+1) dimension can only be integer or half-
integer by spin-statistics from path dependence, which is introduced in M.D. Schwartz’s

”Quantum Field Theory and the Standard Model”[9].

Suppose we have two identical particles at positions x; and x5 at time ¢ = 0, and
then at a later time, they are still at z; and x5. Since the two particles are identical, the
trajectories of these two particles during this period may be two particles moving back
to their original position respectively, switching their position with each other or moving
around each other many times. To characterize the transformation, we can define the
angle ¢, which is the angle that relative position vector of the two particles (x; — @)
turns around. This angle ¢ is frame-independent and is a topological property associated

with the path. We illustrate that in Figure 1.1.

O =21

Figure 1.1: The red arrow is the position vector of the two particles[9].

Figure 1.1 is the path of the two particles turning around each other and going back
to their original position z; and z5. We can see that the relative vector turns around an

angle 2.

We can also see in Figure 1.2 that the angle ¢ can also be 0 or 7 for the two identical

particles to finally stay at x; and x, respectively.

Since the two particles are identical, the two-particle state after the transformation of

¢ = 0,m, 27 will only pick up a phase proportional to this angle ¢. For ¢ = 7 (i.e. the
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Figure 1.2: the route of ¢ = 0 and the route of ¢ = 7[9]

two particles switch the position with each other),

|p1(22)Pa(1)) = i |p1 (1) pa(z2)) (1.6)

where « is the number characteristic of the particle type.

In (3+1) dimension, the angle ¢ can be defined up to 27. For example, we can pull

out particle 2 in Figure 1.1, and then the angle ¢ can become 0.

4
‘ ®-
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% Ny

< ,"”1
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Figure 1.3: The red arrow is perpendicular to the route of the two particles, so it will not
turn around. The angle ¢ = 0[9].

Therefore, in the (3+1) dimension, we can’t distinguish the path of angle ¢ = 27
from the path of angle ¢ = 0, and thus x must be integer. For the two particles to switch

their position with each other, the two-particle state must satisty

91(2)P2(1)) = & |d1(71) P2 (72)) (1.7)
4 doi:10.6342/NTU202400820



That is, only fermionic and bosonic statistics are possible.

To perform the interchange of the two particles, we can first translate the two particles
by (x; — @), then rotate the whole system by angle 7. Under translation, nothing special
happens. For rotation, the way to rotate a particle state depends on its spin, that is, depends

on the representations of the Lorentz group.

For example, to transform a Dirac spinor which is the solution of the Dirac equation
and has spin 3, we use the (1,0) (0, 3) representation of the Lorentz group. A rotation

of an angle 0, is

e b

AL(6.) = | (1.8)

®
SIS

e

Suppose we rotate an electron with spin-up by angle 6, = ,

1 1
0 0
— (1.9)
1 1
0 0

Therefore, for a two-particle state interchange,

[91(2)P2(71)) = — |d1(w1)P2(72)) (1.10)

For another example, a vector, which has spin 1, 0 and transforms under the (%, %) repre-
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sentation of the Lorentz group. A rotation of angle 6, is

—i0,
A (0.) = (1.11)
0,

A two-particle state will pick up +1 for a rotation of angle 6, = 7, that is, an interchange

of the two particles takes

|P1(w2)Pa(21)) = [@1(21)P2(72)) (1.12)

The above derivation works for all integers and half integers. Since in the (3+1) dimension,
after an interchange, the two identical particle state can only pick up +1 or -1, the particle

spin can only be integer or half-integer in the (3+1) dimension.

The above situation will be different in (2+1) dimension. The path of ¢ = 27 can be
distinguished from the path of ¢ = 0. That is because we can not pull out the diagram, the
path in Figure 1.1 can’t become the path in Figure 1.3. This means the two-particle state

under an interchange will not be constrained to pick up +1.

|p1(22)Pa(1)) = e |p1 (1) P2(22)) (1.13)

where x can be an arbitrary number. We can see that particles in the (2+1) dimension can
have spin other than integer and half-integer. The particles which have spin other than

integer and half-integer are called anyon.
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1.3 matches scattering amplitude to scattering impulse

In this part, I will show how to calculate the scattering impulse from scattering am-

plitude derived by David A. Kosower, Ben. Maybee and Donal. O’Connell[6].

In the beginning, we know the expected value of momentum is

(P*) = ($[P|)) (1.14)

We are going to see the impulse of particle 1 probing another particle 2 at the origin. The
impulse is the difference of the initial momentum at 7 = —oo and the momentum after

scattering at 7 = oo.

(AP} = (Y[STPYS|y) — (b|PH]4)) (1.15)

where S is the S-matrix defined as [¢))_ , = S'|¢),, is the time-evolution operator evolving

the initial state |¢), at T = —oo into the final state |¢)  , at T = ooc.

And then since we know the scattering amplitude A(py, po — p},p,) is the matrix
elements of transition matrix T, that is (1, p}|T|p1p2) = A(p1, pa — P, py)0@ (p) + ply —
p1 + p2). Therefore, to make contact with scattering amplitude, we can write down the

s-matrix in terms of S = 1 + 7.

We then use the unitarity of s-matrix, ST5 = 1,

(1 =TT (1 +4T) =1
L4+4i(T -TH+T'T =1
T = i(TT = T) (1.16)

7 doi:10.6342/NTU202400820



We can write scattering impulse as

(Apf) = (WIi[PY, TTIe) + (DI TPY, T][v) (1.17)

We can take a brief look at equation(1.17). The first term contains one transition matrix and
the second term has 77T multiplied, so the first term has only one scattering amplitude
may be related to the tree diagram, and the second term has two scattering amplitudes
multiplied may be related to the loop diagram which can be decomposed into two tree

diagrams.

In the next part, we will use classical methods to calculate the scattering impulse and
then find the scattering amplitude in the classical limit. In the classical limit, h — 0,
and since the contribution for each Feynman diagram is proportional to LY where L
is the number of loops in the Feynman diagram, when 7 — 0, only the tree diagrams will

contribute to the scattering amplitude.

First, we see the initial state |¢1¢2),, is

|¢>m = /&4p1&4p25(+) (P% - m%)s(ﬂ (p§ - m§)¢1(p1)¢z(pz)e% |p1p2>m (1.18)

where d"p = % and 6P (p2 — m?) = 210 (p°)3(p* — m?).

In the above equation, we have e/ because particle 2 is supposed to be fixed at

the origin, and particle 1 is relative to particle 2 by the impact parameter b.

8 doi:10.6342/NTU202400820



Next, put the initial state (1.18) into the first term on the right-hand side of (17),

([i[P}, Ty = / d*prdipadipd*phd™) (p? — m?)0 ™) (p2 — m3)
0D (2 — mPB)o (WF — mP) i (p1) o (p7) da () B3 ()

ib-(p1—p]) |

xXe h Z(pllu — ) (Pips| T |prp2) (1.19)

Then introducing the momentum shift ¢; = p, — p;, and we can replace the integration

over p, into the integration over ¢;.

<1/’|i[P§L7 T]|1/’> Z/a4p1&4p2€14q1€14q25(+) (p% - m%)g(ﬁ (pg - mg)
5(+)((P1 +q1)* — m%)g(”((m + q2)* — m3)
ib-(p1—aq1)

X ¢1(p1)P1(Pr + q1)2(p2)P5(p2 + qa)e

< i(pl — p)A(pr,pa — o1+ a1, 02 + @) (@ + ) (1.20)

Integral over ¢, and relabel ¢; — ¢

~

WL TII) = [ Epidipad*ad 7 = md)5 03 = )
o((p1 + @) —m)d((p2 — q)* — m2)O (P + )0 (1 — ¢°)

ib-q

X ¢1(p1)@(p1 + q@)P2(p2)P5(p2 — q)e *

x ig" A(p1, p2 — p1+ ¢, P2 — q) (1.21)

Since we need to take b — 0 to see the classical limit of the impulse, we can’t set h = 1

and need to restore A in the calculation.

To restore h, we need to distinguish between the momentum p* of a particle and

its wavenumber, which we denote p*. In quantum mechanics, the relation between the

9 doi:10.6342/NTU202400820



wavenumber and its momentum is

(1.22)

]l
I
3

Because now % doesn’t set to 1, the physical quantities which have dimensions of [L] 1,
for example, the wavenumber, don’t have the same dimensions as those quantities which

have dimensions of [M]!, for example, the momentum.

For the calculation in scattering impulse, we write the momentum ¢ as hg, and take
the limit 4 — 0. For particle momentum p; and ps, in the calculation, we treat them as two
point-like particles. For this description to be valid, the Compton wavelengths 19 = mi
must be very small, so the wavenumber 27” of them will be very large. In the limit of

h — 0, it will not approach 0, so we can treat them as genuine momentum.

Despite restoring h in ¢, we also need to restore the 7 in the scattering amplitude. We

can see the i dependence by the dimensional analysis of equation (1.21).

Since the dimension of the expected value of momentum is M - L /T, the dimension
of the right-hand side of the equation (1.21) must be equal to M - L/T. Then we can use
this fact to know the dimensions of scattering amplitude in (3+1) dimension. Before going

to check this, let’s first see the dimension of ¢(p). Since the normalization condition is

1= (YY)
= / d*prdipadip d*phd ™) (p? — m3)6™ (p2 — m3)
x 0 (p2 — m)o) (p2 — m2) 1 (p1) & (7)) D2 (p2) 63 (D)
ib‘(Pl—Pll)

xe  m (piphlpipe)

- / Epidtpad O — MDD (2 — md)lé ()P lde () (1.23)

10 doi:10.6342/NTU202400820



we can obtain this normalization by requiring ¢;(p;) to satisfy

/ d'pid ™ (pf —m3)|oi(p) | = 1 (1.24)
The dimension of ¢;(p;) is
[9i(pi)] = M (1.25)
where we set the speed of light c = 1 and then L =T

Now, we can see the dimensions of the scattering amplitude from the dimensional

analysis of equation (1.21)
M= M2 x M~ x M~ x M x [A(p1,pa = p1 + ¢,p2 — q)] (1.26)

so the dimension of scattering amplitude is 1.

For electromagnetic scattering, the coupling constant is charge ¢ and the dimension
of charge can be seen from Coulomb’s law. In the CGS unit, the vacuum permittivity is 1

when the speed of light c is equal to 1. So the dimension of the charge g is
[q] = (M - L)'/ (1.27)

Since the scattering amplitude of electromagnetism is

P - P
Alpr,pe = 1+ @02 —q) = 462(1q—22) (1.28)

to make the scattering amplitude in (3+1) dimension dimensionless, the coupling constant

is e /M.
Similarly, for gravitational scattering, the coupling constant is the gravitational con-

11 doi:10.6342/NTU202400820



stant G. From Newton’s law of gravitation, the dimension of the gravitational constant G
is

G]=L/M (1.29)
The scattering amplitude of gravity in the (3+1) dimension is

(P - Py)?

p (1.30)

A(p1,p2 = p1+ ¢, p2 — q) = 167G

to make the scattering amplitude in (3+1) dimension dimensionless, the coupling constant
is G/h. However, in later calculations, we can see that in the (2+1) dimension, the A

dependence of scattering amplitude differs from that in the (3+1) dimension.

Combining all the above discussion, the scattering impulse which restores 7 is

(Wli[P}, T ) =R’ / d*pydipydigd™ (p2 — m2)6D (p2 — m2)
((p1 +Bia)” = m)d((p2 + Fia)? — m)OW, + g )O3 ')
X @1 (pl)(ﬁf (p1 + E(j)(bQ (p2)¢;(p2 _ qu)eib.q

x ig" A(p1, p2 — p1 + hq, p2 — hq) (1.31)

Remind that the scattering amplitude contains couplings e /h in the electrodynamics case,

G/T in the gravity case, and propagator 1/(%q)? in both cases, so we can cancel out 7°.
(li[PY, T]|v) =R / d'pid*pad*ad™ (p — m$)0) (p — m3)
o((p1 + 1@)* — mD)d((p2 + h)* — m})O(p) + hd*)O (1S — h°)

X <i>1 (pl>¢a1k (p1 + TLQ)(Z)z (p2>¢;<p2 _ ECDeib-q

x iq" A(p1,p2 = p1+ ¢, p2 — Q) (1.32)

12 doi:10.6342/NTU202400820



Since we are going to see the scattering impulse in the classical limit, we suppose that the
incoming states are point particles that have momentum P, and P,. That is, their wave
functions have a peak at p = P; in momentum space. Therefore, ¢(p;) ~ (£ — p;).
On the other hand, the momentum of a point particle P, and P, also satisfy the classical

equations of motion, so P? = m?, and the energy P? > 0.

Combining the above conditions and integral over p; and p, in the i — 0 limit, the

final result will be independent of /.

(WJi[B, T]Jes) = / $'3(2P, - 9)8(2P, - ) igh

XA(O)(P17P2—>P1+@P2—(?)

1 A N o
= d4 _6 - qa 5 . q tb-q; =
o [ b (e )i
x AP, Py — P+ q, P, — q) (1.33)

where A is the leading order of scattering amplitude. We have seen that the scattering
impulse can be derived by the leading order of the scattering amplitude. Now we want to
see whether we can extract the leading order of the scattering amplitude from the scattering

impulse calculated by the classical method.

13 doi:10.6342/NTU202400820
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Chapter 2 matches the scattering
impulse to the scattering
amplitude in the (3+1)

dimension

2.1 electromagnetism in the (3+1) dimension

In this section, I will perform the derivation of scattering amplitude from scattering
impulse and compare the result with the scattering amplitude calculated by Feynman rules
which was written down in D. A. Kosower, B. Maybee, D. O’ Connell’s ” Amplitudes,

Observables, and Classical Scattering”[6].

Let’s first calculate the impulse of a charged scalar particle moving in an electro-
magnetic field produced by another charged scalar particle fixed at the origin in (3+1)
dimension. The force on a moving charged particle in an electromagnetic field is the

Lorentz force,

F =q(E+vx B) 2.1)
15 doi:10.6342/NTU202400820



Expressing it in the covariant form using the electromagnetic tensor,

0 —-E, —E, —E.

v = (2.2)

dp*
5 =P, (2.3)

Suppose a scalar particle 1 with charge e, moving at the velocity u; probes another particle

2 with charge e fixed at the origin. The current of particle 2 is
JE = eubd®(r) (2.4)

where uy = (1,0,0,0).

From the Maxwell equation, the field tensor satisfies
O, F" = eulyd® (r) (2.5)
Working in Lorentz gauge 0, A" = 0, the gauge field satisfies
OAY (z) = eutd® (r) (2.6)
Write down the above equation in momentum space,

—¢* AL (q) = /El‘{aze<iq0“0+i%'“>eu§5(3>(r) (2.7)

16 doi:10.6342/NTU202400820



And we know

Go = g - U2 (2.8)

where us = (1,0,0,0). We can now get the gauge field in momentum space

~

0(q - uz)euy

Aya) = =3 (2.9)
So the field tensor F'* in position space is
14 . 345 iq-x q“ug — quug
Fi"(z) =ie [ dg”d(q - ug)e — (2.10)

At leading order, we will use the straight line approximation to the trajectory of particle

1, and the change of its momentum in time 7 is

dp P - Py -y — Uy -
0 i [agt5(q- wpentormn T2y
T q

The scattering impulse at leading order is

~ A N ) H
AP =ie® [ bt @bus - e ) (2.12)
Compared with the relation (1.33), the leading order of scattering amplitude derived by
scattering impulse is

(P P)

AP, Py — PL+q, Py — q) = 4¢ 3
q

(2.13)

Then we use Feynman rules to calculate the scattering amplitude at the leading order[9],

the Feynman diagram in Figure 1,

17 doi:10.6342/NTU202400820



Figure 2.1: the Feynman diagram of 4 external charged scalar with the exchange of a

massless photon[9]

The Feynman rule of a three-point vertex is

ie(=Pf' — (P +¢"))

The photon propagator in the Lorentz gauge is

_ig/w
q2

Then the scattering amplitude is

, e*(2P1 4 q) (2P, +
ZA(P1,P2—>P1+%P2—Q>:Z€( : Zg( 20

Finally, we can get the leading order of the electrodynamic scattering amplitude

(P Py)

AP, Py, — Py +q, Py — q) = 4€”~—
q

which matches the result derived by scattering impulse.

2.2 gravity in the (3+1) dimension

(2.14)

(2.15)

(2.16)

2.17)

In [6], they calculate the case of electromagnetism in (3+1) dimension. In this part,

I will show the process of calculating the scattering amplitude of the gravity in the (3+1)

dimension using the scattering impulse which was written down in [7].

18 doi:10.6342/NTU202400820



We will calculate the scattering impulse of a scalar particle 1 by probing a static scalar
particle 2 at the origin (i.e. us = (1,0,0,0)). To calculate the scattering impulse, I use
the geodesic equation[8], which is the equation of motion of a point particle in a curved
spacetime. The geodesic equation is the equation of motion of the Hilbert-Einstein action.
The derivation of the geodesic equation below is from Sean Carroll’s ”Spacetime and

Geometry—An Introduction to General Relativity[3].

S=-m / V=ds? = —m / dT\/ —gw,(l‘(T))dx(;(_T) dng) (2.18)

And vary the above action with respect to the trajectory x(7) (assume 7 as the proper time,

that is d7 = v/ —ds?)

35 == m [ dr—— (B )5 + 20,0 ) 5"

—_ m/dr(ax”[%(ayg,M(:c)wx'A — (%g,w(x)) it

g )]+ ()

= m [ dr(Ea" 5 (0,035 ~ (Orgul0))*5"
~ )]+ ()
[ Q3" g () + 5 (Or5300) + By (2) = D))

d
+ 4 () (2.19)

Thus we know the equation of motion of a point particle in a curved spacetime is

&z 1 dz* dx?
2 T3 [059pu () + Opgrn () — 3u9pA(l’)]F¥ =0 (2.20)

and we then define T}, = 3¢ [0rg,u () + 8p9r () — D,gpn ()] as christoffel symbols,

19 doi:10.6342/NTU202400820



Now we can calculate the scattering impulse. For a

the spacetime metric is the Schwarzschild metric[3].

scalar point particle at the origin,

Treating the Schwarzschild metric perturbatively in G, we can express the derivation

from Minkowski as

2GM
htt:hr’r: ¢

others are equal to zero.

In the non-relativistic limit, g—i dominates over ‘%

proximately given by

d?a* dt

2.21)

, o the geodesic equation is ap-

7 = 6‘0((1_7)2 (2.22)
H 1 B
oo = —59" 9900 (2.23)
To first order in G,
1
oo = _§@“h00 (2.24)
Fourier transform (2.24) to momentum space,
) = [ dtoe(mmoriny o) 2.29)
And we know
do = q - Uz (2.26)

where uy = (1,0,0,0).

20
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Then do the integral over the time component 7

o(q) = / drei(aua)T / Bre L (1)

= —0(uy - q) /agzre_iQi'miFgo(x) (2.27)
We can get
M g L 4 4
h(q) = | dize™ 78‘%00 =10 (ug - q)q“GmQ? (2.28)
Plugging everything in, we can get the impulse
A 5 dm  dt
APH — d d4 iq-(b4+u1T) ) . e T YYN2
f=m [ dr [ aten i ' Gma ()
14 —igb; ¢ I~ A,
=my [ d'ge™™ 25(U1'Q)5(U2'Q)unm2¥7 (2.29)

where 72 = (uy - ug)?.

Finally, the scattering amplitude of a scalar particle probing another scalar particle at
the origin in the (3+1) dimension deriving from the scattering impulse is,

(P - Py)?

p (2.30)

AP, P, — P +q, P, — q) = 167G

And to calculate scattering amplitude in quantum field theory, we will use the formalism
developed in [5][|]. The particles can be labeled by their momentum and their little group
which leaves the momentum invariant. The little group for massive particles in (3+1)
dimension is SO(3)—SU(2), and is SO(2)—U(1) for massless particles. So for massless
particles, we can label particles by momentum and its helicity h. For massive particles,

we can label particles by spin s.

Then we know that the scattering amplitude M is composed of objects that carry
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the above labels. We are now going to calculate the scattering amplitude of four massive

scalar particles with the exchange of a massless graviton.

1} >\N\<2'
2

Figure 2.2: The Feynman diagram of four external scalar particles with the exchange of a
massless graviton[|].

1

We know the four-point amplitude A4[1, 2, 1, 2] in s-channel can be calculated by[5]

A3[17 1,7 q+]A3 [27 2/7 q_] + “4'3[17 1/7 q_]A3[27 2,7 q+]

Ag1,1,— 2,2 =
S S

2.31)

To calculate the three-point scattering amplitude of two massive legs with mass m and a
massless leg. We can define ”x” which carries +1 little group weight of massless leg[!].
Use the convention the same as in [!], the momentum can be written down as p,, =
pu(o)h, where ot = (1,0")44 and o* are Pauli matrices. Then we can write down p,¢

as the direct product of two, 2-vectors A, A

Pac = Aaha (2.32)
The variable ”z” is defined as
ol < \3a ad ),
Phge = Dodjza A _P1 Ada (2.33)
m x m

Since the scattering amplitude in D spacetime dimension with n external legs has mass
dimension [A,] = §(2 — D) + D, [As] = 1. Because the mass dimension of the ”z”

variable is 0, the scattering amplitude of two massive scalar particles and one massless

7 doi:10.6342/NTU202400820



graviton is

A3[1,1,¢"] = mal, (2.34)
The scattering amplitude is
mz(@ + x§2,)
P P, — P P —q) = Taor Ty
A(PL, Py 1 +q, P> —q) SM]?Z
_ AGT[(2P, +q) - P
= 7
2P, - P - Pp)?
eIl Rl B (2.35)
q
The leading order of the scattering amplitude is
_ P, - P 2
A(O)(P17P2—>P1+Q>P2—Q):1677G( ) (2.36)

q2

which matches the result derived by scattering impulse.
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Chapter 3 matches the scattering
impulse to the scattering
amplitude in the (2+1)

dimension

3.1 Dimensional analysis of the scattering amplitude in

the (2+1) dimension

From the examples of electromagnetism and gravity in the (3+1) dimension, we can

see that we can derive the scattering amplitude by scattering impulse.

Before using relation (1.33) to calculate the scattering amplitude, we need to note that

the 1 dependence of the scattering amplitude will differ from that in the (3+1) dimension.

To satisfy the normalization condition 1 = (¢[1)), ¢;(p;) in (2+1) dimension must
satisfy
/&3pi(§(+)(pz2 —m)|oi(ps)]* =1 (3.1)
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The dimension of ¢;(p;) in (2+1) dimension is

[i(ps)] = M~'/? (3:2)

Therefore, from the dimensional analysis of equation (1.21) in the (2+1) dimension, the

dimension of scattering amplitude in the (2+1) dimension is

M=M"x M™®x M?x M x [A(p1,p2 — p1 + ¢, P2 — q)] (3.3)

The dimension of scattering amplitude in the (2+1) dimension is M. In the next sections,
we first use relation (33) to find out the scattering amplitude, and then check whether the

whole i dependence cancels out.

3.2 scattering amplitude of gravity in the (2+1) dimension

Now we can use this relation (1.33) to calculate the scattering amplitude of some

special cases in the (2+1) dimension.

First, I will show the scattering amplitude of gravity in the (2+1) dimension which
was derived in [2]. As we mentioned before, in the (2+1) dimension, the gravity is topolog-
ical, so we can’t use the Feynman diagram to calculate the scattering amplitude. Therefore,
we calculate the classical scattering impulse and use this impulse to calculate the scattering

amplitude.
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In section 2.1, we know the metric for a particle located in the origin is

goo = —1

9ij = 5ijr*8GM (34)

from this metric, we can see the spacetime of a particle at the origin is flat except there is

a conical singularity at the origin.

So the Christoffel symbols of this system are
0o _
o, =0 (3-3)

1
Iy = §gm(ajgak + OkGaj — Oaijk) (3.6)

Put the metric into the spatial part of Christoffel symbols

) 1 ..
F;k — §6ZQT8GM(8J'(5Q]§T_8GM) + ak<5aj'r—8GM) _ aa((sjkT_SGM))

1. ,
=~ §iapSGM (5 (C8GM)r MY | 507 (—8GM)r—8EM-1TR
T

2 r
— G SOML (LG M)2)
.
— —AGMO, S — AGMO} o + AGM By 3.7)

Probe another particle 1 to the spacetime generated by particle 2 at the origin. Then from

geodesic equations, we can know the change of velocity of particle 1 per unit time 7 is

d?z’ x; dz* da? z' drd dz;
- & 4Gm, = 3.8
dr2 "2 4 dr "224r dr (3-8)

To get the scattering amplitude by the classical impulse, we find the Fourier transfor-

mation of the equation (77) using 9; Inr = % andF[—5- In7] = q%, then with a similar
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calculation in the (3+1) dimension case, the classical impulse is

d2a RS 1 TR T 1/ LA :
/dT 3z = 87er2/d3qe qb(—q—;ulu{ + ?uf)zé(ul - q)0(ug - q) (3.9)

From the relation (1.33), we can get the classical limit of scattering amplitude for a particle
1 probing another particle 2 is

(Py- Py)? — (mimy)?

A(O)(Pl,Pg—>P1+q,P2—q):32G7T q2

(3.10)

Now we want to see the i dependence of this scattering amplitude. From Gauss’s law for

gravity in the (2+1) dimension,
j{g -fids = —4nGm (3.11)

where g is the gravitational field. From (3.11), we can know the magnitude of the gravi-

tational field g in the (2+1) dimension is

3.12
g(r) = — (3.12)
Therefore the dimension of GG in the (2+1) dimension is

(Gl =M"" (3.13)

In sec.3.1, we see that the dimension of scattering amplitude is M, so there is no need to

multiply any / on G.

In the (2+1) dimension, after restoring the 7 in ¢, we can get ° from d¢?, 72 from

6(pi - q), b from iq and 7 ~? from the propagator 1/¢? in the scattering amplitude. Finally,

28 doi:10.6342/NTU202400820



all iy cancel out, so we can indeed use the relation (1.33) to match the scattering amplitude

of gravity in the (2+1) dimension from the scattering impulse.
Recall in the (3+1) dimension, the classical limit of scattering amplitude is

(P~ Py)?

A(O)(Pl,Pg—)Pl—f—q?Pz—q):167TG 2
q

(3.14)

To our surprise, the scattering amplitude in (3+1) dimensions and (2+1) dimensions
look similar, where we can just see the (m,m3)? in (2+1) dimension as the zeroth compo-

nent of (P - P»)? in (3+1) dimension.

3.3 scattering impulse of gravity in position space and the

scattering angle

On the other hand, I calculate the classical impulse in position space for (3+1) and

(2+1) dimensions, to see if there is a difference between the two cases.
We use the methods developed in [6] for electromagnetic impulses.
First, let’s calculate the scattering impulse for gravity in (3+1) dimension and we set

up = (7,0,0,78), uz = (1,0,0,0) and v*(1 — 3?) = 1 to simplify the results.

AP =

A A A~ . . 2
/d4q5(u1 - q)0(ug - q)elq'biq“16G7T<mq—52) (3.15)

4m1m2

A~ A A . 2
= i4GTmim, / d'q0(¢")o(v¢" — vﬁq?’)e‘w'q%cz“ (3.16)
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.Gmymgy / IR T
= —3 dqe™” —q” 3.17)
71 Zn (

Since we set u; in z-direction, the ¢, is in x-y plane. Let A be the magnitude of ¢, ,

therefore, we can set ¢/, =(0,A cos 6, sin 6,0).

.Gmimy

AP = —;
' |8

= —ZM/ d)\/ dfetlPAeosb (0 cos @, sin 6, 0)
W’B’ 0 -

2G o0 R
:M/ d\J1(1b|A)b
Bl o

_2Gm1m2 b_ﬂ
G

A MA/ﬂwﬂwwﬂ%mAamahmam

(3.18)

Before going to see the impulse of gravity in the (2+1) dimension, we use the result (3.18)
to calculate the scattering angle, and then compare the result to the scattering angle calcu-

lated by the orbital equation.

_ |AP]

The scattering angle can be calculated by impulse via tan(Af) = B> Where | Pyt |
is the magnitude of the initial momentum of the probing particle.
| Pint| = m1vp
2Gm1m2 1
AP| = ——v-
2Gm2
Af = tan (== (3.19)
)

Next, we calculate the scattering angle by using the orbital equation mentioned in Gold-

stein, Poole, and Safko’s Classical Mechanics Chapter 3[£]

mw:w—z/m bdr (3.20)
m r\/r2(1 — U(T)) — b2

“E
where 7, is the closest distance of the two particles, U is the potential energy and E is the
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total energy.

Plugging the potential energy of this system into the equation (3.20), we can get

A@:w—z/ bdr
Tm r\/r2(1+ —G’Z}Em) — b2

Gmimar b2 OO
=7 —2tan }( 25 ) (3.21)
b\/?"2 + Gmbmgr — B2 )
To find r,,, we need to solve ¢ = 0
Gmimo 2
d T\/T2(1 + ) — b
& r (3.22)
de b
Tm satisfies the below equation
Py T2 (1 + Coamay 2
m — 0
b
Gm1m2
2 (1 -0 =0 3.23
Jra s o 6.2
Combining equation (3.23) and E = +m;(v/3)? (since we suppose at 7 = 0, r = —o0,

total energy FE = total kinetic energy.) with equation (3.21), we can get the scattering

angle

G??’LQ

6120

Af =21 — 2tan"*( ) (3.24)

The difference between the two results is that they are in different coordinates. The scatter-

ing angle calculated by tan(Af) = % is the angle between the incoming and outgoing
momentum of the probing particle, so it is the scattering angle in the laboratory frame. On
the other hand, the scattering angle calculated by the orbital equation is the angle between

the two particles after scattering, so it is the scattering angle in the center of mass frame.
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Now, we can go back to see the classical impulse of gravity in (2+1) dimension in

position space.
The scattering impulse of gravity in the (2+1) dimension is

m

AP} = i87Gmims / d3qd(uy - q)0(us - q)eiq'bZ—Q((ul ug)? — 1) (3.25)
As before, we set u; = (7,0,75) and us = (1,0,0), where the velocity parameter (3
satisfying v2(1 — 3?) = 1 to simplify the result.

m

APl = i87Gmims / d3¢6(g0)d (g0 — vﬁqz)eiq'bZ—Q(vz —1)

i4Gmymy / — 1
= ——F— [ dge"t = v—— (3.26)
6] fﬁ( 7)

Since we set u; at y-direction, the ¢, is at x-direction. Let A be the magnitude of ¢,

therefore, we can set ¢/ = (0, A, 0).

APl = MGM/ d)\ei‘bp‘q—é(fy _ 1)

13 oo A v
—4Gm1m27r 1. .
= Ry — )b (3.27)
EREL

We can see that although in momentum space, gravity in (3+1) dimension or in (2+1) looks
like they have similar physical properties, in position space, they look different. That is,
we can see that for gravity in (3+1) dimension, the scattering impulse is proportional to
the inverse of the impact parameter (%), but for gravity in (2+1) dimension, the scattering

impulse is independent of the magnitude of the impact parameter (b).
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Chapter 4 Chern-Simons term and

Anyon impulse

Now we are going to see how to calculate the impulse of anyon. For electrodynamic
Lagrangian in (2+1) dimension, apart from the Maxwell kinetic term, we can also have
another term ke A, F,,, added to the Lagrangian, which is called the Chern-Simons term.
We will illustrate the solutions of the equations of motion of this Lagrangian has arbitrary
spin and use these equations of motion to calculate the scattering impulse which is written

in D. J Burger, W. T. Emond, and N. Moynihan’s ”’Anyons and the Double Copy”’[2].

The electrodynamic Lagrangian added a Chern-Simons term is

1
L= 5 FuwF" + k" A,F,, (4.1)

where k is the Chern-Simons level number. Add A, J* to this Lagrangian, and calculate

the equations of motion with source,
8, " — ke* P9, A, = J" (4.2)
The total charge associated with anyon is

Q= /dszO = /d2x8iEi — ke2/d2xeij8iAj = 41q — ke*d 4.3)
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where ® is the magnetic flux. We see that the anyon can carry both electric charge and
magnetic flux. Therefore, if we add a Chern-Simons term to the Lagrangian, each charged
particle will be attached to magnetic flux. Attaching a magnetic flux will infect the angular
momentum of particles. In quantum mechanics, the angular momentum operator in an
electromagnetic field is

~

where 7; and p; are position and momentum operator respectively. And since

}{A-dl:q) (4.5)
C

The magnitude of magnetic vector potential is

A= 46)

27r
and the magnetic vector potential is in the direction perpendicular to its position vector 7.
We can now write down the angular momentum operator in polar coordinate

A )
L=—i0y — q— 4.7)
21

The wave function of this system is composed of the eigenfunction of its Hamiltonian
operator. Since this system is rotationally invariant, [f[ , ﬁ] = 0, the H and L share the

same eigen function. The angular part of eigenfunctions v, is

U (0) o< ™ (4.8)
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Since

[ (0)[* = [on(2m)|? (4.9)
n must be an integer or half-integer.

Under a rotation of angle § = =
U0+ 7) = €, (0) = 121y, () (4.10)
If ® # 0, the interchange of a two-particle state will pick up e~%® other than £1. Therefore

the spin of this wave function can be an arbitrary number.

Since we have seen that the solutions of the equations of motion of the Lagrangian
containing Chern-Simons term have arbitrary spin, we can then use this equation of motion

to calculate the impulse of the anyon][ 1].

Suppose a scalar particle with charge (); and moving at the velocity u; probes an

anyon with charge (), and magnetic flux ®,. By Ampeére’s circuital law

OF

In this system, there is no change of the electric field term, so the current of anyon is
I8 = Qoub P (1) + PO, s, P26 (1) (4.12)
Put the current (4.12) into the equation (4.2), we can see the equation of F'*¥ is

k’ 2
(9" + gewp)ﬂp = Qo6 (r) + €70, 1z, B2 (1) (4.13)
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Define m = ke?, and write down equation (4.13) in terms of the dual vector field

e = L pvp
Ft = 5ePF,,

(mn" + e’“’pap)ﬁy = (Qaub + Equ@Vquq)Q)(S(Q)(T) (4.14)

To derive the electromagnetic tensor in momentum space, we know

(mnt* + €"P0,) (mna, + ecmak)ﬁ”

= (e“”"’ea,,kapaA + me" PO N a0, + MmN eqn0” + m25ff)ﬁ”’ (4.15)

The right hand side of equation (4.15) is

(e“o‘pea,,,\@pa’\ + me"**0pne, + M “ean0” + m25l‘,‘)F”
= [ (8405 — 6564)0,0™ + 2me* |, 0° + m*Sk|F”

= [(—0*)8¥ + 0,0" + 2me" 0" + m*S4|F” (4.16)

Choose a gauge such that 8MF“ =0

(" equr0p0 + M Dyt + M €020 + m*64) F”

= [(—=0%)8% + 2me" 0" + m*6L]F” (4.17)

Combine equation (4.17) and (4.14), we can get

(0% + m2)F* = (mn™ — "9, Jy, (4.18)

Express the current in momentum space,

I3 (q) = (Qauly + €"Pig,ug,®2)d(q - ug) (4.19)
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Then we can write the dual vector tensor in momentum space as

~ 5 q U . .
P (0) =S Qutomat — i) + (a0 0) — i)

+ imq)ge“aﬂqauw) (4.20)

The electromagnetic field tensor is

~,  0(q-uy . .
FW(Q) = €upl” :ﬁ[@ﬂ—zu?uqy + tu2,q, + me,wpug)

+ i Po€up(q” (U2 - ) — ubq”) + imPy(quuy — qug,)]  (4.21)

Plug the F**(q) into equation (2.3), the scattering impulse is

AP =Q, /a3q5(u1 - q)d(ug - q)er’

(ig"(Q2 + mPa) (ug - ug) + MQ2e"Puy, ug, — Z'<I>26”1/’)6127«011/102,3)

o (4.22)
Use the Schouten identity[ | 0] with the convention €(a, b, ¢) = €**?a,,b,c, and
e"(a,b) = e"Pa,b,
ate(b,c,d) = e'(c,d)(a-b) — e (b,d)(a-c)+ e (b,c)(a-d) (4.23)
The impulse (4.22) can be written down as
AP} =Q: / d*q6(uy - q)0(us - q)e'Vig"
" [<(Q2 + m®Py)(ur - uz) — Poe(ur, uz, q))  imQae(us, uy, q)] (4.24)

q2 +m2 q2(q2 +m2)

where ¢"e(uy, ug, q) = "(uz, q)(q-uy) —e"(u1, q)(uz-q)+€"(u1, ug)g* and in the impulse
(107), by delta functions §(u; - ¢) and 6(usy - q), we can neglect the (u; - ¢) and (us - q)
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terms.

Use relation (1.33), the scattering amplitude is

A(O)(P1>P2%P1+Q>P2—Q)

. 4‘((Q1Q2 + lecI)Q)(Pl ) P2) - QchQE(Pla P2a Q)) o i4mQ1Q2€(P1) P2) Q)
o q2 4+ m?2 q2(q2 +m2)

(4.25)

Similar to the calculation of scattering amplitude in the (2+1) dimension, we need to check

whether the / dependence will cancel out.

First, we can use Gauss’s law to see the dimension of charge () in the (2+1) dimension.

f E .- fds — Q (4.26)

where E is the electric field. From (4.26), we can know the magnitude of the electric field
in the (2+1) dimension is

E(r) = — 4.27)
The dimension of charge Q is M /2.

Next, we can use & = [ d*ze”9;A; to find the dimension of magnetic flux ®. The
action S divided by 5 is dimensionless, so from the action for electromagnetic field in the
(2+1) dimension,

1
S=— / & Fu ™ (4.28)

We can know the dimension of A* in the (2+1) dimension is M /2. Therefore, the dimen-
sion of magnetic flux ® is

(@] = MV2. L (4.29)
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For the scattering amplitude (4.25), the dimension of the term —QlQQQ(P QP 2) and
q“+m
mQ1Q2¢(P1,P2,q)

the term (D)

are M, so there is no need to add any . On the other hand, the

mQ1P2(Py-Ps

122(-7) and the term 220 120)

dimension of the term s
a>+m

are M? /L, so they must be
multiplied by 1/h. However, remember that we also need to restore & in each ¢ and m,

the ¢ and m in the numerator for the two terms will restore a 4 which cancels out the 1 /h.

Finally, we can see as expected, that all / cancel out, so we can indeed use relation

(1.33) to match the scattering amplitude of anyon from the scattering impulse.
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Chapter S Discussion

In [6], we see that we can derive the scattering impulse from the scattering amplitude.
Next, for electromagnetism and gravity in the (3+1) dimension, we see that we can derive
the scattering amplitude from the scattering impulse. Therefore, we can use the relation
(5.1) between scattering impulse and scattering amplitude to find the scattering amplitude

in two special cases in the (2+1) dimension.

AP" =

/ d‘gé(uy - Qo (uy - Qe igt A (P, Py — PL+q, P, —q)  (5.1)

4m1m2

For gravity in (2+1) dimension[4][2], we find that the leading component of scattering

amplitude (5.3) looks similar to gravity in (3+1) dimension (5.2).

For gravity in (3+1) dimension

_ P - P)2
AP, P, — Pi+q,P—q) = 16nG P2 1q2 2) (5.2)
For gravity in (2+1) dimension
_ P, - P 2 _ 2
AP Py = P+ q,Py—q) = 306, L 12)” = (mums) (5.3)

q2

If we treat the mass term as the zero component of the momentum in the (3+1) dimension,

they look the same.

41 doi:10.6342/NTU202400820



However, the scattering impulse in position space in different spacetime dimensions

looks different.

The scattering impulse of gravity in (3+1) dimension (5.4) depends on the magnitude

of impact parameter by |1?|.

2Gm1m2 b+

AP# _ - fA_
G

(5.4)

But the scattering impulse of gravity in the (2+1) dimension doesn’t depend on the mag-

nitude of the impact parameter.

—4Gmymam

APt =
1]

(v— )b (5.5)

1
Y
In the final part, we use relation (5.1) to match the scattering amplitude of anyon from the

classical impulse[”].

A(O)(P1,P2—>P1+Q;P2—Q)

_ A((Q1Q2 + mQi Do) (P1 - ) — Q1 Pae(Pr, P, q))  14mQiQa2e(Pr, P, q)
o g2 + m? q2(q2 +m2)

(5.6)

42 doi:10.6342/NTU202400820



References

[1] N. Arkani-Hamed, T.-C. Huang, and Y.-t. Huang. Scattering amplitudes for all

masses and spins. Journal of High Energy Physics, 2021(11):1-77, 2021.

[2] D.J. Burger, W. T. Emond, and N. Moynihan. Anyons and the double copy. Journal

of High Energy Physics, 2022(1):1-42, 2022.

[3] S. M. Carroll. Spacetime and geometry. Cambridge University Press, 2019.

[4] S. Deser, R. Jackiw, and G. Hooft. Three-dimensional einstein gravity: dynamics of

flat space. Annals of Physics, 152(1):220-235, 1984.

[5] H.Elvang and Y.-t. Huang. Scattering amplitudes in gauge theory and gravity. Cam-

bridge University Press, 2015.

[6] D. A. Kosower, B. Maybee, and D. O" Connell. Amplitudes, observables, and clas-

sical scattering. Journal of High Energy Physics, 2019(2):1-69, 2019.

[7] D. A. Kosower, R. Monteiro, and D. O’ Connell. The sagex review on scattering am-

plitudes chapter 14: Classical gravity from scattering amplitudes. Journal of Physics

A: Mathematical and Theoretical, 55(44):443015, 2022.

[8] J. Saftko, H. Goldstein, and C. Poole. Classical mechanics, 2002.

43 doi:10.6342/NTU202400820



[9] M.D. Schwartz. Quantum field theory and the standard model. Cambridge university

press, 2014.

[10] W. Van Neerven and J. A. Vermaseren. Large loop integrals. Physics Letters B,

137(3-4):241-244, 1984.

44 doi:10.6342/NTU202400820



	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Denotation
	Introduction
	gravity in the (2+1) dimension
	anyon
	matches scattering amplitude to scattering impulse

	matches the scattering impulse to the scattering amplitude in the (3+1) dimension
	electromagnetism in the (3+1) dimension
	gravity in the (3+1) dimension

	matches the scattering impulse to the scattering amplitude in the (2+1) dimension
	Dimensional analysis of the scattering amplitude in the (2+1) dimension
	scattering amplitude of gravity in the (2+1) dimension
	scattering impulse of gravity in position space and the scattering angle

	 Chern-Simons term and Anyon impulse
	Discussion
	References

