
doi:10.6342/NTU202501568

 

 

	

國立臺灣大學管理學院資訊管理學系	

碩士論文	

Department of Information Management 

College of Management 

National Taiwan University 

Master’s Thesis 

 

運用內容相似度與大型語言模型提升轉推預測之表現	

Enhancing Retweet Prediction Performance via 

Content‑Based Similarity and Large Language Models 

 

賴煒奇 

Wei-Chi Lai 

 

指導教授：陳建錦 博士、何承遠 博士 

Advisors: Chien Chin Chen, Ph.D.; Cheng Yuan Ho, Ph.D. 
 
 

中華民國 114 年 6 月 

June 2025 



doi:10.6342/NTU202501568

 

 i 

 	



doi:10.6342/NTU202501568ii 

誌謝	

首先，謹向何承遠老師表達誠摯的感謝。兩年來，何老師從文獻回顧、實驗設

計、論文撰寫到口試簡報的準備，皆給予許多寶貴的建議，使我能順利完成論文。

同時，感謝陳建錦老師於資訊檢索與文字探勘課程中所傳授的知識與經驗，令我受

益匪淺。此外，感謝何承遠老師、陳建錦老師、盧信銘老師以及詹益禎老師在口試

過程中所提供的寶貴建議，對本研究的修正與精進助益良多。感謝實驗室的聖傑學

長協助電腦與網路的架設，使實驗得以順利進行。最後，衷心感謝我的父母及孜耘

在過程中的支持與鼓勵，讓我得以順利完成碩士班的學業。	

賴煒奇	謹識	

于國立臺灣大學資訊管理學研究所	

中華民國一一四年六月	



doi:10.6342/NTU202501568iii 

摘要	

近年來，人們習慣透過社群平台接收資訊或表達自身觀點，其中在	 Twitter 

(X.com)	平台上的「轉推」行為，是指分享一則已發佈的訊息，不僅可用以傳達使

用者立場，亦有助於強化個人觀點。轉推預測任務作為社群媒體中探討資訊傳播的

重要研究方向，旨在提升預測準確率，並藉由分析轉推行為，深入了解使用者偏好

與其背後的決策因素。為了提升預測表現，許多研究提出深度學習模型應用於轉推

預測任務。與傳統機器學習方法相比，深度學習不僅免除人工特徵工程的繁瑣程序，

亦能顯著提升預測效果。隨著近年來大型語言模型（LLM）的快速發展，其於文本

理解、摘要生成與推理等方面展現出強大能力，並廣泛應用於各種自然語言處理領

域。然而，目前針對大型語言模型在轉推預測任務中的應用仍屬少見，有待進一步

探討與發展。	

本文聚焦於以內容為基礎的使用者轉推行為預測，利用使用者與目標推文作者

的歷史發文紀錄，透過分析目標推文與這些發文紀錄之間的相似度，以預測使用者

是否會轉發該目標推文。本研究提出一個創新的預測框架，結合可進行輸入權重分

析的深度學習模型，識別對預測結果影響最顯著的輸入資料，並據此調整大型語言

模型的提示指令，以提升其在轉推預測任務中的表現。此方法對未來將大型語言模

型應用於類似任務具有重要的參考價值與貢獻。此外，本文所提出的基於內容相似

度的深度學習模型具備簡化的模型架構，能以直觀的方式進行特徵歸因分析，同時

展現出優異的預測效能與執行效率，為相關領域提供一個兼具解釋性與效能的實

用解決方案。	

關鍵字：轉推預測、深度學習、大型語言模型、特徵歸因、提示詞工程	
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Abstract 

In recent years, social media platforms have become central to how people receive 

information and express opinions. On Twitter (X.com), retweeting—sharing an existing 

post—serves both to express user stance and reinforce personal views. Retweet prediction 

is a key research area in understanding information diffusion, aiming to improve accuracy 

and reveal user preferences and decision-making factors. Deep learning models have been 

widely adopted for this task, offering superior performance over traditional machine 

learning by eliminating the need for manual feature engineering. With the rapid 

development of large language models (LLMs), their capabilities in text understanding 

and reasoning have been applied across various NLP tasks. However, their use in retweet 

prediction remains underexplored.  

This study focuses on content-based retweet prediction, using the posting histories 

of both the user and the tweet author to analyze similarity with the target tweet. We 

propose a novel framework that combines a deep learning model capable of input weight 

analysis with prompt refinement for LLMs, improving their predictive performance. This 

approach offers valuable insights for applying LLMs to similar tasks. Additionally, our 

proposed Similarity-Based deep learning model features a simplified architecture that 

enables intuitive feature attribution, strong prediction performance, and efficient 

execution—making it a practical and interpretable solution for related research. 

Keywords: Retweet prediction, deep learning, large language model, feature attribution, 

prompt engineering 
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Chapter 1: Introduction 

1.1 Background 

In recent years, social media platforms have become integral to how individuals 

access information and express opinions. The rapid spread of information across these 

platforms has made them a crucial media for marketing, entertainment, and politics. 

Consequently, predicting information cascades, or the diffusion of information, has 

gained significant attention. One fundamental mechanism facilitating this spread is 

retweeting, which allow users to share an existing post on social platforms, often to 

express thoughts and participate in topic discussions [1]. Given its central role in content 

diffusion, retweet behavior prediction has emerged as a critical task, with wide-ranging 

applications including opinion mining [2], stock prediction [3], real-time event detection 

[4], and content recommendation [5]. Consequently, accurate prediction of retweets not 

only addresses theoretical challenges in modeling information diffusion but also delivers 

practical value across various applications, while offering deeper insights into user 

behavior and preferences on social platforms. 

Retweet prediction tasks can be broadly categorized by granularity, focusing on 

either a global or local perspective. From a global perspective, the general characteristics 

of tweets are analyzed to evaluate their retweetability, forecast the overall popularity a 

post might achieve and modeling collective behavior, and address questions like "Why 

do some tweets get more retweets?". In contrast, the local perspective explores retweeting 

activity from an individual user’s standpoint, focusing on their decisions based on their 

profile and interests. It addresses questions such as "Which tweet will be retweeted by the 

user?" and "Who will retweet the target tweet?" [6].  
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1.2 Research Motivations and Objectives 

Various approaches, including machine learning and deep learning techniques, have 

been explored to address the task of retweet prediction. While deep learning models have 

achieved notable performance gains, their interpretability remains limited due to the 

"black-box" nature of neural networks [7]. Moreover, identifying the latent attitudes or 

behavioral patterns that drive a user's retweet decision remains a challenging task [6]. 

Previous studies [1], [8], [9] have primarily employed hyperparameter analysis or 

ablation study to investigate feature attribution—namely, the influence of individual input 

features to the model’s prediction. Although few works [10] have addressed the issue of 

training time on deep learning models for retweet prediction, the inherent complexity of 

these models hinders training efficiency. Furthermore, although recent studies [11], [12], 

[13], [14] have demonstrated the effectiveness of large language models (LLMs) in 

recommendation tasks—particularly in user profiling and content generation—few prior 

studies, to the best of our knowledge, have explored the application of LLMs to the 

specific task of retweet prediction. 

This study aims to improve the interpretability and training efficiency of deep 

learning models in retweet prediction by introducing an alternative approach to feature 

attribution. Furthermore, it evaluates the effectiveness of LLMs in this task, with a 

particular focus on enhancing their performance through prompt refinement. To this end, 

we propose a framework comprising two model categories: Similarity-Based and LLM-

Based models. The Similarity-Based models simplify prior deep learning methods by 

using cosine similarity between the target tweet and user representations, enabling clearer 

feature interpretation, competitive performance, and improved time efficiency. The LLM-

Based models utilize the language understanding and reasoning abilities of LLMs for 

prediction and self-explanation. Inspired by the proxy model approach [15], we 
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incorporate insights from Similarity-Based models to refine LLM prompt instructions, 

aligning the model’s attention with key predictive features and thereby enhancing overall 

performance. 

1.3 Research Scope 

In this research, we focus on the question: "Will a given tweet be retweeted by a 

specific user?" We adopt a local perspective on retweet prediction instead of a global 

perspective, which emphasizes overall tweet popularity—particularly viral content—

rather than individual behavior. However, most tweets are not viral, and prior studies have 

shown that tweet popularity is largely influenced by factors such as the author’s follower 

count [16]. In contrast, the local perspective places greater emphasis on the semantic 

relevance between tweets and users, making it more suitable for capturing personal 

interests and supporting applications like personalized recommendation. In line with prior 

studies [5], [8], [17], we concentrate on modeling user representations using content-

based features, thereby excluding retweet decisions from the influence of social network 

structures. Here, content-based features refer to information extracted from the textual 

content of tweets, while social features relate to user relationships and interaction patterns. 

To evaluate and generalize the proposed models, we conduct experiments on two 

datasets: a social media dataset (Twitter) and a scientific citation dataset (DBLP [18]). 

Both datasets contain rich textual content and reflect user interaction behavior—

retweeting in Twitter and citation in DBLP. The DBLP dataset is considerably larger but 

exhibits greater sparsity, as users typically have fewer posting or citation activities. While 

the DBLP dataset is entirely in English, the Twitter dataset is predominantly English with 

some multilingual entries. Nonetheless, both the embedding models used in the 

Similarity-Based methods and the LLMs employed in the LLM-Based methods are 

capable of processing multilingual content. 
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1.4 Research Contributions 

The key contributions of our work are summarized as follows: 

1. This work introduces Similarity-Based models featuring a simplified deep 

learning architecture that preserves competitive predictive performance while 

enhancing interpretability through more transparent feature attribution and 

improving execution time by at least 23% compared to baseline models. 

2. We explore LLM-Based models as an initial effort to apply LLMs to the retweet 

prediction task. In addition, we analyze LLM-generated self-explanations to 

identify which input features are deemed most influential during inference.  

3. We propose a novel framework that connects deep learning models with LLMs 

by combining weight analysis from Similarity-Based models with the self-

explanatory capabilities of LLMs. By designing different prompt variants that 

guide the LLM to focus on specific input feature relationships, we observe results 

that align closely with the weight analysis. This approach leads to a 10% 

improvement in F1 score on the Twitter dataset.  
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Chapter 2: Related Works 

Current research on retweet prediction employs various approaches. Many studies 

leverage features extracted from tweet content and user profiles, utilizing machine 

learning models such as logistic regression, support vector machines (SVM), and random 

forests. Others apply statistical methods, including the Hierarchical Dirichlet Process 

(HDP) [19] and Conditional Random Fields (CRF) [20]. Some researchers frame retweet 

prediction as a ranking problem, adopting techniques such as learn-to-rank approaches 

[21], matrix factorization [22], and collaborative ranking [23]. With the recent advances 

in deep learning models, there has been a growing focus on utilizing architectures 

including convolution models, recurrent models, attention-based models for their 

efficiency and ability to learn optimal features automatically [6]. Driven by advancements 

in LLMs in the past few years, research in the field of recommender systems has 

increasingly focused on methods that leverage the summarization and inference abilities 

of LLMs to capture user preferences, rank candidate tweets, or predict user behaviors [24]. 

2.1 Retweet prediction  

2.1.1 Machine Learning Approaches 

Previous machine learning research has explored various predictive models and 

features to enhance the performance of retweet prediction tasks. Firdaus et al. [5] develop 

retweet prediction models using XGBoost, Random Forest and matrix factorization, 

incorporating both explicit (hashtags, URLs, mentions) and implicit (topics, emotion, 

personality) features from users' tweets and retweets. They found that user behavior 

features significantly improved prediction accuracy. Using only past retweets for user 

profiling reduced processing time while maintaining comparable accuracy, highlighting 

the value of psychological and topical user traits in modeling information diffusion on 

Twitter.  
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Tang et al. [25] introduce IRBLRUS, a prediction model that frames individual 

retweet behavior as a multi-task learning problem. Each user is treated as a separate task, 

modeled by a personalized logistic regression function composed of a shared global 

parameter and a user-specific component. The model integrates a user similarity–based 

regularization term that encourages users with similar characteristics to have aligned 

prediction parameters. Similarity is computed from structural, profile, and content-based 

features—such as mutual follow relationships, demographic attributes, and topic 

distributions via LDA—enabling the model to leverage social proximity for more 

coherent and personalized retweet predictions. 

Luo et al. [21] address the challenge of identifying which followers are likely to 

retweet a given tweet by modeling it as a ranking problem. Using a learning-to-rank 

framework, they incorporated features such as retweet history, follower status, active 

times, and shared interests. Their experiments showed that the most effective predictors 

were past retweet behavior and interest similarity between users and tweets. The 

combined feature model significantly outperformed random and history-based baselines, 

indicating the importance of personal interaction history and content alignment in 

predicting retweeters. 

2.1.2 Deep Learning Approaches 

Recent studies have explored various deep learning models for retweet prediction by 

leveraging tweet content, user interests, and social interactions. Zhang et al. [8] propose 

an attention-based deep neural network (SUA-ACNN) for retweet prediction, integrating 

tweet content, user and author embeddings, user interests, and tweet-user similarity. 

Tweet content is encoded using a CNN, while user interests are extracted by clustering a 

user's historical tweets using K-means and selecting central tweets as interest 

representations. These are weighted using an attention mechanism. User and author 
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embeddings are learned as trainable continuous vectors during model training, capturing 

latent social features. All components are combined in a Softmax layer for prediction. 

Ma et al. [1] introduce AUT-MSAM, a masked self-attentive model for retweet 

prediction that integrates user interests and hot topics from users’ social exposures. It 

encodes user and author histories using a hierarchical attention memory network, 

capturing both word- and tweet-level semantics. Concurrently, a masked self-attention 

mechanism processes the recent tweets of a user’s followees to detect trending topics, 

applying a Transformer-based architecture with masking to emphasize relevant content. 

These components are combined and passed through a multi-layer perceptron (MLP) to 

predict retweet behavior. 

Huang et al. [17] addressed the problem of predicting which topics a user will join 

by proposing MACNN, a memory-based convolutional neural network with attention 

mechanism for predicting which social media topics a user will join in the future. The 

model utilizes two key inputs: the user’s posting history and topic participation history. 

Both are represented as tweet collections embedded in external neural memory. An 

attention mechanism identifies the most relevant content, and convolutional layers extract 

semantic features. These features are combined and passed through a multi-layer 

perceptron to predict future topic participation. 

2.2 Utilizing LLMs for Recommendation Tasks 

Since the emergence of LLMs such as ChatGPT, an increasing number of studies 

have investigated the application of LLMs to various recommendation tasks, employing 

zero-shot, few-shot, and fine-tuning strategies to evaluate their effectiveness. Kang et al. 

[26] investigate the capacity of LLMs to understand user preferences through the lens of 

user rating prediction, a foundational task in recommendation systems. The study 

systematically evaluates various LLMs across zero-shot, few-shot, and fine-tuning 
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paradigms. The methodology involves prompting LLMs with user interaction histories 

and item metadata to predict user ratings. The findings reveal that while zero-shot and 

few-shot LLMs underperform compared to traditional recommender systems that 

leverage user interaction data, fine-tuned LLMs demonstrate competitive performance 

and superior data efficiency. 

Liu et al. [27] explore the use of ChatGPT as a general-purpose recommender system 

without fine-tuning, applying it to five key tasks: rating prediction, sequential 

recommendation, direct recommendation, explanation generation, and review 

summarization. While ChatGPT lags behind traditional models in accuracy-based tasks, 

the study demonstrates its strong capability in producing explanations and summaries, as 

validated through human evaluations. These findings underscore ChatGPT’s potential for 

enhancing interpretability in recommendation systems, despite its current limitations in 

predictive accuracy. 

2.3 Advances in Interpreting and Evaluating Explanations in 
LLMs 

Recent research has explored various strategies to enhance the interpretability and 

evaluation of LLMs, focusing on both the generation and assessment of natural language 

explanations. Krishna et al. [15] propose AMPLIFY, a framework that enhances LLM 

performance by using post hoc explanation methods rather than human-annotated 

rationales. It generates natural language rationales by extracting key input features—

specifically, top-k tokens with the highest attribution scores—using gradient-based 

explanation techniques applied to a smaller proxy model such as BERT or GPT-2. These 

rationales are incorporated into in-context learning prompts to guide LLM predictions. 

Experiments demonstrate that AMPLIFY improves performance across reasoning and 

language tasks, highlighting the potential of post hoc explanations to enhance both 
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interpretability and effectiveness. 

Huang et al. [28] study ChatGPT’s ability to generate self-explanations for sentiment 

analysis, comparing them to traditional interpretability methods like occlusion and LIME. 

Using two prompting strategies—explain-then-predict and predict-and-explain—they 

evaluate explanation faithfulness and consistency. While self-explanations perform 

similarly to traditional methods on faithfulness metrics, they show low agreement in 

terms of which words are considered important, suggesting that LLMs may require new 

interpretability frameworks. 

Huang et al. [29] investigate the potential of ChatGPT to evaluate the quality of 

natural language explanations (NLEs) by comparing its assessments with human 

annotations across different granularity levels. Their method involves rating explanations 

from three benchmark datasets using clarity and informativeness scores, and analyzing 

alignment via classification and pairwise comparison tasks. The key contribution lies in 

demonstrating that ChatGPT approximates human judgment more accurately in coarse-

grained settings and comparative evaluations, highlighting its viability as a scalable, cost-

effective alternative to human evaluators in subjective quality assessment tasks. 
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Chapter 3: Methodology 

3.1 Problem Formulation 

The retweet prediction task addresses the problem of predicting whether a user will 

retweet a specific target tweet. In this study, we adopt a content-based approach, inspired 

by prior work [8], [17], deriving user representations solely from the textual content of 

tweets. This method excludes temporal information and social network structure. The 

input data for each user-tweet pair includes the following components: 

1. Target Tweet Content: This serves as the primary input for prediction. In the Twitter 

dataset, it includes the complete tweet text along with hashtags, mentions, and links. 

In the DBLP dataset, it corresponds to a paper abstract. This content provides the 

semantic context needed to assess its relevance to the user's interests. 

2. User’s Posting History: It represents the user's preferences and interests as inferred 

from prior activity. In the Twitter dataset, this includes past tweets—comprising text, 

hashtags, mentions, and links—excluding multimedia content. In the DBLP dataset, 

it consists of paper abstracts, reflecting the user's academic focus and research 

interests. 

3. User’s Retweet History: Like the posting history, this captures user preferences, but 

with a stronger emphasis on content the user actively engages with. In the Twitter 

dataset, it includes the textual content of retweeted tweets, while in the DBLP dataset, 

it is represented by citations of the user's papers, reflecting academic connections. 

As noted by Firdaus et al. [5], retweet history tends to play a more significant role 

in user profiling than posting history, as it more directly captures the content users 

actively choose engage with. 

4. Target Tweet Author’s Posting History: Analyzing the author’s prior activity 
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enhances the interpretation of the target tweet. In the Twitter dataset, where tweets 

are often brief and informal, the author’s posting history offers valuable context 

regarding their interests and communication style, aiding in understanding the 

current tweet. Likewise, in the DBLP dataset, the author’s previous publications—

captured through abstracts—provide insight into their research trajectory, enriching 

the evaluation of a new paper’s relevance. 

3.2 Overall Framework 

Building upon the AMPLIFY framework proposed by Krishna et al. [15], we propose 

a novel framework consisting of two distinct model categories: Similarity-Based models 

and LLM-Based models. The Similarity-Based models employ a simplified deep learning 

architecture that delivers competitive predictive performance while enabling 

interpretability through feature attribution. In contrast, the LLM-Based models represent 

one of the earliest applications of LLMs to the task of retweet prediction. As illustrated 

in Figure 3.1, both models generate predictions based on identical input features described 

in Section 3.1. However, the LLM-Based models offer the additional capability of 

providing self-explanations to justify their predictions. Moreover, interpretability insights 

obtained through weight analysis of the Similarity-Based models can be leveraged to 

refine prompts used in LLM-Based models, thereby enhancing their predictive 

performance. 

Our framework and AMPLIFY share a common objective: leveraging insights from 

a proxy model to refine prompts for LLMs to enhance their performance. As shown in 

Table 3.1, we adopt the Similarity-Based model as a proxy due to its proven effectiveness 

in retweet prediction and its relatively low computational cost. In contrast, the AMPLIFY 

framework employs models such as GPT-2 and BERT, which require backward 

propagation to compute gradients, thereby incurring significantly higher computational 



doi:10.6342/NTU202501568

 

 12 

overhead. A key distinction lies in the attribution approach: whereas AMPLIFY conducts 

word-level attribution for each instance to dynamically extract keywords, our framework 

emphasizes the four input components defined in Section 3.1 to maintain alignment with 

the weight analysis of the Similarity-Based model. This design results in a consistent and 

stable prompt structure across instances. 

 
Figure 3.1: Overview of the Proposed Framework 

Table 3.1: Comparative Analysis of AMPLIFY and the Proposed Framework 

 AMPLIFY Proposed Framework 

Task Reasoning and language 
understanding 

Retweet prediction 

LLM GPT-3, GPT-3.5 Gemini 2.0 Flash Lite 

Proxy Model GPT-2, BERT Similarity-Based Model 

Performance of 
Proxy Model 

Low High 

Method Gradient-based method Weight analysis 

Attribution 
Granularity 

Word-level (token-level) Input-component level 

Adaptability Dynamic Static 

Computation 
Requirement 

High Low 
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3.3 Similarity-Based Models 

Previous deep learning approaches [1], [8], [17] have employed various techniques 

to derive user representations based on their posting or retweet histories. However, the 

final prediction layer in these models is typically composed of an MLP layer, which 

processes either concatenated user representations or those derived from similarity scores.  

Inspired by the effectiveness of employing cosine similarity over user- or content-

related features in previous machine learning approaches [5], [25], we propose a 

streamlined deep learning architecture that solely utilizes similarity scores between the 

embedding of a target tweet and user-specific representations. These user representations 

are constructed through the aggregation of pretrained embeddings corresponding to 

individual tweets. This design facilitates a more interpretable framework for analyzing 

feature attribution, thereby enhancing the performance of LLM-Based models. As 

illustrated in Figure 3.2, representations corresponding to the user’s posting history, 

retweet history, and the author’s posting history are derived through straightforward 

aggregation of pretrained embeddings. Both the target tweet and each of these aggregated 

representations are independently passed through separate fully-connected layers. Cosine 

similarity is subsequently computed between each of the target tweet and the 

representations. This process yields six similarity scores, which are concatenated and fed 

into an MLP. The MLP comprises a hidden layer with ReLU activation, followed by an 

output layer with two units. A Softmax function is then applied to the output layer to 

generate probabilities for binary classification.  
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Figure 3.2: Architecture of Similarity-Based models 

While earlier approaches commonly derived sentence embeddings by aggregating 

word embeddings from pretrained models such as Word2Vec [30] or GloVe [31], recent 

advancements [32] highlight the performance of Transformer-based embedding models. 

In this study, we employ the widely used all-MiniLM-L6-v2 model to generate 

embeddings for individual tweets. A comparative analysis of traditional encoding 

techniques—including TF-IDF and LDA—and other Transformer-based embeddings is 

presented in Section 4.7.2. Additionally, in Section 4.7.3, we evaluate the effectiveness 

of various aggregation methods—specifically averaging, clustering, and attention 

mechanisms—in order to identify the most appropriate approach for constructing 

comprehensive user representations. 
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3.4 LLM-Based Models 

Recent progress in LLMs offers new possibilities for examining retweet prediction 

performance and interpretability. Despite emerging LLM-based studies on engagement 

[33] and response prediction [34], our proposed LLM-Based models represent an early 

exploration of LLMs for retweet prediction. As shown in Figure 3.3, LLM-Basic directly 

utilizes the input data defined in Section 3.1 to generate retweet predictions based on 

prompt instruction A (Appendix A). To ensure alignment with Similarity-Based models, 

the prompt instruction A emphasizes content and semantic similarity within the input data, 

leveraging the natural language understanding capabilities of LLMs for this task. 

A key distinction between the LLM-Basic model and the Similarity-Based models 

lies in their approach to user representation. While the Similarity-Based models aggregate 

tweet embeddings to construct user profiles, the LLM-Basic model relies on direct 

semantic similarity comparisons. To evaluate the impact of explicitly constructing user 

representations for guiding the LLM's attention toward salient themes and entities, we 

introduce the LLM-Modular model, as illustrated in Figure 3.4. This model employs a 

summarization component (Appendix B.1) to extract user preferences from historical 

tweets and retweets, thereby mirroring the aggregation strategy used in the Similarity-

Based models to construct user representations. Subsequently, predictions are generated 

using Instruction A. Moreover, the LLM-Modular model articulates user preferences in 

natural language, offering greater interpretability for domain experts compared to the 

latent vector representations used in Similarity-Based approaches. This design choice 

supports downstream applications such as content recommendation, trend forecasting, 

and advertisement campaign optimization. 
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Figure 3.3: Architecture of LLM-Basic 

 
Figure 3.4: Architecture of LLM-Modular 

We leverage the DSPy library [35] to implement structured and declarative prompts 

with defined input/output fields and task-specific instructions, further adapted in Section 

4.6.3 based on weight analysis of Similarity-Based models. As shown in Table 3.2, the 

input consists of four components outlined in Section 3.1. The output includes the 

predicted class along with a self-explanation, which consists of a paragraph-length 

rationale and the identification of the most influential input feature contributing to the 

LLM’s prediction. To ensure consistency with the weight analysis of Similarity-Based 

models, the most_important_input field is restricted to a predefined set of six 

relationships among the four input elements. 
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Table 3.2: Input and Output Field Definitions 

 Field name Data type 

Input Fields target_tweet str 

user_retweet List[str] 

user_tweet List[str] 

author_tweet List[str] 

Output Fields prediction Literal[True, False] 

explanation str 

most_important_input Literal[ 
"target_tweet and user_tweet", 

"target_tweet and user_retweet",  
"target_tweet and author_tweet",  
"user_tweet and user_retweet",  
"user_tweet and author_tweet",  

"user_retweet and author_tweet" 
] 

 

3.5 Feature Attribution of Similarity-Based Models 

To further enhance the performance of LLM-Based models and leverage insights 

from Similarity-Based models for prompt refinement, we focus on feature attribution—

the process of identifying the input features that most significantly influence a user's 

decision to retweet. Traditional machine learning approaches rely on hand-crafted 

features for users and tweets, enabling straightforward assessment of feature importance 

through model-assigned weights.  

In contrast, deep learning models employ high-dimensional vector representations, 

making it more difficult to isolate and interpret the influence of individual features. To 

bridge this gap, previous deep learning approaches [1], [8], [9] have commonly relied on 

ablation study to assess the significance of different features. The proposed Similarity-

Based models, depicted in Figure 3.2, employ a simplified architecture to address this 

issue. These models take cosine similarity scores between various input representations 
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as input to the predictor, enabling clearer analysis through a direct examination of the 

predictor’s weights. 

3.5.1 Weight Analysis for Similarity-Based Models 

Given the inherently non-linear nature of predictors in Similarity-Based models, we 

apply an approximation technique that substitutes the MLP predictor with a single linear 

layer. This allows for direct inspection of the learned weights to identify which inputs 

most strongly influence the classification outcome. The approximated predictor is 

modeled as a linear transformation producing two outputs, y0	and y1, which represent the 

predicted probabilities for class 0 (not retweet) and class 1 (retweet), respectively. We use 

a two-dimensional output with a Softmax function instead of a one-dimensional output 

with a sigmoid function to allow for future extensions, such as adapting the model to 

downstream tasks that require multi-class classification. 

As shown in equations (1), (2) and (3), the class corresponding to the higher value 

between y0	and y1 is selected as the predicted label. The model takes six input features, 

denoted as x1 to x6, each associated with a corresponding weight in the formula. 

 𝒚𝟎 = 𝒘𝟏𝒙𝟏 +𝒘𝟐𝒙𝟐 +𝒘𝟑𝒙𝟑 +𝒘𝟒𝒙𝟒 +𝒘𝟓𝒙𝟓 +𝒘𝟔𝒙𝟔 + 𝒃 (1) 
 𝒚𝟏 = 𝒘𝟏

* 𝒙𝟏 +𝒘𝟐
* 𝒙𝟐 +𝒘𝟑

* 𝒙𝟑 +𝒘𝟒
* 𝒙𝟒 +𝒘𝟓

* 𝒙𝟓 +𝒘𝟔
* 𝒙𝟔 + 𝒃* (2) 

 

1. x1: Cosine similarity between the target tweet and the user’s posting history. 

2. x2: Cosine similarity between the target tweet and the user’s retweet history. 

3. x3: Cosine similarity between the target tweet and the author’s posting history. 

4. x4: Cosine similarity between the user’s posting history and the user’s retweet history. 

5. x5: Cosine similarity between the user’s posting history and the author’s posting 

history. 

6. x6: Cosine similarity between the user’s retweet history and the author’s posting 

history. 

𝐂𝐥𝐚𝐬𝐬 = 𝑪𝒍𝒂𝒔𝒔 𝒚𝟎,   𝒊𝒇 𝒚𝟎 ≥ 𝒚𝟏
𝑪𝒍𝒂𝒔𝒔 𝒚𝟏,   𝒊𝒇 𝒚𝟎 < 𝒚𝟏

 (3) 
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3.5.2 Prompt Refinement and Self‑Explanation of LLM‑Based 
Models 

The prompt refinement strategy directs the LLM to focus on the most influential input 

relationship—one of x1 to x6—identified through corresponding weight analysis. For 

instance, if w1 exhibits the largest absolute value, indicating that the relationship between 

the target tweet and the user's posting history has the greatest impact on the prediction, a 

targeted prompt is appended to the original Instruction A to form Instruction A.1 

(Appendix A.1) as below: 

Your ONLY task is to determine the semantic relationship between a target tweet and a 

specific user's past tweet history to predict retweet likelihood. 

IMPORTANT: Focus EXCLUSIVELY on the relationship between the target tweet and 
the user's tweet history. Other data points are irrelevant to your analysis. 

Remember: The ONLY relationship that matters is between the target tweet and the 
user's tweet history. Disregard any other information that does not directly inform this 
specific relationship. 

To align with the weight analysis performed in the Similarity-Based models, we 

require the LLMs to produce two additional outputs for each prediction, as illustrated in 

Table 3.2: an explanation and the identification of the most important relationship 

between input features. The explanation is a brief paragraph justifying the LLM’s 

prediction. The most important relationship is selected from the six predefined input 

feature pairs outlined in Section 3.5.1, with the LLM instructed to choose one from this 

set. This approach enables us to examine which input relationship most strongly 

influences the LLM’s decision, allowing for targeted refinement of the prompt 

instruction—analogous to adjusting predictor weights in the Similarity-Based models. 
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3.6 Comparison of Similarity-Based and LLM-Based Models  

A detailed comparison of the two proposed methods is presented in Table 3.3. Both 

models utilize the raw text of tweets as input; however, the Similarity-Based model 

explicitly transforms the input into pretrained embeddings. While both approaches 

produce binary predictions, the LLM-Based models additionally generate self-

explanations to facilitate further analysis. Feature attribution analysis is conducted for 

both modeling approaches. In the case of the Similarity-Based models, we utilize ablation 

study and weight analysis to evaluate the contribution of individual input features. For 

the LLM-Based models, feature attribution is assessed through analysis of the generated 

self-explanations. 

Table 3.3: Comparison of Similarity-Based models and LLM-Based models 

Aspect Similarity-Based models LLM-Based models 

Input data Raw text Raw text 

User Representation 
Construction 

Aggregated embeddings Textual summarization 

Feature Comparison 
Method 

Cosine similarity Natural language reasoning 

Prediction 
Mechanism 

MLP with ReLU and Softmax Prompt-based binary 
classification 

Output Binary classification Binary classification and self-
explanations 

Performance 
Sensitivity 

Depends on embedding and 
aggregation choice 

Depends on prompt design and 
LLM capabilities 

Feature Attribution 
Analysis 

Ablation study and weight 
analysis 

Self-explanation analysis 
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Chapter 4: Experiments 

4.1 Dataset Construction 

The proposed methods were evaluated on two real-world datasets—Twitter (X.com) 

and DBLP—to assess the generalization capability of the models. The Twitter dataset was 

collected over a three-month period (March 1 to May 31, 2024). To ensure diversity in 

user interests, seed users were randomly selected from various topical domains, including 

sports, politics, business, cooking, and nature. The followees of these seed users were 

subsequently crawled to construct a representative set of user communities. The DBLP 

dataset [18], a publicly available citation network, contains rich textual content and 

citation interactions analogous to user retweets, making it a common benchmark in 

information cascade studies [36], [37], [38]. Each research paper includes an abstract, 

authors, publication year, venue, and title. To facilitate alignment with the structure of 

social media data, researchers were mapped to users, abstracts to tweets, citations to 

retweets, and co-authorship relationships to followee connections.  

For the Twitter dataset, only tweets containing more than five words were considered. 

To filter out likely fake or inactive accounts, users were required to have more than 20 

followees and followers, and to have posted between 50 and 3,000 tweets during the 

three-month observation period. Retweets were included only if the author of the original 

tweet was also present in the dataset. Although 164,284 retweets were initially collected, 

the majority were excluded based on this criterion. For the DBLP dataset, the following 

filtering criteria were applied: each paper—treated analogously to a tweet—was required 

to have both an abstract and a title, and to be published between 2000 and 2017. 

Furthermore, each author—considered as a user—was required to have published at least 

five papers in each of the two time periods: 2000–2011 and 2012–2017. This temporal 

partitioning aligns with the Twitter dataset setup, where the earlier period (2000–2011) is 
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used to model user preferences. Detailed statistics for the DBLP dataset are provided in 

Table 4.1. 

Table 4.1: Statistics of Twitter and DBLP dataset 

Dataset Number of 
users 

Number of tweets 
and retweets 

Size of 
training set 

Size of 
validation set 

Size of 
testing set 

Twitter 2,514 183,332 9,440 2,023 2,023 

DBLP 16,667 488,088 11,200 2,400 2,400 

 

Following the experiments of Firdaus et al. [5], posting and retweet history from the 

first two months were employed to model user preferences, while the final month's data 

was partitioned into training, validation, and testing subsets. For the Twitter dataset, 6,743 

positive retweets from the third month were paired with an equal number of negative ones. 

As suggested by previous research [1], [5], [8], negatives were selected from a user's 

timeline and consisted of tweets by followees during the same period that were not 

retweeted. For the DBLP dataset, 8,000 citations were selected from the third period as 

positive instances, with an equal number of negative instances drawn from papers 

published in the same year for balance. Although retweet prediction typically samples 

negatives from a user's followees (i.e., coauthors), this constraint was relaxed to account 

for citations to non-coauthors. The positive and negative retweets from the third period 

of both datasets are partitioned into training, validation, and testing sets using a 70%, 15%, 

15% split, respectively. 

4.2 Experiment Configuration 

All experiments were conducted on a local machine equipped with a 13th Generation 

Intel® Core™ i5-13400F processor operating at 2.50 GHz, comprising 10 cores. The 

system was also equipped with an NVIDIA GeForce RTX 3050 GPU with 8 GB of 

dedicated video memory. It had 64 GB of DIMM RAM and a total storage capacity of 

954 GB. The operating system used was Windows 10 Education. The implementation was 
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carried out using Python with the PyTorch framework, and Visual Studio Code was 

employed as the primary development environment. Additionally, Gemini 2.0 Flash Lite 

was accessed via API and utilized as the LLM for both summarization and prediction 

tasks. 

4.3 Evaluation metrics 

To evaluate the performance of the proposed models, we employ widely adopted 

metrics from previous studies, including accuracy, precision, recall, and F1 score [6]. 

Among these, recall is critical in many retweet prediction tasks, as it reflects the model’s 

capacity to identify a greater number of actual retweets [5]. However, certain prompt 

instructions tend to bias LLMs toward generating a higher number of positive predictions, 

resulting in elevated recall but reduced precision. This trade-off undermines the overall 

reliability of the predictions. Therefore, we emphasize the F1 score as a more balanced 

and informative metric for evaluation. 

4.4 Baseline Models 

1. Random: In this approach, the decision to retweet or not is made randomly for 

each tweet, without taking into account the tweet content, user profile, or author 

information. Given that retweet prediction is formulated as a binary classification 

task, the expected values for accuracy, precision, recall, and F1 score are all 

approximately 50%, assuming a balanced dataset. 

2. SUA-ACNN: We implemented the method proposed in [8], which integrates user 

and author information with attention mechanisms for retweet prediction. The 

model utilizes Word2Vec to generate word embeddings and applies convolutional 

neural networks (CNNs) to encode the content of tweets. Tweets of a user are then 

clustered into a predefined number of n clusters using the K-means algorithm and 

extract a fixed number of central tweets to represent the user’s interest. An 
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attention-based module then assigns attention weights to the most relevant 

clusters. User embeddings are randomly initialized and jointly trained with the 

model. To enhance predictive accuracy, a similarity score between the user 

interest representation and the target tweet is computed and concatenated with the 

user, author, and tweet embeddings as input to the final prediction layer. 

3. MACNN: We implemented the method proposed in [17], adapting it for the 

retweet prediction task. Since the original model predicts user engagement with 

a topic, we restructured the framework by replacing the target topic with tweets 

posted by the author, and redefining the topic vector as the target tweet. MACNN 

combines two main components: posting history and participation history. For 

both, CNNs extract useful representations from tweet sets, while an external 

memory module retrieves the most relevant content. Specifically, the number of 

randomly selected tweets for each user or topic is set to 20. An attention 

mechanism assigns higher weights to important tweets. The model then measures 

similarity between users and topics, combines the features, and uses a multilayer 

perceptron to generate the final prediction.  

4.5 Retweet Prediction Performance 

Tables 4.2 and 4.3 present a comparative performance analysis of the Similarity-

Based model, LLM-Based models, and baseline methods across both datasets. The 

Similarity-all-MiniLM-L6-v2 model employs the all-MiniLM-L6-v2 embedding model 

to encode tweets and constructs user representations by averaging the corresponding 

tweet embeddings. Despite its relatively simple architecture, the Similarity-all-MiniLM-

L6-v2 model demonstrates competitive performance, comparable to MACNN and lower 

than SUA-ACNN. These results underscore the model's effectiveness in predicting 

retweet behavior while maintaining architectural simplicity. A more detailed evaluation 
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of different embedding models and user representation strategies is provided in Section 

4.7.  

Table 4.2: Comparison results on the Twitter dataset 

Model Accuracy Precision Recall F1 score 

Random 49.0% 48.6% 50.6% 49.6% 

SUA-ACNN 94.5% 93.3% 95.7% 94.5% 

MACNN 91.3% 89.4% 93.6% 91.5% 

Similarity-all-MiniLM-L6-
v2 

90.7% 92.3% 88.6% 90.4% 

LLM-Basic (A.5) 70.1% 65.1% 88.2% 74.9% 

LLM-Modular 67.6% 61.8% 90.5% 73.4% 

 
Table 4.3: Comparison results on the DBLP dataset 

Model Accuracy Precision Recall F1 score 

Random 50.2% 50.6% 51.9% 51.3% 

SUA-ACNN 91.3% 95.5% 86.91% 91.0% 

MACNN 87.4% 98.1% 76.6% 86.0% 

Similarity-all-MiniLM-L6-
v2 

87.5% 87.3% 88.1% 87.7% 

LLM-Basic (A.2) 78.9% 82.9% 73.1% 77.7% 

LLM-Modular 78.4% 76.7% 82.1% 79.3% 

 

For the LLM-Based models, LLM-Basic (A.5) and LLM-Basic (A.2) refer to variants 

utilizing prompts defined in Appendices A.5 and A.2, respectively. These prompts guide 

the model to make retweet predictions based on specific semantic relationships, as further 

explained in Section 4.6.3. In comparison to deep learning models, the LLM-Based 

approaches generally exhibit inferior performance, aligning with the findings of Kang et 

al. [26], which indicate that LLMs without fine-tuning underperform traditional 

supervised methods in user rating prediction tasks. Nonetheless, the LLM-Based models 

consistently achieve F1 scores above 70%, demonstrating their potential effectiveness for 

retweet prediction in a zero-shot setting.  
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In addition, the LLM-Modular model does not demonstrate significant performance 

improvement over the LLM-Basic variants, indicating that the incorporation of an 

additional summarization module to construct user preferences for retweet prediction 

remains an open research question. While deep learning models, including Similarity-all-

MiniLM-L6-v2, perform worse on the DBLP dataset compared to the Twitter dataset—

potentially due to DBLP's data sparsity and longer textual content limiting the 

effectiveness of user representation—the LLM-Based models achieve better performance 

on the DBLP dataset. This suggests that LLMs exhibit stronger capabilities in handling 

sparse data and longer textual inputs compared to deep learning models. 

4.6 LLM Prompt Refinement through Feature Attribution 

For the Similarity-Based models, an ablation study is first conducted—following 

prior approaches [1]—to evaluate the contribution of individual input features. 

Subsequently, a weight analysis is performed to assess the significance of relationships 

among different input features. The insights gained from these analyses are then used to 

guide the refinement of prompts for the LLM-Based models. 

4.6.1 Ablation Study of Similarity-Based Models 

As outlined in Section 3.1, four input features are used for retweet prediction: the 

target tweet, the user’s posting history, retweet history, and the posting history of the target 

tweet’s author. The Similarity-all-MiniLM-L6-v2 model is first evaluated using all 

features, followed by ablation studies removing one feature at a time. Results in Tables 

4.4 and 4.5 show that excluding either the user’s posting or retweet history does not 

significantly degrade performance, indicating these features can compensate for each 

other in constructing user representations. 

The model shows notable performance degradation on the Twitter dataset when the 

author's posting history is removed, while excluding the tweet has little impact. This may 
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be due to the often brief or ambiguous nature of tweets, as noted in Section 3.1, making 

the author's posting history essential for inferring context. Additionally, users may rely 

more on their perception of the author than on a single tweet's content. In contrast, on the 

DBLP dataset, removing the target tweet causes a greater performance drop, whereas the 

author’s posting history has minimal effect. This difference likely reflects dataset 

characteristics: academic abstracts are typically detailed and structured, facilitating topic 

identification, and citations are generally based on content rather than author familiarity. 

Table 4.4: Ablation studies on the Twitter dataset 

Removed feature Accuracy Precision Recall F1 score 

All features kept 90.7% 92.3% 88.6% 90.4% 

Target tweet 90.2% 93.3% 86.4% 89.7% 

User’s posting history 90.1% 90.3% 89.5% 89.9% 

User’s retweet history 91.2% 93.1% 88.7% 90.9% 

Author’s posting history 72.9% 72.7% 72.4% 72.5% 

 
Table 4.5: Ablation studies on the DBLP dataset 

Removed feature Accuracy Precision Recall F1 score 

All features kept 87.5% 87.3% 88.1% 87.7% 

Target tweet 83.6% 83.0% 84.8% 83.9% 

User’s posting history 87.2% 87.2% 87.4% 87.3% 

User’s retweet history 86.2% 82.9% 91.5% 87.0% 

Author’s posting history 85.5% 83.5% 88.9% 86.1% 

 

4.6.2 Weight Analysis Results for Similarity‑Based Models 

To assess the contribution of input features in the Similarity-Based model, the non-

linear MLP is replaced with a linear transformation. The performance of the original 

Similarity-all-MiniLM-L6-v2 model is then compared with its linear variant, as shown in 

Tables 4.6 and 4.7. The results indicate that this modification does not degrade 

performance and even leads to slight improvements on the Twitter dataset. 
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Table 4.6: Comparison results between linear and non-linear predictor on the Twitter dataset 

Method Accuracy Precision Recall F1 score 

Non-linear 90.7% 92.3% 88.6% 90.4% 

Linear 92.0% 91.3% 92.7% 92.0% 

 
Table 4.7: Comparison results between linear and non-linear predictor on the DBLP dataset 

Method Accuracy Precision Recall F1 score 

Non-linear 87.5% 87.3% 88.1% 87.7% 

Linear 87.3% 90.8% 83.4% 86.9% 

 

Next, we examine the weights of the six input features described in Section 3.5.1. As 

shown in Table 4.8, weights w3, w5, and 𝑤6 have relatively larger absolute values, 

indicating greater influence on retweet prediction for the Twitter dataset. All three 

correspond to the author’s posting history, consistent with the ablation study where their 

removal caused the greatest performance drop. However, all three weights associated with 

class y₁ are negative, indicating that a higher similarity between the user's representation 

and the author's does not contribute to a positive retweet outcome, which is contrary to 

expectations. 

Table 4.8: Weight analysis on the Twitter dataset 

class w1 w2 w3 w4 w5 w6 b 

y0 -1.58 -0.07 2.42 0.25 3.32 2.62 0.27 

y1 1.52 0.27 -2.67 -0.52 -3.06 -2.58 -0.72 

 

As shown in Table 4.9, weight 𝑤2 as the largest absolute value, indicating that the 

similarity between the target tweet and the user's retweet history has the greatest impact 

on retweet prediction in the DBLP dataset. This aligns with the ablation study, where 

removing the target tweet resulted in the most significant performance decline. 
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Table 4.9: Weight analysis on the DBLP dataset 

class w1 w2 w3 w4 w5 w6 b 

y0 -1.07 -4.18 -2.46 0.07 1.01 -2.67 1.03 

y1 1.11 4.23 2.46 -0.01 -1.18 2.61 -1.02 

 

4.6.3 Leveraging Weight Analysis to Refine LLM Prompts  

In the following experiments, prompt instructions A and A.1 to A.6 (see Appendices 

A and A.1–A.6) are utilized to direct the LLM's attention toward specific input 

relationships for retweet prediction, as detailed in Section 3.5.1. Instruction A serves as 

the baseline and does not specify which input relationships to emphasize, allowing the 

LLM to make its own determination. In contrast, instructions A.1 to A.6 explicitly direct 

the LLM to focus on relationships x1 to x6, respectively, which represent the six possible 

relationships among the four input components. As discussed in Section 3.4, the LLM 

outputs one of these six relationships as the most influential factor for its prediction in 

each instance. The distribution of input importance derived from these predictions is 

presented in Tables 4.12 and 4.15. 

In the Twitter dataset, the LLM guided by instruction A primarily focuses on x2, 

which captures the relationship between the target tweet and the user’s retweet history. 

However, the associated weight w2 for the y1 class is relatively low in the weight analysis, 

which may partially explain its relatively lower performance. Instruction A.5, 

corresponding to the highest absolute weight w5, achieves the highest recall and F1 score 

among all configurations, marking a 10% improvement in F1 score compared to 

instruction A. As shown in Table 4.11, instruction A.3 yields a higher rate of false positive 

predictions and exhibits the most degraded performance. This result is conceptually 

consistent, as the relationship between the target tweet and the author's own posting 

history is arguably less pertinent to predicting the user's retweet behavior. Nonetheless, 

several inconsistencies are observed. Despite the smaller absolute values of w2 and w4 in 
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the weight analysis, the corresponding Instructions A.2 and A.4 exhibit only marginal 

performance degradation. 

Table 4.10: Comparison of original and refined instructions on the Twitter dataset 

Model Accuracy Precision Recall F1 score 

Instruction A 67.8% 70.9% 59.4% 64.6% 

Instruction A.1 70.1% 66.5% 79.8% 72.6% 

Instruction A.2 70.6% 67.6% 77.9% 72.4% 

Instruction A.3 55.2% 53.1% 82.3% 64.5% 

Instruction A.4 66.0% 61.1% 86.3% 71.5% 

Instruction A.5 70.1% 65.1% 88.2% 74.9% 

Instruction A.6 69.0% 64.6% 82.6% 72.5% 

 

Table 4.11: Confusion matrices of original and refined instructions on the Twitter dataset 

Model True Positive False Negative False Positive True Negative 

Instruction A 595 407 244 777 

Instruction A.1 800 202 403 618 

Instruction A.2 781 221 374 647 

Instruction A.3 825 177 730 291 

Instruction A.4 865 137 551 470 

Instruction A.5 884 118 473 548 

Instruction A.6 828 174 454 567 

 

Table 4.12: Distribution of input importance on the Twitter dataset 

Model x1 x2 x3 x4 x5 x6 

Instruction A 132 1,500 272 78 39 2 

Instruction A.1 1,896 127 0 0 0 0 

Instruction A.2 2 2,020 1 0 0 0 

Instruction A.3 4 10 2,009 0 0 0 

Instruction A.4 265 402 0 1,356 0 0 

Instruction A.5 101 44 47 0 1,654 177 

Instruction A.6 0 96 14 0 3 1,910 
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In the DBLP dataset, the LLM guided by instruction A automatically focuses on x1, 

x2 and x3, which correspond to positive weights in the weight analysis. This alignment 

contributes to its competitive performance relative to other variants. Instruction A.2, 

which directs the LLM to focus on x2—the relationship associated with the highest 

weight—achieves the best F1 score and accuracy among all configurations. Consistent 

with the findings from the Twitter dataset, instruction A.3 results in the highest number 

of false positive predictions and the poorest overall performance, due to its focus on a 

relationship that is conceptually unrelated to the user's retweet behavior. Some 

inconsistencies remain, however; although w4 exhibits relatively low absolute value in 

the weight analysis, the LLMs guided by the corresponding instructions still achieve 

competitive performance.  

Table 4.13: Comparison of original and refined instructions on the DBLP dataset 

Model Accuracy Precision Recall F1 score 

Instruction A 77.8% 79.1% 76.1% 77.6% 

Instruction A.1 77.3% 79.1% 74.6% 76.8% 

Instruction A.2 78.9% 82.9% 73.1% 77.7% 

Instruction A.3 61.8% 57.5% 92.6% 71.0% 

Instruction A.4 69.1% 63.6% 90.6% 74.7% 

Instruction A.5 75.4% 71.6% 84.8% 77.6% 

Instruction A.6 73.3% 69.0% 85.5% 76.4% 

 
Table 4.14: Confusion matrices of original and refined instructions on the DBLP dataset 

Model True Positive False Negative False Positive True Negative 

Instruction A 921 289 243 947 

Instruction A.1 903 307 238 952 

Instruction A.2 885 325 182 1,008 

Instruction A.3 1,121 89 827 363 

Instruction A.4 1,094 113 624 563 

Instruction A.5 1,026 184 407 783 

Instruction A.6 1,035 175 466 724 
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Table 4.15: Distribution of input importance on the DBLP dataset 

Model x1 x2 x3 x4 x5 x6 

Instruction A 405 823 974 93 101 4 

Instruction A.1 2,345 52 3 0 0 0 

Instruction A.2 33 2,361 3 3 0 0 

Instruction A.3 1 4 2,395 0 0 0 

Instruction A.4 360 590 7 1,431 3 3 

Instruction A.5 148 12 245 2 1,966 27 

Instruction A.6 4 48 70 1 26 2,251 

 

In conclusion, our approach of guiding the LLM to focus on the input relationship 

associated with the highest absolute weight in the weight analysis achieves the best 

performance across both datasets. While Instruction A—allowing the LLM to 

autonomously determine which input relationships to emphasize—effectively identifies 

influential features in the DBLP dataset and yields competitive results, our method offers 

more consistent performance, particularly in light of Instruction A’s relatively poor results 

on the Twitter dataset. Nonetheless, the observed weight analysis does not consistently 

correlate with the performance of the corresponding LLM prompts across both datasets, 

indicating potential areas for further refinement.  

4.7 Experimental Evaluation of Efficiency, Embedding Models, 
and User Representations 

4.7.1 Execution Time Analysis 

Tables 4.16 and 4.17 compare the execution times of various models on the training 

sets of two datasets: 2,023 instances for Twitter and 2,400 for DBLP. The proposed 

Similarity-Based models utilize a pre-encoding strategy in which tweets are processed 

using pretrained embedding models, and the resulting tensors are stored in external 

memory prior to training. In contrast, SUA-ACNN encodes tweets by applying 

convolutional layers to word embeddings and learns user embeddings through random 
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initialization during training. MACNN constructs tweet embeddings using a trainable 

word embedding matrix that is optimized during runtime. 

The pre-encoding strategy employed by the Similarity-Based models significantly 

reduces overall execution time by eliminating redundant computations during training 

and decreasing the number of trainable parameters through a simplified model 

architecture. Specifically, the Similarity-Based models achieve a reduction in total 

execution time ranging from 23% to 50% when compared to MACNN, and from 67% to 

78% compared to SUA-ACNN.  

Table 4.16: Comparison of training and testing durations on the Twitter dataset 

Model Encoding Time Training Time Testing Time Total Time 

Random 0 0 1s 1s 

SUA-ACNN 0 1hr 20m 13s 37s 1hr 20m 50s 

MACNN 0 22m 18s 15s 22m 33s 

Similarity-all-
MiniLM-L6-v2 

6m 55s 10m 23s 3s 17m 21s 

LLM-Basic 0 0 4m 46s 4m 46s 

LLM-Modular 0 0 18m 26s 18m 26s 

 
Table 4.17: Comparison of training and testing durations on the DBLP dataset 

Model Encoding Time Training Time Testing Time Total Time 

Random 0 0 1s 1s 

SUA-ACNN 0 1hr 5m 33s 46s 1hr 6m 19s 

MACNN 0 43m 26s 22s 43m 48s 

Similarity-all-
MiniLM-L6-v2 

5m 3s 16m 54s 5s 22m 2s 

LLM-Basic 0 0 7m 3s 7m 3s 

LLM-Modular 0 0 23m 52s 23m 52s 

 

In contrast, the LLM-Based models perform inference during the testing phase 

without prior training. Among these, the LLM-Modular model incurs higher execution 

time than the LLM-Basic model due to the additional summarization step. The LLM-
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Basic model requires only 0.15 to 0.2 seconds per prediction, making it suitable for 

practical applications. In contrast, the Similarity-Based model takes 0.5 to 0.6 seconds 

per prediction on average, but remains practical for many use cases. 

4.7.2 Embedding Model Analysis 

Tables 4.18 and 4.19 present a comparative analysis of various embedding models, 

including TF-IDF, LDA, and Sentence-Transformer approaches. In all cases, user 

representations are constructed by averaging the embeddings of their tweets, followed by 

classification using a Similarity-Based model. The results indicate that even relatively 

simple encoding methods, such as TF-IDF and LDA, can achieve competitive 

performance because they are capable of capturing the underlying semantic 

representations of tweets. Their lexical and topical features align well with the cosine 

similarity-based architecture of the Similarity-Based model, enabling effective content 

comparison and prediction.  

However, the methods construct embeddings from the posting and retweet history 

corpus, which may not be feasible in real-world scenarios with limited user data. In such 

cases, pre-trained embedding models offer a more practical solution for end-to-end 

predictions due to their ability to generate representations from minimal input. 

Table 4.18: Evaluation of embedding models on the Twitter dataset 

Embedding model Dimension Accuracy Precision Recall F1 score 

all-MiniLM-L6-v2 384 90.7% 92.3% 88.6% 90.4% 

paraphrase-MiniLM-
L3-v2 

384 90.1% 90.8% 89.2% 90.0% 

TF-IDF 24,261 91.8% 93.0% 90.2% 91.6% 

LDA 100 86.7% 84.3% 89.9% 87.0% 
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Table 4.19: Evaluation of embedding models on the DBLP dataset 

Embedding model Dimension Accuracy Precision Recall F1 score 

all-MiniLM-L6-v2 384 87.5% 87.3% 88.1% 87.7% 

paraphrase-MiniLM-
L3-v2 

384 83.4% 86.5% 79.4% 82.8% 

TF-IDF 40,745 78.0% 76.4% 81.6% 78.9% 

LDA 100 85.1% 84.1% 86.9% 85.5% 

 

4.7.3 User Representation Method Analysis 

 Tables 4.20 and 4.21 present a comparison of different methods for generating user 

representations using the same embedding model, all-MiniLM-L6-v2. The average 

method computes the mean of all tweet embeddings, while the clustered-average method 

averages the embeddings of the k central tweets selected through K-means clustering. The 

attention method, which combines embeddings using attention weights, performs worse 

on both datasets—likely due to limited data, which hinders effective learning of the 

attention mechanism. 

Table 4.20: Evaluation of user representation on the Twitter dataset 

Method Accuracy Precision Recall F1 score 

Average 90.7% 92.3% 88.6% 90.4% 

Attention 88.4% 87.1% 89.9% 88.5% 

Clustered-average 91.4% 92.4% 90.1% 91.2% 

 
Table 4.21: Evaluation of user representation on the DBLP dataset 

Method Accuracy Precision Recall F1 score 

Average 87.5% 87.3% 88.1% 87.7% 

Attention 84.0% 81.5% 88.3% 84.8% 

Clustered-average 87.0% 86.9% 87.2% 87.1% 
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Chapter 5: Conclusion and Future Work 

5.1 Conclusion 

In this research, the proposed Similarity-Based models exhibit competitive 

performance, reduce execution time by at least 23%, and offer more interpretable feature 

attribution owing to their simplified architecture. The results indicate that even using 

basic encoding methods such as TF-IDF or LDA yields strong predictive outcomes, 

highlighting the effectiveness of content-based similarity approaches for retweet 

prediction. Additionally, the models’ streamlined structure enables more accessible 

weight analysis of input relationships. This analysis reveals that relationships involving 

the author's posting history are more prominent in the Twitter dataset, whereas the 

connection between the target tweet and the user's retweet history is more influential in 

the DBLP dataset—findings that align with those from the ablation study. The most 

influential input relationships differ between datasets due to their inherent characteristics. 

On Twitter, users' retweet behavior tends to be influenced more by their perception of the 

author than by the content of an individual tweet. In contrast, citations in the DBLP dataset 

are generally driven by content relevance rather than author familiarity. 

This research presents one of the earliest applications of LLMs to retweet prediction 

and demonstrates the effectiveness of a novel framework that bridges the gap between 

deep learning models and LLMs through weight analysis of Similarity-Based models and 

the self-explanatory capabilities of LLMs. Multiple variants of prompt instructions were 

designed to guide the LLM’s attention toward influential input feature relationships. The 

results exhibit strong alignment with weight analysis findings, with a notable 10% 

improvement in F1 score between Instruction A and Instruction A.5 on the Twitter dataset. 

These findings highlight the potential of leveraging insights from traditional deep 

learning models to inform and optimize prompt engineering strategies for LLMs.  
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5.2 Future Work 

1. Although the proposed framework demonstrates effectiveness, a performance gap 

remains between the LLM-Based and Similarity-Based models. Furthermore, the 

inconsistency between the results of the LLM-Based models and the weight analysis 

highlights certain limitations. While conceptually similar to AMPLIFY [15], our 

approach applies uniform emphasis on a specific input feature relationship for each 

prompt. In contrast, AMPLIFY dynamically identifies instance-specific keywords 

prior to inference and integrates them into in-context learning prompts. Enhancing 

our framework to incorporate such dynamic prompt generation could better account 

for the variability in user behavior, where different subsets of input features may 

influence retweet decisions across users within the same dataset. Future work could 

explore replacing static weight analysis with a trained classifier that predicts the 

most influential input relationship for each user–retweet pair, thereby enabling 

dynamic and personalized interpretability. 

2. The Similarity-Based models achieve competitive performance despite excluding 

social network and temporal features, both of which are known to be important for 

understanding retweet behavior. Future work can incorporate these features to gain 

deeper insights into their influence on retweet prediction. Additionally, the capability 

of LLMs to process and leverage social network and temporal information should 

be further explored. 

3. The user preferences generated by the LLM-Modular model are primarily designed 

to enhance human interpretability; however, LLMs may not inherently represent 

users in such a structured format. Further research is needed to better understand 

how LLMs internally model user preferences and to evaluate the effectiveness of the 

additional summarization module in the context of the retweet prediction task.  
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Appendix 

Appendix A: Prompt Instruction for Retweet Prediction  
You are a social media analyst specializing in retweet prediction. Your primary task is to 
predict retweet based on given information. You should jointly consider the semantic 
relationships among all the given inputs. 

Consider the following: 

1. **Semantic Similarity Analysis:** Carefully compare the content — including topics, 
concepts, and viewpoints — of the related items, and identify meaningful overlaps or 
connections. 

2. **Content Pattern Recognition:** Analyze whether the content of the related items is 
aligned, with particular attention to recurring themes, perspectives, or subject matter. 

Your assessment should categorize the relationship as either: 

- Semantically related (likely to be retweeted) 

- Not semantically related (unlikely to be retweeted) 

Provide a brief explanation highlighting which semantic relationship was most 
influential in your decision.  
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A.1 Prompt Instruction Targeting x1 
You are a social media analyst specializing in retweet prediction. Your ONLY task is to 
determine the semantic relationship between a target tweet and a specific user's past 
tweet history to predict retweet likelihood. 

IMPORTANT: Focus EXCLUSIVELY on the relationship between the target tweet and 
the user's tweet history. Other data points are irrelevant to your analysis. 

Consider the following: 

1. **Semantic Similarity Analysis:** Carefully compare the content — including topics, 
concepts, and viewpoints — of the related items, and identify meaningful overlaps or 
connections. 

2. **Content Pattern Recognition:** Analyze whether the content of the related items is 
aligned, with particular attention to recurring themes, perspectives, or subject matter. 

Your assessment should categorize the relationship as either: 

- Semantically related (likely to be retweeted) 

- Not semantically related (unlikely to be retweeted) 

Provide a brief explanation highlighting ONLY the specific aspects of the target tweet 
that align or conflict with patterns in the user's tweet history. Explicitly state which 
semantic relationship was most influential in your decision. 

Remember: The ONLY relationship that matters is between the target tweet and the 
user's tweet history. Disregard any other information that does not directly inform this 
specific relationship. 
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A.2 Prompt Instruction Targeting x2 
You are a social media analyst specializing in retweet prediction. Your ONLY task is to 
determine the semantic relationship between a target tweet and a specific user's past 
retweet history to predict retweet likelihood. 

IMPORTANT: Focus EXCLUSIVELY on the relationship between the target tweet and 
the user's retweet history. Other data points are irrelevant to your analysis. 

Consider the following: 

1. **Semantic Similarity Analysis:** Carefully compare the content — including topics, 
concepts, and viewpoints — of the related items, and identify meaningful overlaps or 
connections. 

2. **Content Pattern Recognition:** Analyze whether the content of the related items is 
aligned, with particular attention to recurring themes, perspectives, or subject matter. 

Your assessment should categorize the relationship as either: 

- Semantically related (likely to be retweeted) 

- Not semantically related (unlikely to be retweeted) 

Provide a brief explanation highlighting ONLY the specific aspects of the target tweet 
that align or conflict with patterns in the user's retweet history. Explicitly state which 
semantic relationship was most influential in your decision. 

Remember: The ONLY relationship that matters is between the target tweet and the user's 
retweet history. Disregard any other information that does not directly inform this specific 
relationship. 
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A.3 Prompt Instruction Targeting x3 
You are a social media analyst specializing in retweet prediction. Your ONLY task is to 
determine the semantic relationship between a target tweet and its author's past tweet 
history to predict retweet likelihood. 

IMPORTANT: Focus EXCLUSIVELY on the relationship between the target tweet and 
its author's tweet history. Other data points are irrelevant to your analysis. 

Consider the following: 

1. **Semantic Similarity Analysis:** Carefully compare the content — including topics, 
concepts, and viewpoints — of the related items, and identify meaningful overlaps or 
connections. 

2. **Content Pattern Recognition:** Analyze whether the content of the related items is 
aligned, with particular attention to recurring themes, perspectives, or subject matter. 

Your assessment should categorize the relationship as either: 

- Semantically related (likely to be retweeted) 

- Not semantically related (unlikely to be retweeted) 

Provide a brief explanation highlighting ONLY the specific aspects of the target tweet 
that align or conflict with patterns in its author's retweet history. Explicitly state which 
semantic relationship was most influential in your decision. 

Remember: The ONLY relationship that matters is between the target tweet and its 
author's tweet history. Disregard any other information that does not directly inform this 
specific relationship.  
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A.4 Prompt Instruction Targeting x4 

You are a social media analyst specializing in retweet prediction. Your ONLY task is to 
determine the semantic relationship between a user’s tweet history and the user's 
retweet history to predict retweet likelihood. 

IMPORTANT: Focus EXCLUSIVELY on the relationship between the user’s tweet 
history and the user's retweet history. Other data points are irrelevant to your analysis. 

Consider the following: 

1. **Semantic Similarity Analysis:** Carefully compare the content — including topics, 
concepts, and viewpoints — of the related items, and identify meaningful overlaps or 
connections. 

2. **Content Pattern Recognition:** Analyze whether the content of the related items is 
aligned, with particular attention to recurring themes, perspectives, or subject matter. 

Your assessment should categorize the relationship as either: 

- Semantically related (likely to be retweeted) 

- Not semantically related (unlikely to be retweeted) 

Provide a brief explanation highlighting ONLY the specific aspects of the user’s tweet 
history that align or conflict with patterns in the user's retweet history. Explicitly state 
which semantic relationship was most influential in your decision. 

Remember: The ONLY relationship that matters is between the user’s tweet history and 
the user's retweet history. Disregard any other information that does not directly inform 
this specific relationship. 
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A.5 Prompt Instruction Targeting x5 
You are a social media analyst specializing in retweet prediction. Your ONLY task is to 
determine the semantic relationship between a user’s tweet history and an author's past 
tweet history to predict retweet likelihood. 

IMPORTANT: Focus EXCLUSIVELY on the relationship between the user’s tweet 
history and the author's past tweet history. Other data points are irrelevant to your 
analysis. 

Consider the following: 

1. **Semantic Similarity Analysis:** Carefully compare the content — including topics, 
concepts, and viewpoints — of the related items, and identify meaningful overlaps or 
connections. 

2. **Content Pattern Recognition:** Analyze whether the content of the related items is 
aligned, with particular attention to recurring themes, perspectives, or subject matter. 

Your assessment should categorize the relationship as either: 

- Semantically related (likely to be retweeted) 

- Not semantically related (unlikely to be retweeted) 

Provide a brief explanation highlighting ONLY the specific aspects of the user’s tweet 
history that align or conflict with patterns in the author's tweet history. Explicitly state 
which semantic relationship was most influential in your decision. 

Remember: The ONLY relationship that matters is between the user’s tweet history and 
the author's past tweet history. Disregard any other information that does not directly 
inform this specific relationship. 
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A.6 Prompt Instruction Targeting x6 
You are a social media analyst specializing in retweet prediction. Your ONLY task is to 
determine the semantic relationship between a user’s retweet history and an author's 
past tweet history to predict retweet likelihood. 

IMPORTANT: Focus EXCLUSIVELY on the relationship between the user’s retweet 
history and the author's past tweet history. Other data points are irrelevant to your 
analysis. 

Consider the following: 

1. **Semantic Similarity Analysis:** Carefully compare the content — including topics, 
concepts, and viewpoints — of the related items, and identify meaningful overlaps or 
connections. 

2. **Content Pattern Recognition:** Analyze whether the content of the related items is 
aligned, with particular attention to recurring themes, perspectives, or subject matter. 

Your assessment should categorize the relationship as either: 

- Semantically related (likely to be retweeted) 

- Not semantically related (unlikely to be retweeted) 

Provide a brief explanation highlighting ONLY the specific aspects of the user’s retweet 
history that align or conflict with patterns in the author's tweet history. Explicitly state 
which semantic relationship was most influential in your decision. 

Remember: The ONLY relationship that matters is between the user’s retweet history and 
the author's past tweet history. Disregard any other information that does not directly 
inform this specific relationship. 
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Appendix B: Prompt Instruction for Summarization  
As a specialized text analysis engine, your task is to perform a detailed extraction and 
categorization of the following elements from the provided texts: 

1. MAIN TOPICS: Identify the primary discussion subjects across all texts, sorted by 
frequency/importance. 

- Format as a bulleted list with brief descriptions 

- Include specific examples from the texts for each topic 

2. KEY ENTITIES: 

- People: All individuals mentioned by name or username (with @ symbol) 

- Organizations: All companies, platforms, products, and groups 

- Locations: All geographical places mentioned 

- Events: Conferences, streams, masterclasses with their details when available 

- Technical terms: Programming languages, frameworks, functions, and technical 
concepts 

3. RECURRING THEMES: 

- Identify underlying patterns or motifs that appear across multiple texts 

- Support each theme with 2-3 specific text examples 

Format your response as a structured report with clear section headings and concise 
bullet points. Prioritize extracting specific, actionable information rather than general 
observations. 




