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Abstract

In recent years, social media platforms have become central to how people receive
information and express opinions. On Twitter (X.com), retweeting—sharing an existing
post—serves both to express user stance and reinforce personal views. Retweet prediction
is a key research area in understanding information diffusion, aiming to improve accuracy
and reveal user preferences and decision-making factors. Deep learning models have been
widely adopted for this task, offering superior performance over traditional machine
learning by eliminating the need for manual feature engineering. With the rapid
development of large language models (LLMs), their capabilities in text understanding
and reasoning have been applied across various NLP tasks. However, their use in retweet

prediction remains underexplored.

This study focuses on content-based retweet prediction, using the posting histories
of both the user and the tweet author to analyze similarity with the target tweet. We
propose a novel framework that combines a deep learning model capable of input weight
analysis with prompt refinement for LLMs, improving their predictive performance. This
approach offers valuable insights for applying LLMs to similar tasks. Additionally, our
proposed Similarity-Based deep learning model features a simplified architecture that
enables intuitive feature attribution, strong prediction performance, and efficient

execution—making it a practical and interpretable solution for related research.

Keywords: Retweet prediction, deep learning, large language model, feature attribution,

prompt engineering
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Chapter 1: Introduction

1.1 Background

In recent years, social media platforms have become integral to how individuals
access information and express opinions. The rapid spread of information across these
platforms has made them a crucial media for marketing, entertainment, and politics.
Consequently, predicting information cascades, or the diffusion of information, has
gained significant attention. One fundamental mechanism facilitating this spread is
retweeting, which allow users to share an existing post on social platforms, often to
express thoughts and participate in topic discussions [1]. Given its central role in content
diffusion, retweet behavior prediction has emerged as a critical task, with wide-ranging
applications including opinion mining [2], stock prediction [3], real-time event detection
[4], and content recommendation [5]. Consequently, accurate prediction of retweets not
only addresses theoretical challenges in modeling information diffusion but also delivers
practical value across various applications, while offering deeper insights into user

behavior and preferences on social platforms.

Retweet prediction tasks can be broadly categorized by granularity, focusing on
either a global or local perspective. From a global perspective, the general characteristics
of tweets are analyzed to evaluate their retweetability, forecast the overall popularity a
post might achieve and modeling collective behavior, and address questions like "Why
do some tweets get more retweets?". In contrast, the local perspective explores retweeting
activity from an individual user’s standpoint, focusing on their decisions based on their
profile and interests. It addresses questions such as "Which tweet will be retweeted by the

user?" and "Who will retweet the target tweet?" [6].
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1.2 Research Motivations and Objectives

Various approaches, including machine learning and deep learning techniques, have
been explored to address the task of retweet prediction. While deep learning models have
achieved notable performance gains, their interpretability remains limited due to the
"black-box" nature of neural networks [7]. Moreover, identifying the latent attitudes or
behavioral patterns that drive a user's retweet decision remains a challenging task [6].
Previous studies [1], [8], [9] have primarily employed hyperparameter analysis or
ablation study to investigate feature attribution—namely, the influence of individual input
features to the model’s prediction. Although few works [10] have addressed the issue of
training time on deep learning models for retweet prediction, the inherent complexity of
these models hinders training efficiency. Furthermore, although recent studies [11], [12],
[13], [14] have demonstrated the effectiveness of large language models (LLMs) in
recommendation tasks—particularly in user profiling and content generation—few prior
studies, to the best of our knowledge, have explored the application of LLMs to the

specific task of retweet prediction.

This study aims to improve the interpretability and training efficiency of deep
learning models in retweet prediction by introducing an alternative approach to feature
attribution. Furthermore, it evaluates the effectiveness of LLMs in this task, with a
particular focus on enhancing their performance through prompt refinement. To this end,
we propose a framework comprising two model categories: Similarity-Based and LLM-
Based models. The Similarity-Based models simplify prior deep learning methods by
using cosine similarity between the target tweet and user representations, enabling clearer
feature interpretation, competitive performance, and improved time efficiency. The LLM-
Based models utilize the language understanding and reasoning abilities of LLMs for

prediction and self-explanation. Inspired by the proxy model approach [15], we
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incorporate insights from Similarity-Based models to refine LLM prompt instructions,
aligning the model’s attention with key predictive features and thereby enhancing overall

performance.

1.3 Research Scope

In this research, we focus on the question: "Will a given tweet be retweeted by a
specific user?" We adopt a local perspective on retweet prediction instead of a global
perspective, which emphasizes overall tweet popularity—particularly viral content—
rather than individual behavior. However, most tweets are not viral, and prior studies have
shown that tweet popularity is largely influenced by factors such as the author’s follower
count [16]. In contrast, the local perspective places greater emphasis on the semantic
relevance between tweets and users, making it more suitable for capturing personal
interests and supporting applications like personalized recommendation. In line with prior
studies [5], [8], [17], we concentrate on modeling user representations using content-
based features, thereby excluding retweet decisions from the influence of social network
structures. Here, content-based features refer to information extracted from the textual

content of tweets, while social features relate to user relationships and interaction patterns.

To evaluate and generalize the proposed models, we conduct experiments on two
datasets: a social media dataset (Twitter) and a scientific citation dataset (DBLP [18]).
Both datasets contain rich textual content and reflect user interaction behavior—
retweeting in Twitter and citation in DBLP. The DBLP dataset is considerably larger but
exhibits greater sparsity, as users typically have fewer posting or citation activities. While
the DBLP dataset is entirely in English, the Twitter dataset is predominantly English with
some multilingual entries. Nonetheless, both the embedding models used in the
Similarity-Based methods and the LLMs employed in the LLM-Based methods are

capable of processing multilingual content.
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1.4 Research Contributions

The key contributions of our work are summarized as follows:

1. This work introduces Similarity-Based models featuring a simplified deep
learning architecture that preserves competitive predictive performance while
enhancing interpretability through more transparent feature attribution and
improving execution time by at least 23% compared to baseline models.

2. We explore LLM-Based models as an initial effort to apply LLMs to the retweet
prediction task. In addition, we analyze LLM-generated self-explanations to
identify which input features are deemed most influential during inference.

3. We propose a novel framework that connects deep learning models with LLMs
by combining weight analysis from Similarity-Based models with the self-
explanatory capabilities of LLMs. By designing different prompt variants that
guide the LLM to focus on specific input feature relationships, we observe results
that align closely with the weight analysis. This approach leads to a 10%

improvement in F1 score on the Twitter dataset.
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Chapter 2: Related Works

Current research on retweet prediction employs various approaches. Many studies
leverage features extracted from tweet content and user profiles, utilizing machine
learning models such as logistic regression, support vector machines (SVM), and random
forests. Others apply statistical methods, including the Hierarchical Dirichlet Process
(HDP) [19] and Conditional Random Fields (CRF) [20]. Some researchers frame retweet
prediction as a ranking problem, adopting techniques such as learn-to-rank approaches
[21], matrix factorization [22], and collaborative ranking [23]. With the recent advances
in deep learning models, there has been a growing focus on utilizing architectures
including convolution models, recurrent models, attention-based models for their
efficiency and ability to learn optimal features automatically [6]. Driven by advancements
in LLMs in the past few years, research in the field of recommender systems has
increasingly focused on methods that leverage the summarization and inference abilities

of LLMs to capture user preferences, rank candidate tweets, or predict user behaviors [24].

2.1 Retweet prediction
2.1.1 Machine Learning Approaches

Previous machine learning research has explored various predictive models and
features to enhance the performance of retweet prediction tasks. Firdaus et al. [5] develop
retweet prediction models using XGBoost, Random Forest and matrix factorization,
incorporating both explicit (hashtags, URLs, mentions) and implicit (topics, emotion,
personality) features from users' tweets and retweets. They found that user behavior
features significantly improved prediction accuracy. Using only past retweets for user
profiling reduced processing time while maintaining comparable accuracy, highlighting
the value of psychological and topical user traits in modeling information diffusion on

Twitter.
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Tang et al. [25] introduce IRBLRUS, a prediction model that frames individual
retweet behavior as a multi-task learning problem. Each user is treated as a separate task,
modeled by a personalized logistic regression function composed of a shared global
parameter and a user-specific component. The model integrates a user similarity—based
regularization term that encourages users with similar characteristics to have aligned
prediction parameters. Similarity is computed from structural, profile, and content-based
features—such as mutual follow relationships, demographic attributes, and topic
distributions via LDA—enabling the model to leverage social proximity for more

coherent and personalized retweet predictions.

Luo et al. [21] address the challenge of identifying which followers are likely to
retweet a given tweet by modeling it as a ranking problem. Using a learning-to-rank
framework, they incorporated features such as retweet history, follower status, active
times, and shared interests. Their experiments showed that the most effective predictors
were past retweet behavior and interest similarity between users and tweets. The
combined feature model significantly outperformed random and history-based baselines,
indicating the importance of personal interaction history and content alignment in

predicting retweeters.

2.1.2 Deep Learning Approaches

Recent studies have explored various deep learning models for retweet prediction by
leveraging tweet content, user interests, and social interactions. Zhang et al. [8] propose
an attention-based deep neural network (SUA-ACNN) for retweet prediction, integrating
tweet content, user and author embeddings, user interests, and tweet-user similarity.
Tweet content is encoded using a CNN, while user interests are extracted by clustering a
user's historical tweets using K-means and selecting central tweets as interest

representations. These are weighted using an attention mechanism. User and author
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embeddings are learned as trainable continuous vectors during model training, capturing

latent social features. All components are combined in a Softmax layer for prediction.

Ma et al. [1] introduce AUT-MSAM, a masked self-attentive model for retweet
prediction that integrates user interests and hot topics from users’ social exposures. It
encodes user and author histories using a hierarchical attention memory network,
capturing both word- and tweet-level semantics. Concurrently, a masked self-attention
mechanism processes the recent tweets of a user’s followees to detect trending topics,
applying a Transformer-based architecture with masking to emphasize relevant content.
These components are combined and passed through a multi-layer perceptron (MLP) to

predict retweet behavior.

Huang et al. [17] addressed the problem of predicting which topics a user will join
by proposing MACNN, a memory-based convolutional neural network with attention
mechanism for predicting which social media topics a user will join in the future. The
model utilizes two key inputs: the user’s posting history and topic participation history.
Both are represented as tweet collections embedded in external neural memory. An
attention mechanism identifies the most relevant content, and convolutional layers extract
semantic features. These features are combined and passed through a multi-layer

perceptron to predict future topic participation.

2.2 Utilizing LL.LMs for Recommendation Tasks

Since the emergence of LLMs such as ChatGPT, an increasing number of studies
have investigated the application of LLMs to various recommendation tasks, employing
zero-shot, few-shot, and fine-tuning strategies to evaluate their effectiveness. Kang et al.
[26] investigate the capacity of LLMs to understand user preferences through the lens of
user rating prediction, a foundational task in recommendation systems. The study

systematically evaluates various LLMs across zero-shot, few-shot, and fine-tuning
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paradigms. The methodology involves prompting LLMs with user interaction histories
and item metadata to predict user ratings. The findings reveal that while zero-shot and
few-shot LLMs underperform compared to traditional recommender systems that
leverage user interaction data, fine-tuned LLMs demonstrate competitive performance

and superior data efficiency.

Liu et al. [27] explore the use of ChatGPT as a general-purpose recommender system
without fine-tuning, applying it to five key tasks: rating prediction, sequential
recommendation, direct recommendation, explanation generation, and review
summarization. While ChatGPT lags behind traditional models in accuracy-based tasks,
the study demonstrates its strong capability in producing explanations and summaries, as
validated through human evaluations. These findings underscore ChatGPT’s potential for
enhancing interpretability in recommendation systems, despite its current limitations in

predictive accuracy.

2.3 Advances in Interpreting and Evaluating Explanations in
LLMs

Recent research has explored various strategies to enhance the interpretability and
evaluation of LLMs, focusing on both the generation and assessment of natural language
explanations. Krishna et al. [15] propose AMPLIFY, a framework that enhances LLM
performance by using post hoc explanation methods rather than human-annotated
rationales. It generates natural language rationales by extracting key input features—
specifically, top-k tokens with the highest attribution scores—using gradient-based
explanation techniques applied to a smaller proxy model such as BERT or GPT-2. These
rationales are incorporated into in-context learning prompts to guide LLM predictions.
Experiments demonstrate that AMPLIFY improves performance across reasoning and

language tasks, highlighting the potential of post hoc explanations to enhance both
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interpretability and effectiveness.

Huang et al. [28] study ChatGPT’s ability to generate self-explanations for sentiment
analysis, comparing them to traditional interpretability methods like occlusion and LIME.
Using two prompting strategies—explain-then-predict and predict-and-explain—they
evaluate explanation faithfulness and consistency. While self-explanations perform
similarly to traditional methods on faithfulness metrics, they show low agreement in
terms of which words are considered important, suggesting that LLMs may require new

interpretability frameworks.

Huang et al. [29] investigate the potential of ChatGPT to evaluate the quality of
natural language explanations (NLEs) by comparing its assessments with human
annotations across different granularity levels. Their method involves rating explanations
from three benchmark datasets using clarity and informativeness scores, and analyzing
alignment via classification and pairwise comparison tasks. The key contribution lies in
demonstrating that ChatGPT approximates human judgment more accurately in coarse-
grained settings and comparative evaluations, highlighting its viability as a scalable, cost-

effective alternative to human evaluators in subjective quality assessment tasks.
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Chapter 3: Methodology

3.1 Problem Formulation

The retweet prediction task addresses the problem of predicting whether a user will
retweet a specific target tweet. In this study, we adopt a content-based approach, inspired
by prior work [8], [17], deriving user representations solely from the textual content of
tweets. This method excludes temporal information and social network structure. The

input data for each user-tweet pair includes the following components:

1. Target Tweet Content: This serves as the primary input for prediction. In the Twitter
dataset, it includes the complete tweet text along with hashtags, mentions, and links.
In the DBLP dataset, it corresponds to a paper abstract. This content provides the

semantic context needed to assess its relevance to the user's interests.

2. User’s Posting History: It represents the user's preferences and interests as inferred
from prior activity. In the Twitter dataset, this includes past tweets—comprising text,
hashtags, mentions, and links—excluding multimedia content. In the DBLP dataset,
it consists of paper abstracts, reflecting the user's academic focus and research

interests.

3. User’s Retweet History: Like the posting history, this captures user preferences, but
with a stronger emphasis on content the user actively engages with. In the Twitter
dataset, it includes the textual content of retweeted tweets, while in the DBLP dataset,
it is represented by citations of the user's papers, reflecting academic connections.
As noted by Firdaus et al. [5], retweet history tends to play a more significant role
in user profiling than posting history, as it more directly captures the content users

actively choose engage with.

4. Target Tweet Author’s Posting History: Analyzing the author’s prior activity

10 doi:10.6342/NTU202501568



enhances the interpretation of the target tweet. In the Twitter dataset, where tweets
are often brief and informal, the author’s posting history offers valuable context
regarding their interests and communication style, aiding in understanding the
current tweet. Likewise, in the DBLP dataset, the author’s previous publications—
captured through abstracts—provide insight into their research trajectory, enriching

the evaluation of a new paper’s relevance.

3.2 Overall Framework

Building upon the AMPLIFY framework proposed by Krishna et al. [15], we propose
a novel framework consisting of two distinct model categories: Similarity-Based models
and LLM-Based models. The Similarity-Based models employ a simplified deep learning
architecture that delivers competitive predictive performance while enabling
interpretability through feature attribution. In contrast, the LLM-Based models represent
one of the earliest applications of LLMs to the task of retweet prediction. As illustrated
in Figure 3.1, both models generate predictions based on identical input features described
in Section 3.1. However, the LLM-Based models offer the additional capability of
providing self-explanations to justify their predictions. Moreover, interpretability insights
obtained through weight analysis of the Similarity-Based models can be leveraged to
refine prompts used in LLM-Based models, thereby enhancing their predictive

performance.

Our framework and AMPLIFY share a common objective: leveraging insights from
a proxy model to refine prompts for LLMs to enhance their performance. As shown in
Table 3.1, we adopt the Similarity-Based model as a proxy due to its proven effectiveness
in retweet prediction and its relatively low computational cost. In contrast, the AMPLIFY
framework employs models such as GPT-2 and BERT, which require backward

propagation to compute gradients, thereby incurring significantly higher computational
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overhead. A key distinction lies in the attribution approach: whereas AMPLIFY conducts
word-level attribution for each instance to dynamically extract keywords, our framework
emphasizes the four input components defined in Section 3.1 to maintain alignment with
the weight analysis of the Similarity-Based model. This design results in a consistent and

stable prompt structure across instances.

User Posting User Retweet

History History
L s | Similarity-Based
” model
Author Posting -

Query Tweet History

\/\\/\

Binary Prediction

Weight Analysis

User Posting User Retweet
History History P t
__— Nl romp o Binary Prediction
7 |LLM-Based model
Query Tweet Author Posting Weight Analysis Self-Explanation

History

ww

Figure 3.1: Overview of the Proposed Framework

Table 3.1: Comparative Analysis of AMPLIFY and the Proposed Framework

AMPLIFY Proposed Framework
Task Reasoning and language Retweet prediction
understanding
LLM GPT-3, GPT-3.5 Gemini 2.0 Flash Lite
Proxy Model GPT-2, BERT Similarity-Based Model
Performance of Low High
Proxy Model
Method Gradient-based method Weight analysis
Attribution Word-level (token-level) Input-component level
Granularity
Adaptability Dynamic Static
Computation High Low
Requirement
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3.3 Similarity-Based Models

Previous deep learning approaches [1], [8], [17] have employed various techniques
to derive user representations based on their posting or retweet histories. However, the
final prediction layer in these models is typically composed of an MLP layer, which

processes either concatenated user representations or those derived from similarity scores.

Inspired by the effectiveness of employing cosine similarity over user- or content-
related features in previous machine learning approaches [5], [25], we propose a
streamlined deep learning architecture that solely utilizes similarity scores between the
embedding of a target tweet and user-specific representations. These user representations
are constructed through the aggregation of pretrained embeddings corresponding to
individual tweets. This design facilitates a more interpretable framework for analyzing
feature attribution, thereby enhancing the performance of LLM-Based models. As
illustrated in Figure 3.2, representations corresponding to the user’s posting history,
retweet history, and the author’s posting history are derived through straightforward
aggregation of pretrained embeddings. Both the target tweet and each of these aggregated
representations are independently passed through separate fully-connected layers. Cosine
similarity is subsequently computed between each of the target tweet and the
representations. This process yields six similarity scores, which are concatenated and fed
into an MLP. The MLP comprises a hidden layer with ReLU activation, followed by an
output layer with two units. A Softmax function is then applied to the output layer to

generate probabilities for binary classification.
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Figure 3.2: Architecture of Similarity-Based models

While earlier approaches commonly derived sentence embeddings by aggregating
word embeddings from pretrained models such as Word2Vec [30] or GloVe [31], recent
advancements [32] highlight the performance of Transformer-based embedding models.
In this study, we employ the widely used all-MiniLM-L6-v2 model to generate
embeddings for individual tweets. A comparative analysis of traditional encoding
techniques—including TF-IDF and LDA—and other Transformer-based embeddings is
presented in Section 4.7.2. Additionally, in Section 4.7.3, we evaluate the effectiveness
of various aggregation methods—specifically averaging, clustering, and attention
mechanisms—in order to identify the most appropriate approach for constructing

comprehensive user representations.
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3.4 LLM-Based Models

Recent progress in LLMs offers new possibilities for examining retweet prediction
performance and interpretability. Despite emerging LLM-based studies on engagement
[33] and response prediction [34], our proposed LLM-Based models represent an early
exploration of LLMs for retweet prediction. As shown in Figure 3.3, LLM-Basic directly
utilizes the input data defined in Section 3.1 to generate retweet predictions based on
prompt instruction A (Appendix A). To ensure alignment with Similarity-Based models,
the prompt instruction A emphasizes content and semantic similarity within the input data,

leveraging the natural language understanding capabilities of LLMs for this task.

A key distinction between the LLM-Basic model and the Similarity-Based models
lies in their approach to user representation. While the Similarity-Based models aggregate
tweet embeddings to construct user profiles, the LLM-Basic model relies on direct
semantic similarity comparisons. To evaluate the impact of explicitly constructing user
representations for guiding the LLM's attention toward salient themes and entities, we
introduce the LLM-Modular model, as illustrated in Figure 3.4. This model employs a
summarization component (Appendix B.1) to extract user preferences from historical
tweets and retweets, thereby mirroring the aggregation strategy used in the Similarity-
Based models to construct user representations. Subsequently, predictions are generated
using Instruction A. Moreover, the LLM-Modular model articulates user preferences in
natural language, offering greater interpretability for domain experts compared to the
latent vector representations used in Similarity-Based approaches. This design choice
supports downstream applications such as content recommendation, trend forecasting,

and advertisement campaign optimization.
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Figure 3.4: Architecture of LLM-Modular

We leverage the DSPy library [35] to implement structured and declarative prompts
with defined input/output fields and task-specific instructions, further adapted in Section
4.6.3 based on weight analysis of Similarity-Based models. As shown in Table 3.2, the
input consists of four components outlined in Section 3.1. The output includes the
predicted class along with a self-explanation, which consists of a paragraph-length
rationale and the identification of the most influential input feature contributing to the
LLM’s prediction. To ensure consistency with the weight analysis of Similarity-Based
models, the most important input field is restricted to a predefined set of six

relationships among the four input elements.
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Table 3.2: Input and Output Field Definitions

Field name Data type

Input Fields target tweet str

user_retweet List[str]

user_tweet List[str]

author tweet List[str]

Output Fields prediction Literal[True, False]

explanation str

most_important_input Literal[

"target tweet and user_tweet",
"target tweet and user retweet",
"target_tweet and author tweet",

"user_tweet and user_retweet",

"user tweet and author tweet",

"user retweet and author_tweet"

]

3.5 Feature Attribution of Similarity-Based Models

To further enhance the performance of LLM-Based models and leverage insights
from Similarity-Based models for prompt refinement, we focus on feature attribution—
the process of identifying the input features that most significantly influence a user's
decision to retweet. Traditional machine learning approaches rely on hand-crafted
features for users and tweets, enabling straightforward assessment of feature importance

through model-assigned weights.

In contrast, deep learning models employ high-dimensional vector representations,
making it more difficult to isolate and interpret the influence of individual features. To
bridge this gap, previous deep learning approaches [1], [8], [9] have commonly relied on
ablation study to assess the significance of different features. The proposed Similarity-
Based models, depicted in Figure 3.2, employ a simplified architecture to address this

issue. These models take cosine similarity scores between various input representations
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as input to the predictor, enabling clearer analysis through a direct examination of the

predictor’s weights.

3.5.1 Weight Analysis for Similarity-Based Models

Given the inherently non-linear nature of predictors in Similarity-Based models, we
apply an approximation technique that substitutes the MLP predictor with a single linear
layer. This allows for direct inspection of the learned weights to identify which inputs
most strongly influence the classification outcome. The approximated predictor is
modeled as a linear transformation producing two outputs, yo and y1, which represent the
predicted probabilities for class 0 (not retweet) and class 1 (retweet), respectively. We use
a two-dimensional output with a Softmax function instead of a one-dimensional output
with a sigmoid function to allow for future extensions, such as adapting the model to

downstream tasks that require multi-class classification.

As shown in equations (1), (2) and (3), the class corresponding to the higher value
between yo and y1 is selected as the predicted label. The model takes six input features,

denoted as x1 to x6, each associated with a corresponding weight in the formula.

Yo = WiXx1 + W3 X9 + W3X3 + WyXy + W5 X5 + WeXeg +b (1)

Y1 = WiX1 + WhXy + WXz + Wixs + WeXs + WgXe + b’ @)

x1: Cosine similarity between the target tweet and the user’s posting history.
x2: Cosine similarity between the target tweet and the user’s retweet history.
x3: Cosine similarity between the target tweet and the author’s posting history.

x4: Cosine similarity between the user’s posting history and the user’s retweet history.

A o e

xs: Cosine similarity between the user’s posting history and the author’s posting
history.
6. x6: Cosine similarity between the user’s retweet history and the author’s posting

history.

__Classy,, if yo =y,

Class = Class Yu if Yo <y

3)
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3.5.2 Prompt Refinement and Self-Explanation of LLM-Based
Models

The prompt refinement strategy directs the LLM to focus on the most influential input
relationship—one of x; to x¢—identified through corresponding weight analysis. For
instance, if wi exhibits the largest absolute value, indicating that the relationship between
the target tweet and the user's posting history has the greatest impact on the prediction, a
targeted prompt is appended to the original Instruction A to form Instruction A.1l

(Appendix A.1) as below:

Your ONLY task is to determine the semantic relationship between a target tweet and a

specific user's past tweet history to predict retweet likelihood.

IMPORTANT: Focus EXCLUSIVELY on the relationship between the target tweet and

the user's tweet history. Other data points are irrelevant to your analysis.

Remember: The ONLY relationship that matters is between the target tweet and the
user's tweet history. Disregard any other information that does not directly inform this

specific relationship.

To align with the weight analysis performed in the Similarity-Based models, we
require the LLMs to produce two additional outputs for each prediction, as illustrated in
Table 3.2: an explanation and the identification of the most important relationship
between input features. The explanation is a brief paragraph justifying the LLM’s
prediction. The most important relationship is selected from the six predefined input
feature pairs outlined in Section 3.5.1, with the LLM instructed to choose one from this
set. This approach enables us to examine which input relationship most strongly
influences the LLM’s decision, allowing for targeted refinement of the prompt

instruction—analogous to adjusting predictor weights in the Similarity-Based models.
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3.6 Comparison of Similarity-Based and LLLM-Based Models

A detailed comparison of the two proposed methods is presented in Table 3.3. Both
models utilize the raw text of tweets as input; however, the Similarity-Based model
explicitly transforms the input into pretrained embeddings. While both approaches
produce binary predictions, the LLM-Based models additionally generate self-
explanations to facilitate further analysis. Feature attribution analysis is conducted for
both modeling approaches. In the case of the Similarity-Based models, we utilize ablation
study and weight analysis to evaluate the contribution of individual input features. For
the LLM-Based models, feature attribution is assessed through analysis of the generated

self-explanations.

Table 3.3: Comparison of Similarity-Based models and LLM-Based models

Aspect Similarity-Based models LLM-Based models
Input data Raw text Raw text
User Representation Aggregated embeddings Textual summarization
Construction
Feature Comparison Cosine similarity Natural language reasoning
Method
Prediction MLP with ReLU and Softmax Prompt-based binary
Mechanism classification
Output Binary classification Binary classification and self-
explanations
Performance Depends on embedding and Depends on prompt design and
Sensitivity aggregation choice LLM capabilities
Feature Attribution Ablation study and weight Self-explanation analysis
Analysis analysis
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Chapter 4: Experiments

4.1 Dataset Construction

The proposed methods were evaluated on two real-world datasets—Twitter (X.com)
and DBLP—to assess the generalization capability of the models. The Twitter dataset was
collected over a three-month period (March 1 to May 31, 2024). To ensure diversity in
user interests, seed users were randomly selected from various topical domains, including
sports, politics, business, cooking, and nature. The followees of these seed users were
subsequently crawled to construct a representative set of user communities. The DBLP
dataset [18], a publicly available citation network, contains rich textual content and
citation interactions analogous to user retweets, making it a common benchmark in
information cascade studies [36], [37], [38]. Each research paper includes an abstract,
authors, publication year, venue, and title. To facilitate alignment with the structure of
social media data, researchers were mapped to users, abstracts to tweets, citations to

retweets, and co-authorship relationships to followee connections.

For the Twitter dataset, only tweets containing more than five words were considered.
To filter out likely fake or inactive accounts, users were required to have more than 20
followees and followers, and to have posted between 50 and 3,000 tweets during the
three-month observation period. Retweets were included only if the author of the original
tweet was also present in the dataset. Although 164,284 retweets were initially collected,
the majority were excluded based on this criterion. For the DBLP dataset, the following
filtering criteria were applied: each paper—treated analogously to a tweet—was required
to have both an abstract and a title, and to be published between 2000 and 2017.
Furthermore, each author—considered as a user—was required to have published at least
five papers in each of the two time periods: 2000-2011 and 2012-2017. This temporal

partitioning aligns with the Twitter dataset setup, where the earlier period (2000-2011) is
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used to model user preferences. Detailed statistics for the DBLP dataset are provided in

Table 4.1.
Table 4.1: Statistics of Twitter and DBLP dataset
Dataset | Number of | Number of tweets Size of Size of Size of
users and retweets training set validation set | testing set
Twitter 2,514 183,332 9,440 2,023 2,023
DBLP 16,667 488,088 11,200 2,400 2,400

Following the experiments of Firdaus et al. [5], posting and retweet history from the
first two months were employed to model user preferences, while the final month's data
was partitioned into training, validation, and testing subsets. For the Twitter dataset, 6,743
positive retweets from the third month were paired with an equal number of negative ones.
As suggested by previous research [1], [5], [8], negatives were selected from a user's
timeline and consisted of tweets by followees during the same period that were not
retweeted. For the DBLP dataset, 8,000 citations were selected from the third period as
positive instances, with an equal number of negative instances drawn from papers
published in the same year for balance. Although retweet prediction typically samples
negatives from a user's followees (i.e., coauthors), this constraint was relaxed to account
for citations to non-coauthors. The positive and negative retweets from the third period
of both datasets are partitioned into training, validation, and testing sets using a 70%, 15%,

15% split, respectively.
4.2 Experiment Configuration

All experiments were conducted on a local machine equipped with a 13th Generation
Intel® Core™ 15-13400F processor operating at 2.50 GHz, comprising 10 cores. The
system was also equipped with an NVIDIA GeForce RTX 3050 GPU with 8 GB of
dedicated video memory. It had 64 GB of DIMM RAM and a total storage capacity of

954 GB. The operating system used was Windows 10 Education. The implementation was
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carried out using Python with the PyTorch framework, and Visual Studio Code was
employed as the primary development environment. Additionally, Gemini 2.0 Flash Lite
was accessed via API and utilized as the LLM for both summarization and prediction

tasks.

4.3 Evaluation metrics

To evaluate the performance of the proposed models, we employ widely adopted
metrics from previous studies, including accuracy, precision, recall, and F1 score [6].
Among these, recall is critical in many retweet prediction tasks, as it reflects the model’s
capacity to identify a greater number of actual retweets [5]. However, certain prompt
instructions tend to bias LLMs toward generating a higher number of positive predictions,
resulting in elevated recall but reduced precision. This trade-off undermines the overall
reliability of the predictions. Therefore, we emphasize the F1 score as a more balanced

and informative metric for evaluation.

4.4 Baseline Models

1.  Random: In this approach, the decision to retweet or not is made randomly for
each tweet, without taking into account the tweet content, user profile, or author
information. Given that retweet prediction is formulated as a binary classification
task, the expected values for accuracy, precision, recall, and F1 score are all

approximately 50%, assuming a balanced dataset.

2. SUA-ACNN: We implemented the method proposed in [8], which integrates user
and author information with attention mechanisms for retweet prediction. The
model utilizes Word2 Vec to generate word embeddings and applies convolutional
neural networks (CNNs) to encode the content of tweets. Tweets of a user are then
clustered into a predefined number of n clusters using the K-means algorithm and

extract a fixed number of central tweets to represent the user’s interest. An
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attention-based module then assigns attention weights to the most relevant
clusters. User embeddings are randomly initialized and jointly trained with the
model. To enhance predictive accuracy, a similarity score between the user
interest representation and the target tweet is computed and concatenated with the

user, author, and tweet embeddings as input to the final prediction layer.

3. MACNN: We implemented the method proposed in [17], adapting it for the
retweet prediction task. Since the original model predicts user engagement with
a topic, we restructured the framework by replacing the target topic with tweets
posted by the author, and redefining the topic vector as the target tweet. MACNN
combines two main components: posting history and participation history. For
both, CNNs extract useful representations from tweet sets, while an external
memory module retrieves the most relevant content. Specifically, the number of
randomly selected tweets for each user or topic is set to 20. An attention
mechanism assigns higher weights to important tweets. The model then measures
similarity between users and topics, combines the features, and uses a multilayer

perceptron to generate the final prediction.

4.5 Retweet Prediction Performance

Tables 4.2 and 4.3 present a comparative performance analysis of the Similarity-
Based model, LLM-Based models, and baseline methods across both datasets. The
Similarity-all-MiniLM-L6-v2 model employs the all-MiniLM-L6-v2 embedding model
to encode tweets and constructs user representations by averaging the corresponding
tweet embeddings. Despite its relatively simple architecture, the Similarity-all-MiniLM-
L6-v2 model demonstrates competitive performance, comparable to MACNN and lower
than SUA-ACNN. These results underscore the model's effectiveness in predicting

retweet behavior while maintaining architectural simplicity. A more detailed evaluation
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of different embedding models and user representation strategies is provided in Section

4.7.
Table 4.2: Comparison results on the Twitter dataset
Model Accuracy Precision Recall F1 score
Random 49.0% 48.6% 50.6% 49.6%
SUA-ACNN 94.5% 93.3% 95.7% 94.5%
MACNN 91.3% 89.4% 93.6% 91.5%
Similarity-all-MiniLM-L6- 90.7% 92.3% 88.6% 90.4%
v2
LLM-Basic (A.5) 70.1% 65.1% 88.2% 74.9%
LLM-Modular 67.6% 61.8% 90.5% 73.4%
Table 4.3: Comparison results on the DBLP dataset
Model Accuracy Precision Recall F1 score
Random 50.2% 50.6% 51.9% 51.3%
SUA-ACNN 91.3% 95.5% 86.91% 91.0%
MACNN 87.4% 98.1% 76.6% 86.0%
Similarity-all-MiniLM-L6- 87.5% 87.3% 88.1% 87.7%
v2
LLM-Basic (A.2) 78.9% 82.9% 73.1% 77.7%
LLM-Modular 78.4% 76.7% 82.1% 79.3%

For the LLM-Based models, LLM-Basic (A.5) and LLM-Basic (A.2) refer to variants
utilizing prompts defined in Appendices A.5 and A.2, respectively. These prompts guide
the model to make retweet predictions based on specific semantic relationships, as further
explained in Section 4.6.3. In comparison to deep learning models, the LLM-Based
approaches generally exhibit inferior performance, aligning with the findings of Kang et
al. [26], which indicate that LLMs without fine-tuning underperform traditional
supervised methods in user rating prediction tasks. Nonetheless, the LLM-Based models
consistently achieve F1 scores above 70%, demonstrating their potential effectiveness for

retweet prediction in a zero-shot setting.
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In addition, the LLM-Modular model does not demonstrate significant performance
improvement over the LLM-Basic variants, indicating that the incorporation of an
additional summarization module to construct user preferences for retweet prediction
remains an open research question. While deep learning models, including Similarity-all-
MiniLM-L6-v2, perform worse on the DBLP dataset compared to the Twitter dataset—
potentially due to DBLP's data sparsity and longer textual content limiting the
effectiveness of user representation—the LLM-Based models achieve better performance
on the DBLP dataset. This suggests that LLMs exhibit stronger capabilities in handling

sparse data and longer textual inputs compared to deep learning models.

4.6 LLM Prompt Refinement through Feature Attribution

For the Similarity-Based models, an ablation study is first conducted—following
prior approaches [1]—to evaluate the contribution of individual input features.
Subsequently, a weight analysis is performed to assess the significance of relationships
among different input features. The insights gained from these analyses are then used to

guide the refinement of prompts for the LLM-Based models.

4.6.1 Ablation Study of Similarity-Based Models

As outlined in Section 3.1, four input features are used for retweet prediction: the
target tweet, the user’s posting history, retweet history, and the posting history of the target
tweet’s author. The Similarity-all-MiniLM-L6-v2 model is first evaluated using all
features, followed by ablation studies removing one feature at a time. Results in Tables
4.4 and 4.5 show that excluding either the user’s posting or retweet history does not
significantly degrade performance, indicating these features can compensate for each

other in constructing user representations.

The model shows notable performance degradation on the Twitter dataset when the

author's posting history is removed, while excluding the tweet has little impact. This may
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be due to the often brief or ambiguous nature of tweets, as noted in Section 3.1, making
the author's posting history essential for inferring context. Additionally, users may rely
more on their perception of the author than on a single tweet's content. In contrast, on the
DBLP dataset, removing the target tweet causes a greater performance drop, whereas the
author’s posting history has minimal effect. This difference likely reflects dataset
characteristics: academic abstracts are typically detailed and structured, facilitating topic

identification, and citations are generally based on content rather than author familiarity.

Table 4.4: Ablation studies on the Twitter dataset

Removed feature Accuracy Precision Recall F1 score
All features kept 90.7% 92.3% 88.6% 90.4%
Target tweet 90.2% 93.3% 86.4% 89.7%
User’s posting history 90.1% 90.3% 89.5% 89.9%
User’s retweet history 91.2% 93.1% 88.7% 90.9%
Author’s posting history 72.9% 72.7% 72.4% 72.5%

Table 4.5: Ablation studies on the DBLP dataset

Removed feature Accuracy Precision Recall F1 score
All features kept 87.5% 87.3% 88.1% 87.7%
Target tweet 83.6% 83.0% 84.8% 83.9%
User’s posting history 87.2% 87.2% 87.4% 87.3%
User’s retweet history 86.2% 82.9% 91.5% 87.0%
Author’s posting history 85.5% 83.5% 88.9% 86.1%

4.6.2 Weight Analysis Results for Similarity-Based Models

To assess the contribution of input features in the Similarity-Based model, the non-
linear MLP is replaced with a linear transformation. The performance of the original
Similarity-all-MiniLM-L6-v2 model is then compared with its linear variant, as shown in
Tables 4.6 and 4.7. The results indicate that this modification does not degrade

performance and even leads to slight improvements on the Twitter dataset.
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Table 4.6: Comparison results between linear and non-linear predictor on the Twitter dataset

Method Accuracy Precision Recall F1 score
Non-linear 90.7% 92.3% 88.6% 90.4%
Linear 92.0% 91.3% 92.7% 92.0%

Table 4.7: Comparison results between linear and non-linear predictor on the DBLP dataset

Method Accuracy Precision Recall F1 score
Non-linear 87.5% 87.3% 88.1% 87.7%
Linear 87.3% 90.8% 83.4% 86.9%

Next, we examine the weights of the six input features described in Section 3.5.1. As
shown in Table 4.8, weights w3, ws, and we have relatively larger absolute values,
indicating greater influence on retweet prediction for the Twitter dataset. All three
correspond to the author’s posting history, consistent with the ablation study where their
removal caused the greatest performance drop. However, all three weights associated with
class y; are negative, indicating that a higher similarity between the user's representation

and the author's does not contribute to a positive retweet outcome, which is contrary to

expectations.
Table 4.8: Weight analysis on the Twitter dataset
class Wi W2 w3 Wy Ws W b
Yo -1.58 -0.07 242 0.25 3.32 2.62 0.27
yi 1.52 0.27 -2.67 -0.52 -3.06 -2.58 -0.72

As shown in Table 4.9, weight w» as the largest absolute value, indicating that the
similarity between the target tweet and the user's retweet history has the greatest impact
on retweet prediction in the DBLP dataset. This aligns with the ablation study, where

removing the target tweet resulted in the most significant performance decline.
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Table 4.9: Weight analysis on the DBLP dataset

class Wi W2 W3 W4 W5 We b
Yo -1.07 -4.18 -2.46 0.07 1.01 -2.67 1.03
N 1.11 4.23 2.46 -0.01 -1.18 2.61 -1.02

4.6.3 Leveraging Weight Analysis to Refine LLM Prompts

In the following experiments, prompt instructions A and A.1 to A.6 (see Appendices
A and A.1-A.6) are utilized to direct the LLM's attention toward specific input
relationships for retweet prediction, as detailed in Section 3.5.1. Instruction A serves as
the baseline and does not specify which input relationships to emphasize, allowing the
LLM to make its own determination. In contrast, instructions A.1 to A.6 explicitly direct
the LLM to focus on relationships x; to x¢, respectively, which represent the six possible
relationships among the four input components. As discussed in Section 3.4, the LLM
outputs one of these six relationships as the most influential factor for its prediction in
each instance. The distribution of input importance derived from these predictions is

presented in Tables 4.12 and 4.15.

In the Twitter dataset, the LLM guided by instruction A primarily focuses on xa,
which captures the relationship between the target tweet and the user’s retweet history.
However, the associated weight w for the y; class is relatively low in the weight analysis,
which may partially explain its relatively lower performance. Instruction A.S,
corresponding to the highest absolute weight ws, achieves the highest recall and F1 score
among all configurations, marking a 10% improvement in F1 score compared to
instruction A. As shown in Table 4.11, instruction A.3 yields a higher rate of false positive
predictions and exhibits the most degraded performance. This result is conceptually
consistent, as the relationship between the target tweet and the author's own posting
history is arguably less pertinent to predicting the user's retweet behavior. Nonetheless,

several inconsistencies are observed. Despite the smaller absolute values of w> and w4 in
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the weight analysis, the corresponding Instructions A.2 and A.4 exhibit only marginal

performance degradation.

Table 4.10: Comparison of original and refined instructions on the Twitter dataset

Model Accuracy Precision Recall F1 score

Instruction A 67.8% 70.9% 59.4% 64.6%
Instruction A.1 70.1% 66.5% 79.8% 72.6%
Instruction A.2 70.6% 67.6% 77.9% 72.4%
Instruction A.3 55.2% 53.1% 82.3% 64.5%
Instruction A.4 66.0% 61.1% 86.3% 71.5%
Instruction A.5 70.1% 65.1% 88.2% 74.9%
Instruction A.6 69.0% 64.6% 82.6% 72.5%

Table 4.11: Confusion matrices of original and refined instructions on the Twitter dataset

Model True Positive False Negative False Positive True Negative
Instruction A 595 407 244 777
Instruction A.1 800 202 403 618
Instruction A.2 781 221 374 647
Instruction A.3 825 177 730 291
Instruction A.4 865 137 551 470
Instruction A.5 884 118 473 548
Instruction A.6 828 174 454 567
Table 4.12: Distribution of input importance on the Twitter dataset
Model X1 X2 X3 X4 X5 X6
Instruction A 132 1,500 272 78 39 2
Instruction A.1 1,896 127 0 0 0 0
Instruction A.2 2 2,020 1 0 0 0
Instruction A.3 4 10 2,009 0 0 0
Instruction A.4 265 402 0 1,356 0 0
Instruction A.5 101 44 47 0 1,654 177
Instruction A.6 0 96 14 0 3 1,910
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In the DBLP dataset, the LLM guided by instruction A automatically focuses on xi,
x2 and x3, which correspond to positive weights in the weight analysis. This alignment
contributes to its competitive performance relative to other variants. Instruction A.2,
which directs the LLM to focus on x>—the relationship associated with the highest
weight—achieves the best F1 score and accuracy among all configurations. Consistent
with the findings from the Twitter dataset, instruction A.3 results in the highest number
of false positive predictions and the poorest overall performance, due to its focus on a
relationship that is conceptually unrelated to the user's retweet behavior. Some
inconsistencies remain, however; although w4 exhibits relatively low absolute value in

the weight analysis, the LLMs guided by the corresponding instructions still achieve

competitive performance.

Table 4.13: Comparison of original and refined instructions on the DBLP dataset

Model Accuracy Precision Recall F1 score

Instruction A 77.8% 79.1% 76.1% 77.6%
Instruction A.1 77.3% 79.1% 74.6% 76.8%
Instruction A.2 78.9% 82.9% 73.1% 77.7%
Instruction A.3 61.8% 57.5% 92.6% 71.0%
Instruction A.4 69.1% 63.6% 90.6% 74.7%
Instruction A.5 75.4% 71.6% 84.8% 77.6%
Instruction A.6 73.3% 69.0% 85.5% 76.4%

Table 4.14: Confusion matrices of original and refined instructions on the DBLP dataset

Model True Positive False Negative False Positive True Negative

Instruction A 921 289 243 947
Instruction A.1 903 307 238 952
Instruction A.2 885 325 182 1,008
Instruction A.3 1,121 89 827 363
Instruction A .4 1,094 113 624 563
Instruction A.5 1,026 184 407 783
Instruction A.6 1,035 175 466 724
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Table 4.15: Distribution of input importance on the DBLP dataset

Model X| X2 X3 X4 X5 X6
Instruction A 405 823 974 93 101 4
Instruction A.1 2,345 52 3 0 0 0
Instruction A.2 33 2,361 3 3 0 0
Instruction A.3 1 4 2,395 0 0
Instruction A.4 360 590 7 1,431 3 3
Instruction A.5 148 12 245 2 1,966 27
Instruction A.6 4 48 70 1 26 2,251

In conclusion, our approach of guiding the LLM to focus on the input relationship
associated with the highest absolute weight in the weight analysis achieves the best
performance across both datasets. While Instruction A—allowing the LLM to
autonomously determine which input relationships to emphasize—effectively identifies
influential features in the DBLP dataset and yields competitive results, our method offers
more consistent performance, particularly in light of Instruction A’s relatively poor results
on the Twitter dataset. Nonetheless, the observed weight analysis does not consistently
correlate with the performance of the corresponding LLM prompts across both datasets,
indicating potential areas for further refinement.

4.7 Experimental Evaluation of Efficiency, Embedding Models,
and User Representations

4.7.1 Execution Time Analysis

Tables 4.16 and 4.17 compare the execution times of various models on the training
sets of two datasets: 2,023 instances for Twitter and 2,400 for DBLP. The proposed
Similarity-Based models utilize a pre-encoding strategy in which tweets are processed
using pretrained embedding models, and the resulting tensors are stored in external
memory prior to training. In contrast, SUA-ACNN encodes tweets by applying

convolutional layers to word embeddings and learns user embeddings through random
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initialization during training. MACNN constructs tweet embeddings using a trainable

word embedding matrix that is optimized during runtime.

The pre-encoding strategy employed by the Similarity-Based models significantly
reduces overall execution time by eliminating redundant computations during training
and decreasing the number of trainable parameters through a simplified model
architecture. Specifically, the Similarity-Based models achieve a reduction in total

execution time ranging from 23% to 50% when compared to MACNN, and from 67% to

78% compared to SUA-ACNN.

Table 4.16: Comparison of training and testing durations on the Twitter dataset

Model Encoding Time Training Time Testing Time Total Time
Random 0 0 Is Is
SUA-ACNN 0 lhr 20m 13s 37s lhr 20m 50s
MACNN 0 22m 18s 15s 22m 33s
Similarity-all- 6m 55s 10m 23s 3s 17m 21s
MiniLM-L6-v2
LLM-Basic 0 4m 465 4m 465
LLM-Modular 0 0 18m 26s 18m 26s

Table 4.17: Comparison of training and testing durations on the DBLP dataset

Model Encoding Time Training Time Testing Time Total Time
Random 0 0 Is Is
SUA-ACNN 0 1hr 5m 33s 46s lhr 6m 19s
MACNN 0 43m 26s 22s 43m 48s
Similarity-all- 5m 3s 16m 54s Ss 22m 2s
MiniLM-L6-v2
LLM-Basic 0 0 7m 3s 7m 3s
LLM-Modular 0 0 23m 52s 23m 52s

In contrast, the LLM-Based models perform inference during the testing phase
without prior training. Among these, the LLM-Modular model incurs higher execution

time than the LLM-Basic model due to the additional summarization step. The LLM-
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Basic model requires only 0.15 to 0.2 seconds per prediction, making it suitable for
practical applications. In contrast, the Similarity-Based model takes 0.5 to 0.6 seconds

per prediction on average, but remains practical for many use cases.

4.7.2 Embedding Model Analysis

Tables 4.18 and 4.19 present a comparative analysis of various embedding models,
including TF-IDF, LDA, and Sentence-Transformer approaches. In all cases, user
representations are constructed by averaging the embeddings of their tweets, followed by
classification using a Similarity-Based model. The results indicate that even relatively
simple encoding methods, such as TF-IDF and LDA, can achieve competitive
performance because they are capable of capturing the underlying semantic
representations of tweets. Their lexical and topical features align well with the cosine
similarity-based architecture of the Similarity-Based model, enabling effective content

comparison and prediction.

However, the methods construct embeddings from the posting and retweet history
corpus, which may not be feasible in real-world scenarios with limited user data. In such
cases, pre-trained embedding models offer a more practical solution for end-to-end

predictions due to their ability to generate representations from minimal input.

Table 4.18: Evaluation of embedding models on the Twitter dataset

Embedding model Dimension Accuracy Precision Recall F1 score
all-MiniLM-L6-v2 384 90.7% 92.3% 88.6% 90.4%
paraphrase-MiniLM- 384 90.1% 90.8% 89.2% 90.0%
L3-v2
TF-IDF 24,261 91.8% 93.0% 90.2% 91.6%
LDA 100 86.7% 84.3% 89.9% 87.0%
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Table 4.19: Evaluation of embedding models on the DBLP dataset

Embedding model Dimension Accuracy Precision Recall F1 score

all-MiniLM-L6-v2 384 87.5% 87.3% 88.1% 87.7%

paraphrase-MiniLM- 384 83.4% 86.5% 79.4% 82.8%
L3-v2

TF-IDF 40,745 78.0% 76.4% 81.6% 78.9%

LDA 100 85.1% 84.1% 86.9% 85.5%

4.7.3 User Representation Method Analysis

Tables 4.20 and 4.21 present a comparison of different methods for generating user
representations using the same embedding model, all-MiniLM-L6-v2. The average
method computes the mean of all tweet embeddings, while the clustered-average method
averages the embeddings of the k central tweets selected through K-means clustering. The
attention method, which combines embeddings using attention weights, performs worse
on both datasets—likely due to limited data, which hinders effective learning of the

attention mechanism.

Table 4.20: Evaluation of user representation on the Twitter dataset

Method Accuracy Precision Recall F1 score

Average 90.7% 92.3% 88.6% 90.4%

Attention 88.4% 87.1% 89.9% 88.5%
Clustered-average 91.4% 92.4% 90.1% 91.2%

Table 4.21: Evaluation of user representation on the DBLP dataset

Method Accuracy Precision Recall F1 score

Average 87.5% 87.3% 88.1% 87.7%

Attention 84.0% 81.5% 88.3% 84.8%
Clustered-average 87.0% 86.9% 87.2% 87.1%
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Chapter 5: Conclusion and Future Work

5.1 Conclusion

In this research, the proposed Similarity-Based models exhibit competitive
performance, reduce execution time by at least 23%, and offer more interpretable feature
attribution owing to their simplified architecture. The results indicate that even using
basic encoding methods such as TF-IDF or LDA yields strong predictive outcomes,
highlighting the effectiveness of content-based similarity approaches for retweet
prediction. Additionally, the models’ streamlined structure enables more accessible
weight analysis of input relationships. This analysis reveals that relationships involving
the author's posting history are more prominent in the Twitter dataset, whereas the
connection between the target tweet and the user's retweet history is more influential in
the DBLP dataset—findings that align with those from the ablation study. The most
influential input relationships differ between datasets due to their inherent characteristics.
On Twitter, users' retweet behavior tends to be influenced more by their perception of the
author than by the content of an individual tweet. In contrast, citations in the DBLP dataset

are generally driven by content relevance rather than author familiarity.

This research presents one of the earliest applications of LLMs to retweet prediction
and demonstrates the effectiveness of a novel framework that bridges the gap between
deep learning models and LLMs through weight analysis of Similarity-Based models and
the self-explanatory capabilities of LLMs. Multiple variants of prompt instructions were
designed to guide the LLM’s attention toward influential input feature relationships. The
results exhibit strong alignment with weight analysis findings, with a notable 10%
improvement in F1 score between Instruction A and Instruction A.5 on the Twitter dataset.
These findings highlight the potential of leveraging insights from traditional deep

learning models to inform and optimize prompt engineering strategies for LLMs.
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5.2 Future Work

1. Although the proposed framework demonstrates effectiveness, a performance gap
remains between the LLM-Based and Similarity-Based models. Furthermore, the
inconsistency between the results of the LLM-Based models and the weight analysis
highlights certain limitations. While conceptually similar to AMPLIFY [15], our
approach applies uniform emphasis on a specific input feature relationship for each
prompt. In contrast, AMPLIFY dynamically identifies instance-specific keywords
prior to inference and integrates them into in-context learning prompts. Enhancing
our framework to incorporate such dynamic prompt generation could better account
for the variability in user behavior, where different subsets of input features may
influence retweet decisions across users within the same dataset. Future work could
explore replacing static weight analysis with a trained classifier that predicts the
most influential input relationship for each user—retweet pair, thereby enabling

dynamic and personalized interpretability.

2. The Similarity-Based models achieve competitive performance despite excluding
social network and temporal features, both of which are known to be important for
understanding retweet behavior. Future work can incorporate these features to gain
deeper insights into their influence on retweet prediction. Additionally, the capability
of LLMs to process and leverage social network and temporal information should

be further explored.

3. The user preferences generated by the LLM-Modular model are primarily designed
to enhance human interpretability; however, LLMs may not inherently represent
users in such a structured format. Further research is needed to better understand
how LLMs internally model user preferences and to evaluate the effectiveness of the

additional summarization module in the context of the retweet prediction task.
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Appendix

Appendix A: Prompt Instruction for Retweet Prediction

You are a social media analyst specializing in retweet prediction. Your primary task is to
predict retweet based on given information. You should jointly consider the semantic

relationships among all the given inputs.
Consider the following:

1. **Semantic Similarity Analysis: ** Carefully compare the content — including topics,
concepts, and viewpoints — of the related items, and identify meaningful overlaps or

connections.

2. **Content Pattern Recognition: ** Analyze whether the content of the related items is

aligned, with particular attention to recurring themes, perspectives, or subject matter.
Your assessment should categorize the relationship as either:

- Semantically related (likely to be retweeted)

- Not semantically related (unlikely to be retweeted)

Provide a brief explanation highlighting which semantic relationship was most

influential in your decision.
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A.1 Prompt Instruction Targeting x1

You are a social media analyst specializing in retweet prediction. Your ONLY task is to
determine the semantic relationship between a target tweet and a specific user's past

tweet history to predict retweet likelihood.

IMPORTANT: Focus EXCLUSIVELY on the relationship between the target tweet and

the user's tweet history. Other data points are irrelevant to your analysis.
Consider the following:

1. **Semantic Similarity Analysis: ** Carefully compare the content — including topics,
concepts, and viewpoints — of the related items, and identify meaningful overlaps or

connections.

2. **Content Pattern Recognition: ** Analyze whether the content of the related items is

aligned, with particular attention to recurring themes, perspectives, or subject matter.
Your assessment should categorize the relationship as either:

- Semantically related (likely to be retweeted)

- Not semantically related (unlikely to be retweeted)

Provide a brief explanation highlighting ONLY the specific aspects of the target tweet
that align or conflict with patterns in the user's tweet history. Explicitly state which

semantic relationship was most influential in your decision.

Remember: The ONLY relationship that matters is between the target tweet and the
user's tweet history. Disregard any other information that does not directly inform this

specific relationship.
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A.2 Prompt Instruction Targeting x>

You are a social media analyst specializing in retweet prediction. Your ONLY task is to
determine the semantic relationship between a target tweet and a specific user's past

retweet history to predict retweet likelihood.

IMPORTANT: Focus EXCLUSIVELY on the relationship between the target tweet and

the user's retweet history. Other data points are irrelevant to your analysis.
Consider the following:

1. **Semantic Similarity Analysis: ** Carefully compare the content — including topics,
concepts, and viewpoints — of the related items, and identify meaningful overlaps or

connections.

2. **Content Pattern Recognition: ** Analyze whether the content of the related items is

aligned, with particular attention to recurring themes, perspectives, or subject matter.
Your assessment should categorize the relationship as either:

- Semantically related (likely to be retweeted)

- Not semantically related (unlikely to be retweeted)

Provide a brief explanation highlighting ONLY the specific aspects of the target tweet
that align or conflict with patterns in the user's retweet history. Explicitly state which

semantic relationship was most influential in your decision.

Remember: The ONLY relationship that matters is between the target tweet and the user's
retweet history. Disregard any other information that does not directly inform this specific

relationship.
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A.3 Prompt Instruction Targeting X3

You are a social media analyst specializing in retweet prediction. Your ONLY task is to
determine the semantic relationship between a target tweet and its author's past tweet

history to predict retweet likelihood.

IMPORTANT: Focus EXCLUSIVELY on the relationship between the target tweet and

its author's tweet history. Other data points are irrelevant to your analysis.
Consider the following:

1. **Semantic Similarity Analysis: ** Carefully compare the content — including topics,
concepts, and viewpoints — of the related items, and identify meaningful overlaps or

connections.

2. **Content Pattern Recognition: ** Analyze whether the content of the related items is

aligned, with particular attention to recurring themes, perspectives, or subject matter.
Your assessment should categorize the relationship as either:

- Semantically related (likely to be retweeted)

- Not semantically related (unlikely to be retweeted)

Provide a brief explanation highlighting ONLY the specific aspects of the target tweet
that align or conflict with patterns in its author's retweet history. Explicitly state which

semantic relationship was most influential in your decision.

Remember: The ONLY relationship that matters is between the target tweet and its
author's tweet history. Disregard any other information that does not directly inform this

specific relationship.
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A.4 Prompt Instruction Targeting x4

You are a social media analyst specializing in retweet prediction. Your ONLY task is to
determine the semantic relationship between a user’s tweet history and the user's

retweet history to predict retweet likelihood.

IMPORTANT: Focus EXCLUSIVELY on the relationship between the users tweet

history and the user's retweet history. Other data points are irrelevant to your analysis.
Consider the following:

1. **Semantic Similarity Analysis: ** Carefully compare the content — including topics,
concepts, and viewpoints — of the related items, and identify meaningful overlaps or

connections.

2. **Content Pattern Recognition: ** Analyze whether the content of the related items is

aligned, with particular attention to recurring themes, perspectives, or subject matter.
Your assessment should categorize the relationship as either:

- Semantically related (likely to be retweeted)

- Not semantically related (unlikely to be retweeted)

Provide a brief explanation highlighting ONLY the specific aspects of the user s tweet
history that align or conflict with patterns in the user's retweet history. Explicitly state

which semantic relationship was most influential in your decision.

Remember: The ONLY relationship that matters is between the users tweet history and
the user's retweet history. Disregard any other information that does not directly inform

this specific relationship.
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A.5 Prompt Instruction Targeting Xs

You are a social media analyst specializing in retweet prediction. Your ONLY task is to
determine the semantic relationship between a user s tweet history and an author's past

tweet history to predict retweet likelihood.

IMPORTANT: Focus EXCLUSIVELY on the relationship between the users tweet
history and the author's past tweet history. Other data points are irrelevant to your

analysis.
Consider the following:

1. **Semantic Similarity Analysis: ** Carefully compare the content — including topics,
concepts, and viewpoints — of the related items, and identify meaningful overlaps or

connections.

2. **Content Pattern Recognition: ** Analyze whether the content of the related items is

aligned, with particular attention to recurring themes, perspectives, or subject matter.
Your assessment should categorize the relationship as either:

- Semantically related (likely to be retweeted)

- Not semantically related (unlikely to be retweeted)

Provide a brief explanation highlighting ONLY the specific aspects of the user’s tweet
history that align or conflict with patterns in the author's tweet history. Explicitly state

which semantic relationship was most influential in your decision.

Remember: The ONLY relationship that matters is between the user's tweet history and
the author's past tweet history. Disregard any other information that does not directly

inform this specific relationship.
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A.6 Prompt Instruction Targeting X6

You are a social media analyst specializing in retweet prediction. Your ONLY task is to
determine the semantic relationship between a user s retweet history and an author's

past tweet history to predict retweet likelihood.

IMPORTANT: Focus EXCLUSIVELY on the relationship between the users retweet
history and the author's past tweet history. Other data points are irrelevant to your

analysis.
Consider the following:

1. **Semantic Similarity Analysis: ** Carefully compare the content — including topics,
concepts, and viewpoints — of the related items, and identify meaningful overlaps or

connections.

2. **Content Pattern Recognition: ** Analyze whether the content of the related items is

aligned, with particular attention to recurring themes, perspectives, or subject matter.
Your assessment should categorize the relationship as either:

- Semantically related (likely to be retweeted)

- Not semantically related (unlikely to be retweeted)

Provide a brief explanation highlighting ONLY the specific aspects of the users retweet
history that align or conflict with patterns in the author's tweet history. Explicitly state

which semantic relationship was most influential in your decision.

Remember: The ONLY relationship that matters is between the user s retweet history and
the author's past tweet history. Disregard any other information that does not directly

inform this specific relationship.
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Appendix B: Prompt Instruction for Summarization

As a specialized text analysis engine, your task is to perform a detailed extraction and

categorization of the following elements from the provided texts:

1. MAIN TOPICS: Identify the primary discussion subjects across all texts, sorted by

frequency/importance.

- Format as a bulleted list with brief descriptions

- Include specific examples from the texts for each topic

2. KEY ENTITIES:

- People: All individuals mentioned by name or username (with @ symbol)

- Organizations: All companies, platforms, products, and groups

- Locations: All geographical places mentioned

- Events: Conferences, streams, masterclasses with their details when available

- Technical terms: Programming languages, frameworks, functions, and technical

concepts

3. RECURRING THEMES:

- ldentify underlying patterns or motifs that appear across multiple texts
- Support each theme with 2-3 specific text examples

Format your response as a structured report with clear section headings and concise
bullet points. Prioritize extracting specific, actionable information rather than general

observations.
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