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摘要

本文提出五項基於大型語言模型的程式碼生成組件，用於特定領域的腳本生

成，並評估其有效性。貢獻：(i)基於大型語言模型的語義分割 (Semantic Splitter)

以及資料翻新 (Data Renovation)組件以改進資料語義的表示；(ii)運用大型語言

模型重構以產生高品質程式碼的組件 Script Augmentation；(iii)提出提示技術隱

形知識擴展與思考 (Implicit Knowledge Expansion and Contemplation, IKEC)組件；

(iv)提出程式碼生成的流程，以五項組件漸進式生成工程模擬軟體 RedHawk-SC

的程式碼；(v)評估不同參考資料型態之於程式碼生成的有效性。零樣本連鎖思

維 (Zero-shot Chain-of-Thought, ZCoT)為有效的提示技術，包括在五項建設性組

件中，以利評估其餘組件之有效性。我們邀請 28位領域專家透過競技場式評估

蒐集 187份成對比較結果以驗證前述組件之有效性，其中最佳組件於工程軟體

RedHawk-SC上 MapReduce程式碼生成表現達到 21.26%的勝率提升，相較零樣

本連鎖思維 6.68%勝率提升顯著許多。

關鍵字：自然語言處理、大型語言模型、程式碼生成、資料嵌入、資料前處理、
語義分割、資料翻新、腳本擴增、提示技術
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Abstract

We propose five constructive components based on Large Language Models (LLMs)

for domain-specific code generation and evaluate their effectiveness. The contributions

are (i) Semantic splitter and data renovation for improved data semantic representation;

(ii) Script augmentation for enhanced code quality; (iii) Implicit Knowledge Expansion

and Contemplation (IKEC) prompting technique; (iv) A workflow using hierarchical gen-

eration for scripts in the engineering software RedHawk-SC; (v) An evaluation of differ-

ent reference data types for code generation. We invited 28 domain experts to conduct

an arena-style evaluation, collecting 187 paired comparisons to validate the effectiveness

of those components. The best component achieved a 21.26% win rate improvement in

MapReduce code generation performance for RedHawk-SC, significantly outperforming

the 6.68% win rate improvement of the Zero-shot Chain-of-Thought (ZCoT).

Keywords: Natural Language Processing (NLP), Large LanguageModels (LLMs), Code

Generation, Data Embedding, Data Preprocessing, Semantic Splitter, Data Renovation, Script

Augmentation, Prompting Techniques
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Chapter 1 Introduction

This chapter introduces the research topic, motivation, and contributions. It also

provides an overview of the methodology and the application of the engineering tool

RedHawk-SC (RH-SC) 1 platform used in this study. Subsequently, the contents of the

following chapters are outlined.

1.1 Research Topic

Large LanguageModels (LLMs) [28, 41] have rapidly emerged across various fields,

creating a significant impact and continuously demonstrating impressive potential. These

models exhibit excellent capabilities for any concept they have been trained on. Con-

versely, their performance is suboptimal in domains they have not yet learned or where

resources are relatively sparse, particularly in specific domains.

For example, in Electronic Design Automation (EDA), most circuit diagrams, simu-

lation information, and even user manuals for individual tools are critical assets for major

companies, leading to a scarcity of training data for LLMs in this field. Taking the en-

gineering simulation tool RedHawk-SC used in this study as an example, LLMs are only

familiar with a general overview, lacking detailed knowledge of writing scripts or any API

1https://www.ansys.com/products/semiconductors/ansys-redhawk-sc
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information, which significantly affects their application and performance in this domain.

Major companies often expend substantial human resources to collect data and fine-

tune open-source LLMs with their own prepared data to achieve a certain level of perfor-

mance, such as ChatEDA [14] and VeriGen [35]. However, for most users and technology

companies other than tech giants, information security concerns necessitate the develop-

ment of local LLM applications. Still, they find it challenging to bear the high costs of

developing such tools.

Therefore, this study focuses on improving the data itself to enhance the performance

of Retrieval-Augmented Generation (RAG) [11, 21], assisting specific-domain code gen-

eration to achieve satisfactory results, using RedHawk-SC as the practical demonstration

platform. This approach can save significant resource demands while maintaining suffi-

cient flexibility. For instance, you can directly use APIs provided by proprietary LLMs,

such as GPT-4 [31], or achieve better performance on self-fine-tuned LLMs [1].

Users directly input their requirements, and scripts that meet their needs are generated

using our proposed pipeline. The results leverage MapReduce [4] to assist in accelerating

simulations. Users receive the resulting script directly, which they can use to operate

RedHawk-SC to achieve the desired outcomes, providing commercial value. This is the

focus of our research.

1.2 Motivation

Domain-specific code generation using RAG is one of the core technologies, and

the quality of the retrieved relevant chunks significantly affects its performance. Current

technological developments focus on enhancing model capabilities (e.g., Llama 3.1 [6],

2
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Gemma 2 [34]) and establishing high-quality data [27] or combining knowledge graphs

to improve performance through the establishment of data relationships [7].

For Register Transfer Language (RTL) code generation, Verilog, which has relatively

more resources, achieves an average simulation pass rate of 26.70% in the human-designed

dataset VerilogEval [26] when scripts are generated using RAG [37]. This indicates that

existing RAG techniques are still inadequate in effectively addressing this task. There has

been less focus on processing the data itself to ensure that the chunks reflect the intended

semantic themes, thereby improving the relevance of the retrieved chunks for RAG. By

refining data processing to better capture semantic meaning, this approach can directly en-

hance RAG performance and further boost the effectiveness of other LLM-based methods,

leading to more precise and efficient code generation in domain-specific applications.

1.3 Challenges

There are several challenges in using LLMs to generate code for specific domains

such as EDA.

Firstly, technical documentation is often too concise, making it of limited use even

when provided to LLMs for generating domain-specific code. Additionally, when ex-

tracting technical documents into plain text, various formatting issues such as encoding

errors, line breaks, copyright information, and disordered content blocks can degrade per-

formance.

Secondly, data are scarce in the EDA field. The EDA field encompasses numerous

commercial software solutions with diverse functionalities. Due to the field’s unique char-

acteristics, such as commercial interests and data sensitivity, data is generally scarce. Even

3
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when datasets are available, the differences in tools and their licenses make it difficult to

evaluate and compare them.

Thirdly, the domain knowledge is vast. When providing related product documents,

existing RAG techniques struggle to supply appropriate reference materials, which is a

critical factor affecting code generation performance.

Fourthly, as mentioned in the second point, there is a lack of suitable benchmarks

for comparison, which makes research on code generation in this domain even more chal-

lenging.

With the advent of tools like Copilot 2, code generation has become increasingly

popular. However, there remains a significant performance gap in unfamiliar domains

lacking prior training data. Companies are often reluctant to provide internal data, such

as simulation data, technical documents, and code, due to concerns about information

security and technology leakage. This creates substantial barriers for LLMs in domain-

specific applications.

Therefore, achieving better performance in code generation, which requires higher

cognitive abilities, and developing methods to enhance RAG performance could be ex-

tended to other domain-specific applications. This would greatly benefit the overall de-

velopment of LLMs.

2Introducing GitHub Copilot: Your AI Pair Programmer

4

http://dx.doi.org/10.6342/NTU202402417
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/


doi:10.6342/NTU202402417

1.4 Contributions

This thesis proposes five constructive components based on LLMs for domain-specific

code generation. The contributions of this work are as follows:

1. Propose the semantic splitter and data renovation components to improve the se-

mantic representation of data. The semantic splitter addresses formatting issues and

segments text appropriately based on semantics, while data renovation enhances the

completeness and detail of chunk content. These improvements make data embed-

dings more reflective of the original intent, aiding RAG in retrieving more relevant

information and addressing issues related to data format and concise technical doc-

uments.

2. Introduce the script augmentation component, which uses LLM prompts to recon-

struct high-quality code scripts, attempting to address the issue of data scarcity.

3. Propose the Implicit Knowledge Expansion and Contemplation (IKEC) component

to assist in the reliability of data renovation.

4. Present a comprehensive workflow that progressively generates scripts for the en-

gineering simulation tool RedHawk-SC using the five proposed components.

5. Validate the effectiveness of the proposed components through an arena-style evalu-

ation involving 28 experts and collecting 187 pairwise comparison results, address-

ing the challenge of lacking benchmarks for evaluation.

6. Evaluate the effectiveness of different types of reference data for code generation

in RAG.

5
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Through the introduction and evaluation of these five constructive components, we

find that LLM-assisted data preprocessing significantly improves the performance of RAG

in code generation. This indicates that more accurate data reflection of the original intent

can help RAG retrieve more appropriate texts.

Additionally, we incorporate ZCoT as one of the constructive components to facil-

itate comparison with the four components proposed in this thesis. The best-performing

component demonstrates a 21.26% win rate improvement over ZCoT, which has a 6.68%

win rate improvement.

Finally, we analyze the impact of different components on the proportion of RAG

reference data. We infer that scripts are the most critical data type for code generation,

and semantic splitter and data renovation can partially enhance the value of technical doc-

uments for the task at hand.

1.5 Methodology Overview

RAG can be envisioned as a vector retrieval technique that helps us find themost rele-

vant ”cheat sheets” (reference materials) to enable LLMs to answer specialized knowledge

questions with sufficient relevant information. Fine-tuning, on the other hand, can be seen

as pre-training, where the model’s performance is influenced by the quality of the training

data and the inherent capabilities of the foundation model. When fine-tuned, the model

can more effectively and comprehensively handle specialized domain questions.

However, existing RAG techniques mostly rely on character count segmentation 3,

projecting the semantics of each segment into semantic space directly. This approach

3LlamaIndex: Token text splitter
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often leads to significant deviation from the original topic due to irrelevant themes and

incomplete information.

This thesis presents novel methodologies based on RAG without requiring any pre-

training or fine-tuning of the LLM [24, 25]. Our semantic splitter and data renovation

techniques refine semantic text segmentation and enrich paragraph content, circumvent-

ing the disarray typical of direct document extraction. By improving the segmentation of

data chunks from the root, we enhance the embeddings to more accurately reflect their in-

tended topics. These methods significantly improve RAG’s embedding accuracy for more

effective information retrieval, thereby enhancing overall performance beyond traditional

character count segmentation techniques.

Furthermore, we also propose script augmentation to reconstruct existing scripts into

new ones and introduce IKEC, a novel prompting technique. Our experiments combine

IKEC with the Zero-shot Chain-of-Thought (ZCoT) approach [20] to explore potential

performance improvements.

Our approach integrates the aforementioned five constructive components and the

ChatEDA code generation process to assist in generating scripts that meet user require-

ments. Additionally, we established an internal code generation arena to solicit expert

feedback. With over 180 expert votes, the results affirm that our semantic splitter and

data renovation methods significantly enhance code generation performance.

7
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1.6 Overview of EngineeringToolsApplicable to theCode

Generator

This study uses the engineering simulation tool RedHawk-SC as the demonstration

platform for the domain-specific code generator. Given a natural language description,

the generator must produce a Python script based on the RedHawk-SC API that meets the

specified requirements and utilizes MapReduce for acceleration. The following sections

will provide detailed explanations of the RedHawk-SC tool and the parallel acceleration

tool MapReduce.

1.6.1 RedHawk-SC

RedHawk-SC is a high-performance computing (HPC) and cloud computing plat-

form provided by Ansys 4. It is specifically designed for power integrity and reliability

signoff analysis in advanced semiconductor processes. Combining the SeaScape 5 cloud

computing platform and the MapReduce distributed computing acceleration framework,

it is capable of handling the increasingly complex and large-scale computational demands

of today.

1.6.1.1 RedHawk vs RedHawk-SC

RedHawk is the predecessor of RedHawk-SC, employing a traditional EDA tool ar-

chitecture and primarily running on local or small-scale computing environments. Due to

hardware resource limitations, it is more suitable for small to medium-sized designs.
4Wikipedia: Introduction to Ansys Inc.
5Ansys Significantly Increases Speed and Capacity of Semiconductor Signoff with Massively Scalable

SeaScape Platform
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RedHawk-SC, on the other hand, incorporates two core technologies, SeaScape and

MapReduce, significantly enhancing its computational performance. It offers cloud-based

computing resources, allowing design scales to exceed the limitations of physical hard-

ware, thereby handling larger-scale design tasks. Compared to its predecessor, RedHawk,

it shows significant improvements in high-performance computing, scalability, accuracy,

and reliability.

1.6.1.2 Technical Architecture

The technical architecture consists of the following two core components:

• SeaScape: This is Ansys’s big data and high-performance computing platform that

supports cloud computing and distributed computing. It lays a solid foundation for

the MapReduce distributed computing acceleration mechanism. Its architecture al-

lows for dynamic allocation of computing resources, providing a highly scalable and

high-speed computing platform. As a result, it can flexibly handle design require-

ments of varying scales and complexities. Subsequent products launched by Ansys

are mostly based on SeaScape, coupled with MapReduce, to assist in simulation

computations across different domains.

• MapReduce [4]: A distributed computing framework proposed by Google in 2008,

widely used for big data processing. Ansys has made slight modifications to this

framework to apply it to the SeaScape platform, aiding in the acceleration of simu-

lation computations.

9
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1.6.2 MapReduce

MapReduce is a high-performance distributed computing framework that accelerates

large-scale data processing by utilizing data partitioning and parallel processing.

In addition to generating RedHawk-SC scripts that meet user requirements, this study

also requires writing corresponding Map and Reduce code to accelerate simulations us-

ing the MapReduce framework. The detailed flowchart is shown in Figure 1.1, and the

workflow and different stages are described as follows:

• Input Data Partitioning into Slices: Each dataset is divided into smaller data

chunks.

• Map: Each data chunk ismatched tomap tasks that can run concurrently onmultiple

computing nodes. Initial data processing is performed to obtain intermediate results.

• Intermediate Results: The output of the map tasks is intermediate results, grouped

and sorted by key values. This process, known as shuffle and sort, ensures that data

with the same key is assigned to the same reduce task, which is the core part of

MapReduce and prepares for the next stage of the reduce operations.

• Reduce: Each reduce task takes the intermediate results generated by multiple map

tasks and processes the results assigned from the Shuffle and Sort stage to produce

the final results.

• Aggregate: The collection of outputs from all Reduce tasks.

Since SeaScape allows for distributed computing and is designed specifically for big

data, it provides a solid foundation for MapReduce to accelerate computations through

10
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distributed processing and enables effective solutions for increasingly large and complex

designs.

Figure 1.1: MapReduce Workflow Diagram

1.7 Chapter Overview

This chapter outlines the research topic, motivation, contributions, and methodology

overview of this study. We also introduced the technical architecture and tools related to

the engineering simulation tool RedHawk-SC used in our case study.

In the following chapters, wewill review the literature on the advancements in LLMs,

related research on code generation, and evaluation methods. We will then discuss the

technical bottlenecks of traditional approaches and explain how our proposed methods

effectively address these challenges. Subsequently, we will describe the construction of

the dataset and the experimental setup. Finally, we will conduct an arena-style evaluation

and analysis, leading to our conclusions.
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Chapter 2 Literature Review

The field of Natural Language Processing (NLP) has seen significant technological

advancements with the rise of Large Language Models (LLMs) [28, 41]. Today, both in-

dustry giants and the academic community are striving to develop more powerful LLMs.

These advancements range from improving model capabilities and reducing the number

of model parameters while maintaining similar performance levels to accelerating com-

putation efficiency, increasing input token limits, developing diverse and robust prompt

techniques, and data distillation. Innovations such as Mamba [13], which enhances the

foundational Transformer mechanism [38] of recent years in deep learning, are also note-

worthy. In this literature review chapter, we will introduce these related applications and

developments one by one.

2.1 Large Language Models (LLMs)

In 2022, ChatGPT initially showcased its impressive potential and capabilities, capti-

vating the world. Subsequently, both the corporate and academic sectors have vigorously

pursued LLM research, resulting in various applications. Proprietary LLMs, including

GPT-4, Claude, and Gemini, are generally considered to outperform open-source LLMs.

However, with continuous efforts and research, open-source models such as Vicuna [32],

13
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Llama2 [36], andMistral [9] have increasingly approached the performance of proprietary

models.

Next, we will briefly discuss the development of various LLMs in recent years and

their extensive applications in fields such as mathematics, finance, healthcare, law, bilin-

gualism, and education [41]. From the perspective of optimizing LLMs themselves, tech-

niques such as data and model distillation, increasing input tokens, and different prompt

engineering methods have emerged. To apply LLMs to specific domains, techniques like

Retrieval-Augmented Generation (RAG) [11, 21] have been developed, resulting in many

variants and improvements. These will be introduced in detail below.

2.1.1 Various Large Language Models

Vicuna [32] collected question-and-answer records from ChatGPT and used GPT-

4 [31] to evaluate and label each question-and-answer pair. This formed the primary

training data, resulting in impressive performance, making it one of the popular open-

source LLMs. The same team also established the chatbot arena 1, which randomly uses

two different models to generate answers to the same question and lets users choose the

better one. The evaluation results are considered as matches, and the relative ranking of

models is calculated using Elo ratings. This method successfully gathers extensive user

feedback, forming a credible and reliable reference for LLM rankings [3, 43].

Mistral [9, 17] employs the Mixture-of-Experts (MoE) technique, which consists of

multiple experts within a large model, each representing a neural network. This model can

distribute token data to different experts for individual processing, allowing for the training

of larger models with lower computational power and further increasing inference speed.
1https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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As of May 21, 2024, Mistral ranked third on the chatbot arena leaderboard, following

GPT-4-Turbo and Bard (Gemini Pro), surpassing ChatGPT to become the best-performing

open-source LLM.

Llama2 [36] is a LLM released by Meta 2. Its open-source nature and excellent per-

formance have caused a stir in both industry and academia. It has since become one of the

mainstream benchmark models, with numerous studies conducted around it.

2.1.2 Retrieval-Augmented Generation (RAG)

RAG [11, 21] is a commonly used technique that has been proven to reduce halluci-

nations and enhance the accuracy and reliability of LLMs by fetching facts from external

sources. While RAG has achieved notable advancements in specific domains, several

challenges still exist.

RAG leverages a multi-step process to enhance information retrieval and subsequent

language model responses. The data is initially partitioned into discrete chunks, each

of which is then converted into embeddings. Concurrently, the input undergoes a similar

transformation into embeddings. This parallel embedding process facilitates the extraction

of relevant content through vector calculations. The obtained content serves as a crucial

component of the prompt provided to LLMs. By incorporating this tailored information,

LLMs are equipped to respond more effectively to domain-specific questions.

Notably, the accuracy and relevance of the retrieved information play a pivotal role

in shaping RAG’s overall performance. This significance has prompted the development

of various derivative RAG techniques to refine and optimize the process for even better

2Wikipedia: Meta Platform
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results.

The pre-retrieval process can be adjusted in advanced implementations, such as en-

hancing data granularity or optimizing index structure [11]. Embeddings can also be op-

timized, and specific preprocessing techniques can be applied to documents, along with

different segmentation strategies. For example, smaller chunk sizes may work better for

some documents, and using certain methods to find the most appropriate chunk size for

specific documents is a valuable skill. Additionally, post-retrieval processes can be ad-

justed, such as prompt compression and re-ranking.

2.1.3 RAG vs Fine-tuning

Using the RAG method, documents can be provided with a certain level of ability

to answer domain-specific questions without training a model. In contrast, fine-tuning

enables LLMs to ”internalize” data as their knowledge when given sufficient information,

resulting in outstanding performance in specific domains.

The RAGmethod does not require abundant computational resources; it only requires

domain-specific text-related data and can be directly applied to LLMs, refining prompts

without adjusting the LLM. Fine-tuning, on the other hand, requires adequate data and

computational power to be performed on open-source LLMs. Currently, closed-source

LLMs still outperform their open-source counterparts by a significant margin. However,

it is highly likely that using the RAG method and fine-tuning open-source LLMs(e.g.,

Llama3.1 [6], CodeGen [30]) would yield similar performance results, albeit with vastly

different costs.
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2.1.4 Enhancing Input Tokens

Initially, input tokens posed a significant challenge for LLMs. Since most LLMs are

based on the self-attentionmechanism [38], they faced issues with poor efficiency and out-

put quality when dealing with long sequences. However, as the LLM field has flourished,

input tokens have gradually become less of a problem. For example, streamingLLM [39]

proposed an effective method to dynamically spread attention, enabling it to accept an

unlimited number of input tokens.

With the gradual resolution of the input token issue, the ”dynamic” chunking tech-

nique proposed in this thesis, which segments text according to paragraphs and semantics,

has become a crucial technology for enhancing document search performance.

2.1.5 Prompt Techniques and Mechanisms

To achieve better performance with prompt mechanisms, previous approaches such

as Zero-shot Chain-of-Thought (ZCoT) [20] have been proposed, which involves provid-

ing examples and step-by-step processes to enhance performance. ZCoT, on the other

hand, prompts the model to output a sequence of thoughts step by step to boost perfor-

mance.

Later, to solve more complex problems, ReAct [40] was developed, breaking down

the original question into simpler sub-questions, answering them one by one, and ulti-

mately combining all the information to answer the original question, thereby improving

performance on complex problems. Other approaches include ”Successive Prompting”

[5] and ”Take a Step Back,” [42] which trace the question back to its underlying ”theo-
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rem” or ”concept” before answering the original question to enhance performance.

On the other hand, techniques within the prompt itself have also been explored, such

as using emotional blackmail [23] or the IKEC component mentioned in this thesis to

boost performance.

2.1.6 Distillation

The distilling approach involves utilizing LLM to initially generate rationales for a

given answer in the training set, and then employing those rationales to train a smaller

model [15]. By reducing the data size, the number of model parameters can be decreased,

enabling smaller model parameters to maintain existing performance with minimal impact

while also reducing the overall number of parameters. In a similar vein, Microsoft’s Orca2

[29] also follows this direction, striving to achieve the goal of creating more compact

models.

2.2 Related Work in Code Generation

This section presents an overview of recent advancements and techniques in code

generation using LLMs and their applications in specific domains.

In the domain of code generation, noteworthy related works include self-planning

code generation with LLMs [18], the Chain of Code (CoC) [22] approach, and the Agent-

Coder [16] framework. Self-planning code generation employs a progressive generation

strategy by dividing tasks into multiple subtasks, significantly improving the performance

of algorithm-related problems. The CoC approach encourages the formatting of semantic

18
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subtasks in a program as flexible pseudocode, which leads to significant improvements in

LLM performance for logic and arithmetic tasks.

Additionally, the Active Retrieval Augmented Generation [19], with its proposed

technique called Forward-Looking Active REtrieval (FLARE), emphasizes actively de-

ciding when and what to retrieve across the course of the generation, demonstrating effec-

tiveness in various long-form, knowledge-intensive generation tasks. AgentCoder frame-

work provides a multi-agent system that iteratively improves code generation by develop-

ing and testing code based on feedback, surpassing the limitations of single-agent models

and traditional methodologies.

ChatEDA [14] has achieved significant success in code generation within the EDA

domain, using fine-tuning on Llama2 and obtaining excellent results with the self-planning

code generation with LLMs [18] method. TestPilot [33], on the other hand, focuses on ad-

justing the LLM application process and Prompt Engineering without fine-tuning, also

achieving commendable results in code generation for the Mocha Framework 3. Veri-

Gen [35] employs online Verilog-related code and textbooks for fine-tuning the CodeGen-

16B model while testing its performance with three different levels of prompt detail.

The last three approaches concentrate on code generation application research within

specific domains. ChatEDA has a unique method for data preparation, utilizing limited

code to allow LLMs to reassemble multiple times to create an instruction pool. The data

is then checked semi-manually before being used for fine-tuning. VeriGen, on the other

hand, uses online resources for fine-tuning, as Verilog has slightly more code resources.

TestPilot, with many more resources available for Mocha compared to the other two, can

achieve excellent results by simply adjusting the process and prompt, considering that

3https://github.com/mochajs/mocha
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LLM already has partial knowledge.

2.3 Evaluation

Evaluating applications that use LLMs is one of the biggest challenges currently. The

results generated by these applications are mostly in text form, and verification methods

often involve guiding the output to follow a specific format to check for consistency or

using another LLM to validate and rate the output [3, 43].

We will review the chatbot arena [3, 43], which has had a significant impact on the

evaluation of LLMs, and its evaluation methods. This includes two primary pairwise

comparison methods for determining model ranking ratings, as well as the bootstrap [8]

statistical method, which is suitable for stratified sampling and small sample sizes. These

methods serve as the main references for our evaluation approach.

2.3.1 Chatbot Arena

The chatbot arena [3, 43] has had a significant impact on the evaluation of LLMs

through public participation and a robust pairwise comparison approach. Participants can

ask any question, and the platform randomly selects two models to answer the same ques-

tion blindly, meaning the participants are unaware of which models are being used. Partic-

ipants then vote for the better answer. Over 240K votes have been collected, and the Elo

rating [10] is used to present real-time rankings. Additionally, the Bradley-Terrymodel [2]

is employed to map results to Elo ratings, and stratified sampling is used to compare dif-

ferences.
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These methods yield reasonable and reliable results, with high agreement rates (72%

to 83%) between public votes and expert evaluations. This demonstrates that the pairwise

comparison approach is an effective method for evaluating LLM performance.

2.3.2 Elo

The Elo rating [10, 12] is a method for calculating the relative skill levels of players

in two-player games such as chess. It has been widely adopted in various competitive

fields. The system operates on the principle that the difference in ratings between two

players predicts the expected outcome of a match. In our research, the ”players” are the

combinations being evaluated. After each game, the players’ ratings are updated based on

the actual outcome compared to the expected result. The formula used to update a player’s

rating is as follows [10]:

Rn = Ro +K(W −We) (2.1)

where:

• Rn is the new rating after the event,

• Ro is the pre-event rating,

• K is the rating point value of a single game rating,

• W is the actual game rating, with each win counting as 1 and each draw as 1
2
,

• We is the expected game rating based on Ro.
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The value of K determines the sensitivity of the rating to individual game results.

A higher K value results in more significant changes, while a lower K value makes the

system more stable.

The Elo rating has been successfully applied in various domains beyond chess, in-

cluding online gaming, sports, and even in predicting outcomes in non-competitive envi-

ronments such as job performance evaluations. Recently, it has also been utilized in LLMs

in settings like chatbot arena [43]. Its adaptability and simplicity make it a valuable tool

for ranking and rating competitors, or in this case, combinations, across different fields.

2.3.3 Bradley-Terry Model

Bradley-TerryModel [2] is a statistical approach for ranking treatments in incomplete

block designs through paired comparisons. This model estimates the probability that one

item is preferred over another in pairwise comparisons, based on their inherent abilities.

Mathematically, the model is represented as:

P (i beats j) =
pi

pi + pj
(2.2)

where pi and pj denote the abilities of items i and j, respectively. The outcomes

of numerous pairwise comparisons are used to maximize the likelihood function, thereby

estimating these abilities.

Due to its simplicity and robustness, this method has been widely applied across

various fields, such as psychology, sports, agricultural research, and evaluating LLMs,

enabling accurate ranking and comparison based on empirical data.
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2.3.4 Bootstrap

In small sample scenarios, the pairwise comparison method is used to determine dif-

ferences or similarities between items in a dataset. To enhance the accuracy and robustness

of this method, researchers commonly combine it with the bootstrap technique [8].

The basic concept of the bootstrap technique is to randomly draw a sample from the

original dataset with replacement, repeat this process k times to obtain a new sample set,

and then compute a result. This process is repeated n rounds to estimate the distribution

of the statistic. This method provides a non-parametric way to estimate the sampling

distribution of a statistic, especially useful when the underlying distribution is unknown

or the sample size is too small to rely on asymptotic approximations.

The formula for pairwise comparison is:

Pij =


1 if item i is preferred over item j

0 otherwise

where Pij represents the preference of item i over item j.

The bootstrap estimate of the standard error is:

ŜE =

√√√√ 1

B − 1

B∑
b=1

(θ̂∗b − θ̄∗)2

where θ̂∗b is the bootstrap estimate from the b-th resample, θ̄∗ is the mean of the bootstrap

estimates, and B is the number of bootstrap samples.

Combining the pairwise comparison and bootstrap methods provides a robust ap-

proach to addressing the challenges of statistical analysis with small sample sizes. These
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techniques enhance the precision, robustness, and reliability of the estimates, ultimately

leading to more accurate and meaningful conclusions.
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Chapter 3 Methodology

This chapter explains the problem definition and research methodology, including

three data preprocessing components: semantic splitter, data renovation, and script aug-

mentation. We also introduce the prompt technique proposed in this thesis: Implicit

Knowledge Expansion and Contemplation (IKEC), and the widely validated Zero-shot

Chain-of-Thought (ZCoT) technique. Following this, we will provide a detailed descrip-

tion of our experiments and evaluation methods.

3.1 Problem Definition

This study proposes five constructive components based on Large Language Models

(LLMs) for domain-specific code generation. The aim is to introduce these components

and evaluate their effectiveness.

Due to the unique characteristics of the Electronic Design Automation (EDA) field,

there are numerous challenges in using LLMs for code generation tasks in this domain.

These challenges include data scarcity, the lack of appropriate benchmarks, the extensive

andmostly undisclosed domain-specific knowledge required, and the difficulty of existing

RAG techniques in finding suitable reference materials. Therefore, this thesis aims to

propose several constructive components to address these issues and use an arena-style
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expert evaluation to mitigate the lack of benchmarks.

3.1.1 Technical Bottlenecks and Issues in Existing RAGTechnologies

In the RAGmethod, we often split data into multiple chunks based on a fixed number

of characters and set an overlap ratio for adjacent chunks to avoid important information

at the chunk’s end being cut off directly.

Although this approach is simple and fast, it cannot effectively segment the data based

on semantic, functional, or other meaningful elements. If the actual information needed

occupies only a small portion of the corresponding chunk, different content may dominate

the chunk.

Converting the entire content into an embedding could prevent the semantic space of

the chunk from accurately reflecting the position of the required information, making it

difficult to find. Even if found, the relevant information might only be a part of the ref-

erence material, causing its importance to be diluted and leading to suboptimal outcomes

from the self-attention mechanism.

To address this issue, existing ”contextual compression 1” methods have been pro-

posed, such as removing unhelpful words before text segmentation and retrieving more

related text, then extracting only the helpful content based on query relevance. However,

these methods may either damage the text’s original meaning or disrupt word structures,

leading to illusions and failing to address the problem fundamentally.

1LangChain: Contextual compression
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3.1.2 Proposed Methods

These challenges underscore the complexities faced during the data preprocessing

phase of RAG, emphasizing the need for strategic methods to enhance its overall efficacy.

This thesis addresses the critical aspect of data preprocessing by employing amulti-faceted

methodology for code generation applications.

Using LLMs, we first semantically split the data, then use RAG to assist in making

the content more complete. This ensures that each chunk’s embedding focuses more on

its intended topic, effectively solving the previously mentioned issues of (1) the impact of

irrelevant data and (2) the incompleteness of technical document descriptions.

Next, we use ”refactoring” prompts to enable LLMs to generate new scripts based

on high-quality scripts, thereby adding more reference resources for RAG. Additionally,

we propose a new prompt technique, IKEC, to investigate whether we can internalize

the thought process within the LLM itself, differing from the ZCoT approach, while still

improving performance. Finally, during the code generation process, we use the step-by-

step method from ChatEDA to improve the quality of the generated output.

These components aim to improve existing issues such as the low relevance of RAG

reference data and overly concise technical documents. Suppose we can effectively en-

hance the performance of RAG. In that case, it means we have the opportunity to achieve

good results with minimal data and computational resources, potentially eliminating the

need for fine-tuning.
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3.2 Method Description

Figure 3.1 presents the main techniques based on LLMs, each to be elaborated upon

within the thesis. Text conversion from all document types and scripts into chunks vec-

tor is standardized, involving segmentation into 1024-character chunks and subsequent

embedding using the OpenAI text-embedding-ada-002 API.

Scripts

Documents

Preprocessing

Semantic Splitter

Data Renovation

Script Augmentation

Please help us generate a code to get clock
instances in RedHawk SC, optimized via
MapReduce framework.

User Requirement

Task Planning The Framework
of Comments

Script Generation Script

# Goal: This function processes ...
def shapes_per_xt(...):
    # Get the partition ID of the shapes
    # Initialize the partition in the file pointer   
    # ...
    # Return the dictionary of the number of the layers

def shapes_per_xt(shapes, dv, fp):
    part_id = shapes.get_part_id()
    fp.initialize_part(part_id)
    out = defaultdict(lambda: defaultdict(int))
    ...
    return out

Query

User Prompt

Query

Randomly select two scripts

Chunks Vector

Sequentially provide parts
of the document 

Selected
Chunks Vector

Figure 3.1: Flowchart of the Proposed Framework

For documents with excessive length, a script is employed to divide the text into seg-

ments of three pages each, then processed individually and reassembled using a predefined

format to yield complete and accurate content.

Documents are categorized into three types: (1) Manual, outlining RedHawk-SC

usage and concepts; (2) API documentation, with comprehensive function definitions,

descriptions, and usage; and (3) MapReduce documentation, detailing the application of

MapReduce for simulation acceleration in RedHawk-SC.

The scripts comprise 14 expert-composed scripts complete with task narratives, ob-

jectives, and comments tailored for RedHawk-SC simulations. The framework of com-

ments depicts code outlines annotated by LLMs. All components, except for the semantic

splitter, are based on the RAG approach and incorporate the use of embeddings.

As depicted in Figure 3.1, our methodology generates scripts for RedHawk-SC based
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on user requirements. The process commences with extracting text from documents and

utilizing an LLM for semantic segmentation, with a focus on restoring improperly format-

ted content. The post-processing yields several distinct paragraphs.

Each paragraph is then processed individually. The standard RAG method renovates

the content derived from both the documents and the scripts. Concurrently, a random se-

lection of two scripts from a pool of 14 is reconstructed using the RAG method, a process

repeated 14 times to produce a variety of scripts. These datasets are subsequently trans-

formed into selected chunk vectors through the standard RAG preparation process to serve

as references for the subsequent RAG operations.

User requirements serve as the query input, which, when paired with an enhanced

RAG mechanism, initiates the generation of an initial script structure known as ’The

Framework of Comments.’ This framework then informs the subsequent generation of

complete scripts, guiding the process as a new query within the improved RAG system.

ChatEDA [14] paper inspires our iterative and progressive approach to script generation,

although we employ RAG technology instead of fine-tuning.

3.2.1 Semantic Splitter

The RAG method’s effectiveness hinges on the text’s relevance as determined by the

embedding computations. Conventional RAG techniques, which often segment text by

character count, may yield chunks that lack thematic focus. Consequently, these chunks

produce embeddings that inadequately represent the target topic, reducing the likelihood

of retrieving high-quality textual content.

Our semantic splitter addresses this by semantically segmenting text, focusing on
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meaningful units such as API functions and concepts, while preserving the original text

format and rectifying formatting issues. For longer documents, we process the text in

three-page increments using a script that refrains from outputting the closing triple-quote

(”””) symbol when encountering incomplete paragraphs. This approach allows for the

seamless post-processing assembly of complete content sections.

We do not use RAG to provide related content but instead directly use prompts, as

shown in Figure 3.2, to let the LLM complete the task. The task of determining where to

split the text is akin to a ”binary classification problem,” which is relatively straightfor-

ward for an LLM. Hence, we utilize an LLM for this task, forgoing the use of the RAG

technique in this instance.

Take a deep breath, this is very important to my career.

Welcome to the Data Processing Helper! Please specify whether you require assistance with "Data Splitting" or "Data Renovation" for the information you are
submitting:
1. **Data Splitting**: If you need to split data accurately, please upload the text you have. This can include data extracted from PDFs or plain text files. There
may be issues with footnotes, copyrights, incorrect ordering, line breaks, or extra spaces due to the different formats. Our goal during the splitting process will be
to maintain the integrity of your original data while resolving formatting issues to create a clean and organized output. If you encounter a situation where the data
seems incomplete or ambiguous, we will still provide the best possible result, preserving all critical content to avoid loss of valuable information.
2. **Data Renovation**: Should you require data renovation, provide us with the original data and any additional context or specifications. In this process, we will
enhance the existing sentences by adding reliable and informative content to make technical documents more comprehensive. It is imperative to ensure that the
renovated data remains accurate and true to the original meaning. Even in cases where the provided information may not be sufficient for a full renovation, we will
proceed with the enhancement to the best of our ability without compromising the data's integrity.
Please proceed by selecting the service you need and uploading the relevant files or pasting the text directly into the provided space. Our system is designed to
handle uncertainties and will guide you through the necessary steps to process your request effectively, ensuring that you receive a usable output every time.

System

User

Role Prompt

I have a document that has been extracted from a PDF and converted into a plain text file. The text may contain irregular formatting, lack of spaces, footnotes, or
content that is out of sequence. I require your assistance to structure this content into well-defined paragraphs. Each paragraph should encapsulate a complete
concept or function, including its definition and application when possible.
Below is the content extracted from the PDF:
# Begin - Extracted Content
#Input
# End - Extracted Content
For each paragraph, please provide a title that reflects the main idea or topic. If the paragraph spans multiple pages in the original document, include the page
range in the title. If the content was obtained from a text file and no page number is available, you can omit the page number and title and simply denote the
paragraph with '# Paragraph'. Wherever possible, if content continuity can be logically deduced even when page numbers are missing, please connect the sections
accordingly and complete the paragraph segmentation.
Please format each extracted paragraph as follows:
# Paragraph – [first page number – last page number if applicable], [paragraph title]
Description:
"""
[accurate and complete paragraph content]
"""
For example, if you were to organize the following excerpt:
"4.8. get_current_heatmap Returns a heatmap of current for all edges in the power / ground grid. 4.8.1. Syntax get_current_heatmap()"
You should structure it like this:
# Paragraph – "p.13 – p.14, get_current_heatmap"
Description:
"""
4.8. get_current_heatmap
Returns a heatmap of current for all edges in the power / ground grid.
4.8.1. Syntax
get_current_heatmap()
"""
Your assistance is vital for the accurate presentation of this document, which is crucial for my career progression. I am relying on your precision and ability to
interpret and organize the content effectively. Thank you for your attention to detail.

Figure 3.2: Semantic Splitter Prompting
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Semantic splitter uses RAG (prompt as shown in Figure 3.2) to determine the com-

pleteness of the content. If the content is complete, it is enclosed in a pair of closing triple-

quote symbols. If incomplete, only the opening triple-quote symbol is present. We can

then perform simple post-processing according to this format to obtain fully segmented

paragraphs.

As illustrated in Figure 3.3, the semantic splitter precisely partitions the extracted

document content into distinct, focused segments, effectively resolving formatting prob-

lems that may arise. Content extracted directly from PDF format often has several issues:

(1) encoding problems, (2) line breaks, full-width spaces, (3) incorrect text block order,

and (4) copyright and annotations. The prompt specifically encourages the LLM to resolve

these formatting issues and extract the original content. For example, as shown in the fig-

ure, line break issues or encoding problems may cause the original ”Value” to disappear.

After processing, the original content ”Value Change Dump” is restored and extracted,

segmented into multiple paragraphs according to semantics.

Documents Semantic Splitter
Sequentially provide parts

of the document 

7: Dynamic Analysis With Vectors
Vector files ... the   � Change Dump (VCD) and...
Copyright 2024 Ansys Inc.
7.1. Switching Scenario
In ... ScenarioView...
of 3 clock cycles or 6 ns... and a rise at 4.8 ns.

Output

# Paragraph – "p.253, Dynamic Analysis With Vectors Introduction"
Description:
"""
7: Dynamic Analysis With Vectors
Vector files ... the Value Change Dump (VCD) and ... 
"""

Paragraph #1
...

Paragraph #2

Figure 3.3: Semantic Splitter Workflow
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3.2.2 Data Renovation

Data renovation addresses the challenge presented by the typically concise nature of

technical documents. It enables LLMs (prompt: Figure 3.4 ) to methodically enrich each

chunk with well-understood knowledge, significantly enhancing the embeddings—even if

the knowledge is already familiar to the LLM. We leverage the RAG framework provided

by LlamaIndex 2 to supply the original documents and scripts with supplementary content

that is firmly rooted in the context of the source material, thereby ensuring the reliability

of the information.

Always answer the question, even if the context isn't helpful.System

User

Role Prompt

Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge, answer the question: {query_str}

Take a deep breath, this is very important to my career.

Welcome to the Data Processing Helper! Please specify whether you require assistance with "Data Splitting" or "Data Renovation" for the information you are
submitting:
1. **Data Splitting**: If you need to split data accurately, please upload the text you have. This can include data extracted from PDFs or plain text files. There
may be issues with footnotes, copyrights, incorrect ordering, line breaks, or extra spaces due to the different formats. Our goal during the splitting process will be
to maintain the integrity of your original data while resolving formatting issues to create a clean and organized output. If you encounter a situation where the data
seems incomplete or ambiguous, we will still provide the best possible result, preserving all critical content to avoid loss of valuable information.
2. **Data Renovation**: Should you require data renovation, provide us with the original data and any additional context or specifications. In this process, we will
enhance the existing sentences by adding reliable and informative content to make technical documents more comprehensive. It is imperative to ensure that the
renovated data remains accurate and true to the original meaning. Even in cases where the provided information may not be sufficient for a full renovation, we will
proceed with the enhancement to the best of our ability without compromising the data's integrity.
Please proceed by selecting the service you need and uploading the relevant files or pasting the text directly into the provided space. Our system is designed to
handle uncertainties and will guide you through the necessary steps to process your request effectively, ensuring that you receive a usable output every time.

System

Take a deep breath, this is very important to my career.

System, your task is to revise and enhance the "Description" section of the text provided by the user, who will supply the pre-renovation content during their query.
The user's input should be considered the pre-renovation information that you are required to work with. Your objective is to expand upon this information,
making it more comprehensive and credible while preserving its existing structure. In situations where the provided information is scarce or incomplete, you are to
make educated inferences based on your extensive knowledge database. If you determine that a credible enhancement is not possible, maintain the integrity of the
original content.

The user has provided the following instructions for your output format, which you must adhere to:
# Paragraph - [title]
Description:
"""
[enhanced description based on your confident inferences]
"""

Your enhancements should focus on the parts of the "Description" where you have the highest confidence. The goal is to provide an enriched "Description" that
integrates seamlessly with the existing content, ensuring the update is coherent and does not alter the original meaning or structure.

When you receive a query from the user containing the pre-renovation content, please proceed as follows:
1. Take the user's input as the "Description" section of the original content.
2. Carefully analyze and understand the provided "Description."
3. Reflect on the information and employ your extensive knowledge base to generate confident inferences internally.
4. Enhance the "Description" by adding information, detail, and depth where you are most confident, without altering the original structure or meaning.
5. Ensure the output maintains the original format as instructed by the user.

System

User
(Query)

{Corresponding Chunk Content}

Figure 3.4: Data Renovation Prompting

2https://docs.llamaindex.ai/en/stable/
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As depicted in Figure 3.5, each paragraph processed by the semantic splitter is sub-

sequently renovated in sequence. It is noteworthy from the figure that the renovation

meticulously incorporates additional details about the key terms mentioned in the content.

Scripts

Documents Semantic Splitter Data Renovation

Chunks Vector

Sequentially provide parts
of the document 

# Paragraph – "p.253, Dynamic Analysis With Vectors Introduction"
Description:
"""
7: Dynamic Analysis With Vectors
Vector files ... the Value Change Dump (VCD) and ... 
"""

Paragraph #1
...

Paragraph #2

...
7: Dynamic Analysis With Vectors
Vector files ... the Value Change Dump (VCD) and ... VCD format is widely...
Note: The RedHawk-SC tool is versatile, supporting both VCD and FSDB input file formats...
"""

Paragraph #1

Output

Figure 3.5: Data Renovation Workflow

3.2.3 Script Augmentation

The issue of insufficient data remains a significant challenge for applying LLMs in

specific domains. In scenarios with limited scripts, it is difficult for LLMs to generate

high-quality new scripts based on a few existing ones. Therefore, we take a different

approach: randomly selecting two scripts from the existing ones and ”refactoring” them

to achieve high-quality scripts with clear goals.

In each script augmentation operation, we randomly select two out of the original 14

well-designed high-quality scripts (Figure 3.6) and use a corresponding prompt (Figure

3.7) to guide the LLM through RAG to make significant structural changes, resulting in

a new script. We repeated this process fourteen times, yielding a total of twenty-eight

scripts including the original ones.

Scripts generated through this component were initially reviewed by RedHawk-SC
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Scripts

Documents

Script AugmentationRandomly select two scripts

Chunks Vector

14 scripts

...
2 scripts

Script-augmented prompting
*Prompt it to reconstruct the obtained script, and based
on that, generate a new script along with new objectives. 

Augmented Script

Figure 3.6: Script Augmentation Workflow

Always answer the question, even if the context isn't helpful.System

User

Role Prompt

Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge, answer the question: {query_str}

Take a deep breath, this is very important to my career.

As an advanced large language model interfacing with the RedHawk-SC toolset, your task is to synthesize and reconstruct Python scripts that achieve a specific
goal, which you will infer from the context and content of the scripts. You will be given limited access to 14 example scripts and relevant documentation in the
form of RAG tokens. You may not have complete access to all materials but should use the information available from the examples and documentation to inform
your reconstruction.

When receiving a query that includes two randomly selected Python scripts from the 14 examples, follow these guidelines:
1. Analyze the available content from the two provided Python scripts, along with what you can infer from RAG tokens related to the example scripts and
RedHawk-SC manuals.
2. Infer the goal of the new script you are to reconstruct, based on the patterns, functions, and objectives present in the example scripts.
3. Reconstruct a new, logically and syntactically correct Python script that achieves this inferred goal, applying RedHawk-SC API functions and MapReduce
methodology as needed.
4. Prioritize the clarity and quality of the Python code, following best practices to the extent possible within the constraints of the information provided.
5. Output the reconstructed script in a Python file format, complete with comments that outline your thought process, the inferred goal of the script, and the
rationale behind your implementation choices.
6. Ensure the new script includes a MapReduce component, optimizing for performance where applicable.

Your output should not only meet the goal you've inferred but also serve as a direct example of how to use RedHawk-SC API functions in conjunction with
MapReduce to process data efficiently.

System

User
(Query)

--------Script 1--------
file: {filename #1}
--
{content #1}

--------Script 2--------
file: {filename #2}
--
{content #2}

Figure 3.7: Script-augmented Prompting

experts and found to be of considerable quality, complete with code comments. Specifi-

cally, while the script syntax and logic were entirely correct, the code comments and script

optimization were areas needing improvement. However, the generated scripts allowed

for reevaluation of feasible goals and correct restructuring into accurate scripts.

Figure 3.3, 3.5 and 3.6 depicts the data preprocessing phase, where a semantic split-

ter segments text from documents, preserving the original content while reformatting it

suitably. Subsequent data renovation processes are applied to reconstruct the segmented

content accurately. Ellipses (”...”) indicate the omission of large text portions for brevity.
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The script augmentation section illustrates the selection of two scripts from the original

set of 14 to form part of the prompt, stimulating the generation of new Scripts. Iterating

this procedure yields a variety of scripts.

3.2.4 Implicit Knowledge Expansion and Contemplation (IKEC)

IKEC technique, a novel approach developed in our work, aims to prompt the LLM

to leverage its own repository of knowledge to internally expand and enrich the content

about which it is most confident. This process involves deliberate and deep contemplation

by the LLM before arriving at the final output (one of the prompts shown as Figure 3.9).

Additionally, we experimented with integrating this technique with the ZCoT process,

driven by a curiosity about what internal prompts might aid the LLM’s performance.

3.2.5 Zero-shot Chain-of-Thought (ZCoT)

ZCoT [20] is a component proposed in previous research, known for its simplicity

and effectiveness. It encourages LLMs to output their reasoning process ”step by step”

alongside the final answer, without requiring any examples, thereby significantly improv-

ing performance. The integration of ZCoT with IKEC in this study is feasible because

IKEC promotes careful thinking before outputting, while ZCoT prompts the model to

output its reasoning process step by step. These two approaches are complementary and

not conflicting (prompt shown as Figure 3.10).
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3.2.6 Code Generation Pipeline

Following the aforementioned constructive components for data preprocessing and

script augmentation, the enhanced RAG reference dataset is created. When users input

their requests, they can receive more appropriate reference materials, thereby improving

the performance of LLMs in domain-specific code generation. Below, we describe how

this study uses a step-by-step approach to generate high-quality scripts [14].

3.2.6.1 Task Planning

First, the user requirement is converted into an embedding. Using the standard RAG

process, relevant content is retrieved from the optimized database as reference material.

Task planning is also performed by the LLM. After providing reference materials, the

LLM uses the prompt shown in Figure 3.8 to generate a ”code outline” in the form of

annotations. The LLM initially organizes the logic and considers how to fulfill the re-

quirements, outputting the results as annotations. This approach ensures that subsequent

script generation can produce actual code based on the corresponding annotation content.

We designed three different task planning prompts using various prompt techniques:

RAG alone (Figure 3.8), IKEC (Figure 3.9), and a combination of IKEC and ZCoT (Figure

3.10). Each prompt technique has different effects on the task planning process.

3.2.6.2 Script Generation

In the script generation phase, following the standard RAG process, the content gen-

erated during task planning as ”the framework of comments” is used as a query. This

query searches the preprocessed data, and using the prompt shown in Figure 3.11, the
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Always answer the question, even if the context isn't helpful.System

User

Role Prompt

Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge, answer the question: {query_str}
Take a deep breath, this is very important to my career.

You will soon receive a code framework example and a user requirement query. Your task is to create an annotated code framework that will help a Large
Language Model (LLM) understand the user's requirements for a RedHawk-SC simulation script based on the MapReduce model. This framework should include
a step-by-step guide, function annotations, and detailed logic that adheres to the user's needs and the MapReduce paradigm. The annotations will serve as a clear
roadmap for the LLM to expand into a complete, functional script. Relevant API information and script examples will be provided to assist you. Please follow the
instructions below when you receive the user prompt and the query:

1. **Review User Prompt (Code Framework Example)**:
- Examine the provided code framework example carefully to understand the typical structure and components of a RedHawk-SC script.

2. **Process User Requirement (Query)**:
- Upon receiving the user requirement query, identify the main goals and tasks that need to be achieved within the script.

3. **Create Annotated Framework**:
- Generate an annotated code framework using the information from the code framework example and the user requirement query.
- Ensure that the framework includes:
- Clear and informative function annotations.
- Detailed logic for each step of the script.
- Specific annotations for Map and Reduce functions.
- Guidance on error handling and data validation.

4. **Ensure Clarity and Completeness**:
- Your annotations should be comprehensive yet concise, providing enough detail to enable the LLM to generate a fully functional script without over-
complicating the instructions.

System

User
(Query)

{User Requirement}

Figure 3.8: Task Planning Prompting

Always answer the question, even if the context isn't helpful.System

User

Role Prompt

Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge, answer the question: {query_str}

Take a deep breath, this is very important to my career.

You will soon receive a code framework example and a user requirement query. Your task is to create an annotated code framework that will help a Large
Language Model (LLM) understand the user's requirements for a RedHawk-SC simulation script based on the MapReduce model. This framework should include
a step-by-step guide, function annotations, and detailed logic that adheres to the user's needs and the MapReduce paradigm. Before generating the annotations,
deeply contemplate the information you have on the subject and your extensive knowledge that is not limited to MapReduce. Reflect on areas where you have high
confidence and internally expand upon this knowledge to inform your creation. The annotations will serve as a clear roadmap for the LLM to expand into a
complete, functional script. Relevant API information and script examples will be provided to assist you. Please follow the instructions below when you receive
the user prompt and the query:

1. **Review User Prompt (Code Framework Example)**:
- Examine the provided code framework example carefully. Use your internal reflections and deep knowledge to understand and identify the typical structure and
components of a RedHawk-SC script.

2. **Process User Requirement (Query)**:
- Upon receiving the user requirement query, apply your extensive and deeply contemplated knowledge to identify the main goals and tasks that need to be
achieved within the script.

3. **Create Annotated Framework**:
- Generate an annotated code framework based on the deep contemplation of the provided example and the user's requirements.
- Ensure that the framework includes:
- Clear and informative function annotations, enhanced by your reflective thought process and internal knowledge expansion.
- Detailed logic for each step of the script, integrating insights gained from your contemplation.
- Specific annotations for Map and Reduce functions, as well as any other critical functions identified during your internal reflection.
- Guidance on error handling and data validation, ensuring the script's robustness as contemplated in your deep understanding.

4. **Ensure Clarity and Completeness**:
- After deep contemplation and expansion of your knowledge, your annotations should be comprehensive yet concise, providing enough detail to enable the LLM
to generate a fully functional script. The clarity and depth of your contemplation should be evident in the thoroughness of the framework provided.

System

User
(Query)

{User Requirement}

Figure 3.9: Task Planning Prompting Using IKEC
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Always answer the question, even if the context isn't helpful.System

User

Role Prompt

Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge, answer the question: {query_str}

Take a deep breath, this is very important to my career.

You will soon receive a code framework example and a user requirement query. Your task is to create an annotated code framework that will help a Large
Language Model (LLM) understand the user's requirements for a RedHawk-SC simulation script based on the MapReduce model. This framework should include
a step-by-step guide, function annotations, and detailed logic that adheres to the user's needs and the MapReduce paradigm. As you prepare to generate this
framework, employ a Chain of Thought approach where you outline your reasoning in annotations step by step, clearly demonstrating how you arrive at each part
of the framework. Reflect on your extensive knowledge, not limited to MapReduce, and contemplate deeply to expand your understanding internally. These
annotations will guide the LLM to transform the framework into a complete, functional script. Relevant API information and script examples will be provided to
assist you. Please incorporate your Chain of Thought in the annotations as you follow the instructions below when you receive the user prompt and the query:

1. **Review User Prompt (Code Framework Example)**:
- Examine the provided code framework example carefully. Document your thought process in annotations, explaining how the example informs the structure and
components of a RedHawk-SC script.

2. **Process User Requirement (Query)**:
- Upon receiving the user requirement query, describe in annotations how you use your knowledge to determine the main goals and tasks that the script needs to
achieve.

3. **Create Annotated Framework**:
- Generate an annotated code framework that includes your Chain of Thought, illustrating the considerations and decisions you make at each step based on the
provided example and the user's requirements.
- Ensure that the framework includes:
- Function annotations with reasoning that guides the LLM through the implementation process of each function.
- Detailed logic for each step of the script, with annotations that explain the rationale behind your approach.
- Annotations for Map and Reduce functions, or any other critical functions, that include the thought process for why and how they fit into the overall solution.
- Guidance on error handling and data validation, with annotations that discuss the importance of these aspects in maintaining the script's robustness.
4. **Ensure Clarity and Completeness**:
- Your annotations should be comprehensive yet concise, with a clear Chain of Thought that details the reasoning behind each annotation. This will enable the
LLM to generate a fully functional script that is well-understood.

System

User
(Query)

{User Requirement}

Figure 3.10: Task Planning Prompting with IKEC and ZCoT

LLM generates the corresponding code incrementally based on the comments. This step-

by-step approach to code generation ensures greater stability compared to generating the

code all at once.

Similarly, based on different combinations of prompt techniques, we divided the ap-

proaches into using RAG alone (Figure 3.11), IKEC (Figure 3.12), and a combination of

IKEC and ZCoT (Figure 3.13).

In this study, when using prompt techniques, if no specific technique is mentioned,

it indicates the standard approach. If only IKEC is used, then it is consistently applied

throughout the code generation pipeline, and similarly for other combinations.
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Always answer the question, even if the context isn't helpful.System

User

Role Prompt

Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge, answer the question: {query_str}

Take a deep breath, this is very important to my career.
As an advanced Large Language Model, your task is to synthesize a comprehensive Python script for execution within the RedHawk-SC (Ansys) environment.
Your script will leverage a MapReduce framework to optimize the computation of circuit-related data. You will receive "The Framework of comments" as a query
from the RAG system, detailing the intended code structure and functionality step by step. You will also receive related text chunks and a clear set of user
requirements through separate user prompts.
Your ultimate goal is to integrate the information from the RAG query and user prompts to produce a complete, functional, and efficient code that meets the user
requirements and effectively utilizes the RedHawk-SC APIs.
Here is how you should proceed after receiving all necessary information:
1. Review "The Framework of comments" from the RAG query to grasp the intended functionality and logic sequence.
2. Use the insights from your deep and extensive knowledge on MapReduce, Python programming, and the RedHawk-SC environment to inform the script's
development.
3. Synthesize insights from the step-by-step comments and the user requirements, making adjustments as needed to ensure the script's accuracy and performance.
4. Craft a final script that interfaces seamlessly with the RedHawk-SC APIs, optimizing for performance and adhering to the best practices suited to the specific
requirements.
Please await the following components to complete the task:
1. User Prompt (User Requirement)
2. Query (The Framework of comments)
The accuracy, efficiency, and correctness of the script are paramount. It plays a critical role in our RedHawk-SC operations, and your expertise in integrating these
elements is vital.

System

User {User Requirement}

User
(Query)

{The Framework of Comments}

Figure 3.11: Script Generation Prompting

Always answer the question, even if the context isn't helpful.System

User

Role Prompt

Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge, answer the question: {query_str}

Take a deep breath, this is very important to my career.
Before you begin, I want you to deeply think and internally expand upon the extensive knowledge you have on any aspect related to the task at hand. This includes
MapReduce, Python programming, RedHawk-SC environment, and any other relevant domains you excel in. Use this deep contemplation to form a solid
foundation for the sophisticated output you are about to generate.
As an advanced Large Language Model, you are tasked with synthesizing a comprehensive Python script for execution within the RedHawk-SC (Ansys)
environment. Your script will potentially utilize a custom MapReduce framework among other strategies to optimize the computation of circuit-related data. "The
Framework of comments" will be provided to you as a query from the RAG system, detailing the intended code structure and functionality step by step.
Additionally, you will receive related text chunks and a clear set of user requirements through separate user prompts.
Your ultimate goal is to integrate the information from the RAG query and user prompts to produce a complete, functional, and efficient code that meets the user
requirements and effectively utilizes the RedHawk-SC APIs.
Here is how you should proceed after internal contemplation and expansion of your extensive knowledge:
1. Thoroughly review "The Framework of comments" from the RAG query to understand the intended functionality and logic sequence.
2. Use the insights you have internally expanded upon to inform your approach to the task.
3. Synthesize all insights from the step-by-step comments, the user requirements, and any best practices from your extensive knowledge base, making adjustments
as needed to craft an accurate and high-performing script.
4. Ensure that your final script interfaces seamlessly with the RedHawk-SC APIs and is optimized for performance, adhering to the best solutions tailored to the
specific requirements of the task.
Please await the following components to complete the task:
1. User Prompt (User Requirement)
2. Query (The Framework of comments)
The accuracy, efficiency, and correctness of the script are of utmost importance. It plays a critical role in our RedHawk-SC operations, and your deep and broad
internal contemplation before generating the output is vital to achieving a successful outcome.

System

User {User Requirement}

User
(Query)

{The Framework of Comments}

Figure 3.12: Script Generation Prompting Using IKEC
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Always answer the question, even if the context isn't helpful.System

User

Role Prompt

Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge, answer the question: {query_str}

Take a deep breath, this is very important to my career.
Before you begin, deeply think and internally expand upon the extensive knowledge you have on any aspect related to the task at hand. This includes
contemplation on the concepts of MapReduce, Python programming, RedHawk-SC environment, and any other relevant domains you excel in. Use this deep
contemplation to form a solid foundation for the sophisticated output you are about to generate.
As an advanced Large Language Model, you are tasked with synthesizing a comprehensive Python script for execution within the RedHawk-SC (Ansys)
environment. Your script will potentially utilize a custom MapReduce framework among other strategies to optimize the computation of circuit-related data. "The
Framework of comments" will be provided to you as a query from the RAG system, detailing the intended code structure and functionality step by step.
Employ a Chain of Thought approach, where you will not only produce the final Python script but will also document your thought process step by step in the
form of comments. This will ensure that your reasoning is transparent and that the decision-making process behind your code is clear.
Your ultimate goal is to integrate the information from the RAG query to produce a complete, functional, and efficient code that meets the user requirements and
effectively utilizes the RedHawk-SC APIs.
Here is how you should proceed:
1. Thoroughly review "The Framework of comments" from the RAG query to understand the intended functionality and logic sequence. Provide comments on
how each part of the framework informs your script development.
2. Synthesize all insights from the step-by-step comments and the user requirements. Document in comments how you adjust the script to be accurate and high-
performing.
3. Write the Python script that interfaces seamlessly with the RedHawk-SC APIs and is optimized for performance, adhering to the best solutions tailored to the
specific requirements of the task. Ensure that your script is accompanied by detailed comments that explain each section of the code and why it is structured the
way it is.
Please await the following components to complete the task:
1. User Prompt (User Requirement)
2. Query (The Framework of comments)
The accuracy, efficiency, and correctness of the script are of utmost importance. It plays a critical role in our RedHawk-SC operations, and your Chain of Thought,
manifested in the form of comments, is vital to achieving a successful outcome.

System

User {User Requirement}

User
(Query)

{The Framework of Comments}

Figure 3.13: Script Generation Prompting with IKEC and ZCoT

3.3 Experimental Methods

The experimental methods in this study aim to use arena-style evaluations to conduct

ablation experiments, determining whether the proposed components positively impact

RedHawk-SC code generation performance. Below, we describe how each combination

is determined, how the arena is used for evaluation, and how calculations are performed.

3.3.1 Component and Script Generation

We use the four proposed components and the prompt technique, ZCoT [20], to create

eight different combinations.

Next, based on twenty different user requirements designed by experts, we generate

the corresponding scripts for each combination.
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3.3.2 Combinations

To test the effectiveness of each component, we combine the aforementioned com-

ponents into eight different combinations (Table 3.1) and use pairwise comparisons to

determine their rankings. We then compare the performance differences before and after

applying each specific component to verify its effectiveness.

Table 3.1: Component Combinations for Benchmark Evaluation

Component Used (Y)
Combination ID Splitter Renovation Augmentation IKEC ZCoT

1
2 Y
3 Y Y
4 Y Y Y
5 Y Y Y
6 Y Y Y Y
7 Y Y Y
8 Y Y

Table 3.1 and Table 3.2 list the combinations constructed with or without using the

five constructive components. Table 3.1 is used for the benchmark evaluation in all ex-

periments, while Table 3.2 presents the additional combinations used in experiment 2 for

further testing. Among these components, splitter, renovation, and augmentation repre-

sent semantic splitter, data renovation, and script augmentation, respectively.

Three different data processing components can be combined in various ways, and

on top of these, we can choose whether to use two prompt techniques, resulting in even

more combinations. When we use all three data processing components and both prompt

techniques, as illustrated in Figure 3.1 all LLM prompt stages use both IKEC and ZCoT

techniques to generate the corresponding results.
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Table 3.2: Component Combinations for Experiment 2

Component Used (Y)
Combination ID Splitter Renovation Augmentation IKEC ZCoT

9 Y
10 Y Y
11 Y Y Y
12 Y Y Y Y
13 Y Y Y Y Y
14 Y Y Y Y
15 Y Y Y
16 Y Y

For instance, if we only use the semantic splitter and script augmentation, it means

each document is read and semantically split intomultiple paragraphs, with each paragraph

treated as a single chunk, forming part of the selected chunk vector. Script augmentation

involves adding 14 augmented scripts to the original 14 scripts, also forming part of the

selected chunk vector. If script augmentation is not used, only the original 14 scripts are

used as part of the selected chunk vector, and so on.

Each combination results in a different vector database for RAG reference, or dif-

ferent prompt techniques, leading to different script generation results for the same user

requirement. In our subsequent arena evaluation, each combination is treated as a com-

petitor in the arena, and their relative rankings are determined using Elo ratings.

In addition to the eight combinations mentioned above, we also created another eight

combinations to study the impact of different components on the proportion of RAG ref-

erence data, as shown in Table 3.2.
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3.3.3 Selection Strategy for Combinations

To avoid excessive combinations that could dilute the votes and reduce the reliability

of the pairwise evaluation, we selected only eight combinations for the primary evaluation.

The main strategy for selecting these eight combinations was to create at least one ablation

combination for each component.

Next, we will explain the ablation study setup steps according to the combinations

listed in Table 3.1. Starting with ID 1, which uses no components, we add IKEC to obtain

ID 2, creating an ablation study pair to test the effectiveness of IKEC. Then, by adding a

semantic splitter, we obtain ID 3; adding ZCoT results in ID 4.

ID 5 is derived from ID 3 by adding script augmentation; ID 6 adds data renovation

to ID 5; ID 7 removes IKEC from ID 6; and ID 8 removes data renovation from ID 7.

Following this construction method, we ensure that for each component, at least one

ablation pair is created to test the impact of the five different components on the code

generation performance. The corresponding ablation pairs are listed in Table 3.3:

Table 3.3: Ablation Pairs for Each Component

Component Ablation Pairs
Semantic Splitter (2, 3)
Data Renovation (5, 6), (8, 7)

Script Augmentation (3, 5)
IKEC (1, 2), (7, 6), (8, 5)
ZCoT (3, 4)
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3.3.4 Arena-style Evaluation

The evaluation method in this study employs an arena-style assessment to determine

the relative rankings of different combinations. The process is illustrated in Figure 3.14.

Experts enter the evaluation website, where the system randomly selects one of twenty

different user requirements and then randomly chooses two different combinations from

the eight to generate corresponding scripts based on the same user requirement. Experts

must decide which script is better (A/B is better) or if they are equal (Tie). Each vote is

considered a match, and the Elo [10] rating is used to rank the combinations.

20 user requirement
1 user requirement

script A script B

A B Tie

select randomly

8 combinations
2 combinations

choice

select randomly

expert

combination A combination B

Figure 3.14: Arena-style Evaluation Pipeline

This means that a total of 160 scripts are generated in this study, and they are ran-

domly selected from twenty test cases for pairwise evaluation by users. Each combination

is treated as a competitor in the arena, and each vote is a match. Elo rating is used to update

ratings and dynamically adjust the relative rankings on the leaderboard.

In the end, we invited twenty-eight RedHawk-SC experts and collected 187 votes.

By examining the rating differences before and after implementing each component, we
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can determine the effectiveness of that component on code generation. The detailed ex-

perimental methods are described below.

3.3.4.1 Explanation and Examples

After evaluating the collected logs through the assessment above process (Figure

3.15), we gathered 187 voting results. These votes were collected by randomly select-

ing scripts generated by different combinations for the same user requirement and then

calculating their relative rankings based on user choices.

However, the order of log entries in Figure 3.15 can affect the Elo rating calculations

due to the time-sensitive nature of Elo ratings. The rating of a single combination at

different points in time can vary, influencing the expected outcome of matches between

different combinations and ultimately affecting the rating changes. Therefore, Elo rating

calculations are inherently sequential.

Figure 3.15: Example of Arena Evaluation Log

For evaluators, their choices remain consistent regardless of when the evaluation oc-

curs because they are unaware of the combinations used to generate the scripts during the

evaluation process. To address this, we followed the bootstrap method used by chatbot

arena [3, 43]. We randomly sampled one entry from the records with replacement, re-

peated this process one hundred times, and then calculated the Elo ratings for each combi-

nation. This process was repeated one thousand times, resulting in an Elo rating sequence

composed of one thousand points for each combination. The median of this sequence is
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used as the basis for subsequent evaluations.

3.4 Methodology Review

This section reviews the overall process of the research methodology and its cor-

responding evaluation methods. Initially, we used the original documents and scripts as

reference sources for early-stage data preprocessing. Each document segment was seman-

tically split into paragraphs, attempting to correct PDF formatting errors. Using LLMs,

we determined the completeness of the semantics and output the content in different for-

mats. Post-processing ensured that each paragraph was complete. Then, each paragraph

was sent for renovation to obtain the refined content.

Additionally, new scripts were generated through the refactoring process. The data

obtained from these two different preprocessing components served as the reference source

for subsequent RAG tasks. Users only needed to input their requirements to first generate

a code outline and then produce the final script, completing the entire workflow.

For evaluation, we defined eight different combinations and invited participants for

arena-style assessments. These assessments used various calculation methods to deter-

mine the relative rankings. We then analyzed the effectiveness of each component based

on different ablation pairs.
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Chapter 4 Datasets and Experimental

Setup

This chapter introduces the datasets used in this study, followed by a detailed expla-

nation of the experimental setup employed in this research.

4.1 Application Scenarios

This study aims to develop applications of Large Language Models (LLMs) that can

generate RedHawk-SC scripts based on user requirements. In practice, users need to have

several key skills to use RedHawk-SC effectively: first, familiarity with Python program-

ming to write scripts with clear logic; second, knowledge of circuit simulation; and third,

the ability to understand and flexibly use thousands of APIs available on RedHawk-SC. To

address these specialized needs, the workflow proposed in this study can generate scripts,

making it easier and more flexible for users to utilize RedHawk-SC for various analytical

applications.
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4.2 Dataset

The dataset used in this study is divided into two types. The first type serves as the

foundation for building the vector database, enabling the Retrieval-AugmentedGeneration

(RAG) technique to retrieve the necessary information. The second type is a validation

dataset Ansys-RHSC-20, used to verify the effectiveness of each component.

4.2.1 RAG Reference

When applying the RAG technique, the content is divided into chunks, and each

chunk is converted into embeddings to build the vector database. This facilitates the re-

trieval of appropriate reference chunks. Table 4.1 lists the primary data used in this study

to build the vector database.

Table 4.1: RAG Reference Materials

Type Format Total Release Date
Manual PDF 517 pages February 2023
API PDF 1102 pages February 2023

MapReduce PDF 14 pages April 2019
Script Python 14 scripts March 2024

The manual primarily explains the technical concepts of the RedHawk-SC product,

including common APIs and their usage, spanning 517 pages. API documentation details

all the APIs used by RedHawk-SC, including definitions and usage instructions, totaling

1102 pages. MapReduce document explains how to use theMapReduce framework within

the RedHawk-SC product, covering 14 pages. All these technical documents are provided

by Ansys Inc.

The scripts, designed byAnsys RedHawk-SC experts, play a crucial role in this study.
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As shown in Figure 4.1, each Python file consists of two parts: user requirements written

in comments and the corresponding golden script that meets these requirements. Each line

of code is accompanied by a comment explaining its purpose. Only a portion of the content

is excerpted here. It is important to note that the same user requirement can be achieved

with different scripts. There are fourteen scripts in the RAG reference, all provided by

Ansys for this study.

Figure 4.1: Example of Test Case with User Requirement and Golden Script

4.2.2 Ansys-RHSC-20

Ansys-RHSC-20 is a dataset designed by Ansys RedHawk-SC experts specifically

for validating the tool. This dataset consists of 20 pairs of data samples, as illustrated in

Figure 4.1. Each pair includes a user requirement and a corresponding gold script. Unlike

the scripts in the RAG reference, where the user requirement and the corresponding script

are in the same file, here they are separated into two different files: one serving as the

query and the other as the reference standard answer.
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4.3 Evaluation Metrics

Elo rating is used as the primary evaluation metric. The Elo formula essentially es-

timates win probability based on rating differences, thus win rate is also employed as a

supplementary metric. By setting the initial Elo rating to 0, the analysis results become

more intuitive and easier to understand. All evaluation metrics and methods follow the ap-

proach used in the chatbot arena, with minor adjustments to certain parameters (Table 4.6)

and refer to Section 2.3).

The reference data ratio in RAG is calculated as a percentage based on the number

of reference sources. During the script generation process, 12 chunks are referenced per

script, with a total of 20 test cases. Therefore, we identify the corresponding reference

sources for these 240 chunks (manual, API, MapReduce, script) and calculate their per-

centages. This allows us to estimate the impact of different types of data by analyzing the

changes in the proportions of data source combinations used.

4.4 Machine Environment

The machine environment used in this study is summarized in Table 4.3. The exper-

iments primarily utilize APIs to interact with LLMs on this machine, as shown in Table

4.3.
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Table 4.2: Machine Specifications

Specification Details
CPU Intel Xeon E5-2698 v4 @ 2.2GHz
GPU NVIDIA Tesla V100-SXM2-32GB
RAM 512 GB

Operating System (OS) Ubuntu 16.04.7 LTS
Python 3.5.2

4.5 Experimental Environment

The experimental environment used in this study is detailed in Table 4.3. We utilized

the LLM API and Embedding API provided by the Azure OpenAI platform. The tem-

perature parameter ranges from a minimum of 0.0 to a maximum of 2.0. Lower values

result in less variation and more accurate, consistent answers, while higher values lead

to more variability and creativity. To ensure the reproducibility of our experiments, we

set the temperature to 0.0. The embedding API is used to convert individual chunks into

corresponding embedding vectors in the semantic space.

Table 4.3: API Versions

Specification LLM API Embedding API
Model gpt-4-turbo text-embedding-ada-002
Version 2023-07-01-preview 2023-05-15
Platform Azure OpenAI Azure OpenAI

Temperature 0.0 -
Embedding Dim - 1536

We used JupyterLab 1 to set up the Python environment on our machine. The main

packages used are listed in Table 4.4.

1JupyterLab Documentation
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Table 4.4: Versions of Key Python Packages

Package Version
langchain 0.0.229
llama-index 0.10.19

openai 1.14.0
pdfminer 20191125
jupyterlab 4.0.3

4.6 Experimental Parameters

The main parameters related to the RAG technique used in this study are listed in Ta-

ble 4.5, with all other values set to the default settings of LlamaIndex 2 and LangChain 3.

In the RAG technique, data retrieval is used to find the most similar chunks for reference.

The ‘similarity_top_k‘ value in the table indicates the number of closest chunks to be con-

sidered by RAG. The basic approach of RAG involves splitting the content into multiple

chunks based on the number of tokens, with some overlap between chunks. As shown in

the table, the text is consistently split into chunks of 1024 tokens, with an overlap of 20

tokens between adjacent chunks.

Table 4.5: Key RAG Parameters

Parameter Value Unit
similarity_top_k 6 chunks

chunk_size 1024 tokens
chunk_overlap 20 tokens

The meaning of the Elo parameters is consistent with the discussion in the literature

review (session 2.3.2). The corresponding parameter values are listed in Table 4.6. For

ease of observation, the initial rating has been changed from the commonly used value of

2https://docs.llamaindex.ai/en/stable/
3https://www.langchain.com/
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1000 to 0. This adjustment ismade because the Elo formula relies on the relative difference

in ratings, so changing the initial rating merely shifts the values without affecting their

relative relationships or differences.

Table 4.6: Elo Parameters

Parameter Value
INIT_RATING 0

K 16
BASE 10
SCALE 400

4.7 Roadmap of Experiments

In Experiment 1, we employ an expert-voted arena-style evaluation to analyze the

effectiveness of each constructive component using various pairwise comparisonmethods.

Experiment 2 analyzes the importance of different types of data for code generation by

examining the changes in RAG reference source ratios. This analysis will include the

presence or absence of components and their corresponding rating variations.
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Chapter 5 Experiments and Analysis

In the experiments and analysis chapter, we will detail the significance of the dif-

ferent combinations used in the study. We will then explain the evaluation process and

methods, using Elo ratings and the Bradley-Terry [2] model to calculate each combina-

tion’s performance and win rates. Each component’s effectiveness in code generation will

be analyzed individually. Additionally, we will analyze the importance of different data

types on code generation by examining the impact of changes in the proportion of RAG

reference data.

5.1 Experiment 1: Arena-style Evaluation of Component

Effectiveness in Code Generation

The purpose of experiment 1 is to verify the effectiveness of the four components

proposed in this study, as well as ZCoT, in domain-specific code generation applications,

using Ansys RedHawk-SC as an example.

We collected 187 pairwise comparison results in a self-constructed arena. These

results were then analyzed in three different ways: pairwise voting, Elo rating, and the

Bradley-Terry Model. Below, we present the results of each analysis method and then

perform an ablation pair analysis to evaluate the effectiveness of each component by iso-
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lating each combination.

5.1.1 Arena Information

We will first analyze the information collected from the 187 pairwise comparisons in

the arena. During each expert evaluation, the evaluators could choose which of the two

scripts was better, or declare a tie. Analyzing all voting results by option (Figure 5.1), we

find that the proportions are A (44.39%), B (40.64%), and Tie (14.97%), indicating that

the choice between scripts was fairly balanced. This suggests that the performance was

not influenced by the script position or designation (A, B). The fact that 14.97% of all

votes resulted in a tie indicates that most comparisons were decisive.

Figure 5.1: Counts of Battle Outcomes

Next, we analyze whether there is an uneven distribution in the number of times each

combination participated in the arena. Since each comparison involves two combinations,

the total number of participants is 374. Distributed across 8 different combinations, each

should participate approximately 46.75 times (12.5%). Analyzing this distribution in Fig-

ure 5.2, we find that the largest discrepancies are 37 times (9.89%) and 54 times (14.44%),

both within a 3% deviation from the average, indicating a generally even distribution. As

the number of votes increases, we can expect the distribution to become even more uni-

form.
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Figure 5.2: Battle Counts for Each Combination

We further analyzed all pairwise results by the number of comparisons between com-

binations, as shown in Figure 5.3. The statistics include all wins, losses, and ties. On

average, each combination should be compared 6.68 times. The lowest number of com-

parisons is 3, and the highest is 13. While there is some discrepancy in the number of

comparisons, it is within an acceptable range given the small sample size.

Figure 5.3: Battle Counts for Each Pair of Combinations

Additionally, we excluded all tie cases and only counted the number of wins and

losses between combinations (Figure 5.4). The average number of comparisons should be

5.68 times (total number: 374 − 28 × 2 = 318), with the lowest being 2 and the highest
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being 12.

Figure 5.4: Battle Counts for Each Pair of Combinations (Excluding Ties)

When counting only the number of ties, as shown in Figure 5.5, themost notable cases

are combinations 3 and 4, with 5 ties (17.86%), representing a higher proportion. This

indicates that ZCoT did not have a significant advantage in this matchup. Another notable

pair is combinations 1 and 5, with 4 ties (14.29%) out of 5 total matchups, indicating that

these two combinations have similar performance levels.

5.1.2 Pairwise Voting

Pairwise voting involves directly comparing combinations against each other. The

advantage of this method is that it eliminates the influence of unrelated combinations on

the comparison, reducing potential errors. However, the disadvantage is that it often re-

sults in an insufficient number of votes, as is the case in this study. In Figure 5.6, the

58

http://dx.doi.org/10.6342/NTU202402417


doi:10.6342/NTU202402417

Figure 5.5: Tie Count for Each Pair of Combinations

vertical axis represents the winning combinations, while the horizontal axis represents the

losing combinations. The win rate is calculated based on the number of wins between

the combinations. The results include ties, where ties are counted in the total number but

not as wins. For example, combinations 3 and 4 have a win rate of 0%, but as previously

analyzed, they have a high tie rate. The sum of the win rate and tie rate for combination

4 is 100%. The effectiveness of the other combinations will be analyzed and discussed

individually in the ablation study for each combination.

Figure 5.7 presents the pairwise voting results averaged across individual combina-

tions. It shows that the combination of semantic splitter, IKEC, and ZCoT has the highest

win rate (67.14%), while the combination using only IKEC has the lowest win rate.

Figure 5.8 extracts all ablation pairs of the same component from the pairwise voting

combinations and directly averages the win rates. In terms of pairwise voting, seman-
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Figure 5.6: Win Rate of Combination A for All Non-tied A vs. B Battles

Figure 5.7: Average Win Rate Against All Other Combinations (Without Ties)

tic splitter, IKEC, and ZCoT all show slight performance improvements. However, this

evaluation method only considers direct comparison results between pairs, leading to a

relatively small number of votes. Consequently, the reliability of the results is limited

when the sample size is insufficient.
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Figure 5.8: Average Win Rate for Each Component (Pairwise Voting)

5.1.3 Pairwise Voting - Even Sample

Using the same direct voting statistics, we applied stratified sampling with the Boot-

strap method. The parameters were set to ‘num_sample‘ as 100 and ‘rounds‘ as 1000.

This means that stratified sampling was performed on the original sample set, drawing

100 pairwise comparison results each time and recalculating the results. This process was

repeated 1000 times. The average win rates of the combinations, as shown in Figure 5.9,

are similar to the original win rate results.

Figure 5.9: Average Win Rate Against All Other Combinations (Even Sample Size of 50
and No Ties)

61

http://dx.doi.org/10.6342/NTU202402417


doi:10.6342/NTU202402417

5.1.4 Elo Rating

Elo rating is a common method for evaluating LLM performance. Unlike direct vot-

ing, it also utilizes indirect comparison results to address the issue of insufficient votes,

providing reliable relative rankings. In the original pairwise comparison results, one result

is randomly selected and replaced each time, repeating this process to obtain 100 results

for calculating the Elo ratings of all combinations. This process is repeated 1000 times, re-

sulting in 1000 Elo ratings for each combination. We then use the median of these ratings

for subsequent analysis. The overall performance of all combinations is shown in Figure

5.10 and Table 5.1, with combination IDs corresponding to Table 3.1. However, these

results only indicate the performance of certain component combinations. We will further

analyze the effectiveness of each component by examining the corresponding ablation

pairs in subsequent sections.

Figure 5.10: Bootstrap of Online Elo Rating Estimates

5.1.5 Elo Rating - Even Sample

The stratified sampling method is similar to what was mentioned in pairwise voting.

Stratified sampling is performed on the original data to obtain 100 samples, and the Elo
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Table 5.1: Elo Performance of Combinations

Arena Information
Combination ID Elo Estimated Win Rate Rank

1 8 49.05% 3
2 -51 38.59% 8
3 0 52.54% 5
4 58 64.60% 1
5 -49 37.19% 7
6 -2 49.44% 6
7 28 59.15% 2
8 7 49.44% 4

ratings of all combinations are calculated based on these samples. This process is repeated

1000 times, resulting in 1000 Elo ratings for each Combination ID.We then use themedian

of these ratings for subsequent analysis. The box plot of these ratings is shown in Figure

5.11. After applying the Bootstrap stratified sampling method, it is evident that the error

intervals are much smaller, making it easier to use these results for subsequent analysis.

Figure 5.11: Bootstrap of Online Elo Estimates - Even Sample (Size of 100)

5.1.6 Bradley-Terry Model

Using the 187 pairwise voting results, we applied the Bradley-Terry Model to calcu-

late the ability parameters for each combination, and then linearly transformed them into
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Elo ratings for easier comparison. This is shown in Figure 5.12. This one-time calculation

provides more reliable results, which are generally consistent with the Elo results shown

in Figure 5.10.

Figure 5.12: Bootstrap of Bradley-Terry Model Elo Rating Estimates

Next, based on these results, we used the Elo formula to calculate the predicted win

rates between each combination, as illustrated in Figure 5.13. We then compared these

predicted win rates with the actual pairwise voting results, as shown in Figure 5.14, to

observe the discrepancies between the two analysis methods. The results indicate that the

error between predicted and actual win rates is somewhat large, likely due to the insuffi-

cient sample size. However, the average predicted win rates, as depicted in Figure 5.15,

show trends that are fully consistent with the average voting win rates.

5.1.7 Bradley-Terry Model - Even Sample

Using the same Bootstrap stratified sampling method described previously, we sam-

pled 100 samples and then used the Bradley-Terry Model to calculate the results, linearly

transforming them into Elo ratings. This process was repeated 1000 times. The results are

shown in Figure 5.16. Bootstrap is particularly helpful for results with a smaller sample
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Figure 5.13: Predicted Win Rate for A vs. B Using Elo Ratings

Figure 5.14: Difference Between Elo Predicted and Actual Win Rate for A vs. B

size, maintaining statistical rigor and reliability while reducing the error range. The Elo

rating-based win rate table is shown in Figure 5.17, and the differences compared to the

pairwise voting win rates are shown in Figure 5.18. The stratified sampling results, as
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Figure 5.15: Average Predicted Win Rate Using Elo Ratings

depicted in the figure, show a deeper color representation, indicating more confidence in

the estimates, although there is still a noticeable difference from the direct voting results.

Figure 5.16: Bootstrap of Bradley-TerryModel Elo Estimates - Even Sample (Size of 100)

When observing the average win rates (Figure 5.19), the error rates are consistent

with those from pairwise voting and Elo rating. By subtracting the pairwise voting win

rates from the average win rates (Figure 5.20), we find that the differences are minimal,

with the maximum difference being 3.54%.

Table 5.2 presents the ratings from different indirect comparison methods, with the

combination IDs corresponding to Table 3.1. ”BT” stands for the Bradley-Terry Model,

while ”_100” indicates that the Bootstrap method was used with 100 resampled iterations

for calculation, and ”_50” indicates 50 resampled iterations. In the ablation study, we will
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Figure 5.17: Elo Predicted Win Rate for A in A vs. B Battle - Even Sample (Size of 100)

Figure 5.18: Difference Between Predicted and Actual Win Rates for A - Even Sample
(Size of 100)

use this table to evaluate the effectiveness of each component.
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Figure 5.19: Average Win Rate for Each Combination Based on Elo Ratings - Even Sam-
ple (Size of 100)

Figure 5.20: Difference in Average Win Rate (Pairwise and Bradley-Terry Model) - Even
Sample (Size of 100)

Table 5.2: Overall Pairwise Comparison of Elo Ratings and Bradley-Terry Converted Elo
Ratings

Arena Information
Combination ID Elo BT Elo_100 BT_100

1 8 -9 -67 -6
2 -51 -80 -209 -115
3 0 18 141 22
4 58 85 -62 64
5 -49 -68 -28 -49
6 -2 -28 53 18
7 28 74 163 53
8 7 8 9 13

68

http://dx.doi.org/10.6342/NTU202402417


doi:10.6342/NTU202402417

5.1.8 Ablation Study

Previously, we discussed various calculation methods and their corresponding over-

all rankings. However, those rankings alone do not reveal whether a single component

is effective for code generation. Therefore, we extended the overall rankings to extract

ablation pairs to evaluate the effectiveness of each component.

5.1.8.1 Semantic Splitter

Table 5.3 shows that using the semantic splitter, the win rate estimated by Elo is

57.29% (p ≈ 10−317), and by pairwise voting is 53.85%. Both calculation methods indi-

cate a relatively high and similar win rate, suggesting the effectiveness of this component.

As shown in Figure 5.21, the win-loss probability ratios are very close, further supporting

the component’s effectiveness.

Table 5.3: Semantic Splitter - Elo Ratings and Pairwise Voting Results

Elo Pairwise Voting
Combination ID Rating Estimated Win Rate Win Rate Tie Rate

2 -51 42.71% 38.46% 7.69%
3 0 57.29% 53.85% -

Figure 5.21: Semantic Splitter - Elo Ratings and Pairwise Voting Results
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5.1.8.2 Data Renovation

Similarly, for data renovation, we extracted ablation pairs from the overall ranking

table to individually compare and verify the effectiveness of this single component. The

two sets of ablation pairs are shown in Tables 5.4 and 5.5. After applying data renovation,

the Elo ratings consistently showed performance improvements, such as for combination

ID 6 with an estimated win rate of 56.72% (p ≈ 10−62) and ID 7 with an estimated win

rate of 53.02% (p ≈ 10−96). However, the pairwise voting results indicated a decrease in

performance (ID 6 with a 16.67% win rate and 16.67% tie rate, and ID 7 with a 25.00%

win rate and 25.00% tie rate), likely due to the insufficient sample size. This suggests

that while data renovation has not demonstrated a significant improvement, it remains a

promising direction for potential performance enhancement. The comparisons are illus-

trated in Figure 5.22.

Table 5.4: Data Renovation (Pair 1) - Elo Ratings and Pairwise Voting Results

Elo Pairwise Voting
Combination ID Rating Estimated Win Rate Win Rate Tie Rate

5 -49 43.28% 66.67% 16.67%
6 -2 56.72% 16.67% -

Table 5.5: Data Renovation (Pair 2) - Elo Ratings and Pairwise Voting Results

Elo Pairwise Voting
Combination ID Rating Estimated Win Rate Win Rate Tie Rate

8 7 46.98% 50.00% 25.00%
7 28 53.02% 25.00% -
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Figure 5.22: Data Renovation - Elo Ratings and Pairwise Voting Results

5.1.8.3 Script Augmentation

The results for script augmentation are shown in Table 5.6 and Figure 5.23. The Elo

rating indicates a win rate of 42.99% (p ≈ 10−286), while the pairwise voting results show

an even lower win rate of only 20.00%. This suggests that the use of this component has

led to a decrease in performance.

Table 5.6: Script Augmentation - Elo Ratings and Pairwise Voting Results

Elo Pairwise Voting
Combination ID Rating Estimated Win Rate Win Rate Tie Rate

3 0 57.01% 80.00% 0.00%
5 -49 42.99% 20.00% -

Figure 5.23: Script Augmentation - Elo Ratings and Pairwise Voting Results

Script augmentation aims to create new scripts based on existing ones, generating
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high-quality scripts without syntax errors. Despite this, the augmented scripts still have a

high similarity to the original scripts, meaning that both pre- and post-augmentation scripts

might be used.

5.1.8.4 Implicit Knowledge Expansion and Contemplation (IKEC)

There are three ablation pairs for IKEC (Tables 5.7, 5.8, 5.9). After applying IKEC,

the Elo results consistently show a significant decrease in performance, such as for com-

bination ID 2 with an estimated win rate of 41.59% (p ≈ 10−213), combination ID 5 with

an estimated win rate of 42.01% (p ≈ 10−286), and Combination ID 6 with an estimated

win rate of 45.69% (p-value extremely small, effectively 0).

However, this is not the case for pairwise voting. In the second-highest voting sample

size combination (total: 9), IKEC has a win rate of nearly 70.00%, and in another combi-

nation, it has a win rate of 75.00%. Conversely, in the highest sample size combination

(total: 10), it only has a win rate of 20.00%. This suggests that the performance of IKEC is

questionable and might be advantageous in specific combinations, winning in two out of

the three pairs, but overall, its performance is declining. Additionally, as shown in Figure

5.24, if we include ties in the win rate for pairwise voting, the results are exactly opposite

to the Elo distribution, further confirming the instability of IKEC’s performance.

Table 5.7: IKEC (Pair 1) - Elo Ratings and Pairwise Voting Results

Elo Pairwise Voting
Combination ID Rating Estimated Win Rate Win Rate Tie Rate

1 8 58.41% 33.33% 0.00%
2 -51 41.59% 66.67% -
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Table 5.8: IKEC (Pair 2) - Elo Ratings and Pairwise Voting Results

Elo Pairwise Voting
Combination ID Rating Estimated Win Rate Win Rate Tie Rate

8 7 57.99% 70.00% 10.00%
5 -49 42.01% 20.00% -

Table 5.9: IKEC (Pair 3) - Elo Ratings and Pairwise Voting Results

Elo Pairwise Voting
Combination ID Rating Estimated Win Rate Win Rate Tie Rate

7 28 53.31% 25.00% 0.00%
6 -2 45.69% 75.00% -

Figure 5.24: IKEC - Elo Ratings and Pairwise Voting Results

5.1.8.5 Zero-shot Chain-of-Thought (ZCoT)

Table 5.10 and Figure 5.25 demonstrate the significant effectiveness of ZCoT in both

Elo and pairwise voting. For combination ID 4, which uses ZCoT, the estimated win rate

by Elo is 58.27% (p < 10−162), and the win and tie rates together account for a full

100.00% in pairwise voting. An interesting phenomenon here is that the win and loss

rates in Elo are almost identical to the win and tie rates in pairwise voting. A tie indicates

that both sides have some wins, suggesting that even in the worst-case scenario, ZCoT

maintains an improved performance as estimated by the Elo win rate. On average, the

effect is even better.
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Table 5.10: ZCoT - Elo Ratings and Pairwise Voting Results

Elo Pairwise Voting
Combination ID Rating Estimated Win Rate Win Rate Tie Rate

3 0 41.74% 0.00% 41.67%
4 58 58.27% 58.33% -

Figure 5.25: ZCoT - Elo Ratings and Pairwise Voting Results

5.1.9 Comprehensive Explanation

In experiment 1, three different evaluation methods were used, along with stratified

sampling, to comprehensively assess the effectiveness of five different constructive com-

ponents.

Based on previous discussions, we found that the semantic splitter is effective and

consistently performs well across multiple methods. ZCoT also shows effectiveness in

various results, but it has a negative impact in the Elo stratified sampling results, which

warrants further investigation. Data renovation is moderately effective, while the aug-

mented scripts from script augmentation do not improve RAG performance for this task.

IKEC generally shows negative results in most evaluations, though it has positive effects

in Pairwise voting.

From the overview figures 5.26 and 5.27, it is evident that the semantic splitter is the
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most effective component, followed by data renovation. While ZCoT is also effective, it

shows some negative effects in certain cases. Both script augmentation and IKEC, on the

other hand, significantly lead to negative effects.

Figure 5.26: Impact of Component Ablation on Win Rate

Figure 5.27: Impact of Component Ablation on Elo Rating

Next, we discuss the stratified sampling results from the most reliable Bradley-Terry

Model, focusing on numerical analysis (Figure 5.26). The semantic splitter improves per-

formance win rates by 21.26%. Data renovation shows an 8.60% win rate improvement,

while ZCoT improves the win rate by 6.68%. Conversely, script augmentation and IKEC

exhibit significant negative effects, with win rate decreases of 11.36% and 10.88%, re-

spectively.

Based on the results, two of our proposed components outperform the existing ZCoT

component. According to the results of this ablation study, combining semantic splitter,
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data renovation, and ZCoT components could potentially yield the best performance.

Additionally, in the original RAG framework, each chunk was set to contain 1024

characters by default. After applying our semantic splitter, the average chunk size was

reduced to 317 characters, suggesting that the original chunks contained superfluous in-

formation that could adversely affect the embedding process. Subsequent application of

data renovation increased the average chunk size to 1165 characters, which is 3.67 times

larger than the splitter-processed chunks.

5.2 Experiment 2: Comparison of RAGData Source Pro-

portions in Different Component Combinations

The goal of experiment 2 is to investigate which data is most helpful in improving per-

formance. When components are applied, the proportion of the corresponding RAG ref-

erence data changes along with the original rating variations. By analyzing these changes,

we can infer which data is most beneficial for RAG in generating scripts for specific do-

mains. The summary of all proportions is shown in Table 5.11.

5.2.1 Data Preprocessing

The data preprocessing techniques applied alter the data itself, but the prompts used

to generate scripts remain unchanged. Therefore, changes in the proportion of data sources

are a significant factor affecting performance. The semantic splitter fundamentally changes

the division of data texts, leading to substantial changes in proportions. An unusual phe-

nomenon observed is that the proportions of the three technical documents significantly
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Table 5.11: Distribution of Reference Percentage in RAG Across Document Types

Reference Average (Source Count Percentage (%)
Combination ID Manual API MapReduce Script Augmented Script

1 19.58 27.08 42.08 11.25 -
2 14.58 22.50 52.50 10.42 -
3 6.67 5.42 0.42 87.50 -
4 7.09 6.67 0.84 85.42 -
5 2.08 3.75 0.00 37.50 56.67
6 1.25 12.09 0.00 35.42 51.25
7 1.67 14.59 0.00 37.92 45.83
8 3.33 4.59 0.00 38.34 53.75
9 8.75 5.42 0.42 85.42 -
10 3.34 29.59 0.42 66.67 -
11 4.59 27.50 0.84 67.09 -
12 5.00 30.00 0.84 64.17 -
13 0.42 11.25 0.00 35.84 52.50
14 1.67 2.92 0.00 32.92 62.50
15 10.84 3.33 14.59 28.75 42.50
16 16.67 17.92 57.08 8.34 0

decreased, while the proportion of scripts greatly increased (Table 5.11). This indicates

that the chunks of technical documents used in traditional RAG data divisionmethods may

not be relevant to the current tasks. Figure 5.28 illustrates the dramatic changes in data

proportions, with all three technical documents showing decreased proportions, while the

proportion of scripts increased significantly. Since the semantic splitter improves ratings,

this suggests that the increased proportion of scripts is likely a major factor contributing

to the performance enhancement.

Figure 5.28: Semantic Splitter - Distribution of Reference in RAG
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Additionally, as shown in Table 5.11, combinations 14 and 15 differ only by the in-

clusion of the semantic splitter. After applying the semantic splitter, the proportions of

MapReduce, Manual, and API were significantly reduced, and the proportion of scripts in-

creased. This implies that the original RAG method could not adequately reflect the topic

of the chunks, leading to the retrieval of irrelevant chunks. After applying the semantic

splitter, it is more likely to find relevant content from the technical documents. Compared

to irrelevant content, the scripts provide more substantial assistance.

Data renovation focuses on refreshing the text within predefined chunks, so it is ex-

pected that the changes in data proportions would not be substantial. This technique helps

the chunks to be more focused on specific topics. Figure 5.29 shows that the proportion

of API references increased while the proportion of script references decreased. Despite

the decrease in the proportion of the most beneficial reference source, scripts, the perfor-

mance ratings were maintained or even improved, indicating the usefulness of the data

renovation method. However, improving the ”post-renovation” validation process will be

crucial for further enhancements.

Figure 5.29: Data Renovation - Distribution of Reference in RAG

As seen in Table 5.11, the application of data renovation consistently results in a

decrease in the proportion of manual references, a significant increase in the proportion

of API references, and a decrease in the proportion of script references. The decrease in
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the proportion of high-value script references, yet maintaining or improving performance

ratings, suggests that data renovation effectively helps the data embedding to reflect its

intended content better.

After script augmentation, the proportion of script references increased as shown in

Figure 5.30, since the augmented scripts were included. However, despite the increased

proportion, there was a significant decline in performance. This suggests that while the

augmented scripts add some novelty based on the original scripts, their relative value is

much lower. Because the similarity between pre- and post-augmentation scripts is gen-

erally high, the RAG process has a high likelihood of referencing either script, leading

to redundant use of reference slots. This observation indicates that instead of referenc-

ing similar scripts, it is more beneficial to reference different scripts, even if they are not

highly relevant, to improve performance.

Figure 5.30: Script Augmentation - Distribution of Reference in RAG

5.2.2 Prompt Techniques

Next, we examine the impact of prompt techniques on the proportion of RAG ref-

erence data. It is anticipated that prompt techniques should not significantly affect the

proportion of RAG reference data. The main reason is that the query remains the same,

and any differences arise only from the slightly different script summaries generated by us-
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ing different prompt techniques. These summaries become the subsequent queries, hence

only slightly influencing the results. Figures 5.31 and 5.32 show that the proportion dif-

ferences before and after using the prompt techniques are minimal. This indicates that the

performance variations are related to the prompt technique itself, rather than the data.

Figure 5.31: IKEC - Distribution of Reference in RAG

Figure 5.32: ZCoT - Distribution of Reference in RAG
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Chapter 6 Conclusions

We propose four constructive components to improve RAG performance for Large

Language Models (LLMs) in specific-domain problems: semantic splitter, data renova-

tion, script augmentation, and IKEC. Additionally, we reference one existing constructive

component, ZCoT, to facilitate comparison with current methods. Semantically segment-

ing text and renovating content with high LLM confidence levels facilitate the improve-

ment of topic-focused embeddings during the data retrieval process for RAG. The novel

application of semantic splitter and data renovation techniques to enhance embeddings at

the data source level is particularly innovative.

The effectiveness of these contributions has been validated through a comprehensive

evaluation involving a panel of 28 domain experts and the analysis of 187 pairwise com-

parisons. The results demonstrate that the semantic splitter and data renovation compo-

nents notably enhance the code generation performance for RedHawk-SC in MapReduce

applications within specialized domains. Specifically, the improvement attributed to these

components is quantifiably greater than the ZCoT (which shows a 6.68% win rate im-

provement). The semantic splitter component achieves a 21.26% win rate improvement,

and the data renovation component achieves an 8.60%win rate improvement, significantly

outperforming the ZCoT.
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6.1 Summary of Findings

Expert evaluations determined that three constructive components are effective for

domain-specific code generation. The performance improvements indicate that the tech-

niques proposed components can help RAG find more relevant chunks, suggesting that

data preprocessing techniques will be a promising direction.

Additionally, this study highlights that providing high-quality scripts is the most crit-

ical factor in improving performance, far outweighing the other three types of technical

documentation, such as manuals, APIs, andMapReduce. This indicates that in the domain

of code generation using large language models, providing practical, executable content

is much more effective than merely conceptual information.

6.2 Future Prospects

We aim to experiment with our approach on a wider variety of LLMs in the future,

particularly as recent models have demonstrated the ability to maintain exceptional perfor-

mance even with fewer parameters (e.g., Gemma2 [34]). Even though computational re-

sources may not be abundant, open-source models’ capabilities gradually align with those

of closed-source models, and the number of parameters is steadily decreasing. Thus, fo-

cusing on open-source models is feasible and crucial for advancing academic research in

this field.

In the task of Register Transfer Language (RTL) code generation, datasets designed

by human experts have shown that the average simulation pass rate for code generated

by LLMs stands at 5.30%, with an average of 26.70% [37]. Our research dataset, com-
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prising medium to difficult problems designed by experts, generates code for the more

resource-constrained RedHawk-SC, likely resulting in even lower simulation pass rates.

This poses significant challenges for evaluation, as any changes to processes or param-

eters necessitate reevaluation by human experts. Therefore, future work could involve

designing simpler datasets to increase the simulation pass rate from 50-60% to 80-90%,

with the entire evaluation process being automated. This represents a promising direction

for future efforts.

Data augmentation is crucial for data-scarce-specific domains and directly impacts

the generative performance. We can take inspiration from the data augmentation methods

used by RTLCoder [27] and Llama3.1 [6]. To address the scarcity of benchmarks and the

difficulty of testing, we could shift our generation target to Verilog, which has relatively

more resources and a standardized VerilogEval [26] benchmark. This would allow us to

compare our work with various studies focusing on RTL code.

From a technical standpoint, integrating fine-tuning with RAG [1] or GraphRAG [7]

could be explored. Additionally, using Compile and Link (CL) Call to leverage reflection

for self-correction could further enhance the performance of our research.

Our study concludes that post-renovation could also be a significant point for perfor-

mance improvement. Future efforts could focus on this aspect, utilizing the best combi-

nation of semantic splitter, data renovation, and ZCoT, and then evaluating their perfor-

mance.
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