
doi:10.6342/NTU202403763

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master’s Thesis

基於多幀點雲對齊的三維物體偵測增強

3D Object Detection Enhancement Based on Multi-frame
Point Cloud Alignment

王浚睿

Jun-Rui Wang

指導教授: 施吉昇博士

Advisor: Chi-Sheng Shih, Ph.D.

中華民國 113年 8月

August, 2024

doi:10.6342/NTU202403763

誌謝

感謝指導教授施吉昇教授在論文研究和寫作上的悉心指導，也感謝實驗室的

林祥瑞學長提供的寶貴建議，以及實驗室同學在資料收集方面的辛勤努力。最後，

感謝家人及朋友在碩士期間給予的支持。

台北，夏，2024

王浚睿

i

doi:10.6342/NTU202403763

摘要

三維物件偵測是自動駕駛系統中不可或缺的組件，負責定位和分類由感測器

收集的點雲或深度影像中的物件。這項任務使得自動駕駛車輛和路邊單元能夠有

效地感知其周圍環境。此外，後續的決策任務大量依賴於三維物件偵測的結果，

因此其準確性直接影響自動駕駛系統的性能和安全性。

近年來，大多數關於三維物件偵測的研究都利用深度神經網絡，需要標註的

數據集來訓練模型。然而，在點雲中標註物件邊界框是一項耗時且具有挑戰性的

任務。光達受到遮擋影響，只能提供環境的部分點雲。人工標註者發現很難在沒

有其他感測器輔助的情況下為部分點雲標註完整的邊界框。

在這份工作中，我們提出了一個點雲對齊流程，可以對齊稀疏的車輛點雲而

無需任何標註數據，並從聚合的點雲中生成邊界框。我們的流程利用車輛的輪廓

進行對齊，解決了基於特徵的配準方法難以解決的稀疏點雲對齊挑戰。該流程包

括一個邊界框估算器，用於生成粗略的邊界框，基於這些粗略邊界框進行初始對

齊，並結合點對點和面對面方法進行點雲配準。

實驗結果顯示，我們的方法改善了邊界框的品質。在 IoU閾值為 0.7時，召

回率提高了 10%，而且在平移誤差和旋轉誤差方面也勝過基於特徵的配準方法。

關鍵字：三維物件偵測、點雲配準、多幀點雲、自駕車、無監督學習

ii

doi:10.6342/NTU202403763

Abstract

3D object detection is an essential component of autonomous driving systems, re-

sponsible for localizing and classifying the objects within the point clouds or depth im-

ages collected by sensors. This task enables self-driving vehicles and roadside units to

effectively perceive their environment. Moreover, the subsequent tasks such as decision-

making heavily relying on the results of 3D object detection. Therefore, the accuracy of

3D object detection directly influences the performance and safety of autonomous driving

systems.

Recently, most works on 3D object detection leverage deep neural networks, requir-

ing annotated datasets to train models. However, annotating object bounding boxes in

point clouds is a time-consuming and challenging task. LiDAR is affected by occlusions

and can only provide partial views of the environment. Human annotators find it difficult

to label complete bounding boxes for partial point clouds without the assistance of other

sensors.

In this work, we propose a point cloud alignment pipeline that can align sparse vehi-

cle point clouds without requiring any annotated data and generate bounding boxes from

aggregated point cloud. Our pipeline uses the vehicle’s contour for alignment, address-

ing the sparse point cloud alignment challenge that feature-based registration methods

struggle to solve. The pipeline comprises a bounding box estimator for generating rough

bounding boxes, initial alignment based on these rough bounding boxes, and point cloud

registration combining point-to-point and plane-to-plane methods.

The experimental results show that our method improves the quality of bounding

iii

doi:10.6342/NTU202403763

boxes. It achieves a 10% increase in recall at an IoU threshold of 0.7, and outperforms

feature-based registration methods in terms of translation error and rotation error as well.

Keywords: 3DObject Detection, Point CloudRegistraion,Multi-frame Point Clouds, Au-
tonomous Vehicles, Unsupervised Learning

iv

doi:10.6342/NTU202403763

Contents

Page

誌謝 i

摘要 ii

Abstract iii

Contents v

List of Figures viii

List of Tables ix

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Thesis Organization . 3

Chapter 2 Background and Related Works 5

2.1 Background . 5

2.2 Related Works . 6

2.2.1 Multi-frame 3D Object Detection 6

2.2.2 Point Cloud Registraion . 7

2.2.3 Unsupervised 3D Object Detection 9

v

doi:10.6342/NTU202403763

Chapter 3 System Architecture and Problem Definition 10

3.1 System Architecture . 10

3.2 Problem Definition . 11

3.3 Challenges . 12

Chapter 4 Design and Implementation 13

4.1 Workflow . 13

4.2 Bounding Box Estimator . 14

4.3 Initial Alignment . 17

4.4 Point Cloud Registration . 19

4.5 Final Bounding Box Generation . 20

Chapter 5 Experiment Evaluation 21

5.1 Evaluation Dataset . 21

5.2 Evaluation Metrics and Methodology 26

5.3 Quantitative Results . 27

5.3.1 Translation Error and Rotation Error between

Consecutive Frames . 27

5.3.2 Translation Error between Non-consecutive Frames 28

5.3.3 Cover Rate Versus Translation Error 28

5.3.4 Average IoU and Recall on Carla Dataset 29

5.3.5 Average IoU and Recall on WAYSIDE Dataset 30

5.4 Time Complexity and Execution Time Analysis 30

5.4.1 Bounding Box Estimator . 31

5.4.2 Initial Alignment . 31

vi

doi:10.6342/NTU202403763

5.4.3 Point Cloud Registraion . 32

5.5 Quantitative Results . 33

Chapter 6 Conclusion 36

References 37

vii

doi:10.6342/NTU202403763

List of Figures

Figure 1.1 Point Cloud of an Object from Single Frame. 2

Figure 1.2 Point Cloud of an Object from Multiple Frame. 3

Figure 4.1 Workflow of our work. 14

Figure 4.2 Incorrect Bounding Box Generated by L-shape Fitting. 16

Figure 4.3 Center Alignment. 18

Figure 4.4 Corner Alignment. 18

Figure 5.1 Point Cloud Generated from Carla. 22

Figure 5.2 Roadside Unit that Collected WAYSIDE Dataset. 24

Figure 5.3 Position of Roadside Units. 24

Figure 5.4 Vehicle’s Point Cloud of Carla Dataset. 25

Figure 5.5 Vehicle’s Point Cloud of WAYSIDE Dataset. 25

Figure 5.6 Execution Time of Bounding Box Estimator Versus the Number of

Points. 32

Figure 5.7 Execution Time of Covariance Estimate Versus the Number of Points. 33

Figure 5.8 Execution Time of GICP Versus the Number of Points. 34

Figure 5.9 Aggregated Point Cloud. 34

Figure 5.10 Aggregated Point Cloud. 35

Figure 5.11 Bounding Box Generated from Our Work. 35

viii

doi:10.6342/NTU202403763

List of Tables

Table 5.1 Settings of the LiDAR. 22

Table 5.2 Distribution of Track Lengths. 23

Table 5.3 Translation Error and Rotation Error between Consecutive Frames. 28

Table 5.4 Translation Error between Non-consecutive Frames. 28

Table 5.5 Average IoU on Carla Dataset. 29

Table 5.6 Recall at Different Thresholds on Carla Dataset. 30

Table 5.7 Average IoU on WAYSIDE Dataset. 30

Table 5.8 Recall at Different Thresholds on WAYSIDE Dataset. 30

ix

doi:10.6342/NTU202403763

Chapter 1

Introduction

1.1 Motivation

3D object detection is an essential component of autonomous driving systems, re-

sponsible for localizing and classifying the objects within the point clouds or depth im-

ages collected by sensors. This task enables self-driving vehicles and roadside units to

effectively perceive their environment. Moreover, the subsequent tasks such as decision-

making heavily relying on the results of 3D object detection. Therefore, the accuracy of

3D object detection directly influences the performance and safety of autonomous driving

systems.

Recently, most works on 3D object detection leverage deep neural networks, requir-

ing annotated datasets to train models. However, annotating object bounding boxes in

point clouds is a time-consuming and challenging task. LiDAR is affected by occlusions

and can only provide partial views of the environment. Human annotators find it difficult

to label complete bounding boxes for partial point clouds without the assistance of other

sensors. As shown in Figure 1.1, the point cloud contains only the front-left portion of the

1

doi:10.6342/NTU202403763

object. Due to the absence of the rear portion, it is impossible to ascertain the true size of

the object, making determination of the object’s bounding box even more challenging.

The sequence of point clouds may capture different viewpoints of the same object.

By aggregating point clouds from multiple frames, we can achieve a more comprehensive

understanding of the object’s shape and generate more reliable bounding box labels, or can

assists annotators in accurately determining the object’s size. As shown in Figure 1.2, the

aggregated point cloud offers richer geometric information about the object. Our work is

grounded in this concept, where we introduce a framework to aggregate point clouds from

various time frames, using this aggregated data to generate bounding box labels. These

generated bounding box labels can use for training deep learning models or providing

detailed shape information to support human annotators.

Figure 1.1: Point Cloud of an Object from Single Frame.

2

doi:10.6342/NTU202403763

Figure 1.2: Point Cloud of an Object from Multiple Frame.

1.2 Contribution

This work proposes a pipeline for aligning object point clouds across multiple frames

and generating bounding boxes based on the aggregated point cloud. This pipeline can

be used on the data collected by roadside LiDAR. The contribution of this work lies in

designing a point cloud alignment framework capable of aligning sparse vehicle point

clouds without training data and automatically generating bounding box annotations. We

address the alignment of sparse and unevenly distributed point clouds, which traditional

point cloud registration methods struggle to handle, by utilizing geometric features of the

point clouds. The experimental results demonstrate that our method can handle sparse

point clouds which current methods struggle to process effectively.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 presents the concept of 3D object detection and point cloud registration. It

3

doi:10.6342/NTU202403763

also presents the previous related works about Multi-frame object detection.

Chapter 3 presents the system architecture and problem definition of this work. Sec-

tion 3.1 presents system architecture, including the assumption and the scenario of this

work. Section 3.1 presents the formally formulates of the problem.

Chapter 4 presents the design and implementation details of this work. Chapter 4.1

presents the workflow of this work. Chapter 4.2 to Chapter 4.5 presents the implementa-

tion details of each components in the workflow.

Chapter 5 presents the evaluation results of our experiments. Chapter 5.1 presents the

evaluation metrics used in the experiments. Chapter 5.2 presents the quantitative results

and their analysis. Chapter 5.3 presents the visualized examples.

Chapter 6 presents the conclusion of this work.

4

doi:10.6342/NTU202403763

Chapter 2

Background and Related Works

2.1 Background

This section presents the basic concept of 3D object detection using point cloud data

and point cloud registration.

3D object detection is the task to localizing and identifying the objects in the point

cloud and output the objects’ bounding boxes, each bounding box contain center, size,

and the heading. Recent works on 3D object detection focus on utilizing deep neural

networks. Thesemethods can be classified into three categories based on how they process

point clouds: voxel-based [1, 2, 3], point-based [4, 5, 6], and voxel-point-based [7, 8].

Voxel-based methods divide the point cloud into voxels and then extract features from

these voxels by using 2D or 3D Convolutional Neural Networks. Point-based methods

extract features directly from the points by using special network architecture such as

PointNet [9]. Voxel-point-based extract features from both voxels and points.

Point cloud registration is a problem of finding a transformation to align two point

sets. ICP is the widely-used method for soloving point cloud registration problem. The

5

doi:10.6342/NTU202403763

input to the ICP is the source poinr cloud and the reference point cloud, the output of

ICP is a transformation matrix that align source point cloud to reference point cloud. The

following is the steps of the ICP algorithm:

1. For each point in the source point cloud, find and match the closest point in the

reference point cloud.

2. Estimate the transformation matrix that minimize the RMS point to point distance

of the corresponding point pairs.

3. Apply the transformation matrix on the source point cloud.

4. Repeat 1. ∼ 3. until the termination condition is satisfied.

2.2 Related Works

This section presents related works relevant to our work, including multi-frame 3D

object detection, point cloud registrationm, and unsupervised 3D object detection.

2.2.1 Multi-frame 3D Object Detection

Recent work onmulti-frame 3D object detection can be classified into two categories:

frame-based and object-based. Frame-based methods extend the input of single-frame

object detectors to accept multi-frame inputs. Some methods concatenate multiple point

clouds into a single point cloud and then input this aggregated point cloud into a single-

frame object detector. Object-based methods, on the other hand, process each object’s

point cloud across different frames rather than considering the entire scene. Compared to

frame-based methods, object-based methods can handle longer sequences of point clouds.

6

doi:10.6342/NTU202403763

3D-MAN: 3DMulti-frame Attention Network for Object Detection

3D-MAN [10] uses a single-frame object detector to generate bounding box propos-

als. These proposals along with their features are then stored in a memory bank. Finally,

an attention-based module is employed to extract and aggregate temporal features from

the memory bank. However, the attention-based module computes relationships not only

between the same objects across different frames but also between different objects across

different frames. This increases the computational complexity of the model and limits its

capability to handle longer sequences of point clouds.

Offboard 3D Object Detection from Point Cloud Sequences

Offboard 3D Object Detection from Point Cloud Sequences [11] is a work aims to

utilize the point cloud sequence to generate more accurate bounding box. This work first

using single-frame object detection and object tracking to obtain the track of an object.

Then using a deep neural network to process the track of the object and output more accu-

rate bounding box. This work is a supervised deep learningmethods and therefore requires

annotated data for training. Waymo Open Dataset is used for training and evaluating.

2.2.2 Point Cloud Registraion

This section presents methods for solving the point cloud registration problem, in-

cluding ICP variants, global registration methods, and deep learning-based approaches.

ICP Variants

ICP variants improve the steps in ICP. Chen andMedioni [12] used the plane-to-point

error instead of the point-to-point error to take advantage of the planes near the points,

7

doi:10.6342/NTU202403763

rather than considering the points alone. GICP [13] further extends this idea by using

the covariance matrix of the planes near the points to compute plane-to-plane error. By

adjusting the covariance matrix, GICP can also switch between point-to-point and plane-

to-point error computations.

Global Registraion

ICP and its variants rely heavily on the quality of the initial transformation because

they use coordinate distances to find the nearest point pairs. To obtain this initial trans-

formation, global registration methods are typically used to estimate a rough alignment.

Unlike ICP and its variants, which match points directly based on their coordinates, global

registration methods use point features for matching. A commonly used method for com-

puting these features is Fast Point Feature Histograms (FPFH) [14]. FPFH calculates

features that describe the geometric information in the neighborhood of each point using

statistical methods. After computing the features for each point, point pairs can bematched

based on the distance between these features. Point pairs obtained through feature match-

ing often include many outliers. Global registration methods generally address this issue;

for instance, Fast Global Registration [15] reduces outliers by filtering feature-matched

point pairs, while TEASER++ [16] changes the method for solving the transformation

matrix to make it less sensitive to outliers. Although FPFH can effectively capture point

features, it requires dense point clouds to generate meaningful features.

Deep Learning-based Point Cloud Registraion

Recently, there have been several efforts to use deep neural networks to solve the

point cloud registration problem. These methods generally rely on neural networks to

handle feature extraction and point pair matching in global registration. One such method

8

doi:10.6342/NTU202403763

is Deep Closest Point (DCP) [17]. First, it uses PointNet [9] and DGCNN [18] to extract

features from the point clouds. Subsequently, an attention-based module [19] is used to

predict a soft matching between the source and reference point clouds. Finally, the trans-

formation matrix is predicted based on the soft matching results. Although these methods

perform well on dense point clouds, they struggle to achieve good results on sparse point

clouds due to the difficulty in obtaining meaningful point cloud features.

2.2.3 Unsupervised 3D Object Detection

L-shape fitting [20] is a method for determining the bounding box of a point cloud

without requiring a dataset for training. It is based on the idea that the point cloud of a

vehicle typically approximates an L-shaped form. The bounding box is determined by

finding the one that best fits this L-like shape. Since optimization methods to find this

bounding box can be computationally intensive, L-shape fitting exhaustively explores all

possible angles to generate all potential bounding boxes and then selects the best one based

on certain criteria.

9

doi:10.6342/NTU202403763

Chapter 3

System Architecture and Problem

Definition

This chapter presents the system architecture and problem definition details. Section

3.1 presents the system architecture. Section 3.2 presents the problem definition of this

work. Section 3.3 presents the challenges of this work.

3.1 System Architecture

This work aims to align a sequence of point clouds belonging to the same object

and generate corresponding bounding boxes for each point cloud using the aggregated

point cloud after alignment. We align the point clouds by solving point cloud registration

problem.

The input point cloud must be collected from stationary roadside LiDAR, and points

in the point cloud should contain coordinate information, while other additional informa-

tion, such as intensity, is not required. The height of the LiDAR should be the same as

that of regular vehicles, approximately 1.6 meters. The reason for setting this height is

10

doi:10.6342/NTU202403763

that, at this level, distant vehicles are less likely to be occluded by vehicles that are closer

to the LiDAR. The object corresponding to the input point cloud sequence should be rigid

object. The output bounding boxes contain center, size, and heading.

3.2 Problem Definition

The problem of this work can be formulated as follow:

The input to this work is a sequence of point cloud belonging to the same object

collected by LiDAR, denoted as P and is defined as:

P = {P1, P2, ..., PN} (3.1)

Pi = {(x1, y1, z1), (x2, y2, z2), ..., (xM , yM , zM)} (3.2)

where N is the length of the point cloud sequence P and M is the number of the points

in point cloud Pi.

The output of this work is the bounding boxes corresponding to each point cloud in

the input point cloud sequence P . The bounding boxes denoted asB and is defined as:

B = {B1, B2, ..., BN} (3.3)

Bi = {x, y, z, sx, sy, sz, θ} (3.4)

where x, y, and z is the center of the bounding box Bi; sx, sy, and sz is the size of the

bounding box Bi; θ is the heading of the bounding box Bi.

The output bounding boxes B has to minimize the IoU between B and the ground

11

doi:10.6342/NTU202403763

truthBgt, ground truthBgt and IoU is defined as:

Bgt =
{
Bgt

1 , Bgt
2 , ..., Bgt

N

}
(3.5)

IoUi =
Bi ∩ Bgt

i

Bi ∪ Bgt
i

(3.6)

3.3 Challenges

Although there has been extensive research on point cloud registration, the problem

that this work aims to solve involves several challenges. The two point clouds to be reg-

istered are somewhat separated, making it impossible to directly use ICP and its variants

without an initial alignment. Furthermore, using feature-based point cloud registration

methods is challenging because the vehicle point clouds differ from those typically used

in general point cloud registration studies. They are sparser and have uneven density

distribution, making it difficult to extract useful information for point cloud registration

from the points and their neighbors. This results in poor performance of feature-based

point cloud registration methods. Therefore, alternative methods are needed to obtain the

initial alignment.

12

doi:10.6342/NTU202403763

Chapter 4

Design and Implementation

This chapter presents the workflow of our work and the design and Implementa-

tion details of each component in the workflow. Section 4.1 presents the workflow of

our method. Section 4.2 presents the implementation details of the bounding box estima-

tor. Section 4.3 presents the implementation details of the initial alignment. Section 4.4

presents the implementation details of the point cloud registration. Section 4.5 presents

the implementation details of final bounding box generation.

4.1 Workflow

This section presents the workflow of our method. For the sequence of point clouds

P = {P1, P2, ..., PN} input to our method, we sequentially register each point cloud onto

the previous point clouds in the sequence. For instance, in iteration i, Pi is aligned to

P̂1,i−1, where P̂1,i−1 is the aggregated point cloud that contains point clouds from P1 to

Pi−1. This results in an aggregated point cloud formed by aligning all point clouds. Sub-

sequently, bounding boxes are generated based on this aggregated point cloud. Figure 4.1

illustrates the overall workflow.

13

doi:10.6342/NTU202403763

i from2 to N Aggregated
Point Cloud

(

Point Cloud
(

Initial
Alignment

Point Cloud
Registration

Bounding Box
Estimator

Aggregated
Point Cloud

Aggregated
Point Cloud

Bounding
box

Bounding
box

.

.

.

Bounding Box
Estimator

Figure 4.1: Workflow of our work.

4.2 Bounding Box Estimator

This section presents the implementation details of the bounding box estimator in the

workflow. Bounding box estimator is responsible for generating rough bounding box B̂i

for the input point cloud Pi. The center, size, and heading of the rough bounding box

are crucial for the subsequent point cloud alignment. L-shape fitting, proposed by [20],

is adopted as the foundational algorithm for the bounding box estimator. L-shape fitting

is a search-based method that estimates the bounding box of the vehicle’s point cloud by

leveraging the geometric contour of the vehicle. The algorithm first projects the point

cloud onto the x-y plane to obtain 2D points. Then, it computes the minimal bounding

boxes for all possible headings. Specifically, the algorithm computes the bouning boxes

with heading θ ranging from 0° to 90° with a step size δ, where δ is set as 1° in our imple-

mentation. Once the bounding box is obtained, the algorithm will use certain metrics to

select the best bounding box. Themetric used in this work is variance of the bounding box.

In order to compute the variance of the bounding box, the 2D points within the bounding

14

doi:10.6342/NTU202403763

box will be divided into two group according to whether the closest edge in the edges

of the bounding box is parallel to the orientation or not. The algorithm then calculates

the variance for each of these two groups and sums them to obtain the overall variance

of the bounding box. Algorithm 1 and Algorithm 2 are the details of L-fitting algorithm.

Because the bounding box’s variation along the angle is irregular, search methods such

as binary search cannot be used; instead, an exhaustive search of all angles is required.

We also attempted to narrow the search range, but the reduced range did not guarantee an

optimal solution, leading to incorrect bounding boxes.

While L-shape fitting can obtain the best bounding box of the vehicle’s point cloud,

it can be affected by points near the edges, such as side mirrors. Figure 4.2 illustrates an

example of an incorrect bounding box affected by the side mirror. To address this issue,

we utilize the RANSAC (RANdom SAmple Consensus) algorithm to correct the heading

of the bounding box. Points are divided into four group according to the closest edge, and

the RANSAC algorithm is applied to the group with the highest number of points to fit a

line. The 2D bounding box is then computed using the slope of this line as the heading.

Algorithm 1: Search-Based BBox Fitting
Input: Points P ∈ Rn×3

Output: 2D Bounding box
1 Q← ∅;
2 P̂ ← ProjectOntoXYPlane(P);
3 for θ ← 0 to π/2 by δ do
4 e1 ← (cos θ, sin θ);
5 e2 ← (− sin θ, cos θ);
6 C1 ← P̂ · e1T ;
7 C2 ← P̂ · e2T ;
8 q ← CalculateVariance(C1, C2);
9 insert (b, q) into Q;
10 end
11 select b from Q with the smallest q;

15

doi:10.6342/NTU202403763

Algorithm 2: CalculateVariance
Input: C1, C2

Output: variance q
1 cmax

1 ← max(C1), c
min
1 ← min(C1);

2 cmax
2 ← max(C2), c

min
2 ← min(C2);

3 D1 ← argminv∈{cmax
1 −C1,C1−cmin

1 } ∥v∥;
4 D2 ← argminv∈{cmax

2 −C2,C2−cmin
2 } ∥v∥;

5 E1 ←
{
D1(i)|D1(i) < D2(i)

}
;

6 E2 ←
{
D2(i)|D2(i) < D1(i)

}
;

7 q ← variance(E1) + variance(E2);
8 return q;

Figure 4.2: Incorrect Bounding Box Generated by L-shape Fitting.

16

doi:10.6342/NTU202403763

4.3 Initial Alignment

This section presents the implementation details of the initial alignment in the work-

flow. Before performing point cloud registration, we need to obtain an initial transforma-

tion matrix that roughly aligns the point cloud pair. Traditional methods using the feature

of the point cloud to compute the initial transformation matrix. For instance, Fast Global

Registration [15] using Fast Point Feature Histogram (FPFH) descriptors [14] to com-

pute the matrix. However, these methods are generally designed for denser point clouds,

whereas point clouds from vehicles are not consistently dense. After experiments, we

found that traditional methods did not perform well on our data. Therefore, we have de-

signed a new method to obtain the initial transformation matrix. This method leverages

the rough bounding box generated from the bounding box estimator to compute the initial

transformation matrix. A trivial approach would be to align using the center of the bound-

ing box, but the center derived from partial point cloud may be offset, leading to alignment

errors. Therefore, we choose to align using the corners of the bounding box. Compared

to the center, the corners provide more accurate positioning, resulting in a more accurate

initial transformation matrix. Figure 4.3 and Figure 4.4 illustrate the difference between

center alignment and corner alignment. It can be seen that corner alignment yields notice-

ably better results.

In order to locate the corners used for alignment, we divide points into four groups

based on their nearest corner, selecting the group with the most points as the alignment

reference. Subsequently, based on the orientation of the bounding box, we determine the

position of this corner within the bounding box, then identify the corresponding corner

from the previous bounding box and use these two corners to compute the initial alignment

17

doi:10.6342/NTU202403763

Figure 4.3: Center Alignment.

Figure 4.4: Corner Alignment.

18

doi:10.6342/NTU202403763

matrix.

4.4 Point Cloud Registration

This section presents the implementation details of the point cloud registration in

the workflow. After initial alignment, point cloud registration is applied to gain more

accurate alignment. Traditional methods like ICP (Iterative Closest Point) assume that the

point pairs used for alignment are located at same positions on the object. However, due

to the sparsity of LiDAR-collected point clouds, it is challenging to scan the exact same

positions of an object at different times. Using a point-to-point calculation method can

lead to some offset in the results.

Although LiDAR cannot scan the exact same position in different time, it can scan the

same plane. Therefore, we decided to use a plane-to-plane registration method. Plane-to-

plane registration primarily utilizes planes constructed from nearby points for alignment.

However, if points are located on corners or curved surfaces where surrounding points

cannot form a plane, a point-to-point registration method becomes necessary. To achieve

this goal, we designed a hybrid registration approach that combines point-to-point and

plane-to-plane registration methods.

To switch between point-to-point and plane-to-plane alignment, we adoptedGICP [13]

as the framework for point cloud registration. GICP computes the error using the covari-

ance matrix of points instead of point-to-point distance. The following equation represents

how GICP calculates the error:

dT (Cb + TCaTT)−1d (4.1)

19

doi:10.6342/NTU202403763

where a, b is the point pair for which the error is calculated. d is the distance between a and

b, andCa andCb are the covariancematrices of a and b respectively,T is the transformation

matrix that align a to b.

By using different covariance matrices, we can switch between point-to-point and

plane-to-plane alignment methods. Here is how we compute the covariance matrix: first,

we calculate the covariance matrix from a point and its nearest n points within a radius r.

In this work, r is set to 0.4 meters and n is set to 300 points. Next, we perform the eigen de-

composition on the covariance matrix. If the explained variance of the smallest eigenvalue

exceeds 0.3, the output covariance matrix is I. If the explained variance of the smallest

eigenvalue is less than 0.3, the output covariance matrix is UDU⊤, where U consists of

eigenvectors sorted in ascending order, and D is a diagonal matrix diag(0.001, 1, 1).

4.5 Final Bounding Box Generation

This section presents the implementation details of final bounding box generation.

When we obtain the aggregated point cloud P̂1,N . Bounding box estimator is used to

generate the 3D bounding box. We use the same algorithm as in Section 4.2 to generate

the 2D bounding box, and then use the maximum and minimum values along the z-axis

of the points to generate the 3D bounding box.

20

doi:10.6342/NTU202403763

Chapter 5

Experiment Evaluation

This chapter presents the evaluation results of our work. In Section 5.1 introduces

the evaluation metrics. Section 5.2 presents the quantitative results of the experiment.

Section 5.3 presents the visualized examples of the results.

5.1 Evaluation Dataset

To evaluate the alignment performance of our work, the center and heading of vehi-

cles’ ground truth is required to compute the ground truth transformation matrix. How-

ever, existing datasets lack these information. Therefore, we decide to use synthetic

dataset generated from Carla for evaluation. Carla is a simulation framework that can

simulate real world traffic and generate LiDAR’s point clouds. The settings of the LiDAR

is shown in the Table 5.1. We use blueprints provided by Carla to generate vehicles and

use autopilot feature to simulate real-world traffic. Figure 5.1 illustrates the point cloud

generated from Carla.

The dataset generated from Carla contains 25 tracks of objects. The length of these

tracks ranges approximately from 30 to 40 frames. The detailed distribution of track

21

doi:10.6342/NTU202403763

lengths is listed in the Table 5.2.

Frequency 10Hz
Channels 64

Points per Second 1200000
LiDAR Range 30 meters

Noise N(0, 0.01) (meters)

Table 5.1: Settings of the LiDAR.

Figure 5.1: Point Cloud Generated from Carla.

Addtionly, we also use a WAYSIDE dataset that collect by the real-world roadside

unit to evaluate our method’s performance on real-world data. Due to the lack of the center

and heading of vehicles’ ground truth, we only evaluate the quality of the bounding box

generated by our work on the WAYSIDE dataset.

The WAYSIDE dataset is collected by three roadside units named RSU1, RSU2, and

RSU3. We use the point cloud collected by RSU1. The roadside unit consists of a VLP-

32C LiDAR, a GPS, and three cameras. The height of the LiDAR is around 1.6 meters,

same as the setting in Carla dataset. Figure 5.2 illustrates the roadside unit. Only the point

cloud data collected by the LiDAR is used in our work. The data were collected at the

22

doi:10.6342/NTU202403763

Length of track (frames) Number of tracks
10 ∼ 15 1
15 ∼ 20 1
20 ∼ 25 0
25 ∼ 30 3
30 ∼ 35 7
35 ∼ 40 7
40 ∼ 45 2
45 ∼ 50 1
50 ∼ 55 1
55 ∼ 60 0
60 ∼ 65 0
65 ∼ 70 0
70 ∼ 75 0
75 ∼ 80 1
80 ∼ 85 0
85 ∼ 90 0
90 ∼ 95 0
95 ∼ 100 1

Table 5.2: Distribution of Track Lengths.

intersection of JianGuo Road and QingJing Road in Pingtung county, Taiwan. Figure 5.3

illustrates the position of the roadside units. The data were recorded at 07:00, 10:00, 13:00,

and 16:00 on March 8th, 2022, and March 9th, 2022, with each recording session lasting

2 hours.

The difference between the point clouds of the Carla dataset and the WAYSIDE

dataset is that the point cloud from the Carla dataset is smoother than the point cloud

from the WAYSIDE dataset. Specifically, in the case of windows, the WAYSIDE dataset

exhibits unevenness due to light refraction, with some points passing through the window

and entering the interior of the vehicle. In contrast, the windows in the Carla dataset are

very smooth. Figure 5.4 and Figure 5.5 illustrates the difference between the Carla dataset

and the WAYSIDE dataset.

23

doi:10.6342/NTU202403763

Figure 5.2: Roadside Unit that Collected WAYSIDE Dataset.

Figure 5.3: Position of Roadside Units.

24

doi:10.6342/NTU202403763

Figure 5.4: Vehicle’s Point Cloud of Carla Dataset.

Figure 5.5: Vehicle’s Point Cloud of WAYSIDE Dataset.

25

doi:10.6342/NTU202403763

5.2 Evaluation Metrics and Methodology

The goals of experiment is to evaluate the performance of point cloud alignment and

the quality of the generated bounding boxes. To evaluate the performance of point cloud

alignment, we use the translation error and rotation error, which are commonly use met-

rics in point cloud registration works. Translation error is the l2-norm of the difference

between the estimate translation vector and the ground truth translation vector. The fol-

lowing is the equation of the translation error:

∥∥t̂− tgt
∥∥
2

(5.1)

where t̂ is the estimate translation vector and tgt is the ground truth translation vector.

Rotation error is defined as the absolute difference between the estimated Euler angle

of rotation matrix and the ground truth Euler angle of rotation matrix. The following is

the equation of the rotation error:

arcos(
trace(R̂R−1

gt)− 1

2
) (5.2)

where R̂ is the estimate rotation matrix and Rgt is the ground truth rotation matrix.

To evaluate the quality of the generated bounding boxes, we use the IoU between the

generated bounding boxes and the ground truth bounding boxes. The following equation

is the definition of the IoU:

IoU =
B̂ ∩Bgt

B̂ ∪Bgt
(5.3)

where B̂ is the generated bounding box andBgt is the ground truth bounding box. We also

use recall to evaluate the quality of the generated bounding boxes. If the IoU exceeds a

26

doi:10.6342/NTU202403763

certain threshold, the bounding box is considered as a true positive. We set the thresholds

to 0.3, 0.5, and 0.7. The following equation is the definition of the recall:

Recall =
Number of True Positive Bounding Box

Number of Bounding Box
(5.4)

5.3 Quantitative Results

This section presents the evaluation result of the translation error, rotation error, IoU,

and the recall on the Carla dataset.

5.3.1 Translation Error and Rotation Error between

Consecutive Frames

This section presents the translation error and rotation error between consecutive

frames. We compare different point cloud registration methods by varying the registration

methods within our multi-frame alignment framework. Our comparisons include point-

to-point registration, plane-to-plane registration, DCP [17] and TEASER++ [16]. DCP is

a deep learning method based on the features extract from neural networks and TEASER+

+ is a non deep learning method that utilize point features to alignment. Table 5.3 shows

the result. We observed that feature-based methods (DCP and TEASER++) exhibit poor

performance on our dataset. This is because these methods are designed to solve point

cloud registration tasks on dense point clouds, whereas the point clouds from vehicles are

too sparse to effectively extract features. The results also show that our hybrid method

performs better than point-to-point registration (ICP) and plane-to-plane registrationmeth-

ods.

27

doi:10.6342/NTU202403763

Point Cloud Registraion Method Translation Error (m), ↓ Rotation Error (°), ↓
ICP 0.10824 4.22297

Plane-to-Plane 0.16168 3.66189
DCP 1.46532 119.77314

TEASER++ 2.05850 155.47393
Ours 0.08480 3.39233

Table 5.3: Translation Error and Rotation Error between Consecutive Frames.

5.3.2 Translation Error between Non-consecutive Frames

This section presents the translation error between non-consecutive frames. Because

the point cloud alignment is performed frame by frame, there is a possibility of cumulative

translation errors. We conducted experiments at intervals of 1, 4, and 9 frames respectively

to investigate the error accumulation. Table 5.4 presents the experimental results, showing

that the ICP method accumulates errors very quickly. At a 9-frame interval, the accumu-

lation error is four times higher compared to consecutive frames. In contrast, our method

shows a slower rate of increase in errors over intervals.

Frame intervals 0 Frame 1 Frame 4 Frames 9 Frames
ICP 0.10824 0.16392 0.28439 0.41801
Ours 0.08480 0.13064 0.20122 0.27776

Table 5.4: Translation Error between Non-consecutive Frames.

5.3.3 Cover Rate Versus Translation Error

TThis section primarily discusses the impact of cover rate on translation error. The

cover rate is defined as the proportion of the ground truth point cloud that occupies the

volume of the entire ground truth bounding box. Since point cloud registration requires the

point cloud contains parts of the vehicle shape, we aim to investigate how the completeness

28

doi:10.6342/NTU202403763

of the point cloud affects registration.

Figure illustrates the relationship between cover rate and translation error. It shows

that after a cover rate of 0.3, the translation error starts to decrease. Beyond a cover rate

of 0.4, the translation error remains consistently below 0.1 meters.

5.3.4 Average IoU and Recall on Carla Dataset

This section presents the experimental results for average IoU and Recall on the Carla

dataset. The experiment evaluates the performance of unsupervised object detection after

multi-frame alignment. To assess the enhancement of point cloud alignment, we compare

with the bounding boxes generated from single frame using L-shape fittng. Table 5.5 and

Table 5.6 present the experimental results, indicating that the performance of alignment

using ICP is worse than bounding boxes generated from single frame. This discrepancy

arises because inaccurate alignment with ICP results in an aggregated point cloud shape

that does not accurately represent the actual object, leading to poor IoU performance.

In contrast, our method demonstrates higher IoU compared to bounding boxes gen-

erated from single frame.

Registraion Method Frames Average IoU, ↑
Single Frame 1 0.629

ICP Full Sequence 0.640
Ours Full Sequence 0.629

Table 5.5: Average IoU on Carla Dataset.

29

doi:10.6342/NTU202403763

Registraion Method Recall@IoU0.7, ↑ Recall@IoU0.5, ↑ Recall@IoU0.3, ↑
Single Frame 0.522 0.793 0.862

ICP 0.457 0.778 0.951
Ours 0.627 0.844 0.955

Table 5.6: Recall at Different Thresholds on Carla Dataset.

5.3.5 Average IoU and Recall on WAYSIDE Dataset

This section presents the experiment result of average IoU and Recall on WAYSIDE

dataset. In this experiment, we also compare with the bounding boxes generated from

single frame using L-shape fittng. Table 5.7 and Table 5.8 present the experimental results.

The experimental reveals that our method significantly improved the Recall at an IoU of

0.5, increasing it by approximately 20%.

Registraion Method Frames Average IoU, ↑
Single Frame 1 0.479

Ours Full Sequence 0.553

Table 5.7: Average IoU on WAYSIDE Dataset.

Registraion Method Recall@IoU0.7, ↑ Recall@IoU0.5, ↑ Recall@IoU0.3, ↑
Single Frame 0.043 0.518 0.863

Ours 0.179 0.704 0.899

Table 5.8: Recall at Different Thresholds on WAYSIDE Dataset.

5.4 Time Complexity and Execution Time Analysis

This section analyzes the time complexity and execution time of each component in

our workflow. The execution time analysis was performed on a machine with an AMD

Ryzen 5 5600X CPU, using Python for implementation, with all matrix operations per-

30

doi:10.6342/NTU202403763

formed using the Numpy library.

5.4.1 Bounding Box Estimator

In this section, we will discuss the time complexity of Bounding Box Estimator with

respect to the number of points n. The Bounding Box Estimator includes L-shape fitting

and RANSAC. L-shape fitting calculates 90 bounding boxes, with each bounding box

having a time complexity of O(n). Therefore, the time complexity of L-shape fitting is

O(n). RANSAC has a time complexity of O(n) per iteration, and since the number of

iterations is fixed and does not depend on the number of points, the time complexity of

RANSAC is alsoO(n). Thus, the overall time complexity of the Bounding Box Estimator

isO(n). Figure 5.6 illustrates a graph of execution time of Bounding Box Estimator versus

the number of points. The observed fluctuations in the graph are due to RANSAC initially

dividing the points into four groups based on their distance to the bounding box, and then

performing operations on the largest group. The size of this largest group may not be

proportional to n, leading to greater variations in execution time.

5.4.2 Initial Alignment

In this section, we will discuss the time complexity of Initial Alignment with respect

to the number of points n. Initial alignment requires finding the nearest bounding box

corners for all points, so the time complexity is O(n). In practice, we use the Python

library NumPy to implement this, and NumPy completes the initial alignment for different

numbers of points in less than 0.002 seconds.

31

doi:10.6342/NTU202403763

Figure 5.6: Execution Time of Bounding Box Estimator Versus the Number of Points.

5.4.3 Point Cloud Registraion

In this section, we will discuss the time complexity of Point Cloud Registration with

respect to the number of points n. Point Cloud Registration includes covariance estimation

and GICP (Generalized Iterative Closest Point). Covariance estimation involves finding

the neighborhood of each point, which is done using a k-d tree. The time complexity of

searching in a k-d tree is O(logn). Therefore, the time complexity of covariance estima-

tion is O(nlogn). In GICP, the point-related operation is finding the nearest point pairs

between two point clouds in each iteration, which is also accomplished using a k-d tree.

As a result, the time complexity of GICP is O(nlogn). Thus, the overall time complexity

of Point Cloud Registration is O(nlogn). Figure 5.7 and Figure 5.8 illustrate the graphs

of execution time versus the number of points for covariance estimation and GICP, re-

spectively. For GICP, the number of points is the sum of the points in the two input point

clouds. GICP execution stops when the error falls below a certain threshold. Some of

32

doi:10.6342/NTU202403763

the higher execution times in the graph are due to cases where the error did not decrease

below the threshold, leading to a larger number of iterations.

Figure 5.7: Execution Time of Covariance Estimate Versus the Number of Points.

5.5 Quantitative Results

This section visualized the results of the point cloud alignment and the generated

bounding box. Figure 5.9 and Figure 5.10 show the aggregated point cloud aligned by our

work. The redder points represent the point cloud in the earlier frames and yellower points

represent the point cloud in the later frames. Figure 5.11 show the generated bounding box,

where the blue points is themulti-frame alignment point cloud, red points is the point cloud

from single frame, green bounding box is the ground truth bounding box, blue bounding

box is the bounding box generated from our work, and red bounding box is the bounding

box generated from single frame.

33

doi:10.6342/NTU202403763

Figure 5.8: Execution Time of GICP Versus the Number of Points.

Figure 5.9: Aggregated Point Cloud.

34

doi:10.6342/NTU202403763

Figure 5.10: Aggregated Point Cloud.

Figure 5.11: Bounding Box Generated from Our Work.

35

doi:10.6342/NTU202403763

Chapter 6

Conclusion

In this work, we propose a point cloud alignment pipeline that can align sparse vehi-

cle point clouds without requiring any annotated data and generate bounding boxes from

aggregated point cloud. Our pipeline uses the vehicle’s contour for alignment, address-

ing the sparse point cloud alignment challenge that feature-based registration methods

struggle to solve. The pipeline comprises a bounding box estimator for generating rough

bounding boxes, initial alignment based on these rough bounding boxes, and point cloud

registration combining point-to-point and plane-to-plane methods.

The experimental results show that our method improves the quality of bounding

boxes. It achieves a 10% increase in recall at an IoU threshold of 0.7, and outperforms

feature-based registration methods in terms of translation error and rotation error as well.

36

doi:10.6342/NTU202403763

References

[1] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars: Fast
encoders for object detection from point clouds,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 12 697–12 705.

[2] Y. Zhou andO. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d object
detection,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 4490–4499.

[3] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional detection,”
Sensors, vol. 18, no. 10, p. 3337, 2018.

[4] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation and detection
from point cloud,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 770–779.

[5] W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d object detection
in a point cloud,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2020, pp. 1711–1719.

[6] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3dssd: Point-based 3d single stage object de-
tector,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2020, pp. 11 040–11 048.

[7] F. Ma and S. Karaman, “Sparse-to-dense: Depth prediction from sparse depth sam-
ples and a single image,” in 2018 IEEE international conference on robotics and
automation (ICRA). IEEE, 2018, pp. 4796–4803.

[8] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-rcnn: Point-voxel
feature set abstraction for 3d object detection,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 10 529–10 538.

[9] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets
for 3d classification and segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 652–660.

37

doi:10.6342/NTU202403763

[10] Z. Yang, Y. Zhou, Z. Chen, and J. Ngiam, “3d-man: 3d multi-frame attention net-
work for object detection,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2021, pp. 1863–1872.

[11] C. R. Qi, Y. Zhou, M. Najibi, P. Sun, K. Vo, B. Deng, and D. Anguelov, “Offboard
3d object detection from point cloud sequences,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 6134–6144.

[12] Y. Chen and G. Medioni, “Object modelling by registration of multiple range im-
ages,” Image and vision computing, vol. 10, no. 3, pp. 145–155, 1992.

[13] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.” in Robotics: science and
systems, vol. 2, no. 4. Seattle, WA, 2009, p. 435.

[14] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (fpfh) for 3d
registration,” in 2009 IEEE international conference on robotics and automation.
IEEE, 2009, pp. 3212–3217.

[15] Q.-Y. Zhou, J. Park, and V. Koltun, “Fast global registration,” in Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-
14, 2016, Proceedings, Part II 14. Springer, 2016, pp. 766–782.

[16] H. Yang, J. Shi, and L. Carlone, “Teaser: Fast and certifiable point cloud registra-
tion,” IEEE Transactions on Robotics, vol. 37, no. 2, pp. 314–333, 2020.

[17] Y. Wang and J. M. Solomon, “Deep closest point: Learning representations for point
cloud registration,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 3523–3532.

[18] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dy-
namic graph cnn for learning on point clouds,” ACMTransactions on Graphics (tog),
vol. 38, no. 5, pp. 1–12, 2019.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information pro-
cessing systems, vol. 30, 2017.

[20] X. Zhang, W. Xu, C. Dong, and J. M. Dolan, “Efficient l-shape fitting for vehicle
detection using laser scanners,” in 2017 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2017, pp. 54–59.

38

	誌謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution
	Thesis Organization

	Background and Related Works
	Background
	Related Works
	Multi-frame 3D Object Detection
	Point Cloud Registraion
	Unsupervised 3D Object Detection

	System Architecture and Problem Definition
	System Architecture
	Problem Definition
	Challenges

	Design and Implementation
	Workflow
	Bounding Box Estimator
	Initial Alignment
	Point Cloud Registration
	Final Bounding Box Generation

	Experiment Evaluation
	Evaluation Dataset
	Evaluation Metrics and Methodology
	Quantitative Results
	Translation Error and Rotation Error between Consecutive Frames
	Translation Error between Non-consecutive Frames
	Cover Rate Versus Translation Error
	Average IoU and Recall on Carla Dataset
	Average IoU and Recall on WAYSIDE Dataset

	Time Complexity and Execution Time Analysis
	Bounding Box Estimator
	Initial Alignment
	Point Cloud Registraion

	Quantitative Results

	Conclusion
	References

