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摘要  

 在現代資安架構中，隨機數產生器（Random Number Generator, RNG）的可靠

性對於保護加密運算及提升系統對抗網路威脅的能力具有關鍵性影響。傳統設計

普遍依賴單一熵源，當系統部分遭受攻擊時，尤其是在一般執行環境容易被外部攻

擊的情境下，隨機數品質易受影響，進而削弱整體系統安全性。 

 

  本論文提出一套結合可信任執行環境（Trusted Execution Environment, TEE）

與豐富執行環境（Rich Execution Environment, REE） 的組合型隨機數生成框架。

此架構於 TEE 與 REE 中分別部署獨立的 RNG，並設計多種混合機制來融合兩

個來源之隨機數。藉由跨域熵源混合與冗餘保護設計，即使其中一個熵源遭受破壞，

最終隨機數輸出仍可保持高不可預測性，同時透過 TEE 的硬體隔離特性，進一步

鞏固整體系統的安全韌性。 

 

  本研究使用 NIST SP800-22 隨機性測試套件進行評估，結果顯示所提出之組

合型 RNG 在隨機性品質上能維持或優於單一熵源。為驗證其實務應用性，本架

構亦整合至無人載具（Unmanned Aerial Vehicle, UAV）系統環境中，展示其於資源

受限邊緣設備中提升隨機數安全性的效果。 

 

關鍵字：隨機數產生器、熵源組合、可信任執行環境、無人機 
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ABSTRACT 

Random number generators (RNGs) play a crucial role in cryptographic operations 

to establish cybersecurity defense. Traditional designs of RNGs, however, typically rely 

on a single entropy source, causing critical vulnerabilities to the overall system security. 

 

To address the aforementioned challenge, this study proposes a combinatorial RNG 

scheme protected by a hybrid architecture combining a hardware-protected Trusted 

Execution Environment (TEE) and the conventional Rich Execution Environment (REE). 

In this framework, Independent RNGs are separately deployed in the TEE and REE 

domains, respectively, where their outputs are combined securely in TEE through selected 

techniques, including XOR operations, SHA-256 hashing, AES encryption, or chaining 

mechanisms. The hardware isolation enforced by TEE further protects the critical entropy 

sources as well as the combinatorial operation. By leveraging cross-domain entropy 

mixture and redundancy, the framework ensures that even if some entropy source is 

compromised, the final output remains adequately random. A benefit of such a framework 

is that some entropy sources can be placed outside TEE to save the critical security 

resources, without compromising the overall security level. 
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Extensive evaluations using the NIST SP800-22 randomness test suite verified that 

the proposed combinatorial RNG improves randomness quality compared to single-

source RNGs. Moreover, the proposed approach was realized on a companion computer 

prototype for an unmanned aerial vehicle (UAV) to validate practical applicability, 

showcasing its potential to enhance randomness security in resource-constrained edge 

devices. 

 

 

Keywords: Random Number Generators, Entropy Source Combination, Trusted 

Execution Environment, Drones / Unmanned Aerial Vehicle (UAV) 
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Chapter 1

Introduction

1.1 Background and Motivation

Trusted Execution Environment (TEE) technology [1] plays a critical role in

today’s embedded systems. It provides a hardware-isolated environment that helps

protect sensitive operations from potential attacks coming from the Rich Execution

Environment (REE). This separation allows critical security functions to run inde-

pendently of general-purpose applications, improving the overall resilience of the

system.

TEE has already been widely used in securing cryptographic operations, such

as key storage, authentication, and secure boot [2]. However, its application in ran-

dom number generation is still relatively uncommon. Random Number Generators

(RNGs) are a foundational component in system security, and their quality directly

affects the strength of cryptographic protocols [3]. Traditionally, most embedded

platforms and Unmanned Aerial Vehicle (UAV) systems rely on a single entropy

source, often located entirely within the normal operating system. This leaves the

system vulnerable—if that source is compromised or becomes predictable, the RNG’s

output can degrade, weakening system security.

If an attacker can predict or influence the REE-based RNG, the generated

random numbers may lose their unpredictability. This puts cryptographic opera-

1
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tions, and potentially the entire system as well, at risk. This is the key motivation

for designing an RNG architecture with better statistical randomness that spans

both the TEE and REE domains, combining their strengths to enhance resilience

against such threats.

To demonstrate the practicality of the proposed design, this study also im-

plemented the full application-layer features on a TEE-enabled SoC. These include

asymmetric signing, symmetric encryption/decryption.

1.2 Problem Statement

In modern UAVs and IoT systems, RNGs are the foundation of crypto-

graphic security. However, most embedded platforms still rely on a single entropy

source—typically located in the REE. According to NIST SP 800-90B (Recommen-

dation for the Entropy Sources Used for Random Bit Generation) [4], RNG security

depends on the unpredictability of its entropy source. If that source is compromised

or behaves abnormally, the output loses its cryptographic strength. To improve

resilience, NIST SP 800-90C (Recommendation for Random Bit Generator (RBG)

Constructions) [3] recommends combining multiple independent entropy sources to

ensure unpredictability even if some sources fail.

Meanwhile, ARM TrustZone provides hardware-level isolation via its Trusted

Execution Environment (TEE), separating secure operations from potentially un-

trusted applications. This makes TEE an ideal place to host a trusted entropy

source. This combination allows for the construction of a RNG scheme with better

statistical randomness.

Given this context, the research focuses on two core questions:

• How to design a lightweight yet secure RNG architecture that mixes entropy

doi:10.6342/NTU202501452
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across TEE and REE, suitable for UAVs and other constrained devices?

• How to ensure the mixed entropy remains secure and unpredictable, even if

part of the system is compromised?

To answer these questions, the research designed and implemented a dual-

domain hybrid RNG system on ARM TrustZone, and evaluated its randomness using

the NIST SP 800-22 statistical test suite to verify both feasibility and security.

1.3 Achievements

The key achievements of this study encompass:

• Identified Better Combination(s) in Randomness on Entropy Sources

Multiple entropy combination approaches, including XOR, SHA-256, AES-

based, and chaining-based approaches, were evaluated between TEE and REE.

According to the results of NIST SP 800-22 statistical tests, the chaining-based

mixing method demonstrated superior randomness quality and stability. This

finding confirms the effectiveness of entropy source fusion and highlights spe-

cific methods that outperform conventional single-source designs in terms of

both statistical reliability and structural resilience.

• Developed a scheme for allocating RNG Combinations to TEE/REE

Zones

An entropy mixing scheme was developed to allocate entropy sources across

the trusted TEE and untrusted REE environments. The scheme ensures that

even if the REE entropy source is compromised, the final output remains sta-

tistically unpredictable due to secure mixing with the TEE-provided entropy.

doi:10.6342/NTU202501452
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The architectural assumptions, security boundaries, and attacker models were

clearly defined to verify the feasibility.

• Designed and implemented the above RNG Combination under TEE/REE

using Commercially off-the-shelf (COTS) products

The proposed dual-domain RNG system was implemented on a Raspberry Pi

3B+ running OP-TEE, without requiring any custom hardware. Key security

functions, including ECDSA digital signatures, AES encryption/decryption,

and secure key updates, were realized entirely within the Secure World, the

TEE realization of ARM TrustZone. This practical implementation highlights

the compatibility of the proposed method with publicly available open-source

platforms, demonstrating its deployability in real-world embedded security

applications.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 reviews related

works on random number generation, entropy mixing techniques, TEE technologies,

secure mechanisms in embedded system and UAV security challenges. Chapter 3

describes the proposed system architecture and threat model, outlining the assump-

tions, attack scenarios, and design goals. Chapter 4 elaborated and evaluated typical

entropy mixing methods in randomness based on the results of NIST SP 800-22 test

suite. Chapter 5 details the experiments regarding how to realize and test the

proposed solution on a Raspberry Pi 3B+ using OP-TEE, including key security

functions like digital signatures, AES encryption, and key updates. Finally, Chap-

ter 6 concludes with a summary of contributions, insights on the system’s strengths

and limitations, and directions for future work.

doi:10.6342/NTU202501452



Chapter 2

Related Works

2.1 RNG Research and Development

Random number generators (RNGs) play a foundational role in cyberse-

curity systems, with applications ranging from key generation and encryption to

authentication, digital signatures, and secure communication protocols [5]. With

the proliferation of embedded systems and Internet of Things (IoT) devices, pro-

viding high-quality randomness in resource-constrained environments has become a

key design challenge.

2.1.1 Types and Applications of RNGs

RNGs are generally classified into two categories: true random number gen-

erators (TRNGs) and pseudorandom number generators (PRNGs). TRNGs rely

on physical phenomena, such as thermal noise, oscillator jitter, or SRAM power-

up states, to generate high-entropy outputs [6]. While they offer excellent unpre-

dictability, TRNGs are often sensitive to environmental factors and can be costly to

implement. On the other hand, PRNGs are based on algorithms and initial seeds

to generate large sequences of random numbers. Common implementations include

AES-CTR-based deterministic RNGs (CTR-DRBG) and SHA-based constructions

(HASH-DRBG) [7]. However, the randomness of PRNGs heavily depends on the

quality of the seed, and weak or predictable seeds can compromise system security.

5

doi:10.6342/NTU202501452



6

Embedded platforms and IoT devices face additional challenges such as lim-

ited access to high-entropy sources, unstable entropy pools during startup, and lack

of continuous entropy harvesting [8, 9]. According to NIST SP 800-90B, a secure

RNG should include entropy source monitoring, ongoing health checks, and multi-

ple entropy inputs [4]. Without these mechanisms, systems become vulnerable to

risks like low-entropy seeds, repeated seeds, and predictable sequences, ultimately

weakening encryption and key protection [10].

2.1.2 Development of Combinational RNGs

Combinational RNGs, as a special class of entropy allocation strategies, aim

to integrate multiple entropy sources or RNGmodules to enhance statistical strength

and system resilience. To mitigate issues like entropy shortage or single-point fail-

ure, researchers and practitioners have proposed the concept of combinational RNGs,

which enhance randomness, increase period length, and improve resistance against

attacks. Early examples include the Combined Linear Congruential Generator

(CLCG) proposed by Wichmann and Hill [11], and Multiple Recursive Generators

(MRGs) introduced by LÉcuyer [12], which improve cycle length and distribution

properties by combining multiple Linear Congruential Generators (LCGs) or Linear

feedback shift register (LFSRs) [13–15].

However, these linear constructions often exhibit predictable linear artifacts

and struggle to pass sensitive randomness tests [16]. To address this, recent de-

signs incorporate nonlinear combinations using techniques such as XOR mixing,

encryption-based post-processing (e.g., AES, SHA), nonlinear feedback shift regis-

ters (NFSRs), or chaotic systems. For example, Ramasubramanian et al. [17] de-

signed a chaotic hybrid RNG with nonlinear terms and multilayered bit rotations,

achieving significant entropy improvement. Xie et al. [18] proposed a TRNG that

doi:10.6342/NTU202501452
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combines SRAM power-up states with NFSRs, demonstrating strong resistance to

differential power analysis (DPA) attacks.

From a standards perspective, NIST SP 800-90C explicitly recommends com-

bining multiple entropy sources and applying post-processing (e.g., hashing or XOR)

to maintain unbiasedness and decorrelation [8]. Similarly, Dodis et al. [19] intro-

duced the concept of entropy reconciliation in fuzzy extractor designs to enhance

randomness in noisy entropy inputs. Furthermore, Heninger et al. [20] demonstrated

real-world vulnerabilities in embedded systems due to reused or insufficient entropy

sources, highlighting the importance of high-quality entropy mixing.

In summary, combinational RNGs have evolved from simple linear opera-

tions to complex hybrid strategies involving multiple nonlinear operations, physical

entropy sources, and post-processing techniques. Following this trajectory, this re-

search proposes four cross-domain mixing mechanisms (XOR, SHA-256, AES, and

chained mixing) within a TEE/REE architecture to enhance both the security and

applicability of RNGs in resource-constrained platforms such as UAVs.

2.2 Hardware-Based and Trusted Execution Security Mech-
anisms

In both embedded systems [21] and general-purpose platforms, the need

for security has driven the development of specialized hardware and processor-

integrated technologies. These mechanisms create isolated environments to protect

sensitive operations from a potentially compromised host system. This section re-

views two primary approaches: discrete hardware modules, such as the Trusted Plat-

form Module (TPM) [22] and Secure Element (SE) [23], and processor-integrated

architectures known as Trusted Execution Environments (TEEs).

doi:10.6342/NTU202501452
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2.2.1 Hardware-Based Security Add-Ons

Hardware-based security modules are physically distinct chips that act as a

root of trust, operating independently of the main processor to provide a secure

vault for cryptographic operations.

The Trusted Platform Module (TPM), standardized by the Trusted

Computing Group (TCG), is a cryptoprocessor that provides hardware-based key

storage and platform attestation by measuring system boot components [24]. The

Secure Element (SE) is another tamper-resistant chip, common in mobile and

IoT devices for applications like storing payment credentials. The GlobalPlatform

standard is crucial for managing applications within an SE.

However, both TPM and SE require discrete chips, which increases cost and

design complexity, making them often impractical for low-cost or highly integrated

platforms such as UAVs. This limitation has driven the adoption of processor-

integrated alternatives.

2.2.2 Trusted Execution Environments Within Modern Processors

A Trusted Execution Environment (TEE) offers such an alternative

by creating a secure, isolated area within the main processor to protect the confi-

dentiality and integrity of sensitive code and data. This approach provides strong,

hardware-enforced isolation without extra components. The GlobalPlatform orga-

nization provides standard APIs to facilitate the development of portable trusted

applications.

A prominent example is ARM TrustZone [25], which partitions the system

into a Secure World (for a Trusted OS and Trusted Applications) and a Normal

World (for a standard OS like Linux). A hardware-enforced Secure Monitor controls

doi:10.6342/NTU202501452
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transitions between worlds, preventing the Normal World from accessing secure

resources. Open-source frameworks like OP-TEE [26] enable the practical use of

TrustZone for secure key storage and cryptographic tasks.

Similarly, Intel Software Guard Extensions (SGX) [27] allows applica-

tions to create encrypted memory regions called enclaves. These enclaves protect

code and data even from a compromised OS or hypervisor. A key feature of SGX is

remote attestation, which allows an enclave to cryptographically prove its integrity

to a remote party.

In summary, TEEs provide a compelling, cost-effective solution for security.

This research, therefore, adopts ARM TrustZone with OP-TEE on a Raspberry Pi.

This approach offers a practical and scalable path for implementing the proposed

secure RNG and cryptographic functions on a resource-constrained UAV platform

without requiring additional security chips.

2.3 Security and Regulations in UAV Systems

2.3.1 General Security Challenges in UAVs

As unmanned aerial vehicles (UAVs) are increasingly deployed in logistics,

surveillance, and public safety, their cybersecurity vulnerabilities have drawn signifi-

cant attention. UAVs are often exposed to hostile environments and are susceptible

to various threats, including GPS spoofing, signal jamming, and data intercep-

tion [28]. Additionally, their limited computational and energy resources make it

difficult to implement full-scale security mechanisms. Addressing these constraints

requires lightweight cryptographic solutions, secure key storage, and reliable system-

level protections to ensure the integrity of command and control links, mission data,

and onboard firmware. These challenges underscore the need for lightweight, secure
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architectures like TEE-based systems that can offer isolated key storage and random

number generation capabilities without requiring extra hardware.

2.3.2 Regulatory Requirements and Remote ID Implementations

In the United States, the Federal Aviation Administration (FAA) enforces

RID requirements through the Remote ID Final Rule [29], which mandates that all

commercial drones periodically broadcast identification, location, and altitude data.

While the Final Rule serves as the legal basis, the ASTM F3411-22 standard [30]

provides the technical foundation, specifying protocol formats, broadcast mecha-

nisms (such as Wi-Fi NAN or Bluetooth), and optional digital signature features

for securing RID data.

Japan adopts a more lightweight approach by mandating the use of symmetric-

key cryptography. Specifically, UAVs are required to use AES-128-CCM to compute

a Message Authentication Code (MAC) for RID message integrity [31]. This design

reduces computational burden and is suitable for embedded platforms with limited

resources. Taiwan, in the future, is expected to adopt a similar policy, as out-

lined in the draft amendment to Article 99-10 of the Civil Aviation Act [32], which

mandates the integration of RID modules capable of real-time broadcasting and

symmetric authentication.

Regardless of whether asymmetric or symmetric cryptography is used, secure

key storage remains the cornerstone of RID security. Traditionally, secret keys

are stored in hardware-based secure elements such as Trusted Platform Modules

(TPMs) or Secure Elements (SEs). However, these solutions require additional

hardware integration and cost, limiting their applicability in cost-sensitive or highly

integrated platforms like drones or IoT devices. Recent research has thus explored

using ARM TrustZone to implement Trusted Execution Environment (TEE)-based
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key protection, providing similar isolation guarantees within the System-on-Chip

(SoC) and eliminating the need for dedicated secure hardware.

Such an approach aligns with the regulatory trajectory of countries like Japan

and Repblic of China, Taiwan, which emphasize low-power, embedded-friendly se-

curity designs in future RID deployments. To meet these emerging mandates and

scalability challenges, this work proposes a TEE-based dual-domain RNG architec-

ture that not only enhances the security of random number generation but also has

the potential to integrate secure key management within SoC platforms—offering

practical value for implementing RID in compliance with regional regulations.
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Chapter 3

Methodology

This chapter details the methodology for designing and implementing the hybrid

TEE-REE combinatorial random number generator. The discussion begins with

the core of the framework: four distinct approaches for mixing entropy from the

TEE and REE domains. Following the description of these techniques, the chapter

establishes the theoretical groundwork for the design, including the rationale for

adopting a hybrid model with partial trust. To provide a clear security context,

the specific trust assumptions and the adversarial threat model are then formally

defined. The chapter concludes by presenting how the dual-domain entropy sources

are integrated and securely processed to generate the final random output.

3.1 Combinatorial RNG Design

This section describes four mixing approaches used to construct combina-

torial random number generator (RNG): XOR operation, SHA-256 hashing, AES

encryption, and Chaining with counter-based enhancement. The main objective of

these techniques is to maintain high statistical randomness and ensure the unpre-

dictability of the final output. In addition to the construction, each mixing method

is individually analyzed to assess its strengths and potential weakness.

In the design, both RNGs independently generate entropy through either

12

doi:10.6342/NTU202501452



13

PRNG or TRNG. The mixing process is assumed to take 256-bit random values

from both sides and generates a 256-bit output.

3.1.1 XOR Mixing and Corresponding Properties

This method directly mixes the two entropy sources using bit-wise XOR

operator. Let RA and RB be two original source, ROUT be the mixing result and ⊕

be the bitwise XOR operation. The mixing method is listed in Equation 3.1.

ROUT = RA ⊕RB (3.1)

XOR mixing is the most lightweight method among the four. Its key strength

lies in preserving output unpredictability even when one of the entropy sources is

partially compromised. Specifically, if one input source provides uniformly ran-

dom bits and is independent from the other, the XOR result remains uniformly

distributed.

Morever, observe that as long as one entropy source is uniformly random and

independent from that of the other one, XOR effectively neutralizes bias. Conse-

quently, the final output remains statistically unbiased even if the one entropy is

skewed or adversarially influenced, as showcased below.

Let Xn, Yn ∈ {0, 1} be independent random bits from TEE and REE

respectively. Suppose Xn is uniformly distributed, i.e., P(Xn = 1) = 0.5,

and Yn is an arbitrary bit with bias w ∈ [0, 1], i.e., P(Yn = 1) = w. Define

Zn = Xn ⊕ Yn. Then the output Zn is uniformly distributed:

P(Zn = 1) = 0.5 · (1− w) + 0.5 · w = 0.5
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Notably, since XOR is a linear and reversible operation, knowledge of one of

the sources and the mixed result allows the adversary to trivially recover the TEE’s

RNG output by computing

RTEE = ROUT ⊕RREE.

3.1.2 SHA-256 Concatenation Mixing

This method concatenates the two sources into a 512-bit input, and then

applies SHA-256 to extract and compress the randomness. Let RA and RB be two

original source, ROUT be the mixing result, || be the bitwise concatenation operator,

and SHA256(X) be the SHA-256 hash function applied to input X, outputs 256

bits. The mixing method is listed in Equation 3.2.

ROUT = SHA256(RA ||RB) (3.2)

SHA-256, as one of the most widely used hashing function, is commonly

adopted in entropy extractions and post-processing tasks due to its avalanche ef-

fect [33] and therefore preimage resistance [34]. By concatenating RTEE and RREE,

the 512-bit input is compressed into a 256-bit output.

Although SHA-256 is widely regarded as a cryptographically secure hash

function, using it as a deterministic extractor has known limitations. When one

input is adversarially chosen or fixed, and the output is observable, a single SHA-

256 operation may not suffice to hide structure or correlations in the input. Prior

works [35] have shown that deterministic extractors, such as fixed hash functions,

fail to guarantee entropy extraction under such conditions.
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3.1.3 AES Encryption-Based Mixing (ECB Mode)

This method uses AES-256 in Electronic Codebook mode (ECBmode), where

the 256-bit random number from one source serves as the encryption key. The 256-

bit random number from the other one is used directly as the plaintext input. The

resulting 256-bit ciphertext is then the mixed output. Let RA and RB be two original

sources, ROUT be the mixing result, and AES256K(P ) be the AES-256 encryption

in ECB mode with 256-bit key K on 256-bit plaintext P . The mixing method is

listed in Equation 3.3.

ROUT = AESRA
(RB) (3.3)

The AES-256 mixing method uses one source as the encryption key and the

other source as the plaintext. The security of AES under ECB ensures that even

small changes in plaintext or key yield entirely different ciphertext outputs. This

offers strong diffusion [36], with the security grounded in block cipher unpredictabil-

ity. Furthermore, the AES-based mixing benefits from the whitening effect [37] of

the block cipher, where input patterns and entropy bias are diffused across the entire

ciphertext as well, making the output indistinguishable from uniform random data

under standard assumptions of AES.

Notably, even when the encryption key remains confidential and inaccessible,

the AES function is inherently deterministic. This implies that if one input to the

function is fully controllable and the output is observable, an attacker can infer the

mapping between known plaintexts and ciphertexts under a fixed key. Such struc-

tural determinism fails to amplify entropy and may result in predictable patterns.

Consequently, from an entropy-combination standpoint, AES-based mixing may be
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insufficient to obscure correlations or mitigate predictability when one input is weak

or adversarially influenced.

3.1.4 Chaining with CTR-based Enhancement

This method applies two rounds of chained SHA-256 operations with coun-

ters. Let RA and RB be two original sources, ROUT be the mixing result, || be the

bit-wise concatenation operator, ⊕ be the bit-wise XOR operator, C1, C2 ∈ {0, 1}128

be 128-bit counter values that increases every operation, and SHA256(X) be the

SHA-256 hash function applied to input X. The mixing method is listed in Equa-

tion 3.4.

S0 = RA ⊕RB

H1 = SHA256(S0 ∥ C1)

S1 = H1

H2 = SHA256(S1 ∥ C2)

ROUT = H2


(3.4)

To enhance mixing quality, this method applies a two-stage SHA-256 con-

struction with counter-based domain separation. Specifically, two entropy inputs are

first combined via bitwise XOR to produce an intermediate state S1. A first hash

H1 is then computed using a 128-bit counter C1 as a domain separator, followed by

a second intermediate state S2, a second 128-bit counter C2, and thus calculate the

hash as the final output.

This two-stage construction provides stronger resilience against structural

weaknesses in either input source. By layering the hash function and using evolving

domain separators, it prevents collisions, reinforces input decorrelation, and miti-

gates the risk of output predictability—even when facing adversarially influenced
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or low-entropy inputs. While more computationally intensive than single-hash ap-

proaches, this design offers a higher assurance of entropy diffusion and output un-

predictability under repeated or adaptive attacks. This layered approach follows

the principle of domain separation [38], a technique widely used in cryptographic

constructions to prevent cross-domain interference.

3.1.5 Summary of Mixing Methods

Table 3.1 provides a summary of the four proposed mixing methods and their

mathematical formulations,

Table 3.1: Summary of Mixing Methods

Method Formula
XOR ROUT = RA ⊕RB

SHA-256 Concat. ROUT = SHA256(RA ∥ RB)
AES Encryption ROUT = AESRA

(RB)

Chaining with CTR

S0 = RA ⊕RB

H1 = SHA256(S0 ∥ C1)

S1 = H1

H2 = SHA256(S1 ∥ C2)

ROUT = H2

where

• RA ∈ {0, 1}256 is the 256-bit random number generated from source A.

• RB ∈ {0, 1}256 is the 256-bit random number generated from source B.

• ROUT ∈ {0, 1}256 is the output of the mixing process.

• || is the bit-wise concatenation operator.

• ⊕ is the bit-wise XOR operation.
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• SHA256(X) is the SHA-256 hash function applied to input X.

• AES256K(P ) is the AES-ECB-256 encryption with key K on plaintext P .

• C1, C2 ∈ {0, 1}128 are two 128-bit counter values, such as 0x...01 and 0x...02,

with increment after every operation.

3.2 Rationale for Partial Trust in RNGs

Having established the combinatorial RNG design, a fundamental architec-

tural question arises: why not place both random number generators within the

Trusted Execution Environment (TEE) for maximum security? The decision to dis-

tribute the RNGs across both the TEE and the Rich Execution Environment (REE)

is a deliberate choice, grounded in established security principles and practical trade-

offs, especially for resource-constrained platforms like UAVs. This rationale is based

on three core reasons:

• Avoiding a Single Point of Failure: The primary motivation for this

hybrid architecture is to prevent a single point of failure. By deploying RNGs

in two separate domains, the system is designed to withstand a compromise of

the REE. Even if an attacker gains full control over the REE-based RNG, the

final random output remains unpredictable due to the secure mixing with the

hardware-protected entropy source within the TEE, thus safeguarding critical

operations.

• Adherence to TCB Minimization: A core principle of secure system de-

sign is the minimization of the Trusted Computing Base (TCB). The TCB

encompasses all components of a system that must be trusted to uphold the

security policy. By placing only one RNG and the mixing logic inside the
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TEE, we keep the TCB smaller and less complex. This reduces the potential

attack surface within the secure world, simplifies formal verification, and con-

serves scarce secure resources, which is a critical consideration on platforms

with limited secure memory.

• A Flexible Trade-off between Performance and Security: This dual-

domain architecture offers a practical trade-off between performance and se-

curity. Non-security-critical applications running in the REE that require

random numbers for tasks like statistical sampling can directly and efficiently

use the REE’s RNG. This avoids the overhead of context switching into the

TEE and prevents the TEE’s high-quality entropy pool from being unneces-

sarily depleted by non-critical requests. This allows the TEE’s resources to be

preserved for operations where cryptographic security is paramount

3.3 Trust Assumptions and Threat Model

To ground the design rationale established in the previous section, this section

clarifies the system’s security assumptions and threat model. The approach is built

on the premise that securing a single entropy source—through confinement within

the TEE—can suffice to ensure strong randomness guarantees, even when the other

source is potentially compromised.

The following outlines the trust boundaries and adversarial capabilities as-

sumed throughout this work.

• TEE is trusted and secure: The secure core of the Trusted Execution Environ-

ment (TEE) and its internal Trusted Applications (TAs) are assumed to op-

erate within a hardware-isolated environment, free from known vulnerabilities

or backdoors. Initialization procedures, memory isolation, and access control
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are enforced by the processor and conform to the security levels specified by

GlobalPlatform.

• SMC mechanism and shared memory channel are access-controlled : The Se-

cure Monitor Call (SMC) interface and the shared memory channel used to

transfer data from REE to TEE are assumed to be properly configured with

appropriate permission control, preventing unauthorized access or tampering.

• The system-on-chip (SoC) hardware platform is trustworthy : The TRNG

hardware module, memory subsystem, and world-switching mechanism are

assumed to be correctly implemented.

In contrast, the adversary is assumed to possess the following capabilities:

• Full control over REE : The attacker may gain full control of the REE (e.g.,

Linux user space or kernel) through malware, kernel exploits, or system back-

doors, and can manipulate the RNG outputs generated in the REE.

• No control over TEE : The attacker cannot compromise the TEE, and has no

access to internal program logic, memory, or execution state within the secure

world.

• Passive observation of communication: The attacker can intercept data trans-

mitted via shared memory between REE and TEE (e.g., intermediate mixed

output), but cannot deduce internal state or private keys within the TEE.

• Attempts to predict final RNG output : The attacker aims to infer the final

random output from partially known or compromised entropy sources, thereby

undermining the cryptographic security of operations such as key generation

and digital signatures.
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Under these assumptions, the proposed system aims to achieve the following

security objectives:

• Resilience against compromised entropy sources : Even if the REE entropy

source is entirely compromised, the final output remains highly unpredictable.

• Preservation of statistical randomness : The mixing mechanism must ensure

statistically random outputs that pass standard randomness test suites.

Beyond software-based threats, the threat model also considers the risk of

Side-Channel Attacks (SCA). An adversary might attempt to infer secrets within

the TEE by observing physical properties such as power consumption, electromag-

netic emissions, or timing variations. This research mitigates SCA risks through its

distributed design; by not concentrating all random number generation logic within

the TEE, the secure world becomes a less viable single target for observation, mak-

ing it harder for an attacker to build a stable predictive model. Furthermore, the

choice of SHA-256 for mixing, with its fixed computational structure and strong

avalanche effect, helps resist timing and power analysis attacks.

3.4 Protecting RNGs by TEE

This study proposes a dual-source random number generation architecture

that isolates entropy sources across different security domains. The design sepa-

rates the entropy sources between the Rich Execution Environment (REE) and the

Trusted Execution Environment (TEE) to enhance both randomness quality and

system-level security.

As shown in Figure 3.1, the REE uses either built-in or software-implemented

Pseudorandom Number Generators (PRNGs) to generate random data. This data
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is temporarily stored in a designated shared memory region and passed to the TEE

via a Secure Monitor Call (SMC), which triggers a world switch. The processing is

then handled by a Trusted Application (TA) within the TEE.

REE (Normal World)

PRNG

Shared Memory

TEE (Secure World)

TRNG: TEE GenerateRandom()

Mixing Module(XOR / SHA256 / AES / Chain)

Final RNG Output

via SMC

Figure 3.1: Design of the dual-source RNGs.

The combined entropy sources are then processed by a mixing module em-

ploying one of four fusion approaches: bitwise XOR, SHA-256 hashing, AES

encryption, or a chaining-based construction. The resulting output can either

be retained within the secure domain for sensitive cryptographic use, or exported

to the general environment for broader system use, depending on application needs.

Figure 3.2 summarizes the runtime procedure, showing how entropy is retrieved

from both domains and processed using a selected mixing function F . The injection

interval n is configurable to balance security and speed.

Input: RTEE, RREE, mixing function F ∈ {XOR, SHA-256, AES,
Chaining}
Output: ROUT

1: Condition: Entropy injection is triggered every n iterations (configurable)
2: RTEE ← 256-bit entropy from TEE
3: RREE ← 256-bit entropy from REE
4: ROUT ← F(RTEE, RREE)
5: return ROUT

Figure 3.2: Dual-Domain Entropy Mixing Algorithm
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In this architecture, the two random sources are explicitly mapped to their

respective execution domains: RTEE is generated using the TEE’s internal true

random number generator via TEE GenerateRandom(), while RREE originates from

a software-based PRNG operating in the untrusted REE. These entropy inputs are

then combined within the TEE using one of the four mixing approaches described

in Section 3.1.

The mappings of the generic variables RA and RB used in earlier descrip-

tions now take on concrete roles as RTEE and RREE, respectively. For example, in

the AES-based mixing method, RTEE is used as the encryption key, ensuring that

the most sensitive input remains confined to the secure world, while RREE serves

as the plaintext. In the XOR and hash-based constructions, the mixing occurs en-

tirely within the TEE, with RREE transferred through a controlled shared memory

interface.

By enforcing all mixing operations within the TEE, the architecture en-

sures that the critical entropy path—including the internal TRNG and its post-

processing—remains inaccessible to potential REE-based adversaries. The design

leverages the asymmetric trust assumption (Section 3.3), where only one entropy

source is considered secure. The effectiveness and trade-offs of each method in this

context are summarized in Table 3.2, highlighting the balance between computa-

tional cost, entropy diffusion, and resistance to input manipulation.

This design not only preserves the security of the trusted entropy input but

also increases the overall system quality by allowing entropy mixing to tolerate

compromised or low-quality inputs from the untrusted domain.

Leftover Hash Lemma (Formal Version)
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Table 3.2: Comparison of Mixing Methods

Method Strength Computation
Cost

Potential Weakness

XOR Lightweight; Bias Neu-
tralization

Very low (1 XOR) Weak for correlated inputs;
Invertible under adversar-
ial assumption

SHA-256 Nonlinear; One-way
compression; Preimage
resistance

1 SHA-256 Vulnerable to adversarially
controlled input

AES-256 Nonlinear; Diffusion;
Whitening effect

Requires AES en-
cryption

Vulnerable to adversarially
controlled input

Chaining with
Counter

Nonlinear; Domain sep-
aration; Strong against
pattern repetition and
partial predictability

2x SHA-256 with
counter + 1 XOR

Relatively computation-
ally expensive

Let X be a random variable over {0, 1}n with min-entropy k and let m > 0.

Let h : S×{0,1}n → {0, 1}m be a 2-universal hash function. If

m ≤ k − 2 log

(
1

ε

)
,

then for S uniform over S and independent of X, we have:

δ ((h(S,X), S), (U, S)) ≤ ε,

where U is uniform over {0, 1}m and independent of S.

The min-entropy of X is defined as:

H∞(X) = − logmax
x

Pr[X = x],
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The statistical distance between distributions X and Y is defined as:

0 ≤ δ(X, Y ) =
1

2

∑
v

|Pr[X = v]− Pr[Y = v]| ≤ 1.

Leftover Hash Lemma (Formal Version)

Let X be a random variable over X and let m > 0. Let h : S ×X → {0, 1}m

be a 2-universal hash function. If

m ≤ H∞(X)− 2 log

(
1

ε

)
,

then for S uniform over S and independent of X, we have:

δ ((h(S,X), S), (U, S)) ≤ ε,

where U is uniform over {0, 1}m and independent of S.

The min-entropy of X is defined as:

H∞(X) = − logmax
x

Pr[X = x],

which measures the difficulty of guessing X (i.e., how unpredictable X is).

The statistical distance between distributions X and Y is defined as:

0 ≤ δ(X, Y ) =
1

2

∑
v

|Pr[X = v]− Pr[Y = v]| ≤ 1.

3.5 Theoretical Foundations and Security Analysis

This section aims to elaborate on the theoretical foundations of the proposed

combinatorial RNG design, clarifying the concepts of entropy, mixing, and their

relationship with established cryptographic principles.
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3.5.1 The Role of Entropy and Mixing

In the field of random number generator, entropy is the fundamental metric

for the unpredictability of a noise source. However, it must be emphasized that

the mixing methods employed in this study do not create new entropy. Instead,

mixing is a form of post-processing. Its purpose is to refine and transform the

raw data from one or more entropy sources using cryptographic functions, thereby

enhancing their statistical randomness and increasing resilience against

known weaknesses or attacks.

• XOR: The primary function of the XOR operation is to neutralize bias. As

long as one of the input streams is uniformly random and independent, the

output will remain statistically unbiased.

• SHA-256 / AES: By leveraging their non-linearity, avalanche effect, and

diffusion properties, these cryptographic primitives can decorrelate potential

structural weaknesses present in the input data.

• CHAIN: Through multiple rounds of hashing and the use of counters, this

method provides the deepest layered protection. Its multi-stage construction

offers the strongest resistance against bias and repetitive patterns.

According to the guidelines in NIST SP 800-90B, the direct measurement of

entropy is applicable to raw, unconditioned noise sources for health-check purposes.

The focus of this research, however, is to evaluate the quality of the output after

combinatorial post-processing. Therefore, employing the NIST SP 800-22 sta-

tistical test suite is the more appropriate standard for measuring the final output’s

quality.
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3.5.2 Relationship with the Leftover Hash Lemma (LHL)

The design philosophy of the CHAIN method is inspired by the Leftover

Hash Lemma (LHL) [39, 40]1 from cryptography. The LHL provides a theoreti-

cal guarantee that a source with sufficient min-entropy, when processed by a hash

function randomly chosen from a 2-universal family, will yield an output that is

statistically indistinguishable from a uniform random string.

From a functional perspective, the CHAIN method, which uses a construc-

tion like Hc(m) = SHA256(m ∥ c), can be viewed as creating a family of hash

functions indexed by the counter c. Each new value of the counter effectively

selects a new, specific function from this constructed family.

However, it is critical to distinguish this constructed family from the strictly-

defined, a-priori random hash family required by the LHL. The CHAIN method is

not a strict implementation of the LHL due to two key points:

• The underlying function is always the fixed and public SHA-256 algo-

rithm. We are not randomly selecting from a family of different algorithms,

but rather deterministically altering the input to a single algorithm.

• Consequently, this constructed family of functions, indexed by the counter,

is not proven to be 2-universal. The 2-universal property is a specific

mathematical condition on collision probabilities that standard cryptographic

hashes like SHA-256 are not explicitly designed to satisfy in this manner.

Despite this theoretical gap, this approach holds strong practical merit. The

counter serves as a powerful domain separation technique. By ensuring that each

1For a formal statement of the Leftover Hash Lemma, please refer to Appendix A.
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invocation operates in a unique ”domain” (defined by the counter), it prevents cross-

call correlations and effectively simulates the security benefits of using a new random

function for each operation. This practical application, combined with the proven

strengths of SHA-256 such as its avalanche effect and collision resistance, allows the

CHAIN method to achieve a better randomizing diffusion effect, approximating the

security goals of the LHL in a real-world setting.

This hybrid entropy model is consistent with resilient RNG frameworks such

as Fortuna [41] and NIST SP 800-90B [4], which recommend diversity in entropy

sources to withstand partial compromise. Additional support comes from studies

on entropy extraction [42] and heterogeneous entropy fusion [43], which show that

unpredictability can be preserved even when integrating inputs across different trust

boundaries, provided at least one source remains secure. Hence, both cryptographic

theory and established RNG architectures suggest that deploying only a single RNG

inside the TEE can suffice for secure entropy generation.
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Chapter 4

RNG Combination Results and Analysis

This chapter evaluates the proposed TEE/REE combinatorial RNG through sta-

tistical randomness tests and performance analysis, covering both individual and

mixed designs.

4.1 Testing Tools Overview

To evaluate the statistical quality of random number generators (RNGs),

several established test suites have been developed. This section compares broadly

used toolsets—NIST SP 800-22, Dieharder, and TestU01—in terms of their sta-

tistical rigor, computational requirements, and applicability to the purpose of this

work.

NIST SP 800-22. The NIST SP 800-22 test suite [44]comprises 15 statistical tests

designed to detect a wide range of non-random patterns in binary sequences. It is

widely adopted in cryptographic validation and hardware RNG certifications. The

suite is relatively lightweight in computational cost, making it suitable for moderate-

scale batch testing, and provides two key evaluation metrics: per-sequence p-values

and the uniformity of p-value distributions.

29
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Dieharder. Dieharder [45] is an extension of George Marsaglia’s Diehard battery

and offers a more diverse set of statistical tests. Although useful for quick validation,

the test suite includes some legacy tests with limited sensitivity to certain modern

RNG flaws. Furthermore, its documentation and interpretation criteria are less

formalized than NIST’s.

TestU01. TestU01 [46] provides the most comprehensive collection of tests, espe-

cially through its “BigCrush” battery. It is considered the gold standard in theoret-

ical RNG evaluation. However, its runtime cost is prohibitively high—BigCrush can

take several hours to complete and is overkill for most application-driven evaluation

settings. Moreover, it requires C-language integration, which limits accessibility for

certain experimental environments.

Since the goal of this study is to evaluate mixed entropy sources from both

TEE and REE domains with 128MB of output per generator, NIST SP 800-22 was

chosen as the primary test suite for this study. It offers a balanced tradeoff between

computational efficiency and statistical coverage, and is officially recommended for

cryptographic validation. [4] In particular, its per-sequence p-value evaluation en-

ables us to assess local randomness consistency within each 1MB block, while the

p-value uniformity test across multiple sequences helps assess the statistical consis-

tency of different entropy mixing approaches. These features make NIST SP 800-22

a justifiable and practical choice for the evaluation framework.

4.2 The NIST SP 800-22 Test Suite

The NIST SP 800-22 test suite is a standardized statistical toolkit developed

by the U.S. National Institute of Standards and Technology (NIST) for evaluating

the quality of random number generators. It acts as a comprehensive “randomness
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health check,” ensuring that the output from a random number generator (RNG) is

statistically indistinguishable from true randomness (as defined in section 4.2.1).

Such statistical indistinguishability is especially critical in domains like cryp-

tography, secure communications, simulations, and safety-critical systems, where

predictable patterns can lead to vulnerabilities. The test suite examines the bit-

stream using a check of 15 statistical tests, each targeting different aspects of ran-

domness such as balance, independence, and unpredictability, etc.

4.2.1 Terminology and Definitions

The following are the terms and symbols used in this context:

• Bitstream: A sequence of binary digits (0’s and 1’s) output by an RNG.

Throughout this study, each RNG produces 128 MB of output data, which is

divided into 100 blocks of bitstream each of approximately 1.3 MB for using

the NIST SP 800-22 test suite.

• True Randomness: A bitstream generated by an independent and identi-

cally distributed (i.i.d.) Bernoulli process with probability p = 0.5. Formally,

each bit follows the random variable Xi ∼ Bernoulli(0.5) and thus all bits are

unbiased, no correlation, and no deterministic pattern.

• Test Statistic: A computed numerical value (e.g., number of 1’s, length of

longest run of 1’s) used to assess randomness.

• P-value: The probability of observing a given sequence under the assumption

that the generator is truly random, with respect to the null hypothesis: “The

tested sequence is truly random”.

doi:10.6342/NTU202501452



32

• Significance Level α: A threshold for rejecting the null hypothesis of ran-

domness. The documentation suggests a feasible interval of [0.001, 0.01], and

it was set to 0.01, which is considered relatively strict.

• Pass Ratio: The percentage of test sequences that yield P-values greater

than or equal to α.

• Overall Pass Ratio (proposed): A custom-defined index that aggregates

all individual sub-test results to compute the overall success rate across the

entire NIST SP 800-22 suite. It provides a concise metric to compare the

general randomness quality of different generators.

4.2.2 Pass/Fail Criteria in SP 800-22

For each sub-test applied to m independent sequences (commonly m = 100),

SP 800-22 defines the following pass criteria:

1. Proportion of Passing Sequences: The number of sequences with P -values

≥ α should lie within the interval:

p̂ ∈

[
p̂0 − 3

√
p̂0(1− p̂0)

m
, p̂0 + 3

√
p̂0(1− p̂0)

m

]
,

where p̂0 = 1−α (typically 0.99). For m = 100, this implies at least 96 passes

are required. In this evaluation, 100 blocks of random data were generated

per RNG variant, thus m = 100. According to the NIST criteria, the pass

ratio must be at least 96 out of 100 to satisfy the minimum threshold for

randomness.

2. Uniformity of P-value Distribution: The P -values from the m sequences

should be uniformly distributed over the interval [0,1]. This is verified us-

ing a chi-squared test with 10 bins. The chi-squared value is computed and
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converted into a P-value of P-values :

Puniform = igamc

(
9

2
,
χ2

2

)
A Puniform value less than 0.0001 indicates non-uniformity and a failure of the

test.

4.2.3 Example: The Frequency (Monobit) Test

Before presenting the results, this section provides a detailed walk-through of

the Frequency test (also known as the Monobit test), one of the most basic tests in

the NIST SP 800-22 suite. This test serves as an intuitive illustration of how NIST

assesses bit-level balance in a random sequence. It evaluates whether the number of

ones and zeros are approximately equal in a given bitstream, which is a fundamental

expectation of any cryptographically secure RNG.

Procedure:

1. Let n be the length of the bitstream. Convert each bit xi ∈ {0, 1} to yi ∈

{−1,+1} via yi = 2xi − 1.

2. Compute the test statistic:

Sn =
n∑

i=1

yi

3. Normalize the statistic:

s =
Sn√
n

4. Calculate the P-value using the complementary error function:

P = erfc

(
|s|√
2

)
5. Repeat the above for m sequences and evaluate using NIST’s two-pass criteria

(proportion and uniformity).
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An Illustrative Case:

Consider a binary sequence of length n = 1,000,000 with 508,000 ones and

492,000 zeros. Then:

Sn = 508,000− 492,000 = 16,000

s =
16,000√
1,000,000

=
16,000

1000
= 16.0

P = erfc

(
16.0√

2

)
= erfc(11.31) ≈ 1.6× 10−58

Since P < 0.01, this sequence failed the Frequency Test.

In contrast, if a bitstream contains 500,200 ones and 499,800 zeros, then:

Sn = 400, s =
400

1000
= 0.4

P = erfc

(
0.4√
2

)
≈ erfc(0.2828) ≈ 0.752

Since P ≥ 0.01, this sequence passed the Frequency Test. (But not yet the unifor-

mity check)

4.3 Testing Results

Table 4.1 provides a summary of the overall pass ratio for each random num-

ber generator (RNG) tested in this study. It aggregates the total number of subtests

passed across all categories in the NIST SP 800-22 suite, giving a high-level view

of each RNG’s statistical reliability. Table 4.2 presents a detailed breakdown of the

pass ratios for individual test categories, which shows how each RNG performed on

specific statistical tests. Table 4.4 reports the uniformity of p-value distribution for

each test category across all RNGs. This evaluates whether the p-values generated

by each RNG follow a uniform distribution on the interval [0, 1), as expected under
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true randomness. A higher uniformity p-value indicates better conformity to ideal

statistical behavior. HELLO

Table 4.1: Overall Pass Ratios(%) from NIST SP 800-22 Statistical Test Suite Across
Different RNG Mixing Strategies

RNG Passed Subtests Total Subtests Pass Ratio (%)

CHAIN 188 188 100.00
XOR 188 188 100.00
AES 187 188 99.47
SHA256 186 189 98.41
TEE 187 188 99.47
REE 189 190 99.47

4.3.1 Baseline RNG Performance

To establish a benchmark for evaluating the performance of combinatorial

Random Number Generators (RNGs), this section first analyzes the randomness

quality of independent RNGs from the Rich Execution Environment (REE) and the

Trusted Execution Environment (TEE). All evaluations employ the NIST SP 800-22

statistical test suite.

• REE RNG: The random number output generated in the REE performed

well, passing 189 out of a total of 190 subtests, achieving an overall pass

ratio of 99.47%. Its only item that did not meet the standard was the

Universal test (proportion of 94/100, below the NIST recommended threshold

of approximately 96%). This result indicates that while the entropy source
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in the REE environment can generally produce acceptable random sequences,

slight weaknesses may exist in specific statistical properties.

• TEE RNG: The output generated using the TEE’s hardware isolation fea-

tures and its built-in TEE GenerateRandom() function successfully passed

187 out of 188 subtests, also yielding an overall pass ratio of 99.47%. Its

single subtest that did not meet the criteria appeared in one instance of the

NonOverlappingTemplate test category (proportion of 95/100, below the ap-

proximate 96% threshold). This data confirms that the RNG in TEE can

provide high-quality random numbers, with its performance being compara-

ble to the REE RNG’s overall pass ratio in this testing round. However, it

also shows that even hardware-protected entropy sources might exist some

statistical fluctuations in specific subtests.

4.3.2 Performance of Combinatorial RNGs

This section details the randomness performance evaluation of four distinct

mixing approaches for combinatorial RNGs. All combinatorial methods fuse 256-bit

random numbers from both TEE and REE as input and produce a 256-bit final

output. The NIST SP 800-22 test results are summarized as follows:

• Chaining with CTR (CHAIN): This method exhibited the most outstand-

ing performance among all tested combinatorial approaches. Out of a total of

188 subtests, the CHAIN method achieved a perfect pass ratio of 100%

(188/188). Whether in basic frequency and runs tests or more stringent

analyses like linear complexity and serial entropy tests, the CHAIN method

demonstrated impeccable statistical randomness.
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• XOR Mixing (XOR): The XOR mixing method also performed excellently

in the NIST SP 800-22 statistical tests, likewise achieving a 100% pass ratio

(188/188), with all subtests successfully passed. This result indicates that,

under an ideal statistical model, a simple bitwise XOR operation can effec-

tively combine the randomness of two independent entropy sources. However,

it is crucial to emphasize that despite its perfect statistical performance, the

security of the XOR mixing method has been identified as inherently risky

in Section 3.3.1. Due to the linear and reversible nature of the XOR opera-

tion, an attacker with full control over the REE environment and the ability to

observe the mixed output could potentially deduce the TEE-side random num-

bers, thereby compromising the overall system security. Therefore, while its

statistical performance is superior, its application in security-critical scenarios

requires careful consideration.

• AES Encryption-Based Mixing (AES): The mixing method based on

AES-256 (ECB mode) passed 187 out of 188 subtests, resulting in an overall

pass ratio of 99.47%. Its performance was comparable to that of the single

TEE RNG or REE RNG, failing only one subtest within the Universal category

(proportion 95/100). This result suggests that the strong diffusion properties

of AES encryption contribute to maintaining the quality of random sequences.

• SHA-256 Concatenation (SHA256): This method was relatively weak

compared to the other three combinatorial methods. It passed 186 out of 189

subtests, yielding an overall pass ratio of 98.41%. Specifically, the SHA-

256 mixing failed to meet NIST’s passing criteria in one subtest of the Cumu-

lative Sums test (proportion 95/100) and two subtests within the NonOver-

lappingTemplate category (proportions both 95/100). This might imply that

doi:10.6342/NTU202501452



38

merely using SHA-256 for concatenation and compression may, in some cases,

be insufficient to entirely eliminate or homogenize potential statistical charac-

teristics or weaknesses from the two entropy sources, rendering its reliability

slightly inferior to other combinatorial methods in this evaluation.

Clearly, theChaining with CTR (CHAIN) method achieved the over-

all best performance among the selected methods in terms of randomness

quality. In contrast, although XOR mixing also achieved perfect scores in statistical

tests, its known security vulnerabilities make it not the best choice for all scenarios.

AES mixing reached fair performance comparable to baseline RNGs, while SHA-256

concatenation showed some potential statistical weaknesses.

4.3.3 Statistical Performance and Uniformity of Mixing Approaches

This section analyzes the four mixing approaches (CHAIN, XOR, AES, and

SHA-256) based on their NIST SP 800-22 test suite performance, focusing on over-

all pass ratios, behavior in specific test categories, and the uniformity of P-value

distributions. Data is shown from Table 4.1, 4.2, and 4.4, respectively.

Overall Pass Ratios and Specific Test Performance: As shown in Ta-

ble 4.1, CHAIN and XOR achieved perfect 100% overall pass ratios. AES mixing

followed at 99.47%, while SHA-256 concatenation was the lowest among combina-

torial methods at 98.41%. A closer examination of Table 4.2 reveals that both

CHAIN and XOR passed all subtests within each of the 15 major NIST test cate-

gories. AES mixing failed Universal test (95/100). SHA-256 exhibited weaknesses

in Cumulative Sums (one subtest at 95/100) and NonOverlappingTemplate tests

(two subtests at 95/100). On the other side, the baseline REE RNG failed the Uni-

versal test (94/100) and the TEE RNG failed one NonOverlappingTemplate subtest
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(95/100). Both CHAIN and XOR successfully passed these specific tests where

baseline or other combinatorial methods faltered, demonstrating their effectiveness

in overcoming such statistical flaws.

Uniformity of P-value Distributions: The uniformity of P-value distri-

butions, assessed by a chi-squared test (results in Table 4.4), is crucial for validating

the reliability of the test outcomes. For all evaluated RNGs (baseline and combina-

torial), the P-values for uniformity in every test category were well above the critical

threshold of 0.0001 (e.g., the lowest observed was 0.0009 for CHAIN in RandomEx-

cursionsVariant Test). This confirms that the P-value distributions were uniform,

lending confidence to the reported pass/fail proportions.

Based on the comprehensive NIST SP 800-22 evaluation, one can find:

1. The CHAIN method consistently demonstrated superior statistical random-

ness, achieving a perfect pass ratio across all subtests and maintaining good

P-value uniformity. This positions it as the best mixing method from a sta-

tistical standpoint.

2. The XOR method also achieved a perfect statistical pass ratio. However,

as discussed extensively in Section 3.3.1, its inherent cryptographic weakness

due to linearity and reversibility poses significant security risks in adversarial

environments where the REE is compromised. Thus, despite its excellent

statistical profile, its practical application must be carefully weighed against

these security concerns.

3. The AES method achieved relatively good statistical performance, compara-

ble to the baseline TEE RNG, with only a single subtest failure. Its use of a

well-established cryptographic primitive offers good diffusion.
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4. The SHA256 method was found to be statistically the worst among the com-

binatorial methods tested, with several subtest failures. While still largely

effective, it may not fully mitigate all statistical weaknesses present in the

input entropy sources as effectively as the CHAIN or AES methods.

Table 4.2: Per-Test Pass Ratios (%) for RNG Methods Based on the NIST SP 800-
22 Test Suite(*Indicates the pass ratio is below the threshold.)

NIST Test Category CHAIN XOR SHA256 AES TEE REE

Frequency 99 99 96 100 99 98
FrequencyWithinBlocks 98 98 97 100 100 100
Runs 99 99 99 99 99 99
LongestRunOfOnes 99 98 98 100 100 99
Rank 100 98 98 99 97 100
DiscreteFourierTransform 98 99 97 98 99 100
NonOverlappingTemplate 98.9 99.0 98.8 98.9 99.0 99.1
OverlappingTemplate 97 97 99 99 97 99
Universal 98 97 98 95* 100 94*
LinearComplexity 99 97 99 97 100 99
Serial 99.5 98.5 97 98 100 98.5
CumulativeSums 99 99 95.5* 99 100 98.5
RandomExcursions 98.8 98.8 97.6 98.9 98.9 98.9
RandomExcursionsVariant 98.8 98.8 97.6 100 98.9 98.9
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Table 4.3: P-value Uniformity Test Results for RNG Methods across NIST SP 800-
22 Categories

NIST Test Category CHAIN XOR SHA256 AES TEE REE

Frequency 0.1373 0.8978 0.4750 0.1453 0.7399 0.6371
FrequencyWithinBlocks 0.5749 0.5749 0.5341 0.5544 0.4560 0.6579
Runs 0.4944 0.8343 0.6371 0.3669 0.7981 0.9558
LongestRunOfOnes 0.3505 0.2133 0.4944 0.7399 0.4750 0.0966
Rank 0.6579 0.2023 0.2368 0.3505 0.7598 0.7981
DiscreteFourierTransform 0.3669 0.1088 0.2493 0.6993 0.1538 0.2368
NonOverlappingTemplate 0.0220 0.0072 0.0013 0.0136 0.0067 0.0179
OverlappingTemplate 0.2493 0.0487 0.3505 0.0062 0.1154 0.0179
Universal 0.6371 0.0156 0.6579 0.8514 0.1538 0.3669
LinearComplexity 0.6579 0.1538 0.8514 0.9357 0.0669 0.6579
Serial 0.7792 0.1816 0.6579 0.2757 0.2368 0.9114
CumulativeSums 0.8677 0.5955 0.1453 0.2133 0.2023 0.4560
RandomExcursions 0.0111 0.0111 0.0078 0.0071 0.0398 0.0262
RandomExcursionsVariant 0.0009 0.0111 0.0021 0.0021 0.1363 0.0055

Table 4.4: P-value Uniformity Test Results for RNG Methods across NIST SP 800-
22 Categories

NIST Test Category CHAIN XOR SHA256 AES TEE REE

Frequency 0.1373 0.8978 0.4750 0.1453 0.7399 0.6371
FrequencyWithinBlocks 0.5749 0.5749 0.5341 0.5544 0.4560 0.6579
Runs 0.4944 0.8343 0.6371 0.3669 0.7981 0.9558
LongestRunOfOnes 0.3505 0.2133 0.4944 0.7399 0.4750 0.0966
Rank 0.6579 0.2023 0.2368 0.3505 0.7598 0.7981
DiscreteFourierTransform 0.3669 0.1088 0.2493 0.6993 0.1538 0.2368
NonOverlappingTemplate 0.0220 0.0072 0.0013 0.0136 0.0067 0.0179
OverlappingTemplate 0.2493 0.0487 0.3505 0.0062 0.1154 0.0179
Universal 0.6371 0.0156 0.6579 0.8514 0.1538 0.3669
LinearComplexity 0.6579 0.1538 0.8514 0.9357 0.0669 0.6579
Serial 0.7792 0.1816 0.6579 0.2757 0.2368 0.9114
CumulativeSums 0.8677 0.5955 0.1453 0.2133 0.2023 0.4560
RandomExcursions 0.0111 0.0111 0.0078 0.0071 0.0398 0.0262
RandomExcursionsVariant 0.0009 0.0111 0.0021 0.0021 0.1363 0.0055
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4.4 Resource Consumption Analysis

To evaluate the computational cost of the proposed mixing approaches, a

straightforward resource usage analysis based on the CPU time required to pro-

cess 128MB of random data is conducted. Table 4.5 summarizes the number of

cryptographic operations per output and the corresponding execution time mea-

sured in seconds. On the other hand, memory usage was not separately analyzed,

as all mixing methods operate on fixed-length 256-bit inputs and outputs without

requiring large buffers or dynamic memory allocation. Since the implementations

rely on lightweight operations or hardware-supported primitives, memory footprints

are minimal and comparable across all approaches. Other resource metrics such as

energy consumption may also be considered and can be further evaluated in the

future.

Table 4.5: CPU Time (in seconds) for Mixing approaches with 128MB of Data.
Baseline RNG generation costs for REE and TEE are also shown for comparison.
All values include random number generation time and the CPU time is calculated
in Windows 11 with WSL2 Ubuntu 20.04

Method Mixing Ops per Unit Total CPU Time (s)

XOR Mixing 1 XOR 3.0
SHA-256 Mixing 1 SHA-256 3.5
AES-256 Mixing 1 AES-ECB 4.8
Chaining Mixing 1 XOR + 2 SHA-256 4.9
REE Baseline (No Mixing) - 1.2
TEE Baseline (No Mixing) - 0.9

From Table 4.4, one can find:

XOR Mixing This method uses a simple bitwise XOR operation, resulting in

negligible overhead. It is highly efficient and ideal for resource-constrained embedded

environments.
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SHA-256 Mixing This method performs one SHA-256 hash per output. SHA-

256 is widely supported and efficient on modern CPUs, making this method a bal-

anced choice between entropy extraction and performance.

AES-ECB Mixing This method uses one AES-256 encryption blocks. While

AES operations benefit from hardware acceleration on many ARM platforms, the

required key schedule and block transformations result in increased computational

cost.

Chaining Mixing This method combines one XOR with two SHA-256 operations

in a chaining pattern. While it has the highest computational cost, it also demon-

strated the best performance of statistical randomness in the NIST SP 800-22 tests.

In summary, the choice of an optimal mixing method in a real-world appli-

cation may need to consider multiple factors such as computational overhead (as

discussed in Chapter 3) and the specific threat model, particularly regarding the

security implications, to reach a practical trade-off between efficiency and statisti-

cal strength. That said, however, the aforementioned findings clearly indicate that

the CHAIN method achieves the better statistical randomness than other evaluated

approaches.
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Chapter 5

TEE-Protection over Security Primitives in UAV

5.1 Application Scenarios Overview

The TEE-protected combinatorial random number generator proposed in

this thesis is designed primarily for the application scenario of resource-constrained

Unmanned Aerial Vehicle (UAV) platforms, especially to meet the authentication

and encryption capabilities required under future Remote ID regulations.

With the increasing adoption of Remote ID (RID) systems in unmanned

aerial vehicles (UAVs), ensuring the authenticity, integrity, and availability of broad-

casted identity information has become a critical cybersecurity requirement. As

illustrated in Figure 5.1, RID frameworks such as ASTM F3411 [30] specify that

UAVs periodically transmit identifying information—including unique ID, location,

and timestamp—typically through Bluetooth or Wi-Fi broadcast.

Traditionally, cryptographic keys used for signing or encrypting RID data are

protected using hardware-based Secure Elements (SEs) or Trusted Platform Mod-

ules (TPMs). However, such components yield additional cost, increase hardware

complexity, and are difficult to scale across low-cost or compact UAV platforms. As

a result, replacing these external secure chips with an equivalent level of protection

using a software-isolated Trusted Execution Environment (TEE) has emerged as a

promising solution.

44
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Figure 5.1: The Application Scenario of UAV Remote ID specified in ASTM F3411.
The red dot-line box highlights the scope of this work.

To realize this vision, the implementation in this study leverages ARM Trust-

Zone and OP-TEE to serve as a secure foundation for RID cryptographic operations,

such as digital signing with ECDSA and authentication with AES-CCM. More-

over, the previously proposed dual-domain entropy mixing design, in which TEE

and REE jointly contribute to random number generation is integrated to ensure

that the cryptographic keys and nonces used for RID messages are rooted in high-

quality randomness. This dual-layer approach enhances both the unpredictability

and integrity of RID data under real-time constraints, even in the presence of REE

compromise.

This chapter presents the overall system integration design and its applica-

tion to UAV cryptographic workflows by describing the practical implementation

of RNG-based architecture for secure key storage, signature generation, and AES-

based authentication, as well as demonstrating how TEE-based solutions can satisfy

RID mandates without relying on external hardware security chips.
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5.2 Architecture Design

To realize a secure and cost-effective implementation of Remote ID function-

ality on UAV platforms, the proposed system design integrates TEE-based crypto-

graphic operations and a dual-entropy RNG module into the embedded architecture.

This approach aims to replace external secure elements (e.g., TPM, SE) with trusted

software-based components without compromising security or compliance. The full-

stack software pipeline, illustrated in Figure 5.2, covers key management, message

signing/encryption in the TEE, and broadcasting through the REE-managed Blue-

tooth stack.

Figure 5.2: The proposed architecture of TEE-Protection over crypto primitives on
Raspberry Pi for Remote ID broadcasting.

The integration design is structured around the following modules:

• RNG Combinations: Each cryptographic operation involving key genera-

tion or nonce creation draws random numbers from the hybrid RNG, which
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mixes entropy from both TEE (trusted TRNG) and REE (external sources)

via secure mixing methods such as XOR, SHA-256, or AES.

• TEE-Based Key Storage and Operations: All cryptographic keys (e.g.,

ECDSA signing key, AES key) are securely stored and used inside the Trusted

Execution Environment. No key material is exposed to the Rich Execution

Environment (REE), preventing leakage or tampering even if the REE is com-

promised.

• Remote ID Broadcast Flow: The UAV collects location, timestamp, and

unique ID data, and prepares the Remote ID message. A Message Authenti-

cation Code (MAC) is then generated using AES-CCM or a digital signature

using ECDSA, depending on the regional requirements.

• Secure Output Interface: The signed or authenticated message is forwarded

back to REE for wireless transmission over Bluetooth. Although the REE

handles I/O, all sensitive processing is kept within the TEE.

This integration ensures compliance with standards like ASTM F3411 and

regional RID regulations, while minimizing hardware cost and maximizing platform

compatibility. Figure 5.3 presents a high-level system diagram of the proposed

design.

5.3 Implementation of RNG Combinations and additional
Crypto-Primitives in TEE

This section outlines the cryptographic implementation integrated into UAV

system using the Trusted Execution Environment (TEE), including key generation,

digital signature generation using ECDSA, AES-256 authentication and encryption.

All operations are executed within OP-TEE on Raspberry Pi 3B+.
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Figure 5.3: Design of the integrated broadcast system with dual-domain entropy.

5.3.1 Deployment of Dual-Domain RNGs

As established in the proposed architecture, the system utilizes two distinct

entropy sources allocated across the two security domains. The primary, trusted

source is the TEE’s internal True Random Number Generator (TRNG), which is

accessed securely via the TEE GenerateRandom() function call from within a Trusted

Application (TA). The secondary, untrusted source is a software-based Pseudo-

random Number Generator (PRNG) operating in the Rich Execution Environment

(REE).

To combine these sources, the random data from the REE is passed into

the secure world via a shared memory buffer, invoked by a Secure Monitor Call

(SMC). The critical mixing process is performed exclusively inside the TA, ensuring

that any potential manipulation of the REE source does not compromise the final

combination operation. Based on the superior statistical randomness demonstrated

in Chapter 4, the CHAIN method was selected as the mixing algorithm for this

practical implementation.

The high-quality random output from this combinatorial process then serves

as a secure seed for all subsequent cryptographic operations within the TEE, includ-
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ing the key generation described in Section 5.3.2 and the nonce creation for ECDSA

and AES-CCM operations.

5.3.2 Key Generation

The key generation and management process is designed to be fully confined

within the TEE, adhering to the GlobalPlatform specification for secure operations.

The workflow, illustrated in Figure 5.4, ensures that private key material is never

exposed to the REE.

The process begins when a client application in the REE requests the creation

of a new key. This request is securely passed to a Trusted Application (TA) inside the

TEE through a session-based interface mediated by Secure Monitor Calls (SMCs).

Upon receiving the request, the TA utilizes the high-quality random output

from the combinatorial RNG (as detailed in Section 5.3.1) to generate the crypto-

graphic key. For persistence, the TA then invokes the Secure Storage API. This

function encrypts the newly generated key with a hardware-unique key before ex-

porting the resulting encrypted object to the REE’s file system for storage. Access

is protected by a unique object identifier, ensuring that only the originating TA can

later decrypt and use the key in subsequent operations. This method provides strong

guarantees for key confidentiality, even if the non-secure file system is compromised.

5.3.3 Digital Signatures Primitives: ECDSA

To ensure the authenticity of broadcast messages, the Elliptic Curve Dig-

ital Signature Algorithm (ECDSA) is implemented using the NIST P-256 curve

(secp256r1) and SHA-256 inside the TEE.

When the REE wishes to sign a message, it initiates a Secure Monitor Call

(SMC) to invoke a trusted session with the TA inside the TEE. The TA securely
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Client Trusted Application (TA)
Session

Dual Entropy Source (REE)

Request to Generate Key

File System

Request to Access Key

Dual Entropy Source (TEE)
Mixing Module

Generate Key

Secure Storage

Access Key

Encrypted object

REE Domain TEE Domain

Figure 5.4: Component Structure Diagram of Key Storage

loads the private key from persistent storage, then generates a per-signature nonce k

by calling the dual-entropy mixing module. This ensures unpredictability even under

partial entropy compromise. Finally, the ECDSA engine computes the signature pair

(r, s) and returns the result to the REE for subsequent broadcasting.

Client Trusted Application (TA)
Session

Request to Sign Message

Dual Entropy Source (REE)

Return Signature
(r, s)

Access Private Key

Dual Entropy Source (TEE)
Mixing Module

ECDSA Signing
(secp256r1, SHA-256)

REE Domain TEE Domain

Figure 5.5: Component Structure Diagram of ECDSA Signing
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5.3.4 Authentication and Encryption Primitives: AES-CCM-256

To protect message confidentiality and integrity, the system implements AES-

CCM with a 256-bit key. The choice of AES-CCM over the also common AES-GCM

is a deliberate design decision, tailored for the specific requirements of UAV Remote

ID applications and emerging regulatory standards. The primary difference lies in

how the authentication tag is generated; AES-CCM uses CBC-MAC on the plain-

text, a method that is computationally lightweight and highly suitable for scenarios

requiring only message authentication without encryption. This aligns with the ap-

proach taken by regulators in countries like Japan, making it a fitting choice for

current Remote ID implementations. The architecture remains forward-compatible,

allowing for a future upgrade to the more rigorous AES-GCM mode should appli-

cations require encrypted data transmission.

During each encryption session, the TEE retrieves the key, constructs a 12-

byte nonce, and invokes the AES-CCM engine. The message payload to be en-

crypted typically includes the UAV ID, timestamp, latitude, and longitude, e.g.,

“B-AAB1230 2025-05-17 14:22:29:067 25.6666000 124.5555456”. A 16-byte MAC

tag is generated to ensure message authenticity and integrity.

The randomness required to generate the nonce is derived from the dual-

entropy mixing module introduced in Chapter 3. This ensures freshness and unpre-

dictability even if either entropy source is partially compromised.

The signed and encrypted output is returned to the REE, where it is relayed

to the broadcasting module. As shown in Figure 5.6
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Client Trusted Application (TA)
Session

Request to encrypt Message

Dual Entropy Source (REE)

Return Ciphertext + MAC

Access AES Key

Dual Entropy Source (TEE)
Mixing Module

AES-256 Encryption
& MAC(AES-CCM-256)

REE Domain TEE Domain

Figure 5.6: Component Structure Diagram of AES Encryption and Authentication

5.4 The Working Prototype

To further verify the proposed architecture, a working prototype compris-

ing a Bluetooth broadcasting module (ESP32), a TEE-based cryptographic node

(Raspberry Pi 3B+ running OP-TEE), and a ground receiver (mobile phone with

pre-installed public key and OpenDroneID-compatible verification app) was con-

structed.Table 5.1 summarizes the system specifications of the device under test

(DUT), including the software stack and crypto modules. Figure 5.7 shows the

physical PoC setup. This configuration emulates the complete Remote ID (RID)

cryptographic flow—from data generation, secure signing, encryption, and wireless

broadcast, to external reception and verification.

The receiver application running on the above prototype successfully verified

both digital signatures and MAC tags from received RID messages. As shown in

Figure 5.8, aside from the basic RID information, field (A) indicates that ECDSA

signature verification returned TRUE, while field (B) confirms that the AES-CCM-

256 MAC tag was authenticated. The decrypted message payload, seen in (C),

includes a timestamp and location tuple matching the original transmission.
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Table 5.1: DUT (Device-Under-Test) Configuration and System Specifications

Config. Item (CI) Attribute/Name Spec/Version
Target Device Raspberry Pi Model 3B+
TEE OP-TEE 4.0.0
OS Raspbian 2019-06-20 Raspbian buster
Dev. Language Python 3.11
Receiver App OpenDroneID OSM Jan 12, 2024
Receiver Device SAMSUNG Galaxy A22 Android 13
Digital Signature ECDSA secp256r1 (256-bit)
Encrypt / Decrypt AES-CCM 256-bit
Security Keys Pre-distributed –

Figure 5.7: Physical testbed: broadcasting module (left), TEE-based secure node
(center), and smartphone receiver (right).

doi:10.6342/NTU202501452



54

Figure 5.8: Verification output from ground receiver. (A) Signature verification, (B)
AES-CCM MAC validation, (C) plaintext extracted from decrypted ciphertext.

This result verifies that the private key within the TEE correctly signed the

message, the AES encryption engine generated a valid MAC, and the public key

and AES key pre-distributed to the mobile device were sufficient for verification and

decryption.

5.5 Summary

The overall implementation demonstrates that TEE-based cryptographic mod-

ules on Raspberry Pi are capable of securely generating, storing, and using keys for

signing and encryption, without leaking sensitive material to the REE. The system

achieves end-to-end Remote ID data protection that follows the security guideline

of ASTM F3411, while ensuring practical compatibility with off-the-shelf mobile

receivers. These results verify the feasibility of deploying software-based trusted
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components as lightweight alternatives to hardware secure elements in UAV sys-

tems.
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Chapter 6

Conclusions and Future Works

6.1 Conclusion

This thesis successfully addressed the critical need for robust and resilient

random number generation in resource-constrained environments by proposing and

evaluating a combinatorial RNG protected by a Trusted Execution Environment.

After a thorough analysis of multiple mixing methods and a practical implementa-

tion on a UAV-centric prototype, the key contributions of this study are summarized

as follows:

• Identified a Superior Mixing Method: We designed and empirically eval-

uated four cross-domain entropy mixing approaches. The results from the

NIST SP 800-22 statistical test suite conclusively demonstrated that the pro-

posed CHAIN method is the most effective, achieving a perfect pass ratio and

exhibiting superior statistical reliability.

• Developed a Resilient TEE/REE Architecture: This research proposed

a dual-domain architecture that enhances security resilience while adhering to

the principle of TCB minimization. We established that by protecting just

one entropy source and the mixing operation within the TEE, the system

can withstand a full compromise of the REE-based source. Such a counter-

56
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intuitive deployment manner provides a practical and efficient security model

for UAVs or similar application platforms with limited resources.

• Validated Feasibility on a COTS Platform: The proposed system was

successfully implemented on a Raspberry Pi 3B+ with OP-TEE, demonstrat-

ing its applicability on commercially off-the-shelf hardware. This working pro-

totype, tailored for a UAV Remote ID broadcast application, verified that a

TEE-based combinatorial RNG is a practical and resilient solution for enhanc-

ing security in real-world scenarios and supporting compliance with emerging

regulatory requirement for Taiwan.

6.2 Future Work

The findings from this study open several promising avenues for future re-

search, focusing on enhancing the core mechanism and broadening its system-level

applications, in line with emerging regulatory and technological trends.

• Strengthening Randomness and Security: Future work could explore

more advanced mixing algorithms and formally analyze the trade-offs between

computational cost and security properties. Developing an adaptive frame-

work that dynamically adjusts the mixing strategy based on real-time health

checks of the entropy sources is another valuable direction. Furthermore, the

security of the TEE-based architecture itself could be enhanced to provide

stronger protections within the ARM TrustZone environment.

• Formal Security Analysis via Relaxed LHL Conditions: To more rigor-

ously bridge the gap between the practical CHAIN method and the theoretical

Leftover Hash Lemma, a valuable direction for future research is to adopt a
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relaxed version of the LHL’s premises. For instance, the strict 2-universal con-

dition could be extended to a k-2-universal property, which only requires that

for any distinct inputs x, y, the collision probability P (f(x) = f(y)) is at most

k/|B| (where 0 < k < 1). Based on this foundation, one could employ Monte

Carlo simulations or empirical collision rate testing to estimate the degree to

which the implemented hash function satisfies this k-2-universal property un-

der a given confidence level. This approach would enable the derivation of

a quantitative lower bound on entropy retention, serving as a reasonable and

formal compromise between the ideal LHL theory and the practical implemen-

tation.

• Broadening Applications and Regulatory Compliance: The proposed

framework provides a strong foundation for wider system-level applications.

It could be extended to support secure Key Update and distribution mecha-

nisms, which are critical for both civilian and military applications like Identify

Friend or Foe (IFF). Additionally, integrating this secure RNG into advanced

services like Unmanned Aircraft System Traffic Management (UTM) and en-

suring compliance with evolving Remote ID regulations are important future

steps.

• Key Management and Verification: The management and verification

of cryptographic keys represent a significant area for future development. Ex-

panding the framework to include more sophisticated key lifecycle management

within the TEE would further enhance its value and security posture.
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Appendix A

Formal Definition of the Leftover Hash Lemma

The Leftover Hash Lemma (LHL) is a fundamental result in the field of cryptography

and complexity theory. It provides a formal method for extracting a short, high-

quality (i.e., statistically close to uniform) random string from a longer, weaker

random source that possesses sufficient entropy but is not perfectly uniform. It

serves as the theoretical foundation for many cryptographic constructions, including

randomness extractors and key derivation functions.

To understand the lemma, some key concepts are established.

A.1 Preliminary Definitions

A.1.1 Min-Entropy

Min-entropy is a measure of a random variable’s unpredictability. For a

random variable X over a set X , its min-entropy, denoted as H∞(X), is defined as

the negative logarithm of the probability of its most likely outcome. It quantifies

the amount of randomness in a ”worst-case” scenario.

H∞(X) = − log2

(
max
x∈X

P (X = x)

)
A source with at least k bits of min-entropy means that no single output has a

probability greater than 2−k.
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A.1.2 Statistical Distance

Statistical distance is a measure of how distinguishable two probability dis-

tributions are. For two distributions A and B over the same set Z, their statistical

distance is defined as:

SD(A,B) =
1

2

∑
z∈Z

|P (A = z)− P (B = z)|

If SD(A,B) ≤ ϵ, the distributions A and B are said to be ϵ-close, meaning that no

algorithm can distinguish between them with a probability of success that is more

than ϵ better than random guessing.

A.1.3 2-Universal Hash Family

A family of hash functions H = {h : U → V} is called a 2-universal hash

family if, for any two distinct inputs x1, x2 ∈ U , the probability of a collision is no

greater than the probability of a collision for a truly random function. Formally, for

a function h chosen uniformly at random from H:

Ph∈H[h(x1) = h(x2)] ≤
1

|V|

A.2 The Leftover Hash Lemma

With the above definitions, the Leftover Hash Lemma can thus be described

as follows.

Theorem (Leftover Hash Lemma). Let H = {h : {0, 1}n → {0, 1}m} be a

2-universal family of hash functions. Let X be a random variable over {0, 1}n with

min-entropy H∞(X) ≥ k. Let H be a random variable representing a function

chosen uniformly from H, independent of X.
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The distribution of the output (H(X), H) is ϵ-close to the uniform distri-

bution (Um, H), where Um is the uniform distribution over {0, 1}m. The statistical

distance is bounded by:

SD((H(X), H), (Um, H)) ≤ ϵ

where

ϵ =
1

2

√
2m−k

In essence, the lemma guarantees that from a source with k bits of min-

entropy, an m-bit string that is nearly perfectly random can be extracted using

a 2-universal hash function, provided that m is sufficiently smaller than k. The

”leftover” entropy, k −m, determines how statistically close the output is to a true

uniform distribution.
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