
doi:10.6342/NTU202402925

國立臺灣大學電機資訊學院資訊網路與多媒體研究所

碩士論文

Graduate Institute of Networking and Multimedia

College of Electrical Engineering and Computer Science

National Taiwan University

Master’s Thesis

利用 ARM指標認證與棧回溯技術以保護系統呼叫及
控制流

Utilize Arm Pointer Authentication and Stack Unwinding
to Protect System call Usage and Control Flow

許智凱

Chih-Kai Hsu

指導教授: 黎士瑋博士

Advisor: Shih-Wei Li, Ph.D.

中華民國 113年 8月

August 2024

doi:10.6342/NTU202402925i

doi:10.6342/NTU202402925

致謝

首先，我要感謝我的指導教授黎士瑋博士，您在整個碩士班研究過程中給予

了我極大的幫助和指導，讓我受益匪淺。您的建議不僅推動了我的研究進展，還

提供了比我自己更全面和有條理的分析角度，讓我在評斷問題時能有更全面的思

考。在這幾個月的論文撰寫過程中，您不厭其煩地審閱我的論文，指出文字中的

邏輯謬誤和解釋不清之處，使我的學術寫作和邏輯闡述能力得到了顯著提升。

本論文的完成還要感謝廖世偉教授和陳君朋教授擔任我的口試委員。你們的

建議和意見使我的論文更加完整和嚴謹。

我也要感謝我的家人和朋友們，正是因為有你們的支持，我才能完成這篇論

文。

此外，特別感謝 OpenAI的 ChatGPT幫助我改進了論文的英文表達，許多論

文中的字句（包括本致謝）得益於它的幫助，才能如此通順、清晰和流暢。

謝謝。

許智凱

國立臺灣大學資訊網路與多媒體研究所

中華民國一百一十三年七月

ii

doi:10.6342/NTU202402925

摘要

現代系統為應用程式提供各種服務，這些服務主要通過系統調用訪問。系統

調用經常被利用於嚴重攻擊中，例如控制流劫持攻擊。因此，與安全相關的系統

調用（如 mprotect、mmap和 execve）在整個攻擊鏈中起著關鍵作用。另一方面，

ARM處理器現在越來越多地部署在桌面和數據中心。雖然先前的研究已經構建了

保護 x64架構上系統調用使用的防禦機制，但我們提出了一種新穎的框架，以確

保內存不安全編程語言（C/C++）在 ARM架構上的系統調用使用的安全性。

我們確保合法的系統調用使用具有以下屬性：系統調用調用的控制流完整

性。首先，我們在 Linux內核中引入了一個基於堆棧回溯的監控器。其次，我們

利用 ARMv8.3處理器中可用的指針驗證（PA）功能來保護控制流敏感的指針，如

函數指針和 C++虛表指針。通過這些防禦機制，我們可以有效地破壞攻擊鏈，防

止攻擊者達成他/她的目標。

我們的框架由兩個主要組件組成：1）可加載內核模塊（LKM）和 2）定

制的 LLVM 編譯器。我們的安全案例研究表明，我們可以有效地擊敗所有攻

擊，包括真實世界的漏洞利用。我們使用三個常見的系統調用密集型程序

（Lighttpd、NGINX和 SQLite）以及 SPEC CPU2017基準套件來評估性能。結果顯

示，Lighttpd的性能開銷為 0.68%，NGINX為 0.45%，而 SPEC CPU2017基準套

件的平均開銷為 2.95%。我們在 Section 6.2.3中解釋了 SQLite開銷較高的原因。

iii

doi:10.6342/NTU202402925

關鍵字：系統呼叫、棧回溯、指標認證、控制流完整性

iv

doi:10.6342/NTU202402925

Abstract

Modern systems provide various services to applications, primarily accessed through

system calls. System calls are frequently utilized in serious attacks, such as control-flow

hijacking attack. Therefore, security-related system calls, such as mprotect, mmap and

execve play a pivotal role in the entire attack chain. On the other hand, ARM processors

are increasingly deployed on desktops and in data centers nowadays. While previous

works have built defensemechanisms to protect system call usages on x64 architecture, we

propose a novel secure properties for system call usages for memory-unsafe programming

languages (C/C++) on ARM architecture.

We ensure a property for legitimate system call usage: the control flow integrity of

system call invocations. Firstly, we introduce a stack unwinding-based monitor in the

Linux kernel. Secondly, we utilize the Pointer Authentication (PA) feature available in

ARMv8.3 processors to protect control-flow-sensitive pointers, such as function pointers

and C++ Vtable pointers. With these defense mechanisms, we can effectively corrupts the

v

doi:10.6342/NTU202402925

attack chain, preventing the attacker from achieving her goals.

Our framework consists of twomain components 1) a loadable kernel module (LKM)

and 2) a customized LLVM compiler. Our security case study demonstrates that we can

effectively defeat all attacks, including real-world exploits. We evaluate the performance

using three popular system call-intensive programs: Lighttpd, NGINX, and SQLite, as

well as the SPEC CPU2017 benchmark suite. Our results indicate an overhead of 0.68%

for Lighttpd, 0.45% for NGINX, and an average of 2.95% for the SPEC CPU2017 bench-

mark suite. We explain the reasons for the higher overhead on SQLite in the Section 6.2.3.

Keywords: System Call, Stack Unwind, Pointer Authentication, Control Flow Integrity

vi

doi:10.6342/NTU202402925

Contents

Page

Verification Letter from the Oral Examination Committee i

致謝 ii

摘要 iii

Abstract v

Contents vii

List of Figures x

List of Tables xi

Chapter 1 Introduction 1

Chapter 2 Background 4

2.1 Stack Layout Information for binaries 4

2.1.1 Frame Pointer and Stack Pointer 4

2.1.2 .eh_frame . 4

2.2 Stack Unwinding . 6

2.3 Arm Pointer Authentication . 6

2.4 Code Reuse Attack . 7

2.5 Virtual Functions in C++ . 8

2.6 VTable Hijacking Attacks . 9

vii

doi:10.6342/NTU202402925

Chapter 3 Threat Model and Assumptions 10

Chapter 4 Design 12

4.1 Control Flow Integrity of System Call Usage 12

4.1.1 Backward-Edge CFI Protection . 12

4.1.2 Forward-Edge CFI Protection . 15

Chapter 5 Implementation 17

5.1 Loadable Kernel Module . 19

5.1.1 Intercept system call . 19

5.1.2 Mechanisms . 20

5.2 Forward-edge CFI Protection. 21

5.2.1 PA modifier. 22

5.2.2 Function Pointer Signing/Authentication. 22

5.2.3 C++ VPointer Signing/Authentication 24

Chapter 6 Evaluation 27

6.1 Performance Evaluation . 27

6.1.1 Experimental Setup . 27

6.1.2 Benchmarks . 27

6.2 Application Performance . 28

6.2.1 Lighttpd . 28

6.2.2 NGINX . 29

6.2.3 SQLite . 29

6.2.4 SPECCPU2017 . 31

viii

doi:10.6342/NTU202402925

Chapter 7 Limitation and Discussion 32

7.1 The Limitation of the Unwinder. 32

7.1.1 Complete Unwinding Information. 33

7.1.2 Incomplete Unwinding Information. 33

7.2 Attacks on PAC . 34

Chapter 8 Security Evaluation 35

8.1 Security Analysis . 35

8.1.1 ROP . 35

8.1.2 VPointer Hijacking . 35

8.1.3 Direct System Call Manipulation 37

8.1.4 Indirect System Call Manipulation 38

Chapter 9 Related Work 39

9.1 Related Work . 39

9.1.1 Debloating and system call filtering. 39

9.1.2 Runtime System Call Protection. 39

9.1.3 Pointer Integrity Protection. 41

9.1.4 PAC Defense Approaches. 42

9.1.5 Unwinding based Approaches. 43

Chapter 10 Conclusions 44

References 45

ix

doi:10.6342/NTU202402925

List of Figures

Figure 2.1 PAC signing and authentication 7

Figure 5.1 LLVM architecture . 18

Figure 6.1 Performance overhead for SPEC CPU2017. 31

x

doi:10.6342/NTU202402925

List of Tables

Table 3.1 Protected system call set. 11

Table 6.1 Benchmark numbers for Lighttpd, NGINX, and SQLite. 28

Table 6.2 System call usage . 30

Table 8.1 Security Analysis against Attacks 36

xi

doi:10.6342/NTU202402925

Chapter 1 Introduction

Modern applications are designed with a myriad of functionalities to cater to diverse

user needs. These functionalities rely on system calls, a set of services provided by the

OS kernel. While system calls facilitate seamless communication between applications

and the OS kernel, improper usage can lead to significant security issues. Attackers often

exploit program bugs to invoke system calls for malicious purposes, such as downloading

and executing harmful payloads.

Various approaches have been proposed to address system call security issues. Some

methods focus on reducing the program’s attack surface. For example, debloating tech-

niques [7, 42, 43] aim to eliminate unused code that might invoke system calls. Other

approaches [16, 17, 20] involve profiling program behaviors to filter out unused system

calls. However, these strategies cannot prevent the execution of sensitive system calls

(e.g., execve) essential to the program’s functionality.

Arm processors have been increasingly adopted across a wide range of platforms,

including mobile and embedded devices, personal computers, automobiles, and cloud

servers [4, 49]. This widespread adoption underscores the critical need to secure sys-

tem call usage in programs running on Arm-based platforms. In this thesis, we propose a

novel framework designed to protect legitimate system call usage in C/C++ programs on

1

doi:10.6342/NTU202402925

Arm-based platforms. Our framework ensures a key property: the control flow integrity

of system call invocations. Securing control flow integrity (CFI) for all control trans-

fers can introduce significant performance overhead. Therefore, we focus specifically on

ensuring CFI for direct and indirect function calls. For direct function calls, we incorpo-

rate a stack unwinding-based approach. We implement a secure monitor that hooks into

Linux’s sensitive system calls. When a task invokes a sensitive system call, the monitor

unwinds the caller’s call stack to verify whether the call was made through a legitimate

control-flow function call path. To simplify deployment efforts, we leverage the program’s

DWARF [1] debug information, which is readily available in the program’s .eh_frame sec-

tion. This approach enables us to perform call stack unwinding without requiring program

recompilation, thus facilitating easier integration and deployment.

We utilize the Pointer Authentication (PA) [32, 44] feature available from ARMv8.3

processors to secure the control flow integrity of indirect function calls. PA allows us

to tag a function pointer and store the tag in the unused bits of the pointer. At function

pointer usage sites, we validate the tag. If a compromise is detected, the hardware aborts

the program to prevent the use of the corrupted pointer. To protect the integrity of indirect

calls, we instrument programs to tag and validate function pointers. Additionally, we

extend this protection to C++ programs by tagging pointers to the virtual method table

(Vtable). This ensures the integrity of virtual method invocations, safeguarding against

Vtable hijacking and related attacks.

We leverage both runtime and static approaches to collectively enforce the intended

system call security properties. Our framework consists of a loadable kernel module and

LLVM passes. The kernel module implements our monitor, while the LLVM passes

facilitate PA-based pointer protection. Although we aim to provide a comprehensive so-

2

doi:10.6342/NTU202402925

lution for securing system call usage, the individual components (e.g., the monitor and

compiler) offer standalone system call protection features that are independent yet com-

plementary. Developers can configure and activate features according to their specific

needs. For example, Arm platforms requiring higher performance could employ only

our monitor to harden the system without necessitating program instrumentation. This

flexibility allows for tailored security measures based on the performance and security

requirements of different deployment scenarios.

We have constructed a prototype aimed at safeguarding system call usage in Arm-

based programs. This prototype is compatible with commonly used network-facing server

applications running on standard Linux distributions deployed across embedded, desktop,

and server Arm hardware. Through our evaluation, we have demonstrated the effective-

ness of our framework in defending against vulnerabilities that exploit control-flow hijack-

ing techniques to facilitate malicious system call invocations. Additionally, we conducted

performance evaluations on protected applications. Our findings indicate that our frame-

work imposes only modest overhead, ranging from 0.45% to 4.22%without SQLite, when

compared to unprotected applications. This minimal performance impact underscores the

efficiency and practical viability of our approach in enhancing system call security with-

out significantly compromising system performance. On the other hand, we explain the

reasons for the higher overhead on SQLite in the Section 6.2.3.

3

doi:10.6342/NTU202402925

Chapter 2 Background

2.1 Stack Layout Information for binaries

2.1.1 Frame Pointer and Stack Pointer

The stack pointer indicates the top of the current function’s stack, while the frame

pointer points to the top of the caller’s stack, which contains the return address for the

current function. On ARM64 architecture, the stack pointer is held in the sp register, and

the frame pointer is held in the x29 register.

2.1.2 .eh_frame

.eh_frame is a section in an ELF binary. It contains the program’s call stack trace

information generated by the GNU C tool-chain in the DWARF[1] format. The .eh_frame

consists of the stack layout information, such as the PC relative address offset to the stack

top and frame record. The information is helpful for stack unwinding (to retrieve the func-

tion’s return address) during signal handling, exception handling, and debugging. The

.eh_frame section comprises one or more FDEs (Frame Description Entry), and each FDE

contains a list of CFIs (Call Frame Instructions). Each FDE is associated with a particu-

lar function or section of code within the object file. In FDE, two entries, pc begin and

4

doi:10.6342/NTU202402925

pc range, define the begin address and the range of the current function. CFI gives us

information about restoring the return address register and callee-saved register.

We show the Arm64 assembly code in ARM64 and the FDE of a function ngx_alloc

in Nginx in Listing 1 and Listing 2, respectively. In Listing 2, line 2 shows the range of

the function, which is from 0x408a4 to 0x40908, and each row from line 4 to line 8 is

decoded from one or more CFIs. CFA (Canonical Frame Address) stores the value of the

stack pointer at the call site in the previous frame. Based on the CFA value, one can derive

the addresses where specific registers and the return address are stored in the stack. For

instance, line 6 from Listing 2 specifies that while the PC is set to the address 0x408b4, the

CFA points to the address sp + 48 and the callee’s return address (from the ra column) is

stored at the address c - 40 (i.e., sp + 8). This information facilitates stack unwinding.

1 00000000000408a4 <ngx_alloc>:
2
3 408a4: a9bd7bfd stp x29, x30, [sp, -48]!
4 408a8: 910003fd mov x29, sp
5 408ac: a90153f3 stp x19, x20, [sp, 16]
6 408b0: f90013f5 str x21, [sp, 32]
7 408b4: aa0003f5 mov x21, x0
8 408b8: aa0103f4 mov x20, x1

Listing 1: assembly code of ngx_alloc

1 00005780 0000000000000028 00005784 FDE cie=00000000
2 pc=408a4..40908
3 LOC CFA x19 x20 x21 x29 ra
4 408a4 sp+0 u u u u u
5 408a8 sp+48 u u u c-48 c-40
6 408b4 sp+48 c-32 c-24 c-16 c-48 c-40
7 408d8 sp+0 u u u u u
8 408dc sp+48 c-32 c-24 c-16 c-48 c-40

Listing 2: FDE of ngx_alloc

5

doi:10.6342/NTU202402925

2.2 Stack Unwinding

Stack unwinding is the process of deallocating or ”unwinding” function call frames

from the call stack during program execution. When a function is called, its execution con-

text, including local variables and parameters, is pushed onto the call stack. As functions

return, their respective frames are removed from the stack in a last-in, first-out (LIFO)

fashion.

Stack unwinding typically occurs when a function returns or when an exception is

thrown. During unwinding, the runtime system executes destructors for local objects

within each frame as they are removed from the stack. This ensures that resources held

by local variables, such as memory or file handles, are properly released.

In languages with built-in exception handling mechanisms, stack unwinding is an

essential part of exception propagation. When an exception is thrown, the runtime system

unwinds the stack until an appropriate exception handler is found or until the program

terminates if no handler is available. During unwinding, destructors are called for objects

in each frame to perform cleanup operations.

2.3 Arm Pointer Authentication

Arm introduced Pointer Authentication (PA) [32, 44] for Armv8.3-A processors. PA

aims to protect the integrity of pointers with minimal impact on performance and memory

usage. PA provides instructions to sign a pointer, i.e., to generate a Message Authen-

tication Code (MAC) for a pointer called the Pointer Authentication Code (PAC), and

authenticate the PAC. Arm PA utilizes the QARMA [12] cipher. PA provides five keys,

6

doi:10.6342/NTU202402925

two for each data code pointer and one generic user key. The keys are stored in privileged

hardware registers that users cannot access. PA provides instruction prefixed with pac and

aut, respectively, for signing and authenticating, followed by two characters that specify

the key to use. For instance, the pacia instruction signs a code pointer with the A-key. To

create PACs, users send two 64-bit values, a pointer and the modifier, to the signing in-

structions. The QARMA cipher uses the instruction’s associated key to produce and place

the resulting PAC into the upper unused bits of the 64-bit pointer (Figure 2.1(a)). The

placement renders the signed pointer unusable — accessing the pointer causes a fault in

address translation. Users use the aut instruction respective to the signing key to authen-

ticate the pointer. The same modifier used when signing the pointer is also used when au-

thenticating it (Figure 2.1(b)). PA validates the pointer, i.e., the recomputed PAC matches

the one stored in the pointer. If the integrity is validated, PA removes the PAC from the

pointer; otherwise, PA leaves the pointer unusable.

Figure 2.1: PAC signing and authentication

2.4 Code Reuse Attack

Code reuse attacks are a type of exploit where an attacker uses existing code within

a program to execute arbitrary actions, circumventing traditional security measures like

7

doi:10.6342/NTU202402925

non-executable memory protections, such as XN [11] on Arm architecture. Instead of

injecting new, potentially detectable malicious code, attackers repurpose fragments of the

program’s own code, making these attacks harder to detect and prevent.

Return-Oriented Programming (ROP) is a sophisticated and common form of code

reuse attack. In an ROP attack, an attackermanipulates the control flow of a program to ex-

ecute a sequence of short instruction sequences, known as ”gadgets,” which already exist

in the program’s memory. Each gadget ends with a return instruction (RET). By chaining

these gadgets together, attackers can perform complex operations without introducing any

new code.

2.5 Virtual Functions in C++

In C++, dynamic polymorphism is achieved through virtual functions managed by a

virtual table (VTable). The compiler builds a VTable for each class that contains virtual

functions. The VTable contains entries for each of the class’ virtual functions that stores

a pointer to the function’s address in memory. A VTable entry could point to a virtual

function defined by the class or inherited from a base class. The compiler creates a virtual

table pointer (VPointer) for an instantiated class object that points to the object’s respective

VTable.

When a virtual function is called through a pointer or reference to a base class object,

the compiler generates code to perform a virtual function dispatch. Consider the example

in Listing 3, this involves looking up the correct function pointer in the object’s VTable

based on the actual type of the object at runtime. Once the correct function pointer is

found, the corresponding function is invoked.

8

doi:10.6342/NTU202402925

1 ldur x0, [x29, #-16] ; load the object
2 ldr x8, [x0] ; load VPointer
3 ldr x8, [x8, #8] ; find the correct function using offset
4 blr x8

Listing 3: Assembly Code for C++ Virtual Function Dispatch

2.6 VTable Hijacking Attacks

In C++ programs, VTables are located in a read-onlymemory region. Instead of com-

promising VTable entries, attackers focus on exploiting vulnerabilities to corrupt VPoint-

ers to point to a crafted VTable that contains malicious pointers to hijack the program’s

control flow.

Type confusion attacks occur when an object is cast to an invalid type, often with

a different size than the underlying object. This allows attackers to access unintended

memory and potentially overwrite VPointers. Such attacks are typically executed through

an illegal downcast forced by attackers, such as casting to a sibling class.

Counterfeit Object-Oriented Programming (COOP) [46] creates objects with coun-

terfeit (fake or synthetic) types. It involves manipulating the internal structure of objects,

particularly VTables, to create objects that appear to be of one type but are actually of

another type. In COOP attacks, attackers exploit vulnerabilities related to type confu-

sion or memory corruption to manipulate object layouts and VPointers. By doing so, they

can trick the program into treating these counterfeit objects as legitimate instances of a

different type.

9

doi:10.6342/NTU202402925

Chapter 3 Threat Model and

Assumptions

We assume a powerful adversary who can read and write arbitrary memory by ex-

ploitingmemory vulnerabilities such as heap or stack overflows in a program. The targeted

system employs Execute Never [11] (XN) and Address Space Layout Randomization [40]

(ASLR) to prevent attackers from injecting or modifying code. The hardware and OS ker-

nel are trusted, and side-channel attacks are not considered in this scope.

This thesis focuses on protecting system calls. Our analysis indicates that attackers

often aim to exploit system calls to interact with the host operating system and carry out

their attacks. For instance, Goktas et al. [21] demonstrated that a code reuse attack could

change the permissions of an existing memory area (e.g., using mprotect on Linux), al-

lowing code injection and bypassing XN protection. Therefore, we target and secure sys-

tem calls to significantly hinder attackers’ ability to achieve their malicious goals. Specif-

ically, we concentrate on system calls related to security actions, as listed in Table 3.1.

10

doi:10.6342/NTU202402925

Table 3.1: Protected system call set.

System call category Available System calls
Arbitrary Code Execution execve, execveat, clone
Memory Permission mprotect, mmap, mremap
Privilege Escalation chmod, setuid, setgid, setreuid
Networking socket, bind, connect, listen, accept, accept4
File system-related openat, read, write, readv, writev, sendfile, recvfrom

11

doi:10.6342/NTU202402925

Chapter 4 Design

We aim to protect an application from attacks that exploit sensitive system calls

through code reuse attacks. Therefore, we aim to protect the usage of sensitive system

calls. To achieve the goal, we focus on protecting the property: the control flow integrity

of system call invocations.

4.1 Control Flow Integrity of System Call Usage

We protect the control flow integrity of direct and indirect function calls. For the for-

mer, we leverage a stack unwinding-based approach to enforce the integrity of a function

call path that leads to system call invocation. We use Arm’s PA to protect attackers from

corrupting call targets of indirect function calls and C++ VPointers.

4.1.1 Backward-Edge CFI Protection

We make two observations. First, for a legitimate system call invocation via direct

function calls, a function call path must exist from the main function to the function that

makes the system call. Second, for a direct function call, the memory address before the

saved return address must contain a call instruction (e.g., bl instruction in Arm64).

12

doi:10.6342/NTU202402925

We rely on a secure monitor module to protect backward-edge CFI of system call

usage. The monitor hooks Linux’s system call table to interpose the invocation of sensi-

tive system calls. It performs algorithm 1 to validate the legality of the function call path

that leads to the system call invocation. At a level, the algorithm checks if the observa-

tions are satisfied in the function call path that leads to the system call usage. If not, the

monitor uncovers that an attacker has corrupted the stack to hijack the program’s control

flow to invoke a sensitive system call.

The monitor acquires the stack layout information of a program from the program’s

.eh_frame section. When the system call is invoked, the monitor hooks execve to

retrieve a program’s .eh_frame. The monitor also acquires the program’s shared ob-

ject dependencies to support unwinding shared libraries. When a sensitive system call is

later invoked, the monitor first uses the call site’s PC to get the corresponding CFA. The

monitor then uses the CFA to get the saved return address of the call frame. For each

function in the call path, the monitor checks two conditions: (1) if the instruction located

before the saved return address in the function’s caller is a call instruction, and (2) if the

target of the call instruction is the start of the function. If either condition is violated, the

unwinder concludes that an attack has corrupted the stack and skips the system call invo-

cation. We denote the instruction in the rest of the paper as call site checking. Call site

checking is conducted every time the monitor derives the return address for a call frame.

As shown in algorithm 1, the unwinding process includes a while loop (line 2) that

iterates each call frame. In the loop body, it first retrieves the .eh_frame by the current

program counter (PC). If this retrieval is unsuccessful, the monitor attempts to find the

virtual memory area (VMA) by PC and then get the .eh_frame using VM_FILE in the

VMA’s structure (line 4 to 12). Next, the monitor gets the current function’s entry point

13

doi:10.6342/NTU202402925

Algorithm 1: Unwinder
1 Function Unwinding:
2 while true do
3 PC = REGS→ PC; EhFrame = GetEhFrame(PC)
4 if EhFrame does not exist then
5 VMA = GetVMA(PC)
6 if VMA is invalid or does not exist then
7 Abort the process
8 end
9 if VMA→ VM_FILE does not exist then
10 Abort the process
11 end
12 EhFrame = GetEhFrameFromVMA(VMA)
13 end
14 EntryPoint = GetEntryPoint(EhFrame, PC)
15 if EntryPoint is terminate function then
16 return Success
17 end
18 CFI = ProcessCFI(EhFrame)
19 if CFI is invalid then
20 Abort the process
21 end
22 REGS = UpdateREGS(REGS, CFI)
23 RA = REGS→ X30
24 CallInsn = DisassembleInsn(RA - 4)
25 if CallInsn is really a call instruction then
26 Callee = GetCalleeFromCallInsn(CallInsn)
27 if Callee is not the same as EntryPoint then
28 Abort the process
29 end
30 else
31 Abort the process
32 end
33 REGS→ PC = RA
34 end

14

doi:10.6342/NTU202402925

by the .eh_frame and PC (line 14). If the current function’s entry point is the terminate

function (e.g., main), it concludes that the call path is valid; otherwise, the monitor pro-

cesses the CFI from the .eh_frame and restore register according to the CFI (line 18 to

22). By the way, we cached processed CFI to accelerate the unwinding process. After

that, the monitor first gets the saved return address from the restored registers (line 23),

disassembles the instruction stored in the address RA - 4 (line 24), and performs call site

checking (line 25 to 32). During the unwinding process, the monitor does not update the

actual hardware registers (i.e., update stack and frame pointer and callee-saved registers)

and execute destructors for local objects within each frame from the saved context in the

stack. Doing this will interfere with the program’s execution. Instead, the monitormocks

register updates to a pseudo register context allocated from memory.

4.1.2 Forward-Edge CFI Protection

As the above section mentioned, we checked the integrity of entire call chain through

unwinding and call site checking, however, if attackers hijack a function pointer to tamper

the control flow of a program, the layout of stack would not be corrupted, consequently,

this type of attack can bypass our unwinding mechanism. More specific, unwinding can

still back to the entry point of the program. On the other hand, because .eh_frame can

not restore all registers and registers’ values are not guaranteed any tampering. Therefore,

our call site checking mechanism only works for bl instruction, namely, direct function

call.

We protect forward-edge control flow integrity to prevent attackers from hijacking

indirect function calls. We utilize Arm’s Pointer Authentication (see Section 2.3) to ef-

fectively protect the integrity of function pointers. We introduced a new LLVM pass to

15

doi:10.6342/NTU202402925

instrument PA instructions to the program. The LLVM pass instruments PA’s signing in-

structions before storing an address value to (1) a function pointer or (2) the VPointer of a

class object. It also instruments PA’s authentication instructions before the signed point-

ers are used for control transfers. We focus on protecting VPointers because VTables are

already set to read-only.

Selecting PA modifier Previous work that built on PAC to protect pointer integrity ei-

ther uses a constant modifier [10] for all signed pointers or assigns a unique 64-bit modi-

fier [23] for each pointer to be protected by PA. Because PA is vulnerable to pointer reuse

attacks [23, 28] where an authenticated pointer is replaced with another with the same

modifier. Therefore, using a constant modifier increases the scope of this substitution. On

the other hand, the latter approach results in overhead in storing modifiers and managing

the associated metadata. Unlike these approaches, we proposed using a function’s signa-

ture as its associated PA modifier to enhance efficiency. The signatures of system calls

and a user program’s custom function pointers frequently differ. Moreover, we observed

that an attacker generally aims to replace an existing function pointer with the address of

an intended target function with a different signature.

We utilize the address of the VPointer as a modifier for signing the VPointer, binding

the pointer’s location and value. BecauseVPointer do not changemuch over the program’s

lifetime, binding pointers to addresses ensures that the pointer value remains unmodified,

effectively preventing that location from being corrupted.

16

doi:10.6342/NTU202402925

Chapter 5 Implementation

We implemented a prototype based on the proposed design. The prototype comprises

a loadable monitor kernel module and an extended LLVM compiler. The resulting kernel

module consists of 4,956 lines of code (LoC). We built the kernel module independently

from the Linux kernel source to enhance deployability. The module supports Asahi Linux

6.3.0-11 and mainline Linux 6.3-rc7. We built on LLVM 16.0.0, modified its front-end,

i.e., Clang, and extended LLVM’s AArch64 backend. In addition, we added a LLVM pass

for forward-control-flow protection based on Arm PA. The changes for LLVM in total

require 1,668 LoC.

Figure 5.1 illustrates the overall architecture of LLVM. The modified Clang front-

end identifies accesses to C++ VPointers and prepares the PAmodifiers. The optimization

pass identifies function pointers, generate the necessary metadata for PA modifiers, and

prepare initializers for statically allocated pointers. Finally, the backend pass retrieves the

PA modifiers and instruments the appropriate low-level instructions.

We have introduced our definition of sensitive system calls in chapter 3. Additionally,

we extend our protections to file system-related system calls to guard against information

disclosure attacks. By securing both the sensitive system calls and those related to the file

system, we aim to mitigate a broad range of potential attack vectors.

17

doi:10.6342/NTU202402925

Figure 5.1: LLVM architecture

18

doi:10.6342/NTU202402925

5.1 Loadable Kernel Module

In this section, we describe how stack unwinding and call site checking are imple-

mented within a loadable kernel module. Initially, the kernel module retrieves essential

metadata from the launching executable, including the contents of the .eh_frame section,

the terminate function (commonly referred to as main), and any dependencies (i.e., used

shared objects). When a protected system call is invoked, the kernel module retrieves

this metadata and executes Algorithm 1 to validate the legality of the system call’s control

flow. If either the unwinding process or the call site checking fails, the process is promptly

aborted to prevent further execution and potential security breaches.

5.1.1 Intercept system call

When invoking system calls, we need to intercept the system calls and perform stack

unwinding and call site checking. To this end, we hook into the system call table in the

Linux kernel. However, since we are implementing our mechanism as a loadable ker-

nel module, we may encounter limitations in accessing certain kernel symbols, such as

the system call table. To overcome this limitation, we utilize Kernel Probes (KProbes) to

locate the missing symbols. Once we have identified the necessary symbols, we can pro-

ceed to replace the entries in the system call table accordingly. Within the hooked system

call function, we integrate our validation mechanism. If the validation is successful, we

proceed to invoke the original system call. However, if the validation fails, we abort the

process immediately.

19

doi:10.6342/NTU202402925

5.1.2 Mechanisms

The monitormodule reads the section table [30] from the program’s binary and then

locates the load memory address of the .eh_frame section and its section size. The mod-

ule also locates the program’s string table (.strtab) and symbol table (from the .symtab

section) from the section table. Both are used to resolve the address of the termination

function for unwinding, i.e., the main function. The monitor supports unwinding and call

site checking against dynamically linked program binaries. When an execve system call is

invoked, the monitor examines whether the program to be executed contains a .dynamic

section [29]. If such a section is present, the module traverses the .dynamic section to

identify all shared libraries that the program is linked with. The monitor searches for

these shared library objects from pre-defined paths and collects their .eh_frame sections.

The monitor adheres to the same search rules as the linker [31]. Specifically, we first

utilize the directories specified in the DT_RPATH dynamic section attribute of the binary,

if present. The rpath of a binary or shared object is an optional entry with theDT_RPATH

attribute in the .dynamic section of ELF binaries or SOs. It can be stored there at link

time by the linker. If the DT_RPATH attribute is not found, we proceed to search for the

shared objects using the default paths, such as /lib and /usr/lib. This approach ensures

that we locate the necessary shared libraries required for proper execution of the program.

A program can also load shared library objects at runtime by making system calls such

as dlopen. Since the library that the program loads via dlopen does not exist in the

.dynamic section, the monitor identifies the virtual memory area (VMA) corresponding

to the shared library to locate its load address to retrieve its .eh_frame.

During call site checking, the monitor could identify that the call target of the decode

20

doi:10.6342/NTU202402925

call instruction is located within the program’s .plt section. If so, the monitor resolves

the callee’s symbol to derive its actual address.

Call site checking may encounter issues due to the presence of the b instruction. For

example, if function A branches to function B using the b instruction, and then function

B calls function C using the bl instruction, the stack unwinding process in function C

finds the return address pointing back to function A. In such cases, when performing call

site checking in function A, the target of the b instruction is function B. Consequently,

call site checking fails in this scenario. To address this issue, if call site checking fails,

we recursively search for any b instructions present in the function that the return address

points to in the current function . This recursive approach allows us to track down the

correct call site and resolve the issue accordingly.

5.2 Forward-edge CFI Protection.

We modified Clang and LLVM’s Aarch64 backend. In addition, we added an opti-

mization pass to support our PA-based protection. Wemodified the CodeGen functions for

class construction and VPointer access in the LLVM front-end. The LLVM pass analyzes

the LLVM intermediate representation (IR) to identify the pointer usages discussed in Sec-

tion 4.1.2. The pass also gathers essential information (i.e., function signature) to generate

the PA modifiers and initializes statically allocated variables (e.g., global variables). We

extended LLVM’s backend to emit PA-specific instructions.

21

doi:10.6342/NTU202402925

5.2.1 PA modifier.

Our implementation extracts function signatures for signing function pointers in the

LLVM passes via the FunctionType class in LLVM. This class represents the function

type at the IR level. We utilize the LLVM’s TypeID class to convert the function’s sig-

nature into a string, then use the SHA3 hash function to transform the string into a 64-bit

constant value. As for C++ VPointers, we modified functions that emit IR for class con-

struction and VPointer access in the LLVM front-end. In these functions, we use the

address of the VPointer as a PA modifier, as mentioned in Section 4.1.1.

5.2.2 Function Pointer Signing/Authentication.

In our work, we introduced new PA-specific LLVM intrinsics for each PA-related

instruction, which pass a pointer value and a PAmodifier to the backend. The information

is transferred to the emitted LLVMMachine Intermediate Representation (MIR) and used

when generating Arm PA instructions.

We insert instrumentation just before IR instructions that store a function address

to a pointer. Subsequent accesses, such as load or store, do not authenticate the signed

function pointers; instead, they are authenticated before being used in an indirect function

call. Additionally, we insert instrumentation before function calls that include function

addresses as their arguments. This instrumentation collects essential information such as

the pointer value and the function signature. The function signature is transformed into a

64-bit constant as mentioned in the Section 5.2.1. We then insert an intrinsic call to pacia

with this information as arguments.

22

doi:10.6342/NTU202402925

On the other hand, we abstain from recompiling libraries such as libc.so. Thereby,

if a signed pointer is carried as argument by library functions like pthread_create and

sigaction and then use it, the library can not handle the signed pointer and the program

will terminate abruptly. Thus, we need to authenticate the signed pointer and remove the

PAC before calling a library function. To this end, we utilize the TargetLibraryInfo

class in LLVM to discern between user-defined function calls and library function calls.

The instrumentation collects essential information such as the pointer value and the func-

tion signature, and insert an intrinsic call to autia with this information as arguments.

We iterate through all global variables and check if they have initializers. If an ini-

tializer is present, we determine whether its type is a function pointer. Additionally, if

the initializer is an aggregate, such as a structure, we recursively examine each element

to identify any function pointers. To sign these global function pointers, we introduce a

new IR function, __pac_sign_globals, which is responsible for signing statically initialized

global function pointers. In this function, we load the pointers and insert intrinsic calls to

pacia for them. After defining this function, we append it to the llvm_global_ctors array.

The functions referenced within this array are invoked before the main function execution,

thereby ensuring that statically initialized global function pointers are signed beforehand.

As for function pointer authentication, we insert instrumentation just before IR in-

structions that used a function pointer, such as an indirect call instruction. We collect the

same information as in pointer signing. Then, we insert an intrinsic call to blraa or braa,

depending on the IR instruction, with this information as arguments. This approach en-

sures that we replace the blr (Branch with Link to Register) / br (Branch to Register)

instructions in the program used against signed pointers with blraa (Branch with Link

to Register, with pointer authentication, using a modifier and the A-key) / braa (Branch

23

doi:10.6342/NTU202402925

to Register, with pointer authentication, using a modifier and the A-key) that performs

authentication and branching on function pointers with the same PA modifier.

In Listing 4, we show the actual assembly code to demonstrate the result of our in-

strumentation. On the top, the pointer value is loaded into a register. The 64-bit modifier

is represented by four mov and movk instructions. Then, we sign the pointer value using

the pacia instruction and store it back to the pointer. On the bottom, the pointer value is

loaded into a register, and the modifier is retrieved in the same way as in pointer signing.

After that, we authenticate the pointer value and branch using blraa instruction.

1 adrp x8, 0 <__abi_tag-0x254>
2 add x8, x8, #0x868
3 mov x9, #0x47a
4 movk x9, #0xb53b, lsl #16
5 movk x9, #0x9224, lsl #32
6 movk x9, #0xf9c, lsl #48
7 pacia x8, x9
8 stur x8, [x29, #-16]
9 ...
10 ...
11 ldr x8, [x29 #-16]
12 mov x9, #0x47a
13 movk x9, #0xb53b, lsl #16
14 movk x9, #0x9224, lsl #32
15 movk x9, #0xf9c, lsl #48
16 blraa x8, x9

Listing 4: Local function pointer

5.2.3 C++ VPointer Signing/Authentication

To sign a VPointer, we insert instrumentation before the IR instructions that store a

VPointer into a class object. Additionally, we insert instrumentation immediately after

the IR instructions that load a VPointer into a register for pointer authentication. The

instrumentation collects essential information, such as the pointer value and the location

24

doi:10.6342/NTU202402925

of the pointer. We then insert an intrinsic call to pacda / autda with this information as

arguments.

To implement this, we modify the CodeGenFunction::GetVTablePtr function in

clang/lib/CodeGen/CGClass.cpp, which is invoked whenever VPointer is accessed.

This modification ensures that pointer authentication is incorporated into every access of

VPointers. Similarly, we modify the CodeGenFunction::InitializeVTablePointer

function in the same file, which is used in class constructors to initialize the VPointer. This

approach guarantees the inclusion of pointer signing during the class object initialization.

As mentioned in Section 4.1.2, VTables are typically located in a read-only memory

region. Therefore, we refrain from inserting instrumentation before the virtual function

call during virtual function dispatch.

In Listing 5, we present the assembly code to exemplify the results of the instrumen-

tation for C++ VPointers. At the top, before storing a VTable into a VPointer, we first

obtain the location of the VPointer within an object. Subsequently, we sign the VPointer

using pacda, with the location serving as the modifier. At the bottom, during the retrieval

of a VTable in the process of virtual function dispatch, we authenticate the VPointer us-

ing autda, with the location serving as the modifier. Notably, the blr instruction is not

replace with blraa instruction.

25

doi:10.6342/NTU202402925

1 ldr x9, [sp, #8] ; load the location of the VPointer.
2 adrp x8, 11000 <__FRAME_END__+0x10048>
3 add x8, x8, #0xd48 ; load the VTable.
4 pacda x8, x9 ; sign the VTable.
5 str x8, [x9] ; store it to VPointer.
6 ...
7 ...
8 ldur x0, [x29, #-16] ; load the location of the VPointer.
9 ldr x8, [x0] ; load signed VPointer.
10 autda x8, x0 ; authenticate it.
11 ldr x8, [x8]
12 blr x8

Listing 5: C++ VPointer

26

doi:10.6342/NTU202402925

Chapter 6 Evaluation

6.1 Performance Evaluation

6.1.1 Experimental Setup

We conducted all benchmarks on an Apple Mac Mini M1 [8, 9], which features an

ARMv8.3 architecture with ARM PA instructions. The system is equipped with 8GB

of DRAM, 4 high-performance cores, and 4 high-efficiency cores. To test our loadable

kernel module, we replaced macOS with Asahi Linux. For fair comparison, we ran all

benchmarks without enabling any optimizations.

6.1.2 Benchmarks

We conducted experiments on Lighttpd [2], NGINX [6], and SQLite [3], three widely

deployed real-world applications. These applications were chosen for their prevalence and

susceptibility to security breaches, as well as their intensive I/O operations and heavy

reliance on system calls. This makes them ideal candidates for us. Additionally, we

evaluated the performance of our C++ VPointer protection mechanism using the SPEC-

CPU2017 [13] benchmark suite, which includes benchmarks written in both pure C++

and a combination of C and C++. By using a diverse range of benchmarks from SPEC-

27

doi:10.6342/NTU202402925

Table 6.1: Benchmark numbers for Lighttpd, NGINX, and SQLite.

UW: Unwinder PA: Pointer Authentication
Appilcation Unprotected UW PA UW+PA

Lighttpd (Reqs/sec) 14502.71 14436.86 (0.45%) 14496.96 (0.04%) 14404.75 (0.68%)
NGINX (Reqs/sec) 13451.34 13406.41 (0.33%) 13445.628 (0.04%) 13390.73 (0.45%)
SQLite (micros/op)
(write operation) 13.48 51.76 (73.96%) 13.66 (1.32%) 51.82 (73.98%)

SQLite (micros/op)
(read operation) 3.75 8.95 (58.10%) 3.78 (0.79%) 9.00 (58.33%)

We access Lighttpd’s and NGINX’s request throughput in the number of requests per second
(Reqs/sec), while SQLite is evaluated with sqlite-bench, which measures the number of

microseconds per operation (micros/op).

CPU2017, we aim to comprehensively assess the effectiveness of our protection mecha-

nism across various workloads and programming paradigms.

6.2 Application Performance

6.2.1 Lighttpd

To evaluate Lighttpd, we employed wrk [48], a renowned HTTP benchmarking tool

that measures throughput by sending concurrent HTTP requests to a web server. In our

setup, the wrk client operated on a separate machine within the same local network as the

Lighttpd web server. The configuration of Lighttpd was set to handle a maximum of 512

connections with one worker threads. During the evaluation, we measured throughput

over a duration of 20 seconds, specifically generating HTTP requests targeting a static

webpage size of 6,227 bytes.

The performance breakdown is presented in Table 6.1. With the Unwinder (UW) and

PA components enabled, the performance overhead is approximately 0.45% and 0.68%,

respectively.

28

doi:10.6342/NTU202402925

6.2.2 NGINX

We use the same benchmarking tool and setup for NGINX. Our NGINX configura-

tion is set to handle a maximum of 512 connections per processor with 8 worker threads.

During the evaluation, wemeasure throughput over a 20 second duration. To simulate real-

world scenarios, wrk spawns the same number of threads as NGINX’s configured worker

count, with each wrk thread generating HTTP requests for a 6,227 byte static webpage.

The runtime overhead for NGINXminimally increased with all components enabled.

When full protection (with all components: PA, Unwinder) was applied, the overhead

never exceeded a 0.45% degradation compared to the baseline vanilla NGINX from Ta-

ble 6.1.

6.2.3 SQLite

SQLite [3] stands as a widely deployed, transactional SQL database engine. To as-

sess the performance throughput of SQLite, we employ the sqlite-bench [5] which is a C

version of SQLite benchmark in Google’s levelDB [22]. We utilize the sqlite-bench to

simulate read and write operations for large data warehouse transactions. We select two

benchmarks in the sqlite-bench, one is fillrandom writing N values in random key order

in async mode, and another is readrandom reading N times in random order. We ran these

benchmarks with the default settings, utilizing a value of N equal to 1,000,000. We mea-

sured sqlite-bench’s performance in terms of the number of microseconds per operation.

In Table 6.1, we can observe that the overhead for SQLite stands out as significantly

higher compared to other benchmarks on UW. This is primarily because sqlite-bench ex-

29

doi:10.6342/NTU202402925

Table 6.2: System call usage

Application SQLite NGINX Lighttpd
execve 0 0 0
execveat 0 0 0
clone 0 8 1

mprotect 5 4 6
mmap 11 11 12
mremap 0 0 0
chmod 0 0 0
setuid 0 0 0
setgid 0 0 0
setreuid 0 0 0
socket 0 1 1
bind 0 1 1

connect 0 0 0
listen 0 2 1
accept 0 0 0
accept4 0 275,304 517
openat 17 269,563 10
read 1,634,533 5 589,310
write 6,302,641 269,551 1
readv 0 0 0
writev 0 269,551 294,485
sendfile 0 269,551 0
recvfrom 0 269,748 432

Total number of system calls 7,937,201 1,623,300 884,779

30

doi:10.6342/NTU202402925

Figure 6.1: Performance overhead for SPEC CPU2017.

ecutes more write/read operations stantially (see Table 6.2).

6.2.4 SPECCPU2017

To test our C++ VPointer protection mechanism, we select 5 pure C++ and 1 both C

and C++ benchmarks from SPECCPU2017. The performance overhead for these bench-

marks is depicted in Figure 6.1. When all protections are enabled, the average overhead

is 2.95% compared to the unprotected baseline benchmarks. From Figure 6.1, we observe

that the overhead of PA is greater than that of UW. This disparity arises because authenti-

cation is inserted in all accesses to VPointers, and these benchmarks feature heavy virtual

function calls. Consequently, the overhead incurred by PA is notably higher compared to

UW.

31

doi:10.6342/NTU202402925

Chapter 7 Limitation and Discussion

In this chapter, we will discuss the limitations of the unwinder. Specifically, we

will examine the protection of the unwinder in scenarios with incomplete and complete

unwinding information, respectively.

7.1 The Limitation of the Unwinder.

In Section 4.1.2, we have demonstrated that call site checking only works on direct

call instructions. If an indirect call instruction is encountered during unwinding, we can-

not verify if the target of the call instruction is the start of the function. Therefore, we

cannot determine if a return address is safe and has not been tampered with by attackers.

Attackers can exploit this weakness in call site checking to counterfeit a call path that does

not exist in the program. For example, attackers can effectively bypass the entire protec-

tion of the unwinder by using a special gadget. This gadget must be located in the main

function and have an indirect call instruction immediately above it, allowing the attackers

to circumvent the unwinder’s security measures. This special gadget satisfies our obser-

vations: (1) unwinding reaches the main function, and (2) call site checking succeeds due

to the indirect call instruction.

On the other hand, if no such gadget is found, attackers can still exploit the weakness

32

doi:10.6342/NTU202402925

in call site checking. They can tamper with return addresses using gadgets with an indirect

call instruction immediately preceding them. By doing so, attackers can counterfeit or

mimic a valid call path, bypassing the unwinder’s protection mechanisms.

7.1.1 Complete Unwinding Information.

This section considers the scenario where attackers have complete unwinding infor-

mation. As detailed in Section 2.1, calculating the Canonical Frame Address (CFA) for

the stack frame being unwound is essential to retrieve the current return address. Con-

sequently, attackers with full unwinding information can easily locate the return address

using the CFA.

Suppose a function contains vulnerabilities, such as a stack buffer overflow. In that

case, attackers can perform an ROP attack and leverage the CFA for the vulnerable func-

tion’s stack frame to bypass our protection if they possess complete unwinding informa-

tion. During an attack, they can overwrite the return address, located using the CFA, to

bypass the unwinder’s protection mechanism. Specifically, attackers can counterfeit or

mimic a valid call path or exploit the weakness of call site checking using their knowl-

edge of CFAs to bypass the unwinder.

7.1.2 Incomplete Unwinding Information.

We assume that attackers cannot acquire the complete unwinding information be-

cause they cannot access the binary running on the remote server. Even if attackers know

the version of the binary, they still cannot obtain the complete unwinding information.

This is because the specific dependencies used by the binary are unknown to them. With-

33

doi:10.6342/NTU202402925

out the knowledge of the CFA, attackers cannot easily overwrite return addresses to coun-

terfeit or mimic the entire call path.

7.2 Attacks on PAC

PAC can be bypassed if an attacker with read/write access can coerce the program

into executing a signing gadget [41]. Signing gadgets are sequences of instructions that

can be exploited to sign arbitrary pointers. For instance, if an attacker can trigger the

execution of a function that reads a pointer from memory, adds a PAC, and writes it back,

they can use this function as a signing oracle to forge PACs for arbitrary pointers.

Our current implementation focuses on ensuring the control flow integrity of system

call usages; the unwinder is triggered when a monitored system call is invoked. Since

exploiting signing gadgets is unrelated to the integrity of system call usage, we cannot

detect an attack if an attacker hijacks the control flow to execute a signing gadget.

To address this issue, we can extend PAC to protect return addresses. We have already

provided protections for function pointers and C++ VPointers. By integrating our work

with PAC for protecting return addresses, any corrupted return addresses or call targets will

trigger authentication failures, ensuring that such attacks are detected before the program’s

control flow can be hijacked.

34

doi:10.6342/NTU202402925

Chapter 8 Security Evaluation

8.1 Security Analysis

We conducted case studies on various attacks, as detailed in Table 8.1. These in-

clude Return-Oriented Programming (ROP) attacks, real-world vulnerabilities such as

CVE-2012-0809, CVE-2013-2028, CVE-2015-8617, CVE-2016-10190, and CVE-2016-

10191, as well as advanced attack techniques proposed in [45], [18], and [47].

8.1.1 ROP

ROP fundamentally relies on placing gadgets on the stack and overwriting at least

one return address to execute an attack. However, these malicious actions corrupt the

stack, which disrupts the stack unwinding process and causes it to fail.

8.1.2 VPointer Hijacking

We evaluated our VPointer protection mechanism using five synthesized attacks in

C++ to demonstrate our ability to defend against VPointer hijacking attacks and COOP

attacks. For this evaluation, we used the CFIXX C++ test suite [34] by Burow et al. [14],

which contains four VPointer hijacking exploits and one COOP exploit.

35

doi:10.6342/NTU202402925

Table 8.1: Security Analysis against Attacks

!: protected by component;%: bypass the component.
UW: Unwinding, PA: Pointer Authentication

Attack Scenario UW PA

ROP ! %

VPointer Hijacking % !

Direct System call Manipulation

Newton CsCFI [47] % !

CVE-2016-10190 ffmpeg [38] ! !

CVE-2016-10191 ffmpeg [39] ! !

CVE-2013-2028 nginx [35] ! !

CVE-2012-0809 sudo [36] ! !

CVE-2015-8617 php [37] ! !

Indirect System Call Manipulation

Newton CPI [47] % %

Control Jujutsu Nginx [18] % !

AOCR Nginx 2 [45] % !

AOCR Httpd [45] % !

36

doi:10.6342/NTU202402925

We detected all exploits by authenticating the VPointer during virtual function dis-

patch. In VPointer hijacking exploits, attackers either (1) overwrite a class object with

another class object or (2) overwrite a VPointer. In the first case, we detect the attack

because the two objects are located in different memory locations. In the second case, we

detect this because the fake VPointer lacks a PAC, causing the authentication to fail. In

the COOP attack, a fake object is crafted without invoking the constructor (e.g., directly

using malloc()), and the VPointer of the fake object is utilized. We detect this because

the VPointer was never initialized and lacks a PAC, thus causing the authentication to fail.

8.1.3 Direct System Call Manipulation

We present attack scenarios where attackers exploit memory corruption vulnerabili-

ties and discuss how to defend against these attacks. Newton CsCFI [47] exploits a bug

in Nginx to hijack a function pointer and use mprotect to make libc’s memory mapping

read-write-executable (RWX). This enables attackers to inject shellcode into libc, leading

to arbitrary code execution. We counter this attack with function pointer protection. Ad-

ditionally, vulnerabilities such as CVE-2016-10190, CVE-2016-10191, CVE-2013-2028,

and CVE-2019-3822 result in buffer overflows, while CVE-2015-8617 and CVE-2012-

0809 involve format string vulnerabilities that allow arbitrary writes. These vulnerabilities

can potentially tamper with data in memory. Our protective measures effectively guard

against attacks targeting return addresses and function pointers, thereby mitigating the risk

posed by these vulnerabilities.

37

doi:10.6342/NTU202402925

8.1.4 Indirect System Call Manipulation

AOCR Nginx Attack 2 [45] exploits a stack buffer overflow to overwrite a function

pointer, redirecting the execution flow to the ngx_master_process_cycle function in

Nginx. AOCR then manipulates a conditional variable within this function to bypass an

‘if‘ statement and invoke execve. The attack uses malicious data provided by remote at-

tackers as arguments to execve. We prevent such attacks by ensuring function pointer in-

tegrity. TheAOCRhttpd [45] and Control Jujutsu Nginx [18] attacks each target a function

pointer in Apache and Nginx, respectively, overwriting the pointer to redirect execution

to another function that calls execve. We use function pointer integrity to protect against

such attacks. However, the Newton CPI Nginx attack [47] bypasses this protection by

manipulating non-pointer values. Specifically, it corrupts a variable indexing a structure

array to cause an out-of-bounds access, redirecting a function pointer to mprotect.

38

doi:10.6342/NTU202402925

Chapter 9 Related Work

9.1 Related Work

9.1.1 Debloating and system call filtering.

Debloating-based approaches [7, 42, 43] reduce the program’s attack surface by elim-

inating unused code. System call filtering methods create a legal set of system calls that

a program can execute, using seccomp-BPF [24] filters to block any outside this set.

Some [16, 17] automate the generation of these filter sets, while [20] splits application ex-

ecution into phases, creating distinct filter sets for each phase. However, these whitelist-

based methods cannot prevent attackers from abusing sensitive system calls within the

legal set. In contrast, we ensure the execution flow is not hijacked when a process invokes

sensitive system calls.

9.1.2 Runtime System Call Protection.

Previous work [15, 25, 27] checks a system call control flow graph (CFG) to en-

sure the integrity of system call usage. Unlike our work, [15, 27] do not secure system

call arguments so that they could be corrupted by attackers. Further, none of the works

supports Arm. The CFG that those works rely on could be unavailable in program bina-

39

doi:10.6342/NTU202402925

ries. Program recompilation required to generate the CFGs may not be feasible since the

source code and library are likely proprietary and maintained by third-party vendors in

Arm ecosystems, limiting adoption in practice.

Bastion [25] hooks sensitive system calls to protect their usage, relying on Linux’s

ptrace to monitor and intercept these calls. When an application makes a sensitive system

call, Bastion performs a context switch to the monitoring process to validate the system

call’s usage, and another context switch is required to return control to the application.

These context switches introduce significant overhead, particularly in network applica-

tions that frequently invoke system calls. For example, Bastion causes a 95% drop in

NGINX’s throughput, while our approach incurs a modest 0.45% drop.

To protect system calls, Bastion determines the legitimate call type (direct or indirect

function call) of system calls during compilation. At runtime, it checks whether a system

call is invoked through a legal means. However, Bastion focuses only on the call type of

the system call itself, not on the call type of functions in the call chain that invoke the sys-

tem call. For example, AOCR Nginx Attack 2 [45] demonstrates compromising Nginx by

overwriting a function pointer to a function that invokes a sensitive system call. Although

it is illegal to invoke the caller function through an indirect function call, Bastion would

not detect the attack because it only checks the legality of the system call’s invocation,

not the call chain leading to it. In contrast, we enhance security by protecting function

pointer integrity through Pointer Authentication (PA) and argument integrity. These mea-

sures can detect all attempts to hijack a function pointer, offering a more comprehensive

defense against such attacks.

40

doi:10.6342/NTU202402925

9.1.3 Pointer Integrity Protection.

Previous work enforces pointer integrity through various approaches, such as SafeS-

tack [26], CCFI [33] and CFIXX [14]. Code Pointer Integrity protects access to code

pointers, as well as data pointers that may reference code pointers, by storing them in

a separate area of memory known as the SafeStack. The SafeStack itself must be pro-

tected from unauthorized access to maintain its security. Stronger protection mechanisms

for the SafeStack, such as hardware-enforced isolation or software-based isolation, im-

pose an average performance overhead of 8.4% and 13.8%, respectively, as measured in

the SPECCPU benchmarks. However, SafeStack with hardware-enforced isolation incurs

significant overheads on C++ benchmarks, such as omnetpp(≈ 44%), xalanbmk(≈ 37%)

and povray(≈ 42%). In contrast, our work shows a lower average overhead of approxi-

mately 2.9% on these benchmarks while providing protections for function pointers, C++

VPointers.

CCFI employsMessageAuthentication Codes (MACs) to safeguard return addresses,

function pointers, and VPointers. Conceptually, the use of MACs is analogous to Pointer

Authentication (PA). However, CCFI does not leverage hardware-accelerated PA instruc-

tions, resulting in a significant performance overhead. Specifically, CCFI incurs an av-

erage overhead of 52% when evaluated across the SPEC CPU2006 benchmarks. In our

work, we leverage the benefits of PA to provide the same protection, but with much lower

overhead (2.95% on average).

CFIXX accomplishes object type integrity (OTI) by protecting the VPointers, which

fundamentally requires only legitimate writing to be allowed on these pointers. During

object construction, it records the correct VPointer in a metadata table. During virtual

41

doi:10.6342/NTU202402925

function dispatch, it retrieves and uses this correct VPointer from the metadata table. This

approach ensures that the correct VPointers are used, preventing the use of potentially

attacker-corrupted VPointers in the object. The scheme imposes approximately a 13%

slowdown in the worst case for C++ benchmarks in SPECCPU. In contrast, we incur only

a 4.22% slowdown in the worst case for C++ benchmarks in SPECCPU from Figure 6.1.

9.1.4 PAC Defense Approaches.

Previous work also leverages PA to protect pointer integrity, such as PARTS [28] and

PACTight [23].

PARTS safeguards data pointers, code pointers, and return addresses using PA. To

be specific, it employs LLVM’s ElementType to generate a type ID, which acts as a PA

modifier to protect these pointers and return addresses. However, this method does not

cover the protection of C++ VPointers. In this thesis, we further extend protection to C+

+ VPointers.

On the other hand, PACTight extends protection not only to data pointers, code point-

ers, and return addresses but also to C++ VPointers. it adopts a different approach by

combining the pointer’s location with a 64-bit random tag as the PA modifier. However,

this method incurs overhead due to the need to store and manage random tags for each

protected pointer. This overhead is particularly significant in programs with frequent vir-

tual function calls, such as omnetpp and xalancbmk from the SPECCPU benchmark suite,

resulting in approximately 9% and 6% overhead, respectively. From Figure 6.1, with full

protections incurs a lower runtime overhead (2.40%on omnetpp and 3.64%on xalancbmk)

compared to PACTight.

42

doi:10.6342/NTU202402925

9.1.5 Unwinding based Approaches.

Similar to our work, SLICK [19] uses stack unwinding to detect ROP attacks and

safeguard backward-edge CFI. However, unlike the callsite checking employed by us,

SLICK identifies stack corruptions by verifying if the runtime stack layout aligns with the

anticipated layout derived from statically identified stack operations of the program. We

plan to explore integrating SLICK’s approach into our kernel module as future work.

43

doi:10.6342/NTU202402925

Chapter 10 Conclusions

This thesis is based on the observation that, regardless of an attack’s complexity or

ultimate goal, most attack must utilize system calls to achieve their objectives. Therefore,

we ensure a secure property: the control flow integrity of system call invocations. In this

thesis, we implement a prototype and evaluate our work to access the performance impact

on system call-intensive applications, ultimately demonstrating low runtime overhead.

This indicates that our approach is practical for disrupting attackers’ ability to achieve

their malicious objectives through system calls.

44

doi:10.6342/NTU202402925

References

[1] Dwarf debugging information format, version 4. https://dwarfstd.org/doc/

DWARF4.pdf.

[2] Lighttpd web server. https://www.lighttpd.net/.

[3] Sqlite. https://www.sqlite.org/index.html.

[4] Introducing Amazon EC2 A1 Instances Powered By New Arm-based AWS Gravi-

ton Processors, Nov. 2018. https://aws.amazon.com/about-aws/whats-new/

2018/11/introducing-amazon-ec2-a1-instances.

[5] A sqlite3 benchmark tool, 2018. https://github.com/ukontainer/

sqlite-bench.

[6] Nginx web server, 2022. https://nginx.org.

[7] I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and G. Portokalidis. Nibbler:

debloating binary shared libraries. In Proceedings of the 35th Annual Computer

Security Applications Conference, ACSAC ’19, page 70–83, New York, NY, USA,

2019. Association for Computing Machinery.

[8] Apple. Apple mac mini m1, 2020. https://www.apple.com/shop/buy-mac/

mac-mini/applem1-chip-with-8-core-cpu-and-8-core-gpu-256gb.

45

https://dwarfstd.org/doc/DWARF4.pdf
https://dwarfstd.org/doc/DWARF4.pdf
https://www.lighttpd.net/
https://www.sqlite.org/index.html
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances
https://github.com/ukontainer/sqlite-bench
https://github.com/ukontainer/sqlite-bench
https://nginx.org
https://www.apple.com/shop/buy-mac/mac-mini/applem1-chip-with-8-core-cpu-and-8-core-gpu-256gb
https://www.apple.com/shop/buy-mac/mac-mini/applem1-chip-with-8-core-cpu-and-8-core-gpu-256gb

doi:10.6342/NTU202402925

[9] Apple. Apple unleashes m1, 2020. https://www.apple.com/newsroom/2020/

11/apple-unleashes-m1/.

[10] Apple Inc. Apple platform security, May 2022. https://help.apple.com/pdf/

security/en_US/apple-platform-security-guide.pdf.

[11] Arm Developer. Execute never, 2014. https://developer.arm.

com/documentation/den0013/d/The-Memory-Management-Unit/

Memory-attributes/Execute-Never?lang=en.

[12] R. Avanzi. The qarma block cipher family. almost mds matrices over rings with

zero divisors, nearly symmetric even-mansour constructions with non-involutory

central rounds, and search heuristics for low-latency s-boxes. IACR Transactions

on Symmetric Cryptology, pages 4–44, 2017.

[13] J. Bucek, K.-D. Lange, and J. v. Kistowski. Spec cpu2017: Next-generation compute

benchmark. In Companion of the 2018 ACM/SPEC International Conference on

Performance Engineering, pages 41–42, 2018.

[14] N. Burow, D. McKee, S. A. Carr, and M. Payer. Cfixx: Object type integrity for

c++ virtual dispatch. In Symposium on Network and Distributed System Security

(NDSS), 2018.

[15] C. Canella, S. Dorn, D. Gruss, and M. Schwarz. Sfip: Coarse-grained syscall-flow-

integrity protection in modern systems. arXiv preprint arXiv:2202.13716, 2022.

[16] C. Canella, M.Werner, D. Gruss, andM. Schwarz. Automating seccomp filter gener-

ation for linux applications. In Proceedings of the 2021 onCloudComputing Security

Workshop, pages 139–151, 2021.

46

https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://developer.arm.com/documentation/den0013/d/The-Memory-Management-Unit/Memory-attributes/Execute-Never?lang=en
https://developer.arm.com/documentation/den0013/d/The-Memory-Management-Unit/Memory-attributes/Execute-Never?lang=en
https://developer.arm.com/documentation/den0013/d/The-Memory-Management-Unit/Memory-attributes/Execute-Never?lang=en

doi:10.6342/NTU202402925

[17] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis. Sysfil-

ter: Automated system call filtering for commodity software. In 23rd International

Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020), pages

459–474, 2020.

[18] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and

S. Sidiroglou-Douskos. Control jujutsu: On the weaknesses of fine-grained control

flow integrity. Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security, 2015.

[19] Y. Fu, J. Rhee, Z. Lin, Z. Li, H. Zhang, and G. Jiang. Detecting stack layout corrup-

tions with robust stack unwinding. In Research in Attacks, Intrusions, and Defenses:

19th International Symposium, RAID 2016, Paris, France, September 19-21, 2016,

Proceedings 19, pages 71–94. Springer, 2016.

[20] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis. Temporal system call

specialization for attack surface reduction. In 29th USENIX Security Symposium

(USENIX Security 20), pages 1749–1766. USENIX Association, Aug. 2020.

[21] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of control: Over-

coming control-flow integrity. In 2014 IEEE Symposium on Security and Privacy,

pages 575–589. IEEE, 2014.

[22] Google. A fast key-value storage library, 2011. https://github.com/google/

leveldb.

[23] M. Ismail, A. Quach, C. Jelesnianski, Y. Jang, and C.Min. Tightly seal your sensitive

pointers with {PACTight}. In 31st USENIXSecurity Symposium (USENIXSecurity

22), pages 3717–3734, 2022.

47

https://github.com/google/leveldb
https://github.com/google/leveldb

doi:10.6342/NTU202402925

[24] Jake Edge. A library for seccomp filters. https://lwn.net/Articles/494252/.

[25] C. Jelesnianski, M. Ismail, Y. Jang, D. Williams, and C. Min. Protect the system

call, protect (most of) the world with bastion. In Proceedings of the 28th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 3, pages 528–541, 2023.

[26] V. Kuznetzov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-

pointer integrity. In The Continuing Arms Race: Code-Reuse Attacks and Defenses,

pages 81–116. 2018.

[27] L. C. Lam and T.-c. Chiueh. Automatic extraction of accurate application-

specific sandboxing policy. In Recent Advances in Intrusion Detection: 7th

International Symposium, RAID 2004, Sophia Antipolis, France, September 15-17,

2004. Proceedings 7, pages 1–20. Springer, 2004.

[28] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and N. Asokan.

{PAC} it up: Towards pointer integrity using {ARM} pointer authentication. In

28th USENIX Security Symposium (USENIX Security 19), pages 177–194, 2019.

[29] Linux Foundation. Dynamic section. https://refspecs.linuxbase.org/LSB_

4.1.0/LSB-Core-generic/LSB-Core-generic/dynamicsection.html.

[30] Linux Foundation. Section header. https://refspecs.linuxbase.org/elf/

gabi4+/ch4.sheader.html.

[31] Linux manual page. ld.so. https://man7.org/linux/man-pages/man8/ld.so.

8.html.

[32] Mark Rutland. Armv8.3 pointer authentication, September 14, 2017.

48

https://lwn.net/Articles/494252/
https://refspecs.linuxbase.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/dynamicsection.html
https://refspecs.linuxbase.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/dynamicsection.html
https://refspecs.linuxbase.org/elf/gabi4+/ch4.sheader.html
https://refspecs.linuxbase.org/elf/gabi4+/ch4.sheader.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html

doi:10.6342/NTU202402925

https://events.static.linuxfound.org/sites/events/files/slides/

slides_23.pdf.

[33] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières. Ccfi: Cryptographi-

cally enforced control flow integrity. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, CCS ’15, page 941–951,

New York, NY, USA, 2015. Association for Computing Machinery.

[34] Nathan Burow. Cfixx c++ test suite, 2018. https://github.com/HexHive/

CFIXX/tree/master/CFIXX-Suite.

[35] https://nvd.nist.gov/vuln/detail/CVE-2013-2028.

[36] https://nvd.nist.gov/vuln/detail/CVE-2012-0809.

[37] https://nvd.nist.gov/vuln/detail/CVE-2015-8617.

[38] https://nvd.nist.gov/vuln/detail/CVE-2016-10190.

[39] https://nvd.nist.gov/vuln/detail/CVE-2016-10191.

[40] PaX. Address space layout randomization, 2003. https://pax.grsecurity.net/

docs/aslr.txt.

[41] Project Zero. Examining pointer authentication on the iphone xs,

Feb 2019. https://googleprojectzero.blogspot.com/2019/02/

examining-pointer-authentication-on.html.

[42] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee. {RAZOR}: A

framework for post-deployment software debloating. In 28th USENIX security

symposium (USENIX Security 19), pages 1733–1750, 2019.

49

https://events.static.linuxfound.org/sites/events/files/slides/slides_23.pdf
https://events.static.linuxfound.org/sites/events/files/slides/slides_23.pdf
https://github.com/HexHive/CFIXX/tree/master/CFIXX-Suite
https://github.com/HexHive/CFIXX/tree/master/CFIXX-Suite
https://nvd.nist.gov/vuln/detail/CVE-2013-2028
https://nvd.nist.gov/vuln/detail/CVE-2012-0809
https://nvd.nist.gov/vuln/detail/CVE-2015-8617
https://nvd.nist.gov/vuln/detail/CVE-2016-10190
https://nvd.nist.gov/vuln/detail/CVE-2016-10191
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

doi:10.6342/NTU202402925

[43] A. Quach, A. Prakash, and L. Yan. Debloating software through Piece-Wise compi-

lation and loading. In 27th USENIX Security Symposium (USENIX Security 18),

pages 869–886, Baltimore, MD, Aug. 2018. USENIX Association.

[44] Qualcomm Technologies, Inc. Pointer authentication on armv8.3, Jan-

uary 2017. https://www.qualcomm.com/content/dam/qcomm-martech/

dm-assets/documents/pointer-auth-v7.pdf.

[45] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane, C. Liebchen,

P. Larsen, L. Davi, M. Franz, A.-R. Sadeghi, andH.Okhravi. Address-oblivious code

reuse: On the effectiveness of leakage-resilient diversity. Network and Distributed

System Security Symposium, 2017.

[46] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. Counter-

feit object-oriented programming: On the difficulty of preventing code reuse attacks

in c++ applications. In 2015 IEEE Symposium on Security and Privacy, pages 745–

762. IEEE, 2015.

[47] V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos, and C. Giuf-

frdia. The dynamics of innocent flesh on the bone: Code reuse ten years later. ACM

SIGSAC Conference on Computer and Communications Security, 2017.

[48] Will Glozer. a http benchmarking tool, 2019. https://github.com/wg/wrk.

[49] C. Williams. Microsoft: Can’t wait for ARM to power MOST of our cloud data

centers! Take that, Intel! Ha! Ha! The Register, Mar. 2017. https://www.

theregister.co.uk/2017/03/09/microsoft_arm_server_followup.

50

https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://github.com/wg/wrk
https://www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup
https://www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup

	Verification Letter from the Oral Examination Committee
	致謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Stack Layout Information for binaries
	Frame Pointer and Stack Pointer
	.eh_frame

	Stack Unwinding
	Arm Pointer Authentication
	Code Reuse Attack
	Virtual Functions in C++
	VTable Hijacking Attacks

	Threat Model and Assumptions
	Design
	Control Flow Integrity of System Call Usage
	Backward-Edge CFI Protection
	Forward-Edge CFI Protection

	Implementation
	Loadable Kernel Module
	Intercept system call
	Mechanisms

	Forward-edge CFI Protection.
	PA modifier.
	Function Pointer Signing/Authentication.
	C++ VPointer Signing/Authentication

	Evaluation
	Performance Evaluation
	Experimental Setup
	Benchmarks

	Application Performance
	Lighttpd
	NGINX
	SQLite
	SPECCPU2017

	Limitation and Discussion
	The Limitation of the Unwinder.
	Complete Unwinding Information.
	Incomplete Unwinding Information.

	Attacks on PAC

	Security Evaluation
	Security Analysis
	ROP
	VPointer Hijacking
	Direct System Call Manipulation
	Indirect System Call Manipulation

	Related Work
	Related Work
	Debloating and system call filtering.
	Runtime System Call Protection.
	Pointer Integrity Protection.
	PAC Defense Approaches.
	Unwinding based Approaches.

	Conclusions
	References

