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ABSTRACT

Autoimmune encephalitis and paraneoplastic encephalitis are uncommon yet
clinically significant diseases. The diagnostic gold-standard is cerebrospinal-fluid
autoantibody or serum antibody testing, a procedure that is time-consuming and costly.
Several scoring systems—such as the APE2 score—have been proposed to estimate
antibody positivity, but they do not incorporate electroencephalography (EEG) findings.
If routine EEG could help identify antibody-positive patients, clinical decision-making
might be accelerated.

46 patients who were admitted to National Taiwan University Hospital between 2017
and 2022 for suspected autoimmune encephalitis (AE). Among them, 12 were antibody-
positive, making the prevalence 28%. The aim is to examine whether single resting state
EEG, analyzed with machine-learning classifiers, could predict antibody status.

Overall, this pilot study demonstrates that machine learning models trained with
EEG-only data do not perform better than random guessing significantly. These findings
may hint that using common feature extraction methods and conventional machine
learning algorithms, there may be no apparently generalizable discriminative features in
one-time routine EEG. These negative findings suggest that the role of EEG in patients
with suspected antibody-related encephalitis may not be directly diagnostic, but
supportive. This study also provides a reference baseline for future research on EEG and

immune encephalitis.

Keywords: electroencephalography, machine learning, autoimmune encephalitis,

paraneoplastic encephalitis, autoimmune encephalitis antibodies
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Chapter 1 Introduction

1.1 p S X

EATF LY 0 pRIRR 2 BN (e 7 op ML & % W (autoimmune
encephalitis) (1) | *& % 48 * 2 (paraneoplastic encephalitis) (2)) > &40 ¥ L (%
AFANLEA2 - TFA2Z- A EQANEHBEBELE A DR K RN L

Mrg o B PR A st IR A L g AR o T BRERE T ik

&P REEOR L A R R 2 - 6 T R L6 R b A
SRR ARG pMPAMS TR F AT AR T ARE 4 nier i

EA -~ hA gk s A LBR1)Q) A YL & R Ak b2 G R
oY AT ARG PRGN L R G Wi flee &5 2l
(neuronal surface antigen) > & *& % 88 *o L B 37 ¥4 L wre b 2 $ui (neuronal
intracellular antigen) » ¥ ® ¥ &2 4p Al > FI ¥ i AP TR LD 1S B AP H IR D
FRAARBO) RFWE L > BEFT AT R H IR A A G ARk
i LA R SLEH] 0 4L 1F molecular mimicry (7) ©

4 1% o 30 Saraya dE H 0 S RIF R oS E R (2010-2017)% fek 7T
TR S E L B o B0 40%F B - A5 (§ WA )P A 33%7 B
— s (B )PAR(B) B X LR NE B AN T A E R E LY CH] 2
B ARV BIRRE o fe BH AR dotd b S R B MW AR A 4T DA
s kR AR L RE@®) -

Flpto - Bm R T g ReRI - B AR T e ) B Ao 5F
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SRR F - MDA R G A o ) BRIk & AR RS L A
WIELLETEY (T 4 1-22) /a2 (6 Peid @ B AR OB A LB B R AR R A
ARRDERTFIF L - (e Ao > BFBREF 2 BF(PRELIR MR E)ER2
0p MR KL F s T F AR Aok PSR Y R
1 (biopsy)#E 2 (10)> @ o2 877 P ACEhPF R > LT LR LRI Y £ F 7
ERE L AEH Y R SR N k2w AR AT ATRAME
FRMOFYERFELG R0 LRFRFEE SEFLRING - 23 PR

BE O g RFAE

1.2 p WA XTRAEIERIA &

Yok TiE o F G R pAn B ik T 27 4 B (non-specific) 0 @ 2 fAY e S 4L P
TERQE AT RO B TR & IR R AR AT RN A K s
R R FRR S M S ek B 3R] 0 4o “APES (Antibody Presence in Epilepsy before

Surgery)” (11), “APE2 (antibody prevalence in epilepsy and encephalopathy) score” (12)

(T % 1.2-1), “ONES (obvious indications for neural antibody testing in epilepsy or
seizures) score” (T % 1.2-2)(13)&F & o Ra > 11} =40 k5ge s 7| » B ij(e P s
Pr et Th) 0 e ARG A Rk (I JaR A TF (seizure) s 14> I Pk 0 e i
12-1 2 122% %) ¥ 2 iz PG HFE ik 2R BT 24
B A A 1220 » UETRE LS T LA T A AP R FIZATE 2 BRE (T

MEZAP RFSERE A BEAEREEFIR ¥ i IR PO SR

v

AR T A 2 AR EHE LSRR
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Table 1.2-1: APE score (modified from (12))

Criterion
Autonomic dysfunction: H{FHLEEE 2815 ] 4] ||
Brain MRI: 72 & MRS K AIVZ GRS IR 2

Seizure or cognitive changes: —FNHra¢4 7B » 2/ NENEE4E |1
HAEETHEIZZFTIREEL

CSF findings [SAEERS IS PR ML E: BHEE 50mg/dl - Hifn 2
SR 5/d1 > HATMERFE/NA 1000 /dL

Facial dyskinesia [ F8ES) » CHEASB TR SMEERSE(E 2
(Faciobrachial dystonic seizure)’E —fE R ERT 23 F

Malignancy [RA[BE4T R & A @A I K7 i BRs JEC 4t i 2
Psychiatric symptoms & {HEHR 1
Seizure refractory to medical treatment Z£YJ% 4 R 2
Viral prodrome #8E - WEREE ~ S /KSREEIN - (HRBIREEEE 2

TEMRFRIL > FRERREAEA BEST >

Table 1.2-2: ONES score (modified from (12), part 1c)

2B R rE S D
i ERES

Iz tE 2 PO RIREEE FLAIR Sttt - BUERIEAa AR PAH | Various
2]

& 2> Linear radial 8852 » BLEREL4AH IS S HRE M- Anti-GFAP, may
overlap with

anti-NMDAR
AAbhnke
— RN 2 T R RIS - S0P AR RIRMSs | Anti-LGIL
(FEF F5<130 mEg/L)
i N
R A E 1% AN B IR R B e ol A i o 2 A 28 Various
B ks Anti-GAD65
5 F-HILRA 2 BT 2% {F (Faciobrachial dystonic seizures) Anti-LGI1

3
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— R a4 2 B AR BREIE SRR 0 PFE BE2 Anti-LGI1

MEEEE

—ERT a4 2 B AR FAEE S A DI SR 0 [FEIRFOFAT#HEE  Anti-LGIL
M pE

—EN S A4 2 B e R BRSSO D BRI 0 (HEAE AKX | Anti-LGIl,
B CASPR2

#e MRS B D FHEEEER - 0FA anti-GADG6S fHEH  HARR | Anti-GAD6S
PP

UeES
RSB A - i sd 2 S Various

{58 P HERg e 9% )&% (“immune checkpoint inhibitor”)—4£[A » )3 | Various
72 A 7 R
Haifg s eGSR =M H N - #rE £ BCE LA EEE Anti-NMDAR
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1.3 HETAEZ GRG0

A
i

MG gaFmrep b 3T R 2 £ B e WL g B (lipid bi-layer) 7 3%

S

I ERANE PP EEPRTT IR TN EHIEFN G TR e B L
B % #F2 BCT i-(resting membrane potential) o A S5 r G S AR b L PERE B2 A
Wig o 3 & ¢ 84p L& it B F % & A B fx(metabotropic ion channel) » 7 & € i /7]
fnre WOR (2% (@ B £z(ionophoric ion channel) @ gkt A W i B AP € A 2 5 iE
fwFe LD R A R e T e F] S ANER G 2 RS g 2 o 1R
A E oA ET IR EE S A4 e ot Bilads (T > (action potential) o
ANy ZK-E'/",/TT 7 ,’%‘ﬁr} e b s TR B 0 - BA A € A g
BAEI R B R (synapse),fﬁ d A g @ E 4 B (neurotransmitter) £ % 7 {5 4
& bt A % §8 (metabotropic ion channel) % & 2 2 R f§ {5 4 5 T - (post-
synaptic potential, PSP; # & |4+ ¥ %a- % excitatory PSP, EPSP; Fr#|+ % fp_,—,\ inhibitory
PSP, IPSP) » & % % 540 (5= @B & o 3l § e Tind § R e o
AR AU EAT I AR ERT R R el A SaE R g o

kA AT A AR AT KB P A AR T e KA 0 A

Foo BRI AASARE Mol 0 A F EAEG KR g 3 kT
- BEEF ARl £ g T ek £ es T e Flt o - IR G 0 Pk 2 315D

AATARpETEA AR H B - A OB FED > A LR EFER AT &

—

ik R

e

SR AL (15)e ¥ bt - RGP T 2iRep AR A A6 T i
s (l6) A 2 @R aFr L R T 2L G T ESRF s (R4 13-

]

)o

F_

FAL - BRI EF 19 BFEIMTE . AR 21 BTE 1
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THRMBTNIEE 2 T R e Lo RFAARRY B 2R F RS B
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d SRR (T A TR RN EE o @ 2 R ol 1 R 2 P
RS PRET B o T B AR R Y VRS RDR T 0 E RIE B B L e
BE Rk L 0 1B pEFR § 3E 4 1245 4 (polysomnography) & % o I 4 > “,’TT - ESRO
Mok 2 Bt A RAETR 0 ¢ 7 e N
L gdefs g B4 5131 B 5 (17) (18)
MR AR AP WARAFESE T EHCES R LA 0 X2 5
@éoy%a{@ﬁ%?%a»ﬁ%mﬁﬁﬁﬁgﬁﬂﬁ%%ﬁwwﬁ%ﬂ
jeiars L& a(17)% 7 0 (FHRBIHF 2 PRI A SR T power
law exponent p £ % ¢ 3 £ £ o &(18)% ¢ f’riﬁ R AT P TRA A R
AL AR VN
2. FrERERE RI(19)
d 3R R # BREOLBEF G ERLAY 2 0 fRp b2
FRiFAR A dgd MR R B A e R LR K o B L BRI R
FARF LM BIEARFRRT S H R g AT R~
BUFEREL A PR R ES AT AR R AR R R
Ao AR B AR R E
3. 7 R 18 ERI(19)
FRAPFRZLESAN L P2 AR R FSF T A EY RSP A

%*@A%iﬁﬂi%@%%\%@ﬁ%iﬁ%ﬁﬁﬁiﬁﬂﬁﬂﬁﬁﬁﬁ
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F_#-
&
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e
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PHEEEG e g AW B0 HBA R S EEE G S A
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B GgEe Vb E Ak N B g R e MR
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Table 1.3-1: Rfgis T =2 27k $ep A 7 =2 2 8Q21)

% § 1+ (EPSP) #4112 (IPSP)
3k 7 ey =
- + + -
- A Al
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L@ A ST AT REEH I SHE Y » - %‘F"”ﬁ BETIE F
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3. B RgInE 5 M4k g B2 (functional MRI, fMRI) ' #2(22):
ok Fl A R IRG RF RELI AR R BT wiE s TR R R T

% &k % sampling frequency £ 3~ B~ jmik B UG N ER > A7 B R4y

Bt oty 27U MRI R 4p F » 2 B 347 R ¥ 1 p 7€ H(FOV, Ax ¥
%) wE F i fMRI % &80 & 7 § 42 & 0 susceptibility difference »
JEFQIRE B 0 i % 1t (neurovascular coupling) © — B F|IUELE L B B i
By R L > TR R R T Lo

4. 25 E2 Bl(magnetoencephalography, MEG) s+t ##2(22):
d 2t ik engp S gon o BF B nT e € A M) g H

- o BRI SRR o S TR LS S

%{
=
%{
=
F)
I
&
F_‘-
$
)~
(=
*\j‘]‘;

SRAREE A MBI BB AT
STILR R B RPN o KA o F) L NEAR E Mol 0 — 459 % % & femtotesla

i ST G B 2LY ACHRIE A R BT kah® i > Ly
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B B8 % >t faraday cage ¥ o T i * AZHR B R o TRkt R FoApE RN
ﬁagﬁﬂ:}’%,&‘j WM kT PR end xl%ﬁ&ﬁgé;g S ¥ = 3o up

ﬁﬁil%mﬁgﬁ$@%a%’%ujngﬂé&%%@ﬁ$Wio

14 e+ p WPME L2 &¢ > BT P o

Poa 2 iuE Ry sk 3 I3 NMDAR (N-methyl-D-aspartate
receptor)®& & #7 ¥+ J& ¢7 extreme delta-brush (EDB) » H 3 & £ 3L % fp4c & 1-3 Hz 4L
Pl 2. delta t ;& (rhythmic delta activities) + i ;& (beta (20-30 Hz) #g £ A]) (23)
(24) 2 %) 2 * it 2 AT Bl4e™ W) L4-1 (BE 450 (23)) 0 7 2 e M ond Bk (7 %

)PP AR Al (2 R R HARTS PR £ KRG B Rk 2 AR

E-‘ﬂ},

AR 2 T H(25) o

FI o IR R R TAAT A SREE G B AR LU T B ATRA DTS IS
Rt 23 ERGE LM extreme delta-brush 2 % R - #F F A 452 & S
PARGER c AW EF ARV RT R B(E 2 E A7~ ] R, A 45 ~ Hjorth
parameters) > 14 %2 symbolic Fourier transform (SFA)-based 2. # #cdfB~ = 3\ (feature
extraction) » e F S BE Y /F 5 2 > RHBIIF 2 LTV ¥ AR TR RN

HIV T .

F_‘-
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Chapter 2 Materials and Methods

21 BRXARZRAEAP

A w Tk < FRRARMRE L8 F FF R F R 2017 3
2022 & g 7 & P FIRTH 2 RUR A (F(seizure) > & F 3 P R FlER & 1 (unexplained
aggravation of existing epilepsy) * R ¥ it 5 p BILME G L A AL (7 mik 4 2
RS N T SNCE R R S 2 e
Bl - Kk 46 p koo B E O PR R BRIT PRk Mok B B0 T T B
PLEREGTI A S RARTIBRAETAT PR RF ARFERNEG
(hyperventilation, HV) 2% & & ;p| 3% (intermittent photic stimulation, IPS) e % o pt B %
R EIT - A2 4 Ak (resting state) Pk 0 (2 AT LRRR S DR PR
A S che2 T Mk 398 3 Nihon Kohden 2 # # & 2. EEG-1200 % se#&i 4% -
i FEARE 10-20 TR E & 45(26) ©

AR FL e % 2>t &3 2 ¢ (Uni Pharma Co., Ltd)i& 7 » p %8 & 5 "6 L il i
B ¢ z NMDAR (N-methyl-D-aspartate receptor) ~ CASPR2 (Contactin-associated
protein-like 2) ~ LGI1 (Leucine-Rich Glioma-Inactivated Protein 1) ~ AMPARI1/2 (a-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor) ~ GABA/BR (y-
Aminobutyric acid receptor)= 38 P > & B "R G LR ¢ 7 Hu~Ri~ Yo~ Tr~
Ma2 ~ amphiphysin ~ CV2 ~ Recoverin ~ SOX1 ~ Titin ~ Zic4 ~ GAD-65 - = #5 p o

Ml RN FEC GERE A S FRRGRY chELR f 2k

% > X%5.% 202006184RINB -
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22 g edRt

d LR F A ¥ FIR A B R chF s AT Y R T
e NI E g HESEIRE .
2.2.1 Automagic automatic pipeline

B - v F A RGO R AT A % 5 0 32 Andreas [ 5
Automagic (27) $i#8 > B F & BB ¥ L 0 JZ 08 EEGLab (28)¢ cfiwh g
packages > ¢ z PREP pipeline (29) ~ ICLabel (30) > 14 2 e ] ¥ jF &+ & ©

PREP pipeline 4= # a2 > ¢ 3 4 "f 60Hz % %+ #£ (line noise removal >
(29)4 i& {7 sliding window (FEX % & 5 4 4/ > * B window £ — F/48) > 2 {$ £ >M4f

¥ HE & $F T 60Hz 2 2 H 2k 2 sinusoid component > 2 & 2 f;i A ek 1S 2

47 3% B4 B 2.2-1 #757 ) ~ 3% re-referencing (i AZP § A3 E 2R TS, 2

(603 MELFE TI)WELT LT ",%( ¢ 7 Bty * & % ] (deviation criterion)

’

ok TR IMELA &5 20 F R % (correlation criterion and predictability criterion » # jﬂz 1h
AR - LR MIL o EF A A e THRASLERZ T - LT AP IR
4 ) ~ 231 (noisiness criterion)z_ #% £ > 3 & 41— i z-score » I * P X% E_F P T

VTR AR T PR T R -

A

20

T T
= High pass only
Line noise removed H

Spectral power

| L . . L
50 100 150 200 250 300
Frequency (Hz)

Figure 2.2-1: PREP ;'/,é“,% 7w {8 2 A 3 (29)
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ICLabel (30)R] &#_£ i * fb > = & & $7(31) (independent Component Analysis,
[CA)#-"a 4 47 % = # B b = = & (independent component) » £ & * F L 21 54+ e F
BB ¥ AR RIETRR R 6 P s e g s oS R R AR H e 2 RSB o
%4 perg o 4 ICLabel 2 3 AT AR 5 ALE S L F 5 b RIRmenib s
e hiEd P B VLG ok R o

Bz e 4T H 7 AR (T - f8 matrix factorization algorithm » R IZ4eT @B
EMEL S EL X (m-by-n matrix, m B 7 & £ 434 ~ n B PF R 2L(time points)) » &_
d bk B A KR(B A B S (keby-n) s e L A A A

Xmeny = Aoty Sgeemy * & £ = WX, W = AL

d 309 4R E I R & 4 0 resampling o AT S B X RB B €0 R
MBI 2 s A e AT #14 7 (gaussian distribution) 0 F] gt ¥ 23K %‘L%ﬁﬁ
BUBEATOFREENETBFREELAL AL S FLICAFEZH
# 2. - FastICA ) Zde™ (31)

. 2#-RisEd X & 7o 324 i (whitening)
A RAELE 2 E - 7(row)inT ¥ B F AR X0
b. %t X’#a# B & 4 f%(singular value decomposition) » X' = UDVT
c. ¥EZ=DWIX'>»EhzEd 7 hE R ﬁrE“ﬁ‘_fr%g % 2 identity
matrix > 3 % 2. ZZT =1 o

2. B ZeFETE T 2ZBFS=WZ i8S g2b3 #1134 (non-gaussianity)

fa
="

o i F (R F o W AeH 4o 8 5 A F i kurtosis ¥ o P e 0 FastICA R
A_iE 25 negentropy *if F| - P % o Negentropy 82 .k p >+ 3 #70 #
S (entropy) e %+ “F1 AL BHEE ATA B G g e AR R
13
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TR ETA T od AN S b 38 G - BRES % #icy 9P negentropy
J €73 T FEEE= ﬁﬁ»%ﬁﬁ TR AL F):

J < (E[G] — E[G()])?
FastiICA ¥ &G (x) = logcos(x) > & @& * 2 a2 F ] = 0chrff o #710 § & *
Flg(x) =tanh (x) 12 %2 g'(x) =1 —tanh?(x) - BRAPLIE % - B
XA s ¥R T AW R ehia#ic (column vector) wo 7F s = wlX o FRE- T
WA o A HEE Rl R PR BT 2w T U D)) = 0efE 0 4 Tf‘wﬁ'\
R4 T cfesg E(31) ¢

w=w— ]—,’, ~ E[XG'WTX)] - E[G"(WTX)]w

M E R R €=ty W B (column)ehdic B 0 i 45 (pseudocode)de T o
B Bl % =x #c 3 max iter o
a. Forpinltok

1. Let new w = random column vector of length m

w

" miP
iii.  For count in 1 to max_iter
1. w= %(Zg(WTZ)T —g'WTZ)1yw) , where 1y is a
column vector full of 1 of length N.

2. w=w— Zfz_ll(wTWj)wj, where w; = W[j,:]"

w

il
iv. Wip,:]=wT
b. Return with W and S = WX.
B 1 6 PR 4R 6 UL 7 B 4 R B A LA

14
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Prid k2 F 3o i bt e B2 € 1 TiE 0.1 Hz 338 Jpit o
% average re-referencing (4 %73 R IBMELZL T30 G 4 T4k > 3L T - K)o
PEFT-MEAPEFTY -
2.2.2  Minimalistic pre-processing
BB RE ARG L AT i TS AR TR A S R
AF Bk~ F D BT EJL AR (T L automagic SRR o F R B A e B ",f ’
VYR B RIZREHT - S ES Y IRR A PR o & FdeT
. T FH#H ",% (60 Hz line noise removal)
*inAE¥? F @ * EEGLAB ¥ & £ # ¢ cleanLine & #c2 "$ peF g o
2. % i g B (0.1 Hz high pass filtering)
G pT A EL o Y 0.1 Hz 3 gik B2 R
RERMB TG ST AR %K * EEGLAB ¢ chipop_eegfiltnew & #c>
i# * FIR Jgi& B > £ ] phase change i& {7 gt °
3. T 1%+ 7 #&(Average referencing )

ﬁxxéﬁ%]ﬂ!\’if’ PR DR TS ML S TR LA T - R

AP E T E R "$ % 23 if (noisy channel) > » 7 € # "$ FIEL A% "$ SR N A
SR BT RS L o T b F S LT P b P Ak RS 6 3R
WEFY 22 £ F A vy SERIF i 4 0 142 37 % real time processing £

G

15
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23 R FHEEE 2

g TRk ? it 2l BRIE (A A BRFILE - BERE TE) K
PIFFRF AL 3 L T A4 #2148 ¥ (sampling frequency) 2 200Hz » i B B~¢ BT
AL TR AR R S (- P Rt TREL ) (21,6 10%))
"f i H S BE Y o 52 4F chfic 3] (pre-trained model) 0 % i B E 4 & Jf L
it {7 3 fcfp P~ (feature extraction) » 4 it W L 8B F 4L - AF %KY o0 3w
g 3% % MATLAB #t EEGLAB %7 i (7 > & A2 S FHEF Y »
#7 P £_% python & {7 o
2.3.1 B ARG F R 2

B 2o ST ¥ E B ?ﬂf@;m@‘ﬁ - & > @# % python ¥ 2
numpy (32) ~ scipy (33) ~ /2 % pywt (34)d ;N B K F M o A F B S (35) e kB
B Sl

1. Hjorth parameters (36)

Hjorth 3% 1= B A 477 B e 34 B AP - B RaOAFTHELZY() -
a. Activity = Var(y(t))

CEJA THRAF R R e

Var(220)
b. Hjorth Mobility =[S

s #cF € 27 power spectral standard deviation § B > Tr4F 4R * B
B HCF IR B A kR o

Moblllty(dy(t))

C. HjOI’th COmpleXity = Mobility(y(¢))

16
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4% SUHLA_R 2 5% 4 (pure sine wave) 0 i& B #HcF € A1 FAELE

I%

A RARR o BT R g A AR
Ft o - BRARE B = BT o
2. DFT spectrum
I T T R LR Ty Eg@tzw{ }vnezxe[-nn]
(e = cos(x) +1i -sin(x))¥ 225 % i % & & (orthonormal basis) » #7114 iz &, 3t
SO te[-mm] ¥ NP F b AR oy M E % 2 F Tk de(Fourier
series coefficients) :

\/_ \/_f f(e ™dt

fopt kg < R EES sin & cos £ AR { H i B gl o er e gk 1S

F(n) = {f(6), =

S EERT IR T TR A R A | it 2 E R
F R E L F R LA AT BT A o

BARERY M P E - BRABRAT FRERN it 2 EE o
RE-HE R > I % P~4p i=(phase component) - K MELE £k 5 DFT 2. {8

index » BXMEE B 2 n

n-1 mk
Pre-Feature, = abs z f(m)exp (—Zm' T)
m=0

PGS B N AP %Y @ % numpy ¥ G FFT» v ¥ % £ 8 &3+
B RR e B L B n B A b 45 hpre-features ¢ H4iE 11 B & B~
Bol BT R L %P e ¥ 5,2550,75,95 B A s 1 E 380 4T
MP MR- R LR SN g BAP w e delta-beta 2 fF £

M A9 57 77 E e » deltaband (2.5 2 0~4 Hz) # betaband (7_5&
17

doi:10.6342/NTU202502042



% 13 ~ 30 Hz)4p ¥ & - pre-feature #T f# 4 & (7F ¥ area under amplitude
spectrumcurve) o 14 B E 5 - = B P EREET Mol B 4R
BT = A 47 0 24 #A3E 7 o windowing > ¢ 22 BoHRAE & 5 200 Hz o 4 3 2
17 & % 0.0033 Hz per sample -

3. Wavelet analysis

rF %P &% 7P F | 4 (Daubechies wavelet)® &0 db-4 K& {7/ A A 47 o

W E S Ay EE(37) 0 el 2.3-1 0 R4l ) A A TS N 4o T
CWT(z,s) = jf( )zp dt
7] rov ()

ok g AR 0§ PPV ZETIL R scale so A F s ¢ R ¢ H UK

ADEAT L AR AR R AR F A0 R A3 RN F R ¥ i scales

2k

'fz’f LR RN T AR (PET U ERRAE A EER
SR SR T B RIE - L) en® i & Wl gk B £ *F % #k (downsampling)
B B AR e ek U 2 A > B E - B level o $Y MU A W
R R e - ) HCL AT level dp s Rt ensidic e AR R R
* 7 B levels » £ #3327 B levels 9t 8 i d— 42 o 7 2500 B B ig e
SElE LB A A P R PR A B E BT R
HREH ¥ 525507595 BE A B~ 1R 33T 2IME L — B 1Y
P E MR T AR E R~ A 15 0 T 3R ¢ S windowing

Flb o AR N - BTEE AL 27T BREMR(- e RE €A

42127 =567 B EEFHEEVIEE -

18
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db4 Wavelet
T T

15
o~
\u
1+ [t
' i
! 4
05 Lo
— ||l 4
| |
0 —_ — ! | o ——
/ y
05~ |
-1 1
0 1 2 3 4 5 6 7

Figure 2.3-1: Daubechies wavelet db-4 (37)
2.3.2 WEASEL-MUSE
WEASEL-MUSE (38) #_ “Word ExtrAction for time SEries cLassification plus
Multivariate Unsupervised Symbols and dErivative” m‘{ﬁ”ﬁ% » H 44 BRERE A
(multiple time series » Gl4ePgik » — Pk F F BT RFTA)SEIL S 2 o RILF
v #_j&_symbolic Fourier approximation (SFA) (39)#7i# #=# 11 % » SFA ehp et #-
PERF B 7)1 e FREFSF A7 0
I B - BpEEEAI{y(ONy  #Y RIS = FHE > ¥ L@ RA A
£ R - fhenth 2 F Gac{Y (k) loy ¥ BB 30 B m 0 1S £ F 2n i ko
2. HEWE p BREREAFIFUGER AT fr"u"’" MR 2np AT o FET R
ijﬁ’v" " A multiple coefficient binning (MCB) © 14 equi-depth binning % &1 >
BLZE2np B #cF &2n {7 (column)? R B - TECE BEFRE O A
f§ (breakpoint) » i.%? YA enad etk B3 A7 0 (discretization) = ¥ F
(SFAword) » 4T B 232 iz B (T2 At v e d > 3 ¥ UBw >
¥ % ¥t binning * 7 2o d idt RECiAR ﬁ:}fgi&? R FRT e R B

4r§] 2.3-3 0 v B 245 R PP & € < T| binning 2 5 o

19
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time series T Fourier transform

c \/\
Lo
aé j /\/\ basis functions
- — -2 9
E_ 4 v
a 5 B ) Fourier-
a 189 473 -489 056 Lo
| McB
4 v

ST ik - F

5t E
S 4+ IF F E
g g D £ D
. 1T ic c c discretisation
S 0 D A A C €.
8 D A A C < fl) I = < intervals

a1t B
g 2 B B
o SFA word i A

5 A A A

v L 1 1 1 1

Figure 2.3-2: Symbolic Fourier Approximation (SFA) (39)

Time Series DFT SFA
2.0 2.0 2.0
1.5 1.5 15
1.0 1.0 1.0
[
2 05 0.5 05
(]
> 0.0 0.0 0.0
-0.5 -0.5 -0.5
o n e DABBB
0 50 100 0 50 100 0 50 100
Time Time Time

Figure 2.3-3: SFA # # #1372 § 5(38)

WEASEL-MUSE B'| & %t SFA ezt ¥ > &% 5 B B 7] > %GR 5 5 Fu*?f—' f
EesChlico Ll FREE) v g8 - R TNAR (!B TR B
R)TA A4 kE - BB AN RELH SFAHG AR o v § BT R
windowing> £ % windowed data # % ¥t SFA> @ 3 & ¥ F & (5 £ A& 2 histogram’

4ol 2340 piFH R g B HF - Bk 2 A4 - B bag-of-pattern histogram °

20
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Sample

RLINIONILRUT

o 200 400 600 800 1000

(1) Windowing

0 200 400 600 800 1000

(2) Discretization
becc ccc bch bch bbb bab  cac ddd bdb  aab bac  ccc  bdb
bce ccc  beb beb bbb bab cac ddc  bdc bab bac ccc  bdb
bcc  bec bcb ccc abb cac cab cdc  bdc bab  bac ccc  bdb
bcc  bcb bcb  ccc abb cac  cab cdb  bdc bab  bac ccc  bdb
bcc  bcb bch  ccc abb cac cab bda bdc bab  cac ccc  bdb
bcc  beb bech  ccc abb  cac cac bda bdc  bab cac cce bdb
bcc  becb  bcb cce abb  cac dbc  bda adb bab cac  ccc bdb
bcc  bcb  bch ccc  abb cac dbd bda ada bac cac  ccc bdb

0 200 400 600 800 ""1000
140 (3) Bag-of-Patterns model
120
© 100
5 80
60
° % li [ I
28 . HN. I- -I- -l .I. .I [FRREEE RENE— |

B fs A 4 chi - i & 2 bag-of-pattern histogram» #3541 & 23 B & (o * #o

Wi

4)*t ernbin size ¥ word size ¥ window_sizes > £¢ if beta #f £ jF’K’ﬁ |z 4F(window &
* REALE R 0.1,03,05 07,09 &> & B EELEB- < 0 L3 £ (window

overlap) ; & * ¥ 22 wordsize 5 2000 > ¥t /& 1000 & & = ¥ & # > A -] window

NN
o

Prd< ¥ rym F T 33 Hzibinsize B % B3R 16) E AHPFF Y SE 3L R

o
L

24 BEFYV %

P s PR R A A T R AAERIE SRR Y R A (binary

classification supervised machine learning problem) » 5 48 7§ 4c (40)

21
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2.4.1 Binary classification supervised machine learning problem

Bk P TR B (training dataset) £ {(X;, y)He, » B9 3 NEFH X5 5 i 6

2’

RAEHo ay s % iBHRAanz AFFRPR €L} AEHEAEE A
PR G B R Fy = f) B BEF VUL PANE Y B e ghl
FmiTf 0 RF S HEAT 0 AERIA K ATA KRl o Tt > FS B PR
FAv L YA D ARTEE R L PR L L G Rt A
Y2 FEE g A R AT L A e A R 02 B F & 2ATE AT Y 2
T8 > PP B E 44 E oy B DA Eranikdg o

- 3 B A E R Bt a4 N R Mo SRRk SLeniE o ek
4+ X e 238 o 20k ¢ 7 accuracy, balanced accuracy, sensitivity (Recall),
specificity, positive predicted value (PPV; precision), negative predicted value (NPV) %
o407 A 241 ok TG RAF(R TS blE- 2 4p g ) ,ILz e H

Y ehaccuracy 7] 5 #0335 JF majority class i‘%‘u? " £ ¥ % accuracy 0 iPFE & &

2

recall~1+precision—1

* balanced accuracy > £ Z_F1 score= 1F LSRR o 1Y
AUC score 3 & #7) % "31%] DAERle S B Y o F - B TR G class
probability » # P iZEEE F 5 F 1 AT 1238 = 3% 8L a0 sensitivity and specificity »

% h4dh i sensitivity 0§ #h 5 1-specificity (& T FPR)1 ROC (receiver operating

characteristic) @] + - i}g? MEEfed MR ERT G 0 40T B 24-1 -

Table 2.4-1: % 2 = ~ 3Rl chip %

SR el TERIE

22
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True positive

False negative

Sensitivity

(Recall, Sen, TPR)

2] f% ‘T,}
(TP) (FN) Ik
“TP+FN
False positive True negative Specificity (Spe)
BAM
. (FP) (TN) = N
" TN +FP
Accuracy (z::4-N) | PPV (Precision) NPV Balanced accuracy
TP+TN TP TN Sen + Spe
- N ~ TP +FP " TN +FN 2
Receiver operating characteristic example
1.0 1 ’r'
0.8 /z’ ’
;: 0.6 /'/
g 0.4 ,r”,
0.2 - ,’//
’//’, ROC curve (area = 0.79)
Y 02 0.4 06 08 10

False Positive Rate

Figure 2.4-1: ROC Bl 6] » B~p (41)

AAPELVRIR AL G L R IEY SO A R L

- e

4] 4 T (model-specific)sg P «rdf £ 3 #ic(loss function) o 14 F B et id T 65

7w ﬁi’fi"}]@?] N prr ¥ %2 B A R (54 mean squared error, MSE) » 1/ %

T
R
i

i

|

Bz FABAR ARG > E Y 2 E D A & P (regularization) 2z P

o (S F I FELT - B -

23
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2.4.2 Learning and Regularization

#2495 Vapnik-Chervonenkis e032.% > s # ¥ 12 & * VCdimension ek & £ 1% %
BW A s RH g R o - R ¥ IR = #7394 #ic(effective parameters)
B 5 oS BAARAE e > S BAR S 0 Pt EARS o

B2 EE Y 3] A VC dimension= d,, A 2 Y 45 F]- B Silieg k
TEZAER S NIRRT HE » IR Sdg B RTORE B8RS E(g) 0 &

ERERAAF P S E(g) HERe>00 F 2T B % (VC bound; no

F_k

#g

free lunch theorem)(40) :

P(IEin(9) — Eou(g)] > €) < 4(2N)duce 5
rF NS AT Sificg & 2 LT (generalize) TS F (TR F A B AT E L R 4
FH 2 FAPEE A F) hd, bR G XD N B X i AR5 F L R erel
FIL oz 2 o drkdyed T NARS » BIE D kg A RFTRE P enk R

EFe R DGR GARR o Flt o BEF Y pA KA agrg e

(o

R o NS EP - BRR G ek RTFAE S N A5 > FREE G
0 e g 4 o f@% EAEdy o BFIPEEY 0T TP ﬁﬁifé‘ * R
(regularization) 2 jg* > 7 & %#c(effective parameters)sri#ic® > K Flig @ p o

¥ Lent pliv 2 38 & 2 L1(LASSO)and L2 (weight decay) » & -3 e %8 5 —

i column vector w > w0 F £ df & dSific? Hfealw| o 18 F B sepwlw > 29 g

=
"
—l"’

&2 B R ¥ A endg S dic(hyperparameter) » 33 £ B i sk 2 5833 0 » H_ B 0¥
P e Lagrange multiplier o %15 L1 3 7 ¥ ficA 2 e T3 B 05 Rl o e 2.7 5

= L%J’ ’ﬁ constant slope #7141 % % A %r L f%(sparse solution) » @ L2 P & TR 1

-ﬁ&:‘; 7,5 % gJ_.E'.; I/E‘ T‘?\ﬁ&] g}:ﬁ_i %'-ll:rl ﬁﬂ‘ °

24
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2.4.3 Cross validation and nested cross validation

che S G FEh R R 5 K e IRER TR B b 385 # (external
validation) » & * #-3] AR E T H R s FI Eva(g) > FETHUS Bl 1 Do e
grEFE ?‘mz\xﬁ/\j} Z € 7 (40) :
Epu(9) < Eva(g) + 0(—
Vi
AR s LG 0k 3RS 5 (external validation) ] & S BPE 0 BIK G
M BEHE o A5 (L, e BIEtE R S Kb Imsm TR B D, 1

ﬂ&%nﬁ“wm’&ﬁfﬁ242’mﬁTL B 37 (40) -

_ _ In (M)
Eout(gm*) < Eval(gm*) + 0( K )

%1 %2 T '%ﬂff

ot

4 91 92 " Gum

mat{

\El E2 e Eﬂg

'
pick the best

(%m,* ;. Em*)

Figure 2.4-2: i¢ * b 3R P4 E 03] & S 4c(Ge p (40))

W

Flpto i TR KRB AN SR SERE G TRk R o Far1 o
i#’/ﬂ’ﬁ RS FRET - BERIRT - BAE B RS EL - BE ki
Aldg 4 3F% 0 A WA € 1 * L R BRE(cross validation) o B AL R R AR H KA

SR ER A H B2 AR 2IARIRTAE > F - B R TS

REPEEHRFFTHE - 00> £ £ 518 £ KRBT 4 =5 htestdata B % 2

Sy

25
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7 ¥ g ff 2 ¥ £ % 48 (data leakage) 0 40T B 2.4-3 -

All Data

Training data

‘ Test data

Fold1 || Fold2 || Fold3 | Fold4 || Fold5 |

spiit1 | Fold1 || Fold2 | Fold3 | Fold4  Fold5 |

spit2 | Fold1 || Fold2 | Fold3  Fold4 | Folds |

spiit3 | Fold 1 ‘ Fold 2 ‘ Fold3 | Fold 4 \ Fold 5 \

spiit4 | Fold1 || Fold2 || Fold3 || Fold4  Fold5 |

> Finding Parameters

Spit5 | Fold1 | Fold2 || Fold3 || Fold4 | Folds

Final evaluation { Test data

Figure 2.4-3 & 33 % %7 (42)

Flo AR SOt Al 2 (46) P LR F I 7 F 5 jedox § R ERA 2L S
SR i £ B EEY b g 02 (hold-out test data) kB (TS B E Y a3t A 45 (7
% hold-out test data eh B #c € = ) > @ F i KBk 2 R % % (nested cross
validation) » 12 bk e R HAEF E A O r S > T AP K DR HRE M
GridsearchCV 45 & & & 2 47 %8 » & % 42 ¥ 4. data leakage » e % it ST} 7
BT B 7 HEEVRT A 4 BB SRR R R A
F Pl e doT ] 2.4-4 o

Tl R AREE Y R BRI AT AL

.~\\

SMEME > T 7 &
S iE @ % e upsampling > 2 0 Bl4o#E-T A &ETGRA T L R E - L& BEJET @K
PRAGERMT B otk BMWp ¢ 0L B (intrapersonal variation) PP &g vb | ek %

26
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%gz%ggﬁgﬁﬁm%%g,?ﬁﬁﬁﬁ%ﬁﬁgﬂ-%ﬁ%%%%ﬁ%g

HuZBWEC ENADEER @8 BB FI A %A Y gByt > 2 o

Original set

4

Training folds Test fold

[ et |
.

—_—

— Outer loop

:- Train with optimal
- : parameters
[ 1 -
]

Training fold Validation fold
Inner loop

Figure 2.4-4: 5} % * B % (nested cross validation) (43)

AP Y o Bl R F%E (outer loop)tr T > 0 @ P Blenv R B FE (inner
loop)*» = i (F 2L ¢ G v LB Y e () ¢h Bl PR ORI FERIA 4 o P BlPE
Flic o @ PHE SR ATR * 2 41k 5 balanced accuracy o ¥ b > A EE Y 2 %
EL € L 5 standard scaler 2 T i’—:’“,f MHERRL S NELF R RE DL ERY

WEE P FE o

25 BEEVE
dob - Wt PR AR AT P AR 4 AL DR pro-

trained model > #7170 & F B ¢ I L F K * IR A PF 2 0 deep neural network (DNN):
27
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H-A 2" 00 4 InceptionTime (44)> @ &_i¢ * @ AL BE Y 2 5% & 4o F (40) (41):
2.5.1 L2-regularized logistic regression (LR)

Logistic regression X § #_F #& %+ i-2] (generalized linear model)h— R4 o &

\

R S dke 5w - £ TG

I

x (e EF A TELITL S - BE)

E

Bl stfﬂlﬁia?] I axehs e £ %% 2+ — B sigmoid function 6 :

1
T\ — _
9(W X) = W,where 9(5) = 1te—s
s B0 ehdE 4 S B H_cross-entropy loss with L2 regularization > B3k 3" R T AL
Ay (Bt 475 X354~ ¥l 1 75 5 - BiE -y, €{0,1)) 2RI fdk

L Co Al

Loss = % | |W||2 - z yilog(0wTX)) + (1 — y)log (1 — 0(wTX)))

PHREA 2 45 4 S fics cross entropy 20 &t F] &3t logistic regression K % i
sigmoid :L,gtmﬁi%] IRy E S A s 55N 4 F % 5 (binomial probability)

P AR AZEI AP o A R 5 S Bie(likelihood function) 7 ¢

N
- H owTX)¥ (1 - awTx))" P
i=1

R & A Bk BB JL R M0 Sl R <9 o log HLH (LA S ke
Bolog 53 §HPS % o d B T4 Slh ZARBARE 0 I | B %

B

A4

CE = —log(L) = - Z yilog(6(wXy)) + (1 — y)log (1 — 6w X))

i=1

28
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2.5.2 Random forest (RF)

ST % A4 Breiman (45)#7#% 1) 0 &4 A(decision tree)4r ! bagging
with uniform blending @ & 2 o T AjEE S 4 L IRF L C B F & B HE N
Bhoiddh o — dm 2 » Ba- BHEA xo A% ERSdb()E(L..,C) [J* £
indicatorfunction(—?ﬁ% >G5 Z E'HL?] Al K2 E‘Hﬁl 10) Go(x)™ % & ¢ B A Las

b E'Jfgﬁ;}ﬁév’ﬂﬂiﬁl PRS0 E : S P i =N N

c

GG = Y [h() = 16 ()

c=1

H 7o CART A-{AFEAR § B iuenid BE Y 2 L2 T M E{(X, v
H %8 C=2 b P|E_decision stump (shifted scaled Heavside function) » @ & i 4 % &
B AR F e Gy A% — (impurity 4% )4%4F > A & impurity 2 Gini

N _ 2
index =1— Y%, (W) » 21 MR s #2485 4o (pseudocode) ¢

e Function CART (D = {(X;, v)}¥,):
o Ifnot branchable:
» Return constant value = majority y; label in D
o Else:

* Find b(x) = argrillq(ir)l(zgzllD(h, ¢)| - Impurity(D(h, c))), where
X

D(h,c) = {(Xn, yu) | R(Xn) = ¢, (X, y) € D}.
* Split D into 2 parts:
{Dc}=1, where D = {(Xy, ) | b(X) = ¢, (X, ¥n) € D}
= Forcinlto?2:
e Build sub-tree with recurring call: G, = CART(D.)

= Return Y2_,[b(x) = c]G.(x)
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4% 12+ “branchable”nE & L F thhm ZiF L T A H > &t

(generalize) » #7145 7% _F € i@ * 1L o ¥ i branchable i 2 @ 7~ L & 5 AL o
TS A AR R AR A R T AL B o U B 12 2w en 58 E AT Rk (resampling
with replacement)’ % & 2 % (T 12 B 235 5)E 5 7 TR B (¥ bagging)

BB FOR R R - A APy, Po, -, P 0 B IS TRRIPFRIE TG Okt - -

3

R4 £ b {5 77 % % (£ I uniform blending) - P\ﬁqy%]:".ﬁ%},gtg :

1 B
90 == ¢ ()

W HIRORILEFFFS G g AL FEEBEREL > - AL ERET
£ Eﬁ? target ‘i’é{ﬁs\ B EEkF) Aw E’l%:_ RP4E ¢ - ¢ * mean squared error ¥ 3 4f 4
S BRATHE T SHE o TN VRTRED = {Xu Yyt v =
f(X)+e el X, E[e] =0, Var[e] = 0% @ $2 & (8 § 7l ehddic 5 g 1395 bias-
variance decomposition (40) (46) :

Eout = EpExy[(y — g(X))?] = 0® + Ex[ Ep[(g — Ep[g])?] + (f — Ep[g])? ]

Y 5o E(¢ BIE L T LB (FVarp[g]) & 5 variance » fr A =t £ 1] ehddic
B L Sg Flahdfic2 B enpEAE G B 0 ¥ = 38 ©& 5 biaso frE F SolifE T 55 )
dled Moo ek BRE A RT 0E - B R % B BVarp[d] = og 0 @

T RA A 2B ey % B4V # j,Covpld, ] =p 0 7R

%i ¢ (x)

Varp[g] = Varp

&
=52 (Z Varp[¢;] + Z Covpldi, ¢;])

i#j
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1 1-p
= E(Baf, + B(B — 1)0£p) = aqzb(p +—B )

Bous = 0%+ Eyl0§(p +72) + (f ~ Eplg]?)

©(47)% > Louppe ;&P 11+ Fip B30 AT AL R hR A HOL LR o A 2
p =0 #FriNE S Atk e resampling FF 4o % AXSE S o pfi-*&%ii? » N F Ao A B
50 BRE W EESI S Eout%&g‘f F o WA et R A fbg EBARE IR R o
2.5.3 Support vector machine (SVM)

A B s L 3w £ 18 (hard-margin linear SVM) e & B 4 F LM+ & 4F
(FaTe 7B - AFREZ 2 )P 2 L ELEH- By A LTS
(4v B i@ %o perceptron learning algorithm) > @ 3£ # - B & 7 it @R F AL Ll T
B0l NATHGE B U] o RECAAF R TR > FRHCAF S AT g%k (40)

#3220 RS AR BRARTHE S (X y)Nl, i € {(-11) AT

=K

SFX) =wTX +b o LA B BT B K 2 54T R (40) (46) ¢
L~ #9575 00 yfrw’ X + b& 5L o 287 1 1 (w,b): scale %

TR M- mE LR (w b)) TR - B E Sk (kw, kb)s

EREEREATUFBEBEET N IVIE{L.LN}, y(WX; +b) =1 -
2 *li_lﬂl‘t,é = PO S N ey X X3 ° _ . |WTXi+b|
P BEE T o AT T @ ARR AR D (w,b) = arg max min —_"

Fli(w,b)RMEAN IS FPELAR > TR XFIR scale 2 £ & > ATIUT

7R A - B e B min|w X + b =10 SRR L T g R A w =
L

1 .
argmax— = argminw’w
w wl w

3. FafEut &—'Fl!zﬂs;«,,*j_- ,i:ﬁ;b,g\
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m‘}anW s.t. Vie {1..N}Ly;(wiX; +b) > 1
¥ )¢ *  quadratic programming 97 3Nk RKfF o4 T OUF R R F E &
yiwT'X; +b) = 1enF AL 8o € F 8 (w,b) > #7141 T AL 1% support vector »
ok TR EMET A BRI RE G BITREOE R (Gl4e F] L R
Bam e TR e R R ZREER) Few oL LR L
v £ ¥ (soft-margin linear SVM) » iz ¥ _F o A [ F arec 29k > U 8% - BiF it
5o Dy WX 4 b) 21— &g &2 00 4ot — %o 4ok TABF LER L
(4o Bl 2.5-1 enBE 7)) AR (e 8) 0 RIE =00 F 2.8, > 0 B a3 L
FERER BT R FV A AHFFE TR ETITR P B BRSLEKCT
A F i £ (40) (46)

N
minww + CZEi s.t.Vie{1..N}, y(wiX;+b)=1—-¢&; & =0
w
i=1

b Boix it B REF 2 8 % quadratic programming X fZ o » ¥ 2 i@ * Lagrange

multiplier #-F° 42 #& T dual space k % -
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1.5

o |
- S 8
J(@)
7 — L
° f(z) =0 5 3 /118
10
‘  _
12
o |
flz) = -1
3- 6
1
Q’_
T T T T T IA
-0.5 0.0 0.5 1.0 15 2.0

Figure 2.5-1: Soft-margin SVM & &|(P~ f (46) » Bl ® B 5 &% 2 w)

4od FORLZEMM T A sgen ,]bu JEE * % S fie(Kernel function) » & 3% 4 342
BHIFAZFP A FLERIAZIAP THRIAPT A - HWEIL S BT
AL BEX, X o B K 5 12T E i (Mercer theorem) » ] % &0 8™ 1UAR 17 E fA 5
g fi (K (X, X;) = d(XD (X)) (40) (46) *

L $HE - K(Xu X)) = KX, X))

2. X 1 % (positive semidefinite) : % Z_ix &, {c;}e > F 12 —1CiGiK (X, ]) >0

BRI f]ﬁ? Mg R REAE B PN T v R EL L2
regularized linear model » #714 & * representor theorem ¥ dual form ﬁ!‘u? MR RS
¥ kernel trick » B iE 1 02T 250 O CUE i# 7| kernel SVM (40) (46) :

mlnzz a; a]yly]K(Xl,X) Z a;

i=1 j=
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N
s. t. Zaiyi =0; Vie{1,2,..,N} 0<qa;<C

i=1
2.5.4 Gradient boosting decision tree (GBDT)

RER R T EATRHRDRT R E R AL R WA T E A
47 €3 3R E GBDT Rl AR BV RATE T BT EY g @ 54 24
et MHERTER B R 2 B AR £ (Ao W) 2.5-2) 0 B id B R U ek Rt
fhig % ik R T IR E blending B 1 o R £ ¥ FIERHARF 0 5 T LT

%4 B (46) -

B ¥ 10 XGBoost (48) e The™ 5 B PR F A S S (XL yOYL, 0 ¢ SR
e t-] 3EA KRR PIE R A Yo AR DIURS 3 A KA 7&@;],;;{@ B
T e A Selie L (B P o err(y;, V)T XA i cross entropy error £ _mean
squared error » F] & U A F A AARE S TS BHEFRR Y ST R L gk
FABF E(eal) wiRl R £ LB EDL B TE AR S yEALF UA KD
RSB BRI F BRI ZD DR k)

N Te

. 1
L= Z err(y;, y:(X,)) + Q(f;), where y,=y,—1 + fi; Q(fp) = yT; + 5/12 Wi2

i=1

@ 1 * 3| Gradient descent 512% 4 E_% *‘i]& BEEN MR EHW R EFFA
S e i Fla) o

err(y;, ye X)) ~ err(ys, ye1 (X)) + gife + 3 hif 2,

a 92 ’
where g; = err(y L x)| and h; = —err(z i X)
x=y¢=1 (X)) %% lx=y(xp)
: o Yiep; gi oL
For any leaf j and data inside it D;, set w; = —c———— so that — =10
Liep; hitd ow;
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Training

Building T .
CART trees H
0 I
Weighting :
increase -
e . Weighting -------1-—----—- )
_ Prediction | b lnorasse ; ~(N) i Testing

Figure 2.5-2: XGBoost 7 H(?~ f (49))

255 BWEREY HARFBEFELFENE
*F % i * GridsearchCV 3 £ Az S8 B H0&F e Bl 4o ™ £ 2.5-1 o o M adlifs

HE a0t 57 520 AP ar g Gha R BRFE R T 4 K LR B (stratified cross

U

validation) "1 ££ e 2 = B3 ¥ i NI IAIE ~ 1F B ER VR E 257 A E R
# (classweight) /1 2 WA B R E D FpFiE P en v a ¥ 1 & gurg #ﬂﬂ A
T g7t fx & (balanced accuracy) e ¥ b o d AP EHRBEA S A B > 21 F &

WEHE e 0 L gE et @ * SMOTE (50) % = ;% i {7 oversampling e

Table 2.5-1: * § 5|32 42 S B i 7]

Logistic regression C: [1E-3, 1E-2, 1E-1, 1, 10, 100]

Random forest N_estimator: [3, 9, 27, 81, 100]
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max_depth: [3, 5, None]
SVM (linear) C:[1E-2, 1E-1, 1, 10, 100]
C:[1E-2, 1E-1, 1, 10, 100]
SVM (RBF)
gamma: [1E-2, 1E-1, 1, 10]
max_depth: [3,6,9,12]
XGBoost
min_child weight: [1E-2, 1E-1, 1, 10]
2.6 &t vt

AT A AR R BB 2 AR S ] A B B 46

I B2 M 2 {3 5 fs B % o %7 %] %78 §_12 fisher exact test & vb fi » 1t 4 % 4p

FLE F i & B F BRI t-test v T IDE

F7 3 &% A PR * Wilcoxon (Mann-Whitney U) test i {7 & * & 477 = #ce
277 s A

% (SIS {35 0 R ] ekt R B LS 28%A 5 RRSEE F - 4

45 3% % (type L error) a = 0.05 %tk 4 (power) 1 —B =081 0.5 T 5 &

=8

K AUC, RIS EE Y chiv 4 > L AUCFER R EE A3 075 24+ > 4 4 g

B BOELR TR E TR o

¥ty FAUC £ 4 0.7 78R A 24 €

WU g

vaild
(5
e
()
(@)
o
-
#
&y
i
ot
=
—4
-Fu
b

40658 06> Syt I gMI 037201972 AFT A

#Fw] AUC M2 0.7 e BE Y 23 o
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Chapter 3 Results

3 pAER

AEG - k46 Lp R o BP0 34 mRAEIEE > A 12 A 5 B
A B R % fu Az 2 dyn B0 5 PSR > A Bl @ R
By AbeEle MEHILATEFRPDBEIDLFHEFLE 40T £ 3010

Table 3.1-1: Fkg s e e ER2 BN

FLEE FUIE p-value
A K 34 (74%) 12 (26%)
7 o b 12 (35.3%) 6 (50.0%) 0.49
479+ 19.0 472+223
AfaE & Wilcoxon: 0.78
(47.5) (49.5)
TERE L TG 12 (35.3%) 3 (25.0%) 0.72

B Z pUR s & ¢ 0 BoF L enpulll £ Anti-NMDAR frAf - £ 5 =

B R Haed g B 4 - LR PR 5 B 4T

% 3.1-2 -
Table 3.1-2: FiR8 14 % 2 fak ‘o &
Patient Antibody / antibodies
1 Anti-NMDAR
2 Anti-NMDAR
3 Anti-NMDAR
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4 Anti-NMDAR

5 Anti-NMDAR

6 Anti-NMDAR

7 Anti-NMDAR

8 Anti-CASPR2

9 Anti-GADG6S5, anti-titin, anti-recoverin, anti-CV?2
10 Anti-Ma2/Ta

11 Anti-GABABR and anti-LGI1

12 Anti-GABABR

32 #IAREBE

3.2.1 Automagic preprocessing

&8 Automagic p B i @ G2 iR AR AT A 4 il 45 dc(Features) » A {7 % =

40

EOTAEZ WS EF Y AR RE IR RELS ) FM AR Y BB R £2 5
4 ST R P 8 E > 4o T £ 32-1532-2~32-35 1% B 3.2-1+32-2+323 ¢
Lo e B BLG B AP 2 (¢ 5 Hjorth S & = 2 | ApzE)
T g Fg 3 (balanced accuracy)®? AUC @ 3 » BB G e s i ML Ew § 4§
(linear support vector machine, linear SVM) > {2 H_v enE 3oL frn ge S 4r 2 5 0.595°
AUC 77 %) 0.605 > & 71 #-3] e iy 4 @k 3 SSSg48 R > @ 2 At a7y IR T
frr FE S A 7 B F BT RE A% TR (one sample t-test against 0.5) o H s S B E Y 2
& 51 * RBF ¥ Sn#icent 45 % £ 482 GBDT £ #7] > T5T rp i &7 AUC +

$3% 4 05 32 0.6 22 FF o B B T Rl FR S 22 AUC 7 08 AT

=TT E SR LR EER RS S LM F R LY
38

doi:10.6342/NTU202502042



i * Wilcoxontest “ fie? i #c> H ¢ ixdcs AR BEF AT 0.5 L R

AR BEE NS 0410357 R -

WEASEL-MUSE 2 #&ﬁ&*km#ﬁﬁﬂ*m{i’Wy%$é? *#
f i majority class > #T T Fr FE 5 G 0.5 B L SR 0 03 AT ttest ﬁ Ea.
Y ; 2 ¥ FH _precision & recall 3 % 4| » scikitlearn i F1 score ‘FK‘A it (F
BTG IER) o nBEEEREN A AT E Y WEASEL-MUSE 't 4= & s

B BN £ T ST AR RANEE G TR R ATHRE -

Balanced accuracy with Automagic preprocessing

°©
~

e
o
.

Guessing

Balanced accuracy
c o o o©
N w £~ v

o
o

g
S)

Figure 3.2-1: & * Automagic # /&J2 c1#-7] balanced accuracy

AUC with Automagic preprocessing

Guessing

Figure 3.2-2: & * Automagic # &J2 i3] AUC
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F1 score with Automagic preprocessing

0.6}
0.5}
. 0.4
§ 0.3}
E o2}
0.1}
0.0}
T S & ¢ 2 & » & o
& & S @\& & N & S .@& &
R &t N\ 2 &
6’63 3 "\(O Q\’C, &é\’ $
“° = N
Figure 3.2-3: #& * Automagic # /&J2 e71#-7] F1 score
Table 3.2-1: # * Automagic # kJZ e i3] % % - T %
Automagic Balanced accuracy AUC F1 score
Traditional
0.595 +0.137 0.381+£0.219 0.414 +£0.234
Logistic regression
Traditional
0.540 + 0.065 0.553+£0.172 0.181 £0.234
Random forest
Traditional
0.595 +0.137 0.605+0.214 0.414 +£0.234
SVM (linear)
Traditional
0.500 = 0.000 0.470 £0.181 0.238 £0.197
SVM (RBF)
Traditional
0.505 £0.010 0.475+£0.160 0.067 £0.133
XGBoost
WM
0.500 = 0.000 0.519 +£0.038 0.000 + 0.000
Logistic regression
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WM

0.500 + 0.000 0.500 + 0.000 0.000 = 0.000
Random forest
WM
0.500 + 0.000 0.500 + 0.000 0.000 = 0.000
SVM (linear)
WM
0.500 + 0.000 0.500 + 0.000 0.310+0.160
SVM (RBF)
WM
0.500 + 0.000 0.500 + 0.000 0.000 = 0.000
XGBoost

Table 3.2-2: i * Automagic # E&JZ < %| balanced accuracy % ui* it fie

Balanced accuracy

Shapiro-Wilk

T-test (against 0.5)

p-value p-value
Traditional
0.595+0.137 0.4543 0.2379
Logistic regression
Traditional 0.2784 (t-test)
0.540 £ 0.065 0.00635*
Random forest 0.1797 (Wilcoxon)
Traditional
0.595+0.137 0.4543 0.2379
SVM (linear)
Traditional 0.500 £ 0.000
1 undefined
SVM (RBF) (all data being 0.5)
Traditional 0.3739 (t-test)
0.505+0.010 0.00013*
XGBoost 0.3173 (Wilcoxon)
WM 0.500 + 0.000
1 undefined
Logistic regression | (all data being 0.5)
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WM 0.500 + 0.000
1 undefined
Random forest (all data are 0.5)
WM 0.500 + 0.000
1 undefined
SVM (linear) (all data are 0.5)
WM 0.500 + 0.000
1 undefined
SVM (RBF) (all data are 0.5)
WM 0.500 + 0.000
1 undefined
XGBoost (all data are 0.5)

Table 3.2-3: i * Automagic # EJZ i3] AUC %

L >
bt g

Shapiro-Wilk

T-test (against 0.5)

AUC
p-value p-value
Traditional
0.381+0.219 0.3920 0.3376
Logistic regression
Traditional
0.553+0.172 0.4905 0.5700
Random forest
Traditional
0.605+0.214 0.2493 0.3837
SVM (linear)
Traditional
0.470+0.181 0.2762 0.7561
SVM (RBF)
Traditional
0.475+0.160 0.6527 0.7663
XGBoost
WM 0.3739 (t-test)
0.519+0.038 0.00013

Logistic regression

0.3173 (Wilcoxon)
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WM 0.500 + 0.000
1 undefined
Random forest (all data are 0.5)
WM 0.500 + 0.000
1 undefined
SVM (linear) (all data are 0.5)
WM 0.500 + 0.000
1 undefined
SVM (RBF) (all data are 0.5)
WM 0.500 + 0.000
1 undefined
XGBoost (all data are 0.5)

3.2.2 Minimalistic preprocessing

& i $ | i* (Minimalistic preprocessing) i A2 #7 e J2 2_ "l » B H 2 > B EH
PR e % & &R b Automagic { £ (L AT NEIFR]) 0 40T £ 3.2-4532-5
32-6> 2 TR 3.2-4-~32-5~32-6¢

B ARG R B ) O BV - B ES Y SN H T gEn o

AUC B 234p g 705 m r AP L ES & Len el pr g d 3 ALt

®

g0
=k

_

#5050 4 ¥ § < WEASEL-MUSE R £ ¥ if automagic t.% % 4p % 47 7 > #77)
#% & 77 k] majority class > )2 3 *t T i £y FE ¥ FA_0.5 0 T ttest &) 23+ 38 o Fl score
PlF L % #3175 2 precision & recall 3 @A iR @23t 8 o RS 19 el
FOURT LS RS s 0 B RP DI AT RO ARE B2 R
FER R & HaFRUEL s 2RI R Bl LA TR T A R IR 0 A H

LR A AR T o 3] LI R TR
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Balanced accuracy

o
[N

AUC

Guessing

o
5]

o
'S

©
w

e
=

o
=)

Figure 3.2-4: & * & | i % &J2 -] balanced accuracy

AUC with Minimalistic preprocessing

Guessingi

Figure 3.2-5: i * & ] i % id® enfic] AUC
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F1 score with Minimalistic preprocessing

0.5F
0.4}
0.3}
% 0.2}
: 0.1 -
0.0}
_01 L
Q-‘ \S I Q Q X & < I Q A O\-‘
@@5\, &‘qp,q‘ \\\i\@ é\ \Q_% 6@006} \y\\N \$é\9" (\-\(\Q’@ @ \?g, OQ)O <)
(,34\‘\ 6’63 G G\é\ (53 &é\*
«kfob «& « \Y\Q\’ &é\
Figure 3.2-6: & * & /] it % &J2 e$ic 3] F1 score
Table 3.2-4: i& * & | i* m RJL Al B % - T4
Minimalistic Balanced accuracy AUC F1 score
Traditional
0.460 £ 0.145 0.487 £0.209 0.207 £0.190
Logistic regression
Traditional
0.498 £ 0.067 0.548 £0.228 0.147 £0.181
Random forest
Traditional
0.360 £ 0.059 0.522 £0.144 0.057+0.114
SVM (linear)
Traditional
0.517 £0.033 0.575+£0.303 0.318 £0.163
SVM (RBF)
Traditional
0.536 £ 0.111 0.595+0.112 0.133 £0.267
XGBoost
WM
0.500 £ 0.000 0.519 £0.038 0.000 £+ 0.000
Logistic regression
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WM

0.500 + 0.000 0.500 + 0.000 0.000 = 0.000
Random forest
WM
0.500 + 0.000 0.500 + 0.000 0.000 = 0.000
SVM (linear)
WM
0.500 + 0.000 0.500 + 0.000 0.310+0.160
SVM (RBF)
WM
0.500 + 0.000 0.500 + 0.000 0.000 = 0.000
XGBoost

Table 3.2-5: & * & | i* % &J2 (-7 balanced accuracy % %3t b ik

Balanced accuracy

Shapiro-Wilk

T-test (against 0.5)

p-value p-value
Traditional
0.460 £ 0.145 0.6562 0.6058
Logistic regression
Traditional
0.498 + 0.067 0.4278 0.9465
Random forest
Traditional 0.00864*
0.360 = 0.059 0.4346
SVM (linear) (worse than 0.5)
Traditional 0.3739 (t-test)
0.517 £0.033 0.00013*
SVM (RBF) 0.3173 (Wilcoxon)
Traditional 0.5538 (t-test)
0.536 £0.111 0.02699*
XGBoost 0.6547 (Wilcoxon)
WM 0.500 + 0.000
1 undefined
Logistic regression | (all data being 0.5)
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WM 0.500 + 0.000
1 undefined
Random forest (all data are 0.5)
WM 0.500 + 0.000
1 undefined
SVM (linear) (all data are 0.5)
WM 0.500 + 0.000
1 undefined
SVM (RBF) (all data are 0.5)
WM 0.500 + 0.000
1 undefined
XGBoost (all data are 0.5)
Table 3.2-6: & * & ] i* % BJZ e d] AUC % 33ttt i

Shapiro-Wilk

T-test (against 0.5)

AUC
p-value p-value
Traditional
0.487 +0.209 0.2981 0.9090
Logistic regression
Traditional
0.548 £ 0.228 0.7127 0.6973
Random forest
Traditional
0.522+0.144 0.3844 0.7725
SVM (linear)
Traditional
0.575+0.303 0.7205 0.6478
SVM (RBF)
Traditional
0.595+0.112 0.5643 0.1633
XGBoost
WM 0.3739 (t-test)
0.519+0.038 0.00013

Logistic regression

0.3173 (Wilcoxon)
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WM 0.500 + 0.000
undefined
Random forest (all data are 0.5)
WM 0.500 + 0.000
undefined
SVM (linear) (all data are 0.5)
WM 0.500 + 0.000
undefined
SVM (RBF) (all data are 0.5)
WM 0.500 + 0.000
undefined
XGBoost (all data are 0.5)
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Chapter 4 Discussion

41 &

-gg

d 2 RhF i LIRS 2P AR GABFTR AFTLEP T
B ¥R g lply L3 7R mSER D BAR X
(autoimmune encephalitis ) FAM %L o 7 P WL T S A7 am dT K vE
WEAERP- 2 U2 SRBRBETY A aE 2 RENERET AT A
S Fe 2z WAl eh T Rl fE S~ AUC S 4piRio @ 2 B Bovsg s iRl - R X
VG TS T OB LA RS NS R RPEF Y R 0 HE - TR
BB cAERA A PO LR AT R AR L E A 2bh e Ak
Voo do— Br RO HRELS P L ETRA LA LG PGk L o
=28 1+ Automagic i AR RIZ T U A D GE R enig ik AL B B A
Mg P~ 22 linear SVM P » SE R FLRl e 3250 4 A B8 e RS v AR = 110
WERFEINTFTDE ST R B PR AIER 2 T A LA L AEP §
BOORITH AL T ER Y ahE £ 42 o 10 WEASEL-MUSE > £(35)7
Guimardes % & * § B A 8B OB G TR BV REBEAGEREBEFT Y 2 2

» % 3 WEASEL-MUSE # 3.7 4o3gp > (R A gL 2 2 F a0 3 S @ # 300l T o

|~
\
oy

SR BESY H bR ek kAR s Ao & § B g Meik
B4 e < 3URCE G RIFL G S b 2 15 (d(52)) 0 & L & HeH s TR

TR - A28 (4r(53) « KA 3 > MEF 2 TR ST DA B IE SN R D

|4

SRR 00 R R p PR RES R A R AT DL R R
AEFP S AT R PR U E REA R LRGN L 2 R o
49

doi:10.6342/NTU202502042



42 =g

AELER AP BT R 46 m ko H P R G 12 A R
ABE Y B T RIL VR FEE e FIFAE S R AT R ' LG
FRFFIHETSF BFFAMGLET G BRI R o
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