

國立臺灣大學工學院工業工程學研究所	

碩士論文	

Graduate Institute of Industrial Engineering

College of Engineering

National Taiwan University

Master’s Thesis

		
物料搬運網路排程問題的數學規劃	

及啟發式優化求解法	

Mathematical Programming and Metaheuristics for

the Material Handling Network Scheduling Problem
		

		
陳徐行	

Hsu-Hsing Chen
		 		 		 		 		 		

		
		

指導教授﹕楊烽正	博士	

Advisor: Feng-Cheng Yang, Ph.D.

共同指導教授﹕洪英超	博士	

Co-Advisor: Ying-Chao Hung, Ph.D.

		

		
	中華民國	113 年 6 月	

June, 2024

doi:10.6342/NTU202401338

doi:10.6342/NTU202401338

國⽴臺灣⼤學碩⼠學位論⽂�
⼜試委員會審定書

MASTER'S THESIS ACCEPTANCE CERTIFICATE
NATIONAL TAIWAN UNIVERSITY

論⽂中⽂題⽬：物料搬運網路排程問題的數學規�
劃及啟發式優化求解法

論⽂英⽂題⽬：Mathematical Programming and
Metaheuristics for the Material
Handling Network Scheduling
Problem

本論⽂係陳徐⾏君（學號R1376823� 在國⽴臺灣⼤學⼯業⼯程學研�
究所完成之碩⼠學位論⽂，於民國335年8⽉43⽇承下列考試委員審�
査通過及⼜試及格，特此證明Ɬ

The undersigned, appointed by the Institute of Industrial Engineering on 21 June 2024, have
examined a Master's thesis entitled above presented by CHEN, HSU-HSING (Student ID:
R11546019) candidate and hereby certify that it is worthy of acceptance.

⼜�試委�員�Oral examination committee^

楊烽正

所長�Director

i doi:10.6342/NTU202401338

ii doi:10.6342/NTU202401338

致謝	

時光荏苒，一年多的碩士生涯終於要告一個段落。首先要感謝楊老師

過去五年來的提攜與照顧；從大二的程式設計課開始，到大三修習了老師在

工工所開設的課程，一步步帶領我進入工業工程的領域。嗣後又指導了我進

行大專生研究計畫，讓我獲得難能可貴的獨立研究之機會。在研究所的日子，

很感謝老師給予了我一定的研究自由，讓我能夠根據我的步調，一步步地完

成我的碩士研究，並在其中適時地提供協助。另外，也要感謝老師在我考取

公費留學及申請學校的過程中，總是願意提供可貴的幫助。在此敬祝楊老師

有一個健康快活的退休生活！	

此外，也要特別感謝口試委員	蔡瑞煌老師、歐陽超老師、洪英超老

師以及周雍強老師，在我的論文口試中積極地指出不足之處，並提供寶貴的

建議。尤其要感謝周老師，願意提攜後進，將相關的專業知識傾囊相授，並

且一針見血地點出可改進之處，謝謝老師！	

接下來我要感謝我自己。感謝我在這三年來艱苦的學校申請過程中沒

有放棄自己，始終相信自己的能力。希望在未來的學術生涯中，我能夠盡興

地研究自己有興趣之課題，勇往直前，並對社會有所貢獻。另外，我也要感

謝實驗室的夥伴陳禎。這一年多以來的互相砥礪，是我能如期畢業的一大原

因。此外，我也要感謝林以達學長，讓我有機會誤打誤撞挑了這個研究題目，

並從中學習到了很多相關技術，最終撰寫成論文。

最後，我要感謝陳爸爸和徐媽媽。感謝你們一直以來無私奉獻與支持，

我才能夠無後顧之憂地暢遊於學習的樂趣中，並且讓我在學術生涯的起點上

有了充足的準備。預祝您們健康快樂、長命百歲！

陳徐行 謹謝

2024年夏 於台大國青

iii doi:10.6342/NTU202401338

iv doi:10.6342/NTU202401338

Abstract

Modern factories heavily rely on Automated Material Handling Systems

(AHMSs) for internal logistics. This research aims to tackle the scheduling

problem in the material handling network. We rigorously define the Material

Handling Network Scheduling Problem (MHNSP) with the optimization goal of

minimizing the makespan for a set of transportation jobs. The highlights of our

research are that each job has path flexibility with multiple candidate paths, and the

transfer (conveyor) systems between AHMSs have buffer capacity limits.

We propose three models to solve the MHNSP: a Constraint Programming

(CP) model, an Integer Programming (IP) model, and a Metaheuristic model. The

CP model employs a hierarchical structure to model the constraints between jobs,

paths, and operations, while the IP model directly determines the start time of each

operation. The IP model addresses site buffer constraints by identifying operation

overlaps using pairwise relationships. Finally, the Metaheuristic model utilizes a

discrete-event-based decoding procedure to determine the start time of each

operation.

The models are evaluated through four numerical tests. First, we identify the

best parameters for the Metaheuristic model using the Taguchi method. Next, we

compare the performance of our models using 360 randomly generated numerical

test problems. The results reveal distinct strengths: the IP model is effective for

small problems, while the CP and Metaheuristic models are better suited for larger

problems. Additionally, test results show a significant average makespan reduction

v doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

of about 13% in large-scale problems when each job has multiple candidate paths.

We also evaluate the performance of the CP and Metaheuristic models in

extra-large problems, finding that the CP model consistently provides better

solutions than the Metaheuristic model given sufficient solving time, demonstrating

the potential of CP in real applications. Finally, the identical request test

highlighted that optimal path selection could lead to a 35.7% reduction in

makespan by balancing node workloads and minimizing time spent at transfer sites.

In conclusion, this research underscores the importance of path selection and

operation sequencing in optimizing material handling networks, providing robust

models and comprehensive evaluations to guide future applications.

Keywords: Job-shop Scheduling Problem, Material Handling System, Constraint

Programming, Integer Programming, Metaheuristics, Path Flexibility

vi doi:10.6342/NTU202401338

摘要

現代加工廠高度依賴自動化物料搬運系統 (AHMS)來進行內部物流。本研究

針對物料搬運網路中的排程問題進行探討，並定義了物料搬運網路排程問題

(Material Handling Network Scheduling Problem, MHNSP)。該問題的最佳化目

標是最小化給定之搬運工作的總完工時間 (makespan)。本研究的兩個特色，

一是每個搬運工作具有多條候選路徑，二是搬運系統之間的輸送系統具有容

量限制。

我們提出了三種求解MHNSP的模型：限制規劃 (CP)模型、整數規劃

(IP)模型和一種啟發式優化模型。其中，限制規劃模型採用多層次結構，以

建構搬運工作、候選路徑及搬運作業 (operation)間的限制式。而整數規劃模

型則直接求解各搬運作業的開始時間；另外，整數規劃模型透過識別搬運作

業間在時間上重疊的關係，以建構對於輸送系統容量限制的限制式。最後，

我們的啟發式優化模型是透夠一個基於離散事件模擬的解碼程序，來找出各

個搬運作業的開始時間。

為瞭解本研究問題在實務上的應用，及各個求解法在不同標竿問題的

表現，我們通過四個數值測試對這些求解法進行評估。首先，我們使用田口

方法找出啟發式優化模型的最佳參數。接下來，我們使用 360個隨機生成的

標竿問題來比較模型的性能。結果顯示，整數規劃模型適用於小型問題，而

限制規劃和啟發式優化模型更適合大型問題。此外，測試結果顯示，在大型

問題中，當每個搬運工作有多條候選路徑時，平均總完工時間約減少 13%。

我們還在超大型問題中測試了限制規劃和啟發式優化模型的表現，結果顯示

限制規劃模型在給定充足求解時間的情況下，其求解品質皆優於啟發式優化

模型。此測試應證了限制規劃模型在實際應用中的潛力。最後，我們透過

vii doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

「重複搬運任務測試」(Identical Request Test)，展示了在路徑選擇最佳化的情

況下，相對於固定搬運路徑的策略，總完工時間減少了 35.7%。透過對求解

結果分析，可知其減少來源有二，一是搬運系統間有較平衡的工作附載，二

是在物料在輸送系統中等待的時間大幅減少。

總之來說，本研究強調了物料搬運網路中路徑選擇和搬運作業排序的

重要性，並提供了大量的數值測試結果以佐證。

關鍵字：零工生產排程問題、物料搬運系統、限制規劃、整數規劃、

啟發式優化模型、彈性路徑。

viii doi:10.6342/NTU202401338

Table of Contents

Abstract v

Table of Contents ix

List of Figures xiii

List of Tables xv

Glossary and Notations xvii

1 Introduction 1
1.1 Background and Motivation . 1

1.2 Research Objectives . 3

1.3 Research Procedure . 4

1.4 Organization of the Thesis . 6

2 Literature Review 7
2.1 Transportation Network Job Scheduling Problem . 8

2.2 Importance of Path Flexibility in Transportation . 9

2.3 Job-shop Scheduling Problem with Routing Flexibility. 10

2.4 Job-shop Scheduling Problem Incorporating Material Handling Sys-

tems Using Constraint Programming . 12

2.5 CP Overview . 13

2.6 Summary . 17

3 Material Handling Network Scheduling Problem: Problem Descrip-
tion and Problem Generation 19
3.1 Problem Definition . 20

3.1.1 Problem Overview . 20

3.1.2 Mathematical Formulation. 23

3.1.3 Data Structure of a Solution . 31

3.1.4 Assumptions and Problem Scope . 32

3.1.5 Summary . 34

3.2 Numerical Test Problem Generation . 39

ix doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

3.2.1 User-defined Parameters . 40

3.2.2 Network Construction. 41

3.2.3 Transportation Job Generation . 44

3.2.4 Problem Scales, Types and File Format . 50

3.2.5 Summary . 57

4 Constraint Programming, Integer Programming, and Differential Evo-
lution Models for Material Handling Network Scheduling Problem 59
4.1 CP Model for solving the MHNSP . 59

4.1.1 Job Constraints . 60

4.1.2 Operation Constraints on Nodes. 68

4.1.3 Operation Constraints on Transfer Sites . 74

4.2 IP Model for solving the MHNSP . 76

4.2.1 Decision Variables and Optimization Goal . 77

4.2.2 Variable Constraints on Each Job . 79

4.2.3 Operation Constraints on Nodes. 80

4.2.4 Transfer Operation Constraints on Transfer Sites. 83

4.3 Metaheuristic Model for solving the MHNSP . 88

4.3.1 Solution Encoding and Decoding . 89

4.3.2 Permutational Differential Evolution Solver 102

4.4 Summary . 106

5 Numerical Tests and Result Discussion 107
5.1 Solving Method Implementations . 107

5.2 Numerical Tests and Discussion. 109

5.2.1 Differential Evolution Model Parameter-tuning Experiment

via the Taguchi method . 110

5.2.2 Model Performance Comparison Test . 113

5.2.3 Extra-large Problem Test. 116

5.2.4 Identical Request Test . 117

5.3 Summary . 121

6 Conclusion and Future Work Suggestion 123
6.1 Conlusion. 123

6.2 Future Work . 125

x doi:10.6342/NTU202401338

TABLE OF CONTENTS

6.2.1 Improvements in Modeling Techniques . 125

6.2.2 Improvements in Research Problems. 126

Reference 129

A Different Type of Transportation Nodes 133
A.1 CP Model for Different Types of Transportation Nodes 135

B Numerical Result Raw Data 141

xi doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

xii doi:10.6342/NTU202401338

List of Figures

1-1 Illustration of the research motivation. 3

1-2 Flow chart of our research procedure. 5

3-1 Illustration of a material handling network.. 20

3-2 An illustration of multiple candidate paths for a request. 22

3-3 Graph representation of the network example. 24

3-4 Definition of a transportation job. 25

3-5 Illustration of empty-car moving time between delivery operations. 29

3-6 Illustration of operation sequence in jobs. 30

3-7 A small example of the MHNSP. 35

3-8 Gantt chart of Solution A for the MHNSP sample. 36

3-9 Gantt chart of Solution B for the MHNSP sample. 37

3-10 Gantt chart of Solution C for the MHNSP sample. 37

3-11 Gantt chart of Solution D for the MHNSP sample. 38

3-12 Comparison of generated networks in different scales.. 51

3-12 Comparison of generated networks in different scales. (cont.) 52

3-13 Directory structure of the numerical test problem files. 54

4-1 Illustration of the hierarchical structure of the interval variables. 61

4-2 Gantt chart results of a CP solution. 62

4-3 Alignment Relationship between job interval variable, path interval vari-

able, and operation interval variable.. 66

4-4 Gantt chart result of nodes from the CP model. 69

4-5 Illustration of transfer operation interval variables and cumulative func-

tion of resource. 75

4-6 Gantt chart results of an IP solution. 77

4-7 Gantt chart results of an IP solution on nodes. 81

4-8 Illustration of two examples of three transfer operations in the site.. 84

4-9 Illustration of two examples of three transfer operations in the site.. 91

4-10 Illustration of the concept in the first stage of the decoding procedure. . . . 93

xiii doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

4-11 A material handling network for deadlock demonstration. 95

4-12 An example of order-base crossover. 103

4-13 An example of swap mutation. 103

5-1 Directory structure of the implemented solvers. 108

5-2 Screenshot of the source code of solver implementations on GitHub. 109

5-3 Node Gantt charts yielded from the fixed and flexible problems.. 119

5-4 Job Gantt charts yielded from the fixed and flexible problems. 120

xiv doi:10.6342/NTU202401338

List of Tables

3-1 Summary of user-defined parameters for problem generation. 41

3-2 Parameters for problem generation of different scales. 50

3-3 Comparison of different problem types. 54

5-1 Design level for each DE parameter. 110

5-2 Taguchi L9 design. 111

5-3 Taguchi L9 design parameter selection. 112

5-4 Best parameters of each problem setting. 112

5-5 Hit rate and average solving time of model performance comparison test. 114

5-6 Makespan improvement of the flexible model over the fixed model. 116

5-7 Makespan comparison between CP and DE solvers in Extra-large Prob-

lems. 117

5-8 Numerical results for the identical request test. 118

5-9 Reorganized numerical results for the identical request test. 119

B-1 Taguchi results of DE parameter-tuning. 141

B-2 Objective values of model performance comparison test. 144

B-3 Solving time of model performance comparison test. 147

xv doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

xvi doi:10.6342/NTU202401338

Glossary and Notations

Category Notation Description
M

at
er

ia
lH

an
dl

in
g

Ne
tw

or
k

m Number of transportation nodes (AHMSs)
r Number of transfer sites
V Index set of transportation nodes; V = {1, 2, · · · , m}
ej Transfer site ej

E Edge set of transfer sites; E = {e1, e2, · · · , er}
G Graph of material handling network; G = (V, E)
κi Number of P/D points in node i

P (i) P/D point set of node i; P (i) = {p(i)
1 , p

(i)
2 , · · · , p(i)

κi
}

κ Upper bound of number of P/D points in a node
(problem generation)

τ
(i)
j,j′ Delivery time from P/D point p

(i)
j to p

(i)
j′ in node i

M (i) From-to time matrix of node i; M (i) =
[
τ

(i)
j,j′

]
κi×κi

τ Maximum delivery time in a node (problem generation)
βd Transfer time in transfer site ed

β Upper bound of transfer time (problem generation)
ωd Site capacity of transfer site ed

ω Upper bound of site capacity (problem generation)

Tr
an

sp
or

ta
tio

n
Jo

b

Cmax Makespan
n Number of transportation requests/jobs
Jk Transportation request/job Jk;

Jk ≡
(

gk, p
(ξk)
ζk

, p
(ξ′

k)
ζ′

k
, Πk

)
J Set of transportation requests/jobs;

J = {J1, J2, · · · , Jn}
gk Request generated time of job Jk

g
Upper bound of request generated time
(problem generation)

p
(ξk)
ζk

Start P/D point of job Jk; p
(ξk)
ζk
∈ P (ξk)

p
(ξ′

k)
ζ′

k
End P/D point of job Jk; p

(ξ′
k)

ζ′
k
∈ P (ξ′

k)

σk Number of candidate paths in job Jk

π
(k)
l The l-th candidate path of job Jk;

π
(k)
l = 〈ρ(k)

l,1 , ρ
(k)
l,2 , · · · , ρ

(k)
l,λk,l
〉

λk,l Number of delivery operations in the l-th candidate path
of job Jk

Π(k) Candidate path set of job Jk;
Π(k) = {π(k)

1 , π
(k)
2 , · · · , π(k)

σk
}

Continued on next page

xvii doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Category Notation Description

ρ Delivery operation ρ ≡ (η, θ, δ)
η Node index of delivery operation ρ

θ Pick-up P/D point index of the delivery operation ρ

δ Drop-off P/D point index of the delivery operation ρ

ϵ
(k)
l,s The transfer site that executes the s-th transfer operation

in the l-th candidate path of job Jk

stk Start time of job Jk

ctk Completion time of job Jk

Co
ns

tr
ai

nt
Pr

og
ra

m
m

in
g

s Start time of an interval variable; s ∈ Z
e End time of an interval variable; e ∈ Z
⊥ Absence of an interval variable in the solution
Tk Interval variable of job Jk

T Set of interval variables of all jobs;
T = {T1, T2, · · · , Tn}

t
(k)
l Interval variable of the l-th candidate path of job Jk

Ck Set of path interval variables of job Jk;
Ck = {t(k)

1 , t
(k)
2 , · · · , t(k)

σk
}

o
(k)
l,s Interval variable of the s-th delivery operation in the

l-th candidate path of job Jk

O
(k)
l Set of interval variables of all delivery operations in the

l-th candidate path of job Jk;
O

(k)
l = {o(k)

l,1 , o
(k)
l,2 , · · · , o

(k)
l,λk,l
}

õ
(k)
l,s Interval variable of the s-th transfer operation in the l-th

candidate path of job Jk

õ
(k)
l,s Interval variable of the s-th transfer operation in the l-th

candidate path of job Jk

Õ
(k)
l Set of interval variables of all transfer operations in the

l-th candidate path of job Jk;
Õ

(k)
l = {õ(k)

l,1 , õ
(k)
l,2 , · · · , õ

(k)
l,λk,l−1}

o
(i)
0 Dummy interval variable of the node i

X(i) Set of interval variables of all delivery operations in
node i

Y (i) List of interval variable types of all delivery operations
in node i

ϕ
(i)
j,j′ Transition time (empty-car moving time) from interval

variable type j to j′ in node i

Φ(i) Transition time matrix of any pair of interval variable
type on node i; Φ(i) =

[
ϕ

(i)
j,j′

]
κ2

i ×κ2
i

Continued on next page

xviii doi:10.6342/NTU202401338

Glossary and Notations

Category Notation Description

Γ(d) Set of interval variables of all transfer operations in
transfer site ed

In
te

ge
rP

ro
gr

am
m

in
g

x
(k)
l,s Start time of the s-th delivery operation in the l-th

candidate path of job Jk

x̃
(k)
l,s Start time of the s-th transfer operation in the l-th

candidate path of job Jk

z
(k)
l Binary variable of the l-th candidate path of job Jk

γi Number of delivery operations in node i

X(i) Set of start time of all delivery operations in node i

Y (i) Set of operation details of all delivery operations in
node i

q
(i)
j′,j Binary variable of preceeding relationship between

operations j′ to j in node i

q̄(i) Binary variable of whether the number of present
delivery operations in node i is greater than 0

L Sufficiently large number
ν Sufficiently small number
γ̃i Number of transfer operations in site ed

X̃(d) Set of start time of all transfer operations in transfer site
ed

Ỹ (d) Set of operation details of all transfer operations in
transfer site ed

Ŷ (d) Set of end time of all transfer operations in transfer site
ed

a
(d)
j′,j Binary variable of whether operation j′ overlaps with j

in time in transfer site ed

â(d) Binary variable of whether the start time of operation j′

is the same as that of j in time in transfer site ed

ω(d) Upper limit of the number of pair-wise overlapping
operations in site d; ω(d) = ωd(ωd+1)

2
A

(d)
j Index set for identifying pair-wise overlapping

relationships; A
(d)
j , j = 1, 2, · · · , b̃d

b̃d Number of index sets for identifying pair-wise
overlapping relationships; b̃d =

(
γ̃d

ωd+1

)
λ̄ Total number of delivery operations decomposed from

all candidate paths of all jobs.
W Indexed operation set;

W =
{
ŵj ≡

(
k̂j, l̂j, ŝj, η̂j, θ̂j, δ̂j

) ∣∣∣ j = 1, 2, · · · , λ̄
}

Continued on next page

xix doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Category Notation Description
M

et
ah

eu
ris

tic
s

k̂j Index of the job of the j-th delivery operation
l̂j Index of the candidate path of the j-th delivery operation
ŝj Index of the operation in the candidate path of the j-th

delivery operation
η̂j Node index of the j-th delivery operation
θ̂j Pick-up P/D point index of the j-th delivery operation
δ̂j Drop-off P/D point index of the j-th delivery operation
w Permuted index array (solution encoding);

w = [w1w2 · · ·wλ̄] , wj ∈ {1, 2, · · · , λ̄}, wj 6=
wj′ , ∀j, j′ ∈ {1, 2, · · · , λ̄}

l∗
k Index of the selected path for job Jk

x
(k)
l,s Start time of the s-th delivery operation in the l-th

candidate path of job Jk

x̃
(k)
l,s Start time of the s-th transfer operation in the l-th

candidate path of job Jk

b(i)
j 3-tuple representing the j-th execution for node i.

B(i) Execution sequence of node i.
ν(i) Available time of node i.
νk Available time of job Jk.
F Future event list in discrete-event simulation.
fj Event in the future event list F . f ≡ (t̂, ŷ, î, ĵ)
t̂ Event time in the 4-tuple event definition.
ŷ Event type in the 4-tuple event definition (1: start, 2:

end).
î Node index in the 4-tuple event definition.
ĵ Execution index of operation in the 4-tuple event

definition.
z(i) Execution sequence index of node i.
zk Operation execution sequence index of job Jk.
bd Blocked flag for the transfer site.
ûd Vacancies on transfer site d.

Pr
ob

lem
Ty

pe 1/∞ Fixed/Infinite problem type
1/n Fixed/Finite problem type
1′/n Fixed-random/Finite problem type
n/∞ Flexible/Infinite problem type
n/n Flexible/Finite problem type

xx doi:10.6342/NTU202401338

Chapter 1

Introduction

In modern manufacturing, Automated Material Handling Systems (AHMSs)

are widely used across the industry. In addition, with the rise of large-scale

factories, internal logistics have become increasingly complex, requiring material

transportation beyond adjacent process machines. In many cases, long-distance

material transportation requires the use of a material handling network, where

multiple AHMSs work sequentially to complete a transportation job.

When multiple material loads need to be transported simultaneously, and

transportation resources in the network are limited, scheduling issues arise.

Therefore, this research focuses on the scheduling problem within the material

handling network, aiming to improve the completion time (makespan) for a set of

transportation jobs.

1.1 Background and Motivation

In the industry, AMHSs are usually controlled and coordinated by the

Material Execution System (MES). Unfortunately, the MES usually adopts a

real-time job dispatching system for material transportation, where no scheduling

is done in advance. For example, an AMHS would only start moving to pick up a

material load from the last stopping position when the load arrives at its I/O port.

However, this no-value-added waiting time is, in fact, unnecessary since the

1 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

moving and arrival times of most AMHSs are stable and predictable, unlike

traditional manual transportation.

Previous research has aimed to improve the efficiency of material handling

networks by scheduling operations in AMHSs. However, some crucial factors were

overlooked. For instance, the limited buffer capacity of conveyor (transfer) systems

was often ignored. Additionally, while multiple paths with the same start and end

points usually exist in a network, each transportation job was typically assigned a

fixed path in the literature, neglecting the potential flexibility.

To address these gaps, we will propose the Material Handling Network

Scheduling Problem (MHNSP), which incorporates the overlooked factors. In our

research, a transportation job can be fulfilled by any of the candidate paths, and we

account for buffer capacity within the network. Figure 1-1 illustrates the

motivation behind our research. Our goal is to determine how the makespan can be

improved when the system has greater flexibility in path selection for jobs and

operation sequencing in AMHSs. These flexibilities should enhance the overall

production efficiency of the material handling network in terms of the makespan.

Note that this enhancement may cause an increase in the cost, but we do not

consider this aspect as the MHNSP is a single-objective optimization problem to

minimize the makespan.

In the literature, related research problems have been mostly solved by

Integer Programming, Metaheuristics, Constraint Programming, etc. Therefore, we

will follow their approaches to propose a Constraint Programming model, an

Integer Programming model, and a Metaheuristics model to solve the MHNSP.

2 doi:10.6342/NTU202401338

Introduction

Each method is based on a distinct modeling technique, providing a more credible

basis for comparing the solutions yielded by each model and ensuring the

optimality of the results. Additionally, by evaluating these models on various

generated problems, we can identify the strengths and weaknesses of each approach

in different problem types. Finally, we can understand how and how much the

makespan improves by comparing the yielded results in different problem types.

Problem Complexity

M
ak

es
pa

n

Real-time Job Dispatching System
(heuristics)

Flexible MHNSP

Fixed MHNSP

improvement level?

(single candidate path)

(multiple candidate paths)

scheduling

Industry

Literature

Our research

Figure 1-1. Illustration of the research motivation.

1.2 Research Objectives

This research intends to solve the MHNSP using Constraint Programming

(CP), Integer Programming (IP), and Metaheuristic algorithm (Differential

Evolution). The objectives of our research are:

• Study different modeling techniques to solve the MHNSP. Some key

techniques include the hierarchical structure modeling technique in CP,

buffer capacity modeling in IP, and the discrete-even-based decoding

3 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

procedure in the Metaheuristic algorithm.

• Compare the three proposed solving methods in small, medium, large, and

extra-large-scale problems with 5 problem types. Based on the results, we

can provide a guideline for choosing the suitable method for different

problem settings.

• Understand how the makespan can be improved when considering more

candidate paths for each transportation job.

1.3 Research Procedure

The procedure of our research is outlined in the flow chart in Fig. 1-2. As

illustrated, we need to iteratively refine and redefine the MHNSP so it can be

solved using mathematical programming models while maintaining its practical

applicability. In addition, since the three models involve distinct modeling

techniques, we must compare the results to ensure the correctness of each model

and the feasibility/optimality of the yielded solutions. Finally, since there are

thousands of generated problems involved in our numerical tests, we need to

organize the numerical results and convert them into meaningful statistics. This

process requires data analytics techniques to effectively interpret and present the

data.

4 doi:10.6342/NTU202401338

Introduction

Mathematically define the MHNSP.

Choose the
research topic

Literature review &
modeling technique study

Propose the benchmark problem
generation procedure.

Propose the CP, IP, and
Metaheuristics model.

Evaluate the models on the
generated benchmark problems.

Chech if
the problems are solvable

by the models.
No

Revise the mathematical
model and assumptions

of the MHNSP.

Yes

Verify the
feasibility and

optimality of the yielded
results.

Revise the proposed
CP, IP, and

Metaheuristics model.

Incorrect

Correct

Design the numerical tests and
generate corresponding
benchmark problems.

Write and present
the thesis.

Organize the numerical results in
meaningful statistics

Figure 1-2. Flow chart of our research procedure.

5 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

1.4 Organization of the Thesis

We have discussed our research problem, objectives, procedure, and

contributions in Chapter 1. In Chapter 2, we will introduce related research and

provide a review of Constraint Programming. Next, in Chapter 3, we will formally

define the MHNSP and describe the problem generation procedure for the

numerical tests.

In Chapter 4, we will detail our solving methods. For the CP and IP models,

sections will follow a similar structure, starting with makespan calculation and

then deriving constraints for the jobs, nodes (AHMSs), and sites (transfer

facilities). For the Metaheuristics, we will focus on the encoding scheme and

decoding procedure of the model, followed by an introduction to the metaheuristic

algorithm used in our research, the Permutational Differential Evolution.

The numerical test results and discussion will be presented in Chapter 5.

Finally, we will conclude our research and suggest future topics in Chapter 6.

6 doi:10.6342/NTU202401338

Chapter 2

Literature Review

This chapter reviews related research on the material handling network

scheduling problem (MHNSP) in the literature.

First, we review the pioneering research that studied the scheduling problem

in the material handling network. However, the main drawback was that they did

not account for path flexibility for each job. We will review some related research

in the transportation field to indicate the importance of path flexibility. Beyond the

transportation field, routing flexibility in manufacturing has also been extensively

studied. In particular, the Job-shop Scheduling Problem (JSP) variant with routing

flexibility has a strong connection with our research problem in terms of model

structure. Therefore, we will also review this JSP variant and demonstrate its

analogy to our MHNSP.

Another JSP variant that considers the material handling systems in

scheduling has also been proposed. In their research, Constraint Programming

(CP) has been shown to have great capability in solving large, complex scheduling

problems. Consequently, we will also adopt CP to solve the MHNSP. However,

since Constraint Programming is relatively unknown to most researchers, we will

give an overview of CP in scheduling in the last section of this chapter.

7 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

2.1 Transportation Network Job Scheduling
Problem

The scheduling problem within the material handling network was first

introduced by Lin and Yang [15]. They formally defined the Fixed Transportation

Network Job Scheduling Problem (TNSP) and addressed it using a mixed-integer

linear programming (MILP) model, five heuristic algorithms, and a genetic

algorithm [7]. The TNSP aimed to minimize the makespan, with each

transportation job following a fixed routing path. However, their model did not

account for buffer capacity and transfer time at transfer sites (conveyor systems)

between Automated Material Handling Systems (AHMSs). Their findings

indicated that the genetic algorithm provided the best solutions in terms of

makespan when optimal solutions were unavailable. Even when the MILP model

could solve the problem, the genetic algorithm’s results had the smallest gap to the

global minimum compared to other heuristic methods. Compared to our research,

the TNSP is a specific case of the Material Handling Network Scheduling Problem

(MHNSP). As will be discussed in Section 3.2.4, the TNSP corresponds to the

1/∞ problem type in our notation, where transfer time is set to zero, and buffer

capacity limits are ignored.

The main drawback of Lin and Yang’s work is their lack of consideration for

multiple candidate paths for each job (path flexibility). Studies have demonstrated

that path/routing flexibility can significantly enhance system efficiency and

reliability.

8 doi:10.6342/NTU202401338

Literature Review

2.2 Importance of Path Flexibility in Transportation

This section reviews three recent works in the transportation field that

incorporated path flexibility. All three research suggested that flexibility in path

selection could enhance the efficiency of the systems.

Groß et al. [5] addressed the problem of reliable and cost-efficient routing in

city logistics. They contended that traditional vehicle routing approaches using

precomputed shortest paths based on average travel times failed to account for the

variations and uncertainties in travel times due to fluctuating traffic volumes and

limited infrastructure. Therefore, they adopted the k-Shortest-Paths (KSP)

algorithm to compute a set of alternative routes between customer locations and

used the min-max regret approach [11] to select the most reliable candidate path.

The result showed that this approach yielded a slightly higher total travel time than

the standard average (shortest path) model but achieved much fewer time window

violations.

Huang et al. [9] studied the time-dependent vehicle routing problem

(TDVRP) by introducing the concept of path flexibility (PF). Traditional vehicle

routing problems typically did not account for the varying traffic conditions and the

multiple possible paths between customer locations, which can significantly impact

travel time and fuel consumption. The main research question was how to integrate

path selection in the routing decision-making process under both deterministic and

stochastic traffic conditions to minimize overall operational costs. They proposed

an MILP model for the TDVRP-PF. The TDVRP-PF model (MILP) achieved

considerable savings in operational costs and fuel consumption compared to the

9 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

traditional TDVRP model. The deterministic TDVRP-PF showed 2.14% cost

savings and 6.37% fuel savings. Path flexibility allows for more efficient routing

structures, particularly in scenarios with high variability in traffic conditions.

Guo et al. [6] tackled the challenge of designing efficient urban customized

bus routes. A major issue in current systems was unpunctuality caused by traffic

congestion. To solve this, the authors proposed a methodology for time-dependent

bus route planning that incorporates path flexibility, allowing for different routes

between nodes depending on traffic conditions and demand patterns. They

developed an MILP model and a hybrid heuristic that incorporates the tabu search

and a variable neighborhood search (VNS) procedure. These models integrated

bus route planning, path selection, and passenger assignment to minimize

operating costs, travel costs, route duration costs, and penalties for delays.

Numerical experiments showed that the proposed models effectively integrated

path flexibility, resulting in a significant reduction of up to 15.2 % in cost, 26.5% in

travel time, and 17.5% in travel distance. In their conclusion, incorporating path

flexibility allowed for more adaptable and efficient route planning. This flexibility

led to better utilization of bus capacity, reduced travel times, and minimized delays

caused by traffic congestion.

2.3 Job-shop Scheduling Problem with Routing
Flexibility

Flexibility in path selection has also been widely studied in research

problems in manufacturing. As indicated by Lin and Yang [15], TNSP (or

10 doi:10.6342/NTU202401338

Literature Review

MHNSP) has a strong relationship with the Job-shop Scheduling Problem (JSP)

[21]. In a classic JSP, n jobs must be processed on m machines. Each job involves

a specific sequence of operations, each assigned to a particular machine with a

defined processing time. It is assumed that each machine can process only one job

at a time.

Several variants of JSP have been proposed and extensively studied [26].

One closely related variant to our MHNSP is the JSP with sequence-dependent

setup time, sequence-independent setup time, and routing flexibility [2, 3, 8, 10,

18, 19, 20, 24] for flexible manufacturing systems (FMS). In this variant, each job

has multiple process plans (routes) to choose from, and there are setup times

between consecutive operations on a machine (sequence-dependent setup time) and

between consecutive operations in a job’s process plan (sequence-independent

setup time). This type of JSP variant has been solved by ant colony optimization

(ACO) [20], mixed-integer programming (MIP) [2], genetic algorithm (GA) [3],

etc. As concluded by Tsubone and Horikawa [24], routing flexibility showed a

greater reduction in average flow time (AFT) in random job shop environments and

provided superior performance in environments with frequent and long machine

breakdowns.

In our MHNSP, each AHMS can be considered a “machine,” and material

transportation within an AHMS can be viewed as an “operation.” Due to physical

limitations, an AHMS must move from the drop-off point of one operation to the

pick-up point of the next operation, analogous to the sequence-dependent setup

time. Additionally, each material transfer between AHMSs in the MHNSP requires

11 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

a transfer time equivalent to the sequence-independent setup time. Furthermore,

each transportation job must choose a path from a set of candidate paths, similar to

the routing flexibility in the JSP variant.

The main difference between our research and the JSP variant is our focus on

the physical movement of the AHMSs. Consequently, the “process time” and

“sequence-dependent setup time” in the MHNSP are derived from the timetable of

the AHMS between each pair of pick-up and drop-off points. Additionally, we

consider the buffer capacity in transfer facilities, which the JSP variant does not.

2.4 Job-shop Scheduling Problem Incorporating
Material Handling Systems Using Constraint
Programming

As discussed in the previous section, multiple methodologies have been

applied to solve the JSP variant. This section reviews two research that used

Constraint Programming in solving another JSP variant incorporating material

handling systems in scheduling.

Liu and Yang [16] proposed the Flexible Job and Material Delivery

Scheduling Problem. Unlike classic JSP, the material transportation between each

machine in their problem was handled by a set of automated guided vehicles

(AGVs); therefore, there was a sequence-dependent setup time between operations

on each machine incurred by the AGV. Besides, each operation could choose to be

processed by one of the machines of the same type, similar to the flexible job-shop

scheduling problem. In some sense, this also provided the routing flexibility for

12 doi:10.6342/NTU202401338

Literature Review

each job. This problem was solved by Constraint Programming, which showed the

practical applicability of CP in complex scheduling problems.

Khayat et al. [4] also studied a similar problem of scheduling production

tasks and material handling tasks in a job shop environment. However, in their

problem, each process machine had a sufficiently large input/output buffer and thus

could process the next workpiece immediately without waiting for the material

handling vehicle to arrive. They proposed an MILP model and a CP model. The

results showed that the MILP model successfully solved test problems with optimal

solutions obtained for most small cases. The results also demonstrated that

decreasing material handling times and adding more vehicles can significantly

increase the solving time. In addition, the CP model showed better performance for

larger problem instances, solving them in a few seconds to a few minutes. The

model proved to be more efficient than the MILP model for complex job shop

environments.

As supported by the above research, CP has great potential in solving

complex scheduling problems. Therefore, we will also adopt the CP to solve the

MHNSP. In the next section, we will provide an overview of Constraint

Programming in scheduling problems.

2.5 Overview for Constraint Programming in
Scheduling Problems

Constraint Programming (CP) has been found suitable for many scheduling

problems, resource allocating problems, etc. [4, 12, 16, 25] In this section, we will

13 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

provide a brief overview of the modeling techniques for CP in scheduling problems.

The cornerstone of CP in scheduling problems is the interval variable. An

interval variable x occupies a time period on the time axis. For example, an

interval variable might be used to present the time span of an operation. However,

in many “flexible” problems, an operation might not be processed if not selected.

Hence, CP provides a feature to specify an interval variable as “optional”, and let

the solver dictate whether the variable participates in the solution or not. The

interval variable x can be formally defined by

x ∈ {[s, e) | s, e ∈ Z, s ≤ e} ∪ {⊥}.

If x =⊥, x would not appear in the solution. The properties of an interval variable

x can be extracted via three named operators: startOf(x) returns the start time s of

x, endOf(x) returns the end time e of x, presenceOf(x) returns false if the CP

solver discards the optional variable x. Formally speaking, we have

startOf(x) = s

endOf(x) = e,

where x ≡ [s, e). If x =⊥, startOf(x) and endOf(x) are not defined. We also have
presenceOf(x) = false, if x =⊥

presenceOf(x) = true, otherwise

For convenience, we use the abbreviations for the three operations:

startOf(x) = s(x), endOf(x) = e(x), presenceOf(x) = p(x).

There is another function lengthOf(x) = e(x)− s(x) that returns the time span of

the interval variable x when present.

14 doi:10.6342/NTU202401338

Literature Review

Sometimes, we need to define the start/end time relationship between two

operations (interval variables). For example, the operation sequence in a JSP must

be executed in the given order. For two consecutive operations (interval variables)

oj and oj+1 of a job, we have the constraint

endBeforeStart(oj, oj+1).

This constraint mandates that e(oj) ≤ s(oj+1); therefore, operation oj would be

executed prior to operation oj+1. There is a set of similar constraints that define the

relationship between two interval variables a and b, which are

startAtStart(a, b) ⇐⇒ {(p(a) ∧ p(b)) =⇒ (s(a) = s(b))}

startAtEnd(a, b) ⇐⇒ {(p(a) ∧ p(b)) =⇒ (s(a) = e(b))}

endAtStart(a, b) ⇐⇒ {(p(a) ∧ p(b)) =⇒ (e(a) = s(b))}

endAtEnd(a, b) ⇐⇒ {(p(a) ∧ p(b))⇒ (e(a) = e(b))}

startBeforeStart(a, b) ⇐⇒ {(p(a) ∧ p(b)) =⇒ (s(a) ≤ s(b))}

startBeforeEnd(a, b) ⇐⇒ {(p(a) ∧ p(b)) =⇒ (s(a) ≤ e(b))}

endBeforeStart(a, b) ⇐⇒ {(p(a) ∧ p(b)) =⇒ (e(a) ≤ s(b))}

endBeforeEnd(a, b) ⇐⇒ {(p(a) ∧ p(b)) =⇒ (e(a) ≤ e(b))} .

In many flexible scheduling problems, we need to choose exactly one

operation from a set of alternatives. In CP modeling, selecting one optional

interval from a candidate set for a target interval can be achieved via the

constraining operator alternative(x, X), where X is the candidate interval set for

the target interval x. In executing this constraint, the CP solver selects one interval

x′ from X for x, setting properties of x to x′, i.e., start/end time, and discards other

15 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

intervals in X . These restrictions can be defined by

alternative(x, X) ⇐⇒
{{

p(x) ⇐⇒
∨

∀x′∈X

p(x′)
}∧{

count
∀x′∈X

(p(x′)) ≤ 1
}

∧
∀x′∈X

p(x′) =⇒ (s(x) = s(x′) ∧ e(x) = e(x′))
}

,

where ∨ and ∧ are the or and and operators, respectively. The first two parts state

that if x is present, there should be exactly one of the interval variables in X

present, and all the others are absent. If x is absent, all the interval variables in X

should be absent. The last part states that if x′ ∈ X is present, then the start/end

time of x and those of x′ should align.

In CP modeling, the constraining operator span(x, X) sets interval x to

represent the covering range of a set of subintervals. Therefore,

startOf(x) = min
∀x′∈X

{startOf(x′)} and endOf(x) = max
∀x′∈X

{endOf(x′)}. Moreover, if

x is absent, all the interval variables in X should be absent too, namely

presenceOf(x) ⇐⇒
∨

∀x′∈X

presenceOf(x′).

There is another variable type called the sequence variable in CP that

represents an ensemble of interval variables that have temporal relationships. For a

given set of interval variables, the CP solver can set permutation orders on their

start times by defining a “sequence” variable for a set of intervals to set their

ordering sequence. Let Q ≡ seq(X) be a sequence variable of the CP model to

arrange the orders of the interval variables in X . For example, if X = {x1, x2, x3},

x2 7→ x3 7→ x1 is a value for the sequence variable Q, where

s(x2) ≤ s(x3) ≤ s(x1) yields in the solution.

Finally, in CP modeling, we can also model the resource utility level. The

16 doi:10.6342/NTU202401338

Literature Review

cumulative function pulse(x, h) defines a pulse covering the range of the interval

variable x with the height h. This can be used to represent the usage level of the

resource, which is h, by the operation x when it is being processed. By aggregating

the cumulative functions defined by a set of interval variables X , that is

C =
∑

x′∈X

pulse(x′, h),

we can derive the resource utility level profile in time C incurred by these interval

variables. If the resource utility level has a minimum or maximum limitation, we

can use the cumulative constraint alwaysIn(C, x, u, ū) such that the (aggregated)

cumulative function C values are within the bounded range [u, ū] in the range of

interval variable x. This will be used to model the buffer capacity in the transfer

sites.

2.6 Summary

This chapter provided a literature review for the MHNSP. We introduced the

TNSP, which was the key reference that inspired our research. We also reviewed

some JSP variants that were closely related to the MHNSP. Finally, we provided an

overview of the CP in scheduling problems. We focused on introducing the

constraints in CP that will be used in the following chapters.

In the next chapter, we will formally define the MHNSP in a mathematical

model. Then, we will propose the procedure for numerical test problem generation.

17 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

18 doi:10.6342/NTU202401338

Chapter 3

Material Handling Network Scheduling
Problem: Problem Description and Problem
Generation

In modern manufacturing systems, smooth and speedy material movement is

crucial for overall production efficiency. In particular, when the material control

system consists of multiple heterogeneous Automatic Material Handling Systems

(AHMSs), the material movements are usually handled by various resources and

require proper coordination between the systems. However, effectively

coordinating the resources to complete all of the movements is a tough task. As a

result, this necessity has given rise to the Material Handling Network Scheduling

Problem (MHNSP), a challenge that focuses on optimizing material transportation

resources in these systems. The MHNSP is concerned with finding an effective

scheduling solution to fulfill jobs as soon as possible, subject to the limited

availability of transportation resources such as transport equipment and buffer

sizes. The goal is to ensure that all material transportation requests are fulfilled

optimally in terms of the completion time.

This chapter will present a rigorous definition of the MHNSP. We will start

with constructing a mathematical model for the problem, which will be detailed in

Section 3.1.2. Additionally, we will depict the procedures of numerical test

problem generation, which are essential for evaluating and refining the proposed

solvers.

19 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

3.1 Problem Definition

The proposed Material Handling Network Scheduling Problem (MHNSP)

poses a challenge in optimizing material handling resources in a complex material

handling network to complete a set of transportation jobs. The objective is to

minimize the maximum completion time, namely the makespan of all jobs. This

section rigorously defines the MHNSP, starting with an overview of the problem

and progressing toward a more intricate mathematical formulation.

3.1.1 Problem Overview

2

1

4

3

8

7

6

5
AGV 1

5

4
1AGV 2

3

2
1

AGV 3
3

2
1

AS/RS Stacker
3

4

2 1

3 2

3

3

3

3

1

1

1 1

3

3

Legends

title : Working area for an AMHS

id : I/O port (P/D point)

n : Transfer system (capacity: n)

1

1

1 : Start point of request 1

2 : End point of request 2

9

: Path for a request

RG
V

2

2

5 6 7 8 9 10 11
12

13

14
15
16

Figure 3-1. Illustration of a material handling network.

Figure 3-1 depicts a sample material handling network. This network

consists of three automated guided vehicle systems (AGVs), one rail-guided vehicle

system (RGV), and an automated storage/retrieval system (AS/RS), where each

system has one mobile transportation machine installed. Each machine is confined

20 doi:10.6342/NTU202401338

MHNSP & Problem Generation

to the designated working area, as shaded in the figure. Additionally, a few

pick-up/drop-off points (P/D points for short) are assigned in each area; these are

the only points where the AHMS can pick up or drop off materials. Finally, transfer

facilities, such as conveyors, are installed between AHMS systems via paired

output and input ports, and they are represented as links in Fig. 3-1. Note that each

transfer facility can also serve as a “temporary” buffer with a limited capacity.

In the real scenario, the P/D points for the AGV and RGV represent the I/O

ports of manufacturing machines and transfer facilities. For example, the P/D point

1 in the AGV 1 in Fig. 3-1 is an I/O port of a manufacturing machine, and P/D

points 2–5 are the I/O ports of transfer facilities. Similarly, the P/D point 9 of the

RGV is an I/O port of a manufacturing machine, and the other P/D points are the

I/O ports of transfer facilities. Meanwhile, for the AS/RS, the P/D points can also

represent buffer storage (refer to the I/O ports 5–16 in the AS/RS in Fig. 3-1).

When a material is to be stored in the AS/RS, a transportation request is generated

to move the material to the P/D point of the AS/RS, which represents buffer storage.

As shown in Fig. 3-1, there are two transportation requests to be completed

at the moment. Request 1 wants to move the material from the lower right corner

(denoted by the blue star) to the upper left corner (the red star). This can be

handled by the blue path: AGV1 [port 1 → 4] → RGV [port 7 → 2] → AGV3

[port 3 → 1], where the material sequentially crosses AGV1, RGV, and AGV3

AHMSs. Similarly, Request 2 can be handled by the dark path via RGV [port 9 →

6] → AGV 2 [3 → 1]. We call each pair of two P/D points in an AMHS [port i →

j] a delivery operation, which is the actual material movement conducted by the

21 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

AMHS. In this case, both requests will need the RGV AHMS for transportation.

But if the RGV can only carry one material load at a time, there is a decision to

make to carry which material first. Moreover, this decision will affect other

delivery operations as well. Therefore, there are five delivery operations to be

scheduled to complete the requests in this example.

Figure 3-2 shows another possible path for Request 1: AGV1 [port 1 → 2]

→ AS/RS [port 1 → 4] → RGV [port 3 → 2] → AGV 3 [port 3 → 1], which

consists of four delivery operations. Since both paths meet the job request but

differ in the operation sequences, this also offers an opportunity for optimization to

minimize the completion time.

2

1

4

3

8

7

6

5
AGV 1

5

4
1AGV 2

3

2
1

AGV 3
3

2
1

AS/RS Stacker
3

4

2 1

3 2

3

3

3

3

1

1

1 1

3

3

RG
V

1

1

9

2

2

Legends

title : Confined area of an AMHS

id : I/O port (P/D point)

n : Transfer system (capacity: n)

1 : Start of a request

1 : End of a request

: Path for a request

5 6 7 8 9 10 11
12

13

14
15
16

Figure 3-2. An illustration of multiple candidate paths for a request.

This example gives a taste that the core of the MHNSP is subject to

candidate path selections and operation sequence scheduling to minimize the

22 doi:10.6342/NTU202401338

MHNSP & Problem Generation

makespan. At the end of this section, we will provide a numerical example to

discuss these two decisions further.

In subsequent sections, we will systematically introduce the terminologies

used and elucidate the scope of the problem to complete the definition of the

Material Handling Network Scheduling Problem.

3.1.2 Mathematical Formulation

This section depicts the mathematical formulation of the Material Handling

Network Scheduling Problem (MHNSP), starting with a few terminology

introductions and illustrations of the problem structure. After that, we will define

all components of the MHNSP mathematical model, including the optimization

goal and constraints.

A material handling network (network for short) is a connected structure of

multiple material handling systems. Each handling system consists of a unique

type of mobile vehicle, robot, or machine that delivers materials within its working

area. The transportation equipment can only operate in the designated area and is

limited to picking up or dropping off materials at specified locations. These

locations are called the pick-up/drop-off points, or P/D points for short. These

handing systems and the associated P/D points are modeled as transportation

nodes of the network. Since each transportation equipment cannot leave its

working area, material transfer facilities, such as conveyors, are installed to transfer

material between nodes. We denote the transfer facilities as transfer sites for

generality, which are modeled as directed links from one P/D point of the source

23 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

node to a P/D point of the target node. The transfer site serves two purposes:

moving the material unidirectionally from the source node to the target node and

acting as a storage buffer. Generally, a transfer time is incurred when transferring

the material, and since a transfer site only occupies a limited physical space, the

buffer capacity is finite. Figure 3-3 models the previous network example as a set

of transportation nodes connected with directed transfer sites, which can be

regarded as a directed graph with featured vertices and edges.

Node 3

Node 4
2

1
3

Node 5
2

1
3 Node 1

4
1

5

1

2

5

6

9
3

4

7

8

Node 2

2

3

4

1

23

11

1

1

3

3

3

3

3

3

5 6 7 8 9
10

11
12
13
14
15

16

Figure 3-3. Graph representation of the network example.

A material transportation request (or job) is usually issued from the

manufacturing execution system (MES) to deliver a load of material from a start

P/D point to an end one. These points may located on the same node, and the

request can be trivially fulfilled within the node. When the start and end points are

located in different nodes, available routing paths should be identified for selection.

The set of paths is called candidate paths, which can be presented by a sequence of

24 doi:10.6342/NTU202401338

MHNSP & Problem Generation

delivery operations. A delivery operation is a material movement from pick-up to

drop-off points in the node. Topologically, a transportation request might have no

path since the transfer sites connecting nodes are unidirectional. With the request

generated time given, a transportation job is then defined by the request’s start/end

points and associated candidate paths, as shown in Fig. 3-4.

Transportation Request

1. Generated Time
2. Start P/D Point 3. End P/D Point

Candidate Paths
path 1

Node1 [3→4] → Node3 [5→2]→ Node2 [3→1]

path 2
Node1 [3→5] → Node2 [4→1]

path 3
…

Transportation Job

Figure 3-4. Definition of a transportation job.

Optimization Goal

The goal of solving the MHNSP is to generate a schedule that minimizes the

maximal completion time (makespan) of the given transportation jobs. This

involves selecting an optimal path for each transportation job and coordinating

delivery operations for the best job execution schedule.

Following this introduction, we will present the mathematical formulation

for the MHNSP. The mathematical model depicts the material handling network,

the transportation jobs, and the optimization objective.

25 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Material Handling Network

A material handling network is depicted as a directed graph G= (V, E). The

vertices set V = {1, 2, · · · , m} consists of indexed transportation nodes where m

is the number of nodes. The edge set E = {e1, e2, · · · , er} is the transfer site set,

and r is the number of sites installed in the network linking two adjacent nodes.

Let node i have κi P/D points located within its encompassing area,

assuming that κi ≥ 1 for no isolated nodes. Note that the network graph must be a

connected graph for a practical MHNSP. Let the P/D point set of node i be

P (i) =
{
p

(i)
1 , p

(i)
2 , · · · , p(i)

κi

}
. Without loss of generality, we call the mobile

transportation equipment in the node a vehicle. A vehicle might be an AGV, a

rail-guided vehicle, a mobile robot, or a stacker crane. Note that node vehicles

travel between P/D points of the node, with no trespassing into other nodes. We

assume that the moving speed of the vehicle is not affected by the weight of the

load and it is deterministic. Let τ
(i)
j,j′ be the vehicle moving time from P/D points

p
(i)
j to p

(i)
j′ . For the transportation node i, the transportation time matrix is

M (i) =
[
τ

(i)
j,j′

]
κi×κi

, where τ
(i)
j,j′ ≥ 0.

A transfer site transfers a material load from the source node P/D point to a

point of the target node. Therefore, the transfer site is defined as an ordered P/D

point pair ek =
(

p
(ak)
bk

, p
(a′

k)
b′

k

)
. Note that p

(ak)
bk
∈ P (ak) and p

(a′
k)

b′
k
∈ P (a′

k), where

ak, a′
k ∈ V , ak 6= a′

k, bk = {1, 2, · · · , κak
} and b′

k = {1, 2, · · · , κa′
k
}. When a node

vehicle delivers a material load to a transfer site, a buffer space is occupied to let

the vehicle drop off the load and leave immediately. Let ωk be the buffer size of site

ek. When all buffers are occupied, the vehicle cannot drop off the material load and

26 doi:10.6342/NTU202401338

MHNSP & Problem Generation

turns “blocked” at the source point of the transfer site. In real applications, the

transfer site might work in a First-In-First-out manner or is operated by additional

resources. However, we only focus on modeling the behaviors of material

transferring and buffer capacity. In our definition, we simply assume that a

material load takes at least βk ≥ 0 transfer time in the transfer site ek to transfer

from the source point to the target point and will cost a unit of the ωk buffers when

the load is begin processed in the site.

Transportation Job

For a given material handling network, the MHNSP should have different

sets of transportation jobs to be scheduled (solved) for the problem. Let the

transportation job set be J = {J1, J2, · · · , Jn}, where n is the total number of jobs.

As mentioned, job Jk is defined as a 4-tuple:

Jk ≡
(

gk, p
(ξk)
ζk

, p
(ξ′

k)
ζ′

k
, Πk

)
, k = 1, 2, · · · , n. In this tuple, gk is the request

generated time; p
(ξk)
ζk

is the start point of the job located in node ξk, where

ζk ∈ {1, 2, · · · , κξk
}; p

(ξ′
k)

ζ′
k

is the end point in node ξ′
k, where ζ ′

k ∈
{
1, 2, · · · , κ′

ξ′
k

}
.

Let Πk =
{
π

(k)
1 , π

(k)
2 , · · · , π(k)

σk

}
be the set of candidate paths for the job Jk,

where σk is the number of candidate paths. As illustrated in Section 3.1.1, an

execution path for a job can be represented by a sequence of delivery operations

that are executed one after the other. For a general path π, let the operation

sequence be π ≡ 〈ρ1, ρ2, · · · , ρλ〉, where λ is the number of operations. We define

an operation ρ as a 3-tuple consisting of its executing node η, the pick-up point

index θ, and the drop-off point index δ in the node. That is

ρ ≡ (η, θ, δ), η ∈ V ; θ, δ ∈ {1, 2, · · · , κη}

27 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Notice that in a path, every delivery operation except the first operation picks up

the load from a target P/D point of a transfer site.

In solving the MHNSP, we need to coordinate the execution sequence of the

operations selected and assigned to each node. However, there are some

circumstances where the next operation cannot be executed immediately after the

end of the previous one. Suppose operations ρj = (η, θj, δj) and

ρj+1 = (η, θj+1, δj+1) are two successive operations to be executed by the vehicle

of node η. When θj+1 6= δj , the vehicle needs to travel to the pick-up point p
(η)
θj+1

after the last dropping off at point p
(η)
δj

. Consequently, additional travel time is

incurred between these operations, which is called the empty-car moving time as

the vehicle carries no load. This no-value-added movement is often referred to as

the sequence-dependent setup time in the literature, and the waste is due to the

physical constraints of the resource. Figure 3-5 is a Gantt chart example that shows

the empty-car moving time between two consecutive delivery operations and at the

beginning of the first delivery operation, where the vehicle needs to move from the

initial point the the pick-up point of the first operation. For example, the vehicle in

node 8 starts from P/D point 1 and moves to P/D points 26, 25, 4, 9, 19, 9, 22, and

9, sequentially.

Let π ≡ 〈ρ1, ρ2, · · · , ρλ〉 =
〈
(η1, θ1, δ1), (η2, θ2, δ2), · · · , (ηλ, θλ, δλ)

〉
be a

valid path in set Πk for job Jk ≡
(

gk, p
(ξk)
ζk

, p
(ξ′

k)
ζ′

k
, Πk

)
. Since the first operation

should pick up the load from the start point of the job, we have the job start point

p
(ξk)
ζk

= p
(η1)
θ1

, the pick-up point of the first operation. Similarly, the last operation

will deliver the load to the end point of the job, i.e., p
(ξ′

k)
ζ′

k
= p

(ηλ)
δλ

. Notice that each

28 doi:10.6342/NTU202401338

MHNSP & Problem Generation

0 50 100 150 200 250 300
time

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

[6 4] [6 4] [6 31] [6 3](1)
1, 6

(1)
4, 6

(1)
4, 6

(1)
31, 6

[3 33] [2 33][2 33] [24 33] [2 33](2)
1, 3

(2)
33, 2

(2)
33, 2

(2)
33, 24

(2)
33, 2

[28 37](3)
1, 28

[13 21](4)
1, 13

[17 10] [17 10] [17 21] [17 10] [17 10](5)
1, 17

(5)
10, 17

(5)
10, 17

(5)
21, 17

(5)
10, 17

[20 15] [20 13](6)
1, 20

(6)
15, 20

[26 25] [4 9] [19 9] [22 9]
(8)
1, 26

(8)
25, 4

(8)
9, 19

(8)
9, 22

[19 17](10)
1, 19

[3 6] [3 6](11)
1, 3

(11)
6, 3

Makespan: 292

Empty-car Moving Time Blocked Time

Figure 3-5. Illustration of empty-car moving time between delivery operations.

node is visited at most once in path π; no cycles are allowed, i.e.,

ηj 6= ηj′ ,∀j, j′ ∈ {1, 2, · · · , λ}, j 6= j′. Therefore, operation number λ ≤ m.

Moreover, the material must be handed over to the next node via a transfer

site. Therefore, the pair of drop-off and pick-up points of two consecutive

operations
(
p

(ηj)
δj

, p
(ηj+1)
θj+1

)
must be a transfer site, i.e.,(

p
(ηj)
δj

, p
(ηj+1)
θj+1

)
∈ E, j = 1, 2, · · · , λ− 1. Let ϵj ≡

(
p

(ηj)
δj

, p
(ηj+1)
θj+1

)
represent the

transfer site connecting operations ρj and ρj+1. When the delivery operation ρj is

completed, the transfer site ϵj will conduct a transfer operation to move material to

the target point at the target node. If ϵj = el, the transfer operation takes at least βl

time and is constrained by the buffer size ωl.

So far, we know that the actual movement of a transportation job is

completed by the alternating sequence of delivery operations and transfer sites

(operations) ρ1 7→ ϵ1 7→ ρ2 7→ ϵ2 7→ · · · 7→ ϵλ−1 7→ ρλ to reach the end P/D point.

In this sequence, ρj is the delivery operation, and ϵj is the transfer site executing

the succeeding transfer operation of delivery operation ρj . Figure 3-6 shows a job

29 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

scheduling example with 5 transportation jobs. For a transfer operation, the

minimum transfer time block is shaded darker. As indicated, the length of a

transfer operation must be longer than the minimum transfer time. In this example,

there are 3 delivery operations and 2 transfer sites (operations) alternating in path

π
(5)
2 for job J5.

0 50 100 150 200 250 300
time

Job 1 [Path 4]

Job 2 [Path 8]

Job 3 [Path 8]

Job 4 [Path 1]

Job 5 [Path 2]

(1)
4, 1

(1)
4, 1

(1)
4, 2

(1)
4, 2

(1)
4, 3

(1)
4, 3

(1)
4, 4

(2)
8, 1

(2)
8, 1

(2)
8, 2

(2)
8, 2

(2)
8, 3
(2)
8, 3

(2)
8, 4

(2)
8, 4

(2)
8, 5

(2)
8, 5

(2)
8, 6

(2)
8, 6

(2)
8, 7

(3)
8, 1

(3)
8, 1

(3)
8, 2

(3)
8, 2

(3)
8, 3

(3)
8, 3

(3)
8, 4

(3)
8, 4

(3)
8, 5

(4)
1, 1

(4)
1, 1

(4)
1, 2

(4)
1, 2

(4)
1, 3
(4)
1, 3

(4)
1, 4

(4)
1, 4

(4)
1, 5

(4)
1, 5

(4)
1, 6

(5)
2, 1

(5)
2, 1

(5)
2, 2

(5)
2, 2

(5)
2, 3

Makespan: 292

Storage Time Transfer Time Blocked Time

Figure 3-6. Illustration of operation sequence in jobs.

In scheduling job Jk, let the start time be stk, which is when the material is

picked up at its start point p
(ξk)
ζk

, and the completion time be ctk when the load is

delivered to its endpoint p
(ξ′

k)
ζ′

k
. Note that the start time must be later than the request

generated time, i.e., stk ≥ gk.

In general, a material handling job Jk in the network G can be accomplished

via more than one path, i.e., σk ≥ 1. If one candidate path is chosen or

predetermined for each job (σk = 1) for some reason, the job is named a fixed

transportation job; otherwise, it is flexible. If all jobs are fixed, we will have a fixed

MHNSP; otherwise, we will have a flexible MHNSP by default. In either case,

each job Jk can only be executed by the operation sequence of the selected

30 doi:10.6342/NTU202401338

MHNSP & Problem Generation

candidate path π∗
k from the set Πk. Moreover, all operations in the sequence must

be executed sequentially following their orders, which is referred to as the

operation precedence constraints.

3.1.3 Data Structure of a Solution

To solve an MHNSP, we must select a candidate path for each job and

coordinate sequences of the yielded delivery operations for node vehicles.

Specifically, a solution to the problem is setting the start times for all selected

operations subject to job operation precedence constraints and vehicle routing

sequencing constraints.

Assume that a solution to the problem has selected path π∗
k from the

candidate set Πk for job Jk and π∗
k ≡ 〈ρ∗

k,1, ρ∗
k,2, · · · , ρ∗

k,λ∗
k
〉, where λ∗

k is the

number of delivery operations of the selected path for the job. Also,

〈ϵ∗
k,1, ϵ∗

k,2, · · · , ϵ∗
k,λ∗

k
−1〉 is the corresponding transfer sites visited.

The solution needs to set a start time for each delivery operation and transfer

operation. Let t∗
k,i be the scheduled start time of delivery operation ρ∗

k,i; similarly,

let t̃∗
k,i be the scheduled start time of transfer operation in site ϵ∗

k,i. Finally, the start

time of the job Jk is set by stk = t∗
k,1, and the completion time is equal to the start

time of the last operation plus its delivery time, that is ctk = t∗
k,λ∗

k
+ τ

(η′)
j′′,j′′′ , where

η′ = η∗
k,λ∗

k
, j′′ = θ∗

k,λ∗
k
, and j′′′ = δ∗

k,λ∗
k
.

31 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Optimization Goal

The goal of the MHNSP is to find a solution that minimizes the makespan

Cmax; i.e.,

min Cmax = min max
k=1,2,··· ,n

ctk

This objective aims to minimize the longest completion time among all

transportation jobs to enhance the material handling efficiency of the

manufacturing execution system.

Summary

In this subsection, we have presented a mathematical model for the MHNSP.

In the next section, we will discuss the assumptions imposed on the problem and

the research scope of the problem.

3.1.4 Assumptions and Problem Scope

Since the general model of MHNSP described in the previous section is

complicated, some assumptions are needed to simplify the problem so that it can

be solved using our methods.

Firstly, we limit our discussion to networks with nodes, each containing only

one vehicle. Additionally, the vehicle’s load capacity is unit-loaded, meaning that a

vehicle can transport only one material load at a time. In some actual applications,

multiple vehicles run in the same node, and traffic drawbacks should be

considered. Furthermore, heterogeneous vehicles with different moving speeds and

32 doi:10.6342/NTU202401338

MHNSP & Problem Generation

loading capacities might be employed as well. For further exploration of various

node types for different AMHSs, please refer to Appendix A.

Secondly, it is assumed that each vehicle is initially located at the first P/D

point of its executing node. This assumption ensures that the same initial condition

is applied to different methods for fair result comparisons.

Thirdly, when a vehicle delivers a load to the drop-off point (the source point

of a transfer site) while the site buffers are full, the vehicle and the load turn into a

blocking state. The blocking state ends when a vacancy is yielded from removing a

buffered load by the target node vehicle. Note that a blocked vehicle cannot finish

the current operation since the material load cannot be removed from the vehicle to

enter the transfer site. If the problem has no capacity limits on all transfer sites,

namely ωd =∞, no blocking state will occur. In this case, a vehicle ends a

delivery operation right at the arrival of the drop-off point and heads for the next

delivery operation immediately.

Lastly, we assume the network configuration is well constructed as a

connected graph. Since the transfer sites are unidirectional links, not every pair of

start and end P/D points has a path between them. This is normal for a network

with specified “source” and “sink” nodes, where no jobs transport from a sink node

to a source node. We, therefore, assume that the jobs given in the problem are all

feasible jobs with at least one candidate path for material delivery. It is also

assumed that the P/D points in a node are fully connected, and the transportation

times between any two points are calculated and stored in a from-to matrix. In

addition, each P/D point can only be assigned to, at most, one transfer site due to

33 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

physical limitations. Furthermore, without loss of generosity, we assume that the

transfer times and the from-to times are all integers. This is to comply with the

restriction of using constraint programming techniques to solve the problem.

Fixed and Flexible MHNSP

We define two types of MHNSPs by the number of candidate paths for each

job. If every job is given with exactly one candidate path (i.e.,

σk = 1, k = 1, 2, · · · , n), we call it a fixed MHNSP. Conversely, suppose the

problem only specifies each job’s start and end points, whose candidate paths can

be identified from the network. In this case, the problem is a flexible MHNSP.

However, we do not consider all possible candidate paths for a job, instead, only a

subset of them are used in our solving methods. We will discuss the heuristics to

select the subset of candidate paths in Section 3.2.3.

3.1.5 Summary

Before wrapping up Section 3.1, we revisit a similar sample network

introduced at the beginning of this chapter to show a numerical example of the

problem

Following the notations defined in Section 3.1.2, we can construct a

mathematical model for the network shown in Fig. 3-7. The node set

V = {1, · · · , 5}, and the numbers of P/D points are κ1 = 5, κ2 = 4, κ3 = 9,

34 doi:10.6342/NTU202401338

MHNSP & Problem Generation

2

1

4

3

8

7

6

5
Node 1

5

4
1Node 5

3

2
1

Node 4
3

2
1

Node 2
3

4

2 1

3 2

3

3

3

3

1

1

1 1

3

3

Legends

title : Transportation node

id : P/D point

3 : Site (capacity: 3)

1

1

1 : Start P/D point of request 1

2 : End P/D point of request 2

9

: Candidate paths

No
de

 3
2

2

Figure 3-7. A small example of the MHNSP.

κ4 = 3, and κ5 = 3. Assume the from-to-time matrices for the nodes are

M (1) =


0 10 15 30 35
10 0 5 20 25
15 5 0 15 20
30 20 15 0 5
35 25 20 5 0

 , M (2) =


0 5 20 25
5 0 15 20
20 15 0 5
25 20 5 0

 ,

M (3) =



0 5 15 20 30 35 30 35 5
5 0 15 15 25 30 25 30 10
15 15 0 5 15 10 15 20 20
20 15 5 0 10 15 10 15 25
30 25 15 10 0 5 0 5 35
35 30 10 15 5 0 5 0 40
30 25 15 10 0 5 0 5 35
35 30 20 15 5 0 5 0 40
5 10 20 25 35 40 35 40 0


,

M (4) = M (5) =

 0 20 20
20 0 5
20 5 0



The set of transfer sites E = {e1, e2, · · · , e10}. Let the definitions of transfer

sites, buffer sizes, and transfer times be

e1 ≡
(
p

(1)
2 , p

(2)
1

)
, ω1 = 1, β1 = 10; e2 ≡

(
p

(2)
2 , p

(1)
3

)
, ω2 = 1, β2 = 10;

e3 ≡
(
p

(3)
4 , p

(2)
3

)
, ω3 = 1, β3 = 10; e4 ≡

(
p

(2)
4 , p

(3)
3

)
, ω4 = 1, β4 = 10;

35 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

e5 ≡
(
p

(1)
4 , p

(3)
7

)
, ω5 = 3, β5 = 10; e6 ≡

(
p

(3)
8 , p

(1)
5

)
, ω6 = 3, β6 = 10;

e7 ≡
(
p

(3)
2 , p

(4)
3

)
, ω7 = 3, β7 = 10; e8 ≡

(
p

(4)
2 , p

(3)
1

)
, ω8 = 3, β8 = 10;

e9 ≡
(
p

(3)
6 , p

(5)
3

)
, ω9 = 3, β9 = 10; e10 ≡

(
p

(5)
2 , p

(3)
5

)
, ω10 = 3, β10 = 10.

The sample problem has two transportation jobs, which are requested at time

0. The job set is J = {J1, J2}; Job J1 ≡
(
0, p

(1)
1 , p

(4)
1 , Π1

)
and Π1 =

{
π

(1)
1 , π

(1)
2

}
,

where

π
(1)
1 ≡ 〈(1, 1, 4), (3, 7, 2), (4, 3, 1)〉

π
(1)
2 ≡ 〈(1, 1, 2), (2, 1, 4), (3, 3, 2), (4, 3, 1)〉

. Similarly, job

J2 ≡
(
0, p

(3)
9 , p

(5)
1 , Π2

)
and Π2 =

{
π

(2)
1

}
, π

(2)
1 ≡ 〈(3, 9, 6), (5, 3, 1)〉.

Several solutions for this problem may be generated by selecting a candidate

path for each job and permuting operation execution orders on nodes. Assume that

Solution A selects path π
(1)
1 ≡ 〈(1, 1, 4), (3, 7, 2), (4, 3, 1)〉 for job J1, and

π
(2)
1 ≡ 〈(3, 9, 6), (5, 3, 1)〉 for job J2. In total, five operations are to be executed,

with one for each node 1, 4, and 5, while node 3 takes two operations. In this

solution, let node 3 execute operation (3, 7, 2) first, then (3, 9, 6). The schedule

resulting from Solution A is depicted in Fig. 3-8, where the makespan is 145.

0 20 40 60 80 100 120 140
time

Node 1

Node 2

Node 3

Node 4

Node 5

J1-1 [1 4]

J1-1 [7 2] J2-1 [9 6]

J1-1 [3 1]

J2-1 [3 1]

Delivery Operation of Job 1
Delivery Operation of Job 2
Empty-car Moving Time

Figure 3-8. Gantt chart of Solution A for the MHNSP sample.

Conversely, assume Solution B lets node 3 execute operation (3,9,6) first,

36 doi:10.6342/NTU202401338

MHNSP & Problem Generation

then (3,7,2). The resulting schedule is shown in Fig. 3-9, and the makespan is 105.

0 20 40 60 80 100
time

Node 1

Node 2

Node 3

Node 4

Node 5

J1-1 [1 4]

J2-1 [9 6] J1-1 [7 2]

J1-1 [3 1]

J2-1 [3 1]

Delivery Operation of Job 1
Delivery Operation of Job 2
Empty-car Moving Time

Figure 3-9. Gantt chart of Solution B for the MHNSP sample.

In contrast, assume that Solution C selects the different path

π
(1)
2 ≡ 〈(1, 1, 2), (2, 1, 4), (3, 3, 2), (4, 3, 1)〉 for job J1. This yields six operations

that need to be executed. Nodes 1, 2, 4, and 5 each take one operation, and nodes 3

take operations (3,3,2) and (3,9,6). Similarly, let node 3 execute operation (3,3,2)

first, which yields the schedule shown in Fig. 3-10, with a makespan of 150.

Instead, let node 3 execute operation (3,9,6) first to generate Solution D, whose

schedule is shown in Fig. 3-11. The makespan of solution D is 100.

0 20 40 60 80 100 120 140 160
time

Node 1

Node 2

Node 3

Node 4

Node 5

J1-2 [1 2]

J1-2 [1 4]

J1-2 [3 2] J2-1 [9 6]

J1-2 [3 1]

J2-1 [3 1]

Delivery Operation of Job 1
Delivery Operation of Job 2
Empty-car Moving Time

Figure 3-10. Gantt chart of Solution C for the MHNSP sample.

37 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

0 20 40 60 80 100
time

Node 1

Node 2

Node 3

Node 4

Node 5

J1-2 [1 2]

J1-2 [1 4]

J2-1 [9 6] J1-2 [3 2]

J1-2 [3 1]

J2-1 [3 1]

Delivery Operation of Job 1
Delivery Operation of Job 2
Empty-car Moving Time

Figure 3-11. Gantt chart of Solution D for the MHNSP sample.

The above example shows that the optimal solution is obtained when job J1

selects the path π
(1)
2 and node 3 executes (3,9,6) first. Interestingly, when job J2 is

not presented, the makespan is 95 if π
(1)
1 is selected and 100 if π

(1)
2 is selected. This

highlights the importance of path selection in the MHNSP when multiple jobs are

presented. If one only considers the fastest/shortest path for each job, this would

usually yield a suboptimal solution. Furthermore, the execution order also has a

significant impact on makespan. Comparing Solutions C and D, we can see that the

only difference is the execution order in node 3; yet one yields the worst solution,

while the other yields the best. Moreover, it can be found that path selection and

operation sequencing have an interaction effect on the yielded makespan. In

conclusion, this example depicts the global perspective of path selection and

operation sequencing. The optimal solution can only be obtained when both

decisions are considered simultaneously.

In this section, we provide a mathematical model to describe the MHNSP

and conclude with an example to show the importance of decision-making in

solving the MHNSP. Next, we will introduce the procedures to generate test

38 doi:10.6342/NTU202401338

MHNSP & Problem Generation

problems for the MHNSP that will be used later to evaluate the performance of

proposed solving methods for the MHNSP.

3.2 Numerical Test Problem Generation

This section describes the procedure for creating test problems for the

Material Handling Network Scheduling Problem to evaluate the performance of

our models and for future research. Each problem describes a material handling

network and a set of transportation jobs to be scheduled. Specifically, each

problem is stochastically constructed using user-defined parameters relating to the

structure complexity and scale-related parameters for job set creations.

After constructing the network and generating the jobs, we pre-select a

subset of all possible candidate paths for each job. In the flexible MHNSP, we

consider all paths within the pre-selected subset. In contrast, for the fixed MHNSP,

we choose a single path from the subset for each job. It is important to note that,

for both types of problems, the listed candidate paths must be valid paths capable

of completing the job transportation within the network.

The following subsections will detail the procedures for creating a problem

for the numerical tests. We will present the user-defined parameters for configuring

the network and then describe the procedure for constructing the network and

generating transportation jobs. After that, we will show our heuristics for candidate

path pre-selection. Finally, we will demonstrate a sample numerical test problem

file for the MHNSP and our notations for different problem scales.

39 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

3.2.1 User-defined Parameters

User-defined parameters are used to generate numerical test problems that

have particular network structures and job complexities. These parameter settings

help generate any possible network configurations subject to the discussed

assumptions.

First, three primary parameters are chosen by the user to specify the

complexity and the scale of the problem: the number of transportation nodes,

m, the number of transportation jobs, n, and the number of transfer sites, r.

Restrictions on values of these parameters are m ≥ 2 to have a network of AHMSs,

r ≥ m− 1 to be a connected graph, and n ≥ 2 for a non-trivial problem.

After acquiring the primary parameters, the user sets the upper bound κ for

the number of P/D points in a node. The problem generator will stochastically set

the number for each node such that 2 ≤ κi ≤ κ,∀i ∈ V . Similarly, the user

specifies the upper bound τ for the generations of the from-to delivery time

between P/D points. The generated time should follow

0 ≤ τ
(i)
j,j′ ≤ τ ;∀j, j′ ∈ {1, 2, · · · , κi},∀i ∈ V.

Likewise, user-defined parameters ω and β are the upper bounds of the

generated buffer sizes and transfer times of the transfer sites. Therefore, the

generated buffer sizes 0 ≤ ωl ≤ ω and transfer times 0 ≤ βl ≤ β, l = 1, 2, · · · , r.

Another upper bound g limits the values of job request times, i.e.,

0 ≤ gk ≤ g, k = 1, 2, · · · , n. Note that we assume the scheduling starts at time 0.

40 doi:10.6342/NTU202401338

MHNSP & Problem Generation

The parameter values specified by the user are the upper bounds of discrete

uniform distribution, i.e., U (u, u), where u, u are lower and upper bounds

(inclusive), respectively. With the given lower bounds, the problem generator

assigns uniformly distributed integer values for the variables discussed above. Note

that uniformly distributed job request times imply that the interarrival times

between two successive jobs approximate the exponential distribution

∼ Exp (g/n). The user-defined parameters are listed in Table 3-1.

Table 3-1. Summary of user-defined parameters for problem generation.

Parameter Description

m Number of transportation nodes

n Number of transportation requests/jobs

r Number of transfer sites

κ Upper bound of number of P/D points in a node

τ Maximum delivery time in a node

β Upper bound of transfer time

ω Upper bound of site capacity

g Upper bound of request generated time

Subsequent sections will present the construction steps of a material

handling network, procedures of transportation job generation, and the search

algorithm for candidate paths of a generated job.

3.2.2 Network Construction

The first stage in the network construction is to create exactly m nodes and

then stochastically set the number of P/D points for each. In order to generate the

from-to timetable for each node, dummy 2D coordinates are randomly assigned to

41 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

each point j, whose coordinates is (xj, yj). The Manhattan distance

zj,j′ = |xj − xj′ |+ |yj − yj′ | between each pair of points j, j′ is evaluated, and the

largest distance z is identified. The from-to timetable for a pair of points is then

scaled from its distance with the time upper bound τ against z. Note that since the

problem does not consider the actual configuration and connectivity layout of the

P/D points in a node, the from-to times can be generated arbitrarily without

considering any geometrical restrictions or reachability.

The second stage is constructing transfer sites to connect nodes as a

connected graph. We first create a connected subgraph with m transfer site. Then,

we bridge the remaining (r −m + 1) sites. Algorithm 1 lists the pseudo-code that

constructs the user-defined network in an intended format.

42 doi:10.6342/NTU202401338

MHNSP & Problem Generation

Algorithm 1 NetworkConstruction (m, r)
1: V ← {1, 2, · · · , m}
2: foreach node i in V do ▷ Generate P/D points
3: κi ←∼ U (2, κ)
4: P (i) ← {p(i)

j

∣∣∣ j = 1, 2, · · · , κi}
5: M (i) ←

[
τ

(i)
j,j′

]
κi,κi

6: (xj, yj)← (Random(), Random()), j = 1, 2, · · · , κi

7: zj,j′ ← |xj − xj′|+ |yj − yj′ |, ∀j, j′ ∈ {1, 2, · · · , κi}
8: z ← max

∀j,j′
(zj,j′), ∀j, j′ ∈ {1, 2, · · · , κi}

9: τ
(i)
j,j′ ←

⌈
τ · zj,j′

z

⌉
, ∀j, j′ ∈ {1, 2, · · · , κi}

10: E ← {}; E ← {}; G̃← {RndOne(V)}; k ← 1
11: while |G̃| < m do ▷ Create a connected subgraph
12: i← RndOne(G̃)
13: j ← RndOne(V \ G̃)
14: TryCreateTransferSiteFromNodeItoJ(E, E, k, i, j)
15: if |G̃| 6= |E| then
16: G̃← G̃ ∪ {j}
17: while |E| < r do ▷ Create the remaining sites
18: i← RndOne(V)
19: j ← RndOne(V \ {i})
20: TryCreateTransferSiteFromNodeItoJ(E, E, k, i, j)

Note that the operation Random() in the pseudo-code returns a random real

number whose value is within [0.0, 1.0) and the operation RndOne(X) returns a

randomly selected element from the specified set X . Also, \ is the set subtraction

operator. Expression X \ Y removes the common elements of set X and Y , (i.e.,

X ∩ Y) from X .

In the pseudo-code listed in Algorithm 1, Lines 6 and 7 randomly allocate a

2D point for each P/D point and then calculate the Manhattan distances between

pairs of points. Line 9 scales a distance to map it to an integral traveling time

43 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

against the upper limit τ .

Lines 11–16 create a minimum spanning subgraph that includes every node

i ∈ V . G̃ book-keeps the node in the current constructing subgraph. Lines 12 and

13 randomly select a node not in G̃ and try to construct a transfer site to connect

the selected node to the constructing subgraph. When every node is included in the

connected subgraph G̃, there will be exact m− 1 transfer sites. Lines 17–20

construct the remaining (r −m + 1) transfer sites. In the algorithm, the function

TryCreateTransferSiteFromNodeItoJ is called to establish a transfer site between

node i and j if possible. The pseudo-code of the algorithm is shown in Algorithm

2.

Algorithm 2 TryCreateTransferSiteFromNodeItoJ(E, E, k, i, j)
1: bk ←∼ U (1, κi)
2: b′

k ←∼ U (1, κj)
3: if p

(i)
bk

, p
(j)
b′

k
/∈ E then

4: ek ← (p(i)
bk

, p
(j)
b′

k
); ωk ←∼ U (1, ω) ; βk ←∼ U

(
1, β

)
5: E ← E ∪ {ek}; E ← E ∪

{
p

(i)
bk

, p
(j)
b′

k

}
; k ← k + 1

Lines 1 and 2 randomly select a P/D point index in each node. Line 3 checks

if the selected P/D points have been defined as a transfer site. If not, we create a

transfer site and update the transfer site set E and the set of used P/D points E.

3.2.3 Transportation Job Generation

In generating the set of transportation jobs, we first assign each job a request

time with a discrete uniformly distributed random value

gk ←∼ U (0, g) , k = 1, 2, · · · , n. Subsequently, we randomly select two P/D

44 doi:10.6342/NTU202401338

MHNSP & Problem Generation

points as the start and end points of the job. Then, we execute an operation to find

its candidate paths. If no path exists for the pair of points, it is discarded, and

re-selection is repeated. The pseudo-code of the procedure is shown in Algorithm

3.

Algorithm 3 TransportationJobGeneration (n)
1: for k ← 1 to n do
2: gk ←∼ U (0, g)
3: s← RndOne(V); s′ ← RndOne(V)
4: t← RndOne({1, 2, · · · , κs}); t′ ← RndOne({1, · · · , κs′})
5: Πk ← FindCandidatePaths(s, t, s′, t′)
6: if Πk = ∅ then
7: goto 3
8: Jk ←

(
gk, p

(ξk)
ζk

, p
(ξ′

k)
ζ′

k
, Πk

)
≡
(
gk, p

(s)
t , p

(s′)
t′ , Πk

)
9: J ← {Jk

∣∣∣ k = 1, 2, · · · , n}

Lines 3 and 4 randomly select a start and an endpoint for job Jk, starting

from p
(s)
t to p

(s′)
t′ . However, they are reselected when lines 6 and 7 find no candidate

path to deliver the material load. The function FindCandidatePaths(s, t, s′, t′)

returns the candidate path set for the given start/end points. The pseudo-code of the

function is listed in Algorithm 4. The job setting is completed in Line 8 by

aggregating the request time, start and end points, and the candidate path set.

Candidate paths for a job are traversed via a recursive procedure, routing

from the start point of the job to the end point without cycles. The procedure

constructs a path by consecutively appending a feasible delivery operation to it

until the end point is reached or no viable operation can succeed.

45 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Algorithm 4 FindCandidatePaths(s, t, s′, t′)
1: if s = s′ then
2: if t = t′ then
3: return ∅
4: else
5: return {〈(s, t, t′)〉}
6: Π← {}; π ← 〈〉; ρ← (s, t,−1)
7: RecursivePathConstruction(Π, π, ρ, s′, t′)
8: return Π

No job is generated if the start and end points are the same since no material

handling is required, as indicated in Line 3 of Algorithm 4. Line 5 composes a job

with a trivial path of one operation for a job delivering material within a node. Line

7 subsequently constructs all candidate paths by executing a recursive operation,

RecursiveConstructPaths(). The operation starts with the half-defined first

operation ρ, i.e. (s, t,−1), beginning from the start point p
(s)
t in the starting node s,

yet the drop-off point is not determined. Then, it traverses all outgoing transfer sites

to complete the current operation (the drop-off point) and sets up the successive

half-defined operation for the nested recursion. A valid path is then constructed

once the recursion reaches the end node. However, an invalid path is discarded

when no outgoing transfer sites exist or outgoing sites route back to traversed

nodes before reaching the end node. The latter case forms a cycle, not a valid path.

Algorithm 5 lists the pseudo-code of the recursive algorithm that constructs

the candidate path set. In Algorithm 5, Lines 1 – 3 identify the path routing reaches

the end P/D point to terminate the recursion. The valid path π∗ is constructed by

cloning the path under traversing, π, and adding the final operation ρ to it, as

46 doi:10.6342/NTU202401338

MHNSP & Problem Generation

shown in Line 2. Note that the operator ⊕ appends the operation on the right-hand

side to the path on the left-hand side.

Algorithm 5 RecursivePathConstruction(Π, π, ρ = (η, θ, δ), s′, t′)
1: if η = s′ then
2: δ ← t′; π∗ ← π ⊕ (η, θ, δ); Π← Π ∪ {π∗}
3: return
4: E ′ ←

{
ek ≡

(
p

(ak)
bk

, p
(a′

k)
b′

k

) ∣∣∣ ak = η, k ∈ {1, 2, · · · , r}
}

5: if E ′ = ∅ then
6: return
7: foreach site e ≡ (p(η)

b , p
(η′)
b′) ∈ E ′ do

8: ▷ Check if appending the outgoing site will form a loop ◁

9: if η′ /∈ {η̃
∣∣∣ ρ̃ ≡ (η̃, θ̃, δ̃), ρ̃ ∈ π} then

10: δ ← b; π ← π ⊕ (η, θ, δ); ρ′ ← (η′, b′,−1)
11: RecursivePathConstruction(Π, π, ρ′, s′, t′)
12: π ← π 	 ρ

Line 4 constructs the set of outgoing transfer sites of the current node η that

executes the current operation ρ ≡ (η, θ, δ). Line 5 terminates the path search

recursion since no outgoing transfer site exists to continue the path.

Lines 7–12 loop through all outgoing transfer sites for path-searching trials

by confirming the current operation and setting up the succeeding operation for the

nested recursion. Therefore, the drop-off point of the current operation is set to the

source point of the outgoing transfer site, and the successive operation’s pick-up

point is the site’s target point.

The target node η′ of the consecutive operation is subject to a cycling check

against the current path π. Line 9 checks if the target node η′ appears in the current

path π. If not, Line 10 accepts the current operation by setting the drop-off point to

47 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

the source point of the transfer site δ ← b. Then, the path π is appended with the

current operation ρ to continue the path via the outgoing transfer site. The

corresponding operation is then half-defined, ρ′ ← (η′, b′,−1), for further

recursion. After the transfer site trial, Line 12 detaches the appended operation ρ

from π where the operator 	 removes the operation on the right-hand side from the

path on the left-hand side. The removal is to resume the original condition of the

path in the current recursion for the next transfer site trial.

Next, we will explain how the candidate paths are pre-selected for each job

so the problem becomes solvable using our proposed methods.

Candidate Path Pre-selection

Since the number of all possible candidate paths for a job grows

exponentially when the number of nodes increases, we adopt heuristics to

pre-select the most promising subset of the paths. This procedure is necessary to

make a meaningful comparison between our solving methods, which will be

introduced in the next chapter.

First, we define the free-run time as the minimum required time to complete

a candidate path. The value is obtained by summing the process time of each

delivery/transfer operation in the path. The procedure is described in Algorithm 6.

48 doi:10.6342/NTU202401338

MHNSP & Problem Generation

Algorithm 6 GetFreeRunTime(k, l)
1: t← 0
2: for i = 1, 2, · · · , λk,l do
3: η ← η

(k)
l,i ; θ ← θ

(k)
l,i ; δ ← δ

(k)
l,i

4: t← t + τ
(η)
θ,δ

5: if i < λk,l then ▷ If the operation is not the last one
6: ed ← ϵ

(k)
l,i ; t← t + βd

7: return t ▷ Return the free-run time

Assume that there are total σk candidate paths for job Jk. The idea of the

pre-selection is to include only the fastest few paths. Let ϕ be the cut-off factor. We

include only the paths with free-run time shorter than ϕ · tk, where tk is the shortest

free-run time of all possible candidate paths Πk for job Jk. However, this

pre-selection might result in too few or too many paths. Therefore, we define σ and

σ̄ as the minimum and maximum number of paths, respectively, to ensure enough

path options for each job. The entire pre-selection procedure is shown in

Algorithm 7. The operation Sort(X, Y) in Line 3 sorts the set X by the

corresponding values in Y .

Algorithm 7 PathPreselect(Πk)
1: σ ← 3; σ̄ ← 30; ϕ← 2;
2: tl ← GetFreeRunTime(k, l), l = 1, 2, · · · , σk

3: Πk ← Sort(Πk, [t1t2 · · · tσk
])

4: [t1t2 · · · tσk
]← Sort([t1t2 · · · tσk

])
5: tk ← t1; l̄← 0
6: for l = 1, 2, · · · , σk do
7: if

(
l ≤ σ

)
or
(
(tl ≤ ϕ · tk) and (l ≤ σ̄)

)
then

8: l̄← l

9: Πk ←
{
π

(k)
l

∣∣∣ l ≤ l̄, l = 1, 2, · · · , σk

}
; σk ← l̄ ▷ Update the candidate path set

For a fixed MHNSP, we assign a path from the pre-selected candidate path

49 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

set to each job. In contrast, all the pre-selected candidate paths are considered in a

flexible MHNSP.

3.2.4 Problem Scales, Types and File Format

In the previous subsections, we described the procedures to generate

problems for numerical tests. In this subsection, we will introduce the problems

that will be used in our numerical tests in Chapter 5. Finally, we will provide the

sample files of the generated problems.

Problem Scales

In our research, we categorize the numerical test problems into four problem

scales: small, medium, large, and extra-large, according to their network

complexities and the number of transportation jobs. The user-defined parameters

used for generation are summarized in Table 3-2, where the notations of

parameters follow those described in Table 3-1. The differences in problem scales

are mainly reflected in the number of nodes m, number of jobs n, and number of

sites r. Notably, the complexity of the large-scale problems already matches the

real-world case of a real display panel factory.

Table 3-2. Parameters for problem generation of different scales.

Scale Notation m n r κ̄ τ̄ β̄ ω̄ ḡ

Small N5S10-J5 5 5 10 20 10 20 1 0
Medium N8S24-J8 8 8 24 40 10 20 2 0
Large N12S48-J8 12 8 48 50 10 20 3 0

Extra N30S100-J20 30 20 100 100 100 20 3 0

We also provide samples of the graph representations for different problem

scales in Fig. 3-12. The site capacity and the source/target P/D points of the site

50 doi:10.6342/NTU202401338

MHNSP & Problem Generation

are shown in the middle of the arc and at the head/tail of the arc, respectively. Note

that the line width of the arc is inversely proportional to the transfer time in the

corresponding site. Finally, the size of the node is proportional to the number of

transfer sites connecting to it.

1

4

1
8

2

1

7

5

2

1

11

3

51
79

1

12

10

3
1

4
3

1
5

12

1

2
8

1
76

1

8

2

(a) Small-scale network.

1 22
82 1
2139

219 33

4

1

15

25 6

2
1

39

2

19

9

1

4 4

3

2

19

5

5 1
4

13

7

1

2

7

215
3

1

17

6

1
52

1
65

2

9

11

1

2

14

1

12

92

16

27

1

2

23

1 23

1

3

7

2

37

1

8
1

3

2

1

1

1

(b) Medium-scale network.

Figure 3-12. Comparison of generated networks in different scales.

51 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

1

2

1

24

3

8

2

11

35
103

19
31

11
2

3

4

2

9

28

4

2

27

1

6

3

23

12

7

3

26

22

1

2

9

1

4

2

3

2

28

25

5

3

15

27

1

22

17

9

1

19

18

3

3

2

1 1

7
1

20

6

2

10

1

2

15

17

34

21

1

16

15

2

26
23

2

19

20

3

3

26

2

14

16

2

19

13

3

4

29

2

13
15

3 29
5

2

1

6

3
36

17

3

18

12

3

1

18

1

37

25

2

7

8

2

5

4

3 2028

3

3 37

2

5

26

1
18

30

1

20

312
6

33
3

31

24

3

9

9

1
7

7

1

6

101

26

21

12

3

12

1

(c) Large-scale network.

1

2

3

4

70

5

2

78

97

2

57

64

6

1

54

73

17

2

32

24

28

2

8

54

3

10

5

2

21

48

3

1

77

80

9

2

26

29

3

33

38

10

3

17

79

12

3

11

50

26

2

13
19

8

1

62

4

11

2

17

30

14

1

17

47

2
810

21

2

2

39

2

22

82

1

11

26

3

34

9

3

13

8

27

3
7

5

3

62

3

15

2

47

4

2

58

41

4

2

88

64

18

1

38

43

19

1
3

21

3

3

56

2

30

40

1 1

45

1

7

53

7

3

83

17

3

23

27

1

15

64

23

1

8

9

24

1

15

76

25

2

14

5

2
74

63

2

12

9 22
2 1712

2

71

31

13

3

40

12

2
10

4

1

7

28

1

48

37
2

67
56

2

36

44

2

1

71

1

16

5

1

42

40

2

8

15

1

2

23

1

68

9

3

9

29

20
3

9

17

1

5

25

2
6211

3

60

12

1

9
31

1
1

27

3

65

75

1

40 15

1

6

34

1

20

54

29
1 2

13

3

18 15

2

56

18

1

49

16

3

53

20

2
41

65

2

29

55

1
23

23

1

30

32

3

16

4

1
42

24

2

20

31

2

4
48

135 53

3

85

1

1

66

12

1

3

11

3

36

14

1

13

5

2

28

16

1

13

15

3

79

7

2

2

16

2

4

4

2

10

28

3

22

17

1
68

1

1

21

12

16

1

10

5

3

93

42

2

21

6 2

6

37

30

3

15

1

(d) Extra-large-scale network.

Figure 3-12. Comparison of generated networks in different scales. (cont.)

Problem Types

To conduct more in-depth research, we also consider five types of problem

settings. These problem types/settings differ in the number of candidate paths for

52 doi:10.6342/NTU202401338

MHNSP & Problem Generation

each job and whether the buffer capacity limit applies.

In a fixed MHNSP, there is only one path chosen from the pre-selected

candidate paths Πk for job Jk. By default, we select the path l∗
k with the smallest

free-run for the job Jk, that is

l∗
k = arg min

l=1,2,··· ,σk

GetFreeRunTime(k, l).

Therefore, we have Πk ← {π(k)
l∗
k
} and σk ← 1. However, we also consider the case

of the path being randomly selected from the subset, namely

Πk ← {RndOne (Πk)} .

While in a flexible MHNSP, all the pre-selected candidate paths are considered.

On the other hand, we suppose that each transfer site has a finite buffer size

ωd that will “block” the vehicle when no vacancy is left. However, some studies in

the literature did not consider the site capacity. Therefore, we separate problem

cases to determine whether the site capacity constraint is complied with. In the

problem type with infinite capacity, the site capacity is ignored; otherwise, the

capacity limit is applied.

We use a two-symbol notation to indicate the types of problems. The first

symbol indicator if the problem is fixed or flexible. The second symbol indicates if

the site capacity is finite. In this research, we study five types of problems:

fixed/infinite, flexible/infinite, fixed/finite, fixed-random/finite, and flexible/finite

settings. We denote the five types as 1/∞, n/∞, 1/n, 1′/n, and n/n, respectively.

The comparison of problem types is summarized in Table 3-3.

53 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Table 3-3. Comparison of different problem types.

Problem Type # of paths Site Capacity Limit Path Pre-selection Criteria

1/∞ 1 ignored best
1/n 1 applied best
n/∞ Multiple ignored algorithm
n/n Multiple applied algorithm

1′/n 1 applied random

File Format

This subsection describes how the numerical test problems are saved and

organized in folders. Since various network configurations and job sets can be

generated with the same user-defined parameters, we organize and name them

according to their problem scales. Figure 3-13 shows the directory structure of all

the problems used in our research.

/
N5S10-J5 (Small)
N8S24-J8 (Medium)

benchmark config.yml USER-DEFINED PARAMETERS
M-1.....................................PROBLEM INSTANCE

Network config.json NETWORK CONFIGURATION
Graph.pdf......................GRAPH REPRESENTATION
Flexible J8.json JOB FILE

M-2
...
M-30

N12S48-J8 (Large)
N30S100-J20 (Extra)

Figure 3-13. Directory structure of the numerical test problem files.

In each problem scale folder, the user-defined parameters used to create the

problems of this scale are saved in a file. The context of a sample user-defined

parameter file is shown in File 3-1. This file was used to create 30 medium-scale

54 doi:10.6342/NTU202401338

MHNSP & Problem Generation

problem instances. We saved the generated 30 networks in different folders, named

with a prefix of the problem scale and a unique ID. For example, M-1 means the

first generated network of the medium-scale problem

File 3-1. Problem configuration file for medium-scale problems.
benchmark config.yml
num_networks: 30 # number of networks
num_nodes: 8 # number of nodes
num_pd: 40 # maximum number of P/D points in a node
num_trans_site: 24 # number of sites
max_node_vehicle: 1 # maximum number of vehicles in a node
max_trans_capacity: 2 # maximum capacity of a site
max_trans_pt: 20 # maximum transfer time in a site
max_from_to: 10 # maximum delivery time in a node

num_jobs: 8 # number of jobs
max_start_after: 0 # maximum request generated time
flexible: True # flexible MHNSP
node_init_pos: 0 # vehicle initial P/D point

In each network folder, we saved the network configuration in a JSON file

that described the details of the material handling network. A sample network

configuration file for network S-1 is shown in File 3-2. Note that the index in the

file starts from 0. In the file, we show the from-to timetable for node 5 and omit the

others. Finally, each row in the field “transfer sites” lists the details of the site: the

source node, the source P/D point ID, the target node, the target P/D point ID, the

transfer time, and the site capacity.

Besides the network configuration file, the network graph is displayed in the

Graph.pdf file. The schematic diagram is generated by Graphviz. The sample

drawings can be found in Fig. 3-12 on page 51.

Finally, we save a set of transportation jobs for each network in a JSON file.

File 3-3 is an example of the job file for network S-1. Note that the index in the file

starts from 0. Each job has the start node, the start P/D point ID, the end node, and

55 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

the end P/D point ID specified. In the file, the “start_after” field is the request

generated time of the jobs.

File 3-2. Network configuration file for network S-1.
Network config.json
{

"num_nodes": 5,
"num_trans_site": 10,
"flexible": true,
"node_init_pos": 0,
"num_node_veh":

[1, 1, 1, 1, 1],
"num_pds_in_node":

[17, 14, 12, 12, 10],
"node_from_to":

[
...
[[0, 22, 22, 21, 5, 14, 21, 16, 18, 8],

[22, 0, 2, 7, 21, 10, 2, 8, 5, 15],
[22, 2, 0, 5, 20, 10, 3, 7, 5, 15],
[21, 7, 5, 0, 20, 12, 6, 5, 7, 15],
[5, 21, 20, 20, 0, 11, 19, 15, 16, 6],
[14, 10, 10, 12, 11, 0, 9, 8, 6, 6],
[21, 2, 3, 6, 19, 9, 0, 7, 3, 14],
[16, 8, 7, 5, 15, 8, 7, 0, 6, 10],
[18, 5, 5, 7, 16, 6, 3, 6, 0, 11],
[8, 15, 15, 15, 6, 6, 14, 10, 11, 0]],

...
],

"trans_sites":
[[0, 1, 3, 7, 18, 1],

[1, 9, 0, 11, 20, 1],
[2, 11, 1, 4, 19, 1],
[2, 2, 0, 3, 12, 1],
[3, 4, 0, 6, 9, 1],
[3, 8, 4, 6, 1, 1],
[3, 2, 1, 10, 19, 1],
[4, 7, 1, 1, 3, 1],
[4, 5, 1, 6, 3, 1],
[4, 1, 2, 7, 3, 1]]

}

File 3-3. Job file for network S-1.
Flexible J5.json
{

"num_jobs": 5,
"start_after":

[0, 0, 0, 0, 0],
"jobs":

[[3, 0, 1, 0], [0, 9, 2, 3], [2, 6, 0, 5],
[1, 12, 2, 8], [1, 12, 0, 0]]

}

56 doi:10.6342/NTU202401338

MHNSP & Problem Generation

3.2.5 Summary

This section has thoroughly outlined the process of generating numerical test

problems for Material Handling Network Scheduling Problems. The approach

begins with defining user-defined parameters to shape the network’s structure and

complexity. We then detailed the steps of constructing a network that adheres to

these parameters. After that, we highlighted the processes involved in generating

transportation requests and developing an algorithm capable of identifying all

optional paths for any given request. In the last subsections, we described the

procedure to pre-select the candidate paths and demonstrated some sample files of

the generated problems.

Moving forward, the next chapter will delve into various methodologies

designed to effectively solve the MHNSP.

57 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

58 doi:10.6342/NTU202401338

Chapter 4

Constraint Programming, Integer
Programming, and Differential Evolution
Models for Material Handling Network
Scheduling Problem

This chapter explores three methodologies for solving the Material Handling

Network Scheduling Problem, including Constraint Programming, Integer

Programming, and Metaheuristic algorithm. With different modeling principles

and solving approaches, each approach offers a distinct procedure to solve the

MHNSP. The following sections provide an in-depth analysis of these

methodologies, highlighting their procedures for determining the makespan and

developing constraints that capture the behaviors of the material handling network

system.

4.1 Constraint Programming Model for Solving the
Material Handling Network Scheduling Problem

The literature indicates that Constraint Programming (CP) is an effective

modeling tool for solving optimization problems with complicated solution

structures and logic constraints, particularly resource scheduling problems

involving time intervals [4, 12, 16, 25]. In this section, we rigorously derive a CP

model for the discussed MHNSP.

59 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

The key feature of our CP model is the hierarchical structure of interval

variables. This structure makes it easy to derive constraints for our transportation

jobs, nodes, and transfer sites.

4.1.1 Job Constraints

This subsection presents the CP model components relating to the

transportation job constraints. First, we will have an overview of the proposed

hierarchical structure and explain the merits of adopting this structure. Then, we

will formally define the interval variables at each hierarchy level and introduce the

related constraints.

Overview of the Hierarchical Structure

Figure 4-1 gives a brief summary of the interval variable hierarchy. Each

level has its own purpose, and the relationship between any two levels is

established by CP constraints.

At the top level, we define the job interval variable to record the start/end

time of the job. Therefore, we can easily calculate the makespan by comparing the

end time of each job and finding the latest one (refer to Fig. 4-2 on page 62 for

better understanding).

60 doi:10.6342/NTU202401338

CP, IP, & DE

alternative span

job interval variables

sequences of operation
interval variables

path interval variables

Makespan calculation Path selection
(choose 1)

Connection between the
selected path and the
underlying operations

Precedence constraints,
delivery time, & transfer time

Purpose

Define the selection result
of candidate paths

Job 3 Interval

J3 [Path 1]

J3 [Path 2]

J3 [Path 3]

J3 [Path 4]

J3 [Path 5]

op1 op2 op3 op4

Figure 4-1. Illustration of the hierarchical structure of the interval variables.

At the middle level, we define the path interval variables. In CP, an interval

variable can be specified as “optional,” meaning that the solver would determine

whether the interval participates in the solution or not. We set all path interval

variables to be optional and use the constraint alternative(x, X) to mandate that

one and only one of the paths (in set X) should be “present” in the solution for

each job (variable x). Moreover, the start/end time of the job would align with

those of the selected path by this constraint as well. This step is equivalent to the

path selection in solving an MHNSP.

At the lower level, operation interval variables are defined. Again, we set all

operation interval variables to be optional. When a path is selected, i.e., present, the

underlying operation interval variables should also be present. At the same time,

all the other non-selected paths and their associated operations should be “absent”.

Moreover, the start/end time of a path should align with the start time of the first

61 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

operation and the end time of the last one when present. All the above relations can

be achieved by the constraints span(x, X), where X is the set of operation interval

variables and x is the path interval variable. Finally, each operation interval should

respect the precedence constraints, namely, they are executed sequentially.

Without this hierarchical structure, it would be hard to model the relationship

between jobs, candidate paths, and operations elegantly. As shown in Fig. 4-2,

several jobs with numerous candidate paths and operations are to be scheduled and

solved by the CP model. It will be extremely cumbersome to define the relationship

“manually”, which will be the case in our Integer Programming model.

0 50 100 150 200 250 300
time

Job 1 [Path 4]

Job 2 [Path 8]

Job 3 [Path 8]

Job 4 [Path 1]

Job 5 [Path 2]

T1

T2

T3

T4

T5

Makespan: 292

Gantt chart of job intervals

0 50 100 150 200 250 300
time

Job 1 [Path 4]

Job 2 [Path 8]

Job 3 [Path 8]

Job 4 [Path 1]

Job 5 [Path 2]

o(1)
4, 1 o(1)

4, 1 o(1)
4, 2 o(1)

4, 2 o(1)
4, 3 o(1)

4, 3 o(1)
4, 4

o(2)
8, 1 o(2)

8, 1 o(2)
8, 2 o(2)

8, 2o
(2)
8, 3o(2)
8, 3o

(2)
8, 4o

(2)
8, 4o(2)

8, 5 o(2)
8, 5 o(2)

8, 6 o(2)
8, 6 o(2)

8, 7

o(3)
8, 1 o(3)

8, 1 o(3)
8, 2 o(3)

8, 2 o(3)
8, 3 o(3)

8, 3 o(3)
8, 4 o(3)

8, 4 o(3)
8, 5

o(4)
1, 1 o(4)

1, 1 o(4)
1, 2 o(4)

1, 2o
(4)
1, 3o(4)
1, 3o(4)

1, 4 o(4)
1, 4 o(4)

1, 5 o(4)
1, 5o

(4)
1, 6

o(5)
2, 1 o(5)

2, 1 o(5)
2, 2 o(5)

2, 2 o(5)
2, 3

Gantt chart of operation intervals

Storage Time Transfer Time Blocked Time

Figure 4-2. Gantt chart results of a CP solution.

Next, we will formally define the interval variables in each level and

construct their associated constraints.

62 doi:10.6342/NTU202401338

CP, IP, & DE

Job Interval Variable, Makespan Calculation, and Optimization Goal

At the top level of the hierarchy, we define the time interval variable Tk for

job Jk, representing the delivery time period in the final schedule of the solution to

the MHNSP. Let T = {Tk|k = 1, 2, · · · , n} be the interval variable set for all jobs.

The makespan is then derived from the job intervals as

Cmax = max
∀Tk∈T

endOf(Tk), (4.1)

where endOf(Tk) returns the end time of job Jk. Figure 4-2 on the previous page

indicates that the makespan is calculated by the latest end time of all jobs in the

scheduled solution.

Candidate Path Interval Variable

Following the proposed modeling hierarchy, we define candidate path

interval variables for a job. Notice that there are σk paths in candidate set Πk for

job Jk. We define σk “optional” interval variables for the job. Let t
(k)
l be the

interval variable for the l-th candidate path π
(k)
l , l = 1, 2, · · · , σk. Assume that the

set of path interval variables for the job Jk is Ck =
{
t
(k)
1 , t

(k)
2 , · · · , t(k)

σk

}
.

In CP modeling, selecting one optional interval from a candidate set for a

target interval is achieved via the constraining operator alternative(x, X), where X

is the candidate interval set for the target interval x. Therefore, to facilitate the path

selection, we have constraints

alternative(Tk, Ck), k = 1, 2, · · · , n.

63 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Operation Interval Variable

Now, we define the lowest-level operation interval variables of each path.

Let π
(k)
l =

〈
ρ

(k)
l,1 , ρ

(k)
l,2 , · · · , ρ

(k)
l,λk,l

〉
be the l-th candidate path of job Jk with λk,l

sequential delivery operations. Note that a transfer operation exists between a pair

of consecutive delivery operations in the path. Let the sequence of the transfer sites

visited be
〈
ϵ

(k)
l,1 , ϵ

(k)
l,2 , · · · , ϵ

(k)
l,λk,l−1

〉
,, where the transfer site ϵ

(k)
l,j conducts a transfer

operation between operations ρ
(k)
l,j and ρ

(k)
l,j+1.

To construct our CP model, we define the corresponding set of interval

variables O
(k)
l =

{
o

(k)
l,1 , o

(k)
l,2 , · · · , o

(k)
l,λk,l

}
for the “delivery operations” of the l-th

candidate path. Normally, the CP solver determines the interval’s start time, which

is subject to vehicle availability in the node. Between two consecutive delivery

operations, there is a transfer operation conducted in the transfer site whose start

time is to be determined by the solver against the buffer size constraint. We have

λk,l − 1 transfer time intervals to be defined and determined by the solver. Let

Õ
(k)
l =

{
õ

(k)
l,1 , õ

(k)
l,2 , · · · , õ

(k)
l,λk,l−1

}
be the defined interval variable set for the

“transfer operations.” Note that the mapped transfer site for interval õ
(k)
l,j is ϵ

(k)
l,j . In

Fig. 4-2 on page 62, the delivery operations are represented by the “thicker”

blocks, while the thinner blocks are the transfer operations.

Since each delivery operation interval o
(k)
l,1 represents the time span of the

material load in the node and sometimes the load would be blocked, it should

therefore be longer than the delivery time required (since the vehicle is still

64 doi:10.6342/NTU202401338

CP, IP, & DE

occupied by the material load, the operation is not completed). That is

lengthOf(o(k)
l,j) ≥ τ

(η)
θ,δ , ρ

(k)
l,j ≡ (η, θ, δ),

j = 1, 2, · · · , λk,l, l = 1, 2, · · · , σk, k = 1, 2, · · · , n.

Similarly, each transfer operation interval õ
(k)
l,1 should be longer than the transfer

time required since the material might not be able to be promptly picked up by the

next node after the transfer operation. We have

lengthOf(õ(k)
l,j) ≥ βd, where ϵ

(k)
l,j ≡ ed,

j = 1, 2, · · · , λk,l − 1, l = 1, 2, · · · , σk, k = 1, 2, · · · , n.

Since a path for a job is a sequence of operations executed consecutively, the

CP model has precedence constraints applied to operation intervals in determining

their start times. In CP modeling, the constraining operator endAtStart(x, x′)

restricts the start time of interval x′ to be equal to the end time of x when both

intervals are present; i.e.,

(
presenceOf(x) ∧ presenceOf(x′)

)
⇒
(

endOf(x) = startOf(x′)
)

,

where ∧ is the AND Boolean operator. Therefore, a precedence constraint is

applied to a consecutive pair of delivery operation interval and transfer operation

interval, i.e., o
(k)
l,j , õ

(k)
l,j and õ

(k)
l,j , o

(k)
l,j+1.

We know the CP solver will select one candidate path for each job. If the

l′-th path is selected for job Jk, the interval variable t
(k)
l′ will be present in the

solution while others are absent. In addition, the start and end times of the job

interval variable Tk should align with those of t
(k)
l′ . This can be achieved by the

65 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

span(·, ·) constraint, namely

span(t(k)
l , O

(k)
l), l = 1, 2, · · · , σk, k = 1, 2, · · · , n

Figure 4-3 illustrates the associated relationship among the job interval

variable, the selected path interval variable, and the list of operation interval

variables of the path. In the figure, the 40th candidate path is selected by the solver

for job J3. The CP solver will set

startOf(T3)← startOf(t(3)
40)← startOf(o(3)

40,1),

endOf(T3) ← endOf(t(3)
40) ← endOf(o(3)

40,4).

Note that the selected path has four delivery and three transfer intervals defined.

15 20 25 30 35 40 45 50
time

Operations
[Job 3 - Path 40]

Job 3
[Path 40]

Job 3 Job Interval T3

Path Interval t(3)
40

O(3)
40, 1 O(3)

40, 0 O(3)
40, 2 O(3)

40, 1 O(3)
40, 3 O(3)

40, 2 O(3)
40, 4

Hierarchical Structure of Job Interval Variables

Figure 4-3. Alignment Relationship between job interval variable, path interval
variable, and operation interval variable.

Summary

The CP model relating to the constraints of jobs is summarized as follows.

Definitions of Interval Variables

T = {Tk | k = 1, 2, · · · , n} (4.2)

Ck = {t(k)
l | l = 1, 2, · · · , σk}, k = 1, 2, · · · , n (4.3)

66 doi:10.6342/NTU202401338

CP, IP, & DE

O
(k)
l = {o(k)

l,j | j = 1, 2, · · · , λk,l}, l = 1, 2, · · · , σk, k = 1, 2, · · · , n (4.4)

Õ
(k)
l = {õ(k)

l,j | j = 1, 2, · · · , λk,l − 1}, l = 1, 2, · · · , σk, k = 1, 2, · · · , n (4.5)

Constraints:

alternative(Tk, Ck), k = 1, 2, · · · , n (4.6)

span(t(k)
l , O

(k)
l), l = 1, 2, · · · , σk, k = 1, 2, · · · , n (4.7)

presenceOf(t(k)
l) ⇐⇒ presenceOf(o(k)

l,j)

j = 1, 2, · · · , λk,l, l = 1, 2, · · · , σk, k = 1, 2, · · · , n

(4.8)

presenceOf(t(k)
l) ⇐⇒ presenceOf(õ(k)

l,j),

j = 1, 2, · · · , λk,l − 1, l = 1, 2, · · · , σk,

k = 1, 2, · · · , n

(4.9)

endAtStart(o(k)
i,j , õ

(k)
i,j), j = 1, 2, · · · , λk,l − 1, l = 1, 2, · · · , σk,

k = 1, 2, · · · , n

(4.10)

endAtStart(õ(k)
i,j , o

(k)
i,j+1), j = 1, 2, · · · , λk,l − 1, l = 1, 2, · · · , σk,

k = 1, 2, · · · , n

(4.11)

presenceOf(o(k)
l,j) =⇒

(
lengthOf(o(k)

l,j) ≥ τ
(η)
θ,δ

)
,

where ρ
(k)
l,j ≡ (η, θ, δ), j = 1, 2, · · · , λk,l, l = 1, 2, · · · , σk,

k = 1, 2, · · · , n

(4.12)

67 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

presenceOf(õ(k)
l,j) =⇒

(
lengthOf(õ(k)

l,j) ≥ βd

)
where ϵ

(k)
l,j ≡ ed, j = 1, 2, · · · , λk,l − 1, l = 1, 2, · · · , σk,

k = 1, 2, · · · , n

(4.13)

Equations 4.2 to 4.5 define the job interval variables, path interval variables,

and operation interval variables. Equation 4.6 restricts that each job should select

one and only one path. Equation 4.7 further imposes the alignment of start/end

time on the operation interval variables and their corresponding path interval

variable. Moreover, the presence of the operation interval variables in the same

path should be the same, as described in Eqs. 4.8 and 4.9. The operations should

also comply with the precedence constraints and be executed sequentially. This

constraint is imposed by Eq. 4.10 and 4.11. Finally, the length of each operation

should be equal to or greater than the given delivery time or transfer time, which

are described in Eq. 4.12 and 4.13.

In this subsection, we have constructed part of the CP model that is related to

the transportation job set. In the following subsections, we will investigate the

material handling operations on a node and a transfer site whose interval variables

have been introduced for jobs.

4.1.2 Operation Constraints on Nodes

In the MHNSP, the vehicle of a node receives a set of operations

decomposed from candidate paths of all jobs. The interval variables for these

delivery operations acquire the transportation resources to move from the pick-up

68 doi:10.6342/NTU202401338

CP, IP, & DE

point to the drop-off point. The CP solver will arrange the processing orders of

these operations on each node to achieve the optimization goal.

Figure 4-4 shows an example of the operations scheduled on nodes. The

solution is the same as the one shown in Fig. 4-2 in the previous subsection, except

that we reorganize the operation intervals from the nodes’ perspective. As shown

in the figure, the delivery operations in a node are aggregated from different jobs

and different paths. For example, the operations on node 8 are from job J1, J2, J3,

and J4. Therefore, the main idea in constructing the constraints in nodes is to

gather all the operation interval variables executed on each node in a set and

establish the constraints of empty-car moving time between two consecutive

operations when they are both present.

0 50 100 150 200 250 300
time

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

o(2)
8, 2 o(4)

1, 2 o(3)
8, 2 o(5)

2, 2
(1)
1, 6

(1)
4, 6

(1)
4, 6

(1)
31, 6

o(1)
4, 4 o(2)

8, 7 o(4)
1, 6 o(5)

2, 3 o(3)
8, 5

(2)
1, 3

(2)
33, 2

(2)
33, 2

(2)
33, 24

(2)
33, 2

o(1)
4, 3

(3)
1, 28

o(2)
8, 5

(4)
1, 13

o(2)
8, 1 o(4)

1, 1 o(1)
4, 1 o(3)

8, 1 o(5)
2, 1

(5)
1, 17

(5)
10, 17

(5)
10, 17

(5)
21, 17

(5)
10, 17

o(2)
8, 4 o(4)

1, 4
(6)
1, 20

(6)
15, 20

o(1)
4, 2 o(2)

8, 6 o(4)
1, 5 o(3)

8, 4

(8)
1, 26

(8)
25, 4

(8)
9, 19

(8)
9, 22

o(3)
8, 3

(10)
1, 19

o(2)
8, 3 o(4)

1, 3
(11)
1, 3

(11)
6, 3

Makespan: 292

Empty-car Moving Time Blocked Time

Figure 4-4. Gantt chart result of nodes from the CP model.

In CP modeling, the constraining operator noOverlap(Q) restricts the

intervals sequentialized by the sequence variable Q not to overlap each other. We

need to collect operation interval variables that are to be executed on each

transportation node to model the processing constraints on the node. Let the

69 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

delivery operation interval set for node i be

X(i) =
{
o

(k)
l,j

∣∣∣ρ(k)
l,j ≡ (η(k)

l,j , θ
(k)
l,j , δ

(k)
l,j), η

(k)
l,j = i;

j = 1, 2, · · · , λk,l, l = 1, 2, · · · , σk, k = 1, 2, · · · , n
}
.

Note that operations are from different paths of different jobs yet executed on node

i. In our MHNSP, the delivery operation ρ ≡ (i, θ, δ) represented by an interval

variable o ∈ X(i) is the actual material movement on node i. If ρ′ ≡ (i, θ′, δ′) is the

next operation of ρ and its interval variable is o′, an empty-car moving time τ
(i)
δ,θ′ is

required between intervals o and o′, which is the transition time between two

successive intervals (operations).

In CP, the transition time between two successive intervals in a sequence

variable can be modeled by setting a positive “type” integer to each interval in the

sequence. The transition time from one type to another can be specified in

advance. Since a delivery operation is executed from a pick-up point to a drop-off

point, there are κ2
i “types” of operations. Follow Liu and Yang[16], suppose we

define the type of an operation interval as the product of its pick-up index and the

number of P/D points of the node plus the drop-off point index. Therefore, the type

of interval o representing operation ρ ≡ (i, θ, δ) is y = (θ − 1) · κi + δ, and the

type of o′ is y′ = (θ′ − 1) · κi + δ′. We can set the transition time from an interval

of type y to an interval of type y′ as the empty-car time τ
(i)
δ,θ′ . We can ask the CP

solver to separate two non-overlapped intervals with the specified transition time

for us. In our CP model, the transition times are the empty-car times between two

delivery operations on the node.

In CP modeling, the interval variables specified in an “advanced sequence

70 doi:10.6342/NTU202401338

CP, IP, & DE

variable” must have an integer type specified. The enhanced definition of the

sequence variable is Q ≡ seq(X, Y), where Y is the associated list of types of the

intervals in X . Associated with this enhancement, the constraining operator

noOverlap(Q, Φ) separates non-overlapped intervals with transition times specified

in the matrix Φ = [ϕj,j′]. The transition time ϕj,j′ ≥ 0 is used to separate an

interval variable of type j′ from its preceding interval of type j. Therefore, in the

solution of our example, endOf(o) + ϕj,j′ ≤ startOf(o′).

To take advantage of the enhancement, we define sequence variables for

nodes as Q(i) ≡ seq(X(i), Y (i)), i ∈ V . The integer type list

Y (i) ≡
[(

θ
(k)
l,j − 1

)
· κi + δ

(k)
l,j

∣∣∣ η
(k)
l,j = i;

j = 1, 2, · · · , λk,l, l = 1, 2, · · · , σk, k = 1, 2, · · · , n
]

is the associated type values of the intervals o
(k)
l,j in X(i). Note that the dimension

of the transit time matrix for node i is κ2
i × κ2

i . The transit time matrix is

Φ(i) =
[
ϕ

(i)
j,j′

]
κ2

i ×κ2
i

≡
[
τ

(i)
θ∗,δ∗

]
κ2

i ×κ2
i

, where θ∗ = (j − 1) mod κi + 1 and

δ∗ = d j′

κi
e. Then, the enhanced constraints used in our CP model is

noOverlap(Q(i), Φ(i)), ∀i ∈ V .

For example, if node i has three consecutive operations ρ1 ≡ (i, 2, 1),

ρ2 ≡ (i, 2, 3), and ρ3 ≡ (i, 1, 3) to be executed. The interval set

X(i) = {x1, x2, x3} is defined for these three operations. Suppose node i has

κi = 3 P/D points with from-to time matrix

M (i) =

0 1 2
4 0 3
5 6 0



Since there are κi · κi combinations for a pick-up/drop-off pair, κ2
i = 9 types

71 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

of delivery operations exist. Therefore, the transit time matrix from type to type is

Φ(i) =



0 0 0 1 1 1 2 2 2
4 4 4 0 0 0 3 3 3
5 5 5 6 6 6 0 0 0
0 0 0 1 1 1 2 2 2
4 4 4 0 0 0 3 3 3
5 5 5 6 6 6 0 0 0
0 0 0 1 1 1 2 2 2
4 4 4 0 0 0 3 3 3
5 5 5 6 6 6 0 0 0



From the type definition, the type of interval x1 is y1 = (2− 1) · 3 + 1 = 4.

Similarly, y2 = (2− 1) · 3 + 3 = 6 and y3 = (1− 1) · 3 + 3 = 3. In the CP model,

the sequence variable for node i is then Q(i) ≡ seq({x1, x2, x3}, [4, 6, 3]). Suppose

the enhanced constraint noOverlap(Q(i), Φ(i)) is specified and x2 7→ x3 7→ x1 is a

value for the sequence variable Q(i). The corresponding type sequence

y2 7→ y3 7→ y1 is 6 7→ 3 7→ 4. Then empty-car time ϕ
(i)
6,3 = 5 = τ

(i)
3,1 separates

operations ρ2 ≡ (i, 2, 3) and ρ3 ≡ (i, 1, 3), where the vehicle travels empty from

point 3 to 1. Therefore, in the solution

endOf(x2) + ϕ
(i)
6,3 ≤ startOf(x3).

Similarly, ϕ
(i)
3,4 = 6 = τ

(i)
3,2 separates delivery operations ρ3 ≡ (i, 1, 3) and

ρ1 ≡ (i, 2, 1) for traveling from points 3 to 2.

Notice that all node vehicles initially reside at the 1st P/D point. To model

the empty-car moving time to the pick-up point of the first operation executed by a

node, a dummy interval variable is added to the interval set. That is

X(i) ← X(i) ∪ {o(i)
0 }, where startOf(o(i)

0) = 0 and lengthOf(o(i)
0) = 0. The type of

dummy interval is y
(i)
0 = 1, standing for a dummy operation that starts and ends at

point 1. The type list is updated as Y (i) ← Y (i) ⊕ y
(i)
0 . Since the start time of the

72 doi:10.6342/NTU202401338

CP, IP, & DE

dummy interval is set to 0, it will always be the first interval appearing in the

solution of a sequence variable.

Summary

The CP Model relating to constraints on nodes is summarized as follows:

Definitions of Interval and Sequence Variables

Q(i) ≡ seq
(
X(i), Y (i)

)
, ∀i ∈ V, (4.14)

where

X(i) =
{
o

(k)
l,j

∣∣∣ρ(k)
l,j ≡ (η(k)

l,j , θ
(k)
l,j , δ

(k)
l,j), η

(k)
l,j = i; j = 1, 2, · · · , λk,l,

l = 1, 2, · · · , σk, k = 1, 2, · · · , n
}⋃{

o
(i)
0

} (4.15)

Y (i) ≡
[(

θ
(k)
l,j − 1

)
· κi + δ

(k)
l,j

∣∣∣ η
(k)
l,j = i; j = 1, 2, · · · , λk,l,

l = 1, 2, · · · , σk, k = 1, 2, · · · , n
]
⊕ 1

(4.16)

Constraints

startOf(o(i)
0) = 0, ∀i ∈ V (4.17)

lengthOf(o(i)
0) = 0, ∀i ∈ V (4.18)

noOverlap(Q(i), Φ(i)), ∀i ∈ V, (4.19)

where Φ(i) =
[
ϕ

(i)
j,j′

]
κ2

i ×κ2
i

≡
[
τ

(i)
θ∗,δ∗

]
κ2

i ×κ2
i

, where θ∗ = (j − 1) mod κi + 1 and

δ∗ = d j′

κi
e.

Equation 4.14 defines the sequence variable for each node, where X(i) is the

set of intervals for delivery operations executed on node i, and Y (i) is the list of

associated types for X(i) to model the empty-car moving time between two

73 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

consecutive operations. Equations 4.17 and 4.18 restrict the dummy interval o
(i)
0 to

have zero length and start at time 0. Finally, Equation 4.19 states that there can be

at most one operation executing at any moment on each node, and there is an

empty-car moving time between two consecutive operations.

In the next subsection, we will describe the techniques for modeling a

transfer site having capacity limit and transfer time requirement.

4.1.3 Operation Constraints on Transfer Sites

A transfer operation of a job is conducted at a transfer site right after a

delivery operation is executed by a node vehicle. However, the vehicle is blocked if

there is no vacancy on the transfer site. A “blocked” vehicle cannot drop the load at

the drop-off point, which is also the source point of the successive transfer site.

When a vacancy is available, the vehicle detaches the load and is freed for the next

delivery operation. On the other hand, the once-blocked job starts the transfer

operation at the transfer site until it reaches the target point.

The number of transfer operations conducted simultaneously in the transfer

site ed is limited by its buffer size ωd, and each transfer takes at least βd time to

reach the target point. Therefore, buffer size restricts the operation count on the

transfer site. Since the transfer time in the transfer site ed is βd, a transfer interval

variable x contributes to the count function of the site by 1 from startOf(x) to

endOf(x). This contribution can be regarded as a pulse function whose value is 1

in the range of the interval and 0 outside the interval. Adding up all the pulse

functions on the transfer site ed yields a cumulative count function. Figure 4-5

74 doi:10.6342/NTU202401338

CP, IP, & DE

shows a cumulative count function that adds up 5 pulse functions from interval

variables whose lengths are generally different.

0 5 10 15 20 25 30
time

1

(site
capacity:2)

Transfer
Intv. Var.

Job 3

Job 5

Job 6

Job 2

Job 9

Cumulative
Function

(resource)

Transfer Interval Variables and Cumulative Function of Resource

Figure 4-5. Illustration of transfer operation interval variables and cumulative
function of resource.

In modeling the buffer size constraints on transfer sites, we first aggregate

the transfer operation interval variables for each transfer site. The interval sets for

all transfer sites are

Γ(d) =
{
õ

(k)
l,j

∣∣∣ ϵ
(k)
l,j = ed; j = 1, 2, · · · , λk − 1, k = 1, 2, · · · , n;

l = 1, 2, · · · , σk

}
, d = 1, 2, · · · , r.

Note that ϵ
(k)
l,j is the transfer site that conducts transfer operation between

delivery operations ρ
(k)
l,j and ρ

(k)
l,j+1, where the transfer operation is represented by

interval õ
(k)
l,j . The cumulative count function of site ed is

C(d) ≡
∑

o∈Γ(d)

pulse(o, 1).

The constraint of buffer size is then modeled as

alwaysIn(C(d), o, 0, ωd),∀o ∈ Γ(d), d = 1, 2, · · · , r.

75 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Summary

The CP Model relating to constraints on transfer sites is summarized as

follows.

Definitions of Interval Sets

Γ(d) =
{
õ

(k)
l,j

∣∣∣ ϵ
(k)
l,j = ed; j = 1, 2, · · · , λk − 1, k = 1, 2, · · · , n;

l = 1, 2, · · · , σk

}
, d = 1, 2, · · · , r.

(4.20)

Constraints

alwaysIn(C(d), o, 0, ωd),∀o ∈ Γ(d), d = 1, 2, · · · , r (4.21)

where C(d) ≡ ∑∀o∈Γ(d) pulse(o, 1).

The capacity limit of each site is imposed in Eq. 4.21, where ωd is the

capacity limit for site d.

4.2 Integer Programming Model for Material
Handling Network Scheduling Problem

This section presents the Integer Programming Model for solving the

MHNSP. Following the structure of the proposed CP model in the previous section,

we first introduce the decision variables of the model and depict the optimization

objective. After that, detailed constraint construction steps for transportation jobs,

nodes, and transfer sites are presented. The buffer size constraints on transfer sites,

which incur complex logical formulations, are last deliberated.

76 doi:10.6342/NTU202401338

CP, IP, & DE

The main difference from the proposed CP model is that we do not use the

hierarchical structure for the IP model. In fact, the IP model only solves for the

start time of each operation as shown in Fig. 4-6. Note that the solution is the same

as the example presented in Fig. 4-2 on page 62 in the previous section.

0 50 100 150 200 250 300
time

Job 1 (z(1)
4 = 1)

Job 2 (z(2)
8 = 1)

Job 3 (z(3)
8 = 1)

Job 4 (z(4)
1 = 1)

Job 5 (z(5)
2 = 1)

x(1)
4, 1 x(1)

4, 1x(1)
4, 2 x(1)

4, 2x
(1)
4, 3 x(1)

4, 3x
(1)
4, 4

x(2)
8, 1 x(2)

8, 1 x(2)
8, 2 x(2)

8, 2 x(2)
8, 3x(2)
8, 3x(2)

8, 4x(2)
8, 4x(2)
8, 5 x(2)

8, 5 x(2)
8, 6 x(2)

8, 6 x(2)
8, 7

x(3)
8, 1 x(3)

8, 1 x(3)
8, 2x

(3)
8, 2 x(3)

8, 3 x(3)
8, 3x

(3)
8, 4 x(3)

8, 4 x(3)
8, 5

x(4)
1, 1 x(4)

1, 1 x(4)
1, 2 x(4)

1, 2 x(4)
1, 3x(4)
1, 3x(4)

1, 4x(4)
1, 4 x(4)

1, 5 x(4)
1, 5x

(4)
1, 6

x(5)
2, 1 x(5)

2, 1 x(5)
2, 2 x(5)

2, 2 x(5)
2, 3

Makespan: 292

Storage Time Transfer Time Blocked Time

Figure 4-6. Gantt chart results of an IP solution.

4.2.1 Decision Variables and Optimization Goal

Solving an MHNSP involves selecting a candidate path for each job and

scheduling the start time for each operation on the path, including delivery and

transfer operations. The goal is to minimize the longest makespan (completion

time) among the scheduled jobs. In the following, we will introduce the decision

variables of the proposed integer programming model, where the makespan and the

optimization goal can be expressed in terms of these variables.

77 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Decision Variables

Path selection and operation sequencing are two primary decision tasks in

solving an MHNSP. The path selection uses a binary variable for each candidate

path to signal whether the path is selected. The binary variable is

z
(k)
l ∈ {0, 1}, l = 1, 2, · · · , σk, k = 1, 2, · · · , n, where z

(k)
l = 1 indicates the l-th

candidate path is selected for job Jk. Notice that precisely one path is selected in a

valid solution. The operation sequencing results are illustrated by setting the

delivery and transfer start times for delivery operations on nodes and transfer

operations on transfer sites, respectively. Let the variable

x
(k)
l,j , j = 1, 2, · · · , λl,k, l = 1, 2, · · · , σk, k = 1, 2, · · · , n represent the start time

of the j-th delivery operation on the l-th candidate path for job Jk. Let the variable

x̃
(k)
l,j , j = 1, 2, · · · , λl,k − 1, l = 1, 2, · · · , σk, k = 1, 2, · · · , n represent the start

time of the j-th transfer operation on the lth candidate path for job Jk. Note that

the transfer operation with start time x̃
(k)
l,j is conducted on transfer site ϵ

(k)
l,j .

Optimization Goal

The objective of solving the MHNSP is to minimize the maximal makespan

of jobs. We define a decision variable for the makespan Cmax. Therefore, the goal

is:

min Cmax, (4.22)

subject to the following part of constraints:

x
(k)
l,λk,l

+ τ
(η̃)
θ̃,δ̃
≤ L

(
1− z

(k)
l

)
+ Cmax, ρ

(k)
l,λk,l
≡ (η̃, θ̃, δ̃),

l = 1, 2, · · · , σk, k = 1, 2, · · · , n,

(4.23)

78 doi:10.6342/NTU202401338

CP, IP, & DE

where L is a large number. Here, η̃, θ̃, and δ̃ denote the node, pick-up point index,

and drop-off index of the last delivery operation on the l-th candidate path for job

Jk. The constraint ensures that for any selected path, the makespan Cmax must be

larger than or equal to the completion time of the last delivery operation on that

path.

4.2.2 Variable Constraints on Each Job

This subsection illustrates the constraints of the introduced variables on the

transportation jobs. Two primary constraints on each job are: only one candidate

path is selected, and the operation execution precedences on each candidate path

are kept. To ensure that only one path is selected,

σk∑
l=1

z
(k)
l = 1, k = 1, 2, · · · , n. (4.24)

For the precedence constraint, the end time of a delivery operation must be

before the successive transfer operation if the path is selected. Therefore,

x
(k)
l,j + τ

(η̃)
θ̃,δ̃
≤ x̃

(k)
l,j + L

(
1− z

(k)
l

)
, j = 1, 2, · · · , λl,k − 1,

l = 1, 2, · · · , σk, k = 1, 2, · · · , n,

(4.25)

where ρ
(k)
l,j ≡ (η̃, θ̃, δ̃). Similarly, the end time of a transfer operation must be

before the next delivery operation,

x̃
(k)
l,j + βd ≤ x

(k)
l,j+1 + L

(
1− z

(k)
l

)
, j = 1, 2, · · · , λl,k − 1,

l = 1, 2, · · · , σk, k = 1, 2, · · · , n,

(4.26)

where ϵ
(k)
l,j ≡ ed—the transfer site that conducts the transfer operation associated

with x̃
(k)
l,j is ed.

In these constraints, L is a given large number. The equation ensures that if

79 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

the l-th optional path is selected for job Jk, all operations within this path must

follow the delivery orders.

4.2.3 Operation Constraints on Nodes

The operation constraints on nodes focus on the required empty-car moving

times between two consecutive delivery operations. Similar to the development of

the CP model, we need to construct the variable set representing the delivery

operations executed on each node

X(i) =
{
x

(k)
l,j

∣∣∣ ρ
(k)
l,j ≡ (η, θ, δ), η = i;

j = 1, 2, · · · , λl,k, l = 1, 2, · · · , σk, k = 1, 2, · · · , n
}
, ∀i ∈ V.

Since the operations executed on node i are yielded from different paths of

different jobs and their execution order are to be determined, we need to reorganize

the variables in X(i) for modeling convenience. We collect the operation start time

variables with their job indexes, path indexes, pick-up, and drop-off point indexes

as 5-tuples and index the tuples from 1 to the total count of delivery operations on

node i. Therefore, if the index for variable x
(k)
l,j′ is j, whose operation is

ρ
(k)
l,j′ ≡ (i, θ

(k)
l,j′ , δ

(k)
l,j′), the tuple is

(
y

(i)
j′ , k̂

(i)
j′ , l̂

(i)
j′ , θ̂

(i)
j′ , δ̂

(i)
j′

)
≡
(
x

(k)
l,j′ , k, l, θ

(k)
l,j′ , δ

(k)
l,j′

)
Let

the set of the indexed tuples mapped from X(i) be

Y (i) =
{(

y
(i)
j , k̂

(i)
j , l̂

(i)
j , θ̂

(i)
j , δ̂

(i)
j

) ∣∣∣ j = 1, 2, · · · , γi

}
, ∀i ∈ V,

where γi =
∣∣∣X(i)

∣∣∣ is the number of delivery operations executed on node i. The

integer programming model will sequentialize the operation orders on each node.

Since there is only one vehicle available for each node, the start time of the

successive operation must be later than the end time of the preceding operation

80 doi:10.6342/NTU202401338

CP, IP, & DE

plus the empty-car moving time. In Fig. 4-7, the delivery operation ρ
(4)
1,1 with the

start time x
(4)
1,1 is executed right after ρ

(2)
8,1 with the start time x

(2)
8,1 on node 5;

therefore, there is an empty-car moving time τ
(5)
10,17 from P/D point p

(5)
10 to p

(5)
17 .

0 50 100 150 200 250 300
time

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

x(2)
8, 2 x(4)

1, 2 x(3)
8, 2 x(5)

2, 2
(1)
1, 6

(1)
4, 6

(1)
4, 6

(1)
31, 6

x(1)
4, 4 x(2)

8, 7 x(4)
1, 6 x(5)

2, 3 x(3)
8, 5

(2)
1, 3

(2)
33, 2

(2)
33, 2

(2)
33, 24

(2)
33, 2

x(1)
4, 3

(3)
1, 28

x(2)
8, 5

(4)
1, 13

x(2)
8, 1 x(4)

1, 1 x(1)
4, 1 x(3)

8, 1 x(5)
2, 1

(5)
1, 17

(5)
10, 17

(5)
10, 17

(5)
21, 17

(5)
10, 17

x(2)
8, 4 x(4)

1, 4
(6)
1, 20

(6)
15, 20

x(1)
4, 2 x(2)

8, 6 x(4)
1, 5 x(3)

8, 4
(8)
1, 26

(8)
25, 4

(8)
9, 19

(8)
9, 22

x(3)
8, 3

(10)
1, 19

x(2)
8, 3 x(4)

1, 3
(11)
1, 3

(11)
6, 3

Makespan: 292

Empty-car Moving Time Blocked Time

Figure 4-7. Gantt chart results of an IP solution on nodes.

If the operation of the j-th tuple is executed right after the j′-th tuple, then

y
(i)
j′ + τ

(i)
θ̂

(i)
j′ ,δ̂

(i)
j′

+ τ
(i)
δ̂

(i)
j′ ,θ̂

(i)
j

≤ y
(i)
j . In the above example, it means

x
(2)
8,1 + τ

(5)
17,10 + τ

(5)
10,17 ≤ x

(4)
1,1. To set the succeeding/preceding relationship, we need

the binary variables for the operations of j′-th and j-th tuples. We define the binary

variable q
(i)
j′,j ∈ {0, 1}, ∀j′, j ∈ {1, 2, · · · , γi}, j′ 6= j. q

(i)
j′,j = 1 indicates that the

operation of the j-th tuple is executed right after that of the j′-th. These binary

variables help to establish an operation sequence on each node. Since there are γi

operations executed in node i, there will be γi − 1 variables with value 1 assigned

while others are 0. However, there are some circumstances where no operation is

“actually” executed in node i. From the perspective of CP, this means that all the

operation interval variables on the node are “absent”. We introduce the binary

variable q̄(i) ∈ {0, 1} for node i. When q̄(i) = 1, there is more than one operation

81 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

present in node i. The variables introduced and constraints on these variables are

listed below.

Summary

Definitions of Variable sets

Y (i) =
{(

y
(i)
j , k̂

(i)
j , l̂

(i)
j , θ̂

(i)
j , δ̂

(i)
j

) ∣∣∣ j = 1, 2, · · · , γi

}
, ∀i ∈ V, (4.27)

where the j-th tuple
(
y

(i)
j , k̂

(i)
j , l̂

(i)
j , θ̂

(i)
j , δ̂

(i)
j

)
≡
(
x

(k)
l,j , k, l, θ

(k)
l,j , δ

(k)
l,j

)
is for variable

x
(k)
l,j in X(i) ={
x

(k)
l,j

∣∣∣ ρ
(k)
l,j ≡ (η, θ, δ), η = i; j = 1, 2, · · · , λl,k, l = 1, 2, · · · , σk, k = 1, 2, · · · , n

}
,

∀i ∈ V, and γi =
∣∣∣X(i)

∣∣∣ .
Binary Variables

q
(i)
j′,j ∈ {0, 1}, ∀j′, j ∈ {1, 2, · · · , γi}, j 6= j′;∀i ∈ V (4.28)

q̄(i) ∈ {0, 1},∀i ∈ V (4.29)

Constraints

y
(i)
j′ + τ

(i)
θ̂

(i)
j′ ,δ̂

(i)
j′

+ τ
(i)
δ̂

(i)
j′ ,θ̂

(i)
j

≤ y
(i)
j + L

(
3− q

(i)
j′,j − z

(k)
l − z

(k′)
l′

)
, l = l̂

(i)
j ,

k = k̂
(i)
j , l′ = l̂

(i)
j′ , k′ = k̂

(i)
j′ ,∀j′, j ∈ {1, 2, · · · , γi}, j 6= j′, ∀i ∈ V

(4.30)

 γi∑
j′=1,j′ 6=j

q
(i)
j′,j

− 1 ≤ L
(
1− z

(k)
l

)
, l = l̂

(i)
j , k = k̂

(i)
j ,

j = 1, 2, · · · , γi,∀i ∈ V

(4.31)

 γi∑
j′=1,j′ 6=j

q
(i)
j,j′

− 1 ≤ L
(
1− z

(k)
l

)
, l = l̂

(i)
j , k = k̂

(i)
j ,

j = 1, 2, · · · , γi,∀i ∈ V

(4.32)

82 doi:10.6342/NTU202401338

CP, IP, & DE

γi∑
j=1

γi∑
j′=1,
j′ 6=j

q
(i)
j′,j =

γi∑
j=1

z

(
k̂

(i)
j

)
l̂
(i)
j

− q̄(i), ∀i ∈ V (4.33)

0 ≤ L
(
1− q̄(i)

)
+

γi∑
j=1

z

(
k̂

(i)
j

)
l̂
(i)
j

− 1, ∀i ∈ V (4.34)

τ
(i)
1,δ̂

(i)
j

− y
(i)
j ≤ L


γi∑

j′=1,
j′ 6=j

qj′,j + 1− z

(
k̂

(i)
j

)
l̂
(i)
j

 , j = 1, 2, · · · , γi, ∀i ∈ V (4.35)

Constant

L : a sufficiently large positive number (4.36)

Equation 4.30 states that when both the operations of j′-th tuple and the j-th

tuple in Y (i) are present and the j-th is executed right after the j′-th, i.e., q
(i)
j′,j = 1,

the start time of the j-th operation y
(i)
j should be later than the start time y

(i)
j′ plus

the delivery time of the j′-th and the empty-car moving time from the j′-th to the

j-th. Equations 4.31 and 4.32 impose the constraints on the operation of the j-th

tuple such that there is at most one operation succeeding it and right after it.

Moreover, when there is more than one operation present in node i, i.e., q̄(i) = 1,

the summation of q
(i)
j,j′ should be equal to the number of operations present in node

i minus 1. Equation 4.34 tests if there is more than one operation present in node i.

Finally, Eq. 4.35 demands the start time of the first operation executed in node i be

later than the empty-car moving time from the initial P/D point to the pick-up P/D

point of the operation.

4.2.4 Transfer Operation Constraints on Transfer Sites

This subsection explores the constraints on the transfer site buffer. First, we

need to identify the pair-wise overlapping relationship to know whether a set of

83 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

operations overlaps. After pair-wise temporal overlaps are identified, we model the

buffer size constraint on the count of concurrent operations at any moment.

Figure 4-8 demonstrates this idea. A set of operations overlap with each

other in time if and only if they overlap pair-wisely in time. If we can define a

binary variable a
(d)
i,j in site ed to represent that the i-th operation overlaps with the

j-th, we can identify if a set of operations overlap with each other in time. On the

left side, the three operations overlap with each other in time; therefore, all the

pair-wise relationship a(d)
·,· = 1. However, on the right side, the three operations do

not overlap with each other temporally, which can be identified from the pair-wise

relationships.

time

i

j

k

Example of a(d)
k, i = a(d)

i, j = a(d)
k, j = 1

time

i

j

k

Example of a(d)
k, i = a(d)

i, j = 1, a(d)
j, k 1, a(d)

k, j 1

Figure 4-8. Illustration of two examples of three transfer operations in the site.

The constraints on a transfer site focus on the count of transfer operations

concurrently under executions of transferring. Similar to defining the delivery

operation set for a node, we will define the variable set representing the transfer

operations to be executed for each transfer site. We have a set of operation start

time

X̃(d) =
{
x̃

(k)
l,j

∣∣∣ e
(k)
l,j = ed, j = 1, 2, · · · , λk,l − 1, l = 1, 2, · · · , σk, k = 1, 2, · · · , n

}
for transfer site ed, d = 1, 2, · · · , r.

84 doi:10.6342/NTU202401338

CP, IP, & DE

Similarly, we will reorganize the variables in X̃(d) for modeling convenience.

We collect the variables accompanied by their job indexes and path indexes as

4-tuples and index them from 1 to the number count of transfer operations on the

transfer site ed. Therefore, if the index for variable x̃
(k)
l,j′ mapped in the new set is j,

the tuple is
(
ỹ

(d)
j , k̃

(d)
j , l̃

(d)
j , s̃

(d)
j

)
≡
(
x̃

(k)
l,j′ , k, l, j′

)
. Let the set of the indexed tuples

mapped from X̃(d) be Ỹ (d) =
{(

y
(d)
j , k̃

(d)
j , l̃

(d)
j , s̃

(d)
j

) ∣∣∣ j = 1, 2, · · · , γ̃d

}
, where

γ̃d =
∣∣∣X̃(d)

∣∣∣ is the number of transfer operations conducted in transfer site ed.

However, since the spanning time of a material in the site is indefinite, we

need to collect another set to retrieve the end time of an operation in the transfer

site. Let Ŷ (d) =

ŷ
(d)
j ≡ x

(
k̃

(d)
j

)
l̃
(d)
j ,s̃

(d)
j +1

∣∣∣∣ j = 1, 2, · · · , γ̃d

 be the end time of

operations associated with Ỹ (d).

In transfer site ed, a transfer operation takes at least βd time to reach the

target node. The operation start times ỹ
(d)
j on the site are determined by the IP

solver subject to the buffer size ωd limit. In other words, at most ωd interval

variables overlap at any time. We introduce binary variables a
(d)
j′,j ∈ {0, 1} for

indicating whether the start time of the j′-th transfer operation happens when the

j-th is in the site. Therefore, ỹ
(d)
j < ỹ

(d)
j′ < ŷ

(d)
j ; j, j′ ∈ {1, 2, · · · , γ̃d}, j 6= j′ when

a
(d)
j′,j = 1. Also, we define the binary variable â

(d)
j′,j ∈ {0, 1} to indicate if the start of

the j′-th and the j-th operation are the same. Namely, ỹ
(d)
j = ỹ

(d)
j′ when â

(d)
j′,j = 1.

The buffer size constraints are implemented by limiting the number of

overlapping operations to be less than ωd + 1 at any moment. Therefore, for any

selection of ωd + 1 intervals, the summation of the pair-wise overlapping indicator

a
(d)
j,j′ must be less than ωd + (ωd − 1) + (ωd − 2) + · · ·+ 1 = ωd(ωd+1)

2 = ω(d).

85 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Consequently, the buffer size constraints enumerate the combinations of

ωd + 1 operations to limit the pair-wise overlap count to be strictly less than ω(d).

Let Ω(m, {1, 2, · · · , n}) be the operator that returns all of the selection

combinations of m indexes from a set of n indexes as a list of sets of m indexes.

The number of non-repeatable combinations of m indexes from n dissimilar

indexes is Cn
m = n!

(n−m)!m! =
(

n
m

)
. For example, Ω(3, {1, 2, 3, 4}) will yield

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} as four combination sets. In our model, let

b̃d =
(

γ̃d

ωd+1

)
be the number of combinations of selecting ωd + 1 operations. Let the

index sets yielded from the operator Ω(ωd + 1, {1, 2, · · · , γ̃d}) be

A
(d)
1 , A

(d)
2 , · · · , A

(d)
b̃d

. We need to establish constraints to avoid that for any index set

A
(d)
j , j = 1, 2, · · · , b̃d, all the operations in the set overlap with each other

temporally, thus exceeding the site buffer limit.

Summary

Definition of Variable set

Ỹ (d) =
{(

y
(d)
j , k̃

(d)
j , l̃

(d)
j , s̃

(d)
j

) ∣∣∣ j = 1, 2, · · · , γ̃d

}
, d = 1, 2, · · · , r (4.37)

where the tuple
(
ỹ

(d)
j , k̃

(d)
j , l̃

(d)
j , s̃

(d)
j

)
≡
(
x̃

(k)
l,j′ , k, l, j′

)
is defined for variable x̃

(k)
l,j′ in

the set

X̃(d) =
{
x̃

(k)
l,j

∣∣∣ e
(k)
l,j = ed, j = 1, 2, · · · , λk,l − 1, l = 1, 2, · · · , σk, k = 1, 2, · · · , n

}
,

where γ̃d =
∣∣∣X̃(d)

∣∣∣.
Ŷ (d) =

ŷ
(d)
j ≡ x

(
k̃

(d)
j

)
l̃
(d)
j ,s̃

(d)
j +1

∣∣∣∣ j = 1, 2, · · · , γ̃d

 , d = 1, 2, · · · , r (4.38)

Binary Variables

a
(d)
j′,j ∈ {0, 1}; ∀j, j′ ∈ {1, 2, · · · , γ̃d}, j 6= j′, d = 1, 2, · · · , r (4.39)

86 doi:10.6342/NTU202401338

CP, IP, & DE

â
(d)
j′,j ∈ {0, 1};∀j, j′ ∈ {1, 2, · · · , γ̃d}, j 6= j′, d = 1, 2, · · · , r (4.40)

Constraints
ỹ

(d)
j + ν ≤ ỹ

(d)
j′ + L

(
3− a

(d)
j,j′ − z

(k)
l − z

(k′)
l′

)
ỹ

(d)
j′ ≤ ŷ

(d)
j − ν + L

(
3− a

(d)
j,j′ − z

(k)
l − z

(k′)
l′

) , (4.41)


ỹ

(d)
j ≤ ỹ

(d)
j′ + L

(
3− â

(d)
j,j′ − z

(k)
l − z

(k′)
l′

)
ỹ

(d)
j′ ≤ ỹ

(d)
j + L

(
3− â

(d)
j,j′ − z

(k)
l − z

(k′)
l′

) , (4.42)

where l = l̃
(d)
j , k = k̃

(d)
j , l′ = l̃

(d)
j′ , k′ = k̃

(d)
j′ ,∀j, j′ ∈ {1, 2, · · · , γ̃d}, j 6=

j′, d = 1, 2, · · · , r.

∑
j∈A

(d)
i

∑
j′∈A

(d)
i ,

j′ 6=j

a
(d)
j,j′ +

∑
(j,j′)

∈Ω(2,Ad
i)

â
(d)
j,j′ ≤ ω(d) − ν+L

ωd + 1−
∑

j∈A
(d)
i

z

(
k̃

(d)
j

)
l̃
(d)
j

 ;

i = 1, 2, · · · , b̃d, d = 1, 2, · · · , r

(4.43)

Constants

ω̄d = ωd(ωd + 1)
2

(4.44)

b̃d =
(

γ̃d

ωd + 1

)
(4.45)

ν : a sufficiently small positive number (4.46)

L : a sufficiently large positive number (4.47)

Equations 4.37 and 4.38 collect the start time and the end time of operations

conducted in the transfer site d, respectively. When the j-th operation and the j′-th

overlap, either a
(d)
j,j′ , a

(d)
j′,j , or â

(d)
j,j′

(
= â

(d)
j′,j

)
would equal to 1. Equations 4.41 and

87 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

4.42 ensure the previous statement would hold true when both the j-th operation

and the j′-th are present and overlap. Finally, to comply with the capacity limit,

there must be strictly less than ωd + 1 operations overlapping with each other at any

moment, which is realized by Eq. 4.43.

In the next section, we will introduce the metaheuristic algorithm for solving

the MHNSP and particularly emphasize the solution encoding/decoding procedures

and the details of the proposed Permutational Differential Evolution method.

4.3 Metaheuristic Algorithm for Material Handling
Network Scheduling Problem

Metaheuristic algorithms are renowned for obtaining suitable solutions to

extensive optimization problems in real-world applications. This section develops

a metaheuristic algorithm for solving the MHNSP. First, a detailed illustration of

the solution representation scheme, an integer array encoding scheme is presented.

Subsequently, we outline the decoding procedures that lead to evaluating the

makespan and violation metrics. Since material load buffering is involved in the

problem, discrete-event simulation techniques are employed in the decoding

algorithm.

Accompanied by the encoding scheme and decoding algorithm, a

permutational differential evolution algorithm is lastly proposed for solving the

MHNSP, which is regarded as a complex simulation-based optimization problem.

88 doi:10.6342/NTU202401338

CP, IP, & DE

4.3.1 Solution Encoding and Decoding

The ingenuity of using metaheuristic algorithms to solve optimization

problems lies in creating an efficient encoding scheme that minimizes

computational resource use while searching for optimal solutions. Additionally,

pairing the encoding scheme with an efficient decoding procedure is essential for

achieving high-quality solutions with fewer computing resources.

Different encoding schemes associated with dedicated decoding procedures

can be developed to solve our MHNSPs. The following will illustrate a

straightforward encoding scheme and a decoding procedure to determine the path

selections and operation execution orders complying with precedence constraints

for the MHNSP.

Encoding Scheme

The solution to the MHNSP is encoded as a permuted index array,

commonly known as the permutation encoding. The indexes range from 1 to the

total number of delivery operations decomposed from all candidate paths of all

jobs. Let λ̄ be the total number of delivery operations, λ̄ =
n∑

k=1

σk∑
l=1

λl,k, where λl,k

is the number of operations on the l-th candidate path of job Jk. We aggregate all

delivery operations to index them from 1 to λ̄. Each operation is represented as a

6-tuple consisting of its properties. Let the indexed operation set be

W =
{
ŵj ≡

(
k̂j, l̂j, ŝj, η̂j, θ̂j, δ̂j

) ∣∣∣ j = 1, 2, · · · , λ̄
}

,

where k̂j is the job index of operation j, l̂j is the candidate path index, ŝj is the

sequence index on the path, η̂j is the execution node, θ̂j is the pick-up point index,

89 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

and δ̂j is the drop-off. The delivery operation j in W is ρ
(k̂j)
l̂j ,ŝj
≡ (η̂j, θ̂j, δ̂j), which

belongs to the path π
(k̂j)
l̂j

in the candidate path set Πkj
of job Jkj

. We encode a

solution as a permuted index array

w = [w1w2 · · ·wλ̄] , wj ∈ {1, 2, · · · , λ̄}, wj 6= wj′ , ∀j, j′ ∈ {1, 2, · · · , λ̄}.

The permutation array, therefore, arranges the decoding sequence for these indexed

delivery operations. That means operation wj will be the j-th scheduled operation

in the decoding procedure. This simple encoding scheme does not encode

dedicated variables for path selections and transfer operations. Moreover, the

permuted operations on the same path might violate precedence constraints, and no

modeling for the buffer size constraints on transfer sites. These issues will be

resolved in the decoding procedure, which is a constructive algorithm that

generates a valid schedule for the problem.

Revisit the example introduced in the end of Section 3.1. There are two

transportation jobs, where job J1 has two candidate paths. Figure 4-9 shows the

indexed operation set and a permuted index array for the example. According to

the permuted index array, operations in the π
(1)
2 would be executed in the order

(2, 1, 4) 7→ (1, 1, 2) 7→ (4, 3, 1) 7→ (3, 3, 2). However, this order sequence would

violate the precedence constraints, that is, the operations in a path should be

executed by the given sequence. In this case, it is

(1, 1, 2) 7→ (2, 1, 4) 7→ (3, 3, 2) 7→ (4, 3, 1) to comply with actual material moving

path.

90 doi:10.6342/NTU202401338

CP, IP, & DE

1 8
<latexit sha1_base64="PTK0AvjUoadTlWz/4ZWaiQzEmJU=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BItQoZRdKdVj0YvHCvYD2qVk02wbms0uSVYoS3+EFw+KePX3ePPfmLZ70NYHA4/3ZpiZ58eCa+M43yi3sbm1vZPfLeztHxweFY9P2jpKFGUtGolIdX2imeCStQw3gnVjxUjoC9bxJ3dzv/PElOaRfDTTmHkhGUkecEqMlTplt+JWapeDYsmpOgvgdeJmpAQZmoPiV38Y0SRk0lBBtO65Tmy8lCjDqWCzQj/RLCZ0QkasZ6kkIdNeujh3hi+sMsRBpGxJgxfq74mUhFpPQ992hsSM9ao3F//zeokJbryUyzgxTNLloiAR2ER4/jsecsWoEVNLCFXc3orpmChCjU2oYENwV19eJ+2rqluv1h9qpcZtFkcezuAcyuDCNTTgHprQAgoTeIZXeEMxekHv6GPZmkPZzCn8Afr8Afivjgo=</latexit> (1
,1
,4
)

<latexit sha1_base64="ziRUGFqgHtVw7pp5rUIypEZonco=">AAAB7nicbVBNS8NAEJ3Ur1q/oh69LBahQilJldZj0YvHCvYD2lA22027dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzz485U9pxvq3cxubW9k5+t7C3f3B4ZB+ftFWUSEJbJOKR7PpYUc4EbWmmOe3GkuLQ57TjT+7mfueJSsUi8ainMfVCPBIsYARrI3VKV+V6uXo5sItOxVkArRM3I0XI0BzYX/1hRJKQCk04VqrnOrH2Uiw1I5zOCv1E0RiTCR7RnqECh1R56eLcGbowyhAFkTQlNFqovydSHCo1DX3TGWI9VqveXPzP6yU6uPFSJuJEU0GWi4KEIx2h+e9oyCQlmk8NwUQycysiYywx0SahggnBXX15nbSrFbdWqT1cFxu3WRx5OINzKIELdWjAPTShBQQm8Ayv8GbF1ov1bn0sW3NWNnMKf2B9/gAB8I4Q</latexit> (3
,7
,2
)

<latexit sha1_base64="7VaxxA20W1D9g+1w49zSaA0HoWs=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQim7WqrHohePFawttEvJptk2NJsNSVYoS3+EFw+KePX3ePPfmLZ70NYHA4/3ZpiZF0jOtHHdbye3tr6xuZXfLuzs7u0fFA+PHnWcKEJbJOax6gRYU84EbRlmOO1IRXEUcNoOxrczv/1ElWaxeDATSf0IDwULGcHGSu1yrXJZ8c77xZJbdedAq8TLSAkyNPvFr94gJklEhSEca931XGn8FCvDCKfTQi/RVGIyxkPatVTgiGo/nZ87RWdWGaAwVraEQXP190SKI60nUWA7I2xGetmbif953cSE137KhEwMFWSxKEw4MjGa/Y4GTFFi+MQSTBSztyIywgoTYxMq2BC85ZdXyeNF1atX6/e1UuMmiyMPJ3AKZfDgChpwB01oAYExPMMrvDnSeXHenY9Fa87JZo7hD5zPH/vJjgw=</latexit> (4
,3
,1
)

<latexit sha1_base64="I0AMLf2oN9BbBKK81QIym0qiiM0=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BItQoZTdItVj0YvHCvYD2qVk02wbms0uSVYoS3+EFw+KePX3ePPfmLZ70NYHA4/3ZpiZ58eCa+M43yi3sbm1vZPfLeztHxweFY9P2jpKFGUtGolIdX2imeCStQw3gnVjxUjoC9bxJ3dzv/PElOaRfDTTmHkhGUkecEqMlTplt+JWapeDYsmpOgvgdeJmpAQZmoPiV38Y0SRk0lBBtO65Tmy8lCjDqWCzQj/RLCZ0QkasZ6kkIdNeujh3hi+sMsRBpGxJgxfq74mUhFpPQ992hsSM9ao3F//zeokJbryUyzgxTNLloiAR2ER4/jsecsWoEVNLCFXc3orpmChCjU2oYENwV19eJ+1a1a1X6w9XpcZtFkcezuAcyuDCNTTgHprQAgoTeIZXeEMxekHv6GPZmkPZzCn8Afr8AfWljgg=</latexit> (1
,1
,2
)

<latexit sha1_base64="FK6MZ2vw+ivUoWiLC5k1u59WoyQ=">AAAB7nicbVBdSwJBFL1rX2ZfVo+9DElgILIrYj1KvfRokCnoIrPjrA7Oziwzs4Es/oheeiii135Pb/2bRt2H0g5cOJxzL/feE8ScaeO6305uY3Nreye/W9jbPzg8Kh6fPGqZKELbRHKpugHWlDNB24YZTruxojgKOO0Ek9u533miSjMpHsw0pn6ER4KFjGBjpU65VvEq9ctBseRW3QXQOvEyUoIMrUHxqz+UJImoMIRjrXueGxs/xcowwums0E80jTGZ4BHtWSpwRLWfLs6doQurDFEolS1h0EL9PZHiSOtpFNjOCJuxXvXm4n9eLzHhtZ8yESeGCrJcFCYcGYnmv6MhU5QYPrUEE8XsrYiMscLE2IQKNgRv9eV18lireo1q475eat5kceThDM6hDB5cQRPuoAVtIDCBZ3iFNyd2Xpx352PZmnOymVP4A+fzB/o4jgs=</latexit> (2
,1
,4
)

<latexit sha1_base64="cYmNEaXNilUgqjegLnIzIJzsQUU=">AAAB7nicbVBNS8NAEJ3Ur1q/oh69LBahQilJK9Vj0YvHCvYD2lA22027dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzz485U9pxvq3cxubW9k5+t7C3f3B4ZB+ftFWUSEJbJOKR7PpYUc4EbWmmOe3GkuLQ57TjT+7mfueJSsUi8ainMfVCPBIsYARrI3VKtXKtXL0c2EWn4iyA1ombkSJkaA7sr/4wIklIhSYcK9VznVh7KZaaEU5nhX6iaIzJBI9oz1CBQ6q8dHHuDF0YZYiCSJoSGi3U3xMpDpWahr7pDLEeq1VvLv7n9RId3HgpE3GiqSDLRUHCkY7Q/Hc0ZJISzaeGYCKZuRWRMZaYaJNQwYTgrr68TtrViluv1B+uio3bLI48nME5lMCFa2jAPTShBQQm8Ayv8GbF1ov1bn0sW3NWNnMKf2B9/gD7xY4M</latexit> (3
,3
,2
)

<latexit sha1_base64="7VaxxA20W1D9g+1w49zSaA0HoWs=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQim7WqrHohePFawttEvJptk2NJsNSVYoS3+EFw+KePX3ePPfmLZ70NYHA4/3ZpiZF0jOtHHdbye3tr6xuZXfLuzs7u0fFA+PHnWcKEJbJOax6gRYU84EbRlmOO1IRXEUcNoOxrczv/1ElWaxeDATSf0IDwULGcHGSu1yrXJZ8c77xZJbdedAq8TLSAkyNPvFr94gJklEhSEca931XGn8FCvDCKfTQi/RVGIyxkPatVTgiGo/nZ87RWdWGaAwVraEQXP190SKI60nUWA7I2xGetmbif953cSE137KhEwMFWSxKEw4MjGa/Y4GTFFi+MQSTBSztyIywgoTYxMq2BC85ZdXyeNF1atX6/e1UuMmiyMPJ3AKZfDgChpwB01oAYExPMMrvDnSeXHenY9Fa87JZo7hD5zPH/vJjgw=</latexit> (4
,3
,1
)

<latexit sha1_base64="bvDFAptXKCmm7WSSLWU86xDDN0w=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSJUKGVXpeqt6MVjBfsB7VKyabYNTbJLkhXK0h/hxYMiXv093vw3pu0etPXBwOO9GWbmBTFn2rjut7Oyura+sZnbym/v7O7tFw4OmzpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0Fo7up33qiSrNIPppxTH2BB5KFjGBjpVbponxTrp71CkW34s6AlomXkSJkqPcKX91+RBJBpSEca93x3Nj4KVaGEU4n+W6iaYzJCA9ox1KJBdV+Ojt3gk6t0kdhpGxJg2bq74kUC63HIrCdApuhXvSm4n9eJzHhtZ8yGSeGSjJfFCYcmQhNf0d9pigxfGwJJorZWxEZYoWJsQnlbQje4svLpHle8aqV6sNlsXabxZGDYziBEnhwBTW4hzo0gMAInuEV3pzYeXHenY9564qTzRzBHzifPwsSjhY=</latexit> (3
,9
,6
)

<latexit sha1_base64="z90ccDbTJ0MtoAEzb1RcWlja8oo=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBAihLDrI3oMevEYwTwgWcLsZDYZMjs7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3BZIzbVz321lZXVvf2Mxt5bd3dvf2CweHTR0nitAGiXms2gHWlDNBG4YZTttSURwFnLaC0d3Ubz1RpVksHs1YUj/CA8FCRrCxUqt0Vb4oe2e9QtGtuDOgZeJlpAgZ6r3CV7cfkySiwhCOte54rjR+ipVhhNNJvptoKjEZ4QHtWCpwRLWfzs6doFOr9FEYK1vCoJn6eyLFkdbjKLCdETZDvehNxf+8TmLCGz9lQiaGCjJfFCYcmRhNf0d9pigxfGwJJorZWxEZYoWJsQnlbQje4svLpHle8aqV6sNlsXabxZGDYziBEnhwDTW4hzo0gMAInuEV3hzpvDjvzse8dcXJZo7gD5zPH/1Sjg0=</latexit> (5
,3
,1
)

<latexit sha1_base64="VcYR0mZMN69MOYGjHSy3pNDAvrc=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXsquSPVY9OKxgv2A7VqyabYNzSZLkhXK0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8SaciZoyzDDaTdRFMchp51wfDvzO09UaSbFg5kkNIjxULCIEWys5PcS9phVvfNp3+uXK27NnQOtEi8nFcjR7Je/egNJ0pgKQzjW2vfcxAQZVoYRTqelXqppgskYD6lvqcAx1UE2P3mKzqwyQJFUtoRBc/X3RIZjrSdxaDtjbEZ62ZuJ/3l+aqLrIGMiSQ0VZLEoSjkyEs3+RwOmKDF8YgkmitlbERlhhYmxKZVsCN7yy6ukfVHz6rX6/WWlcZPHUYQTOIUqeHAFDbiDJrSAgIRneIU3xzgvzrvzsWgtOPnMMfyB8/kDMy6QkA==</latexit>

⇡(1)
1

<latexit sha1_base64="g/AVy1BeylLcUmYnFCQu1qnnb3M=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSLUS9ktUj0WvXisYD9gu5Zsmm1Ds8mSZIWy9Gd48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcKZNq777aytb2xubRd2irt7+weHpaPjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044vp35nSeqNJPiwUwSGsR4KFjECDZW8nsJe8wq3sW0X+uXym7VnQOtEi8nZcjR7Je+egNJ0pgKQzjW2vfcxAQZVoYRTqfFXqppgskYD6lvqcAx1UE2P3mKzq0yQJFUtoRBc/X3RIZjrSdxaDtjbEZ62ZuJ/3l+aqLrIGMiSQ0VZLEoSjkyEs3+RwOmKDF8YgkmitlbERlhhYmxKRVtCN7yy6ukXat69Wr9/rLcuMnjKMApnEEFPLiCBtxBE1pAQMIzvMKbY5wX5935WLSuOfnMCfyB8/kDNLKQkQ==</latexit>

⇡(1)
2

<latexit sha1_base64="FLjDRhbERwwQ4mspPBsg8j3R2Eo=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSLUS9ktUj0WvXisYD9gu5Zsmm1Ds8mSZIWy9Gd48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcKZNq777aytb2xubRd2irt7+weHpaPjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044vp35nSeqNJPiwUwSGsR4KFjECDZW8nsJe8wqtYtp3+uXym7VnQOtEi8nZcjR7Je+egNJ0pgKQzjW2vfcxAQZVoYRTqfFXqppgskYD6lvqcAx1UE2P3mKzq0yQJFUtoRBc/X3RIZjrSdxaDtjbEZ62ZuJ/3l+aqLrIGMiSQ0VZLEoSjkyEs3+RwOmKDF8YgkmitlbERlhhYmxKRVtCN7yy6ukXat69Wr9/rLcuMnjKMApnEEFPLiCBtxBE1pAQMIzvMKbY5wX5935WLSuOfnMCfyB8/kDNLaQkQ==</latexit>

⇡(2)
1

2 3 4 5 6 7 9

8 2 195 4 7 3 6

<latexit sha1_base64="qMUa1we0LayqCJtp0Xfa2TR1xHc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqtPulsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LitetVJtXJVrt3kcBTiFM7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kDt8eM5g==</latexit>

WIndexed Operation Set

<latexit sha1_base64="ALZyVa6hRhSaCArH/l2FZIDEUXI=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+8C2lEx6pw3NZIYko5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpnle8aqV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/0aRJg==</latexit>wPermuted Index Array

Figure 4-9. Illustration of two examples of three transfer operations in the site.

Decoding

The decoding procedure follows the generated sequence to deal with each

delivery operation until the schedule is completed for objective value evaluation.

We define l∗
k, k = 1, 2, · · · , n as the selected path index for job Jk and initially set

it to 0 for not being determined. During the decoding, the selection index is set to

the path index of the first encountered operation of job Jk, i.e., l∗
k ← l̂j if operation

j in W is the first operation of job Jk dealt with. Once the selected path is set,

successive operations on other paths of the same job are directly skipped without

scheduling, since the path is not selected.

As mentioned before, the execution of delivery operations on a path must

follow the precedence orders. The permuted operation sequence for a path might

violate the precedence constraint. Therefore, we define a sequence index q̂k for

each job Jk. The index starts from 1 and is forwarded once the preceding operation

91 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

is scheduled. Thus, in dealing with operation wj of W , we only identify its path

index and job index, i.e., l̂j and k̂j . The target operation to be scheduled is of the

sequence index q̂k. In decoding the integer index array solution w = [w1w2 · · ·wλ̄]

to the MHNSP, we will set start times of delivery operations on the selected path,

i.e., x
(k)
l,j′ , j′ = 1, 2, · · · , λk,l∗ .

As indicated, the permuted index array represents a solution that defines the

delivery operation execution orders that will not violate precedence constraints on

operations of the same job and determine the candidate paths. In the first stage of

the decoding procedure, we follow the given index array to select candidate paths

and assign the execution sequences of the delivery operations executed on each

node. In this stage, we decode the given integer array w to construct the sequence

of delivery operations selected for each node while discarding those unselected.

Let the 3-tuple b(i)
j ≡

(
k

(i)
j , l

(i)
j , s

(i)
j

)
be the j-th ”execution” for node i, where k

(i)
j

is the job index of the j-th executed delivery operation, l
(i)
j is the candidate path

index of the operation, and s
(i)
j is the operation sequence index on the path. Then,

let B(i) =
[
b(i)

j

∣∣∣ j = 1, 2, · · · , λ(i)
]

be the execution sequence of node i.

Therefore, the j-th executed delivery operation on node i is

ρ
(k(i)

j)

l
(i)
j ,s

(i)
j

= (i, θ
(k(i)

j)

l
(i)
j ,s

(i)
j

, δ
(k(i)

j)

l
(i)
j ,s

(i)
j

) ≡
(
i, θ

(i)
j , δ

(i)
j

)
, which belongs to the path π

(k(i)
j)

l
(i)
j

in

the candidate path set Πkj
of job Jkj

.

Figure 4-10 shows the conceptual idea of stage 1 in the decoding procedure.

The path selection for each job is done by picking the first occurrence of the

operation in the path for the job. In this example, the 5th operation shows up prior

to the 2nd; therefore, the path π
(1)
2 is selected for job J1 (refer to Fig. 4-9 for the

92 doi:10.6342/NTU202401338

CP, IP, & DE

details of paths). The operation sequence in a path is amended simultaneously

while selecting the path. Meanwhile, the sequence of delivery operations in nodes

can also be identified. In this example, the 8th operation is ahead of the 6th in the

encoding. As a result, the operations are executed in this order in node 3. In fact,

when the decoding procedure is completed, this index array solution should yield

the same result as solution D in Section 3.1.5. The Gantt chart was shown in Fig.

3-11 on page 38.

<latexit sha1_base64="PTK0AvjUoadTlWz/4ZWaiQzEmJU=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BItQoZRdKdVj0YvHCvYD2qVk02wbms0uSVYoS3+EFw+KePX3ePPfmLZ70NYHA4/3ZpiZ58eCa+M43yi3sbm1vZPfLeztHxweFY9P2jpKFGUtGolIdX2imeCStQw3gnVjxUjoC9bxJ3dzv/PElOaRfDTTmHkhGUkecEqMlTplt+JWapeDYsmpOgvgdeJmpAQZmoPiV38Y0SRk0lBBtO65Tmy8lCjDqWCzQj/RLCZ0QkasZ6kkIdNeujh3hi+sMsRBpGxJgxfq74mUhFpPQ992hsSM9ao3F//zeokJbryUyzgxTNLloiAR2ER4/jsecsWoEVNLCFXc3orpmChCjU2oYENwV19eJ+2rqluv1h9qpcZtFkcezuAcyuDCNTTgHprQAgoTeIZXeEMxekHv6GPZmkPZzCn8Afr8Afivjgo=</latexit> (1
,1
,4
)

<latexit sha1_base64="ziRUGFqgHtVw7pp5rUIypEZonco=">AAAB7nicbVBNS8NAEJ3Ur1q/oh69LBahQilJldZj0YvHCvYD2lA22027dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzz485U9pxvq3cxubW9k5+t7C3f3B4ZB+ftFWUSEJbJOKR7PpYUc4EbWmmOe3GkuLQ57TjT+7mfueJSsUi8ainMfVCPBIsYARrI3VKV+V6uXo5sItOxVkArRM3I0XI0BzYX/1hRJKQCk04VqrnOrH2Uiw1I5zOCv1E0RiTCR7RnqECh1R56eLcGbowyhAFkTQlNFqovydSHCo1DX3TGWI9VqveXPzP6yU6uPFSJuJEU0GWi4KEIx2h+e9oyCQlmk8NwUQycysiYywx0SahggnBXX15nbSrFbdWqT1cFxu3WRx5OINzKIELdWjAPTShBQQm8Ayv8GbF1ov1bn0sW3NWNnMKf2B9/gAB8I4Q</latexit> (3
,7
,2
)

<latexit sha1_base64="7VaxxA20W1D9g+1w49zSaA0HoWs=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQim7WqrHohePFawttEvJptk2NJsNSVYoS3+EFw+KePX3ePPfmLZ70NYHA4/3ZpiZF0jOtHHdbye3tr6xuZXfLuzs7u0fFA+PHnWcKEJbJOax6gRYU84EbRlmOO1IRXEUcNoOxrczv/1ElWaxeDATSf0IDwULGcHGSu1yrXJZ8c77xZJbdedAq8TLSAkyNPvFr94gJklEhSEca931XGn8FCvDCKfTQi/RVGIyxkPatVTgiGo/nZ87RWdWGaAwVraEQXP190SKI60nUWA7I2xGetmbif953cSE137KhEwMFWSxKEw4MjGa/Y4GTFFi+MQSTBSztyIywgoTYxMq2BC85ZdXyeNF1atX6/e1UuMmiyMPJ3AKZfDgChpwB01oAYExPMMrvDnSeXHenY9Fa87JZo7hD5zPH/vJjgw=</latexit> (4
,3
,1
)

<latexit sha1_base64="I0AMLf2oN9BbBKK81QIym0qiiM0=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BItQoZTdItVj0YvHCvYD2qVk02wbms0uSVYoS3+EFw+KePX3ePPfmLZ70NYHA4/3ZpiZ58eCa+M43yi3sbm1vZPfLeztHxweFY9P2jpKFGUtGolIdX2imeCStQw3gnVjxUjoC9bxJ3dzv/PElOaRfDTTmHkhGUkecEqMlTplt+JWapeDYsmpOgvgdeJmpAQZmoPiV38Y0SRk0lBBtO65Tmy8lCjDqWCzQj/RLCZ0QkasZ6kkIdNeujh3hi+sMsRBpGxJgxfq74mUhFpPQ992hsSM9ao3F//zeokJbryUyzgxTNLloiAR2ER4/jsecsWoEVNLCFXc3orpmChCjU2oYENwV19eJ+1a1a1X6w9XpcZtFkcezuAcyuDCNTTgHprQAgoTeIZXeEMxekHv6GPZmkPZzCn8Afr8AfWljgg=</latexit> (1
,1
,2
)

<latexit sha1_base64="FK6MZ2vw+ivUoWiLC5k1u59WoyQ=">AAAB7nicbVBdSwJBFL1rX2ZfVo+9DElgILIrYj1KvfRokCnoIrPjrA7Oziwzs4Es/oheeiii135Pb/2bRt2H0g5cOJxzL/feE8ScaeO6305uY3Nreye/W9jbPzg8Kh6fPGqZKELbRHKpugHWlDNB24YZTruxojgKOO0Ek9u533miSjMpHsw0pn6ER4KFjGBjpU65VvEq9ctBseRW3QXQOvEyUoIMrUHxqz+UJImoMIRjrXueGxs/xcowwums0E80jTGZ4BHtWSpwRLWfLs6doQurDFEolS1h0EL9PZHiSOtpFNjOCJuxXvXm4n9eLzHhtZ8yESeGCrJcFCYcGYnmv6MhU5QYPrUEE8XsrYiMscLE2IQKNgRv9eV18lireo1q475eat5kceThDM6hDB5cQRPuoAVtIDCBZ3iFNyd2Xpx352PZmnOymVP4A+fzB/o4jgs=</latexit> (2
,1
,4
)

<latexit sha1_base64="cYmNEaXNilUgqjegLnIzIJzsQUU=">AAAB7nicbVBNS8NAEJ3Ur1q/oh69LBahQilJK9Vj0YvHCvYD2lA22027dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzz485U9pxvq3cxubW9k5+t7C3f3B4ZB+ftFWUSEJbJOKR7PpYUc4EbWmmOe3GkuLQ57TjT+7mfueJSsUi8ainMfVCPBIsYARrI3VKtXKtXL0c2EWn4iyA1ombkSJkaA7sr/4wIklIhSYcK9VznVh7KZaaEU5nhX6iaIzJBI9oz1CBQ6q8dHHuDF0YZYiCSJoSGi3U3xMpDpWahr7pDLEeq1VvLv7n9RId3HgpE3GiqSDLRUHCkY7Q/Hc0ZJISzaeGYCKZuRWRMZaYaJNQwYTgrr68TtrViluv1B+uio3bLI48nME5lMCFa2jAPTShBQQm8Ayv8GbF1ov1bn0sW3NWNnMKf2B9/gD7xY4M</latexit> (3
,3
,2
)

<latexit sha1_base64="7VaxxA20W1D9g+1w49zSaA0HoWs=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahQim7WqrHohePFawttEvJptk2NJsNSVYoS3+EFw+KePX3ePPfmLZ70NYHA4/3ZpiZF0jOtHHdbye3tr6xuZXfLuzs7u0fFA+PHnWcKEJbJOax6gRYU84EbRlmOO1IRXEUcNoOxrczv/1ElWaxeDATSf0IDwULGcHGSu1yrXJZ8c77xZJbdedAq8TLSAkyNPvFr94gJklEhSEca931XGn8FCvDCKfTQi/RVGIyxkPatVTgiGo/nZ87RWdWGaAwVraEQXP190SKI60nUWA7I2xGetmbif953cSE137KhEwMFWSxKEw4MjGa/Y4GTFFi+MQSTBSztyIywgoTYxMq2BC85ZdXyeNF1atX6/e1UuMmiyMPJ3AKZfDgChpwB01oAYExPMMrvDnSeXHenY9Fa87JZo7hD5zPH/vJjgw=</latexit> (4
,3
,1
)

<latexit sha1_base64="bvDFAptXKCmm7WSSLWU86xDDN0w=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSJUKGVXpeqt6MVjBfsB7VKyabYNTbJLkhXK0h/hxYMiXv093vw3pu0etPXBwOO9GWbmBTFn2rjut7Oyura+sZnbym/v7O7tFw4OmzpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0Fo7up33qiSrNIPppxTH2BB5KFjGBjpVbponxTrp71CkW34s6AlomXkSJkqPcKX91+RBJBpSEca93x3Nj4KVaGEU4n+W6iaYzJCA9ox1KJBdV+Ojt3gk6t0kdhpGxJg2bq74kUC63HIrCdApuhXvSm4n9eJzHhtZ8yGSeGSjJfFCYcmQhNf0d9pigxfGwJJorZWxEZYoWJsQnlbQje4svLpHle8aqV6sNlsXabxZGDYziBEnhwBTW4hzo0gMAInuEV3pzYeXHenY9564qTzRzBHzifPwsSjhY=</latexit> (3
,9
,6
)

<latexit sha1_base64="z90ccDbTJ0MtoAEzb1RcWlja8oo=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBAihLDrI3oMevEYwTwgWcLsZDYZMjs7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3BZIzbVz321lZXVvf2Mxt5bd3dvf2CweHTR0nitAGiXms2gHWlDNBG4YZTttSURwFnLaC0d3Ubz1RpVksHs1YUj/CA8FCRrCxUqt0Vb4oe2e9QtGtuDOgZeJlpAgZ6r3CV7cfkySiwhCOte54rjR+ipVhhNNJvptoKjEZ4QHtWCpwRLWfzs6doFOr9FEYK1vCoJn6eyLFkdbjKLCdETZDvehNxf+8TmLCGz9lQiaGCjJfFCYcmRhNf0d9pigxfGwJJorZWxEZYoWJsQnlbQje4svLpHle8aqV6sNlsXabxZGDYziBEnhwDTW4hzo0gMAInuEV3hzpvDjvzse8dcXJZo7gD5zPH/1Sjg0=</latexit> (5
,3
,1
)

<latexit sha1_base64="ALZyVa6hRhSaCArH/l2FZIDEUXI=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+8C2lEx6pw3NZIYko5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpnle8aqV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/0aRJg==</latexit>wPermuted Index Array

8 9

Node 1 Node 2

8 2 19

4

4 7 3 6

5 6 7

5

4 5
Node 3

8 6
Node 4 Node 5

7 9

path selection
& operation

sequence fixing

delivery
operations
sequencing

Figure 4-10. Illustration of the concept in the first stage of the decoding procedure.

Note that transfer operations associated with the previous delivery operation

on a transfer site are indefinite since transfer operation times are not fixed. They are

determined when the material loads are picked up in the following delivery

operations. When no buffer vacancy is available on a transfer site, the succeeding

delivery operation cannot start where the vehicle and the completed delivery

operation job are blocked. As a result, it is impossible to know the states of the

material handling network beforehand. Therefore, the decoding procedure employs

a discrete-event simulation process with two discrete-time events to coordinate the

sequence of delivery operations on nodes and maintain the buffer availabilities on

93 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

site.

Two indexed discrete events are defined: 1) a delivery operation starts and 2)

a delivery operation ends. The succeeding transfer operation may start right at the

end of the preceding delivery operation if there is a vacancy on the transfer site;

otherwise, the current delivery operation is blocked until one of the delivery

operations completes and starts its next delivery operation, thus yielding a vacancy.

Note that all transfer operations end right at the start of the succeeding delivery

operations that remove the load from the occupied buffer of the transfer site.

Notice that the discrete event is always associated with an “execution” on a

node. Therefore, we define an event as a 4-tuple
(
t̂, ŷ, î, ĵ

)
, where t̂ is the event

time, ŷ ∈ {1, 2} is the event type, and b(̂i)
ĵ

is the execution associated. When ŷ = 1

the future event happens at time t̂ on node î to start the ĵ-th delivery operation,

ŷ = 2 to end the operation.

Discrete-event simulation techniques are executed in the second stage to

construct the full schedule for all operations following the availability of operations

and node resources. To bookkeep the operation execution sequence, let z(i) be the

execution sequence index of the node i. Similarly, let zk be the operation execution

sequence index of job Jk. We bookkeep and update the available time ν(i) of node i

when it arrives at the drop-off point and the load starts its transfer operation.

Conversely, we bookkeep and update the available times vk of job Jk when the

transfer operation had started for the minimal transfer time on the transfer site,

where the succeeding operation can be processed.

94 doi:10.6342/NTU202401338

CP, IP, & DE

Before the procedure starts, the future event list is constructed by inserting

feasible operation-start events. Let the list be F = [f1f2 · · · fjfj+1 · · ·] , a list of

events arranged in ascending order of their event times, i.e., t̂j ≤ t̂j+1. Then, the

discrete event simulation starts to schedule delivery operations subject to

precedence constraints on jobs, sequence constraints on nodes, and buffer size

constraints on transfer sites as well. Each simulation step removes the head event

f1 from F for processing to update related system states. In event processing, new

successive events might be generated and inserted back to F . The new events are

inserted into the right places by checking their event times and maintaining the

events in the correct order. The simulation procedure is, therefore, repeatedly

removing the head event to process it and inserting back newly generated events

until F is empty.

During the event processing, state variables, such as the job and node vehicle

available times, are repeatedly updated while the start times of delivery operations,

x
(k)
l∗
k

,j′ and transfer operations, x̃
(k)
l∗
k

,j′ , are set step by step. However, when the

deadlock happens, the event list F would become empty prematurely, where not all

x
(k)
l∗
k

,j′ and x̃
(k)
l∗
k

,j′ are set.

A deadlock means that a resource in the system is required but it will never

be released. Consider the network in Fig. 4-11. There are two nodes and a transfer

site with a capacity limit of 1 in this network.

Node1 Node 21 2 1 21

Figure 4-11. A material handling network for deadlock demonstration.

95 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

If we have two jobs, both starts from P/D point p
(1)
1 and ends at P/D point

p
(2)
2 . We have Π1 = {π(1)

1 ≡ 〈(1, 1, 2), (2, 1, 2)〉} and

Π2 = {π(2)
1 ≡ 〈(1, 1, 2), (2, 1, 2)〉}. We define the indexed operation set W as

W =
{
ŵ1 = (1, 1, 1, 1, 1, 2), ŵ2 = (1, 1, 2, 2, 1, 2),

ŵ3 = (2, 1, 1, 1, 1, 2), ŵ4 = (2, 1, 2, 2, 1, 2)
}
.

If the integer index array w = [1 3 4 2], meaning that node 1 should execute the

operation from the job J1 first, while node 2 should execute the operation from the

job J2 first. However, this is impossible since the transfer site only has one buffer

size. When the material load of job J1 enters the site, the material load of job J2

could not enter the site before the stored material of job J1 is removed from the

site. As a result, no material can enter node 2 eventually, thus causing a deadlock.

When this happens, it is impossible to set the start time of every operation since

some of them will never be executed. In this situation, the makespan cannot be

calculated; hence, we introduce a violation metric to calculate the objective value

by the number of operations not completed. The decoding procedures on a

permuted index array are listed in Algorithm 8.

96 doi:10.6342/NTU202401338

CP, IP, & DE

Algorithm 8 PermutationArrayDecoder (w)
1: B← {B(i)|∀i ∈ V };Λ← {λ(i)|∀i ∈ V };
2: ▷ Set of delivery operation start time ◁

3: X← {x(k)
l,j

∣∣∣ j = 1, 2, · · · , λk,l], l = 1, 2, · · · , σk, k = 1, 2, · · · , n}
4: ▷ Set of transfer operation start time ◁

5: X̃← {x̃(k)
l,j

∣∣∣ j = 1, 2, · · · , λk,l − 1, l = 1, 2, · · · , σk, k = 1, 2, · · · , n}
6: ▷ Set of job completion time ◁

7: cT← {ctk

∣∣∣ k = 1, 2, · · · , n}
8: B(i) ← [], λ(i) ← 0,∀i ∈ V

9: x′ ← −1,∀x′ ∈ X; x̃′ ← −1,∀x̃′ ∈ X̃; ct′ ← −1,∀ ct′ ∈ cT;
10: ▷ Path selection & determine delivery operation sequence in nodes ◁

11: SelectPathToSetOperationSequenceOnNodes(w, B,Λ)
12: ▷ Acquire operation start/end time & job completion time ◁

13: SimulateOperationExecution(w, B,Λ, X, X̃, cT)
14: return CalculateObjectiveValue(X̃, cT) ▷ Calculate the objective value

(makespan)

Lines 8 and 9 initialize the execution sequence, number of operations in a

node, delivery/transfer operation start time, and job completion time. We initialize

the time with −1 to calculate the number of incomplete operations when the

deadlock happens since a completed operation should have a start time greater than

or equal to 0. The path for each job and the execution sequence in a node are then

determined in Line 11. Afterward, Line 13 finds the start time of each

delivery/transfer operation and the completion time for each job. Finally, the

objective value based on the time acquired in the previous step is obtained in Line

14.

97 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Algorithm 9 SelectPathToSetOperationSequenceOnNodes(w, B,Λ)

1: λ̄← |w| ; qk ← 1,∀k = 1, 2, · · · , n;
2: for j = 1, 2, · · · , λ̄ do
3: w ← wj; k ← k̂w; l← l̂w; ▷ Get operation index, job index & path index
4: if l∗

k = 0 then
5: l∗

k ← l ▷ Set selected path index
6: else if l 6= l∗

k then
7: goto 2 for next j

8: j′ ← qk; qk ← qk + 1; ▷ Update job sequence index
9: (i, θ, δ)← ρ

(k)
l,j′ ▷ Identify delivery operation

10: B(i) ← B(i) ⊕ (k, l, j′); λ(i) ← λ(i) + 1 ▷ Append an operation to node i

Algorithm 9 is a procedure to find the selected path for each job and

determine the execution sequence of operations in each node, i.e., B(i), ∀i ∈ V .

Line 5 sets the path index to l∗
k if it is the first occurrence of the job Jk in w. Lines

8 to 10 then append the operation if it belongs to the selected path of job Jk.

98 doi:10.6342/NTU202401338

CP, IP, & DE

Algorithm 10 SimulateOperationExecution(w, B,Λ, X, X̃, cT)
1: F ← [] ▷ Event list
2: z(i) ← 1, ν(i) ← 0;∀i ∈ V ▷ Set node available time, & op. index
3: zk ← 1; νk ← gk; k = 1, 2, · · · , n ▷ Set job available times & op. indexes
4: bd ← 0; ûd ← ωd; d = 1, 2, · · · , r ▷ Set initial blocked flags & vacancies for

sites
5: foreach node i in V do
6: if s

(i)
1 = 1 then ▷ If it is also the 1st operation of a job

7: k ← k
(i)
1 ; θ ← θ

(i)
1 ; τ ← τ

(i)
1,θ; ν(i) ← τ ;

8:
(
t̂, ŷ, î, ĵ

)
←
(
max

(
ν(i), νk

)
, 1, i, 1

)
9: F ← F +̂

(
t̂, ŷ, î, ĵ

)
▷ Insert a start event

10: repeat until F = []
11: (t, y, i, j)← f1; F ← F −̂f1 ▷ Get the head event
12: k ← k

(i)
j ; l← l

(i)
j ; s← s

(i)
j ; θ ← δ

(k)
l,s ; δ ← δ

(k)
l,s ;

13: if s 6= zk then
14: goto 10
15: if y = 1 then ▷ operation start event
16: StartAnOperation(F, f1, B(i), νk, ν(i), {zi|∀i ∈ V }, {ûd|d =

1, 2, · · · , r})
17: else ▷ (y = 2) operation completion event
18: CompleteAnOperation(F, f1, B(i), νk, ν(i), zi, {ûd|d =

1, 2, · · · , r}, {bd|d = 1, 2, · · · , r})
19: until F = []

In the discrete-event simulation, we try to determine the start time of every

delivery/transfer operation and the completion time of each job. We insert the

initial operation-start events if the operation is the first in both the job and the node.

The procedure is described from lines 5 to 9. The simulation is conducted until the

event list F becomes empty.

99 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Algorithm 11 StartAnOperation(F, f1, B(i), νk, ν(i), {zi|∀i ∈ V }, {ûd|d =
1, 2, · · · , r})

1: (t, y, i, j)← f1;
2: k ← k

(i)
j ; l← l

(i)
j ; s← s

(i)
j ; θ ← δ

(k)
l,s ; δ ← δ

(k)
l,s ;

3: if ν(i) > t or νk > t then
4: F ← F +̂(max

(
ν(i), νk

)
, 1, i, j)

5: else
6: x

(k)
l,j′ ← t; zi ← j; ▷ Set delivery operation start time & op. index

7: ν(i) ← t + τ
(i)
θ,δ ; νk ← ν(i); ▷ Set node/job available time

8: F ← F +̂(ν(i), 2, i, j) ▷ Upload a completion event
9: zk ← zk + 1;

10: if s > 1 then ▷ If the operation is not the 1st of the job
11: ed ← ϵ

(k)
l,s−1; ûd ← ûd + 1; ▷ Get the previous site & add a vacancy

12: if bd 6= 0 then ▷ Release the blocked state
13: F ← F +̂

(
t, 2, bd, z

η
(k)
l,s−1

)
14: bd ← 0

If an operation is ready to start, Line 7 sets the node available time ν(i) to the

time when the load arrives at its drop-off point, and a completion event is inserted

with the event time of the node available time. If the operation is not the first of the

job, we update the states of its previous transfer site. If the site was blocked, we

insert a completion event to allow the blocked operation in the previous node to

enter the site.

100 doi:10.6342/NTU202401338

CP, IP, & DE

Algorithm 12 CompleteAnOperation(F, f1, B(i), νk, ν(i), zi, {ûd|d =
1, 2, · · · , r}, {bd|d = 1, 2, · · · , r})

1: (t, y, i, j)← f1;
2: k ← k

(i)
j ; l← l

(i)
j ; s← s

(i)
j ; c← 0;

3: if s = λk,l then
4: ctk ← t; c← 1;
5: else
6: ed ← ϵ

(k)
l,s ; i′ ← η

(k)
l,s+1 ▷ Get the next site & node

7: if bd = 0 then
8: if ûd > 0 then ▷ If the next site is available
9: x̃

(k)
l,s ← t; ûd ← ûd − 1; νk ← t + βd; c← 1;

10: F ← F +̂
(
max

(
νk, ν(i′)

)
, 1, i′, z(i′)

)
11: else
12: bd ← i

13: if c = 1 and j < λ(i) then
14: ν(i) ← t + τ

(i)
δ

(i)
j ,θ

(i)
j+1

; z(i) ← z(i) + 1;

15: F ← F +̂
(
max

(
νk, ν(i′)

)
, 1, i, z(i)

)

If the operation is the last of the job, we set the job completion time.

Otherwise, we need to check the availability of the next site. When the next site is

not blocked and available to enter (Line 8), we set the job available to the time

when the minimum transfer time elapses and insert an operation-start event.

Finally, if an operation is completed and it is not the last of the node, the next

operation can try to enter the node.

Algorithm 13 CalculateObjectiveValue(X̃, cT)

1: X̂← X̃ ∪ cT; L← 106;
2: if y 6= −1,∀y ∈ x̂ then
3: Cmax ← max (cT)
4: return Cmax

5: else
6: return |{y|y=−1,∀y∈x̂}|

|x̂| · L + L

101 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

When every operation is completed—no deadlock occurs, the objective

value is the makespan. If the deadlock happens, we calculate the penalty term by

the fraction of incomplete operations times a large number L.

In the following subsection, we will introduce the Metaheuristic algorithm

tailored for solving the Material Handling Network Scheduling Problem.

4.3.2 Permutational Differential Evolution Solver

Originally designed for continuous-valued optimization, Differential

Evolution (DE) [22] has been found amenable to several real applications [1]. In

this research, DE has been modified to adapt it for permutational tasks.

Specifically, the crossover and mutation functions have been redefined to handle

permutation encodings, making the DE suitable for solving the Material Handling

Network Scheduling Problem. Moreover, our DE solver has also been modified for

parallel computing. Due to its simple structure in an iteration, the parallelized

version of DE will have less overhead than that of the genetic algorithm, which

involves different stages in an iteration thus less efficient in parallel computing.

Crossover and Mutation

To apply Differential Evolution to permutation encodings, we incorporate

the order-based crossover (OBX) and swap mutation techniques from the Genetic

Algorithm.

The order-based crossover (OBX) process randomly selects C encoding

positions of another solution w′ to crossover with the base solution w. The order

102 doi:10.6342/NTU202401338

CP, IP, & DE

of the values in these positions in w is replaced by their order of occurrence in the

other solution w′. For example, in Fig. 4-12, the positions 3, 5, 6, and 7 are

selected when C = 4. Therefore, the values 0, 3, 4, and 5 are to be crossed over.

The remaining values, i.e., 1, 2, and 6, are kept in the order in the base solution.

Finally, we fill in the selected values according to their order in the solution w′.

6 2 3 1 5 4 0

5 4 2 6 10 3

3 5 2 6 14 0

<latexit sha1_base64="ALZyVa6hRhSaCArH/l2FZIDEUXI=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+8C2lEx6pw3NZIYko5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpnle8aqV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/0aRJg==</latexit>w

<latexit sha1_base64="4LcBjqW3iL+pxg1gT1aChm3ZUBg=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUlEqsuiG5cV7AOaUCaTSTt08mBmopaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98zxEs6ksqxvo7K2vrG5Vd2u7ezu7R+Yh/WejFNBaJfEPBYDD0vKWUS7iilOB4mgOPQ47XvTm8LvP1AhWRzdq1lC3RCPIxYwgpWWRmbdUYz7NHNCrCZekD3m+chsWE1rDrRK7JI0oERnZH45fkzSkEaKcCzl0LYS5WZYKEY4zWtOKmmCyRSP6VDTCIdUutk8e45OteKjIBb6RQrN1d8bGQ6lnIWeniwiymWvEP/zhqkKrtyMRUmqaEQWh4KUIxWjogjkM0GJ4jNNMBFMZ0VkggUmStdV0yXYy19eJb3zpt1qtu4uGu3rso4qHMMJnIENl9CGW+hAFwg8wTO8wpuRGy/Gu/GxGK0Y5c4R/IHx+QPzApUN</latexit>

w̃

<latexit sha1_base64="niTaBhSgg0hhJnBsZSjbF9srq48=">AAAB8nicbVDLSgMxFM34rPVVdekmWERXZUakuiy6cVnBPmA6lEyaaUMzyZDcUcrQz3DjQhG3fo07/8ZMOwttPRA4nHMvOfeEieAGXPfbWVldW9/YLG2Vt3d29/YrB4dto1JNWYsqoXQ3JIYJLlkLOAjWTTQjcShYJxzf5n7nkWnDlXyAScKCmAwljzglYCW/FxMYhVH2ND3rV6puzZ0BLxOvIFVUoNmvfPUGiqYxk0AFMcb33ASCjGjgVLBpuZcalhA6JkPmWypJzEyQzSJP8alVBjhS2j4JeKb+3shIbMwkDu1kHtEsern4n+enEF0HGZdJCkzS+UdRKjAonN+PB1wzCmJiCaGa26yYjogmFGxLZVuCt3jyMmlf1Lx6rX5/WW3cFHWU0DE6QefIQ1eoge5QE7UQRQo9o1f05oDz4rw7H/PRFafYOUJ/4Hz+AGOkkVc=</latexit>

w0

Base solution

Another solution

Crossovered solution

Figure 4-12. An example of order-base crossover.

In the swap mutation (Swap), two positions are randomly picked, and their

values are swapped. This step is repeated several times to achieve the desired

number of mutations M . The example in Fig. 4-13 selects the positions 3 and 6.

Hence, the values in these positions, i.e., 2 and 4, are swapped.

3 5 2 6 1 4 0

3 5 4 6 1 2 0

<latexit sha1_base64="ALZyVa6hRhSaCArH/l2FZIDEUXI=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+8C2lEx6pw3NZIYko5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpnle8aqV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/0aRJg==</latexit>w

<latexit sha1_base64="4LcBjqW3iL+pxg1gT1aChm3ZUBg=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUlEqsuiG5cV7AOaUCaTSTt08mBmopaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98zxEs6ksqxvo7K2vrG5Vd2u7ezu7R+Yh/WejFNBaJfEPBYDD0vKWUS7iilOB4mgOPQ47XvTm8LvP1AhWRzdq1lC3RCPIxYwgpWWRmbdUYz7NHNCrCZekD3m+chsWE1rDrRK7JI0oERnZH45fkzSkEaKcCzl0LYS5WZYKEY4zWtOKmmCyRSP6VDTCIdUutk8e45OteKjIBb6RQrN1d8bGQ6lnIWeniwiymWvEP/zhqkKrtyMRUmqaEQWh4KUIxWjogjkM0GJ4jNNMBFMZ0VkggUmStdV0yXYy19eJb3zpt1qtu4uGu3rso4qHMMJnIENl9CGW+hAFwg8wTO8wpuRGy/Gu/GxGK0Y5c4R/IHx+QPzApUN</latexit>

w̃

Base solution

Mutated solution

<latexit sha1_base64="VNLv06Zlqc4xdl9Qd76M2qopt4M=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXJVEpLosunEjVLAPaEKZTKft0MkkzNyIJXbhr7hxoYhbf8Odf+M0zUJbDwyce8693DsniAXX4DjfVmFpeWV1rbhe2tjc2t6xd/eaOkoUZQ0aiUi1A6KZ4JI1gINg7VgxEgaCtYLR1dRv3TOleSTvYBwzPyQDyfucEjBS1z7wgIdM4xvsAXuAFGflpGuXnYqTAS8SNydllKPetb+8XkSTkEmggmjdcZ0Y/JQo4FSwSclLNIsJHZEB6xgqidnip9n9E3xslB7uR8o8CThTf0+kJNR6HAamMyQw1PPeVPzP6yTQv/BTLuMEmKSzRf1EYIjwNAzc44pREGNDCFXc3IrpkChCwURWMiG4819eJM3TilutVG/PyrXLPI4iOkRH6AS56BzV0DWqowai6BE9o1f0Zj1ZL9a79TFrLVj5zD76A+vzB8Wklfg=</latexit>⇥M times

Figure 4-13. An example of swap mutation.

Algorithm 14 implements the OBX for parallel computing, where

103 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

RndChoice(n, S) randomly selects n elements from the set S without replacement.

Since the solution w′ might change during the crossover, Line 7 ensures that we

can traverse the solution w′ again when j exceeds λ̄. The implementation of the

swap mutation is listed in Algorithm 15.

Algorithm 14 ParallelOBX(w ≡ [w1w2 · · ·wλ̄], w′ ≡ [w′
1w

′
2 · · ·w′

λ̄
], C)

1: I ← RndChoice(C, {1, 2, · · · , λ̄})
2: W̃ ← {w′

i|∀i ∈ I} ▷ Values to be crossed over
3: w̃← w; j ← 1
4: for i = 1, 2, · · · , λ̄ do
5: if w̃i ∈ W̃ then
6: while w′

j /∈ W̃ do
7: j ← j + 1; j ← j mod λ̄

8: w̃i ← w′
j

9: return w̃

Algorithm 15 Swap(w ≡ [w1w2 · · ·wλ̄], M)
1: w̃← w
2: for i = 1, 2, · · · , M do
3: (j, j′)← RndChoice(2, {1, 2, · · · , |w|})
4: (w̃j, w̃j′)← (w̃j′ , w̃j)
5: return w̃

Permutational Differential Evolution

This subsection details our approach to Permutational Differential Evolution.

Drawing inspiration from the original Differential Evolution, where crossover

involves the difference between two parent solutions, we use the order-based

crossover (OBX) and swap mutations (Swap) to combine the base solution with

two other randomly selected parent solutions. If this new solution outperforms the

base solution, it replaces it. The crossover rate C̃ determines the portion of values

104 doi:10.6342/NTU202401338

CP, IP, & DE

in the solution to be crossed over, while the mutation rate M̃ decides the portion of

values to be mutated. Let N be the population size, namely, the number of integer

index arrays used for evolution. We also define the timeout T̄ for the DE to

terminate the process after the processing time exceeds this timeout. The

Permutational Differential Evolution process is outlined in Algorithm 16.

Algorithm 16 Permutational Differential Evolution
1: wi ← Shuffle([1 2 · · · λ̄]), i = 1, 2, · · · , N

2: oi ← PermutationArrayDecoder(wi), i = 1, 2, · · · , N

3: t← time()
4: while time()− t ≤ T̄ do
5: parallel for i = 1, 2, · · · , N

6: w′ ← wi ▷ Temporary solution
7: (j, j′)← RndChoice(2, {1, 2, · · · , N} \ {i})
8: w′ ←ParallelOBX(w′, wj, d C̃·λ̄

2 e)
9: w′ ←ParallelOBX(w′, wj′ , d C̃·λ̄

2 e)
10: w′ ←Swap(w′, dM̃ · λ̄e)
11: õ← PermutationArrayDecoder(w′)
12: if õ < oi then ▷ Replace the base solution if the temporary is better
13: oi ← õ; wi ← w′

14: i∗ ← arg min
i=1,2,··· ,N

{oi}

15: return oi∗ , wi∗ ▷ Return the best objective value and solution

Line 1 initializes the integer index array solutions, where Shuffle(X)

randomly permutes the elements in the list X . Line 3 saves the current time. In

Line 5, parallel for means that the process in the loop, that is, the evolution of an

index array solution, is executed in parallel on different CPU cores. Line 7

randomly selects two other solutions wj and wj′ to be crossed over with the

temporary solution w′. Finally, Line 12 replaces the base solution w if the

temporary solution w′ is better.

105 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

4.4 Summary

This section has presented an in-depth description of the three proposed

methods to address the MHNSP: Constraint Programming, Integer Programming,

and Metaheuristic approaches.

For Constraint Programming and Integer Programming, we initially focused

on elucidating the methods to ascertain the makespan. We then delved into the

intricacies of formulating constraints relevant to transportation jobs, nodes, and

transfer sites. Regarding the Metaheuristic approach, we explored the encoding and

decoding procedures to efficiently evaluate solutions and proposed Permutational

Differential Evolution to find the optimal solution for the MHNSP.

The forthcoming chapter is dedicated to conducting extensive numerical

analyses to assess the effectiveness and robustness of the three proposed

methodologies.

106 doi:10.6342/NTU202401338

Chapter 5

Numerical Tests and Result Discussion

Numerical test problems are required to evaluate the performance of

different solving methods and the solutions obtained. This chapter provides a

comprehensive examination of these aspects. First, we introduce the implemented

solving system for the MHNSP. Next, we conduct four numerical tests and show

their results. These tests include a DE parameter-tuning experiment via Taguchi

method, a model performance comparison test, an extra-large problem test, and

and identical request test. The source code of our solver implementations is

published on GitHub at https://github.com/markmarkchen/

Material-Handling-Network-Scheduling-Problem-Solvers.

5.1 Solving Method Implementations

We introduce the implemented solvers for the MHNSP in the section. We

use the Python API of IBM® ILOG® CPLEX® v22.1.1 to construct the CP and IP

models for solving the problems. We develop the DE solver as a Python package

that uses NumPy and Numba packages and enables parallel computing via a JIT

compiler to convert the Python code into machine codes. Therefore, our

parallel-computing DE solver is being comparable with the highly-optimized

ILOG® solvers. Finally, all of our tests are run on a computer with AMD Ryzen 5

3600 CPU and 64G DDR4-3600 RAM.

107 doi:10.6342/NTU202401338

https://github.com/markmarkchen/Material-Handling-Network-Scheduling-Problem-Solvers
https://github.com/markmarkchen/Material-Handling-Network-Scheduling-Problem-Solvers

Mathematical Programming and Metaheuristics for the MHNSP

Figure 5-1 shows the manifest directory of our implemented solvers

published on GitHub. We put all the implemented solver scripts in the folder

MaterialHandlingNetworkSchedulingProblemSolvers. In this folder, the file

BenchmarkParser.py provides a class to parse the problem files shown in Section

3.2.4 and returns a benchmark problem object. When solving the problem using

either solver, the problem object is passed to each solver.

Outside the solver folder, we have the script Benchmark Generator (json).py

that generates the numerical test problems specified by the user, where parameters

are listed in the file named benchmark config.yml discussed in Section 3.2.4.

Finally, all the tests are done by the respective scripts named with Test Platform. In

these scripts, the corresponding problem files are parsed and passed to the solvers.

These scripts establish a platform that can automatically conduct the tests and

record the results. The screenshot of the published source code on GitHub is

shown in Fig. 5-2. Readers are welcome to run the codes to reproduce the results,

with IBM® ILOG® installed.

/
MaterialHandlingNetworkSchedulingProblemSolvers

MetaheuristicAlgorithmLibrary
__init__.py
BenchmarkParser.py
ConstraintProgrammingSolver.py
IntegerProgrammingSolver.py
PermutationalDifferentialEvolutionSolver.py

benchmark config.yml............USER-DEFINED PARAMETERS
Benchmark Generator (json).py
Test Platform (Taguchi).py........................TEST #1
Test Platform (General).py........................TEST #2
Test Platform (Extra).py..........................TEST #3
Test Platform (Identical).py.....................TEST #4

Figure 5-1. Directory structure of the implemented solvers.

108 doi:10.6342/NTU202401338

Result

Figure 5-2. Screenshot of the source code of solver implementations on GitHub.

5.2 Numerical Tests and Result Discussion

We conduct four numerical tests to study the MHNSP and the proposed

solving methods. First, we conduct a test for DE parameter-tuning via the Taguchi

method. This test identifies the best parameters for each problem scale and

problem type. Second, we run a model performance comparison test. The

proposed CP, IP, and the tuned DE model are compared in this test for solving 360

randomly generated problems in different scales and types. The purposes of this

test are to know the strengths and weaknesses of each solver in solving different

problem scales and types and to compare the makespan reductions when the

problem type changes from fixed to flexible on the same network, i.e., having

routing flexibility. The third test compares the performance of the CP model and

the DE model in extra-large problems. This test evaluates their performance in real

applications. Finally, we will conduct a special test where all the requests share the

same start/end points. This test is to verify that path selection options are indeed

important and can drastically reduce the makespan.

109 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

5.2.1 Differential Evolution Model Parameter-tuning
Experiment via the Taguchi method

The Taguchi method [23] is widely used in the design of experiments to

reduce the number of experiments compared to the full factorial design. In this

test, we try to identify the best parameters for the DE model. We test the numerical

test problems in 1/∞, 1/n, n/∞, and n/n types, and there are three scales for

each type: small, medium, and large. Therefore, a total number of 12 different

problem settings are tested to find the best DE parameters for each of the settings.

Note that the problem attribute and notations were introduced in Section 3.2.4 and

summarized in Tables 3-2 and 3-3 on pages 50 and 54, respectively.

Three primary parameters for the DE model are population size N , mutation

rate M̃ , and crossover rate C̃. We choose three value levels for each parameter as

listed in Table 5-1. For solving the fixed problems, we empirically set the timeout

for DE computing to 2 seconds. For flexible problems, the timeout is 20 seconds.

Table 5-1. Design level for each DE parameter.

Level
Parameter 1 2 3

Population Size N 8 64 128
Mutation Rate M̃ 0.001 0.01 0.1
Crossover Rate C̃ 0.050 0.10 0.2

To select the best level for each parameter in a problem setting, we design the

experiments using the L9 orthogonal array of the Taguchi method. There are 9

experiments, and we conduct 5 independent runs for each experiment. Table 5-2

shows the details for each experiment and the corresponding parameter level

110 doi:10.6342/NTU202401338

Result

settings. In the table, each yi,j represents the best makespan obtained by our DE

solver.

Table 5-2. Taguchi L9 design.

Parameter
level

Parameter
level value Run Performance

Exp. N M̃ C̃ N M̃ C̃ Run 1 Run 2 Run 3 Run 4 Run 5 SNR

1 1 1 1 8 0.001 0.05 y1,1 y1,2 y1,3 y1,4 y1,5 SNR1
2 1 2 2 8 0.010 0.10 y2,1 y2,2 y2,3 y2,4 y2,5 SNR2
3 1 3 3 8 0.100 0.20 y3,1 y3,2 y3,3 y3,4 y3,5 SNR3
4 2 1 2 64 0.001 0.10 y4,1 y4,2 y4,3 y4,4 y4,5 SNR4
5 2 2 3 64 0.010 0.20 y5,1 y5,2 y5,3 y5,4 y5,5 SNR5
6 2 3 1 64 0.100 0.05 y6,1 y6,2 y6,3 y6,4 y6,5 SNR6
7 3 1 3 128 0.001 0.20 y7,1 y7,2 y7,3 y7,4 y7,5 SNR7
8 3 2 1 128 0.010 0.05 y8,1 y8,2 y8,3 y8,4 y8,5 SNR8
9 3 3 2 128 0.100 0.10 y9,1 y9,2 y9,3 y9,4 y9,5 SNR9

The idea of the Taguchi method is to calculate the signal-to-noise ratio

(SNR) for each experiment, which is a performance indicator. The SNR for each

experiment is

SNRi = −10 · log

 1
Ni

Ni∑
j=1

y2
i,j

 , i = 1, 2, · · · , 9. (5.1)

After obtaining the SNR for each experiment, we can estimate the effect of

each level of the parameter by averaging out the SNRs of experiments using that

level of design. For example, the effects of the three value levels of the mutation

rate can be calculated by

T2,1 = (SNR1 + SNR4 + SNR7)
3

, (5.2)

T2,2 = (SNR2 + SNR5 + SNR8)
3

, (5.3)

T2,3 = (SNR3 + SNR6 + SNR9)
3

. (5.4)

We can calculate the effects of the other two parameters, N and C̃, using the

corresponding SNR terms. Finally, when the 9 effects of different levels of

111 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

parameters are obtained, the best value level for each parameter can be identified as

shown in Table 5-3.

Table 5-3. Taguchi L9 design parameter selection.

Parameter Level Selected Level1 2 3

N T1,1 T1,2 T1,3 arg max
j=1,2,3

(T1,j)

M̃ T2,1 T2,2 T2,3 arg max
j=1,2,3

(T2,j)

C̃ T3,1 T3,2 T3,3 arg max
j=1,2,3

(T3,j)

The raw results are shown in Table B-1 in Appendix B. We can identify the

best parameters for each problem setting by repeating the aforementioned

procedure 12 times. The result is shown in Table 5-4. For small and medium-scale

problems, there is no difference between each parameter setting. However, in

large-scale problems, the best crossover rate and the mutation rate are higher than

the minimum value levels.

Table 5-4. Best parameters of each problem setting.

Scale Type Population Size N Mutation Rate M̃ Crossover Rate C̃

Small

1/∞ 8 0.001 0.050
1/n 8 0.001 0.050
n/∞ 8 0.001 0.050
n/n 8 0.001 0.050

Medium

1/∞ 8 0.001 0.050
1/n 8 0.001 0.050
n/∞ 8 0.001 0.050
n/n 8 0.001 0.050

Large

1/∞ 64 0.010 0.100
1/n 64 0.010 0.100
n/∞ 8 0.010 0.100
n/n 8 0.100 0.100

112 doi:10.6342/NTU202401338

Result

5.2.2 Model Performance Comparison Test

This test evaluates the performance of the three proposed models in solving

problems of different scales and types. Moreover, we want to know the average

makespan reduction when switching from a fixed problem to a flexible one in the

same network, i.e., considering more candidate paths for each job.

We generated 30 networks on small, medium, and large scales, for a total of

90 networks. For each network, we consider four types of problems: 1/∞, 1/n,

n/∞, and n/n types, as described in the previous test. Therefore, a total number of

360 randomly generated numerical test problems are generated for this test.

The parameters found in the previous test are used to execute the DE model

in the corresponding problem setting, and five runs are conducted. We set the DE

timeout to 2 seconds and 20 seconds for fixed and flexible problems, respectively,

following the previous test. For the CP and IP models, the timeout is set to 60

seconds for all types and scales of numerical test problems.

Tables B-2 and B-3 in Appendix B list the obtained makespan and solving

time used in solving these problems. Consolidating the obtained data of the 30

networks of each problem scale/type, the hit rates and average solving time are

listed in Table 5-5. The hit rates for the CP and IP models are the count ratio of

obtaining the global minimum among the 30 networks. For the DE model, the hit

rate is the ratio of runs out of the five runs that match or outperform the better

makespan obtained by the CP and IP models. Finally, the average solving time is

calculated by the mean of the solving time for the 30 networks in each scale/type.

113 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Table 5-5. Hit rate and average solving time of model performance comparison test.

Hit Rate Average
Solving Time (s)

Scale Type CP IP DE CP IP DE

Small

1/∞ 1.000 0.967 1.000 0.373 0.020 2.000

n/∞ 1.000 1.000 1.000 0.811 0.518 20.001

1/n 1.000 0.967 1.000 0.469 0.033 2.000

n/n 1.000 1.000 1.000 0.928 0.849 20.001

Medium

1/∞ 1.000 1.000 0.967 1.515 0.243 2.001

n/∞ 0.767 0.433 0.767 26.509 40.723 20.000

1/n 1.000 1.000 1.000 1.656 0.778 2.001

n/n 0.767 0.233 0.800 25.600 49.820 20.000

Large

1/∞ 1.000 0.967 1.000 1.202 2.068 2.002

n/∞ 0.467 0.100 0.767 43.501 55.568 20.000

1/n 1.000 1.000 1.000 1.341 0.112 2.001

n/n 0.500 0.100 0.833 42.912 56.701 20.001

The numerical results shown indicate the performances of the three solvers

in different problem types. First, in the fixed problems, the mathematical

programming solvers, CP and IP, almost always find the optimal solutions

regardless of the problem scale. Moreover, the IP solver is much faster than the CP

solver in finding the optimal solution for fixed problems. In some cases, the

difference is several orders of magnitude in speed.

Second, the mathematical programming solvers still perform well in

small-sized flexible problems. However, the performance drops significantly in

medium and large-scale problems. The performance degradation of the IP solver is

notable, as it only finds the optimal solutions in one-tenth of the large n/n

114 doi:10.6342/NTU202401338

Result

problems. In contrast, the CP solver does not show this performance loss. Overall,

the CP solver performs better than the IP solver in flexible problems than in

solution qualities and optimization speed. Surprisingly, in the most difficult

problems—large n/n, the CP solver still finds the optimal solutions for half of

them. This indicates its potential for real applications. In the next test, we will

compare the performance of the CP and DE models in solving extra-large

problems.

Finally, the Permutational Differential Evolution method performs well

across all types/settings of problems. It excels in solving medium- and large-scale

flexible problems, outperforming the mathematical programming solvers in terms

of optimality hit rate and computing speed.

Makespan Reduction from Fixed to Flexible Problems on the Same Network

Since the fixed problems are special cases derived from the flexible

counterparts, having path flexibility (more candidate paths) for each job is expected

to yield a makespan reduction. Let 1Cmax and nCmax be the makespans obtained

from the fixed and flexible problems of the same network, respectively. We define

the makespan reduction as
1Cmax − nCmax

1Cmax .

We calculate the average and the standard deviation of the 30 makespan

reduction values from the 30 problems (networks) of each problem scale and site

capacity settings. The data are listed in Table 5-6.

115 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Table 5-6. Makespan improvement of the flexible model over the fixed model.

Capacity
Type Scale Average Cmax

Reduction STD

∞
Small 0.029 0.060

Medium 0.089 0.089

Large 0.138 0.098

n

Small 0.029 0.061

Medium 0.090 0.087

Large 0.132 0.100

The result indicates a limited average reduction can be achieved in

small-scale problems. However, as the problem scale increases, the average

reduction also increases, exceeding 13% in large-scale problems. This is

significant because the jobs and networks are randomly generated in our numerical

test problems; therefore, some of the network layouts are unreasonable. In

real-world scenarios, the average reduction should be much higher than our results.

5.2.3 Extra-large Problem Test

As shown in the previous test, the CP model performed well in solving the

large n/n problems. This test intends to find its capability for extra-large problems.

We generate 5 extra-large problems by the user-defined parameters listed in

Table 3-2. The timeout for the CP model is one hour. Similarly, we also conduct 5

independent runs of the DE model on these problems. The parameter settings

follow the values obtained in the Taguchi experiment on the large n/n type

problem in Table 5-4. The timeout for the DE solver is 12 minutes. The makespans

obtained in the test are shown in Table 5-7. The gap is the difference between the

116 doi:10.6342/NTU202401338

Result

best makespan found in the DE model and the makespan from the CP solver

divided by the CP makespan.

Table 5-7. Makespan comparison between CP and DE solvers in Extra-large
Problems.

Net. ID CP DE-1 DE-2 DE-3 DE-4 DE-5 Gap

U-1 3978 4057 4045 4057 4045 4090 0.017
U-2 2683 4075 3737 4045 3891 3959 0.393

U-3 2422 3324 3329 3568 3439 3491 0.372

U-4 3047 3928 3969 4095 4043 3939 0.289

U-5 3086 3830 3802 3678 3829 3679 0.192

Surprisingly, the CP model outperforms the DE model in every problem.

This finding showcases that Constraint Programming has a high potential for

solving problems in real applications. Moreover, when the solving time is limited,

the CP model should be the preferred one to use. However, this also casts doubt on

the previous test about whether the 1-minute timeout for the CP model is enough to

obtain satisfying results in large problems. We will leave this to the future work.

5.2.4 Identical Request Test

In our last test, we set up a special case where the transportation requests are

identical. We generated a large-scale network with finite buffer sizes, shown in Fig.

3-12 (c) on page 52. Three types of problems, 1/n, 1′/n, and n/n, are generated

for the test. Notice that the first two are fixed problems while the last is a flexible

one. Since the 1′/n problem randomly assigns a candidate path to each job, we

generate 10 different instances for the test, each with different path assignments.

The purposes of this test is to check whether multiple candidate paths for each job

117 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

are necessary or if we can emulate a similar result by randomly assigning a path to

each job. In this test, five identical requests are specified, whose start/end P/D

points of the job are p
(5)
17 and p

(2)
33 .

Following similar settings in the previous tests, our DE model conducts 5

independent runs in each problem and uses the tuned parameters for the large n/n

type problems. The timeout for the DE model is also set to 2 and 20 seconds for

fixed and flexible problems. Similarly, the timeout for the CP and IP models is 60

seconds. Note that the network, requests, and site buffer settings are all the same in

this test. The result is shown in Table 5-8.

Table 5-8. Numerical results for the identical request test.

Objective Value (makespan) Solving Time (s)
Type CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5

1/n 398 398 398 398 398 398 398 3.80 0.31 2.00 2.00 2.00 2.00 2.00

1′/n (1) 377 377 377 377 377 377 377 7.52 1.25 2.00 2.00 2.00 2.00 2.00

1′/n (2) 328 328 328 328 328 328 328 4.24 0.20 2.00 2.00 2.00 2.00 2.00

1′/n (3) 340 340 340 340 340 340 340 6.06 0.55 2.00 2.00 2.00 2.00 2.00

1′/n (4) 292 292 292 292 292 292 292 4.12 0.31 2.00 2.00 2.00 2.00 2.00

1′/n (5) 288 288 288 288 288 288 288 2.45 0.24 2.00 2.00 2.00 2.00 2.00

1′/n (6) 316 316 316 316 316 316 316 3.90 0.77 2.00 2.00 2.00 2.00 2.00

1′/n (7) 284 284 284 284 284 284 284 3.31 0.54 2.00 2.00 2.00 2.00 2.00

1′/n (8) 379 379 379 379 379 379 379 3.87 0.31 2.00 2.00 2.00 2.00 2.00

1′/n (9) 344 344 344 344 344 344 344 6.34 0.60 2.00 2.00 2.00 2.00 2.00

1′/n (10) 325 325 325 325 325 325 325 3.82 0.57 2.00 2.00 2.00 2.00 2.00

n/n 256 - 264 261 270 274 256 60.07 - 20.00 20.00 20.00 20.00 20.00

As expected, the fixed problem cases are trivial for the methods to obtain the

global optimum. However, in the flexible problem, the IP model could not even

find a feasible solution before the timeout. This is surprising because there are only

5 jobs in the problem, compared to 12 jobs for the problems in the model

118 doi:10.6342/NTU202401338

Result

comparison test. Table 5-9 shows the reorganized results for this test.

Table 5-9. Reorganized numerical results for the identical request test.

Type 1/n 1′/n (10 intances) n/n

Solver CP IP DE (5) CP IP DE (5) CP IP DE (5)

Average Cmax - - 398.00 327.30 327.30 327.30 - - 265.00
Minimum Cmax 398 398 398 284 284 284 256 - 256
(Avg.) Solving Time (s) 3.80 0.31 2.00 4.56 0.53 2.00 60.07 - 20.00

The result indicates that path selection matters in completing the jobs earlier.

Even when the path is randomly assigned, the makespan decreases significantly,

from 398 to 327.3 on average. Ultimately, when the candidate paths are all

available in the n/n problem type, the best makespan is 256.

The Gantt charts of the operations of nodes and jobs, respectively, for the

fixed problem and the flexible one are compared in Figs. 5-3 and 5-4.

0 50 100 150 200 250 300 350 400
time

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Node 10
Node 11
Node 12

J1-1
[2 33]

J5-1
[2 33]

J3-1
[2 33]

J4-1
[2 33]

J2-1
[2 33]

J1-1
[17 21]

J5-1
[17 21]

J3-1
[17 21]

J4-1
[17 21]

J2-1
[17 21]

J1-1
[26 9]

J5-1
[26 9]

J3-1
[26 9]

J4-1
[26 9]

J2-1
[26 9]

Makespan: 398

0 50 100 150 200 250 300 350 400
time

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Node 10
Node 11
Node 12

J3-6
[6 31]

J5-3
[6 3]

J1-7
[6 31]

J2-4
[6 4]

J5-3
[24 33]

J3-6
[2 33]

J1-7
[31 33]

J4-1
[2 33]

J2-4
[2 33]

J3-6
[17 10]

J5-3
[17 10]

J1-7
[17 10]

J2-4
[17 10]

J4-1
[17 21]

J2-4
[20 13]

J3-6
[22 9]

J4-1
[26 9]

J2-4
[19 9]

J1-7
[19 24]

J3-6
[19 17]

J1-7
[19 18]

J2-4
[3 6]

Makespan: 256

35.68% improvement

Empty-car Moving Time Blocked Time

Figure 5-3. Node Gantt charts yielded from the fixed and flexible problems.

119 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

0 50 100 150 200 250 300 350 400
time

Job 1 [Path 1]

Job 2 [Path 1]

Job 3 [Path 1]

Job 4 [Path 1]

Job 5 [Path 1]

(5,17 21) (8,26 9) (2,2 33)

(5,17 21) (8,26 9) (2,2 33)

(5,17 21) (8,26 9) (2,2 33)

(5,17 21) (8,26 9) (2,2 33)

(5,17 21) (8,26 9) (2,2 33)

Makespan: 398

0 50 100 150 200 250 300 350 400
time

Job 1 [Path 7]

Job 2 [Path 4]

Job 3 [Path 6]

Job 4 [Path 1]

Job 5 [Path 3]

(5,17 10) (1,6 31) (10,19 18) (9,19 24) (2,31 33)

(5,17 10) (1,6 4) (11,3 6)(6,20 13) (8,19 9)(2,2 33)

(5,17 10) (1,6 31) (10,19 17) (8,22 9) (2,2 33)

(5,17 21) (8,26 9) (2,2 33)

(5,17 10) (1,6 3) (2,24 33)

Makespan: 256

35.68% improvement

Storage Time Transfer Time Blocked Time

Figure 5-4. Job Gantt charts yielded from the fixed and flexible problems.

From the node utilization perspective shown in Fig. 5-3, the flexible solution

yields a more balanced workload distribution among nodes. Figure 5-4 shows the

Gantt blocks of delivery and transfer operation executed in turns for each job. Note

that the transfer operations are much shorter in the flexible problem. Almost every

transfer operation ends with the duration of the transfer time requirement. In

contrast, the solution for the fixed problem has lengthy waiting periods in transfer

sites. Moreover, it is interesting that only one of the jobs (job 4) prefers the fastest

path (path 1) in the flexible problem. This example test verifies that the material

handling system is not efficient when every transportation job selects the

shortest/fastest path. This worst strategy has been widely adopted in the

conventional real-time job dispatching systems. From the above test, we confirm

that path selection optimization models should be adopted in a smart material

handling system to complete the jobs with the minimal makespan.

120 doi:10.6342/NTU202401338

Result

5.3 Summary

This chapter introduced the implementation of our models and showed the

numerical results from four different tests. In the DE parameter-tuning test, we

tried to find the best DE parameter settings for different problem types using the

Taguchi method. In the model performance comparison test, we generated 360

numerical test problems to test the proposed CP, IP, and DE models. The results

showed that IP performed best in fixed problems, while CP stood out in small and

medium flexible problems. The powerfulness of DE was only revealed in the

medium and large n/n type of problems. In the extra-large problem test, we tested

the performance of the CP and the DE models in extremely complex networks with

numerous jobs. The results showed that when given enough time, the CP model

could find much better solutions than the DE model. Finally, we tested the identical

request problem to show that path selection is crucial in decreasing the makespan.

121 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

122 doi:10.6342/NTU202401338

Chapter 6

Conclusion and Future Work Suggestion

In this research, we have rigorously defined the Material Handling Network

Scheduling Problem (MHNSP), where the goal is to minimize the makespan for a

given set of transportation jobs. We have proposed a Constraint Programming

model, an Integer Programming model, and a Permutational Differential Evolution

model to solve the MHNSP. To evaluate these methods, we have conducted four

numerical tests with different problems. These tests illustrated the capabilities of

our proposed models in solving possible real applications. In particular, the CP

model outperformed the Metaheuristic algorithm in solving extra-large problems.

These tests proved that path selection and operation sequencing are crucial in

decreasing the makespan. Numerical results showed that the average improvement

(decreasing) in makespan was up to 13% in large-scale problems when more

candidate paths were available for each job.

6.1 Conlusion

In conclusion, our research makes three contributions. First, we formally

define the MHNSP using a mathematical model that describes the complex

structure and intricate material movements in the material handling network. In

addition, we present the problem generation procedure that can construct arbitrary

networks and generate jobs. This procedure involves constructing a random

123 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

connected graph, generating valid jobs along with their candidate paths, and saving

the generated problems in structured and formatted files.

Second, we propose CP, IP, and DE models for solving the MHNSP. We

design a hierarchical structure for the CP model to efficiently define the constraints

on transportation jobs, candidate paths, and operations. The main contribution of

the proposed IP model is that we ingeniously model the site buffer by identifying

the operation overlapping condition using pair-wise logic relationships. In the DE

model, we provide an efficient decoding procedure. This procedure adopts the

discrete-event simulation technique to deal with events that set the start/end time of

each operation.

Third, the proposed models were thoroughly and rigorously evaluated via

four numerical tests. In the DE parameter-tuning test, we adopted the Taguchi

method to identify the best parameter levels for each problem type. In the model

performance comparison test, each model was applied to solve 360 randomly

generated problems to compare their performances. The result showed that the IP

model is suitable for small problems, and for large-scale problems, one should

resort to the CP and the DE models, which have comparable performance. This test

also showed that the average makespan decreases around 13% in large-scale

problems when more candidate paths are considered for each job. Next, we tested

the performance of the CP and the DE models in extra-large problems. The results

showed that the CP model is more consistent and effective in finding better

solutions than the DE model when having a generous solving time. Finally, the

identical request test demonstrated the importance of path selection in improving

124 doi:10.6342/NTU202401338

Conclusion & Future Works

the makespan. In this test, we showed that a proper path selection can lead to a

35.7% decrease in makespan. This improvement mainly resulted from a more

balanced workload among nodes and a shorter period of wait time spent in the

transfer sites.

6.2 Future Work

Future work can be divided into two perspectives: improving the proposed

models and exploring broader topics to enhance the manufacturing system.

6.2.1 Improvements in Modeling Techniques

CP Model

1. Hierarchical Structure: The current hierarchical structure discards

scheduled operations when selecting a new path, leading to inefficiencies.

Adopting a tree structure, similar to the depth-first search algorithm, can

preserve common operations from different paths and reduce the number of

interval variables used by the CP solver. This approach focuses on handling

only the unscheduled operations when selecting a new path.

2. Timeout Setting: Defining a metric to balance solution quality and solving

time can provide insights into setting appropriate timeouts. This is important

because the CP model can yield good solutions if given sufficient solving

time, as observed in the extra-large problem test.

125 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

IP Model

1. Disjunctive Model Limitations: The current IP model, based on the

disjunctive approach [14, 17], requires establishing pair-wise overlapping

relationships to model site capacity limits. This leads to exponential growth

in constraints due to the lack of a “timeline” concept. Switching to a

time-indexed model [13] could mitigate this issue and enhance performance

despite its generally lower performance in job-shop scheduling problems.

DE Model

1. Encoding Scheme: Currently, a single integer array encodes all operations

and decisions for path selection and operation sequencing. This can make

the array excessively long for extra-large problems and hinder evolution

since decisions are coupled. Separating operations and decisions into two

arrays and evolving them individually can expedite solving speed and

improve overall efficiency.

6.2.2 Improvements in Research Problems

To enhance the manufacturing system, future research should:

1. Include Manufacturing Process: Current models only consider material

handling. Including manufacturing processes is crucial as some machines

have specific requirements for material delivery, such as needing two

material loads before starting or restrictions on the maximum hiatus between

126 doi:10.6342/NTU202401338

Conclusion & Future Works

deliveries. Considering these factors in optimization models will better

reflect real-world conditions and improve system performance.

2. Optimize Layout Design: Combining layout design with operation

scheduling is essential. These two aspects are highly interrelated, as

identifying bottlenecks in the material handling network depends on having

a proper schedule, and vice versa. A two-stage optimization approach, with

the first stage focused on layout optimization and the second on MHNSP, can

significantly enhance the manufacturing process.

127 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

128 doi:10.6342/NTU202401338

Reference

[1] Hsu-Hsing Chen and Feng-Cheng Yang. “A Comprehensive Survey of

Metaheuristic Algorithms Applying in Mechanical Design Optimization

Problems”. In: Proceedings of the International Symposium on

Semiconductor Manufacturing Intelligence (ISMI 2022). Kinmen, Taiwan,

2022, pp. 11–13.

[2] Sanchoy K Das and Prashanth Nagendra. “Selection of routes in a flexible

manufacturing facility”. In: International journal of production economics

48.3 (1997), pp. 237–247.

[3] Ayşe Tuğba Dosdoğru, Mustafa Göçken, and Faruk Geyik. “Integration of

genetic algorithm and Monte Carlo to analyze the effect of routing

flexibility”. In: The International Journal of Advanced Manufacturing

Technology 81 (2015), pp. 1379–1389.

[4] Ghada El Khayat, Andre Langevin, and Diane Riopel. “Integrated

production and material handling scheduling using mathematical

programming and constraint programming”. In: European journal of

operational research 175.3 (2006), pp. 1818–1832.

[5] Patrick-Oliver Groß et al. “Evaluation of alternative paths for reliable

routing in city logistics”. In: Transportation Research Procedia 27 (2017),

pp. 1195–1202.

[6] Rongge Guo et al. “Time-dependent urban customized bus routing with path

flexibility”. In: IEEE Transactions on Intelligent Transportation Systems

22.4 (2020), pp. 2381–2390.

129 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

[7] John H. Holland. Adaptation in natural and artificial systems: An

introductory analysis with applications to biology, control, and artificial

intelligence. Ann Arbor, MI: U Michigan Press, 1975. URL:

https://psycnet.apa.org/record/1975-26618-000.

[8] Amir Hosseini, Alena Otto, and Erwin Pesch. “Scheduling in manufacturing

with transportation: Classification and solution techniques”. In: European

Journal of Operational Research (2023).

[9] Yixiao Huang et al. “Time-dependent vehicle routing problem with path

flexibility”. In: Transportation Research Part B: Methodological 95 (2017),

pp. 169–195.

[10] OA Joseph and R Sridharan. “Effects of routing flexibility, sequencing

flexibility and scheduling decision rules on the performance of a flexible

manufacturing system”. In: The International Journal of Advanced

Manufacturing Technology 56 (2011), pp. 291–306.

[11] Oya E Kara�san, Mustafa C� Pinar, and Hande Yaman. “The robust shortest

path problem with interval data”. In: (2003).

[12] Damla Kizilay, Pascal Van Hentenryck, and Deniz T Eliiyi. “Constraint

programming models for integrated container terminal operations”. In:

European Journal of Operational Research 286.3 (2020), pp. 945–962.

[13] Emilia Kondili, Constantinos C Pantelides, and Roger WH Sargent. “A

general algorithm for short-term scheduling of batch operations—I. MILP

formulation”. In: Computers & Chemical Engineering 17.2 (1993),

pp. 211–227.

130 doi:10.6342/NTU202401338

https://psycnet.apa.org/record/1975-26618-000

Conclusion & Future Works

[14] Ching-Jong Liao and Chii-Tsuen You. “An improved formulation for the

job-shop scheduling problem”. In: Journal of the Operational Research

Society 43.11 (1992), pp. 1047–1054.

[15] Yi-Da Lin. “Fixed Material Transportation Network Job Scheduling

Problem with Mathematical Programming Model and Heuristic Solving

Methods”. MA thesis. National Taiwan University, 2023. DOI:

10.6342/NTU202302192. URL:

http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88394.

[16] Yun-Yuan Liu. “Solving Flexible Job and Material Delivery Scheduling

Problems Using Constraint Programming”. MA thesis. National Taiwan

University, 2020. DOI: 10.6342/NTU202002054. URL:

http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8362.

[17] Alan S Manne. “On the job-shop scheduling problem”. In: Operations

research 8.2 (1960), pp. 219–223.

[18] Andrea Rossi and Gino Dini. “An evolutionary approach to complex

job-shop and flexible manufacturing system scheduling”. In: Proceedings of

the Institution of Mechanical Engineers, Part B: Journal of Engineering

Manufacture 215.2 (2001), pp. 233–245.

[19] Andrea Rossi and Gino Dini. “Dynamic scheduling of FMS using a

real-time genetic algorithm”. In: International Journal of Production

Research 38.1 (2000), pp. 1–20.

[20] Andrea Rossi and Gino Dini. “Flexible job-shop scheduling with routing

flexibility and separable setup times using ant colony optimisation method”.

131 doi:10.6342/NTU202401338

https://doi.org/10.6342/NTU202302192
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88394
https://doi.org/10.6342/NTU202002054
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8362

Mathematical Programming and Metaheuristics for the MHNSP

In: Robotics and Computer-Integrated Manufacturing 23.5 (2007),

pp. 503–516.

[21] Roger L Sisson. “Methods of sequencing in job shops—a review”. In:

Operations Research 7.1 (1959), pp. 10–29.

[22] Rainer Storn and Kenneth Price. In: Journal of Global Optimization 11.4

(1997), pp. 341–359. ISSN: 0925-5001. DOI: 10.1023/a:1008202821328.

URL: http://dx.doi.org/10.1023/A:1008202821328.

[23] G Taguchi. Introduction to quality engineering: designing quality into

products and processes. trid.trb.org, 1986. URL:

https://trid.trb.org/View/1179550.

[24] Hitoshi Tsubone and Mitsuyoshi Horikawa. “A comparison between

machine flexibility and routing flexibility”. In: International Journal of

Flexible Manufacturing Systems 11 (1999), pp. 83–101.

[25] Pascal Van Hentenryck et al. “Constraint programming in OPL”. In:

International Conference on Principles and Practice of Declarative

Programming. Springer. 1999, pp. 98–116.

[26] Hegen Xiong et al. “A survey of job shop scheduling problem: The types

and models”. In: Computers & Operations Research 142 (2022), p. 105731.

132 doi:10.6342/NTU202401338

https://doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.1023/A:1008202821328
https://trid.trb.org/View/1179550

Appendix A

Different Type of Transportation Nodes

To generalized the MHNSP, we can categorize the transportation node into

two types: vehicle node and conveyor node. The vehicle node can be further

divided into four types: single-vehicle node, multi-vehicle node, single-capacitated

vehicle node, and multi-capacitated vehicle node, from the most simplified case to

the most generalized case, according to their unit load capacity and the number of

transportation equipment (vehicles) serving in the node.

In the vehicle node, the vehicle would move from a P/D point to another P/D

point; therefore, the vehicle might not be able to immediately proceed with the next

operation if the source P/D point of the next operation is not the same as the last

stopping P/D point. We call this the empty-car moving time as it does not carry

any payload when moving to the next source P/D point. This is often referred to as

the sequence-dependent setup time in the literature.

In the conveyor node, there are generally only two P/D points, and all

material processed by the node must move unidirectionally from one P/D point to

the other, leading to an infinite traveling time in the opposite direction. On the

other hand, there is no empty-car moving time in the conveyor node, but instead,

the minimum interval between the entering time of one operation and the next is

restricted.

133 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

We will discuss the details of each type of node in the following.

1. Single-vehicle Node (# of vehicle = 1, capacity = 1)

In the simplest case, only one vehicle (transportation equipment) serves in

the node and possesses one unit load capacity. Therefore, the node can only

process one operation at any moment.

2. Multi-vehicle Node (# of vehicle = α, capacity = 1)

In this case, there are α equivalent vehicles with one unit load capacity each

in this node so that each operation can be processed by one and only one of

the vehicles.

3. Single-capacitated Vehicle Node (# of vehicle = 1, capacity = β)

We consider the case that the vehicle has β unit load capacity so that the

vehicle can complete β operations at the same time. In other words, before

delivering the material to its target P/D point, the vehicle might stop at

several midway P/D points to pick up additional materials. This is typically

referred to as the vehicle routing problem.

4. Multi-capacitated Vehicle Node (# of vehicle = α, capacity = β)

In the most generalized case, there are α vehicles, and each has β unit load

capacity. Therefore, each operation can be processed by one of the vehicles

which potentially has other operations in progress simultaneously.

5. Conveyor Node (capacity = β, entering interval = γ)

In a conveyor node, we do not consider the empty-car moving time, but there

is a minimum interval γ between one operation’s entering time and the next’s

134 doi:10.6342/NTU202401338

Different Type of Transportation Nodes

entering time. Moreover, the node can process at most β operations at a time

due to the physical limitation of the length of the conveyor.

A.1 CP Model for Different Types of Transportation
Nodes

For the node d, we can aggregate all the operations that will be potentially

executed in the node in the set P(d). Assume that there are p operations in P(d), we

can locally index them as

P(d) = {ρi | ρi = (ηi, θi, δi), i = 1, 2, · · · p},

and the corresponding set of interval variables can be denoted as

Γ(d) = {ti | i = 1, 2, · · · p}

Single-vehicle Node (# of vehicle = 1, capacity = 1)

First, we construct the pair-wise from-to matrix M̃ (d) to calculate the

required empty-car moving time for any pair of operations of the node

M̃ (d) = [M (d)(δj, θj′)]p×p, j, j′ = 1, 2, · · · p

Second, we define the sequence variable of the node, and the type of each

interval variable is determined by their index in Γ(d)

q(d) = seq(Γ(d), {1, 2, · · · , p})

Finally, each interval variable ti should have a minimum size that equals the

minimum transporting time M (d)(θi, δi).

135 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Now, we can establish the constraints for the single-vehicle node d as

noOverlap(q(d), M̃ (d)) ∧
p∧

i=1

{
p(ti)⇒

{
e(ti)− s(ti) ≥M (d)(θi, δi)

}} (A.1)

Multi-vehicle Node (# of vehicle = α, capacity = 1)

First, we construct the pair-wise from-to matrix

M̃ (d) = [M (d)(δj, θj′)]p×p, j, j′ = 1, 2, · · · p

Since every operation can choose to be executed by one of the α vehicles, we

establish a set of interval variables Γ(d)
l for each vehicle l

Γ(d)
l = {t(l)

i | opt
(l)
i = true, i = 1, 2, · · · p}, l = 1, 2, · · · , α

, and the associated sequence variables for each vehicle l

q
(d)
l = seq(Γ(d)

l , {1, 2, · · · , p}), l = 1, 2, · · · , α

Finally, each interval variable ti should have a minimum size that equals the

minimum transporting time M (d)(θi, δi).

We can establish the constraints for the multi-vehicle node d as
p∧

i=1
alternative(ti, {t(l)

i | l = 1, 2, · · · , α}) ∧

α∧
l=1

noOverlap(q(d)
l , M̃ (d)) ∧

p∧
i=1

{
p(ti)⇒

{
e(ti)− s(ti) ≥M (d)(θi, δi)

}}
(A.2)

136 doi:10.6342/NTU202401338

Different Type of Transportation Nodes

Single-capacitated Vehicle Node (# of vehicle = 1, capacity = β)

First, we construct two sets of interval variables, aΓ(d) and bΓ(d), that

represent the picking and delivery processes, respectively. Note that the size of

every interval variable in the two sets equals 0.

aΓ(d) = {ati | aopti = true, i = 1, 2, · · · p} # picking

bΓ(d) = {bti | bopti = true, i = 1, 2, · · · p} # delivery

The sequence variable of the node can then be defined from aΓ(d) and bΓ(d),

and the type of each interval is the P/D point it stops at.

q(d) = seq(aΓ(d) ∪ bΓ(d), {θ1, θ2, · · · , θp} ∪ {δ1, δ2, · · · , δp})

To model the usage of the unit load capacity, we define the resource function

C(d) by all operation interval variables in the node such that whenever an operation

is present, it will cost one unit load capacity.

C(d) =
p∑

i=1
pulse(ti, 1)

We can summarize the constraints for the single-capacitated vehicle node d

137 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

as

noOverlap(q(d), M (d)) ∧
p∧

i=1
span(ti, {ati, bti}) ∧

p∧
i=1

endBeforeStart(ati, bti) ∧

p∧
i=1

alwaysIn(C(d), ti, 0, β) ∧

p∧
i=1

{
p(ti)⇒

{
e(ati) = s(ati)

}}
∧

p∧
i=1

{
p(ti)⇒

{
e(bti) = s(bti)

}}

(A.3)

Multi-capacitated Vehicle Node (# of vehicle = α, capacity = β)

First, we establish a set of interval variables Γ(d)
l for each vehicle l

Γ(d)
l = {t(l)

i | opt
(l)
i = true, i = 1, 2, · · · p}, l = 1, 2, · · · , α

Second, we define the picking and delivery set of interval variables, aΓ(d)
l

and bΓ(d)
l , for each vehicle l

aΓ(d)
l = {at

(l)
i | aopt

(l)
i = true, i = 1, 2, · · · p}, l = 1, 2, · · · , α # picking

bΓ(d)
l = {bt

(l)
i | bopt

(l)
i = true, i = 1, 2, · · · p}, l = 1, 2, · · · , α # delivery

, and the corresponding sequence variable for vehicle l can be defined as

q
(d)
l = seq(aΓ(d)

l ∪ bΓ(d)
l , {θ1, θ2, · · · , θp} ∪ {δ1, δ2, · · · , δp}), l = 1, 2, · · · , α

Third, we have the resource function C
(d)
l for each vehicle l

C
(d)
l =

p∑
i=1

pulse(t(l)
i , 1), l = 1, 2, · · · , α

138 doi:10.6342/NTU202401338

Different Type of Transportation Nodes

Finally, we can derive the constraint for the multi-capacitated vehicle node d

p∧
i=1

alternative(ti, {t(l)
i | l = 1, 2, · · · , α}) ∧

α∧
l=1

noOverlap(q(d)
l , M (d)) ∧

α∧
l=1

p∧
i=1

span(t(l)
i , {at

(l)
i , bt

(l)
i }) ∧

α∧
l=1

p∧
i=1

endBeforeStart(at
(l)
i , bt

(l)
i) ∧

α∧
l=1

p∧
i=1

alwaysIn(C(d)
l , t

(l)
i , 0, β) ∧

α∧
l=1

p∧
i=1

{
p(t(l)

i)⇒
{
e(at

(l)
i) = s(at

(l)
i)
}}
∧

α∧
l=1

p∧
i=1

{
p(t(l)

i)⇒
{
e(bt

(l)
i) = s(bt

(l)
i)
}}

(A.4)

Conveyor Node (capacity = β, entering interval = γ)

First, we define the set of interval variables hΓ(d) to control the interval

between two material entries.

hΓ(d) = {hti | hopti = true, i = 1, 2, · · · p}

, and the corresponding sequence variable q(d) = seq(hΓ(d))

Second, the resource function C(d) can be written as

C(d) =
p∑

i=1
pulse(ti, 1)

139 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Now we have the constraint for the conveyor node d

noOverlap(q(d)) ∧
p∧

i=1
startAtStart(ti, hti) ∧

p∧
i=1

{
p(ti)⇒ {e(hti)− s(hti) = γ}

}
∧

p∧
i=1

alwaysIn(C(d), ti, 0, β) ∧

p∧
i=1

{
p(ti)⇒

{
e(ti)− s(ti) ≥M (d)(θi, δi)

}}

(A.5)

140 doi:10.6342/NTU202401338

Appendix B

Numerical Result Raw Data

Table B-1. Taguchi results of DE parameter-tuning.

Parameter
level

Parameter
level value Run

Scale Type Exp. N M̃ C̃ N M̃ C̃ Run 1 Run 2 Run 3 Run 4 Run 5 SNR

Small

1/∞

1 1 1 1 8 0.001 0.050 95 95 95 95 95 -39.554
2 1 2 2 8 0.010 0.100 95 95 95 95 95 -39.554
3 1 3 3 8 0.100 0.200 95 95 95 95 95 -39.554
4 2 1 2 64 0.001 0.100 95 95 95 95 95 -39.554
5 2 2 3 64 0.010 0.200 95 95 95 95 95 -39.554
6 2 3 1 64 0.100 0.050 95 95 95 95 95 -39.554
7 3 1 3 128 0.001 0.200 95 95 95 95 95 -39.554
8 3 2 1 128 0.010 0.050 95 95 95 95 95 -39.554
9 3 3 2 128 0.100 0.100 95 95 95 95 95 -39.554

1/n

1 1 1 1 8 0.001 0.050 95 95 95 95 95 -39.554
2 1 2 2 8 0.010 0.100 95 95 95 95 95 -39.554
3 1 3 3 8 0.100 0.200 95 95 95 95 95 -39.554
4 2 1 2 64 0.001 0.100 95 95 95 95 95 -39.554
5 2 2 3 64 0.010 0.200 95 95 95 95 95 -39.554
6 2 3 1 64 0.100 0.050 95 95 95 95 95 -39.554
7 3 1 3 128 0.001 0.200 95 95 95 95 95 -39.554
8 3 2 1 128 0.010 0.050 95 95 95 95 95 -39.554
9 3 3 2 128 0.100 0.100 95 95 95 95 95 -39.554

n/∞

1 1 1 1 8 0.001 0.050 95 95 95 95 95 -39.554
2 1 2 2 8 0.010 0.100 95 95 95 95 95 -39.554
3 1 3 3 8 0.100 0.200 95 95 95 95 95 -39.554
4 2 1 2 64 0.001 0.100 95 95 95 95 95 -39.554
5 2 2 3 64 0.010 0.200 95 95 95 95 95 -39.554
6 2 3 1 64 0.100 0.050 95 95 95 95 95 -39.554
7 3 1 3 128 0.001 0.200 95 95 95 95 95 -39.554
8 3 2 1 128 0.010 0.050 95 95 95 95 95 -39.554
9 3 3 2 128 0.100 0.100 95 95 95 95 95 -39.554

n/n

1 1 1 1 8 0.001 0.050 95 95 95 95 95 -39.554
2 1 2 2 8 0.010 0.100 95 95 95 95 95 -39.554
3 1 3 3 8 0.100 0.200 95 95 95 95 95 -39.554
4 2 1 2 64 0.001 0.100 95 95 95 95 95 -39.554
5 2 2 3 64 0.010 0.200 95 95 95 95 95 -39.554
6 2 3 1 64 0.100 0.050 95 95 95 95 95 -39.554
7 3 1 3 128 0.001 0.200 95 95 95 95 95 -39.554
8 3 2 1 128 0.010 0.050 95 95 95 95 95 -39.554
9 3 3 2 128 0.100 0.100 95 95 95 95 95 -39.554

Continued on next page

141 doi:10.6342/NTU202401338

Mathematical Programming and Metaheuristics for the MHNSP

Table B-1. Taguchi results of DE parameter tuning (cont.)

Parameter
level

Parameter
level value Run

Scale Type Exp. N M̃ C̃ N M̃ C̃r Run 1 Run 2 Run 3 Run 4 Run 5 SNR

Medium

1/∞

1 1 1 1 8 0.001 0.050 220 220 220 220 220 -46.848
2 1 2 2 8 0.010 0.100 220 220 220 220 220 -46.848
3 1 3 3 8 0.100 0.200 220 220 220 220 220 -46.848
4 2 1 2 64 0.001 0.100 220 220 220 220 220 -46.848
5 2 2 3 64 0.010 0.200 220 220 220 220 220 -46.848
6 2 3 1 64 0.100 0.050 220 220 220 220 220 -46.848
7 3 1 3 128 0.001 0.200 220 220 220 220 220 -46.848
8 3 2 1 128 0.010 0.050 220 220 220 220 220 -46.848
9 3 3 2 128 0.100 0.100 220 220 220 220 220 -46.848

1/n

1 1 1 1 8 0.001 0.050 220 220 220 220 220 -46.848
2 1 2 2 8 0.010 0.100 220 220 220 220 220 -46.848
3 1 3 3 8 0.100 0.200 220 220 220 220 220 -46.848
4 2 1 2 64 0.001 0.100 220 220 220 220 220 -46.848
5 2 2 3 64 0.010 0.200 220 220 220 220 220 -46.848
6 2 3 1 64 0.100 0.050 220 220 220 220 220 -46.848
7 3 1 3 128 0.001 0.200 220 220 220 220 220 -46.848
8 3 2 1 128 0.010 0.050 220 220 220 220 220 -46.848
9 3 3 2 128 0.100 0.100 220 220 220 220 220 -46.848

n/∞

1 1 1 1 8 0.001 0.050 207 207 207 207 207 -46.319
2 1 2 2 8 0.010 0.100 207 207 207 207 207 -46.319
3 1 3 3 8 0.100 0.200 207 207 207 207 207 -46.319
4 2 1 2 64 0.001 0.100 207 207 207 207 207 -46.319
5 2 2 3 64 0.010 0.200 207 207 207 207 207 -46.319
6 2 3 1 64 0.100 0.050 207 207 207 207 207 -46.319
7 3 1 3 128 0.001 0.200 207 207 207 207 207 -46.319
8 3 2 1 128 0.010 0.050 207 207 207 207 207 -46.319
9 3 3 2 128 0.100 0.100 207 207 207 207 207 -46.319

n/n

1 1 1 1 8 0.001 0.050 207 207 207 207 207 -46.319
2 1 2 2 8 0.010 0.100 207 207 207 207 207 -46.319
3 1 3 3 8 0.100 0.200 207 207 207 207 207 -46.319
4 2 1 2 64 0.001 0.100 207 207 207 207 207 -46.319
5 2 2 3 64 0.010 0.200 207 207 207 207 207 -46.319
6 2 3 1 64 0.100 0.050 207 207 207 207 207 -46.319
7 3 1 3 128 0.001 0.200 207 207 207 207 207 -46.319
8 3 2 1 128 0.010 0.050 207 207 207 207 207 -46.319
9 3 3 2 128 0.100 0.100 207 207 207 207 207 -46.319

Continued on next page

142 doi:10.6342/NTU202401338

Numerical Result Raw Data

Table B-1. Taguchi results of DE parameter tuning (cont.)

Parameter
level

Parameter
level value Run

Scale Type Exp. N M̃ C̃ N M̃ C̃r Run 1 Run 2 Run 3 Run 4 Run 5 SNR

Large

1/∞

1 1 1 1 8 0.001 0.050 172 171 172 171 172 -44.690
2 1 2 2 8 0.010 0.100 171 171 171 171 171 -44.660
3 1 3 3 8 0.100 0.200 171 171 171 171 171 -44.660
4 2 1 2 64 0.001 0.100 171 171 171 171 171 -44.660
5 2 2 3 64 0.010 0.200 171 171 171 171 171 -44.660
6 2 3 1 64 0.100 0.050 171 171 171 171 171 -44.660
7 3 1 3 128 0.001 0.200 171 171 171 171 171 -44.660
8 3 2 1 128 0.010 0.050 171 171 171 171 171 -44.660
9 3 3 2 128 0.100 0.100 171 171 171 171 171 -44.660

1/n

1 1 1 1 8 0.001 0.050 171 172 172 172 171 -44.690
2 1 2 2 8 0.010 0.100 171 171 171 171 171 -44.660
3 1 3 3 8 0.100 0.200 171 171 171 171 171 -44.660
4 2 1 2 64 0.001 0.100 171 171 171 171 171 -44.660
5 2 2 3 64 0.010 0.200 171 171 171 171 171 -44.660
6 2 3 1 64 0.100 0.050 171 171 171 171 171 -44.660
7 3 1 3 128 0.001 0.200 171 171 171 171 171 -44.660
8 3 2 1 128 0.010 0.050 171 171 171 171 171 -44.660
9 3 3 2 128 0.100 0.100 171 171 171 171 171 -44.660

n/∞

1 1 1 1 8 0.001 0.050 203 207 221 209 213 -46.473
2 1 2 2 8 0.010 0.100 184 193 187 186 197 -45.550
3 1 3 3 8 0.100 0.200 204 215 194 222 219 -46.488
4 2 1 2 64 0.001 0.100 210 213 222 212 214 -46.618
5 2 2 3 64 0.010 0.200 225 220 227 222 213 -46.906
6 2 3 1 64 0.100 0.050 231 201 214 229 197 -46.643
7 3 1 3 128 0.001 0.200 221 233 212 237 217 -47.013
8 3 2 1 128 0.010 0.050 232 234 227 214 227 -47.117
9 3 3 2 128 0.100 0.100 223 225 228 235 234 -47.199

n/n

1 1 1 1 8 0.001 0.050 209 214 191 210 204 -46.267
2 1 2 2 8 0.010 0.100 214 179 197 211 189 -45.952
3 1 3 3 8 0.100 0.200 202 208 198 195 213 -46.163
4 2 1 2 64 0.001 0.100 228 229 229 222 220 -47.068
5 2 2 3 64 0.010 0.200 226 208 230 226 225 -46.971
6 2 3 1 64 0.100 0.050 223 208 237 239 223 -47.093
7 3 1 3 128 0.001 0.200 240 213 227 213 237 -47.093
8 3 2 1 128 0.010 0.050 234 240 227 226 253 -47.466
9 3 3 2 128 0.100 0.100 229 223 212 217 219 -46.851

143 doi:10.6342/NTU202401338

M
athem

aticalProgram
m

ing
and

M
etaheuristicsforthe

M
H

NSP

Table B-2. Objective values of model performance comparison test.

Type 1/∞ n/∞ 1/n n/n

Scale Net. ID CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5

Small

S-01 95
S-02 118
S-03 123
S-04 98
S-05 102
S-06 122
S-07 120
S-08 210
S-09 105 105 105 105 105 105 105 105 105 105 105 107 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105
S-10 107 107 107 107 107 107 107 107 107 107 108 107 107 107 107 107 107 107 107 107 107 107 107 108 108 107 108 108
S-11 103 103 103 103 103 103 103 103 103 103 103 103 105 105 103 103 103 103 103 103 103 103 103 103 103 103 103 103
S-12 139 139 139 139 139 139 139 118 118 118 118 118 118 118 139 139 139 139 139 139 139 118 118 118 118 118 118 118
S-13 136 136 136 136 136 136 136 135 135 135 135 135 135 135 136 136 136 136 136 136 136 135 135 136 136 135 135 135
S-14 83
S-15 106
S-16 72
S-17 162 162 162 162 162 162 162 120 120 120 120 120 120 120 162 162 162 162 162 162 162 120 120 120 120 120 120 120
S-18 108
S-19 116
S-20 121 121 121 121 121 121 121 118 118 118 118 121 119 118 121 121 121 121 121 121 121 118 118 121 118 118 118 121
S-21 98 98 98 98 98 98 98 98 98 98 98 98 98 98 99 99 99 99 99 99 99 99 99 99 99 100 100 99
S-22 117 117 117 118 117 117 117 107 107 107 107 107 107 107 117 117 117 117 117 117 117 107 107 107 107 107 107 107
S-23 65 65 65 65 65 65 65 65 65 65 65 65 65 65 66 66 66 66 66 66 66 66 66 66 66 66 66 66
S-24 120 120 120 120 120 120 120 115 115 115 115 115 115 115 120 120 120 120 120 120 120 115 115 115 115 115 115 115
S-25 70 - 70 70 70 70 70 70 70 70 70 70 70 70 70 - 70 70 70 70 70 70 70 70 70 70 70 70
S-26 83 83 83 83 83 83 83 83 83 87 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
S-27 196 196 196 196 196 196 196 169 169 169 169 169 169 169 196 196 196 196 196 196 196 169 169 169 169 169 169 169
S-28 110 110 110 110 110 110 110 102 102 107 102 102 105 102 112 112 114 112 112 112 114 102 102 102 102 102 105 102
S-29 98
S-30 106 106 106 106 106 106 106 98 98 98 98 98 98 98 106 106 106 106 106 106 106 98 98 98 98 98 98 98

Continued on next page

144

doi:10.6342/NTU202401338

N
um

ericalResultRaw
D

ata

Table B-2. Objective values of model performance comparison test (cont.)

Type 1/∞ n/∞ 1/n n/n

Scale Net. ID CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5

Medium

M-01 220 220 220 220 221 220 220 207 208 207 207 207 207 207 220 220 220 220 225 220 220 207 207 207 207 207 207 207
M-02 140 140 140 140 140 140 140 132 132 139 139 139 140 139 140 140 140 140 140 140 140 132 160 140 139 140 139 132
M-03 177 177 177 177 177 177 177 172 178 172 173 172 173 173 177 177 177 177 177 177 177 172 - 172 172 172 172 176
M-04 180 180 180 180 180 180 180 178 - 183 184 180 180 178 180 180 180 180 180 180 180 178 178 180 180 180 178 178
M-05 156 156 156 156 156 156 156 146 155 151 151 155 151 151 156 156 156 156 156 156 156 146 187 155 155 155 155 160
M-06 202 202 202 202 202 202 202 184 184 185 185 185 185 185 202 202 202 202 202 202 202 184 184 185 185 185 185 185
M-07 167 167 167 167 167 167 167 161 161 161 166 166 161 166 167 167 167 167 167 167 167 161 166 161 161 161 166 161
M-08 144 144 144 144 144 144 144 119 119 122 119 119 119 122 144 144 144 144 144 144 144 119 119 121 122 119 120 120
M-09 198 198 200 200 198 200 200 176 254 176 176 176 176 176 198 198 200 200 198 198 200 176 206 185 178 192 177 176
M-10 189 189 190 189 189 189 189 188 188 188 188 188 188 188 189 189 189 189 189 189 189 188 188 188 188 188 188 188
M-11 174 174 174 174 174 174 174 148 148 149 149 149 148 149 174 174 174 174 174 174 174 148 148 148 148 149 149 148
M-12 147 147 147 147 147 147 147 145 145 145 145 145 145 145 147 147 147 147 147 147 147 145 145 145 145 145 145 145
M-13 147 147 147 155 147 155 147 138 144 144 154 138 138 154 147 147 147 147 147 158 147 138 158 153 150 151 144 144
M-14 195 195 195 195 195 195 195 166 177 184 181 166 177 187 195 195 195 195 195 195 195 166 190 166 179 178 177 179
M-15 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 373 367 367 367 367 367 367 367 367 367
M-16 183 183 183 183 183 183 183 142 186 143 149 142 142 142 183 183 183 183 183 183 183 142 196 146 152 157 142 150
M-17 253 253 253 253 253 253 253 183 187 183 183 187 183 183 253 253 253 253 253 253 253 187 206 199 199 199 199 199
M-18 228 228 228 228 228 228 228 226 226 234 232 233 233 232 228 228 228 228 228 228 228 226 241 233 233 234 234 234
M-19 178 178 178 186 181 178 186 178 178 178 178 178 178 178 178 178 186 178 178 178 178 178 178 178 178 178 178 178
M-20 242 242 243 243 244 243 243 214 215 224 229 223 215 217 242 242 248 243 243 243 242 215 225 229 231 215 223 230
M-21 180 180 180 180 180 180 180 162 162 168 170 168 162 162 180 180 180 180 180 180 180 162 170 168 162 168 168 162
M-22 201 201 201 201 201 201 201 140 140 140 140 140 140 140 201 201 201 201 201 201 201 140 140 140 140 140 140 140
M-23 172 172 172 172 172 172 172 154 - 155 154 154 154 154 172 172 172 172 172 172 172 154 157 154 154 154 154 154
M-24 278 278 278 278 278 278 278 278 385 278 278 278 278 278 278 278 278 278 278 278 278 278 - 278 278 278 278 278
M-25 114 114 115 115 114 115 114 112 112 123 123 123 123 123 114 114 115 114 122 114 114 112 112 123 123 112 123 112
M-26 114 114 114 114 114 114 114 114 114 114 114 114 114 114 117 117 117 117 117 117 117 114 114 114 114 114 114 114
M-27 178 178 178 178 178 178 178 159 159 159 159 159 159 159 178 178 178 178 178 202 178 159 159 159 159 159 159 159
M-28 178 178 178 178 178 178 178 151 157 153 158 154 154 154 178 178 178 178 178 178 178 151 184 154 158 154 154 153
M-29 248 248 248 248 248 248 248 248 275 248 248 248 252 248 248 248 248 248 248 248 248 248 - 248 252 263 248 248
M-30 210 210 210 210 210 210 210 154 154 154 154 154 154 154 210 210 210 210 210 210 210 154 154 154 154 154 154 154

Continued on next page

145

doi:10.6342/NTU202401338

M
athem

aticalProgram
m

ing
and

M
etaheuristicsforthe

M
H

NSP

Table B-2. Objective values of model performance comparison test (cont.)

Type 1/∞ n/∞ 1/n n/n

Scale Net. ID CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5

Large

L-01 171 171 171 171 171 171 171 138 272 138 157 138 138 155 171 171 171 171 171 171 171 138 - 145 146 155 160 138
L-02 210 210 210 210 210 210 210 198 - 198 198 210 204 202 210 210 210 210 210 210 210 216 - 210 213 203 210 202
L-03 171 171 171 171 171 171 171 191 3600 167 180 167 180 167 171 171 171 171 171 171 171 180 - 167 167 180 175 180
L-04 222 222 222 222 222 222 222 231 - 197 200 207 207 197 222 222 222 222 222 222 222 197 - 197 197 200 213 197
L-05 180 180 180 180 180 180 180 163 - 163 173 166 163 178 180 180 180 180 180 180 180 163 - 173 166 166 168 170
L-06 118 118 118 118 118 118 118 118 165 118 118 118 118 118 118 118 118 118 118 118 118 118 159 118 125 118 118 118
L-07 143 143 143 143 143 143 143 131 - 131 131 131 131 131 143 143 143 143 143 143 143 131 180 131 131 131 131 131
L-08 224 224 224 224 224 224 224 154 3180 154 154 154 154 154 224 224 224 224 224 224 224 154 - 154 163 155 167 154
L-09 234 234 234 234 234 234 234 203 235 202 203 199 204 201 234 234 234 234 234 234 234 203 - 203 198 203 198 205
L-10 171 171 171 171 171 171 171 151 151 151 151 151 155 151 171 171 171 171 171 171 171 151 151 151 159 159 151 155
L-11 188 188 188 188 188 188 188 171 302 173 173 180 173 183 188 188 188 188 188 188 188 171 436 173 173 173 180 175
L-12 269 269 269 269 269 269 269 239 311 233 235 233 233 235 269 269 269 269 269 269 269 233 - 236 233 235 235 235
L-13 202 202 202 202 202 202 202 180 346 195 185 189 192 189 202 202 202 202 202 202 202 192 - 210 193 205 189 204
L-14 232 232 232 232 232 232 232 246 - 193 195 193 200 193 232 232 232 232 232 232 232 213 - 216 202 202 195 195
L-15 149 149 149 149 149 149 149 125 125 125 125 125 125 125 149 149 149 149 149 149 149 125 146 126 125 125 126 130
L-16 200 200 200 200 200 200 200 170 - 171 179 175 171 175 200 200 200 200 200 200 200 168 235 182 171 179 180 184
L-17 230 230 230 230 230 230 230 140 256 143 140 140 140 149 230 230 230 230 230 230 230 140 278 142 140 143 142 142
L-18 126 126 126 126 126 126 126 106 106 106 106 106 106 106 126 126 126 126 126 126 126 106 106 106 106 106 106 106
L-19 192 192 192 192 192 192 192 153 213 168 168 162 168 163 192 192 192 192 192 192 192 153 - 168 165 173 177 165
L-20 214 214 214 214 214 214 214 195 253 194 194 195 194 195 214 214 214 214 214 214 214 197 - 194 195 194 194 194
L-21 264 264 264 264 264 264 264 253 - 257 261 270 257 262 264 264 264 264 264 264 264 256 - 267 257 252 260 264
L-22 196 196 196 196 196 196 196 155 157 163 155 155 155 155 196 196 196 196 196 196 196 155 155 163 155 155 155 155
L-23 177 177 177 177 177 177 177 153 217 160 160 153 153 150 177 177 177 177 177 177 177 149 - 153 155 153 153 153
L-24 134 134 134 134 134 134 134 122 154 122 122 122 122 122 134 134 134 134 134 134 134 122 - 126 122 122 126 122
L-25 129 129 129 129 129 129 129 116 - 116 116 116 116 116 129 129 129 129 129 129 129 116 116 116 116 116 116 116
L-26 184 - 184 184 184 184 184 184 - 188 201 196 201 201 184 184 184 184 184 184 184 201 - 201 201 196 201 197
L-27 178 178 178 178 178 178 178 158 228 166 166 158 166 167 178 178 178 178 178 178 178 158 208 166 172 158 172 173
L-28 257 257 257 257 257 257 257 147 - 159 148 157 159 159 257 257 257 257 257 257 257 163 - 159 162 158 161 159
L-29 197 197 197 197 197 197 197 184 193 193 184 184 184 184 197 197 197 197 197 197 197 184 299 184 184 184 184 193
L-30 214 214 214 214 214 214 214 199 257 193 189 187 193 189 214 214 214 214 214 214 214 197 - 195 193 193 190 193

146

doi:10.6342/NTU202401338

N
um

ericalResultRaw
D

ata

Table B-3. Solving time of model performance comparison test.

Type 1/∞ n/∞ 1/n n/n

Scale Net. ID CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5

Small

S-01 0.06 0.02 2.00 2.00 2.00 2.00 2.00 0.11 0.03 20.00 20.00 20.00 20.00 20.00 0.04 0.05 2.00 2.00 2.00 2.00 2.00 0.12 0.08 20.00 20.00 20.00 20.00 20.00
S-02 0.53 0.03 2.00 2.00 2.00 2.00 2.00 0.68 0.16 20.00 20.00 20.00 20.00 20.00 0.51 0.03 2.00 2.00 2.00 2.00 2.00 0.99 0.22 20.00 20.00 20.00 20.00 20.00
S-03 0.24 0.01 2.00 2.00 2.00 2.00 2.00 0.32 0.00 20.00 20.00 20.00 20.00 20.00 0.47 0.02 2.00 2.00 2.00 2.00 2.00 0.47 0.02 20.00 20.00 20.00 20.00 20.00
S-04 0.24 0.00 2.00 2.00 2.00 2.00 2.00 0.24 0.00 20.00 20.00 20.00 20.00 20.00 0.45 0.02 2.00 2.00 2.00 2.00 2.00 0.45 0.03 20.00 20.00 20.00 20.00 20.00
S-05 0.03 0.02 2.00 2.00 2.00 2.00 2.00 0.27 0.03 20.00 20.00 20.00 20.00 20.00 0.04 0.00 2.00 2.00 2.00 2.00 2.00 0.46 0.05 20.00 20.00 20.00 20.00 20.00
S-06 0.34 0.00 2.00 2.00 2.00 2.00 2.00 0.54 0.06 20.00 20.00 20.00 20.00 20.00 0.56 0.02 2.00 2.00 2.00 2.00 2.00 0.63 0.14 20.00 20.00 20.00 20.00 20.00
S-07 0.95 0.01 2.00 2.00 2.00 2.00 2.00 2.19 0.98 20.00 20.00 20.00 20.00 20.00 0.66 0.03 2.00 2.00 2.00 2.00 2.00 2.92 1.88 20.00 20.00 20.00 20.00 20.00
S-08 1.01 0.05 2.00 2.00 2.00 2.00 2.00 1.62 0.94 20.00 20.00 20.00 20.00 20.00 1.09 0.16 2.00 2.00 2.00 2.00 2.00 1.78 2.55 20.00 20.00 20.00 20.00 20.00
S-09 0.23 0.00 2.00 2.00 2.00 2.00 2.00 0.24 0.03 20.00 20.00 20.00 20.00 20.00 0.46 0.02 2.00 2.00 2.00 2.00 2.00 0.46 0.05 20.00 20.00 20.00 20.00 20.00
S-10 0.42 0.02 2.00 2.00 2.00 2.00 2.00 0.95 0.44 20.00 20.00 20.00 20.00 20.00 0.55 0.03 2.00 2.00 2.00 2.00 2.00 0.99 0.27 20.00 20.00 20.00 20.00 20.00
S-11 0.55 0.05 2.00 2.00 2.00 2.00 2.00 2.57 5.98 20.00 20.00 20.00 20.00 20.00 0.53 0.11 2.00 2.00 2.00 2.00 2.00 2.62 4.83 20.00 20.00 20.00 20.00 20.00
S-12 0.23 0.02 2.00 2.00 2.00 2.00 2.00 0.65 0.08 20.00 20.00 20.00 20.00 20.00 0.46 0.02 2.00 2.00 2.00 2.00 2.00 0.71 0.14 20.00 20.00 20.00 20.00 20.00
S-13 0.70 0.06 2.00 2.00 2.00 2.00 2.00 3.52 1.67 20.00 20.00 20.00 20.00 20.00 0.93 0.06 2.00 2.00 2.00 2.00 2.00 3.35 3.25 20.00 20.00 20.00 20.00 20.00
S-14 0.04 0.02 2.00 2.00 2.00 2.00 2.00 0.04 0.03 20.00 20.00 20.00 20.00 20.00 0.04 0.02 2.00 2.00 2.00 2.00 2.00 0.04 0.03 20.00 20.00 20.00 20.00 20.00
S-15 0.40 0.00 2.00 2.00 2.00 2.00 2.00 0.61 0.30 20.00 20.00 20.00 20.00 20.00 0.52 0.02 2.00 2.00 2.00 2.00 2.00 0.80 0.69 20.00 20.00 20.00 20.00 20.00
S-16 0.03 0.02 2.00 2.00 2.00 2.00 2.00 0.03 0.00 20.00 20.00 20.00 20.00 20.00 0.01 0.02 2.00 2.00 2.00 2.00 2.00 0.01 0.00 20.00 20.00 20.00 20.00 20.00
S-17 0.70 0.02 2.00 2.00 2.00 2.00 2.00 0.59 0.20 20.00 20.00 20.00 20.00 20.00 0.63 0.03 2.00 2.00 2.00 2.00 2.00 0.77 0.78 20.00 20.00 20.00 20.00 20.00
S-18 0.33 0.02 2.00 2.00 2.00 2.00 2.00 0.35 0.02 20.00 20.00 20.00 20.00 20.00 0.49 0.05 2.00 2.00 2.00 2.00 2.00 0.49 0.05 20.00 20.00 20.00 20.00 20.00
S-19 0.31 0.02 2.00 2.00 2.00 2.00 2.00 1.45 0.36 20.00 20.00 20.00 20.00 20.00 0.12 0.03 2.00 2.00 2.00 2.00 2.00 1.33 1.22 20.00 20.00 20.00 20.00 20.00
S-20 0.53 0.05 2.00 2.00 2.00 2.00 2.00 0.90 0.53 20.00 20.00 20.00 20.00 20.00 0.98 0.05 2.00 2.00 2.00 2.00 2.00 0.99 1.03 20.00 20.00 20.11 20.00 20.00
S-21 0.41 0.02 2.00 2.00 2.00 2.00 2.00 0.46 0.12 20.00 20.00 20.00 20.00 20.00 0.49 0.02 2.00 2.00 2.00 2.00 2.00 0.55 0.58 20.00 20.00 20.00 20.00 20.00
S-22 0.56 0.03 2.00 2.00 2.00 2.00 2.00 2.36 1.98 20.00 20.00 20.00 20.00 20.00 0.76 0.03 2.00 2.00 2.00 2.00 2.00 2.02 5.28 20.00 20.00 20.00 20.00 20.00
S-23 0.08 0.02 2.00 2.00 2.00 2.00 2.00 0.10 0.02 20.00 20.00 20.00 20.00 20.00 0.10 0.02 2.00 2.00 2.00 2.00 2.00 0.08 0.03 20.00 20.00 20.00 20.00 20.00
S-24 0.40 0.03 2.00 2.00 2.00 2.00 2.00 0.49 0.45 20.00 20.00 20.00 20.00 20.00 0.42 0.03 2.00 2.00 2.00 2.00 2.00 0.60 0.48 20.00 20.00 20.00 20.00 20.00
S-25 0.14 - 2.00 2.00 2.00 2.00 2.00 0.15 0.02 20.00 20.00 20.00 20.00 20.00 0.38 - 2.00 2.00 2.00 2.00 2.00 0.39 0.02 20.00 20.00 20.00 20.00 20.00
S-26 0.20 0.01 2.00 2.00 2.00 2.00 2.00 0.28 0.05 20.00 20.10 20.00 20.00 20.00 0.38 0.01 2.00 2.00 2.00 2.00 2.00 0.38 0.09 20.00 20.00 20.00 20.00 20.00
S-27 0.73 0.03 2.00 2.00 2.00 2.00 2.00 0.53 0.34 20.00 20.00 20.00 20.00 20.00 0.92 0.05 2.00 2.00 2.00 2.00 2.00 0.75 0.48 20.00 20.00 20.00 20.00 20.00
S-28 0.55 0.02 2.00 2.00 2.00 2.00 2.00 1.20 0.64 20.00 20.00 20.00 20.00 20.00 0.59 0.03 2.00 2.00 2.00 2.00 2.00 1.62 1.08 20.00 20.00 20.00 20.00 20.00
S-29 0.15 0.02 2.00 2.00 2.00 2.00 2.00 0.49 0.02 20.00 20.00 20.00 20.00 20.00 0.42 0.00 2.00 2.00 2.00 2.00 2.00 0.52 0.05 20.00 20.00 20.00 20.00 20.00
S-30 0.06 0.01 2.00 2.00 2.00 2.00 2.00 0.38 0.06 20.00 20.00 20.00 20.00 20.00 0.08 0.02 2.00 2.00 2.00 2.00 2.00 0.54 0.09 20.00 20.00 20.00 20.00 20.00

Continued on next page

147

doi:10.6342/NTU202401338

M
athem

aticalProgram
m

ing
and

M
etaheuristicsforthe

M
H

NSP

Table B-3. Solving time of model performance comparison test (cont.)

Type 1/∞ n/∞ 1/n n/n

Scale Net. ID CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5

Medium

M-01 1.77 0.28 2.00 2.00 2.00 2.00 2.00 21.16 60.03 20.00 20.00 20.00 20.00 20.00 1.45 0.17 2.00 2.00 2.00 2.00 2.00 60.02 60.03 20.00 20.00 20.00 20.00 20.00
M-02 0.39 0.03 2.00 2.00 2.00 2.00 2.00 7.56 15.69 20.00 20.00 20.00 20.00 20.00 0.55 0.03 2.00 2.00 2.00 2.00 2.00 4.89 60.06 20.00 20.00 20.00 20.00 20.00
M-03 1.10 0.03 2.00 2.00 2.00 2.00 2.00 60.13 60.17 20.00 20.00 20.00 20.00 20.00 0.90 0.03 2.00 2.00 2.00 2.00 2.00 60.14 - 20.00 20.00 20.00 20.00 20.00
M-04 0.67 0.08 2.00 2.00 2.00 2.00 2.00 1.98 - 20.00 20.00 20.00 20.00 20.00 0.81 0.11 2.00 2.00 2.00 2.00 2.00 1.70 1.11 20.00 20.00 20.00 20.00 20.00
M-05 1.44 0.16 2.00 2.00 2.00 2.00 2.00 29.05 60.05 20.00 20.00 20.00 20.00 20.00 1.26 0.09 2.00 2.00 2.00 2.00 2.00 10.07 60.08 20.00 20.00 20.00 20.00 20.00
M-06 0.86 0.05 2.00 2.00 2.00 2.00 2.00 3.15 4.58 20.00 20.00 20.00 20.00 20.00 0.90 0.06 2.00 2.00 2.00 2.00 2.00 4.19 11.72 20.00 20.00 20.00 20.00 20.00
M-07 0.58 0.02 2.00 2.00 2.00 2.00 2.00 8.17 14.03 20.00 20.00 20.00 20.00 20.00 0.67 0.02 2.00 2.00 2.00 2.00 2.00 5.88 60.14 20.00 20.00 20.00 20.00 20.00
M-08 0.76 0.05 2.00 2.00 2.00 2.00 2.00 6.84 15.36 20.00 20.00 20.00 20.00 20.00 1.21 0.03 2.00 2.00 2.00 2.00 2.00 7.27 60.03 20.00 20.00 20.00 20.00 20.00
M-09 1.48 0.11 2.00 2.00 2.00 2.00 2.00 37.91 60.09 20.00 20.00 20.00 20.00 20.00 1.52 0.16 2.00 2.00 2.00 2.00 2.00 35.61 60.16 20.00 20.00 20.00 20.00 20.00
M-10 1.42 0.12 2.00 2.00 2.00 2.00 2.12 17.13 19.95 20.00 20.00 20.00 20.00 20.00 1.77 0.45 2.00 2.00 2.00 2.00 2.00 10.22 38.77 20.00 20.00 20.00 20.00 20.00
M-11 0.87 0.03 2.00 2.00 2.00 2.00 2.00 5.08 12.91 20.00 20.00 20.00 20.00 20.00 1.04 0.02 2.00 2.00 2.00 2.00 2.00 6.99 60.06 20.00 20.00 20.00 20.00 20.00
M-12 1.06 0.05 2.00 2.00 2.00 2.00 2.00 2.54 2.09 20.00 20.00 20.00 20.00 20.00 0.66 0.06 2.00 2.00 2.00 2.00 2.00 2.56 5.76 20.00 20.00 20.00 20.00 20.00
M-13 0.80 0.06 2.00 2.00 2.00 2.00 2.00 6.72 60.03 20.00 20.00 20.00 20.00 20.00 0.90 0.16 2.00 2.00 2.00 2.00 2.00 12.88 60.03 20.00 20.00 20.00 20.00 20.00
M-14 1.08 0.11 2.00 2.00 2.00 2.00 2.00 54.65 60.06 20.00 20.00 20.00 20.00 20.00 1.33 0.14 2.00 2.00 2.13 2.00 2.00 31.03 60.11 20.00 20.00 20.00 20.00 20.00
M-15 4.02 0.50 2.00 2.00 2.00 2.00 2.00 60.02 16.12 20.00 20.00 20.00 20.00 20.00 4.77 1.45 2.00 2.00 2.00 2.00 2.00 60.07 60.03 20.00 20.00 20.00 20.00 20.00
M-16 1.70 0.09 2.00 2.00 2.00 2.00 2.00 50.51 60.09 20.00 20.00 20.00 20.00 20.00 1.60 0.12 2.00 2.00 2.00 2.00 2.00 31.57 60.14 20.00 20.00 20.00 20.00 20.00
M-17 2.25 0.62 2.00 2.00 2.00 2.00 2.00 49.03 60.03 20.00 20.00 20.00 20.00 20.00 2.80 0.61 2.00 2.00 2.00 2.00 2.00 38.15 60.08 20.00 20.00 20.00 20.00 20.00
M-18 2.32 0.41 2.00 2.00 2.00 2.00 2.00 60.05 66.22 20.00 20.00 20.00 20.00 20.00 2.58 0.31 2.00 2.00 2.00 2.00 2.00 60.06 60.08 20.00 20.00 20.00 20.00 20.00
M-19 1.83 0.41 2.00 2.00 2.00 2.00 2.00 6.44 60.03 20.00 20.00 20.00 20.00 20.00 2.06 1.06 2.00 2.00 2.00 2.00 2.00 6.06 60.03 20.00 20.00 20.00 20.00 20.00
M-20 4.70 2.45 2.00 2.00 2.00 2.00 2.00 60.05 60.05 20.00 20.00 20.00 20.00 20.00 4.07 4.58 2.00 2.00 2.00 2.00 2.00 60.05 60.06 20.00 20.00 20.00 20.00 20.00
M-21 0.49 0.05 2.00 2.00 2.00 2.00 2.00 9.92 50.83 20.00 20.00 20.00 20.00 20.00 0.60 0.01 2.00 2.00 2.00 2.00 2.00 9.44 60.09 20.00 20.00 20.00 20.00 20.00
M-22 1.30 0.05 2.00 2.00 2.00 2.00 2.00 5.94 7.49 20.00 20.00 20.00 20.00 20.00 1.37 0.05 2.00 2.00 2.00 2.00 2.00 4.75 44.58 20.00 20.00 20.00 20.00 20.00
M-23 2.11 0.20 2.00 2.00 2.00 2.00 2.00 60.03 - 20.00 20.00 20.00 20.00 20.00 2.56 0.53 2.00 2.00 2.00 2.00 2.00 57.29 60.08 20.00 20.00 20.00 20.00 20.00
M-24 1.79 0.08 2.00 2.00 2.00 2.00 2.00 60.05 60.14 20.00 20.00 20.00 20.00 20.00 2.00 0.25 2.00 2.00 2.00 2.00 2.00 60.12 - 20.00 20.00 20.00 20.00 20.00
M-25 0.79 0.03 2.00 2.00 2.00 2.00 2.00 10.96 32.08 20.00 20.00 20.00 20.00 20.00 1.08 0.06 2.00 2.00 2.00 2.00 2.00 11.08 60.09 20.00 20.00 20.00 20.00 20.00
M-26 0.60 0.02 2.00 2.00 2.00 2.00 2.00 0.94 0.53 20.00 20.00 20.00 20.00 20.00 0.65 0.03 2.00 2.00 2.00 2.00 2.00 1.41 0.74 20.00 20.00 20.00 20.00 20.00
M-27 1.26 0.03 2.00 2.00 2.00 2.00 2.00 4.20 60.03 20.00 20.00 20.00 20.00 20.00 1.01 0.05 2.00 2.00 2.00 2.00 2.00 5.03 60.06 20.00 20.00 20.00 20.00 20.00
M-28 1.71 0.22 2.00 2.00 2.00 2.00 2.00 33.27 60.09 20.00 20.00 20.00 20.00 20.00 2.24 0.30 2.00 2.00 2.00 2.00 2.00 47.31 60.08 20.00 20.00 20.00 20.00 20.00
M-29 3.56 0.94 2.00 2.00 2.00 2.00 2.00 60.07 60.05 20.00 20.00 20.00 20.00 20.00 4.68 12.31 2.00 2.00 2.00 2.00 2.00 60.09 - 20.00 20.00 20.00 20.00 20.00
M-30 0.75 0.03 2.00 2.00 2.00 2.00 2.00 1.70 2.88 20.00 20.00 20.00 20.00 20.00 0.65 0.08 2.00 2.00 2.00 2.00 2.00 2.08 10.39 20.00 20.00 20.00 20.00 20.00

Continued on next page

148

doi:10.6342/NTU202401338

N
um

ericalResultRaw
D

ata

Table B-3. Solving time of model performance comparison test (cont.)

Type 1/∞ n/∞ 1/n n/n

Scale Net. ID CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5 CP IP DE-1 DE-2 DE-3 DE-4 DE-5

Large

L-01 0.93 0.05 2.00 2.00 2.00 2.00 2.00 43.92 60.16 20.00 20.00 20.00 20.00 20.00 1.02 0.05 2.00 2.00 2.00 2.00 2.00 32.16 - 20.00 20.00 20.00 20.00 20.00
L-02 1.40 0.08 2.00 2.00 2.00 2.00 2.00 60.20 - 20.00 20.00 20.00 20.00 20.00 1.46 0.11 2.00 2.00 2.00 2.00 2.00 60.06 - 20.00 20.00 20.00 20.00 20.00
L-03 0.93 0.03 2.00 2.00 2.00 2.00 2.00 60.10 60.06 20.00 20.00 20.00 20.00 20.00 1.03 0.03 2.00 2.00 2.00 2.00 2.00 60.05 - 20.00 20.00 20.00 20.00 20.00
L-04 1.77 0.08 2.00 2.00 2.00 2.00 2.00 60.21 - 20.00 20.00 20.00 20.00 20.00 1.98 0.06 2.00 2.00 2.00 2.00 2.00 60.12 - 20.00 20.00 20.00 20.00 20.00
L-05 0.47 0.03 2.00 2.00 2.00 2.00 2.00 58.95 - 20.00 20.00 20.00 20.00 20.00 0.66 0.03 2.00 2.00 2.00 2.00 2.00 49.63 - 20.00 20.00 20.00 20.00 20.00
L-06 0.11 0.02 2.00 2.00 2.00 2.00 2.00 18.77 60.03 20.00 20.00 20.00 20.00 20.00 0.12 0.02 2.00 2.00 2.00 2.00 2.00 5.56 60.20 20.00 20.00 20.00 20.00 20.00
L-07 0.51 0.05 2.00 2.00 2.00 2.00 2.00 7.71 - 20.00 20.00 20.00 20.00 20.00 0.72 0.05 2.00 2.00 2.00 2.00 2.00 11.99 60.11 20.00 20.00 20.00 20.00 20.00
L-08 1.18 0.08 2.00 2.00 2.00 2.00 2.00 60.20 60.11 20.00 20.00 20.00 20.00 20.00 1.60 0.06 2.00 2.00 2.00 2.00 2.00 60.05 - 20.00 20.00 20.00 20.00 20.00
L-09 1.32 0.08 2.00 2.00 2.00 2.00 2.00 60.11 60.14 20.00 20.00 20.00 20.00 20.00 1.51 0.12 2.00 2.00 2.00 2.00 2.00 60.11 - 20.00 20.00 20.00 20.00 20.00
L-10 0.99 0.02 2.00 2.00 2.00 2.00 2.00 8.16 4.16 20.00 20.00 20.00 20.00 20.00 1.14 0.03 2.00 2.00 2.00 2.00 2.00 12.21 31.89 20.00 20.00 20.00 20.00 20.00
L-11 1.07 0.05 2.00 2.00 2.00 2.00 2.00 50.43 60.11 20.00 20.00 20.00 20.00 20.00 1.20 0.06 2.00 2.00 2.00 2.00 2.00 44.14 60.11 20.00 20.00 20.00 20.00 20.00
L-12 1.81 0.14 2.00 2.00 2.00 2.00 2.00 60.07 60.16 20.00 20.00 20.00 20.00 20.00 1.82 0.22 2.00 2.00 2.00 2.00 2.00 60.13 - 20.00 20.00 20.00 20.00 20.00
L-13 2.69 0.27 2.00 2.00 2.00 2.00 2.00 60.08 60.14 20.00 20.00 20.00 20.00 20.00 3.09 0.42 2.00 2.00 2.00 2.00 2.00 60.19 - 20.00 20.00 20.00 20.00 20.00
L-14 1.69 0.11 2.00 2.00 2.00 2.00 2.00 60.11 - 20.00 20.00 20.00 20.00 20.00 1.96 0.14 2.00 2.00 2.00 2.00 2.00 60.22 - 20.00 20.00 20.00 20.00 20.00
L-15 0.60 0.02 2.00 2.00 2.00 2.00 2.00 10.52 39.16 20.00 20.00 20.00 20.00 20.00 0.67 0.03 2.00 2.00 2.00 2.00 2.00 9.82 60.14 20.00 20.00 20.00 20.00 20.00
L-16 0.74 0.03 2.00 2.00 2.00 2.00 2.00 60.07 - 20.00 20.00 20.00 20.00 20.00 1.01 0.08 2.00 2.00 2.00 2.00 2.00 59.04 60.06 20.00 20.00 20.00 20.00 20.00
L-17 2.35 0.28 2.00 2.00 2.00 2.00 2.00 29.66 60.08 20.00 20.00 20.00 20.00 20.00 2.22 0.61 2.00 2.00 2.00 2.00 2.00 47.21 60.14 20.00 20.00 20.00 20.00 20.00
L-18 0.31 0.02 2.00 2.00 2.00 2.00 2.00 1.00 1.77 20.00 20.00 20.00 20.00 20.00 0.58 0.00 2.00 2.00 2.00 2.00 2.00 1.40 10.06 20.00 20.00 20.00 20.00 20.00
L-19 1.49 0.05 2.00 2.00 2.00 2.00 2.00 49.53 60.12 20.00 20.00 20.00 20.00 20.00 1.91 0.11 2.00 2.00 2.00 2.00 2.00 59.48 - 20.00 20.00 20.00 20.00 20.00
L-20 1.19 0.02 2.00 2.00 2.00 2.00 2.00 60.17 60.20 20.00 20.00 20.00 20.00 20.00 1.24 0.02 2.00 2.00 2.00 2.00 2.00 60.19 - 20.00 20.00 20.00 20.00 20.00
L-21 1.78 0.06 2.00 2.00 2.00 2.00 2.00 60.16 - 20.00 20.00 20.00 20.00 20.00 1.63 0.27 2.00 2.00 2.00 2.00 2.00 60.13 - 20.00 20.00 20.00 20.00 20.00
L-22 1.09 0.03 2.00 2.00 2.00 2.00 2.00 11.48 60.02 20.00 20.00 20.00 20.00 20.00 1.12 0.03 2.00 2.00 2.00 2.00 2.00 11.90 60.08 20.00 20.00 20.00 20.00 20.00
L-23 0.96 0.02 2.00 2.00 2.00 2.00 2.00 60.03 60.16 20.00 20.00 20.00 20.00 20.00 0.91 0.03 2.00 2.00 2.00 2.00 2.00 60.18 - 20.00 20.00 20.00 20.00 20.00
L-24 0.67 0.02 2.00 2.00 2.00 2.00 2.16 8.57 60.12 20.00 20.00 20.00 20.00 20.00 0.84 0.02 2.00 2.00 2.00 2.00 2.00 12.05 - 20.00 20.00 20.00 20.00 20.00
L-25 0.47 0.02 2.00 2.00 2.00 2.00 2.00 2.15 - 20.00 20.00 20.00 20.00 20.00 0.56 0.02 2.00 2.00 2.00 2.00 2.00 2.33 38.09 20.00 20.00 20.00 20.00 20.00
L-26 1.29 - 2.00 2.00 2.00 2.00 2.00 60.09 - 20.00 20.00 20.00 20.00 20.00 1.59 0.08 2.00 2.00 2.00 2.00 2.00 60.13 - 20.00 20.00 20.00 20.00 20.00
L-27 1.36 0.06 2.00 2.00 2.00 2.00 2.00 60.15 60.12 20.00 20.00 20.00 20.00 20.00 1.55 0.08 2.00 2.00 2.00 2.00 2.00 60.06 60.09 20.00 20.00 20.00 20.00 20.00
L-28 2.01 0.25 2.00 2.00 2.00 2.00 2.00 60.07 - 20.00 20.00 20.00 20.00 20.00 2.24 0.34 2.00 2.00 2.00 2.00 2.00 60.07 - 20.00 20.00 20.00 20.00 20.00
L-29 1.09 0.03 2.00 2.00 2.00 2.00 2.00 42.17 60.09 20.00 20.00 20.00 20.00 20.00 1.22 0.05 2.00 2.00 2.00 2.00 2.00 26.61 60.03 20.00 20.00 20.00 20.00 20.00
L-30 1.78 0.08 2.00 2.00 2.00 2.00 2.00 60.17 60.12 20.00 20.00 20.00 20.00 20.00 1.63 0.20 2.00 2.00 2.00 2.00 2.00 60.16 - 20.00 20.00 20.00 20.00 20.00

149

doi:10.6342/NTU202401338

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Glossary and Notations
	Introduction
	Background and Motivation
	Research Objectives
	Research Procedure
	Organization of the Thesis

	Literature Review
	Transportation Network Job Scheduling Problem
	Importance of Path Flexibility in Transportation
	Job-shop Scheduling Problem with Routing Flexibility
	Job-shop Scheduling Problem Incorporating Material Handling Systems Using Constraint Programming
	CP Overview
	Summary

	Material Handling Network Scheduling Problem: Problem Description and Problem Generation
	Problem Definition
	Problem Overview
	Mathematical Formulation
	Data Structure of a Solution
	Assumptions and Problem Scope
	Summary

	Numerical Test Problem Generation
	User-defined Parameters
	Network Construction
	Transportation Job Generation
	Problem Scales, Types and File Format
	Summary

	Constraint Programming, Integer Programming, and Differential Evolution Models for Material Handling Network Scheduling Problem
	CP Model for solving the MHNSP
	Job Constraints
	Operation Constraints on Nodes
	Operation Constraints on Transfer Sites

	IP Model for solving the MHNSP
	Decision Variables and Optimization Goal
	Variable Constraints on Each Job
	Operation Constraints on Nodes
	Transfer Operation Constraints on Transfer Sites

	Metaheuristic Model for solving the MHNSP
	Solution Encoding and Decoding
	Permutational Differential Evolution Solver

	Summary

	Numerical Tests and Result Discussion
	Solving Method Implementations
	Numerical Tests and Discussion
	Differential Evolution Model Parameter-tuning Experiment via the Taguchi method
	Model Performance Comparison Test
	Extra-large Problem Test
	Identical Request Test

	Summary

	Conclusion and Future Work Suggestion
	Conlusion
	Future Work
	Improvements in Modeling Techniques
	Improvements in Research Problems

	Reference
	Different Type of Transportation Nodes
	CP Model for Different Types of Transportation Nodes

	Numerical Result Raw Data

