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摘要

在量子場論中，我們曾經學過如何計算不同物理場下的散射振幅，同時我們

也知道如何從散射振幅去推導出不同物理場下的散射截面。在此篇文章中會介紹

如何用散射振幅去推導出古典的散射衝量，並且使用這個方式從古典散射衝量去

回推出散射振幅。在 (2+1)維的時空中，有一些情況我們無法使用費曼規則去得

出他們的散射振幅。第一個例子就是重力在 (2+1)維的情況，由於重力在 (2+1)維

的時候沒有任何動態自由度，所以我們無法畫出費曼圖。但是，重力在 (2+1)維

的散射衝量並不為零，因此我們可以使用上面提到的方法從散射衝量去回推散射

振幅。另一個例子是任意子–一種只會出現在 (2+1)維時空且自旋並非整數或半

整數的粒子。由於任意子並非基本粒子，所以我們無法使用費曼圖來算出散射振

幅。但是同樣的，由於任意子的散射衝量並不為零，所以我們可以用上述方法得

出散射振幅。

關鍵字：散射振幅、散射衝量、任意子
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Abstract

In quantum field theory, we have learned how to calculate the scattering amplitude

by drawing Feynman diagrams and then using Feynman rules to calculate the contribution

of each diagram to the scattering amplitude. Besides, we have also learned how to use the

scattering amplitude to derive the cross section which is a classical observable. However,

in the (2+1) dimension, there are some special cases in which we can’t define Feynman

rules. For example, gravity in the (2+1) dimension has no dynamic degree of freedom.

However, we can see there are non-trivial physical observables that reflect the effect of

gravity such as the impulse of a particle going through a gravitational source. Another

example is the scattering amplitude of anyon which is a special kind of particle in (2+1)

dimension. Since the spin of anyon can be an arbitrary number, it is not an elementary

particle and we can’t define its Feynman rules either. As gravity in (2+1) dimension,

the impulse of particles going through a source composed of anyon is also non-trivial.

Therefore, we can calculate the scattering impulse of the above two cases and try to use
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the scattering impulse to derive the scattering amplitude of them.

Keywords: scattering amplitude, scattering impulse, anyon
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Chapter 1 Introduction

In this section, we will see (1) the dynamics of gravity in the (2+1) dimension[4] (2)

the reason why in the (2+1) dimension, we can have particles with arbitrary spin[9] (3)

how to derive the scattering impulse from scattering amplitude[6]

1.1 gravity in the (2+1) dimension

In this part, we can see the dynamics of gravity in (2+1) dimension which is written

down in S. Deser, R. Jackiw’s ”Three-Dimensional Einstein Gravity: Dynamics of Flat

Space”[4].

They use Einstein field equation to calculate the metric for a mass particle located at

the origin.

The stress energy tensor for a particle located in the origin is

T 00 = m2δ̂
2(0) (1.1)

where other components are equal to zero.

1
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The Einstein field equation is

Gµν = 8πGTµν (1.2)

where the Einstein field tensor Gµν is

Gµν ≡ Rµν −
1

2
R (1.3)

Consider the static case, since the system is rotationally invariant, the metric is

g00 = A(x) g0i = 0 gij = Bij(x) (1.4)

Plug the stress energy tensor and Riemann tensor into the Einstein field equation, we can

find the metric for a particle located in the origin is

g00 = −1

gij = δijr
−8GM (1.5)

from this metric, we can see the spacetime of a particle at the origin is flat except there

is a conical singularity at the origin. Therefore, we can see that the gravity in the (2+1)

dimension is topological, so there are no propagating gravitons and we can’t define the

Feynman rules.

1.2 anyon

Anyon is a special kind of particle in (2+1) dimension whose spin isn’t constrained

from being integer or half-integer. We can see why in the (2+1) dimension the particle

2
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spin can be an arbitrary number but in the (3+1) dimension can only be integer or half-

integer by spin-statistics from path dependence, which is introduced in M.D. Schwartz’s

”Quantum Field Theory and the Standard Model”[9].

Suppose we have two identical particles at positions x1 and x2 at time t = 0, and

then at a later time, they are still at x1 and x2. Since the two particles are identical, the

trajectories of these two particles during this period may be two particles moving back

to their original position respectively, switching their position with each other or moving

around each other many times. To characterize the transformation, we can define the

angle ϕ, which is the angle that relative position vector of the two particles (x1 − x2)

turns around. This angle ϕ is frame-independent and is a topological property associated

with the path. We illustrate that in Figure 1.1.

Figure 1.1: The red arrow is the position vector of the two particles[9].

Figure 1.1 is the path of the two particles turning around each other and going back

to their original position x1 and x2. We can see that the relative vector turns around an

angle 2π.

We can also see in Figure 1.2 that the angle ϕ can also be 0 or π for the two identical

particles to finally stay at x1 and x2 respectively.

Since the two particles are identical, the two-particle state after the transformation of

ϕ = 0, π, 2π will only pick up a phase proportional to this angle ϕ. For ϕ = π (i.e. the

3
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Figure 1.2: the route of ϕ = 0 and the route of ϕ = π[9]

two particles switch the position with each other),

|ϕ1(x2)ϕ2(x1)⟩ = eiκπ |ϕ1(x1)ϕ2(x2)⟩ (1.6)

where κ is the number characteristic of the particle type.

In (3+1) dimension, the angle ϕ can be defined up to 2π. For example, we can pull

out particle 2 in Figure 1.1, and then the angle ϕ can become 0.

Figure 1.3: The red arrow is perpendicular to the route of the two particles, so it will not
turn around. The angle ϕ = 0[9].

Therefore, in the (3+1) dimension, we can’t distinguish the path of angle ϕ = 2π

from the path of angle ϕ = 0, and thus κ must be integer. For the two particles to switch

their position with each other, the two-particle state must satisfy

|ϕ1(x2)ϕ2(x1)⟩ = ± |ϕ1(x1)ϕ2(x2)⟩ (1.7)

4
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That is, only fermionic and bosonic statistics are possible.

To perform the interchange of the two particles, we can first translate the two particles

by (x1−x2), then rotate the whole system by angle π. Under translation, nothing special

happens. For rotation, the way to rotate a particle state depends on its spin, that is, depends

on the representations of the Lorentz group.

For example, to transform a Dirac spinor which is the solution of the Dirac equation

and has spin 1
2
, we use the (1

2
, 0)

⊕
(0, 1

2
) representation of the Lorentz group. A rotation

of an angle θz is

Λs(θz) =



e
i
2
θz

e
−i
2
θz

e
i
2
θz

e
−i
2
θz


(1.8)

Suppose we rotate an electron with spin-up by angle θz = π,



1

0

1

0


→



i

0

i

0


(1.9)

Therefore, for a two-particle state interchange,

|ϕ1(x2)ϕ2(x1)⟩ = − |ϕ1(x1)ϕ2(x2)⟩ (1.10)

For another example, a vector, which has spin 1, 0 and transforms under the (1
2
, 1
2
) repre-

5
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sentation of the Lorentz group. A rotation of angle θz is

Λs(θz) =



1

e−iθz

eiθz

1


(1.11)

A two-particle state will pick up +1 for a rotation of angle θz = π, that is, an interchange

of the two particles takes

|ϕ1(x2)ϕ2(x1)⟩ = |ϕ1(x1)ϕ2(x2)⟩ (1.12)

The above derivationworks for all integers and half integers. Since in the (3+1) dimension,

after an interchange, the two identical particle state can only pick up +1 or -1, the particle

spin can only be integer or half-integer in the (3+1) dimension.

The above situation will be different in (2+1) dimension. The path of ϕ = 2π can be

distinguished from the path of ϕ = 0. That is because we can not pull out the diagram, the

path in Figure 1.1 can’t become the path in Figure 1.3. This means the two-particle state

under an interchange will not be constrained to pick up ±1.

|ϕ1(x2)ϕ2(x1)⟩ = eiκπ |ϕ1(x1)ϕ2(x2)⟩ (1.13)

where κ can be an arbitrary number. We can see that particles in the (2+1) dimension can

have spin other than integer and half-integer. The particles which have spin other than

integer and half-integer are called anyon.

6
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1.3 matches scattering amplitude to scattering impulse

In this part, I will show how to calculate the scattering impulse from scattering am-

plitude derived by David A. Kosower, Ben. Maybee and Donal. O’Connell[6].

In the beginning, we know the expected value of momentum is

⟨P µ⟩ = ⟨ψ|Pµ|ψ⟩ (1.14)

We are going to see the impulse of particle 1 probing another particle 2 at the origin. The

impulse is the difference of the initial momentum at τ = −∞ and the momentum after

scattering at τ = ∞.

⟨∆P µ
1 ⟩ =

〈
ψ|S†Pµ

1S|ψ
〉
− ⟨ψ|Pµ

1 |ψ⟩ (1.15)

whereS is the S-matrix defined as |ψ⟩out = S |ψ⟩in is the time-evolution operator evolving

the initial state |ψ⟩in at τ = −∞ into the final state |ψ⟩out at τ = ∞.

And then since we know the scattering amplitude A(p1, p2 → p′1, p
′
2) is the matrix

elements of transition matrix T , that is ⟨p′1p′2|T |p1p2⟩ = A(p1, p2 → p′1, p
′
2)δ̂

(4)(p′1 + p′2 −

p1 + p2). Therefore, to make contact with scattering amplitude, we can write down the

s-matrix in terms of S = 1 + iT .

We then use the unitarity of s-matrix, S†S = 1,

(1− iT †)(1 + iT ) = 1

1 + i(T − T †) + T †T = 1

T †T = i(T † − T ) (1.16)

7
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We can write scattering impulse as

⟨∆pµ1⟩ = ⟨ψ|i[Pµ
1 , T ]|ψ⟩+

〈
ψ|T †[Pµ

1 , T ]|ψ
〉

(1.17)

We can take a brief look at equation(1.17). The first term contains one transitionmatrix and

the second term has T †T multiplied, so the first term has only one scattering amplitude

may be related to the tree diagram, and the second term has two scattering amplitudes

multiplied may be related to the loop diagram which can be decomposed into two tree

diagrams.

In the next part, we will use classical methods to calculate the scattering impulse and

then find the scattering amplitude in the classical limit. In the classical limit, h̄ → 0,

and since the contribution for each Feynman diagram is proportional to h̄(L−1), where L

is the number of loops in the Feynman diagram, when h̄→ 0, only the tree diagrams will

contribute to the scattering amplitude.

First, we see the initial state |ϕ1ϕ2⟩in is

|ψ⟩in =

∫
d̂4p1d̂4p2δ̂(+)(p21 −m2

1)δ̂
(+)(p22 −m2

2)ϕ1(p1)ϕ2(p2)e
ib·p1
h̄ |p1p2⟩in (1.18)

where d̂np ≡ dnp
(2π)n

and δ̂(+)(p2 −m2) ≡ 2πΘ(p0)δ(p2 −m2).

In the above equation, we have eib·p1/h̄ because particle 2 is supposed to be fixed at

the origin, and particle 1 is relative to particle 2 by the impact parameter b.

8
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Next, put the initial state (1.18) into the first term on the right-hand side of (17),

⟨ψ|i[Pµ
1 , T ]|ψ⟩ =

∫
d̂4p1d̂4p2d̂4p′1d̂4p′2δ̂(+)(p21 −m2

1)δ̂
(+)(p22 −m2

2)

δ̂(+)(p′21 −m′2
1 )δ̂

(+)(p′22 −m′2
2 )ϕ1(p1)ϕ

∗
1(p

′
1)ϕ2(p2)ϕ

∗
2(p

′
2)

× e
ib·(p1−p′1)

h̄ i(p′µ1 − pµ1) ⟨p′1p′2|T |p1p2⟩ (1.19)

Then introducing the momentum shift qi = p′i − pi, and we can replace the integration

over p′i into the integration over qi.

⟨ψ|i[Pµ
1 , T ]|ψ⟩ =

∫
d̂4p1d̂4p2d̂4q1d̂4q2δ̂(+)(p21 −m2

1)δ̂
(+)(p22 −m2

2)

δ̂(+)((p1 + q1)
2 −m2

1)δ̂
(+)((p2 + q2)

2 −m2
2)

× ϕ1(p1)ϕ
∗
1(p1 + q1)ϕ2(p2)ϕ

∗
2(p2 + q2)e

ib·(p1−q1)
h̄

× i(p′µ1 − pµ1)A(p1, p2 → p1 + q1, p2 + q2)δ̂
(4)(q1 + q2) (1.20)

Integral over q2, and relabel q1 → q

⟨ψ|i[Pµ
1 , T ]|ψ⟩ =

∫
d̂4p1d̂4p2d̂4qδ̂(+)(p21 −m2

1)δ̂
(+)(p22 −m2

2)

δ̂((p1 + q)2 −m2
1)δ̂((p2 − q)2 −m2

2)Θ(p01 + q0)Θ(p02 − q0)

× ϕ1(p1)ϕ
∗
1(p1 + q)ϕ2(p2)ϕ

∗
2(p2 − q)e

ib·q
h̄

× iqµA(p1, p2 → p1 + q, p2 − q) (1.21)

Since we need to take h̄ → 0 to see the classical limit of the impulse, we can’t set h̄ = 1

and need to restore h̄ in the calculation.

To restore h̄, we need to distinguish between the momentum pµ of a particle and

its wavenumber, which we denote p̄µ. In quantum mechanics, the relation between the

9
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wavenumber and its momentum is

p̄ =
p

h̄
(1.22)

Because now h̄ doesn’t set to 1, the physical quantities which have dimensions of [L]−1,

for example, the wavenumber, don’t have the same dimensions as those quantities which

have dimensions of [M ]1, for example, the momentum.

For the calculation in scattering impulse, we write the momentum q as h̄q̄, and take

the limit h̄→ 0. For particle momentum p1 and p2, in the calculation, we treat them as two

point-like particles. For this description to be valid, the Compton wavelengths l(i)c ≡ h̄
mi

must be very small, so the wavenumber 2π
λ
of them will be very large. In the limit of

h̄→ 0, it will not approach 0, so we can treat them as genuine momentum.

Despite restoring h̄ in q, we also need to restore the h̄ in the scattering amplitude. We

can see the h̄ dependence by the dimensional analysis of equation (1.21).

Since the dimension of the expected value of momentum isM ·L/T , the dimension

of the right-hand side of the equation (1.21) must be equal toM · L/T . Then we can use

this fact to know the dimensions of scattering amplitude in (3+1) dimension. Before going

to check this, let’s first see the dimension of ϕ(p). Since the normalization condition is

1 = ⟨ψ|ψ⟩

=

∫
d̂4p1d̂4p2d̂4p′1d̂4p′2δ̂(+)(p21 −m2

1)δ̂
(+)(p22 −m2

2)

× δ̂(+)(p′21 −m2
1)δ̂

(+)(p′22 −m2
2)ϕ1(p1)ϕ

∗
1(p

′
1)ϕ2(p2)ϕ

∗
2(p

′
2)

× e
ib·(p1−p′1)

h̄ ⟨p′1p′2|p1p2⟩

=

∫
d̂4p1d̂4p2δ̂(+)(p21 −m2

1)δ̂
(+)(p22 −m2

2)|ϕ1(p1)|2|ϕ2(p2)|2 (1.23)

10
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we can obtain this normalization by requiring ϕi(pi) to satisfy

∫
d̂4piδ̂(+)(p2i −m2

i )|ϕi(pi)|2 = 1 (1.24)

The dimension of ϕi(pi) is

[ϕi(pi)] =M−1 (1.25)

where we set the speed of light c = 1 and then L = T .

Now, we can see the dimensions of the scattering amplitude from the dimensional

analysis of equation (1.21)

M =M12 ×M−8 ×M−4 ×M × [A(p1, p2 → p1 + q, p2 − q)] (1.26)

so the dimension of scattering amplitude is 1.

For electromagnetic scattering, the coupling constant is charge q and the dimension

of charge can be seen from Coulomb’s law. In the CGS unit, the vacuum permittivity is 1

when the speed of light c is equal to 1. So the dimension of the charge q is

[q] = (M · L)1/2 (1.27)

Since the scattering amplitude of electromagnetism is

A(p1, p2 → p1 + q, p2 − q) = 4e2
(P1 · P2)

q2
(1.28)

to make the scattering amplitude in (3+1) dimension dimensionless, the coupling constant

is e2/h̄.

Similarly, for gravitational scattering, the coupling constant is the gravitational con-

11
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stant G. From Newton’s law of gravitation, the dimension of the gravitational constant G

is

[G] = L/M (1.29)

The scattering amplitude of gravity in the (3+1) dimension is

A(p1, p2 → p1 + q, p2 − q) = 16πG
(P1 · P2)

2

q2
(1.30)

to make the scattering amplitude in (3+1) dimension dimensionless, the coupling constant

is G/h̄. However, in later calculations, we can see that in the (2+1) dimension, the h̄

dependence of scattering amplitude differs from that in the (3+1) dimension.

Combining all the above discussion, the scattering impulse which restores h̄ is

⟨ψ|i[Pµ
1 , T ]|ψ⟩ =h̄

5

∫
d̂4p1d̂4p2d̂4q̄δ̂(+)(p21 −m2

1)δ̂
(+)(p22 −m2

2)

δ̂((p1 + h̄q̄)2 −m2
1)δ̂((p2 + h̄q̄)2 −m2

1)Θ(p01 + h̄q̄0)Θ(p02 − h̄q̄0)

× ϕ1(p1)ϕ
∗
1(p1 + h̄q̄)ϕ2(p2)ϕ

∗
2(p2 − h̄q̄)eib·q̄

× iq̄µA(p1, p2 → p1 + h̄q̄, p2 − h̄q̄) (1.31)

Remind that the scattering amplitude contains couplings e2/h̄ in the electrodynamics case,

G/h̄ in the gravity case, and propagator 1/(h̄q̄)2 in both cases, so we can cancel out h̄3.

⟨ψ|i[Pµ
1 , T ]|ψ⟩ =h̄

2

∫
d̂4p1d̂4p2d̂4q̄δ̂(+)(p21 −m2

1)δ̂
(+)(p22 −m2

2)

δ̂((p1 + h̄q̄)2 −m2
1)δ̂((p2 + h̄q̄)2 −m2

1)Θ(p01 + h̄q̄0)Θ(p02 − h̄q̄0)

× ϕ1(p1)ϕ
∗
1(p1 + h̄q̄)ϕ2(p2)ϕ

∗
2(p2 − h̄q̄)eib·q̄

× iq̄µA(p1, p2 → p1 + q̄, p2 − q̄) (1.32)

12
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Since we are going to see the scattering impulse in the classical limit, we suppose that the

incoming states are point particles that have momentum P1 and P2. That is, their wave

functions have a peak at p = Pi in momentum space. Therefore, ϕ(pi) ≈ δ(Pi − pi).

On the other hand, the momentum of a point particle P1 and P2 also satisfy the classical

equations of motion, so P 2
i = m2

i , and the energy P 0
i > 0.

Combining the above conditions and integral over p1 and p2 in the h̄ → 0 limit, the

final result will be independent of h̄.

⟨ψ|i[Pµ
1 , T ]|ψ⟩ =

∫
d̂4q̄δ̂(2P1 · q̄)δ̂(2P2 · q̄)eib·q̄iq̄µ

× Ā(0)(P1, P2 → P1 + q̄, P2 − q̄)

=
1

4m1m2

∫
d̂4q̄δ̂(u1 · q̄)δ̂(u2 · q̄)eib·q̄iq̄µ

× Ā(0)(P1, P2 → P1 + q̄, P2 − q̄) (1.33)

where Ā(0) is the leading order of scattering amplitude. We have seen that the scattering

impulse can be derived by the leading order of the scattering amplitude. Now we want to

see whether we can extract the leading order of the scattering amplitude from the scattering

impulse calculated by the classical method.

13
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Chapter 2 matches the scattering

impulse to the scattering

amplitude in the (3+1)

dimension

2.1 electromagnetism in the (3+1) dimension

In this section, I will perform the derivation of scattering amplitude from scattering

impulse and compare the result with the scattering amplitude calculated by Feynman rules

which was written down in D. A. Kosower, B. Maybee, D. O＇Connell’s ”Amplitudes,

Observables, and Classical Scattering”[6].

Let’s first calculate the impulse of a charged scalar particle moving in an electro-

magnetic field produced by another charged scalar particle fixed at the origin in (3+1)

dimension. The force on a moving charged particle in an electromagnetic field is the

Lorentz force,

F = q(E + v ×B) (2.1)
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Expressing it in the covariant form using the electromagnetic tensor,

F µν =



0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


(2.2)

dpµ

dτ
= qF µνuν (2.3)

Suppose a scalar particle 1 with charge e, moving at the velocity u1 probes another particle

2 with charge e fixed at the origin. The current of particle 2 is

Jµ
2 = euµ2δ

(3)(r) (2.4)

where u2 = (1, 0, 0, 0).

From the Maxwell equation, the field tensor satisfies

∂µF
µν
2 = euµ2δ

(3)(r) (2.5)

Working in Lorentz gauge ∂µAµ = 0, the gauge field satisfies

□Aµ
2(x) = euµ2δ

(3)(r) (2.6)

Write down the above equation in momentum space,

−q2Aµ
2(q) =

∫
d̂4xe−(iq0·x0+iqi·xi)euµ2δ

(3)(r) (2.7)

16
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And we know

q0 = q · u2 (2.8)

where u2 = (1, 0, 0, 0). We can now get the gauge field in momentum space

Aµ
2(q) =

δ̂(q · u2)euµ2
q2

(2.9)

So the field tensor F µν in position space is

F µν
2 (x) = ie

∫
d̂q4δ̂(q · u2)eiq·x

qµuν2 − qνuµ2
q2

(2.10)

At leading order, we will use the straight line approximation to the trajectory of particle

1, and the change of its momentum in time τ is

dP µ
1 (x)

dτ
= ie2

∫
d̂q4δ̂(q · u2)eiq·(b+u1τ)

qµu2 · u1 − uµ2q · u1
q2

(2.11)

The scattering impulse at leading order is

∆P µ
1 = ie2

∫
d̂4qδ̂(u1 · q)δ̂(u2 · q)eiq·b

qµ

q2
(u1 · u2) (2.12)

Compared with the relation (1.33), the leading order of scattering amplitude derived by

scattering impulse is

Ā(0)(P1, P2 → P1 + q, P2 − q) = 4e2
(P1 · P2)

q2
(2.13)

Then we use Feynman rules to calculate the scattering amplitude at the leading order[9],

the Feynman diagram in Figure 1,

17
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Figure 2.1: the Feynman diagram of 4 external charged scalar with the exchange of a
massless photon[9]

The Feynman rule of a three-point vertex is

ie(−P µ
1 − (P µ

1 + qµ)) (2.14)

The photon propagator in the Lorentz gauge is

−igµν
q2

(2.15)

Then the scattering amplitude is

iA(P1, P2 → P1 + q, P2 − q) = i
e2(2P1 + q)(2P2 + q)

q2
(2.16)

Finally, we can get the leading order of the electrodynamic scattering amplitude

Ā(0)(P1, P2 → P1 + q, P2 − q) = 4e2
(P1 · P2)

q2
(2.17)

which matches the result derived by scattering impulse.

2.2 gravity in the (3+1) dimension

In [6], they calculate the case of electromagnetism in (3+1) dimension. In this part,

I will show the process of calculating the scattering amplitude of the gravity in the (3+1)

dimension using the scattering impulse which was written down in [7].
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Wewill calculate the scattering impulse of a scalar particle 1 by probing a static scalar

particle 2 at the origin (i.e. u2 = (1, 0, 0, 0)). To calculate the scattering impulse, I use

the geodesic equation[8], which is the equation of motion of a point particle in a curved

spacetime. The geodesic equation is the equation of motion of the Hilbert-Einstein action.

The derivation of the geodesic equation below is from Sean Carroll’s ”Spacetime and

Geometry–An Introduction to General Relativity[3].

S = −m
∫ √

−ds2 = −m
∫

dτ
√

−gµν(x(τ))
dxµ(τ)
dτ

dxν(τ)
dτ

(2.18)

And vary the above action with respect to the trajectory x(τ) (assume τ as the proper time,

that is dτ =
√
−ds2)

δS =−m

∫
dτ

1

2
√
−ẋ2

[(δgµν(x))ẋ
µẋν + 2gµν(x)ẋ

µ(δẋν)]

=−m

∫
dτ(δxν [

1

2
(∂νgµλ(x))ẋ

µẋλ −
(
d
dτ
gµν(x)

)
ẋµ

− gµν(x)ẍ
µ] +

d
dτ

(...))

=−m

∫
dτ(δxν [

1

2
(∂νgµλ(x))ẋ

µẋλ − (∂λgµν(x))ẋ
λẋµ

− gµν(x)ẍ
µ] +

d
dτ

(...))

=m

∫
dτ(δxν [gµν(x)ẍµ +

1

2
(∂λgµν(x) + ∂µgλν(x)− ∂νgµλ(x))ẋ

µẋλ]

+
d
dτ

(...)) (2.19)

Thus we know the equation of motion of a point particle in a curved spacetime is

d2xµ

dτ 2
+

1

2
gµν [∂λgρν(x) + ∂ρgλν(x)− ∂νgρλ(x)]

dxλ

dτ
dxρ

dτ
= 0 (2.20)

and we then define Γµ
νρ ≡ 1

2
gµν [∂λgρν(x) + ∂ρgλν(x)− ∂νgρλ(x)] as christoffel symbols.
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Now we can calculate the scattering impulse. For a scalar point particle at the origin,

the spacetime metric is the Schwarzschild metric[3].

Treating the Schwarzschild metric perturbatively in G, we can express the derivation

from Minkowski as

htt = hrr =
2GM

r
(2.21)

others are equal to zero.

In the non-relativistic limit, dt
dτ dominates over dxi

dτ , so the geodesic equation is ap-

proximately given by

d2xµ

dx2
= −Γµ

00(
dt
dτ

)2 (2.22)

Γµ
00 = −1

2
gµλ∂λg00 (2.23)

To first order in G,

Γµ
00 = −1

2
∂µh00 (2.24)

Fourier transform (2.24) to momentum space,

Γµ
00(q) =

∫
d̂4xe−(iq0·x0+iqi·xi)Γµ

00(x) (2.25)

And we know

q0 = q · u2 (2.26)

where u2 = (1, 0, 0, 0).
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Then do the integral over the time component τ

Γµ
00(q) =

∫
dτe−i(q·u2)τ

∫
d̂3xe−iqi·xiΓµ

00(x)

= −δ̂(u2 · q)
∫

d̂3xe−iqi·xiΓµ
00(x) (2.27)

We can get

Γµ
00(q) =

∫
d̂4xe−iq·x−1

2
∂µh00 = iδ̂(u2 · q)qµGm2

4π

q2
(2.28)

Plugging everything in, we can get the impulse

∆P µ
1 = m1

∫
dτ

∫
d̂4qeiq·(b+u1τ)iδ̂(u2 · q)qµGm2

4π

q2
(
dt
dτ

)2

= m1

∫
d̂4qe−iq·biδ̂(u1 · q)δ̂(u2 · q)qµGm2

4π

q2
γ2 (2.29)

where γ2 = (u1 · u2)2.

Finally, the scattering amplitude of a scalar particle probing another scalar particle at

the origin in the (3+1) dimension deriving from the scattering impulse is,

Ā(0)(P1, P2 → P1 + q, P2 − q) = 16πG
(P1 · P2)

2

q2
(2.30)

And to calculate scattering amplitude in quantum field theory, we will use the formalism

developed in [5][1]. The particles can be labeled by their momentum and their little group

which leaves the momentum invariant. The little group for massive particles in (3+1)

dimension is SO(3)→SU(2), and is SO(2)→U(1) for massless particles. So for massless

particles, we can label particles by momentum and its helicity h. For massive particles,

we can label particles by spin s.

Then we know that the scattering amplitude M is composed of objects that carry
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the above labels. We are now going to calculate the scattering amplitude of four massive

scalar particles with the exchange of a massless graviton.

Figure 2.2: The Feynman diagram of four external scalar particles with the exchange of a
massless graviton[1].

We know the four-point amplitudeA4[1, 2, 1
′, 2′] in s-channel can be calculated by[5]

A4[1, 1
′,→ 2, 2′] =

A3[1, 1
′, q+]A3[2, 2

′, q−]

s
+

A3[1, 1
′, q−]A3[2, 2

′, q+]

s
(2.31)

To calculate the three-point scattering amplitude of two massive legs with mass m and a

massless leg. We can define ”x” which carries +1 little group weight of massless leg[1].

Use the convention the same as in [1], the momentum can be written down as pαα̇ ≡

pµ(σ)
µ
αα̇ where σ

µ
αα̇ = (1, σi)αα̇ and σi are Pauli matrices. Then we can write down pαα̇

as the direct product of two, 2-vectors λ, λ̃

pαα̇ = λαλ̃α̇ (2.32)

The variable ”x” is defined as

xλ3α =
p1αα̇
m

λ̃3α̇,
λ̃3α̇

x
=
pαα̇1 λ3α
m

(2.33)

Since the scattering amplitude in D spacetime dimension with n external legs has mass

dimension [An] =
n
2
(2 − D) + D, [A3] = 1. Because the mass dimension of the ”x”

variable is 0, the scattering amplitude of two massive scalar particles and one massless
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graviton is

A3[1, 1
′, q+] = mx211′ (2.34)

The scattering amplitude is

A(P1, P2 → P1 + q, P2 − q) =
m2(

x2
11′

x2
22′

+
x2
22′

x2
11′
)

sM2
pl

=
4Gπ[(2P2 + q) · P1]

2

q2

= 4πG
(2P1 · P2 + q · P1)

2

q2
(2.35)

The leading order of the scattering amplitude is

Ā(0)(P1, P2 → P1 + q, P2 − q) = 16πG
(P1 · P2)

2

q2
(2.36)

which matches the result derived by scattering impulse.
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Chapter 3 matches the scattering

impulse to the scattering

amplitude in the (2+1)

dimension

3.1 Dimensional analysis of the scattering amplitude in

the (2+1) dimension

From the examples of electromagnetism and gravity in the (3+1) dimension, we can

see that we can derive the scattering amplitude by scattering impulse.

Before using relation (1.33) to calculate the scattering amplitude, we need to note that

the h̄ dependence of the scattering amplitude will differ from that in the (3+1) dimension.

To satisfy the normalization condition 1 = ⟨ψ|ψ⟩, ϕi(pi) in (2+1) dimension must

satisfy ∫
d̂3piδ̂(+)(p2i −m2

i )|ϕi(pi)|2 = 1 (3.1)
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The dimension of ϕi(pi) in (2+1) dimension is

[ϕi(pi)] =M−1/2 (3.2)

Therefore, from the dimensional analysis of equation (1.21) in the (2+1) dimension, the

dimension of scattering amplitude in the (2+1) dimension is

M =M9 ×M−8 ×M−2 ×M × [A(p1, p2 → p1 + q, p2 − q)] (3.3)

The dimension of scattering amplitude in the (2+1) dimension isM . In the next sections,

we first use relation (33) to find out the scattering amplitude, and then check whether the

whole h̄ dependence cancels out.

3.2 scattering amplitude of gravity in the (2+1) dimension

Now we can use this relation (1.33) to calculate the scattering amplitude of some

special cases in the (2+1) dimension.

First, I will show the scattering amplitude of gravity in the (2+1) dimension which

was derived in [2]. Aswementioned before, in the (2+1) dimension, the gravity is topolog-

ical, so we can’t use the Feynman diagram to calculate the scattering amplitude. Therefore,

we calculate the classical scattering impulse and use this impulse to calculate the scattering

amplitude.
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In section 2.1, we know the metric for a particle located in the origin is

g00 = −1

gij = δijr
−8GM (3.4)

from this metric, we can see the spacetime of a particle at the origin is flat except there is

a conical singularity at the origin.

So the Christoffel symbols of this system are

Γ0
µν = 0 (3.5)

Γi
jk =

1

2
giα(∂jgαk + ∂kgαj − ∂αgjk) (3.6)

Put the metric into the spatial part of Christoffel symbols

Γi
jk =

1

2
δiαr8GM(∂j(δαkr

−8GM) + ∂k(δαjr
−8GM)− ∂α(δjkr

−8GM))

=
1

2
δiαr8GM(δαk(−8GM)r−8GM−1xj

r
+ δαj(−8GM)r−8GM−1xk

r

− δjkr
−8GM−1(−8GM)

xα
r
)

= −4GMδik
xj
r2

− 4GMδij
xk
r2

+ 4GMδjk
xi

r2
(3.7)

Probe another particle 1 to the spacetime generated by particle 2 at the origin. Then from

geodesic equations, we can know the change of velocity of particle 1 per unit time τ is

d2xi

dτ 2
= 8Gm2

xj
r2
dxi

dτ
dxj

dτ
− 4Gm2

xi

r2
dxj

dτ
dxj
dτ

(3.8)

To get the scattering amplitude by the classical impulse, we find the Fourier transfor-

mation of the equation (77) using ∂i ln r = xi

r2
andF [− 1

2π
ln r] = 1

q2
, then with a similar
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calculation in the (3+1) dimension case, the classical impulse is

∫
dτ

d2xi

dτ 2
= 8πGm2

∫
d̂3qeiq·b(−2iqj

q2
ui1u

j
1 +

iqi

q2
u21)iδ̂(u1 · q)δ̂(u2 · q) (3.9)

From the relation (1.33), we can get the classical limit of scattering amplitude for a particle

1 probing another particle 2 is

Ā(0)(P1, P2 → P1 + q, P2 − q) = 32Gπ
(P1 · P2)

2 − (m1m2)
2

q2
(3.10)

Now we want to see the h̄ dependence of this scattering amplitude. From Gauss’s law for

gravity in the (2+1) dimension,

∮
c

g · n̂ds = −4πGm (3.11)

where g is the gravitational field. From (3.11), we can know the magnitude of the gravi-

tational field g in the (2+1) dimension is

g(r) =
2Gm

r
(3.12)

Therefore the dimension of G in the (2+1) dimension is

[G] =M−1 (3.13)

In sec.3.1, we see that the dimension of scattering amplitude isM , so there is no need to

multiply any h̄ on G.

In the (2+1) dimension, after restoring the h̄ in q, we can get h̄3 from d̂q3, h̄−2 from

δ̂(pi · q), h̄ from iq and h̄−2 from the propagator 1/q2 in the scattering amplitude. Finally,
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all h̄ cancel out, so we can indeed use the relation (1.33) to match the scattering amplitude

of gravity in the (2+1) dimension from the scattering impulse.

Recall in the (3+1) dimension, the classical limit of scattering amplitude is

Ā(0)(P1, P2 → P1 + q, P2 − q) = 16πG
(P1 · P2)

2

q2
(3.14)

To our surprise, the scattering amplitude in (3+1) dimensions and (2+1) dimensions

look similar, where we can just see the (m1m2)
2 in (2+1) dimension as the zeroth compo-

nent of (P1 · P2)
2 in (3+1) dimension.

3.3 scattering impulse of gravity in position space and the

scattering angle

On the other hand, I calculate the classical impulse in position space for (3+1) and

(2+1) dimensions, to see if there is a difference between the two cases.

We use the methods developed in [6] for electromagnetic impulses.

First, let’s calculate the scattering impulse for gravity in (3+1) dimension and we set

u1 = (γ, 0, 0, γβ), u2 = (1, 0, 0, 0) and γ2(1− β2) = 1 to simplify the results.

∆P µ
1 =

1

4m1m2

∫
d̂4qδ̂(u1 · q)δ̂(u2 · q)e−iq·biqµ16Gπ

(p1 · p2)2

q2
(3.15)

= i4Gπm1m2

∫
d̂4qδ̂(q0)δ̂(γq0 − γβq3)e−ib·q γ

2

q2
qµ (3.16)
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= −iGm1m2

π|β|

∫
d2qeib·q⊥

γ

q2⊥
qµ⊥ (3.17)

Since we set u1 in z-direction, the q⊥ is in x-y plane. Let λ be the magnitude of q⊥,

therefore, we can set qµ⊥=(0,λ cos θ,λ sin θ,0).

∆P µ
1 = −iGm1m2

π|β|

∫ ∞

0

dλλ
∫ π

−π

dθei|b|λ cos θ
γ

λ2
(0, λ cos θ, λ sin θ, 0)

= −iGm1m2γ

π|β|

∫ ∞

0

dλ
∫ π

−π

dθei|b|λ cos θ(0, cos θ, sin θ, 0)

=
2Gm1m2γ

|β|

∫ ∞

0

dλJ1(|b|λ)b̂

=
2Gm1m2

|β|
γ
bµ

b2
(3.18)

Before going to see the impulse of gravity in the (2+1) dimension, we use the result (3.18)

to calculate the scattering angle, and then compare the result to the scattering angle calcu-

lated by the orbital equation.

The scattering angle can be calculated by impulse via tan(∆θ) = |∆P1|
|Pint| , where |Pint|

is the magnitude of the initial momentum of the probing particle.

|Pint| = m1γβ

|∆P1| =
2Gm1m2

|β|
γ
1

b

∆θ = tan−1(
2Gm2

|β|2b
) (3.19)

Next, we calculate the scattering angle by using the orbital equation mentioned in Gold-

stein, Poole, and Safko’s Classical Mechanics Chapter 3[8]

θ(b) = π − 2

∫ ∞

rm

bdr

r
√
r2(1− U(r)

E
)− b2

(3.20)

where rm is the closest distance of the two particles, U is the potential energy and E is the
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total energy.

Plugging the potential energy of this system into the equation (3.20), we can get

∆θ = π − 2

∫ ∞

rm

bdr

r
√
r2(1 + Gm1m2

rE
)− b2

= π − 2 tan−1(
Gm1m2r

2E
− b2

b
√
r2 + Gm1m2r

E
− b2

)

∣∣∣∣∣∣
∞

rm

(3.21)

To find rm, we need to solve dr
dθ = 0

dr
dθ

=
r
√
r2(1 + Gm1m2

rE
)− b2

b
(3.22)

rm satisfies the below equation

rm

√
r2m(1 +

Gm1m2

rmE
)− b2

b
= 0√

r2m(1 +
Gm1m2

rmE
)− b2 = 0 (3.23)

Combining equation (3.23) and E = 1
2
m1(γβ)

2 (since we suppose at τ = 0, r = −∞,

total energy E ≈ total kinetic energy.) with equation (3.21), we can get the scattering

angle

∆θ = 2π − 2 tan−1(
Gm2

|β|2b
) (3.24)

The difference between the two results is that they are in different coordinates. The scatter-

ing angle calculated by tan(∆θ) = |∆P1|
|Pint| is the angle between the incoming and outgoing

momentum of the probing particle, so it is the scattering angle in the laboratory frame. On

the other hand, the scattering angle calculated by the orbital equation is the angle between

the two particles after scattering, so it is the scattering angle in the center of mass frame.
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Now, we can go back to see the classical impulse of gravity in (2+1) dimension in

position space.

The scattering impulse of gravity in the (2+1) dimension is

∆P µ
1 = i8πGm1m2

∫
d̂3qδ̂(u1 · q)δ̂(u2 · q)eiq·b

qµ

q2
((u1 · u2)2 − 1) (3.25)

As before, we set u1 = (γ, 0, γβ) and u2 = (1, 0, 0), where the velocity parameter β

satisfying γ2(1− β2) = 1 to simplify the result.

∆P µ
1 = i8πGm1m2

∫
d̂3qδ̂(q0)δ̂(γq0 − γβq2)e

iq·b q
µ

q2
(γ2 − 1)

=
i4Gm1m2

|β|

∫
dqeib·q⊥

qµ⊥
q2⊥

(γ − 1

γ
) (3.26)

Since we set u1 at y-direction, the q⊥ is at x-direction. Let λ be the magnitude of q⊥,

therefore, we can set qµ⊥ = (0, λ, 0).

∆P µ
1 =

i4Gm1m2

|β|

∫ ∞

−∞
dλei|b|λ

qµ⊥
λ2

(γ − 1

γ
)

=
−4Gm1m2π

|β|
(γ − 1

γ
)b̂ (3.27)

We can see that although in momentum space, gravity in (3+1) dimension or in (2+1) looks

like they have similar physical properties, in position space, they look different. That is,

we can see that for gravity in (3+1) dimension, the scattering impulse is proportional to

the inverse of the impact parameter (1
b
), but for gravity in (2+1) dimension, the scattering

impulse is independent of the magnitude of the impact parameter (b).
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Chapter 4 Chern-Simons term and

Anyon impulse

Now we are going to see how to calculate the impulse of anyon. For electrodynamic

Lagrangian in (2+1) dimension, apart from the Maxwell kinetic term, we can also have

another term kϵµνρAµFνρ added to the Lagrangian, which is called the Chern-Simons term.

We will illustrate the solutions of the equations of motion of this Lagrangian has arbitrary

spin and use these equations of motion to calculate the scattering impulse which is written

in D. J Burger, W. T. Emond, and N. Moynihan’s ”Anyons and the Double Copy”[2].

The electrodynamic Lagrangian added a Chern-Simons term is

L = − 1

4e2
FµνF

µν + kϵµνρAµFνρ (4.1)

where k is the Chern-Simons level number. Add AµJ
µ to this Lagrangian, and calculate

the equations of motion with source,

∂νF
µν − ke2ϵµνρ∂νAρ = Jµ (4.2)

The total charge associated with anyon is

Q =

∫
d2xJ0 =

∫
d2x∂iEi − ke2

∫
d2xϵij∂iAj = 4πq − ke2Φ (4.3)
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where Φ is the magnetic flux. We see that the anyon can carry both electric charge and

magnetic flux. Therefore, if we add a Chern-Simons term to the Lagrangian, each charged

particle will be attached to magnetic flux. Attaching amagnetic flux will infect the angular

momentum of particles. In quantum mechanics, the angular momentum operator in an

electromagnetic field is

L̂ = ϵij r̂i[p̂j − qAj] (4.4)

where r̂i and p̂i are position and momentum operator respectively. And since

∮
C

A · dl = Φ (4.5)

The magnitude of magnetic vector potential is

|A| = Φ

2πr
(4.6)

and the magnetic vector potential is in the direction perpendicular to its position vector r.

We can now write down the angular momentum operator in polar coordinate

L̂ = −i∂θ − q
Φ

2π
(4.7)

The wave function of this system is composed of the eigenfunction of its Hamiltonian

operator. Since this system is rotationally invariant, [Ĥ, L̂] = 0, the Ĥ and L̂ share the

same eigen function. The angular part of eigenfunctions ψn is

ψn(θ) ∝ einθ (4.8)
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Since

|ψn(0)|2 = |ψn(2π)|2 (4.9)

n must be an integer or half-integer.

Under a rotation of angle θ = π

ψn(θ + π) = eiπL̂ψn(θ) = ei(πn−
1
2
qΦ)ψn(θ) (4.10)

IfΦ ̸= 0, the interchange of a two-particle state will pick up e−iqΦ other than±1. Therefore

the spin of this wave function can be an arbitrary number.

Since we have seen that the solutions of the equations of motion of the Lagrangian

containing Chern-Simons term have arbitrary spin, we can then use this equation of motion

to calculate the impulse of the anyon[1].

Suppose a scalar particle with charge Q1 and moving at the velocity u1 probes an

anyon with charge Q2 and magnetic flux Φ2. By Ampère’s circuital law

∇×B = J +
∂E

∂t
(4.11)

In this system, there is no change of the electric field term, so the current of anyon is

Jµ
2 = Q2u

µ
2δ

(2)(r) + ϵµνρ∂νu2ρΦ2δ
(2)(r) (4.12)

Put the current (4.12) into the equation (4.2), we can see the equation of F µν is

(ηµρ∂ν +
ke2

2
ϵµνρ)Fνρ = Q2u

µ
2δ

(2)(r) + ϵµνρ∂νu2ρΦ2δ
(2)(r) (4.13)
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Define m = ke2, and write down equation (4.13) in terms of the dual vector field

F̃ µ ≡ 1
2
ϵµνρFνρ

(mηµν + ϵµνρ∂ρ)F̃ν = (Q2u
µ
2 + ϵµνρ∂νu2ρΦ2)δ

(2)(r) (4.14)

To derive the electromagnetic tensor in momentum space, we know

(mηµα + ϵµαρ∂ρ)(mηαν + ϵανλ∂
λ)F̃ ν

= (ϵµαρϵανλ∂ρ∂
λ +mϵµαρ∂ρηαν +mηµαϵανλ∂

λ +m2δµν )F̃
ν (4.15)

The right hand side of equation (4.15) is

(ϵµαρϵανλ∂ρ∂
λ +mϵµαρ∂ρηαν +mηµαϵανλ∂

λ +m2δµν )F̃
ν

= [−(δµν δ
ρ
λ − δρνδ

µ
λ)∂ρ∂

λ + 2mϵµ νρ∂
ρ +m2δµν ]F̃

ν

= [(−∂2)δµν + ∂ν∂
µ + 2mϵµ νρ∂

ρ +m2δµν ]F̃
ν (4.16)

Choose a gauge such that ∂µF̃ µ = 0

(ϵµαρϵανλ∂ρ∂
λ +mϵµαρ∂ρηαν +mηµαϵανλ∂

λ +m2δµν )F̃
ν

= [(−∂2)δµν + 2mϵµ νρ∂
ρ +m2δµν ]F̃

ν (4.17)

Combine equation (4.17) and (4.14), we can get

(∂2 +m2)F̃ µ = (mηµν − ϵµνρ∂ρ)J2ν (4.18)

Express the current in momentum space,

Jµ
2 (q) = (Q2u

µ
2 + ϵµνρiqνu2ρΦ2)δ(q · u2) (4.19)
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Then we can write the dual vector tensor in momentum space as

F̃ µ(q) =
δ(q · u2)
q2 +m2

(Q2(mu
µ
2 − iϵµνρu2νqρ) + iΦ2(q

µ(u2 · q)− uµ2q
2)

+ imΦ2ϵ
µαβqαu2β) (4.20)

The electromagnetic field tensor is

Fµν(q) = ϵµνρF̃
ρ =

δ(q · u2)
q2 +m2

[Q2(−iu2µqν + iu2νqµ +mϵµνρu
ρ
2)

+ iΦ2ϵµνρ(q
ρ(u2 · q)− uρ2q

2) + imΦ2(qµu2ν − qνu2µ)] (4.21)

Plug the F µν(q) into equation (2.3), the scattering impulse is

∆P µ
1 =Q1

∫
d̂3qδ(u1 · q)δ(u2 · q)eiq·b

× (iqµ(Q2 +mΦ2)(u1 · u2) +mQ2ϵ
µνρu1νu2ρ − iΦ2ϵ

µνρq2u1νu2ρ)

q2 +m2
(4.22)

Use the Schouten identity[10] with the convention ϵ(a, b, c) = ϵµνρaµbνcρ and

ϵµ(a, b) = ϵµνρaνbρ

aµϵ(b, c, d) = ϵµ(c, d)(a · b)− ϵµ(b, d)(a · c) + ϵµ(b, c)(a · d) (4.23)

The impulse (4.22) can be written down as

∆P µ
1 =Q1

∫
d̂3qδ(u1 · q)δ(u2 · q)eiq·biqµ

× [
((Q2 +mΦ2)(u1 · u2)− Φ2ϵ(u1, u2, q))

q2 +m2
− imQ2ϵ(u1, u2, q)

q2(q2 +m2)
] (4.24)

where qµϵ(u1, u2, q) = ϵµ(u2, q)(q ·u1)−ϵµ(u1, q)(u2 ·q)+ϵµ(u1, u2)q2 and in the impulse

(107), by delta functions δ(u1 · q) and δ(u2 · q), we can neglect the (u1 · q) and (u2 · q)
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terms.

Use relation (1.33), the scattering amplitude is

Ā(0)(P1, P2 → P1 + q, P2 − q)

=
4((Q1Q2 +mQ1Φ2)(P1 · P2)−Q1Φ2ϵ(P1, P2, q))

q2 +m2
− i4mQ1Q2ϵ(P1, P2, q)

q2(q2 +m2)
(4.25)

Similar to the calculation of scattering amplitude in the (2+1) dimension, we need to check

whether the h̄ dependence will cancel out.

First, we can useGauss’s law to see the dimension of chargeQ in the (2+1) dimension.

∮
c

E · n̂ds = Q (4.26)

where E is the electric field. From (4.26), we can know the magnitude of the electric field

in the (2+1) dimension is

E(r) =
Q

2πr
(4.27)

The dimension of charge Q isM1/2.

Next, we can use Φ =
∫
d2xϵij∂iAj to find the dimension of magnetic flux Φ. The

action S divided by h̄ is dimensionless, so from the action for electromagnetic field in the

(2+1) dimension,

S = −
∫

d3x
1

4
FµνF

µν (4.28)

We can know the dimension of Aµ in the (2+1) dimension isM1/2. Therefore, the dimen-

sion of magnetic flux Φ is

[Φ] =M1/2 · L (4.29)
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For the scattering amplitude (4.25), the dimension of the term Q1Q2(P1·P2)
q2+m2 and

the term mQ1Q2ϵ(P1,P2,q)
q2(q2+m2)

are M , so there is no need to add any h̄. On the other hand, the

dimension of the term mQ1Φ2(P1·P2)
q2+m2 and the term Q1Φ2ϵ(P1,P2,q)

q2+m2 areM2/L, so they must be

multiplied by 1/h̄. However, remember that we also need to restore h̄ in each q and m,

the q andm in the numerator for the two terms will restore a h̄ which cancels out the 1/h̄.

Finally, we can see as expected, that all h̄ cancel out, so we can indeed use relation

(1.33) to match the scattering amplitude of anyon from the scattering impulse.
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Chapter 5 Discussion

In [6], we see that we can derive the scattering impulse from the scattering amplitude.

Next, for electromagnetism and gravity in the (3+1) dimension, we see that we can derive

the scattering amplitude from the scattering impulse. Therefore, we can use the relation

(5.1) between scattering impulse and scattering amplitude to find the scattering amplitude

in two special cases in the (2+1) dimension.

∆P µ =
1

4m1m2

∫
d̂4q̄δ̂(u1 · q̄)δ̂(u2 · q̄)eib·q̄iq̄µĀ(0)(P1, P2 → P1 + q̄, P2 − q̄) (5.1)

For gravity in (2+1) dimension[4][2], we find that the leading component of scattering

amplitude (5.3) looks similar to gravity in (3+1) dimension (5.2).

For gravity in (3+1) dimension

Ā(0)(P1, P2 → P1 + q, P2 − q) = 16πG
(P1 · P2)

2

q2
(5.2)

For gravity in (2+1) dimension

Ā(0)(P1, P2 → P1 + q, P2 − q) = 32Gπ
(P1 · P2)

2 − (m1m2)
2

q2
(5.3)

If we treat the mass term as the zero component of the momentum in the (3+1) dimension,

they look the same.
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However, the scattering impulse in position space in different spacetime dimensions

looks different.

The scattering impulse of gravity in (3+1) dimension (5.4) depends on the magnitude

of impact parameter by 1
|b| .

∆P µ =
2Gm1m2

|β|
γ
bµ

b2
(5.4)

But the scattering impulse of gravity in the (2+1) dimension doesn’t depend on the mag-

nitude of the impact parameter.

∆P µ =
−4Gm1m2π

|β|
(γ − 1

γ
)b̂ (5.5)

In the final part, we use relation (5.1) to match the scattering amplitude of anyon from the

classical impulse[2].

Ā(0)(P1, P2 → P1 + q, P2 − q)

=
4((Q1Q2 +mQ1Φ2)(P1 · P2)−Q1Φ2ϵ(P1, P2, q))

q2 +m2
− i4mQ1Q2ϵ(P1, P2, q)

q2(q2 +m2)
(5.6)
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