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摘要

在行動晶片的品質驗證中，at-speed邏輯掃描測試是一項重要工具。在初期測

試樣本導入階段，若測試展現出異常偏高的 Vmin，可能導致過度測試，進而影響

量產良率，這種情況尤其在測試的 Vmin 顯著高於實際系統工作負載的 Vmin 時更

為嚴重，在這類情況下，工程師會對 at-speed邏輯掃描測試進行除錯，以找出並

解決造成高 Vmin 的根本原因。本論文介紹一個 Vmin 除錯的案例研究，透過一系

列實驗，找出問題根源為某些測試樣本擷取了未受約束路徑的響應。我們提出

了晶片前期（pre-silicon）與後期（post-silicon）的方法，藉由預防問題樣本並減

少測試導入期間的除錯負擔，以改善 Vmin，這些方法已在 ATE（自動測試設備）

上驗證，能有效改善 Vmin，提升幅度為 28.83mV至 39.33mV，且測試向量僅增加

0%至 0.5%。

關鍵字：測試診斷、延遲測試、最低操作電壓、未受約束路徑
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Abstract

At-speed logic scan tests are an important tool to ensure desired quality in mobile

chips. During initial test pattern bring-up, tests that exhibit an unexpectedly high Vmin

pose a risk of over-testing and production yield loss. This is particularly problematic if

the Vmin of the test is significantly higher than that of the functional system workloads.

In such situations, the at-speed logic scan test is debugged to find and resolve the source

of the high Vmin. This thesis describes an example case study of Vmin debug, in which a

series of experiments are performed to identify the root cause as individual test patterns

that capture the responses of unconstrained paths. We propose pre-silicon and post-silicon

methods to improve Vmin by preventing problematic patterns and reducing the debug effort

during test bring-up. Our methods have been verified on ATE to effectively improve Vmin

by 28.83mV to 39.33mV with 0% to 0.5% pattern count inflation.

Keywords: Diagnosis, Delay Test, Vmin, Unconstrained Path
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Chapter 1 Introduction

1.1 Motivation

When validating a new test pattern set for the first time, a key performance metric

is Vmin, defined as the minimum operating voltage at which a chip passes the test. A test

pattern set that causes an excessively high Vmin could lead to over-testing, which in turn

creates yield loss in volume production. As part of the test bring-up process, we must

debug such pattern sets to achieve a lower, acceptable Vmin and prevent these negative

consequences.

Figure 1.1: Traditional flow to debug and improve Vmin during test-bring

1
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Traditionally, if the Vmin of an at-speed logic scan pattern set is too high, the first

suspected root cause is excessive power consumption [1,2]. To debug, therefore, an initial

step is often to regenerate the pattern set with power-aware ATPG to produce low-power

patterns. Figure 1.1 depicts this traditional flow to improve Vmin of a pattern set. Given a

test pattern set, test engineers test some sample chips on Automated Test Equipment (ATE)

and collect the Vmin. If the Vmin is too high, Design-for-Test (DFT) engineers regenerate

a low-power pattern set, and the sample chips are tested again. This process is repeated

with stricter power constraints until the pattern set has sufficiently low Vmin.

However, there are some drawbacks to the traditional flow. First of all, without an

understanding of the root causes of high Vmin pattern sets, this flow may not be suitable

for all cases. Second, the iterative back and forth between pre-silicon and post-silicon to

ensure satisfactory Vmin of the regenerated pattern set is extremely time-consuming and

requires significant human effort. What’s worse, if power is not the root cause of high

Vmin, this flow may be ineffective. Last but not least, regenerating a pattern set with

stricter power constraints is likely to produce serious pattern count inflation, increasing

the test time. With all these disadvantages, we need a new method to efficiently improve

Vmin.

Conventionally, a high Vmin of a pattern set is considered to be associated with power

2
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supply noise like IR drop and power supply droop [1–3]. Since scan test patterns would

typically induce much higher switching activity compared to functional mode, circuits

could have higher power consumption. When it comes to at-speed tests, the high fre-

quency would lead to even more critical power consumption. Excessive power consump-

tion would require a higher voltage so that circuits could operate correctly, which increases

Vmin. Nonetheless, in the case presented in this paper, no correlations have been found

between power supply noise and Vmin, suggesting an alternate cause for increased Vmin.

Apart from power, timing is another factor that could result in the high Vmin of a

pattern set. Before sign-off, engineers would check all paths meet the timing requirements

with the STA tool for some corners. However, actual operating voltages may shift due to

process variation, which makes it hard to estimate timing accurately. As a result, some

paths may have worse slacks than those calculated by the STA tool, which may lead to

higher Vmin. In addition to process variation, unconstrained paths are another possible root

cause of the high Vmin of a pattern set. The timing of unconstrained paths, which includes

false paths and multi-cycle paths, would not be checked when engineers apply the STA

tool. If the responses of some unconstrained paths are captured, they would possibly fail

at higher voltages, which thus increases Vmin. In our debugging attempts, we apply path

delay fault simulation and one-hot patterns to confirm that the responses of unconstrained

3
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paths are captured by the outlier patterns. To conclude, we find that the root cause of high

Vmin pattern sets is unconstrained paths in our case.

1.2 Debug Attempts and Proposed Methods

In our pattern sets, we find that some outlier patterns have higher per-pattern Vmin,

limiting the Vmin of pattern sets. Figure 1.2 shows the Vmin distribution of a pattern set.

We can see that some patterns have significantly higher per-pattern Vmin than the others.

By debugging the outlier patterns, we may potentially improve Vmin without excessive

pattern count inflation.

Figure 1.2: Shifted Vmin distribution of a pattern set

In this thesis, we first perform five debugging attempts to find out the root cause

4
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inducing abnormally high Vmin patterns. The first debugging attempt aims to find the

effectiveness of power-awareATPG.We apply power-awareATPG to generate pattern sets

with different power constraints. The results shows that directly apply power-aware ATPG

with stricter power constraints may be ineffective to reduce Vmin. The second debugging

attempt aims to find the correlation between global dynamic power and Vmin. We calculate

the global power metrics for each pattern and analyze the correlation between them and

per-pattern Vmin. The results shows that no correlation between global dynamic power and

per-pattern Vmin. Besides, the outlier patterns don’t have extremely high values of global

dynamic power. Figure 1.3 shows a figure of the correlation between one global power

metric and per-pattern Vmin. The third debugging attempt aims to find the correlation

Figure 1.3: Correlation between global peak WSA and per-pattern Vmin (shifted)

between local dynamic power and Vmin. We calculate the local power metrics for each

5
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grid, extract the highest value for each pattern, and analyze the correlation between them

and per-pattern Vmin. The results shows that no correlation between local dynamic power

and per-pattern Vmin. Besides, the outlier patterns don’t have extremely high values of

local dynamic power. The fourth debugging attempt aims to find the correlation between

dynamic power around the longest path and Vmin. We calculate the local power metrics

around the longest path and analyze the correlation between them and per-pattern Vmin.

The results shows that no correlation between dynamic power around the longest path and

per-pattern Vmin. Besides, the outlier patterns don’t have extremely high values of local

dynamic power around the longest path. The fifth debugging attempt aims to find the

correlation between unconstrained paths and Vmin. We apply path delay fault simulation

to confirm that whether the outlier patterns fail at higher voltages because of unconstrained

paths. The results shows that unconstrained paths are the root cause of the outlier patterns.

Apart from path delay fault simulation, we also generate one-hot patterns to validate the

results.

To deal with the root cause of the outlier patterns, we propose the pre-silicon and

post-silicon methods, which are shown in Figure 1.4 and Figure 1.5. They can prevent

pattern sets with high Vmin caused by unconstrained paths. The pre-silicon method can be

applied before we apply test pattern sets on ATE. It masks the capture flip-flops of uncon-

6
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strained paths that could potentially lead to outlier patterns. The pre-silicon method can

significantly improve the Vmin of pattern sets. However, it requires path definition files,

which can be extracted from Synopsys Design Constraint (SDC) files, and path delay fault

simulation, which takes more time. Besides, it leads to little pattern count inflation. The

post-silicon method can only be applied after we apply test pattern sets on ATE and ob-

tain the fail logs. We have two masking techniques for post-silicon method. The first one

masks the capture flip-flops of unconstrained paths that could potentially lead to outlier

patterns like the pre-siliconmethod. The second one directly masks the failing flip-flops in

the fail logs. Even though the post-silicon method requires fail logs, it can achieve similar

Vmin improvements as the pre-silicon method with barely any pattern count inflation.

Figure 1.4: Pre-silicon method Figure 1.5: Post-silicon method

7
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1.3 Contributions

In this paper, we conduct several debug experiments to identify the root cause of a

high Vmin pattern set. In our case study, we find that the correlations between power and

per-pattern Vmin are very low. The root cause in our case is the unconstrained paths. To

deal with the unconstrained paths, we propose two methods, pre-silicon and post-silicon,

to prevent and efficiently improve the high Vmin of a pattern set. The pre-silicon method

improves Vmin of a pattern set without ATE iterations at the cost of pattern count inflation.

The post-siliconmethod requires failing information fromATE and can improve Vmin with

less pattern count inflation. Our proposed methods are verified with real industrial data to

reduce 28.83mV to 39.33mV with 0% to 0.5% pattern count inflation. With our methods,

we can improve Vmin at early stages and thus reduce the iterative Vmin debugging loop in

Figure 1.1 to solve over-testing issues caused by high Vmin.

1.4 Organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce the back-

ground and related works of this thesis. In Chapter 3, we present a case study demonstrat-

ing our debug results of an industrial core with a Vmin issue, step by step. In Chapter 4,

8
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we propose two prevention flows, pre-silicon and post-silicon, to improve Vmin by solving

the root cause found in Chapter 3. Then, Chapter 5 describes the experimental results on

industrial silicon data, and finally Chapter 7 concludes this thesis.

9
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Chapter 2

Background and Preliminaries

2.1 At-speed Testing

At-speed testing is a critical technique in industry [4]. It is used to verify the perfor-

mance and reliability of integrated circuits under their actual operating frequency. Unlike

traditional methods that test at reduced speeds, at-speed testing runs at operational fre-

quency to better detect timing-related defects. Certain faults that only occur under opera-

tional frequency can be detected through at-speed testing. At-speed testing could improve

fault coverage and product reliability, making it indispensable in the industry.

One of the most common timing-related fault model that requires at-speed testing is

the transition delay fault. Transition delay faults require a two-pattern test—the first pat-

tern initializes the circuit state, and the second pattern launches transitions and propagates

the fault effect to an observable output. ATPG tools typically use two ways to generate

10
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TDF patterns: Launch-off-shift (LOS) [5,6] and launch-off-capture (LOC) [7]. Figure 2.1

shows how the scan enables signal and the clock signal work in LOS and LOC, where SE

and CLK represent the scan enable signal and clock signal, respectively. The SE signal is

high during test mode (shift) and low when in functional mode.

(a) Launch-off-shift

(b) Launch-off-capture

Figure 2.1: Transition delay test

LOS is an easier way to generate TDF patterns, but it loses some testability due to

the circuit’s structure. Furthermore, due to the limitation of the fall time of the scan enable

signal shown in Figure 2.1 (a), LOS cannot achieve real at-speed testing. LOC, on the other

hand, has higher testability but requires more time for the ATPG tool to generate patterns.

To achieve even better testability, users can increase the number of capture cycles at the

cost of longer runtime. In addition to testability, LOC also allows at-speed testing because

the fall time of SE does not restrict the clock speed. Since LOC, compared with LOS, has
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more advantages, it is more commonly used in the industry. As a result, in our work, we

would only discuss LOC TDF patterns.

2.2 Test Bring-up

Test bring-up is a phase to ensure that test specifications are met and test patterns

will not induce significant yield loss when enabled in volume production. In this phase,

only a small number of fault-free chips would be tested on ATE. Based on the test results,

test engineers check that each specification is met. One of the performance specifica-

tions checked during this process is Vmin. The validation Vmin for a test must be lower

than the product specification voltage, usually by some margin. If validation Vmin is too

high and there is insufficient margin, process variation could lead to yield loss in volume

production.

The general test bring-up flow is shown as Figure 2.2. DFT engineers first generate

initial pattern sets for each core of a design and provide them for testing. Test engineers

apply the pattern set on ATE with a few sample chips. ATE application generates fail

logs for each chip. Fail logs contain crucial information for diagnosis, such as failing

cycles, failing pattern IDs, and failing scan chains. Test engineers and DFT engineers

work together to identify the potential root causes and regenerate new pattern sets for
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resolution or further debugging. This process may be repeated several times to ensure the

quality of the test. If root causes cannot be found efficiently, test bring-up becomes very

time-consuming. The test bring-up process is essential for reducing time-to-market and

ensuring the reliability of the final product. It helps in identifying potential issues early,

allowing for corrections before volume production.

Figure 2.2: Example of test bring-up

2.3 Vmin Test

Vmin is a critical parameter in IC testing since it is a representative indicator of a

chip’s performance, power consumption, and reliability. It refers to the lowest supply

voltage at which a chip or a unit can function correctly. When Vmin binning is utilized,
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a chip with high Vmin will consume more power than a typical chip, particularly in low-

power mode [8]. The purpose of Vmin tests is to perform this binning and screen out bad

chips with excessively high Vmin.

As technology advances, the impact of process variations becomes increasingly sig-

nificant [9], underscoring the critical importance of Vmin test in ensuring chips’ power

performance. During testing, if Vmin test results are different from functional Vmin, the

supply voltage would be overestimated or underestimated, which leads to power ineffi-

ciency or failures. Therefore, accurately testing Vmin is critical, especially under process

variation.

Vmin is also switching activity dependent. Compared to functional mode, the switch-

ing activity of test mode tends to be larger, which results in higher Vmin test results than

functional Vmin. Even though functional Vmin and Vmin test results have a similar trend,

it is hard to correlate them [10]. During testing, if Vmin test results are much higher than

functional Vmin, it would lead to the over-testing problem. Therefore, test pattern sets play

an important role in Vmin testing.
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2.4 Suspected Root Causes for High Vmin

Both power supply noise and timing behavior would significantly influence the Vmin

test results of integrated circuits (ICs). During testing, Vmin may increase artificially. Both

power supply noise and timing behavior could be the root cause of high Vmin pattern sets.

Power supply noise includes IR drop and power supply droop. Timing behavior would be

affected by voltages, process, and unconstrained paths.

IR drop is the first suspected root cause of the high Vmin problem. It is the volt-

age drop that occurs due to the resistance in the power delivery network as current flows

through it. It reduces the effective voltage available to the IC components, which poten-

tially causes timing violations and functional failures. IR drop can be categorized into

static and dynamic IR drop. Static IR drop occurs when the circuit is in a steady state,

while dynamic IR drop happens during active switching. Both types of IR drop can in-

crease Vmin test results due to voltage loss. During at-speed testing, IR drop has been

recognized as a significant issue [3, 11, 12]. Local IR drop problems, in particular, are

considered critical during testing. [13, 14] split a core into several grids to consider local

IR drop.

Power supply droop is the second suspected root cause of the high Vmin problem.
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It is a reduction in supply voltage caused by sudden changes in current demand. This

phenomenon is particularly critical during high-speed operations where rapid switching

can lead to significant current fluctuations [15]. Power droop has been considered a critical

factor that degrades circuits’ performance during at-speed test [1, 2, 12, 16].

Switching activity is an indicator of the severity of power supply noise. It refers to

the transitions of digital signals within ICs. High switching activity leads to increased

demand for current spikes, which causes rising temperatures and timing degradation. The

consequences worsen the influences of power supply noise and increase Vmin as chips

require higher voltage to maintain reliable operation in strict environments. Weighted

switching activity (WSA) [17] considers the load capacitance of each gate by weighting

switching activity with the number of gates’ fan-out. WSA is effective in conveying the

severity of power supply noise. The definition of WSA is shown as Equation (2.1), where

Switch is 1 if a gate is switching and #gatefanout is the number of fan-out of a gate.

WSA is used as a parameter of power-aware ATPG. WSA in test mode is typically higher

than that in functional mode. That means, power supply noise in test mode is higher than

that in functional mode. It would finally cause higher Vmin and potential yield loss in the

post-silicon phase if not properly handled.
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WSA = Σ∀gateSwitch× (1 + #gatefanout) (2.1)

Timing differences among various voltages are the third suspected root cause of the

high Vmin problem. In pre-silicon, all timing requirements must be met to ensure flip-

flops capture the correct values when switching transitions occur in the circuit. Since the

timing performance of each instance varies with voltages and only some corner cases are

considered, the slack of each path cannot be accurately calculated across all voltages [18].

Besides, the actual operating voltages may shift due to process variation, which leads to

difficulties of accurate timing estimation. The inaccuracy of timing estimation at an un-

considered voltage mode may lead to some unexpected failing paths. For example, at the

specification voltage, suppose path1 has a larger slack than path2. However, when the

voltage is lowered, the slack of path1 may drop drastically due to transistors’ characteris-

tics and lead to failure at a higher voltage than path2.

The last suspected root cause of high Vmin is unconstrained paths. Unconstrained

paths include false paths and multi-cycle paths. Before sign-off, engineers would use

the STA tool to confirm that all paths meet the setup and hold time requirements at cor-

ner cases. However, the timing of unconstrained paths would not be fixed since uncon-

strained paths should not be activated in functional mode. If some unconstrained paths are
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not properly handled during pattern generation, the patterns that capture the responses of

unconstrained paths would lead to unexpected failures. Finally, it could cause high Vmin

or even an over-testing problem [19–21].
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Chapter 3 Per-pattern Vmin Debug

In this section, we present a case study with five Vmin debugging attempts on an

industrial core containing approximately 11 million gates. Eight sample chips have been

tested thoroughly. These sample chips have abnormally high Vmin during test bring-up. In

Section 3.1, we first describe how to obtain per-pattern Vmin and identify outlier patterns.

Next, we present debugging results based on power metrics or timing paths, as detailed

from Section 3.2 to Section 3.6. All pattern sets discussed in this section are logic scan

transition delay fault (TDF) test patterns. Tests are applied at-speed (i.e., at a frequency

consistent with their target functional performance mode).

3.1 Per-pattern Vmin and Outlier Patterns

During test bring-up, we find that the Vmin of each test pattern within a pattern set

is not the same. Some test patterns have abnormally high Vmin. Therefore, we carry out

experiments that measure Vmin for each test pattern. The per-pattern Vmin is defined as
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the lowest voltage at which a pattern does not fail, while the pattern-set Vmin is defined as

the lowest voltage at which the entire pattern set does not fail. The relationship between

pattern-set Vmin and per-pattern Vmin of a chip c is shown in Equation (3.1), where P

represents a pattern set, p represents a pattern of the pattern set.

Vmin(c, P ) = max∀p∈PVmin(c, p) (3.1)

Figure 3.1 illustrates an example of determining the per-pattern Vmin value within

a pattern set. In this example, the pattern set is composed of five patterns. We test this

pattern set at the initial voltage, which is set to the specification supply voltage (Vspec).

After collecting the fail logs at this voltage, we reduce the supply voltage by 1% of Vspec

and test the whole pattern set again. We iteratively go through the process until enough fail

logs are collected. Figure 3.1 (a) shows the test results of a pattern set, where green boxes

indicate that the tested chips pass the pattern at the voltage. Red boxes, on the contrary,

indicate failures of the pattern at the voltage. Figure 3.1 (b) presents the corresponding

per-pattern and pattern-set Vmin based on the test results.

Identifying outlier patterns in a pattern set helps us debug cores with abnormally high

Vmin. Outlier patterns are those with significantly higher per-pattern Vmin compared to the

majority of patterns during test bring-up. Figure 3.2 gives an example of how to identify
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(a) Pass/Fail of 5 patterns

(b) Pattern-set Vmin and per-pattern Vmin

Figure 3.1: Example of pattern-set Vmin and per-pattern Vmin

the outlier patterns in a pattern set with only one sample chip. Given a pattern set during

test bring-up, we collect the per-pattern Vmin of the pattern set using ATE. After collecting

all per-pattern Vmin values, we draw a bar chart like Figure 3.2. In the bar chart, the x-axis

represents the measured per-pattern Vmin with offset, and the y-axis represents the number

of patterns on the log scale. Each bar represents the number of patterns that have the same

per-pattern Vmin. We see that the patterns enclosed by the orange line are the majority

patterns. Most patterns belong to the majority patterns and have similar per-pattern Vmin.

Outlier patterns, colored in red, are those patterns with high per-pattern Vmin compared to

the majority patterns. In this case, we can improve pattern-set Vmin by about 40mV if we
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successfully debug all four outlier patterns, which is a significant improvement with little

coverage loss.

Figure 3.2: Shifted Vmin distribution of a pattern set

Generally, multiple sample chips are used during test bring-up. The outlier patterns

of a pattern set have to be identified as outlier patterns for most sample chips. The outlier

patterns, from patterns #1 to #4, in Figure 3.2 have been verified to be outlier patterns for

the other seven sample chips as well.

We focus on five debugging attempts for the following subsections. These attempts

are based on either power metrics or timing paths. First, we apply power-aware ATPG to

generate patterns with different power constraints. Second, we attempt to correlate global
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power metrics with per-pattern Vmin. Third, we try to correlate local power metrics with

per-pattern Vmin. Fourth, we consider long paths when correlating local power metrics

with per-pattern Vmin. Lastly, we will debug high Vmin patterns with unconstrained paths.

3.2 Debugging Attempt No.1: Power-aware ATPG

To debug whether high power is the root cause for high Vmin, we generate power-

aware ATPG test pattern sets with different power constraints. In commercial power-

aware ATPG, we can set various power constraints to restrict the tool, including the WSA

threshold and state element transition threshold for both capture cycles and shift cycles.

Since the Vmin issue caused by power supply noise mentioned in Section 2.4 is more se-

rious during capture cycles, we generate seven pattern sets for a core with various WSA

thresholds for capture cycles with power-awareATPG. The experimental results are shown

in Table 3.1. PS is the pattern set without power-aware ATPG. PS10 − PS15 are pattern

sets generated by power-aware ATPG with WSA thresholds for capture cycles. In Ta-

ble 3.1, captureWSAth is the value of the WSA threshold for capture cycles.

From Table 3.1, we observe that pattern-set Vmin does not decrease with WSAth.

However, we find that there are some abnormally high pattern-set Vmin. PS and PS13

have the two highest pattern-set Vmin compared to the others. We can conclude that stricter

23

http://dx.doi.org/10.6342/NTU202502538


doi:10.6342/NTU202502538

power constraints do not necessarily lead to lower Vmin. Although other pattern sets have

lower Vmin than PS, all of them still have outlier patterns, which means that we cannot

necessarily solve this high Vmin problem by low-power ATPG. Furthermore, pattern count

increases asWSAth decreases. PS10 has a 35% higher pattern count compared to PS. In

the rest of this paper, we will focus on PS and PS13 pattern sets because they have the

highest Vmin.

Table 3.1: Vmin of seven pattern sets with different captureWSAth

Pattern Set CaptureWSAth Pattern-set Vmin (Shifted) Outlier Pattern Exist?

PS None 79 Yes

PS15 15% 46 Yes

PS14 14% 49 Yes

PS13 13% 63 Yes

PS12 12% 47 Yes

PS11 11% 50 Yes

PS10 10% 48 Yes

We also try to generate low-power pattern sets with other power constraints, including

different WSAth for shift cycles, different state element transition thresholds for both

capture and shift cycles. All of them come to the same conclusion that no significant

correlation between pattern-set Vmin and power constraints.

24

http://dx.doi.org/10.6342/NTU202502538


doi:10.6342/NTU202502538

3.3 Debugging Attempt No.2: Global Dynamic Power

To debug if excessive whole chip power is the root cause for per-pattern high Vmin,

we attempt to correlate global power metrics to per-pattern Vmin. We select PS, one of

the pattern sets with the highest pattern-set Vmin, to carry out the debugging. The Vmin

distribution of PS is shown in Figure 3.2.

To determine if high per-pattern Vmin is caused by excessive power consumption,

we calculate power metrics for each pattern with commercial tools and correlate them to

per-pattern Vmin. There are six power metrics, regarded as important features to estimate

dynamic power consumption. In this experiment, we calculate them for the whole core to

obtain global dynamic power consumption.

(a) Scan cell transitions during loading patterns

(b) Scan cell transitions during unloading patterns

(c) Average of WSA per capture cycle

(d) WSA in the peak capture cycle

(e) Average of state element transitions per capture cycle

(f) State element transitions in the peak capture cycle
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(a) Scan cell transition during loading (b) Scan cell transition during unloading

(c) Avg. WSA (d) Peak WSA

(e)Avg. state element transition (f)Peak state element transition

Figure 3.3: Correlation between global dynamic power metrics and per-pattern Vmin

(shifted)
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The correlations between each power metric and per-pattern Vmin are shown in Fig-

ure 3.3. Each dot in the plots represents an individual pattern in the pattern set. For each

pattern, there are shifted per-pattern Vmin and normalized power metric values, which cor-

respond to the x-axis and y-axis, respectively. On the top of these figures, the Pearson cor-

relations are also shown. We performed similar experiments on the other seven chips and

observed similar results. From the figures, we can see that there is hardly any correlation

(-0.058 to 0.110) between any of the power metrics and per-pattern Vmin. Furthermore,

outlier patterns do not demonstrate high values for power metrics. Additionally, multi-

variate correlation is also performed. However, we still cannot find any correlation in our

case. These experiments indicate that global dynamic power does not play a significant

role in the Vmin problem in this case.

3.4 Debugging Attempt No.3: Local Dynamic Power

Some local regions in the core may have extremely high power consumption caused

by local IR drop and power droop, whichwould not be considered by global powermetrics.

We split the core into grids [13,14], calculate power metrics for each grid, and record the

one with the highest value of power metrics for each pattern. Then, we draw similar

plots like Figure 3.3 in Figure 3.4 and calculate the Pearson correlation. The results are
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very similar to Figure 3.3, showing hardly any correlations (-0.008 to 0.094) between

local power metrics and per-pattern Vmin. Besides, no extremely high values of the power

metrics are found for outlier patterns.

Based on the experimental results, both global and local dynamic power metrics have

no impact on per-pattern Vmin. It may indicate that local or global power is not the root

cause for the high per-pattern Vmin in this case.
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(a) Scan cell transition during loading (b) Scan cell transition during unloading

(c) Avg. WSA (d) Peak WSA

(e)Avg. state element transition (f)Peak state element transition

Figure 3.4: Correlation between local dynamic power metrics and per-pattern Vmin

(shifted)
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3.5 DebuggingAttemptNo.4: Dynamic Power around the

Long Path

To debug whether long paths with high surrounding power are the root cause for

high Vmin, we calculate local power metrics around the longest failing paths. We choose

the longest path from the diagnosis report of the outlier pattern #1. We calculate power

metrics around the longest path for each pattern. If the calculated power metric of the #1

outlier pattern is the highest among all patterns, it is possible that dynamic power around

long paths can be the root cause.

Figure 3.5: Power metrics around the longest path

Figure 3.5 illustrates how we consider the local power metrics around the longest
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failing path. Red squares and circles indicate the flip-flops and gates on the longest fail-

ing path. Green squares and circles indicate the neighboring flip-flops and gates of the

longest failing path. For each gate and flip-flop on the longest path, we search for its

physically neighboring flip-flops and gates within a certain distance. The blue region in

Figure 3.5 encloses all neighboring flip-flops and gates within a certain distance. In our

experiment, we consider the neighboring flip-flops and gates within one micron and those

on the longest failing path. Then, we calculate their power metrics for each pattern and

draw plots like Figure 3.3 in Figure 3.6 and calculate the Pearson correlation. Still, we can

barely find any correlation (-0.008 to 0.090) or extremely high values of power metrics

for outlier patterns in this case.

3.6 Debugging Attempt No.5: Unconstrained Paths

To debug if unconstrained paths are the root cause for high Vmin, we check if any un-

constrained path delay fault is detected by outlier patterns. During testing, unconstrained

path delay faults should not be detected because they will not be activated in functional

mode. If a pattern detects an unconstrained path delay fault, it may lead to abnormally

high Vmin since the timing of the unconstrained path would not be fixed before sign-off.

First of all, we want to check if all outlier patterns have at least one unconstrained
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(a) Scan cell transition during loading (b) Scan cell transition during unloading

(c) Avg. WSA (d) Peak WSA

(e)Avg. state element transition (f)Peak state element transition

Figure 3.6: Correlation between dynamic power metrics around the longest path and per-
pattern Vmin (shifted)
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path in their diagnosis report. If all diagnosis reports of outlier patterns contain at least

one unconstrained path, high Vmin is likely caused by these unconstrained paths. To start

with, we diagnose the failures of #1 outlier pattern to report the suspected failing paths.

Then, we extract all the suspected failing paths in the diagnosis report of #1 outlier pattern.

The diagnosis report contains 21 paths. Using a commercial STA tool, we find that one of

them is an unconstrained path. We repeat this process for the other outlier patterns (#2-#4)

in PS and notice that each of them has at least one unconstrained path in the diagnosis

reports. Besides PS, we select PS13 for debugging. In PS13, ten patterns are identified

as outliers, and each of them had at least one unconstrained path reported.

Second, wewant to confirm that the reported unconstrained paths are indeed activated

by the outlier patterns. To accomplish this, we leverage fault simulation with the path

delay fault (PDF) model. Path delay faults representing the suspect unconstrained paths

are created, and then simulated for the outlier patterns. Ideally, no pattern should detect any

unconstrained path delay fault, as they should have been masked during ATPG. However,

in this case, each outlier pattern is found to detect at least one unconstrained path delay

fault.

Lastly, we apply one-hot patterns to confirm that the flip-flops capturing the failure

align with the unconstrained paths. The examined design uses an XOR compressor, which
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leaves potential uncertainty that the flip-flop identified by diagnosis is in fact the culprit.

One-hot pattern expansion is a commonly used targeted debug method for identifying flip-

flops capturing failing data for a given pattern. These patterns are copies of the original

failing pattern that use the same stimulus, but leverage the selective compactor scheme

of [22] to observe a single scan chain through the compactor at a time. When all copies

are applied, the failing one-hot pattern points to the scan chain containing the failing flip-

flop. We expand the outlier patterns ofPS andPS13 into one-hot patterns, collect fail logs,

and apply diagnosis. The results confirm that the culprit failing flip-flops are consistent

with the identified unconstrained paths, further supporting that these paths are the root

cause of outlier patterns with abnormally high Vmin.

Based on our debugging results, we believe the root cause in our case is unconstrained

paths that were not considered when generating TDF patterns. Capturing the responses of

unconstrained paths leads to a pattern to have extremely high per-pattern Vmin. We should

exclude the outlier patterns caused by unconstrained paths to determine if the pattern set

contains other outlier patterns due to different root causes. Prevention methods are needed

to prevent patterns from detecting faults on unconstrained paths.
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3.7 Runtime of Debugging Attempts

Table 3.2 shows the runtime for each task used by debugging attempts. All recorded

runtime was measured using only one processor. Usually, people can require more pro-

cessors to speed up the tasks. Pattern generation is the process for ATPG to generatePS in

Table 3.2: Runtime of debugging attempts

Task Runtime

Pattern Generation ≈ 28 hours

Analysis of Global Dynamic Power ≈ 5 hours

Analysis of Local Dynamic Power ≈ 7 days

Analysis of Dynamic Power around the Long Path ≈ 7 days

Table 3.1, which takes about twenty-eight hours. For PS10 - PS15, the pattern generation

would take more time since there are power constraints during generation process. Analy-

sis of global dynamic power is the whole process of Section 3.3. It includes the runtime of

reporting six power metrics for each pattern in PS, which takes about 5 hours. Analysis

of local dynamic power is the whole process of Section 3.4. It includes the runtime of

partitioning a core into a hundred grids and reporting the six power metrics for each grids

and each pattern in PS, which takes about 7 days. Since we have a hundred grids, the

runtime is at least a hundred times longer than that of the global dynamic power analysis.

Analysis of dynamic power around the long path is the whole process of Section 3.5. It

includes the runtime of searching the flip-flops and gates around the path and reporting
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the six power metrics of the enclosed flip-flops and gates for each pattern in PS, which

takes about 7 days. Since we have to consider the neighboring flip-flops and gates, the

runtime much more longer than that of the global dynamic power analysis.
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Chapter 4

Proposed Prevention Methods

In this section, we propose two methods to prevent unconstrained paths from causing

high Vmin problems. Unlike traditional solutions, both methods do not need power-aware

ATPG. First, we propose a pre-silicon method, which can be used before we bring the

pattern set to ATE. It helps us to debug the patterns that could potentially lead to high

Vmin before we apply them on ATE. However, it may mask more flip-flops, which results

in lower fault coverage. Second, we propose a post-silicon method, which can be used

after we have fail logs from ATE. It reduces the iterative debug efforts (like Figure 1.1)

when the high Vmin problem is caused by unconstrained paths. Additionally, it masks

fewer flip-flops, allowing fault coverage to remain nearly the same.

The pre-silicon and the post-silicon methods are independent. We could either use

the pre-silicon method before testing chips on ATE, or use the post-silicon method after

testing chips on ATE. However, it is possible that the pre-silicon method leaves some

37

http://dx.doi.org/10.6342/NTU202502538


doi:10.6342/NTU202502538

unconstrained path unconsidered due to incomplete Synopsys Design Constraint (SDC)

files. If it happens, we can also choose to use both methods, such that the post-silicon

method can be used to prevent any unconstrained paths missed by the pre-silicon method.

4.1 Pre-silicon Method

A pre-silicon method is proposed to prevent the responses of unconstrained paths

from being captured by our generated pattern sets before ATE data is available. The goal

of the pre-silicon method is to debug the patterns that detect any unconstrained path delay

faults and mask their corresponding capture flip-flops before the pattern sets are applied

on ATE.

The overall method is shown in Figure 4.1. At the start of our method, we would

have a list of unconstrained paths that can be extracted from SDC files and a pattern set

from DFT engineers. We apply the path delay fault model and add all the unconstrained

paths to our fault dictionary. Then, we fault simulate each pattern in the pattern set to see

if any of them activate some unconstrained path.

If a pattern detects an unconstrained path delay fault, we add the unconstrained path

to the filtered unconstrained path list. We thenmask capture flip-flops based on the filtered

unconstrained path list, which would avoid the path being observed and cause high Vmin
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Figure 4.1: Pre-silicon method

failures. After masking, TDF coverage would be degraded. To recover the TDF coverage,

we first fault simulate all patterns for TDF with capture flip-flops masked and record

the fault coverage. If the fault coverage does not meet the target, we generate new TDF

patterns with ATPG to recover the fault coverage. For those newly generated patterns, we

apply the PDF fault simulation again to make sure these patterns don’t capture responses

from any unconstrained paths. If a new pattern activates any unconstrained path, we must

mask the capture flip-flop again. We continue this loop until the fault coverage is high

enough and no responses of unconstrained paths are captured.

Compared to the traditional method in Figure 1.1, the pre-siliconmethod can improve

Vmin with less pattern count inflation. Since our pre-silicon method does not replace all
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patterns with high Vmin, we can have less pattern count inflation. However, it still causes

some unnecessary pattern count inflation since not all unconstrained paths lead to abnor-

mally high Vmin. This issue can be further improved by the post-silicon method.

4.2 Post-silicon Method

To reduce the potential pattern count inflation of the pre-silicon method, we propose

a post-silicon method. The post-silicon method requires the pattern sets with high Vmin to

be applied, and fail logs collected from ATE.

Figure 4.2: Post-silicon method
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The post-siliconmethod is shown in Figure 4.2. Given the fail logs fromATE,we first

compute the per-pattern Vmin of a pattern set. Then, we decide which patterns are outlier

patterns by checking per-pattern Vmin across all the tested sample chips. The detailed

process to decide outlier patterns across all sample chips for a pattern set is introduced

in Section 3.1. After determining outlier patterns, we identify the outlier pattern that has

the lowest per-pattern Vmin and pick out the fail log at that voltage. With the fail log and

the pattern set, we apply the diagnosis tool to report the suspects and the potential failing

paths. We inspect the potential failing paths and check if they are unconstrained paths

or not. If a potential failing path is an unconstrained path, we add it to the diagnosed

unconstrained path list. There are two ways to perform the masking in the next step.

1. Mask capture flip-flops for all patterns

2. Mask failing cycles for outlier pattern

The first masking technique masks the capture flip-flops of the diagnosed uncon-

strained path list for all patterns. This masking technique would affect all patterns (outlier

as well as non-outlier patterns) and thus degrade fault coverages. The second masking

technique masks the failing cycles, also called failing slices, for outlier patterns only. It

would not affect fault coverage of non-outlier patterns, resulting in very little decrease in

fault coverage. The first technique targets diagnosed unconstrained paths but results in a
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higher reduction in fault coverage, whereas the second technique disregards the diagnosed

results and achieves a smaller reduction in fault coverage.

Table 4.1 presents an example of twomasking techniques. Suppose there are five pat-

terns in a pattern sets and three flip-flops we care, which are in first and second columns.

The third column shows the responses for each flip-flop and each pattern. The fourth col-

umn indicates which whether a flip-flop pass(P) or fail(F) the pattern. The fifth and sixth

columns presents the responses after we apply the first and second masking techniques.

In the table, H, L, and X represent high, low ,and unknown respectively. For pattern E,

the flip-flop #1 and flip-flop #3 both fail the test. As a result, the output of the flip-flops

would be masked (set to X) by either the first or second masking techniques. However,

with masking technique #1, we can only mask the flip-flops for all patterns. Thus, the

responses of the flip-flop #1 and flip-flop #3 are all set to unknown for all five patterns.

As for masking technique #2, we only ignore the failing cycles. Therefore, the flip-flops

would be masked only when the flip-flops fail the pattern.

Tomaintain the fault coverage after masking, we fault simulate the patterns and check

the TDF fault coverage. If the fault coverage is not enough, top-off ATPG is performed

to generate additional patterns to make up the coverage. When the fault coverage is high

enough, we finish our method. When generating additional patterns, the capture flip-flops
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Table 4.1: Comparison of two masking techniques

Pattern ID Flip-Flop ID Original String Pass or Fail Masking Tech. 1 Masking Tech. 2
1 H F X X

Pattern A 2 L P L L
3 H P X H
1 L P X L

Pattern B 2 L P L L
3 H P X H
1 L P X L

Pattern C 2 H P H H
3 L F X X
1 L P X L

Pattern D 2 H P H H
3 H P X H
1 H F X X

Pattern E 2 H P H H
3 L F X X

H: High L: Low X: Unknown P: Pass F: Fail

should be masked as well to prevent the new patterns from activating the same uncon-

strained paths.

After the post-silicon method, the debugged patterns should have no outlier pat-

terns remaining in the pattern set if all outlier patterns are caused by unconstrained paths.

Nonetheless, there is a very small chance that the newly generated patterns activate other

unconstrained paths that are not considered when we generate additional patterns. There-

fore, we test the whole pattern set (including additionally generated patterns) onATE again

in the test bring-up to ensure that pattern-set Vmin improves as expected.
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Chapter 5

Prevention Experimental Results

In this section, we demonstrate the experimental results of our pre-silicon and post-

silicon prevention methods. The prevention experiments are performed on the same core

as Chapter 3. We choose PS and PS13 to conduct the prevention experiments. We com-

pare the pattern-set Vmin and pattern count inflation with and without these two methods.

The pattern sets are applied to twelve chips to demonstrate the Vmin improvement.

Table 5.1 and Table 5.2 show the results of the pre-siliconmethod and the post-silicon

method, respectively. PS and PS13 are the pattern sets before debugging. PS
′ and PS

′
13

are the pattern sets after debugging with our pre-silicon method. PS
′′ and PS

′′
13 are the

pattern sets after debugging with our post-silicon method and the first masking technique.

PS
′′′ and PS

′′′
13 are the pattern sets after debugging with our post-silicon method and the

second masking technique. Pattern count inflation indicates the increase in pattern count

compared to PS or PS13 to maintain the same fault coverage. The column of pattern-set
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Vmin Improvement shows the Vmin improvement of debugged pattern sets in mV . The

numbers are compared with the corresponding pattern sets before debugging (PS and

PS13). In the final two columns, we show the mean (µ) and standard deviation (σ) of

Vmin improvement on these twelve chips.

5.1 Pre-silicon Method

The experimental results of the pre-silicon method are shown in Table 5.1. Compared

to PS and PS13, PS
′ and PS

′
13 improve pattern-set Vmin by 30.17mV and 39.33mV . The

pattern count inflation is 0.33% and 0.50% for PS
′ and PS

′
13. The pre-silicon method

could improve Vmin for PS and PS13 with low pattern count inflation.

Table 5.1: Pre-silicon method results

Pattern Set Pattern Count Inflation (%) Pattern-set Vmin Improvement (mV)

µ σ

PS
′ 0.33 30.17 12.25

PS
′
13 0.50 39.33 8.02

We retest the same twelve chips on ATE with debugged pattern sets, PS
′ and PS

′
13.

ForPS, there are four outlier patterns across most of the sample chips. ForPS13, there are

ten outlier patterns across most of the sample chips. The fail logs of PS
′ and PS

′
13 show

no outlier patterns, demonstrating that we successfully eliminated all the outlier patterns

that capture the responses of unconstrained paths. After we remove outlier patterns, there
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could still be room for Vmin improvements. If switching activity is a contributing factor,

combining the proposed method with power-aware ATPG can further reduce Vmin more

efficiently than the commonly-used method of Figure 1.1.

5.2 Post-silicon Method

The experimental results of the post-silicon method are shown in Table 5.2. For both

masking techniques, the post-silicon method achieves similar Vmin improvements as the

pre-silicon method. We describe the results of two masking methods as follows.

Table 5.2: Post-silicon method results

Pattern Set Pattern Count Inflation (%) Pattern-set Vmin Improvement (mV)

µ σ

PS
′′ 0.04 28.83 11.74

PS
′′′ 0 29.17 11.58

PS
′′
13 0.24 35.50 5.33

PS
′′′
13 0 35.17 5.42

The first masking technique improvesVmin forPS andPS13 by 28.83mV and 35.50mV .

The pattern count inflation is 0.04% and 0.24% for PS
′′ and PS

′′
13. The pattern count in-

flation for PS
′′ and PS

′′
13 is lower than that of PS

′ and PS
′
13 because we only mask the

unconstrained paths activated by outlier patterns. We retest the same twelve chips on ATE

with debugged pattern sets, PS
′′ and PS

′′
13. We have the same results as PS

′ and PS
′
13,

that all the outlier patterns capturing the responses of unconstrained paths are eliminated.
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The second masking technique improves Vmin for PS and PS13 by 29.17mV and

35.17mV respectively. After masking failing cycles, the fault coverage still meets the

target. Therefore, no additional pattern generation is needed for PS
′′′ and PS

′′′
13, and the

pattern count inflation is 0% for both pattern sets. This masking technique improves Vmin

by masking all failing cycles regardless of the root cause. We retest the same twelve

chips on ATE with debugged pattern sets, PS
′′′ and PS

′′′
13. They could achieve similar

Vmin improvements to PS
′′ and PS

′′
13 with no pattern count inflation. It implies that the

second masking technique is also effective in removing the outlier patterns caused by

unconstrained paths without additional patterns to recover the coverage loss.

5.3 Methods Comparison

Table 5.3 presents a comparison of the different methods. In our experiments, the

pre-silicon method is the best prevention method to improve Vmin. It achieves the best

Vmin improvements for PS and PS13 without ATE. However, the pre-silicon method in-

duces greater pattern count inflation than the post-silicon method. Furthermore, it requires

additional effort to extract the unconstrained paths from SDC files and apply PDF fault

simulation. The post-silicon method with either the first masking technique or the sec-

ond masking technique could achieve similar Vmin improvements with much less pattern
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count inflation and efforts. However, the post-silicon method requires the test results

from ATE. The first masking technique is specified to remove the outlier patterns caused

by unconstrained paths. If some outlier patterns are not caused by unconstrained paths,

we can keep the failing information of those outlier patterns, which leads to better diag-

nostic information. However, it could only be applied on all patterns, which leads to more

pattern count inflation than the second masking technique. The second masking technique

is not specified to remove the outlier patterns caused by unconstrained paths. It directly

masks the failing cycles regardless of the root causes. If there are some outlier patterns

not caused by unconstrained paths, we would lose the failing information of the outlier

pattern. As a result, it gives less diagnostic information. However, if we don’t need to

know the root causes of outlier patterns, the second masking technique may be better than

the first masking technique since there is no pattern count inflation in our case.

Table 5.3: Comparison of pre-silicon and post-silicon methods

Need ATE Need PDF Fault Sim. Vmin Improvement Pattern Count Inflation Diagnostic Info.

Pre-silicon No Yes 1st 3rd -

Post-silicon w/ Technique #1 Yes No 2nd 2nd 1st

Post-silicon w/ Technique #2 Yes No 2nd 1st 2nd

48

http://dx.doi.org/10.6342/NTU202502538


doi:10.6342/NTU202502538

5.4 Runtime of Proposed Prevention Methods

Table 5.4 shows the runtime for each proposed method. The pre-silicon method takes

the longest time to complete, which is about eight days. There are two reasons why the

pre-silicon takes so much time.

1. Conversion from SDC files to path definition files

2. Path delay fault simulation

Path definition files from SDC files are essential for path delay fault simulation, and path

delay fault simulation is required to extract the detected unconstrained paths. These addi-

tional steps makes the pre-silicon method the most time-consuming method.

The post-silicon methods with either masking techniques require much less time to

complete. However, the runtime is still different between the post-silicon methods with

different masking techniques. The first masking techniquemasks the captured flip-flops of

detected unconstrained paths. To know which unconstrained paths are captured, we have

to diagnose the fail logs of outlier patterns. With diagnosis, the first masking technique

requires more time than the second masking technique, which is about twenty-five hours.

The secondmasking technique masks the failing cycles of outlier patterns. It only required
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the fail logs of outlier patterns, which is muchmore easier than the first masking technique.

As a result, it takes the shortest time, which is about thirteen hours.

Table 5.4: Runtime of proposed method

Method Runtime

Pre-silicon Method ≈ 8 days

Post-silicon Method with the First Masking Technique ≈ 25 hours

Post-silicon Method with the Second Masking Technique ≈ 13 hours
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Chapter 6 Discussion

6.1 Power-aware ATPG and Prevention Methods

The improved Vmin of a pattern set with our prevention methods may still be too high

for mass production, which means the problem of over-testing may still occur. If Vmin is

still too high, we have to find another way to further reduce Vmin. In the experiments of

3.3, we generate several pattern sets with different power constraints. We observe that

power constraints cannot effectively reduce Vmin of a pattern set, which means that power

is not directly correlated to Vmin. However, the reason why power is not correlated to

Vmin may be that there are outlier patterns caused by unconstrained paths in all the pattern

sets. By removing all the outlier patterns for all the pattern sets, we find that the average

of per-pattern Vmin is reduced as the power constraints get stricter. It implies that power

still has effects on Vmin of a pattern set if no outlier patterns exist.

Based on our experimental results, we think that combining traditional Vmin debug

method, which apply power-aware ATPG, and our proposed prevention methods helps us
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to improve Vmin more efficiently. For example, we take PS as our initial pattern set in

test bring-up. We apply our pre-silicon method and obtain a debugged pattern set PS
′ .

Even though PS
′ has much lower Vmin than PS, the Vmin of PS

′ may still be too high

for production. If Vmin of PS
′ is still too high for production, we regenerate a pattern set,

PS13, which has stricter power constraints. We apply our pre-silicon method again and

obtain a debugged pattern set PS
′
13. Compared to PS

′ , PS
′
13 has about 12mV lower Vmin

in average. As a result, PS
′
13 can achieve lower Vmin than PS

′ so that Vmin over-testing

problem would less likely to happen in production.

6.2 Capturing Responses of Unconstrained Paths

In Section 3.6, we mention that unconstrained paths should not be activated. Under

normal circumstances, the capture flip-flop of a path would be masked if the path is set

as an unconstrained path. However, in our case, we found that some unconstrained paths

were activated and their responses were captured. This implies that something went wrong

before we generated our pattern sets. There are several possible reasons that could have

led to this issue.

The first possible reason is a tool bug. Before we generate patterns, we use a script

derived from SDC files, which contains all the unconstrained paths that should be set in
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the tool. When the tool reads this script, it is supposed to mask all the capture flip-flops

of the unconstrained paths so that these flip-flops are not considered valid capture points

during pattern generation. However, since the script content can be very large, the tool

might miss some unconstrained paths and fail to mask their capture flip-flops. This could

result in outlier patterns that capture the responses of unconstrained paths. However, we

don’t have any direct evidence that a tool bug leads to the consequences so far.

The second possible reason is human error. Before pattern generation, engineers

execute several commands with the tool. Due to the complexity of the tool and the number

of commands involved, the interactions between commands may not be fully understood

by engineers. As a result, some commands might unintentionally unmask flip-flops that

should have remained masked after the script was read. This could also lead to unexpected

outlier patterns that activate some unconstrained paths.

Besides the above reasons, there may be other factors contributing to the issue. We

have only discussed the two most likely causes. To identify the actual root cause of ac-

tivated unconstrained paths, we need to break down each step before pattern generation,

which requires significant time and effort. What we do know is that some capture flip-

flops of unconstrained paths were not masked, even though those paths were correctly set

as unconstrained in the tool. Identifying the exact cause is left for future work.

53

http://dx.doi.org/10.6342/NTU202502538


doi:10.6342/NTU202502538

Chapter 7 Conclusion

This thesis presents a debug case study on identifying the root cause of abnormally

high Vmin during test bring-up for an industrial core. The correlation between power met-

rics and Vmin has been observed to be very low in our case. We have successfully de-

bugged the root cause of high Vmin to unmasked unconstrained paths in this case. We pro-

pose pre-silicon and post-silicon methods to prevent high Vmin caused by unconstrained

paths. The experimental results show that both pre-silicon and post-silicon methods can

effectively prevent test patterns from capturing the responses of unconstrained paths with

extremely low pattern count inflation. For the pre-silicon method, we achieve 30.17mV

to 39.33mV Vmin improvements with 0.33% to 0.50% pattern count inflation. For the

post-silicon method, we achieve 28.83mV to 35.50mV Vmin improvements with 0% to

0.24% pattern count inflation. Our methods have been shown to be effective in improving

Vmin for real data if outlier patterns with high Vmin are caused by unconstrained paths.
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