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Abstract

User-generated content video quality assessment (UGC-VQA) is aimed at predict-
ing the perceptual quality of user-generated videos without reference. Currently, most
works focus on the general type of user-generated videos with unknown authentic distor-
tion. Several hand-crafted and deep-learning methods have been developed to achieve
high performance. Nevertheless, these models have diverse performances when evaluat-
ing the perceptual quality of UGC videos with enhancement effects, making the solution to
the UGC-VQA task flawed. In this work, we propose a model-agnostic two-stage train-
ing strategy that includes a pre-training stage to train a dual encoder architecture and a
fine-tuning stage that trains a lightweight fusion network to predict the perceptual quality
of enhanced videos. We demonstrate that our solution can be extended to a more uncon-

strained setting on general UGC-VQA datasets.

To capture the synthetic effects accompanied by enhanced videos, we present a learning-

by-degrading approach with a data amplification method to quantify the impact of various
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distortion types on the perceptual quality of videos. Specifically, we impose multiple

UGC-related degradation to extend the size of an existing video dataset and leverage a

well-trained MLLM to produce pseudo-scores for pre-training the newly generated dis-

torted data. Furthermore, we build a Siamese network that learns the degradation with

pairwise input of the same distortion type. The backbone network weights are frozen

when fine-tuning downstream data to reduce computation complexity. A lightweight

global weighted fusion network is trained to capture the additional information during

fine-tuning. We demonstrate the proposed framework’s effectiveness and weaknesses by

evaluating the largest video enhancement dataset with various categorized enhancement

approaches. Furthermore, we suggest some future works that ameliorate our proposed

method.

Keywords: Video quality assessment, Synthetic Distortion, Siamese Network, Video

enhancement
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Chapter 1 Introduction

1.1 Introduction

No-reference video quality assessment problem (NR-VQA) is an emerging research
field that assesses the perceptual quality of the video without a pristine one. As an NR-
VQA sub-task, user-generated content video quality assessment (UGC-VQA) estimates
videos’ quality mainly generated by unprofessional users. It poses much more challeng-
ing settings as they suffer from mixed and complex types of distortion like compression,
transcoding, and transmission distortions[5 1, 64]. Moreover, the same amount of distor-
tion may have a different impact on video quality based on the semantic content involved
[23], suggesting that semantic information is not only as crucial as distortion but also

facilitates the measurement of the existence and extent of distortions [6].

While the UGC-VQA problem has become the primary focus of the NR-VQA re-
search area, there is a pressing need for more research on evaluating the quality of en-
hanced videos generated by users. Compared with original content generated by users
naturally, enhanced videos are those with enhancement effects like color transformation,
deblurring, deshaking, and super-resolution to improve the overall quality of the original
content. Since the additional effects are imposed synthetically, we categorize this form of

data as synthetically generated to distinguish them from the original one.
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Most previous studies with synthetically generated datasets were conducted on im-
ages instead of videos. In particular, researchers on image quality assessment (IQA)
built and relied on synthetically generated image datasets that contain groups of images
with a reference and different distorted variants. Each image contains a mean opinion
score(MOS) rated by multiple experimenters [24, 39, 45]. However, these datasets mainly
comprise synthetic distortions that undermine perceptual experience. Moreover, the re-
ferred objects are filmed in unnatural scenes, making them unsuitable for real-world appli-
cations. To fulfill the research of UGC-VQA on video enhancement with synthetic format,
a recently proposed video enhancement dataset VDPVE [11] from the NTIRE 2023 chal-
lenge collected real-world videos filmed by diverse users and devices and utilized video
enhancement techniques to produce 1211 enhanced videos. VDPVE is by far the most
comprehensive enhanced video dataset with quality scores. In addition, most deep learn-
ing models, especially those with non-transformer backbones, have experienced a signif-
icant drop in performance when evaluating enhanced videos [ 1], underscoring the need
for a more comprehensive approach to measure the quality of both ordinary and enhanced

videos.

In this paper, we propose DEGRAVE, a learning-from-DEGRAding strategy for
Video Enhancement, to complement the existing quality assessment methods. Inspired by
the success of [48], we adopt a simple yet effective convolutional neural network (CNN)
architecture to handle the feature extraction and output the predicted mean opinion score
(MOS) via a fully connected layer. The flexibility of the architecture allows the evaluation
of both images and videos. To learn the difference between the original and the one with
additional effects, we propose a Siamese architecture [3] with a weights-shared encoder

to grasp the quality difference between input features and adopt EfficientNet [50] as the
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backbone network for its efficiency and prediction accuracy.

According to [10], the lack of extensive annotated data has hindered data-driven
deep-learning models like CNNs from learning good representations for NR-IQA and NR-
VQA tasks. Hence, we introduce a data amplification strategy that imposes synthetic dis-
tortions on the largest VQA dataset, LSVQ [64], to train a degradation-sensitive network.
To make our solution applicable to real-world scenarios, we consider 18 distinct synthetic
distortion types divided into 6 distortion groups defined by the KADID dataset [24]. Each
distortion type comes with 5 degrees, indicating the severity of the degraded effect. Given
the rapid development and the auto-generating ability of large-language models (LLM) in
assessing the perceptual quality of images and videos [60, 60], we incorporate a well-
trained LLM that produces pseudo mean opinion scores (pMOS) for synthetically gener-
ated data. Through our data amplification strategy, we expand the original dataset to 90

times larger, thus avoiding the problem of over-fitting.

Extensive experiments show that our proposed DEGRAVE achieves promising re-
sults on the video enhancement dataset VDPVE under the overall settings compared to
state-of-the-art NR-VQA baselines. Due to the inherent limit of the adopted frame ex-
traction and data generation framework, our model shows weak correlations when input
videos are enhanced by the deblurring effect. The proposed architecture can also be ap-
plied to general UGC video datasets with moderate resolution. On the other hand, our
model lacks robustness when evaluating downstream datasets with significant domain
shifts, suggesting that a more fine-grained and comprehensive approach is required to bear
such an impact. We conclude that the prediction performance of the proposed learning-
from-degrading strategy is susceptible to distortion types and degrees during pre-training.

Learning to model distortions without label data like [ 1, 70] may be more appropriate for

3 doi:10.6342/NTU202403836
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unseen and authentic effects.
The contributions of this work can be summarized as follows:
* We propose DEGRAVE, a data amplification and training pair generation strategy,
to expand the training data that is applicable to existing VQA databases.

* We introduce a learning-from-degrading framework for predicting the quality of

enhanced video and achieve promising results on the largest video enhancement

dataset VDPVE.
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Chapter 2 Related Work

2.1 General UGC-VQA models

Defined by [51], the UGC-VQA problem contains videos filmed by crowdsourced
users with blended types of distortion. In addition to artifacts, semantics is crucial as well
when modeling the UGC-VQA problem [58]. Classical approaches like TLVQM [20]
and VIDEVAL [51] rely on handcrafted features to evaluate video quality. RAPIQUE
[52] utilizes the quality-aware scene statistics features and deep CNN to extract semantics
features of UGC videos. Nevertheless, these models either do not consider semantics or
extract semantics features inefficiently, which results in reduced accuracy of UGC videos.
Recently, deep-learning-based models have shown their capability of capturing complex
relationships between perceptual quality and video features. VSFA [23] uses a pre-trained
CNN model to extract the semantic features and uses a gated recurrent unit (GRU) net-
work to model the temporal relationship between the semantic features of video frames.
SimpleVQA [48] extracts 2D frames and video chunks from a video to form the spatial
and temporal features respectively, and passes them to separate encoders for prediction. It
manifests the ability of simple CNN backbones like ResNet to generate suitable features
for UGC-VQA tasks. Wu et al. [61] propose an improved version of SimpleVQA by
replacing the 2D network with Swin Transformer V2 [27]. To reduce computation com-

5 doi:10.6342/NTU202403836
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plexity, FAST-VQA [57] introduces a novel computation-efficient approach that samples
fragments from video frames as input for the transformer backbone. Based on FAST-VQA,
DOVER [58] utilizes an aesthetic and a technical branch to generate features and separated
prediction scores, then obtains the overall score through a predefined weight. Leveraging
datasets from diverse aspects, DOVER outperforms other deep learning-based models by

a clear margin on existing UGC-VQA datasets.

However, when evaluating enhanced video datasets like VDPVE, the existing mod-
els fail to maintain their prediction accuracy, regardless of the selection of backbone net-
works. Among these methods, FastVQA stands out with its top performance [11]. On
the other hand, SimpleVQA shows less tolerance for videos with enhancement effects,
especially those with color, contrast, and brightness. The diverse performance of deep-
learning VQA models on videos with synthetic enhancement underscores the necessity
for a more dedicated strategy. In response to this need, we introduce a novel method in
this paper for video enhancement that utilizes a simple CNN backbone and a lightweight

fusion network to predict the quality of enhanced videos.

2.2 Video Enhancement UGC-VQA models

Driven by the recent VQA challenge on video enhancement [25], several studies
have been proposed to assess the perceptual quality of enhanced user-generated videos.
TB-VQA [61] utilizes a Swin Transformer backbone and a SlowFast network to extract
spatial and motion features respectively. The author proposes a novel data augmentation
approach that samples video frames equally across the temporal domain. SB-VQA [16]
incorporates the sampling method and the attention network of FAST-VQA [57] with a

6 doi:10.6342/NTU202403836
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dual branch structure that calculates weights and scores for each patch. Zoom-VQA [71]
introduces a frame alignment strategy and a patch attention module on top of a CNN back-
bone that calculates the quality score per video frame. Besides, the paper deverages the
fragment sampling approach of FAST-VQA and a transformer-based network to capture
the temporal information. Although existing UGC-VQA models for video enhancement
achieve a consistent performance between standard and enhanced UGC-VQA datasets,
most of the proposed architectures rely on transformer-based networks like Video Swin
Transformer for better precision and thus require heavy computation. In this work, we
leverage a lightweight network with an efficient CNN backbone for feature extraction and

achieve similar performance with transformer-based baselines.

2.3 Synthetic and Authentic distortion datasets

Existing image and video quality assessment databases can be categorized as full-
reference (FR) and no-reference (NR) settings. FR databases [4, 11, 17, 21, 24, 34, 38,
, 44,45, 53] consist of groups of contents, with each group containing a pristine object
and a batch of objects with numerous degradation or enhancement effects. Due to the
high cost of producing pristine content, the scale of the FR datasets is generally tiny, with
less than 100 reference objects. Blurriness, noise, and compression artifacts are the most
common distortion types for FR-IQA datasets, while FR-VQA datasets mostly contain
compression artifacts and transmission errors. Since the imposed effects’ type and severity
are controlled and not presented in the original content, researchers view these datasets as

synthetically generated and classified as synthetically-distorted.

On the other hand, NR settings suffer from unknown and intermixed types of distor-
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http://dx.doi.org/10.6342/NTU202403836

tion and are widely applied to images and videos [12, 14, 15, 28, 35, 46, 56,64]. Without
references, NR setting is generally considered to be more challenging than FR for feature
extraction and quality prediction. These types of datasets are, therefore, categorized as
authentically-distorted. In this paper, we impose multiple UGC-related synthetic distor-
tions on the NR-VQA dataset LSVQ for pre-training and select VDPVE as the primary
benchmark of the proposed architecture. Since our training procedure excludes pristine
content, all selected criteria and results reported in section 4 are conducted under NR set-

tings.

LIVE-FB Large-Scale Social Video Quality (LSVQ) is the most extensive video qual-
ity assessment dataset by far, containing around 40,000 crowdsourced videos. Due to its
scale, most recent VQA models, such as SimpleVQA and DOVER, pre-train their back-
bone networks on LSVQ for better initial 2D embeddings. Aside from previously pro-
posed VQA databases that involve only raw videos with scattered distortion generated
authentically, VQA Dataset for Perceptual Video Enhancement (VDPVE) collected 184
original user-generated and pristine high-quality videos from existing video datasets that
contain certain degrees of distortion, then imposed various enhancement methods to ob-
tain about 1,200 enhanced videos, each with a perceptual quality score as ground truths.
Specifically, VDPVE divided all videos into three sub-datasets depending on the enhance-
ment approach for a more fine-grained study. It is also worth noting that there is no direct
relationship between terms like enhanced video and distorted video and the perceptual
feeling of them. Some distortion and enhancement types with moderate degrees on video

are preferred over those with slight and heavy degrees, and vice versa.
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24 VLM and LLM for VQA

Since the publication of CLIP [40], vision-language model (VLM) has become the
catalyst of quality assessment tasks. As the pioneer in harnessing CLIP for perceptual
quality tasks, CLIP-IQA [54] defined a binary text template with positive and negative se-
mantics to generate quality scores accordingly. LIQE [69] took advantage of CLIP through
a multi-task training strategy to predict image quality by visual-text similarity. MaxVQA
[59] incorporated existing VQA models with frozen CLIP encoders to strengthen the

model’s explainability.

With the surging development of multi-modal large language models (MLLMs), re-
searchers started incorporating MLLMs into quality assessment tasks for better prediction
and explainability. DepictQA [66] leveraged MLLMs to compare a set of images with tex-
tual description under full-reference quality assessment setting. Likewise, Q-bench [60]
utilized MLLMs to generate the predicted quality score based on the output probability
of specific tokens. To complement the previous studies, Q-ALIGN [60] employed the
text rating levels proposed by [43] and calculated the score similarly to Q-bench. In addi-
tion, Q-ALIGN adopted a newly-published MLLM mPLUG-OwI2 [63] as the backbone
network that accepts an input video as sequence of input images, thereby allowing the uni-
fication of image and video quality assessment tasks into a single model. To leverage the
flexibility and robustness of MLLMs, we apply Q-ALIGN as the pseudo-label generator

on our proposed dataset to avoid human annotation.
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Chapter 3 Methodology

In this work, we exploit the rich information associated with the largest UGC-VQA
dataset, LSVQ, to form a new image dataset with enhanced video frames that serves as our
dataset for pre-training. We design a dual encoder structure consisting of a degradation
and an aesthetic branch. We then fine-tune a global weighted fusion network on various

downstream datasets to verify the effectiveness of the proposed strategy.

3.1 Data generation technique for UGC videos

3.1.1 Frame extraction

Our proposed approach involves a systematic process that generates distorted images
from video datasets via frame extraction and degradation. Since a video typically contains
a few hundred frames, collecting all frames from video datasets requires enormous com-
putation. To relieve such a burden, we first conduct temporal sampling with one frame per
second for every video to obtain each video with around 8 to 10 frames. We then select the

intermediate frame among all video frames to represent the whole sequence of content.
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3.1.2 Data amplification

Our proposed learning-from-degrading process is designed to simulate the complex
authentic distortions found in UGC videos. We achieve this by utilizing various synthetic
distortions through data amplification. We start by selecting 18 degradation types related
to user-generated content out of 25 types defined by KADID-10k, each with 5 degrees
indicating the severity of individual distortion from low to high. Instead of following the
original settings of KADID-10k, we adjust the parameters for some distortion types to
simulate the complex distortion filmed by users. Subsequently, we apply all degradation
to frames extracted from the previous step separately, ensuring comprehensive coverage
of the chosen degradation types. The selected distortion types, adjusted parameters, and
the relative degrees are listed in Table 3.1. This process, when applied to an original
image, generates 90 distorted images, thereby amplifying the dataset to 90 times larger.
Each image is then processed by a recently proposed MLLM Q-ALIGN that retrieves the
inferred perceptual score of the input. These scores are treated as pseudo-labels for later

training.

We apply the data amplification process with UGC synthetic distortions to the largest
VQA dataset LSVQ. After pre-processing, we get about 38,000 frames representing the
whole LSVQ dataset and apply the above amplification technique to extend the dataset to
3.42 million frames. We call this newly acquired dataset LSVQ with Synthetic Distortion
(LSVQ-SD). The degradation branch of the proposed architecture is pre-trained on the
while LSVQ-SD dataset to learn the relation between artificial degradation and perceptual

quality. The whole data generation process is shown in Fig. 3.1.
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Table 3.1: Degradation groups and types for data

generation.

Degradation groups |

Degradation types

blurs

Guassian blur
Lens blur
Motion blur

Color distortions

Color diffusion
Color shift
Color saturation in HSV
Color saturation in Lab

Compression artifacts

JPEG compression
JPEG2000 compression

Noise

White noise
White noise in color component
Salt and pepper noise
Speckle noise

Brightness change

Brighten
Darken
Mean shift

Sharpness and contrast

Over-sharpen
Contrast change

User-generated videos

Frame Extraction l

Frame Selection l

Degrade
L E—
Contrast
change

User-generated video frames

low severity

> high severity

Gaussian
blur

JPEG
compression

Color
diffusion

ey g |
A -

- A 7
A P e B

_@M ' '!1 ’a a

: : F i
> D T AN e A
g By rE S

.~ PRl

Figure 3.1: Data generation with synthetic distortion from LSVQ dataset.
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3.2 Two-stage training strategy

Following SimpleVQA, we generate video features via a 2D frame and a 3D video
chunks encoder, respectively, and then fuse the retrieved features via concatenation. The
predicted quality score is obtained through a global weighted fusion network. This archi-

tecture allows a more flexible design of encoders and avoids heavy computation.

It is worth noting that the difference between an enhanced video and its original
lies solely in the visual effect of each frame. On the other hand, the sequential order
of frames remains identical for both videos. Given this property, we leave the motion
branch unchanged during the entire process and train only the spatial network. Specifi-
cally, we split the entire process into a two-stage training procedure. First, we pre-train
the 2D network separately without any 3D features involved. Due to different optimiza-
tion objectives, we separate the learning process of the low-level visual features and the
high-level semantics representations by designing a dual-branch structure that consists of
a degradation branch and an aesthetic branch with two separate trained EfficientNets as
backbones. The architecture allows the model to encode video frames within different
dimensions. After pre-training on large amounts of data, the model can transfer its knowl-
edge to downstream data. Therefore, we build a lightweight weighted fusion network to
fuse the features from different dimensions for outputting the final score and keep the pa-
rameter of the pre-trained network unchanged. The motion part is added and kept frozen
during this process. By offloading most of the training workload onto a separate step,
the well-trained encoders can serve as flexible modules that transfer their knowledge to

numerous downstream tasks with minor computational complexity.
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3.2.1 Pre-training stage of the Aesthetic branch

The aesthetic encoder captures the overall perceptual feeling of the image by training
on the massive image aesthetic assessment (IAA) database, AVA, that collects around 250k
images with subjective perceptual scores ranging from 1 to 10. Each score class contains
numerous votes that represent the popularity of the images. The ground truth distribution
of ratings can be expressed as a probability mass function p = [ps,, ..., psy] Where s;
denotes the ith score bucket. Since a simple regression loss cannot capture the broad
information of separate score classes, we follow the training settings and loss function
from NIMA [49] that minimize the normalized Earth Mover’ s Distance (EMD) between
the predicted and the ground-truth probability distribution of the image quality score and
set the output class of the backbone network to 10 for classification. The EMD loss can

be expressed as follows:

EMD(p,p) = (% > " |CDF, (k) — CDFﬁ(kz)V) (3.1)

k=1

where CDFp(k) equals Zle ps, that represents the cumulative distribution of the
kth score bucket for the label and /N is the number of score classes. For AVA dataset, N
is set to 10. Following NIMA, we set r to 2 to penalize the Euclidean distance between

two distributions.

3.2.2 Pre-training stage of the Degradation branch

We propose a learning-from-degrading framework (see Fig. 3.3) that utilizes train-
ing pair generation to model the influence of various types of degradation on the percep-

14 doi:10.6342/NTU202403836


http://dx.doi.org/10.6342/NTU202403836

tual quality of images. Instead of directly supervising the output feature with a ground-
truth score and regression loss per image, the model receives a pair of images as input,
minimizing the MSE loss of the difference between image features and the respective
pseudo perceptual scores (pMOS) generated by a well-trained MLLM. We utilize the aug-
mented dataset LSVQ-SD obtained by the previous step as the training target. As shown
in Fig. 3.2, for each image with the same distortion type &k and different distortion de-
grees [, [ = 1...L, we pair every two images as input and calculate the ground-truth score
accordingly. Given that LSVQ-SD contains L severity degrees per degradation, we thus

expand the number of trainable pairs to C'(L, 2), which is two times larger than the original

training set when L = 5.

Degradation k

15t order 2" order 3rd order 4% order
difference difference difference difference
pMOS: 4.01
2 | 1 s
XL ' Xx T '
Produce pHOS: 3.04 X, xj, | b, X,
Well-trained pMOS pMOS ! ' g :
generator > |::> 1 2 i P gt 5 |
o e i X3, X} : bl Xp !
k | | [ I
' L S
x3 x4 1 ]
pMOS: 3.21 k k X3 x5,
3 5 ] b e
- g X Xk
=]
k Xy b I S
pMOS: 2.36
X,
[Ef training pairs
pMOS: 1.81

Figure 3.2: Training pair generation.
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Figure 3.3: Pre-training stage of the degradation branch.

3.2.3 Fine-tuning stage

After pre-training on large amounts of data, the proposed model can quantify the

distortion and robustly evaluate the overall perceptual quality of a given image. There-

fore, we leave the weight of both 2D encoders unchanged and tune a lightweight weighted

fusion network after the pre-trained structure. The fusion network is responsible for ad-

justing the weight of the pre-trained features and transforming the output feature to the

predicted score. To deal with video input, we generate the motion feature for every video

via a well-trained 3D encoder and leave the encoder weights unchanged. We adopt the

temporal averaging pooling approach adopted by SimpleVQA, which takes the average

of all predicted scores of video frames as the predicted quality of the video for its sim-

plicity and accuracy. The model is supervised by the combination of MAE and Rank loss

defined as follows. The fine-tuning process is shown in Fig. 3.4

The rank loss measures the relative quality of contents that is widely applied in [26]

16
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as a learning-from-ranking technique. We utilize rank loss defined as follows to evaluate

the videos and images with similar quality.

Ly, =max(0,]Q: — Qs — e(Qi, Q) - (Qi — Qy)) (3.2)
" N 17 QZ Z Qj

e(Qi, Q) = (3.3)
1, Q< Qj

where i and j are indexes within the dataset and ¢ # j. Q; and Q; are the ground truth
and predicted perceptual scores of the ith content, respectively. /N equals the total number
of content. The content can be either video or image that depends on our fine-tuning

datasets. The final loss can be expressed as follows:

N
1 .
Luap = ; Qi — Qil (3:4)
1 N N
L'I‘ank = m Z Z Lj”]ank (35)
i=1 j=1
L= LMAE +A- Lrank (36)

where A is an hyper-parameter to be balanced between two losses.

Previous studies have shown that CNN-based deep-learning models can benefit from

combining local and global features to form a more fine-grained prediction on assessing
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perceptual quality [36, 71]. Hence, we extract four feature outputs from our backbone
network’s different layers of CNN blocks. To align the size of each feature, we perform
average pooling that adjusts all height and width sizes for each feature to the last dimension
of the network. Additionally, to handle the global information more accurately, we add
a non-local block (NLB) [55] that performs the general form of self-attention without
altering the feature size. Finally, we calculate the output quality score via a weighted
prediction head composed of two separate fully connected layers. From [62], the weighted
network is responsible for calculating scores and weights within the feature. This approach
assumes that people have diverse perceptual experiences for different regions of the input
content, thus forming a region of interest (ROI) commonly adopted in object detection
tasks. The final output score is retrieved by multiplying each weight and score pair within
the height and width dimensions. For incorporating 3D vectors into the weighted fusion
network, Zoom-VQA [71] uses a separate motion head to calculate the quality score along
the temporal dimension and compute the mean of spatial and temporal quality scores as the
predicted score. Instead, we assume that all 2D positions in the video sequence share the
same 3D embedding and concatenate the spatial and motion features before the weighted
heads. We call all trainable modules during fine-tuning that is shown in Fig. 3.5 the global

weighted fusion network.
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Chapter 4 Evaluation

4.1 Experimental Setup

4.1.1 Pre-training

We adopt EfficientNet-B0 pre-trained on ImageNet [5] as the backbone network of
both branches for its efficiency and accuracy. For the optimizer, we select Adam with a le-
7 weight decay. The CosineAnnealingLLR scheduler is adopted for both networks to adjust
the learning rate every epoch by simulating a one-fourth period of the cosine function. We
set the training batch size to 32 for the aesthetic branch and 64 for the degradation branch,
respectively. We train the aesthetic branch for 100 epochs with a learning rate of Se -4
and apply the early stopping with a ten epochs threshold. We observe that the network
ceases to improve for around 30 training epochs. The aesthetic network is trained and
evaluated on the training and evaluation set of the AVA dataset with around 250k images.
For the degradation branch, the number of epochs is set to 20 with the same learning rate
as the aesthetic network. Due to the limited computing power, we selected one-tenth of
the original LSVQ-SD dataset to form a smaller database with 535k training pairs and
136k evaluation pairs as the training and evaluation set of the network. To implement the

shared-weight encoders of the degradation branch, we build a single encoder and retrieve
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a pair of images and labels for the data loader. As a result, the actual number of input
images and ground-truth scores for the degradation network is two times the batch size.
The input image is first resized to 256x256 and randomly cropped to 224x224 for both
networks. A random horizontal flip is added to the input of the aesthetic branch to prevent

over-fitting.

4.1.2 Fine-tuning

For fine-tuning video databases, we extract one frame per second for each video
to serve as 2D inputs for the pre-trained network. To handle temporal information, we
follow the settings of SimpleVQA, which takes a pre-trained SlowFast R50 [£] to extract
the motion feature of the video. The video resolution is predetermined to 2242224 for
the motion module for both the training and testing stages. The weights of the motion
branch are trained on the Kinetics 400 dataset [ 8] and are frozen during fine-tuning. To
save computing, we pre-extract the motion features for downstream datasets. As for the
global weighted fusion network, we set a lower learning rate of 5e -5 that decays by
a factor of 0.9 for every two epochs. We train the network for 20 epochs with a batch
size of 8. The resize and crop criteria are similar to the pre-training phase, except we
perform a single center crop during testing. We also fine-tune the entire network on 2D
databases without the motion part involved. Unlike videos, we allow the parameters of
the pre-training network to alter with image inputs due to a more significant domain shift.
The other settings remain identical for both 2D and 3D fine-tuning.
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4.2 Databases and evaluation metrics

4.2.1 Evaluation metrics

In this paper, the Pearson linear correlation coefficient (PLCC) and Spearman rank-
order correlation coefficient (SRCC) are adopted to evaluate the performance of VQA
models. PLCC measures the linearity between the predicted and the ground-truth scores.
The PLCC is defined as follows, where s; and s; represent the predicted and the ground
truth quality scores of i-th video, respectively, and 1., indicates the average of scores of

s;. N 1s the number of the testing images.

SN (85— p,) (Bs — 15,

PLCC =
\/Zij\il(si - IuSi)2 Zz]\il(él - lu§i>2

4.1)

Like PLCC, SRCC calculates the monotonicity between the predicted and the ground-
truth scores. Let d; demote the difference between the ranks of i-th image in predicted and

ground truth scores, SRCC can be formulated as follows:

65N, &
SRCC =1-— —&=L 4.2
N(N2 —1) +2)

SRCC and PLCC range from -1 to 1, with 1 indicating the best performance of the
evaluated algorithm and -1 as the worst. Following [2], we map the model’s output score

by a four-parameter logistic function to get the final score for calculating PLCC and SRCC.
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4.2.2 Evaluation databases

Emphasizing our model’s strength, we leverage its flexibility to conduct a com-
prehensive evaluation of image and video quality assessment databases. This approach
provides a more holistic view of the model’s performance and potential impact on the
field. We select six datasets, including PIPAL, TID2013, and KADID-10k, as benchmarks
of the image database and VDPVE, KoNViD-1k, and LIVE-VQC for video. Designed
specifically for video enhancement, VDPVE serves as the primary benchmark dataset for
this work. Originated from the NTIRE 2023 Quality Assessment of Video Enhancement
Challenge, VDPVE contains 1,211 videos with three main categories of enhancement ap-
proaches that include eight types of color, brightness, and contrast, five types of deblur-
ring, and seven types of deshaking enhancement methods. All the original videos are

obtained from video datasets with diverse settings.

Apart from video, we extend our experiment to image enhancement tasks like image
restoration (IR) and select the more challenging PIPAL [17] as the performance criterion
to verify the generalizability of the proposed strategy. PIPAL is a newly proposed IQA
dataset during the NTIRE 2022 IQA contest [13] that includes not only traditional types
of synthetic distortion but also image restoration (IR) algorithms based on hand-crafting,
deep-learning, and generative adversarial networks (GANs). PIPAL consists of 250 ref-
erence images with 116 distortions each, making it the largest and the most challenging
IQA dataset with around 29k images. On the contrary, TID2013 and KADID-10k con-
tain images with degraded effects with the synthetic settings and, therefore, match the
proposed learning-from-degrading scheme. These two datasets are the most commonly
adopted IQA datasets for evaluation with multiple types of synthetic distortion like blurri-
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ness, noise, contrast change, and compression artifact. The former contains 3,000 images
with 25 pristine images and 24 distortion types, while the latter consists of 10,125 images

with 81 pristine images and 25 distortion types.

We also evaluate the robustness of our model on the UGC-VQA datasets LIVE-VQC
and KoNViD-1k that contain 585 and 1,200 unprocessed videos with intermixed authentic
distortions, respectively. These datasets are commonly tested under UGC-VQA baselines
with standard settings. The absence of referenced videos and the complexity of the dis-

tortion makes them convincing benchmarks.

4.2.3 Evaluation criteria

For each dataset, we fine-tune the training set and report the result on the testing
set. Experiments show that the SRCC and PLCC fluctuate within a range during testing.
Hence, we perform the five-fold cross-validation that splits the whole database into five
non-overlapping subsets and assigns one subset as the validation set and the rest for train-
ing during fine-tuning to ensure data integrity and fix the training and validation ratios.
We execute five-fold cross-validation 20 times for VDPVE and shuffle the entire dataset
randomly for each validation. For the rest of the datasets, we perform ten random shuffles
directly and split the training and testing sets accordingly. We also keep the random seed

fixed for reproducibility.

Regarding the training-testing set split criteria, it is worth noting that our experiment
shows a massive performance gain when splitting the whole database directly on VD-
PVE and KADID-10k according to the predefined ratio. The same content with diverse
effects may appear in both training and testing sets, which fails to preserve the content in-
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dependence between both sets and disobey the real-world situation. Therefore, we apply
different protocols when splitting the synthetic and authentic datasets. For the enhance-
ment and the synthetic distortion datasets, we follow the original evaluation settings of
VDPVE, which splits the dataset by the amount of pristine content. On the other hand, we

follow the standard setting that divides the authentic distortion datasets by their total size.

4.3 Performance Comparison

Table 4.1: Comparison of DEGRAVE v.s. NR-VQA benchnarks on VDPVE. The best
and second-best results are bold and underlined, respectively. We refer to baseline
performances reported in [37].

Method Subset A Subset B Subset C Overall
ethods

SRCCT PLCCt | SRCCT PLCCt | SRCCT PLCCt | SRCCT PLCC?
NIQE [33] 0.3555 0.4485 | 0.5830 0.6108 | 0.0540 0.2079 | 0.1401 0.2411

VIIDEO [32] 0.1468 0.3484 | 0.0854 0.3387 | 0.2701 0.3104 | 0.0646 0.2574
V-BLIINDS [42] 0.7214 0.7691 | 0.7028 0.7196 | 0.7055 0.7104 | 0.7106 0.7301
TLVQM [20] 0.6942 0.7085 | 0.5619 0.5940 | 0.5457 0.6001 | 0.5861 0.6499

BVQA [22] 0.5477 0.5596 | 0.3986 0.4271 | 0.3403 0.3872 | 0.4655 0.4807
VSFA [23] 0.4803 0.4912 | 0.5315 0.5696 | 0.6564 0.6911 | 0.5282 0.5473
ChipQA [7] 0.4572 0.4756 | 0.4347 0.3753 | 0.7173 0.7759 | 0.5639  0.5285

CONVIQT [30] 0.7411 0.7639 | 0.7066 0.7102 | 0.6678 0.7196 | 0.7052 0.7297
FAST-VQA [57] 0.7022  0.7147 | 0.7398 0.7706 | 0.8356 0.8677 | 0.7196 0.7644
RankDVQA-NR [9] | 0.6620 0.6703 | 0.6623  0.6527 | 0.5524 0.4872 | 0.6197 0.6177
Q-align [60] 0.7425 0.7455 | 0.7075 0.7112 | 0.7667 0.7858 | 0.7396 0.7439
DEGRAVE (ours) | 0.7455 0.7652 | 0.6764 0.6991 | 0.7511 0.7822 | 0.7467 0.7563

Table 4.1 summarizes the performance of the average SRCC and PLCC on different
VQA benchmarks and our proposed method. To conduct a comprehensive comparison,
we include handcraft features and deep-learning methods that utilize either CNN or trans-
former backbone. We also include the performance of the selected pseudo mean opinion
score generator Q-align by directly inferring different subsets of VDPVE without addi-
tional fine-tuning. We demonstrate the full testing result for four different settings on
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Fig. 4.1. Note that each subset is trained and tested on the dataset containing only videos
with the same enhancement methods. Overall means that the entire training and testing

sets are involved.

As shown in the table, our proposed DEGRAVE reaches comparable performance
among all baselines. Although FAST-VQA performs the best on the entire subsets B and
C, which contain deblurring and deshaking videos, respectively, the proposed architec-
ture surpasses FAST-VQA by a clear margin on the aggregated performance of the overall
dataset, showing its strong ability to measure the perceptual experience of a bunch of
enhanced videos with intermixed effects. Furthermore, the proposed method slightly out-
performs Q-align when it comes to the overall setting, suggesting that our training pair
generation and pairwise training strategy can improve the performance of the existing
VQA architecture. On the other hand, our method exhibits weak correlations on videos
enhanced by the deblurring effect (Subset B). The frame-extraction strategy may neglect
some video frames containing distortions by extracting only one frame per second. More-
over, although our data generation process includes three different types of blurriness, the
model is insensitive to some motion blur in the enhanced videos, causing it to overrate. As
Fig. 4.2 and Fig. 4.3 show, the model misjudges the later video that contains motion blur
in the 3rd and 9th frames with a higher quality score. The result indicates that blurriness
should be handled more appropriately under the synthetic settings, especially along the

temporal dimension.
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Figure 4.1: Testing results on VDPVE.
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(c) 3rd frame (d) 4th frame

I cip, 1L m_ﬁn

(1) 9th frame (j) 10th frame

Figure 4.2: Sample video from the worst performance round of VDPVE subset B with
less distortion (MOS: 60.3555, Predicted: 19.5222)
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(d) 4th frame

(1) 9th frame (j) 10th frame

Figure 4.3: Sample video from the worst performance round of VDPVE subset B with
more distortion (MOS: 31.1508, Predicted: 21.5552)
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Table 4.2: Comparison of DEGRAVE v.s. CNN-based NR-VQA benchmarks on
UGC-VQA datasets. The best and second-best results are bold and underlined,
respectively. We refer to baseline performances reported in [58].

LIVE-VQC KoNViD-1k
SRCC? PLCC? | SRCCT PLCC?
TLVQM [20] 0.799  0.803 | 0.773  0.768
VIDEVAL[51] | 0.752  0.751 | 0.783  0.780
RAPIQUE[52] | 0.755 0.786 | 0.803  0.817

Methods

VSFA [23] 0773  0.795 | 0.773  0.775
SimpleVQA [48] | 0.725  0.768 | 0.808  0.817
Q-align [60] 0.773 0.830 | 0.876  0.888

DEGRAVE(Ours) | 0.737 0.777 0.838 0.845

Aside from the video enhancement dataset, we also test the model’s ability to gen-
eralize UGC-VQA datasets. From Table 4.2, we validate that the proposed architecture
can be applied to general VQA tasks. Nevertheless, the difference in video resolutions of
the two datasets causes our model to showcase a diverse performance. We perform well
on KoNViD-1k with 540p resolution for all videos. On the other hand, since we resize
the pre-training UGC video dataset to 256x256, which is unsuitable for handling high-
resolution videos in LIVE-VQC, the model’s prediction ability is undermined and fails
to catch up with the baselines. To test the robustness of the 2D parts of our network, we
further evaluate two IQA datasets with synthetic distortions. The results are listed in Ta-
ble 4.3. Unlike most CNN-based NR-IQA methods that fine-tune the backbone networks
on the target datasets directly, we train our dual encoders on two datasets with real-world
scenes in advance, thus dragging the quality of the generated features for IQA datasets

with unnatural content.

To test the cross-dataset ability for the proposed network, we apply our training pairs
generation strategy on KADID-10k and TID2013, respectively. We train our model on
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Table 4.3: Comparison of DEGRAVE v.s. SOTA CNN-based NR-IQA benchnarks on
synthetic distortion IQA datasets. The best and second-best results are bold and
underlined, respectively. We refer to baseline performances reported in [60, 62].

TID2013 KADID-10K
SRCC? PLCC? | SRCCT PLCC?
DIIVINE [41] 0.567  0.643 | 0435 0413
BRISQUE [31] | 0.571  0.626 | 0.567  0.528
MEON [29] 0.824  0.808 | 0.691  0.604
DBCNN [67] 0.865 0816 | 0.856  0.851
MetalQA [72] 0.868 0.856 | 0.775  0.762
P2P-BM [65] 0.856  0.862 | 0.849  0.840
HyperIQA [47] | 0.858  0.840 | 0.845  0.852
Q-align [60] NA NA | 0919 0.918
DEGRAVE(Ours) | 0.829  0.850 | 0.841  0.849

Methods

these newly produced training pairs and evaluate the entire PIPAL training set without
further fine-tuning. Since PIPAL contains GAN-based image restoration algorithms not
included in the synthetic distortions set of KADID-10k and TID2013, the model needs
more training samples to adapt to the new domain, which is absent under the cross-dataset
setup. Moreover, our learning-from-degrading strategy is highly sensitive to the degrada-
tion type and degree. Therefore, as 4.4 shows, the proposed DEGRAVE fails to endure

the domain shift over different databases.

4.4 Ablation Studies

We conduct ablation studies on the proposed architecture to test the effectiveness of
the separate modules. All experiments are conducted under one random shuffle on the VD-
PVE dataset and are trained and tested on three subsets and the entire dataset with different

enhancement methods, respectively. The median SRCC and PLCC of each setting are re-
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Table 4.4: Comparison of DEGRAVE v.s. NR-IQA benchmarks on PIPAL under the
cross-dataset setup. The best result is bold. The subscripts “s” and 'r” stand for
models trained on KADID-10K and KonlQ-10K, respectively. We refer to baseline

performances reported in [69].

Methods SRCC1t

NIQE [33] 0.153
DBCNN,. [67] 0.413
DBCNN; [67] 0.321
PaQ2PiQ [65] 0.400
MUSIQ, [19] 0.450
UNIQUE [68] 0.444
LIQE [69] 0.478
DEGRAVE(Qurs) | 0.307

ported. Notice that we take the median correlations after one five-fold cross-validation
as the performance of the original architecture. From Table 4.5, we demonstrate that our
original settings perform the best among all three subsets and the overall dataset. When
evaluated on the pre-training branch separately, the degradation branch that learns the syn-
thetic distortions directly correlates the perceptual quality better than the one with artistic
ratings except for videos with deblurring enhancement. This supports our conclusion from
4.1. When replacing the global weighted fusion network with a simple prediction head,
the model fails to capture the comprehensive information of the input and is prone to er-
roneous predictions. The ablation studies manifest the validity of all essential parts of our

proposed DEGRAVE.

Table 4.5: Ablation study on VDPVE. The best results are bold.

Subset A Subset B Subset C Overall
SRCCt PLCC?T | SRCCT PLCCt | SRCCtT PLCC?T | SRCCT PLCCt
Degradation branch only | 0.5173  0.6138 | 0.5078 0.6234 | 0.5334 0.6279 | 0.6715 0.6682

Aesthetic branch only | 0.4775 0.5178 | 0.6232  0.7490 | 0.3152 0.4509 | 0.6481 0.6756
w/o fusion network 0.7409 0.7690 | 0.5329 0.6506 | 0.6152 0.6200 | 0.7309 0.7405
DEGRAVE 0.7866 0.7894 | 0.7201 0.7195 | 0.7120 0.7619 | 0.7610 0.7596

Methods
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Chapter S Conclusion

In this work, we propose a learning-from-degrading strategy, DEGRAVE, to predict
the perceptual quality of the enhanced UGC videos. We manually add UGC-related syn-
thetic distortions on LSVQ and generate training pairs with pseudo labels. Furthermore,
we design a two-stage training framework with a CNN backbone that first pre-trains on
the pseudo-label pairs and fine-tunes the target dataset. We also design a lightweight
global weighted fusion network for prediction. Through our experiment, the proposed ar-
chitecture can predict the quality of enhanced UGC videos with intermixed enhancement
approaches. The model also applies to general UGC-VQA datasets that contain unknown

authentic distortions with median resolution.

On the other hand, due to the computation overhead, we extract one frame per sec-
ond for each video, causing some distortions to be overlooked by the model. We also
find that blurriness, especially motion blur, can not be captured entirely within the spa-
tial domain. Besides, the limited types of degradation restrain the network from shifting
to new domains with divergent distortions. To summarize, our strategy helps predict the
perceptual quality of enhancement video datasets within the specific domain. Compared
to existing approaches, we achieve a decent performance with an efficient backbone net-
work that reduces the computational burden. Furthermore, our strategy is flexible enough

to handle various types of enhancement effects. Nevertheless, we believe the proposed
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framework can be improved by extending the degradation domain to a more realistic set-
ting via unsupervised techniques like contrastive learning. We leave the incorporation of
more advanced techniques to our proposed method a future work. We hope-our work can

facilitate the research on VQA and video enhancement.
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