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摘要

群組通訊應用程式重度依賴群組密鑰協定協議以確保安全性，但這些協議的

隱私方面尚未被充分探討。當不受信任的第三方應用程式，例如聊天機器人，被

整合進群組通訊時，這種疏忽可能會嚴重危及使用者隱私。本文旨在通過設計一

種支持發送者匿名和選擇性訊息存取的群組密鑰協定協議，來提高群組通訊應用

程式的隱私保證。我們首先在威脅模型中考慮不受信任的第三方應用程式，然後

基於 IETF MLS群組通訊標準，我們提出了一個捕捉這兩個隱私特性的安全模型。

此外，我們基於MLS標準使用的 TreeKEM密鑰協定協議提出了一個可行的實現

方法。我們的方法造成的額外計算負擔不會隨著使用者數量增加，對聊天機器人

數量則是線性成長，而模組化的設計使其便於整合進MLS標準。

關鍵字：安全群組訊息傳輸、連續群組密鑰協議、發送者匿名性、群取控制、基
於樹結構的群組密鑰管理協議
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Abstract

Group messaging applications rely heavily on group key agreement protocols to en-

sure security, but the privacy aspects of these protocols have been underexplored. This

oversight becomes particularly critical when untrusted third-party applications, the chat-

bots, are integrated into group chats, potentially compromising privacy. This paper aims

to improve the privacy guarantee of group messaging applications by designing a group

key agreement protocol that supports sender anonymity and message access control. We

first consider untrusted third party applications in our threat model, then, based on the se-

curity model of the IETFMLS standard for group messaging, we propose a security model

that captures the two privacy features. Furthermore, we propose a construction based on

TreeKEM, the key agreement protocol used by MLS. Our construction imposes an over-

head that is constant with respect to the number of users and linear with the number of

chatbots, and the modular design makes it easy to integrate into the MLS standard.

Keywords: secure groupmessaging, continuous group key agreement, sender anonymity, ac-

cess control, tree-based group key agreement
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Chapter 1 Introduction

Group messaging applications are widely used in modern communication and are

involved in various aspects of our daily lives. Platforms like WhatsApp, Messenger, and

LINE are commonly used for personal interactions between family and friends, while

Slack and Microsoft Teams are preferred for professional and workplace collaboration.

Similarly, applications like Telegram and Discord are popular for building community

connections. These platforms facilitate the transmission of messages that can include

opinions, locations, photos, and confidential information associated with an individual.

Given the sensitivity of this data, it is critical to ensure robust protection against access

by unintended parties, including the messaging service providers. This need underscores

the importance of securing group messaging to maintain user privacy and confidentiality

in these popular applications.

Securing messaging services require dedicated key agreement protocols. Although

technologies such as Transport Layer Security (TLS) are widely used to secure commu-

nication, they are not sufficient to secure messaging services. TLS primarily protects

messages from external observers on the network, but not the messaging service providers

themselves. It only establishes secure channels at the network level between communicat-

ing parties, not directly between users at the application level. To address this limitation,

the concept of end-to-end encryption (E2EE) has been adopted to secure communications
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directly between users. The typical approach to achieving E2EE is to first establish a

shared secret using public-key cryptography, and then encrypt messages using symmetric

keys derived from this shared secret. For example, Signal protocol adopts Diffie-Hellman

key agreement protocol and AES for message encryption [35].

The Continuous Group Key Agreement (CGKA) [3, 22] protocols are proposed to

serve as the underlying key agreement protocols for secure group messaging. It is de-

signed to continuously update keys to be resilient to key compromise events such as device

breaches. These protocols ensure that keys generated outside the compromised periods re-

main confidential, thus protecting past messages from future compromises. Additionally,

the asynchronous nature of CGKA protocols accommodates the reality that group mem-

bers may not always be online simultaneously, providing necessary usability for practical

use.

Several CGKA protocols have been proposed and undergone formal security anal-

ysis [1, 3, 5, 6, 22, 41]. Among these, the ART protocol [22] and its enhancement,

TreeKEM [10], have garnered significant attention. These tree-based CGKA protocols

utilize a binary tree structure known as a ratchet tree, which not only provides robust se-

curity properties but also maintains efficiency. Notably, TreeKEM has been incorporated

into the ongoing IETF standard for secure group messaging, MLS (Message Layer Se-

curity) [9], underscoring its relevance and applicability in modern secure communication

framework.

However, the security afforded by original CGKAprotocols, such asART andTreeKEM,

is limited in its ability to provide user privacy. Notably, both protocols expose metadata

like group membership and sender identities to external observers of network traffic. To

2
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mitigate these vulnerabilities, enhanced versions of these protocols have been proposed

to hide such metadata [25, 29]. Moreover, modified ART have been proposed to conceal

the sender identity from group members, thereby achieving sender anonymity within the

group [17]. While the majority of research has concentrated on enhancing privacy against

external adversaries, this work focuses on protecting user privacy against a specific type

of group members, namely third-party applications or chatbots.

Chatbots, also known as third-party applications, are computer agents that can be

added to group chats. They offer a range of functionalities, including bill splitting and

event scheduling, and are supported by popular platforms such as Telegram, Discord,

LINE, and Slack. The platforms allow chatbots to access user messages and metadata,

just like a regular group member. However, this raises concerns regarding user privacy,

as user messages may contain personal information, and chatbots are typically not trusted.

Attackers can deploy malicious chatbots to spy on group activities, compromising the se-

curity of group messaging. Malicious chatbots can learn conversations and infer personal

attributes like location and income using large language models (LLMs) [38], posing a

serious threat to user privacy.

Various countermeasures have been implemented to address this privacy issue, though

each has limitations. Telegram’s Privacy Mode [39] limits chatbot access to only those

messages that directly interact with them, significantly enhancing user privacy but not in-

tegrating with group E2EE. Similarly, Keybase uses a similar access control approach [32]

and encrypts messages for chatbots with separate keys, which helps protect unrelated mes-

sages [31]. However, it does not provide strong E2EE properties, such as post-compromise

security (PCS). Meanwhile, Slack’s permission scope [37] allows workspace administra-

tors to block chatbots from accessing user metadata, but lacks E2EE support.

3
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To our knowledge, no existing group messaging platform currently combines strong

E2EEwith effective protection against chatbots. This limitation stems from the absence of

a CGKA protocol that incorporates both access control and metadata hiding capabilities.

While there are existing CGKA protocols that support in-group sender anonymity [17],

none yet offer access control. This gapmotivates our research to develop a CGKAprotocol

that ensures user privacy against chatbots by integrating these crucial properties while

maintaining robust E2EE.

Our approach is inspired by Balbas et al. [8], who developed an administrative CGKA

(A-CGKA) protocol for securing group administration. We follow their methodology to

extend CGKA protocols with additional security features. Our focus is on improving

access control andmetadata privacy, addressing security challenges for untrusted chatbots.

In this paper, we introduce an extended Continuous Group Key Agreement (CGKA)

scheme, Our–CGKA, which uniquely incorporates chatbots as a specific type of group

member and enables selective message access—features not available in previous CGKA

schemes. We also present a new construction named CMRT, derived from TreeKEM and

existing CGKA schemes. This construction modifies the traditional CGKA tree structure

to support message access control and sender anonymity, while maintaining the security

benefits of forward secrecy (FS) and post-compromise security (PCS). In summary, our

contributions are as follows:

• We define the threat model and security properties for secure group messaging pro-

tocols that account for untrusted chatbots, as detailed in Chapter 3.

• We introduceOur–CGKA in Chapter 5.2, an extended CGKAprotocol incorporating

chatbot access control, with security definitions presented in Chapter 5.3.

4
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• We propose CMRT, a practical implementation ofOur–CGKA in Chapter 6, demon-

strating its adherence to security requirements and its computational efficiency in

Chapter 7.

5
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Chapter 2 Background

This chapter provides a brief background on secure messaging in group contexts and

introduces Continuous Group Key Agreement (CGKA) protocols, the main focus of this

work.

2.1 Secure Group Messaging

Modern messaging applications rely on service providers, the servers of messaging

platforms, to buffer and deliver messages (as shown in Figure 2.1). This centralized design

presents a risk, as a curious service provider could potentially eavesdrop on user messages.

Therefore, the primary goal of secure messaging protocols is to ensure that only senders

and receivers can decrypt messages using end-to-end encryption (E2EE). E2EE guaran-

tees that only the parties involved in the communication group can access the plaintext

messages, and is now widely accepted as the security standard for messaging platforms.

In addition, it is desirable that this security guarantee be resilient to key compromise.

To support E2EE, secure two-party messaging protocols were initially designed and

subsequently extended to secure group messaging protocols. In the two-party secure mes-

saging setting, Borisov et al. [14] considered potential key-compromise of secure mes-

saging protocols, and showed that simply using public key cryptography, such as Pretty

7
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User 1
(Sender)

User 2

User 3

Chatbot Adversary 

Service Provider

APIExternal Adversary➊ ➋

Figure 2.1: A typical messaging platform involves a service provider forwardingmessages
among group members. Two primary adversaries against users’ privacy in this setting are
Ê malicious service providers with key-compromise capability and Ë malicious chatbots.
While state-of-the-art secure group messaging can address Ê only, our work aims to ad-
dress both.

Good Privacy (PGP), does not protect messages encrypted before the compromise. They

propose Off-the-Record (OTR) protocol, where communicating parties continuously ne-

gotiate new Diffie-Hellman (DH) session keys and delete old session keys to achieve for-

ward secrecy (FS) [28]. Cohn et al. [21] extend the concept of FS to protect message

confidentiality and integrity after key compromise, known as post-compromise security

(PCS). They show that only stateful protocols can achieve PCS against full key compro-

mise. Following the OTR protocol, the Double Ratchet Algorithm [35] adopts OTR’s

ratcheting design to create fresh session keys for each message exchanged between two

parties. The Double Ratchet Algorithm serves as the underlying key agreement protocol

for widely used messaging platforms such as WhatsApp, Signal, and Messenger’s secret

conversation, and is formally proven to satisfy both FS and PCS [2, 20].

To extend secure messaging from two to multiple parties, a straightforward design is

to use pairwise secure channels between each two members, but the updating complex-

ity is linear to the group size, lacking scalability for large groups. Another approach is

8
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the Sender Keys Protocol [42], which Signal and WhatsApp use for large groups; each

member generates their own encryption key called a sender key and distributes the key

to each group member through pairwise secure channels. The Sender Keys Protocol pro-

vides constant-time update and FS, but does not provide PCS [7, 11]. Lately, Continuous

Group Key Agreement (CGKA) [3] becomes a unifying abstraction that captures support

for both FS and PCS in group settings. CGKA has been instantiated by a number of group

key protocols, such as Asynchronous Ratcheting Tree (ART) [22] and TreeKEM [10]. In

particular, the variant of TreeKEM is the underlying group key protocol of Message Layer

Security (MLS), an IETF standard [9] for secure group messaging. Although state-of-the-

art secure group messaging, such as MLS, can defend against malicious service providers

with key compromise capability (Ê in Figure 2.1), to our knowledge, no existing protocols

can protect user privacy against malicious chatbots as well (Ë in Figure 2.1).

2.2 Continuous Group Key Agreement (CGKA)

Continuous Group Key Agreement (CGKA) [3, 22] are a class of group key agree-

ment protocols designed to achieve asynchronous operations and strong security proper-

ties such as FS and PCS. A CGKA protocol supports three fundamental operations: key

updating, adding a member, and removing a member, and continuously generates a group

key shared by all current members. The resulting shared group keys should be confiden-

tial to those outside the group, achieving key secrecy, and should be frequently updated to

maintain confidentiality from potential key compromise, achieving FS and PCS.

The tree-based CGKA protocols [33] leverage the tree structure to reduce update

complexity to logarithmic. Specifically, Asynchronous Ratcheting Tree (ART) [22] is a

9
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tree-based CGKA protocol based on a Diffie-Hellman tree; TreeKEM [10], originated

from ART, is based on a hash tree to enhance efficiency. The security of MLS, TreeKEM,

and their variants have been thoroughly analyzed [3–5].

10
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Chapter 3 Problem Definition

This chapter identifies the adversaries in our threat model and outlines our assump-

tions about their capabilities and relationships. The proposed protocol aims to satisfy the

desired security properties listed here in order to effectively defend against these adver-

saries.

3.1 Threat Model and Assumptions

We consider two types of adversaries: malicious chatbots and external adversaries,

as shown in Figure 2.1. External adversaries include common adversaries considered in

previous literature on secure messaging [34, 36, 40].

Chatbots We consider chatbots as insider adversaries who can participate in group con-

versations as regular members. The chatbots have access to the group messages, group

metadata, and group events. In our scope, we assume that chatbots are passive adver-

saries. In other words, active attacks, such as sending malicious group modification mes-

sages [36], are out of scope. We assume that there is no collusion between a chatbot and

a group member, or that the chatbot can trivially obtain all information that a member

knows.

11
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External Adversaries We consider external adversaries who can observe network traf-

fic and have key compromise capabilities, which allow an adversary to fully compromise

a user’s devices and then learn all states of a key agreement protocol [21]. It is assumed

that a device may be compromised temporarily, but for only a finite period. Subsequently,

it is expected that the user will regain control and execute at least one secure operation.

A classic example is the service provider of a messaging service who has access to all

encrypted user messages exchanged on the platform. We assume that the service provider

is honest but curious, which means that while the service provider complies with the pro-

tocol, it may try to extract as much information as possible from the traffic it can access.

We consider external adversaries as different adversaries from chatbot adversaries, and in

this work we do not consider the case where external adversaries compromise chatbots or

collude with each other. These cases are considered out of scope.

We assume that users are using an anonymous network like Tor [23], because without

such tools to hide network-level metadata, such as source IP addresses, constructing a truly

anonymous messaging protocol becomes infeasible.

3.2 Security Goals

With the two types of adversaries in mind, we identify security goals for a desired

group key agreement protocol.

• Forward Secrecy (FS): The shared keys generated before a compromise remains

confidential to the external adversaries.

• Post-Compromise Secrecy (PCS): The shared keys generated after a compromise

12
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remains confidential again to the external adversaries.

• Sender Anonymity: The chatbot adversary cannot effectively distinguish between

the users in a group.

• Selective Message Access: The group keys should be confidential to the chatbot

adversaries without access.

FS, and PCS are commonly required security properties for group key agreement

protocols in the literature [3, 22, 36, 40]. Sender anonymity and selective message access

are two additional security properties proposed to protect user privacy against chatbot

adversaries.

13
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Chapter 4 Notation

In group messaging protocols, there are two primary types of entities: users and

chatbots. Users are distinguished by a unique user identifier, denoted as ID, while chatbots

are identified by a chatbot identifier, CID.

In this paper, variable assignment is expressed as a← v, indicating that variable a is

set to value v. When a variable a is assigned the result of an algorithm Alg, it is denoted as

a← Alg(x) for deterministic outputs, and a←$ Alg(x) for randomized outputs. Uniform

sampling from a set S is shown as a ←$ S. A blank value is denoted by ⊥. Storing and

retrieving values in a dictionaryD are represented byD[k]← v for storage, and v ← D[k]

for retrieval, respectively. To set all values in a dictionary to a single value v, the notation

D[·]← v is used.

In cryptographic protocols, the assert keyword enforces a condition within oracles

and algorithms. If the condition is not met, execution halts and returns ⊥. The keyword

public in an oracle indicates that a variable is visible to adversaries; variables not marked

as such are hidden from them.
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Chapter 5 Continuous Group Key

Agreement Protocol for

Selective Message Access

and Sender Anonymity

In this chapter, we first review Continuous Group Key Agreement (CGKA) by de-

scribing its syntax, then present our-CGKA, an extended scheme to model chatbots. Fi-

nally, we define the security of our-CGKA, which captures the security of CGKA, selec-

tive message access, and sender anonymity.

5.1 Formal Definition of Continuous Group Key Agree-

ment

The Continuous Group Key Agreement (CGKA) protocols, described in [3, 5], pro-

vide a framework for secure communication between a group of users. These protocols

ensure that all members of the group share a common secret, where the group can be dy-

namically adjusted to allow members to be added or removed. The shared secret can be

periodically updated by any group member to maintain confidentiality of the secret. The
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syntax of the CGKA scheme is defined as follows.

Definition 1. A continuous group key agreement (CGKA) scheme is defined as a tuple of

the following algorithms CGKA = (init, create, prop, commit, proc):

• γ ←$ init(ID) initializes the state γ for a user identified with ID.

• (γ′,W ) ←$ create(γ, ID1, . . . , IDn) creates a group with users ID1, . . . , IDn and

outputs the updated state γ′ and a control (welcome) message W .

• (γ′, P )←$ prop(γ, ID, type) creates a proposal for user IDwith type type ∈ {add, rem, upd},

which corresponds to adding a user, removing a user, or updating the group secret.

This outputs the updated state γ′ and a proposal message P .

• (γ′, T ) ←$ commit(γ, P⃗ ) commits a list of proposals P⃗ and outputs the updated

state γ′ and a control message T for existing members or W .

• (γ′, k)← proc(γ, T ) processes a control message T orW and outputs the updated

state γ′ and the new group key k.

Design. The scheme allows group member to communicate through control messages,

which can be generated by algorithms create or commit. The control messages contain

essential information for other group members to synchronize the group information, in-

cluding the group secret. The control messages are processed by the algorithm proc. Ad-

ditionally, the scheme adopts a propose-and-commit style, allowing a user to consolidate

multiple group operations into a single commit.

The intuition behind how the CGKA protocol achieves forward secrecy and post-

compromise secrecy is that whenever a member joins, leaves, or performs an update, the
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group key is irreversibly updated. This update mechanism prevents new members from

accessing previous keys and ensures that departing members cannot access future keys.

Protocol execution. To use the CGKA protocol, each user, identified by ID, begins by

initializing their state using init(ID). A user can then create a group via create, providing

a list of initial member identifiers. Users can propose to add members, remove them, or

update her own key material. All of these operations will result in the update of group key.

These proposals are aggregated and processed by the commit algorithm, which generates

a control message T . Other group members synchronize their states by processing control

messages of create or commit using the proc function, which produces a consistent group

shared key k. The correctness of a CGKA protocol ensures that all group members obtain

the same group key k from a commit message T .

Integration with Messaging Protocol. The CGKA scheme integrates seamlessly with

instant messaging protocols by allowing control messages to be sent along with actual

messages. For example, if Alice wants to remove Bob from a group and send a follow-up

message, she sends a proposal rem to generate a control message T . After processing T

to obtain the new group key k′, Alice sends both T and her encrypted message using k′ to

the service provider, who then forwards them to the group members. Upon receipt, other

group members process T to obtain k′ and decrypt Alice’s message using the new key.

5.2 Our CGKA

We extend the syntax of CGKA to include chatbots as a distinct type of group mem-

ber, separate from users. In this extended framework, users retain unrestricted access to
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the shared keys, whereas chatbots are granted access only to specific keys. This restricted

access is controlled by users who specify which chatbots can obtain a key update. They

do this by providing a list of chatbot identifiers, CID1, . . . ,CIDn, during the key update

process invoked by upd. This differentiation facilitates selective message access, ensuring

that each chatbot only accesses information for which it has explicit authorization.

Definition 2. An Our-CGKA scheme is defined as a tuple of the following algorithms

Our–CGKA = (init, create, prop, commit, proc):

• Algorithms init, create, commit, proc are identical as the CGKA scheme (Definition

1), where all operations can be invoked by both users and chatbots, except create

which can only be invoked by users.

• In prop, type is extended to type ∈ {add, rem, upd, add–cbt, rem–cbt, upd–cbt},

where upd–cbt can be used by chatbots only, and all the other types can be used by

users only. The type add–cbt and rem–cbt can be used by users to add or remove

a chatbot from group, and upd–cbt can be used by a chatbot to update the group

secret.

• (γ′, P )←$ prop(γ, ID, C⃗ID, type) additionally takes a list of chatbot ids C⃗ID, which

is only used for proposals of type upd. This allows a user to authorize a subset

of chatbots to receive the new group secret, which is not possible in the original

scheme.

Protocol execution. Users create, manage groups, and update secrets in the same way

as before. However, with the new functionality, users can now add or remove chatbots

from the group using the add–cbt and rem–cbt proposals. The key shared with a chatbot
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member will only be updated if the corresponding chatbot identifier CID is specified in

a upd proposal. In addition, chatbots can update their keys using upd–cbt proposals and

handle control messages using the proc algorithm.

5.3 Security of Our CGKA

This section informally defines the security of our CGKA scheme, with the goal

of clarifying our security goals in an accessible manner. A formal security definition is

provided in Appendix A.2 for future formal security analysis.

The definitions for group key security, such as forward secrecy (FS), post-compromise

secrecy (PCS), and selective message access, are based on the key indistinguishability

game proposed by Alwen et al. [3]. The definition of sender anonymity is based on the

sender indistinguishability game proposed by Chen et al. [17].

To define the security, we first define the epoch t, which is a protocol execution

counter that advances whenever a control message is processed. Let γt denotes the state

at epoch t and kt denotes the group key at epoch t, we have the following relation for each

group member: (γt, kt)← proc(γt−1, T ) for any legitimate control message T .

Forward Secrecy (FS) For an external adversary who has access to all control messages

T and compromises a member’s state γt, the adversary should not be able to distinguish

any key ki for i < t from a uniform random distribution.

Post-Compromise Secrecy (PCS) For an external adversary who has access to all con-

trol messages T and compromises a member’s states, but a group member successfully
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creates a commit at epoch t without the adversary’s control, i.e. the adversary knows

nothing about this commit except the control message and the member’s state before the

commit, the adversary should not be able to distinguish any key ki for i > t from a uniform

random distribution.

Sender Anonymity For a chatbot adversary within a group that has access to all control

messages, the chatbot adversary should not be able to distinguish any control message T

between any two group members with non-negligible probability.

SelectiveMessage Access For a chatbot adversary within a group with access to all con-

trol messages, the chatbot adversary should not be able to distinguish any key ki from a

uniform random distribution if the commit corresponding to ki excludes any update pro-

posals that authorize that particular chatbot. In particular, there should be no upd proposal

with the argument C⃗ID containing the chatbot’s identifier.
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Chapter 6 Compressed Multi-Roots

Tree (CMRT)

In this chapter, we introduce the Compressed Multi-Roots Tree (CMRT) as a new

construction for our Our–CGKA scheme. CMRT modifies the traditional tree structure

of tree-based CGKA schemes to achieve sender anonymity and selective message access.

The design leverages a single group shared secret to provide anonymity, dividing the struc-

ture into a “user subtree” and a “chatbot subtree” to hide user group details from chatbots.

We further attempt to achieve selective message access by establishing parallel groups of

users and each chatbot, allowing independent key updates. Although maintaining trees

for each chatbot suggests a linear overhead, our design efficiently shares the user subtree

across all trees. This creates a structure with multiple roots, which optimizes storage usage

and scalability with respect to the number of chatbots.

The construction can be regarded as a wrapper protocol or an extension of an existing

CGKA scheme. Although this work is based on the TreeKEM construction of a CGKA

scheme, it can be substituted with another CGKA construction if the security of CGKA

is maintained. We start by introducing the fundamental elements of our construction in

Section 6.1, with a particular focus on TreeKEM. We then proceed to present an overview

of our protocol in Section 6.2, followed by a more detailed description in Section 6.3.
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6.1 Building Blocks

Cryptographic Primitives The public-key encryption (PKE) schemePKE = (PKEG,PKEnc,PKDec)

consists of key generation (sk, pk) ←$ PKEG(1λ), encryption c ←$ PKEnc(pk,m) using

the public key pk, and decryption m ← PKDec(sk, c) that retrieves the original mes-

sage from the ciphertext. Additionally, a collision-resistant hash function H : {0, 1}λ →

{0, 1}λ is used. The formal definition for the security of these primitives is included in

Appendix 9.

TreeKEM. TreeKEM [10] is a tree-based CGKA protocol constructed with a binary tree

structure known as a ratchet tree. Each node in this tree holds a secret accessible only to

the members within its subtree, and each member is assigned to a leaf node. The secret of

the root node serves as the shared secret for the entire group. In TreeKEM, let Si ∈ {0, 1}λ

denote a member’s i-th secret from the leaf. The secret Si is computed as the hash of the

secret Si−1 from one of its child nodes, specifically the last child that updates the secret.

Additionally, each node contains a pair of public-private keys (ski, pki) generated from its

secret Si using PKEG. The node information can be computed by (ski, pki)← PKEG(Si)

where Si ← H(Si−1).

To perform key update, a member (associated with one of the leaf nodes) randomly

generates a new secret and iteratively computes the secrets along the path to the root node

via hashing. The member then notifies other members of the new secrets by encrypting

them with the public keys of the sibling nodes. Specifically, for a node v with a new
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(a) The users perform
an update to obtain
the group secret G
and update the shared
secrets for C1, C2.
Secrets updated in
this phase are colored
blue.

(b) The users per-
form an update to
obtain the group se-
cret G′ and update
the shared secrets for
C1. Secrets updated
in this phase are col-
ored red.

(c) The chatbot C2

performs an update.
Secrets updated dur-
ing this phase are col-
ored green. Updates
initiated by chatbots
will not trigger an up-
date for the user sub-
tree.

(d) The users trig-
ger an update only for
user subtree, result-
ing the group secret
G′′. Secrets updated
during this phase are
colored yellow.

Figure 6.1: Illustration of CMRT with users u1, . . . , un and chatbots c1, c2. Users share
the group secretG from the user subtrees (triangles), while C1, C2 are secrets for chatbots
c1, c2, respectively. The rectangles represent secrets shared between the group and each
chatbot. The arrows indicate secret assignments, and the lines indicate parent-child rela-
tionships, where a child knows the secret of its parent. For example, in (b),G′ is the group
secret and S1 is the secret shared between u1, . . . , un and C1.

secret S ′, the member encrypts S ′ with the public key of node sibling(v) and sends the

ciphertext to the members under sibling(v), where sibling(v) denotes the sibling node of

v. The member also publishes all new public keys along the updated path.

6.2 Protocol Overview

Before diving into the detailed description of our protocol, we provide an overview,

initially discussing the two challenges achieving the new security properties and how our

design addresses these issues.

Sender Anonymity. The primary reason that tree-based CGKA lacks sender anonymity

is the exposure of sender identity through the update path, which is the path from the

sender’s node to the root. To address this, we modify the tree structure, where all group
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members are placed in the user subtree, while the chatbot subtree contains only the chatbot

(as shown in Figure 6.1). During a user-initiated key update, the chatbot only needs to be

aware of the root of the user subtree instead of the entire user subtree. This ensures that the

chatbot can still compute a secret shared with all members without knowing the specific

member initiating the update.

SelectiveMessage Access. Onemain challenge in the secure messaging protocols is that

some messages, along with the associated key updates, may be unavailable for chatbots.

However, chatbots using traditional CGKA still require each key update message to main-

tain key consistency. To mitigate this, our construction maintains multiple root nodes, i.e.,

group keys, one per chatbot. Each chatbot shares its own state with the user group, and is

updated only when a message is intended for that specific chatbot, as Figure 6.1 shows.

If there is no key update for the chatbot, its root remains unchanged such that all group

members and the chatbot continue to share the same secret.

The Compressed Multi-Roots Tree (CMRT) construction achieves the two additional

security properties by allocating each chatbot a dedicated subtree while sharing a root

node with the user subtree. From a user’s perspective, the top of their tree connects to

multiple root nodes, each linked to a chatbot. Conversely, each chatbot views itself in

a smaller, 3-node tree connected only to the group members’ subtree root. Key updates

are managed efficiently, with users storing only necessary root nodes, thereby conserving

spacewhile ensuring asynchronous states across different chatbots, as shown in Figure 6.2.

This ”multi-root” structure is ”compressed” to optimize data storage and maintain robust

security simultaneously.
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6.3 Protocol

init(ID)

1 : γ.s0← CGKA.init(ID)

2 : γ.ME← ID
3 : γ.cbts[·]←⊥

create(ID1, . . . , IDn)

1 : (γ.s0,W0)←
CGKA.create(ID1, . . . , IDn)

2 : returnW0

proc(T )

1 : (T0, TC)← T

2 : k ←⊥
3 : if T0 ̸=⊥ // from user

4 : (γ.s0, k)← proc(γ.s0, T0)

5 : (gsk, gpk)← PKEG(k)
6 : k′ ← H(k)

7 : k ← k′

8 : for (CID, ·, ·) ∈ TC

9 : γ.cbts[CID].gsk← gsk
10 : for (CID) ∈ TC

11 : γ.cbts[CID]←⊥
12 : else // from chatbot

13 : (CID, cpk, e)← TC

14 : (gsk, ·)← cbts[CID]

15 : k ← PKDecgsk(e)

16 : γ.cbts[CID]← (gsk, cpk)
17 : return k

prop(ID, C⃗ID, type)

1 : assert type ̸= upd–cbt
2 : P ←⊥
3 : if type ∈ {add–cbt, rem–cbt}
4 : P ← (type, C⃗ID0)

5 : else
6 : (γ.s0, P )← CGKA.prop(ID, type)
7 : if type = upd P.C⃗ID← C⃗ID
8 : return P

commit(P⃗ )

1 : P⃗ ← PropCleaner(P⃗ )

2 : (PC , P0)← PropPartitioner(P⃗ )

3 : (γ.s0, T0, k)← commit(γ.s0, P0)

4 : (gsk, gpk)← PKEG(k)
5 : k′ ← H(k)

6 : TC ←⊥
7 : for P ∈ PC

8 : if P.type = add–cbt
9 : cpk← get–pk(P.CID)

10 : γ.cbts[P.CID]← (gsk, cpk)
11 : TC ← TC∥(P.CID, gpk,PKEnccpk(k

′))

12 : if P.type = rem–cbt
13 : γ.cbts[P.CID]←⊥
14 : TC ← TC∥(CID)

15 : if P.type = upd
16 : for CID ∈ P.C⃗ID
17 : (·, cpk)← γ.cbts[CID]

18 : TC ← TC∥(CID, gpk,PKEnccpk(k
′))

19 : γ.cbts[CID].gsk← gsk
20 : return (T0, TC)

init(CID)

1 : γ.ME← CID
2 : γ.gpk←⊥
3 : k ←$ {0, 1}λ

4 : (γ.csk, γ.cpk)← PKEG(k)
5 : set–pk(CID, γ.cpk)

prop(ID, C⃗ID, type)

1 : assert type = upd–cbt
2 : P ← (type, γ.ME)
3 : return P

commit(P⃗ )

1 : TC ←⊥
2 : for (type,CID) ∈ P⃗ : type = upd–cbt

∧ CID = γ.ME
3 : k ←$ {0, 1}λ

4 : (γ.csk, γ.cpk)← PKEG(k)
5 : k′ ← H(k)

6 : gpk← γ.gpk
7 : TC ← (γ.ME, γ.cpk,PKEncgpk(k

′))

8 : return ((⊥, TC), k
′)

proc(T )

1 : (·, TC)← T

2 : (·, γ.gpk, e)← TC

3 : csk← γ.csk
4 : k ← PKDeccsk(e)

5 : return k

Figure 6.2: The CMRT protocol. Unboxed algorithms are those called by the users (i.e.
γ.ME ∈ ID), while boxed algorithms are those called by the chatbots. We assume that
the users will only call the unboxed algorithms and the chatbots will only call the boxed
algorithms.

This section presents a detailed description of the construction. The construction is

divided into two parts: algorithms that can only be used by users (unboxed algorithms

in Figure 6.3) and algorithms that can only be used by chatbots ( boxed algorithms in

Figure 6.3). For simplicity, this work only considers a single group setting, where each

user and chatbot is limited to joining one group. However, the protocol can be extended

to support multiple groups by using group identifiers to distinguish between them. Please
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note that the security of multiple group settings is not covered in this work.

Our construction is based on an underlying CGKA protocol. To differentiate related

variables, those directly associated with the CGKA protocol are subscripted with “0.” For

example, variables such as s0,W0, and T0 are marked in this way to distinguish them from

other elements within the scheme.

We will first introduce the PKI model used in our construction, then explain how to

initialize states using init, how to create the group using create, how to create a proposal

using prop, how to commit proposals using commit, and how to process a commit message

using proc.

PKI. We assume the presence of an incorruptable PKI, typically managed by the service

provider, to handle the public keys of chatbots. During the initialization phase, a chatbot

identified by CID generates a new key pair (csk, cpk), registering the public key cpk with

the PKI using set–pk(CID, cpk). Users can subsequently retrieve this public key using

get–pk(CID).

Initialization of states. The states for each entity, including a user or a chatbot, are de-

noted as γ. A user’s state records the state of the underlying CGKA protocol as γ.s0, its

identifier γ.ME, and a dictionary γ.cbts indexed by chatbot identifier to record informa-

tion for each chatbot in a group. A chatbot’s state records its identifier γ.ME, the user

subgroup’s public key γ.gpk, and a PKE key pair (γ.csk, γ.cpk) for its single chatbot sub-

group.
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Group creation. Only a user can create a group, which initially contains users only. Our

construction delegates the request to the underlying CGKA protocol, and stores the state

of the user group as γ.s0, and returns the welcome messageW0.

Proposals. In our scheme, users are permitted to create various types of proposals, with

the exception of the upd–cbt type. For the add–cbt and rem–cbt types, the proposal created

by CMRT includes the proposal type and the first element of vector C⃗ID, which serves to

identify the chatbot to be added or removed. For other types, such as add, rem, and upd,

the request is handled by the underlying CGKA protocol. In particular, for proposals of

type upd, the vector C⃗ID is also included to specify the chatbots authorized to be updated.

Conversely, a chatbot can only initiate a proposal of type upd–cbt to request a key update.

Commits. The commit algorithm for users in the CGKA protocol incorporates several

steps: (1) Using PropCleaner, it ensures that P⃗ is a valid proposal sequence by remov-

ing duplicate proposals and prioritizing removal proposals. (2) Using PropPartitioner, it

divides the proposals into ordinary CGKA proposals (P0) and chatbot-related proposals

(PC). (3) It applies P0 within the user subgroup using CGKA.commit, generating a con-

trol message T0 and a new key k. (4) It computes a PKE keypair (gsk, gpk) for the user

subgroup and a root key k′. (5) Chatbot-related proposals are processed individually, in-

volving steps for adding, removing, or updating chatbots, each involving specific actions

managing public/private keys and appending encrypted root key to the chatbot control

message TC . (6) Finally, the algorithm outputs control messages (T0, TC) and the new

shared group key k′.

The commit algorithm for a chatbot handles upd–cbt proposals by following these
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steps: (1) It validates each proposal. (2) It randomly generates a new chatbot secret k. (3)

From k, it computes the PKE key pair (csk, cpk) and the new root key k′. (4) It retrieves the

user group’s public key gpk from the state γ. (5) It appends a control message including

the chatbot identifier, the chatbot public key cpk, and the encrypted root key k′ under gpk.

Processing control messages. The proc algorithm for users processes control messages

in two scenarios: (1) If the control message is from another user, it delegates the ordinary

control message T0 to the underlying CGKA protocol, computes the new PKE key pair

and new root key, and updates chatbot states based on the control messages received. (2) If

the control message is from a chatbot, it decrypts the root key using the previously stored

group secret key gsk. The state of the underlying CGKA protocol remains unchanged in

this case.

The proc algorithm for chatbots focuses solely on handling control messages that

pertain to chatbots. It updates the group public key gpk and decrypts the new root key

using the chatbot’s previously stored private key.
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Chapter 7 Results

7.1 Security Analysis

This section provides a security analysis to show that CMRT satisfies the desired

security properties. The analysis is based on the assumption that the underlying CGKA

scheme is secure, i.e. it satisfies forward secrecy and post-compromise secrecy. We use

this fact to conclude that CMRT also satisfies two two properties, while also achieving

selective message access. For sender anonymity, the analysis relies on the assumption of

a membership-hiding CGKA scheme, which prevents external adversaries from learning

any information about the sender’s identity.

In our analysis, we assume TreeKEM as the underlying CGKA scheme, since it has

been shown to satisfy forward secrecy and post-compromise secrecy [3]. Furthermore, the

method proposed by Emura et al. [25] allows us to adapt TreeKEM into a membership-

hiding CGKA that satisfies our security requirements.

We assume that the hash function H, used in both TreeKEM and CMRT, functions

as a pseudorandom generator (PRG). This implies that if H receives uniformly random

input, its output will also be uniformly random. Furthermore, we assume the public key

encryption (PKE) scheme employed is IND-CPA secure, which guarantees that an adver-
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sary cannot distinguish between the ciphertexts of any two chosen plaintexts. The formal

security definition for these cryptographic primitives is included in Appendix 9.

7.1.1 Forward Secrecy

Assume that no chatbot is compromised, we show that for an external adversary with

messages T and compromises a member’s state γt, any key ki for i < t is indistinguishable

from uniform random distribution.

First, the adversary gains no information from the compromised keys. The under-

lying CGKA protocol ensures forward secrecy by guaranteeing that any key k generated

prior to compromise is indistinguishable from a uniform random distribution. Further-

more, by definition of a pseudorandom generator (PRG), the group keys k′ generated by

CMRT before the compromise also retain this indistinguishability, since each k′ is derived

via k′ = PRG(k).

Second, the adversary gains no information from the control messages, which contain

past keys encrypted under the chatbots’ public keys. Since the PKE scheme is IND-CPA

secure, the adversary cannot distinguish between the keys and uniform random values

based on the ciphertext alone.

7.1.2 Post-Compromise Secrecy

Assume that no chatbot is compromised, we show that for an external adversary with

messages T and compromises a member’s states, yet a group member successfully com-

mits an uncompromised operation at epoch t, the key ki for i > t is indistinguishable from

uniform random distribution.
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This claim can be supported by a similar argument used to demonstrate forward se-

crecy. Namely, the group keys generated after a compromise are indistinguishable from

a uniform random distribution according to the properties of PRG. In addition, the IND-

CPA security of PKE scheme used prevents an attacker from obtaining any information

from the control messages.

7.1.3 Sender Anonymity

Assume that the underlying CGKA scheme is metadata-hiding, and the new leaf se-

cret chosen during commit is uniformly random, we show that the chatbot adversary is

unable to distinguish any control message T between any two group members with non-

negligible probability.

First, by definition, the adversary cannot distinguish the control messages from the

metadata-hiding CGKA scheme. Second, the adversary is unable to distinguish the ad-

ditional control messages generated by CMRT, since the control message only contains

chatbot identifier, group public key, and a ciphertext. The ciphertext indistinguishable ac-

cording to IND-CPA security. Furthermore, the chatbot identifier remains constant across

different members, offering no distinct information. The group public key, derived from

the root secret which itself is produced through a series of PRG operations starting from a

leaf secret assumed to be sampled from a uniform random distribution, also maintains in-

distinguishability. The group key itself is also indistinguishable, according to the property

of PRG.
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7.1.4 Selective Message Access

We show that a chatbot adversary within a group is unable to distinguish any unau-

thorized key k from a uniform random distribution.

This can be demonstrated by examining its compliance with both forward secrecy

and post-compromise secrecy. Consider a chatbot adversary A that obtains authorization

with a key kt at epoch t. Under forward secrecy, all keys ki for i < t remain secure and

indistinguishable from a uniform random distribution because they are generated via a

PRG from a uniformly random source. Furthermore, since the control message does not

contain any ciphertext encrypted with the public key ofA, it maintains its indistinguisha-

bility according to IND-CPA security. Conversely, post-compromise secrecy ensures that

all keys ki for i > t are indistinguishable from A, thus protecting subsequent keys and

ensuring that the chatbot adversary does not learn any information about the unauthorized

keys between the authorized keys.

7.2 Security Comparison

E2EE Sender SMAFS PCS Anonymity
Sender Keys 3 7 7 7

Keybase 3 7 7 3

TreeKEM, ART 3 3 7 7

AART 3 3 3 7

CMRT 3 3 3 3

Table 7.1: Security comparisons between group key agreement protocols. SMA stands
for Selective Message Access.

Table 7.1 presents a comparative analysis of the security features provided by widely

used key agreement protocols in secure messaging systems. The Sender Keys proto-
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col [42] provides Forward Secrecy (FS) but does not support Post-Compromise Security

(PCS). Keybase’s key derivation algorithm provides optional forward secrecy and dedi-

cated decryption keys for bots to achieve selective message access, but it doesn’t provide

PCS [30, 31]. CGKA protocols, such as TreeKEM [10] and ART [22], provide both FS

and PCS, but lack privacy features, such as sender anonymity and selective message ac-

cess. AART [17] improves on ART by incorporating sender anonymity, but still falls

short in providing selective message access. Our protocol is the first to support all the

aforementioned properties.

7.3 Efficiency Analysis

# public-key operations # symmetric operations
sender per user per chatbot sender per user per chatbot

Sender Keys setup O(n+m) O(n+m) O(n+m) O(n+m) O(n+m) O(n+m)
ongoing 0 0 0 O(1) O(1) O(1)

ART, AART setup O(n+m) O(log(n+m)) O(log(n+m)) 0 0 0
ongoing O(n+m) O(n+m) O(n+m) O(1) O(1) O(1)

TreeKEM setup O(n+m) O(1) O(1) O(n+m) O(log(n+m)) O(log(n+m))
ongoing O(log(n+m)) O(1) O(1) O(log(n+m)) O(log(n+m)) O(log(n+m))

CMRT (Ours) setup O(n+m) O(1) O(1) O(n+m) O(logn) O(1)
ongoing O(logn+m) O(1) O(1) O(logn+m) O(logn) O(1)

Table 7.2: Computation complexity comparison. n = number of group members, m =
number of chatbots.

This section analyzes the computational overhead of CMRT and compares it to other

secure group messaging protocols. Table 7.2 shows the computational complexity of our

protocol. The setup phase involves creating a group of n users and m chatbots, and the

ongoing phase involves both adding a chatbot to the group and sending a message to the

chatbot.

Setup phase. For setup phase, the group initiator uses O(n+m) PKE operations and

O(n+m) symmetric operations. The construction of the TreeKEM with n members in-

volves O(n) PKE operations and hash operations, respectively. To compute the shared
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secret for each chatbot, the initiator also performs O(m) PKE operations and hash op-

erations, respectively. For the receivers, each user requires O(1) PKE operations and

O(logn) hash operations to initiate the TreeKEM. For each chatbot, it takes O(1) PKE

operations to decrypt the secret, but only O(1) hash operations to compute the shared

secret due to the unbalanced tree structure.

Ongoing phase. Suppose a user sends a message to the chatbots. The message sender

performs O(logn+m) PKE operations and symmetric operations, respectively. Updat-

ing the TreeKEM involves O(logn) public key generations and hash operations. Each

chatbot takes O(1) PKE operations and hash operations for the sender to do the key up-

date and message encryption, respectively, and there are m chatbots, imposing O(m)

overhead. Message recipients, including users and chatbots, perform identical actions as

in the setup phase to update the secret, resulting in the same overhead.

Adding a chatbot to the group is almost the same as sending a message to a chatbot.

The initiator performs O(logn) PKE operations and symmetric operations, respectively,

to update the TreeKEM. Both the chatbot and other members perform the same actions as

in the setup phase to update the secret.
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Chapter 8 Related Work

This chapter reviews the existing literature related to our work. First, we explore the

security and privacy issues associated with chatbots, including existing countermeasures

in Section 8.1. Second, we examine secure group messaging protocols aimed at hiding

metadata in Section 8.2.

8.1 Chatbot Security

Several studies have conducted large-scale security evaluations of chatbots on mod-

ern messaging platforms. Edu et al. [24] analyzed over 15,000 Discord chatbots and found

that over 40% of the chatbots examined ask for permission to access message history, but

less than 5% of them offer a privacy policy. This lack of transparency raises concerns

regarding how developers store and utilize the collected user activity. Similarly, Chen et

al. [19] analyzed design flaws in chatbot-like third-party apps on Business Collaboration

Platforms (BCP), such as Slack. Their analysis showed that these apps can steal messages

or impersonate users. These studies underscore the privacy risks associated with chatbots,

providing strong motivation for our work.

In addition to empirical security evaluation, some related work focus on developing

solutions to protect users’ privacy from chatbots. Biswas [12] highlighted the potential for
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users to inadvertently disclose sensitive information such as location to chatbots. Their

solution combines Named Entity Recognition (NER) and Public Key Encryption with

Keyword Search (PEKS) [13] to achieve server-aided access control. Their solution al-

lows the service provider to filter messages based on the encrypted keywords provided by

the chatbots, without knowing the keywords and messages. While their objective aligns

with our aim of selective message access, their solution results in high computation over-

head linear to the number of keywords, and requires modification to be compatible with

group settings and satisfy FS and PCS.

Some modern messaging platforms have implemented access controls for chatbots.

Telegram’s Privacy Mode [39] restricts chatbots to only accessing messages that directly

mention them, contain their predefined commands, or are replies to such messages. Slack

implements fine-grained permission controls [37] for accessing user metadata. However,

neither platform combines these access controls with group end-to-end encryption (E2EE).

Keybase [31] offers a similar policy to Telegram’s and uses dedicated keys for encrypt-

ing messages accessible to chatbots, but it lacks a mechanism to update keys for post-

compromise security (PCS).

8.2 Metadata-hiding Secure Messaging

Several research aims at extending secure group messaging to hide metadata. Chen

et al. [17, 18] formalized the notion of Internal/External Group Anonymity (IGA/EGA),

preserving sender indistinguishability from the perspective of group insiders and out-

siders. Anonymous Asynchronous Ratchet Tree (AART) is proposed to achieve sender

anonymity, FS, and, PCS. Our work adopts a definition similar to IGA that accommo-
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dates the presence of chatbots.

Several work focus on hiding metadata from outsiders of the group, including service

providers. Signal’s Private Group hides the group membership from the service providers

using key-verified anonymous credentials [15]. Keita et al. [25] define three layers of

metadata from the perspective of group outsiders, and propose wrapper protocols that up-

grade existing non-metadata-hiding CGKA to metadata-hiding ones. Their design utilizes

the fact that the single group shared key provides anonymity, and the shared key is used

to encrypt While our work can also be seen as a wrapper protocol, we focus on threats by

group insiders (in our case, chatbots) and modifying CGKA to protect users’ privacy from

chatbots.

Keita et al. [26, 27] proposed a scheme to achieve both E2EE and anonymous authen-

tication within a group, where a sender chooses an arbitrary ID as an ephemeral identity,

which is signed using the group signature [16] and sent to a receiver to prove membership

anonymously.
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Chapter 9 Conclusions and Future

Directions

In this work, we address the absence of a group messaging protocol that simulta-

neously supports strong E2EE and chatbot isolation. We propose a security model for

secure group messaging with chatbots, including an extended CGKA scheme, designated

as Our–CGKA, that supports message access control. Additionally, and security defini-

tion capturing strong E2EE properties and desired properties for chatbot isolation: sender

anonymity, and selective message access. We introduce CMRT as an construction for

Our–CGKA, which manages multiple keys among group members and chatbots while

maintaining sender anonymity and access control. Through security analysis and theoret-

ical analysis, we demonstrated that CMRT achieves these properties effectively without

imposing significant overhead.

This work initiates a critical discussion on the development of secure messaging pro-

tocols that include untrusted entities such as chatbots. It highlights the need for future

research to explore the practicality of these designs and to identify opportunities for en-

hancing performance. A formal security analysis is also critical for strong security guar-

antee. This exploration is essential for advancing the security of daily communications.
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Appendix A — Cryptographic

Primitives

A.1 Pseudorandom Generators

A pseudorandom generator (PRG) is a function PRG :W →W that produces output

PRG(U), which is indistinguishable from a uniformly random U ′ ∈ W , given U also

uniformly sampled fromW . The security of a PRG is measured by the advantage for an

attacker A has in distinguishing between PRG(U) and U ′, denoted as AdvPRG
prg (A).

Definition 3. A PRG scheme is (t, ϵ)-CPA-secure if for all adversaryA with running time

t,

AdvPRG
prg (A) ≤ ϵ

A.2 Public Key Encryption

A public-key encryption (PKE) scheme PKE = (PKEG,PKEnc,PKDec) consists of

the following algorithms:

• (sk, pk)←$ PKEG(s): Generates a PKE key pair from a secret s.
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• c ←$ PKEnc(pk,m): Encrypts the message m using the public key pk and outputs

a ciphertext c.

• m← PKDec(sk, c): Decrypts the ciphertext c using sk and outputs the messagem.

IND-CPA security. Consider the following game:

IND-CPAA
PKE(λ)

b←$ {0, 1}

(sk, pk)←$ PKEG(1λ)

(m0,m1)←$ A(1λ, pk)

c←$ Enc(pk,mb)

b’←$ A(1λ, c)

return 1b=b’

Definition 4. A PKE scheme is (t, ϵ)-CPA-secure if for all adversaryA with running time

t,

AdvPKE
IND-CPA(A) ≤ ϵ
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Appendix B — Formal Security

Definition for Our CGKA

This appendix chapter outlines the formal security definitions for Our–CGKA, which

comprises two parts: (1) standard CGKA security properties including key secrecy, for-

ward secrecy (FS), and post-compromise secrecy (PCS), and (2) new security properties

specific to our protocol, namely sender anonymity and selective message access.

OSetup()

1 : K[·], ST[·]←⊥
2 : public T[·], usrs[·], cbts[·] ←⊥
3 : ep[·],C[·]← 0

4 : prop–ctr, comm–ctr, exp–ctr← 0

5 : ST[ID]← init(1λ, ID)∀ID

OProp(ID, ID′, C⃗ID , type)

1 : (γ, P )←$ prop(ST[ID], ID′, C⃗ID , type)
2 : T[ep[ID], ‘prop′,++prop–ctr]← P

3 : ST[ID]← γ

OCreate(ID0, ID1, . . . , IDn)

1 : (γ, T )← create(ST[ID0], ID1, . . . , IDn)

2 : if T =⊥ return
3 : T[t, ID0, IDi]← T∀
4 : ST[ID0] = T

OCommit(ID, (i1, . . . , ik))

1 : P⃗ ←$ (T [ID, ‘prop′, i])i=(i1,...,ik)

2 : (γ, T, k)←$ commit(ST[ID], P⃗ )

3 : t← ep[ID]

4 : T[t, ‘comm′,++comm–ctr]← T

5 : K[t+ 1]← k; ST[ID]← γ

ODeliver(ID, t, c)

1 : if C[t] ∈ {c,−1},C[t]← c

2 : else return
3 : T ← T[t, ‘comm′, c]

4 : γ ← proc(ST[ID], T )

5 : if ID /∈ γ.usrs ∧ID /∈ γ.cbts
6 : ep[ID]← −1
7 : else
8 : ep[ID]← t+ 1

9 : if γ.k ̸=⊥
10 : K[t+ 1]← γ.k

11 : usrs[t+ 1]← γ.usrs
12 : cbts[t+ 1]← γ.cbts
13 : ST[ID]← γ

Figure B.1: Shared oracles for security games for our-CGKA. Highlighted code denotes
the modification apart from original definition.

Our game-based security definition is based on Alwen et al. [3] and and a refined

version defined in [8], which captures group key indistinguishability against adversaries

with access to group membership and control messages. Figure B.1 illustrates the funda-

mental oracles for the adversaries to manipulate a group, such as group creation, making
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proposals and commits, delivering a control message, etc. These oracles are accessible to

external adversaries or chatbot adversaries, reflecting the potential for attackers to com-

promise the service provider or individual chatbots.

We extend the definition to align with our extended syntax of CGKA, as highlighted

in Figure B.1. Specifically, the game additionally records the chatbot member given for

each epoch, and the proposal now takes an additional list of chatbot ids. An important

modification is at line 9 of Deliver oracle, where the group key is updated only when

non-empty key is obtained. This is because the selective message access feature prevents

unauthorized chatbot from acquiring new keys. In that case, the variable γ.k is set to ⊥,

denoting an absence of key access.

B.1 Security Game for External Adversaries

We follow Alwen et al. [3] to model group key indistinguishability against external

adversaries with key compromise capabilities.

B.1.1 Key Indistinguishability Game

The game KIND, as illustrated in Figure B.2, is parameterized with an adversary A,

a protocol Our–CGKA, and a cleanness predicate CCGKA. Our game is based on the one

defined in Alwen et al. [3]. The challenger first selects a random bit b. The adversary A

may then query the shared oracles depicted in Figure B.1 and the oracles in Figure B.2.

Finally, the adversary outputs the guess b′, and wins the game if b = b′.

Using the queries, the adversary can manipulate the group and make state compro-
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mises. For each epoch t, the adversary can choose to either reveal the group key k or make

a challenge, i.e. distinguish between the true group key with a random value.

KINDA
Our–CGKA,CCGKA

(1λ)

1 : b←$ {0, 1}
2 : exp[·]← 0; chall[·]← false
3 : b′ ←$ AO(1λ)

4 : assert CCGKA

5 : return 1b=b′

OExpose(ID)

1 : exp[ID,++exp–ctr]← ep[ID]

2 : return ST[ID]

OReveal(t)

1 : assert K[t] ̸=⊥) ∧ ¬chall[t]
2 : chall[t]← true
3 : return K[t]

OChallenge(t)

1 : assert (K[t] ̸=⊥) ∧ ¬chall[t]
2 : chall[t]← true
3 : if b = 0 return K[t]
4 : if b = 1 return r ← {0, 1}λ

Figure B.2: Chatbot key indistinguishability KIND game for our-CGKA, parameterized
by the cleanness predicate CCGKA.

The cleanness predicate CCGKA is designed to exclude trivial attacks, such as imme-

diately challenging a key after a compromise without subsequent updates. We adopt the

predicate defined in [8], which checks for every user member ID in the group, and for

each pair of compromise and challenge, it returns true in the two cases: (1) there is an

update, add, or removal between the compromise and challenge, capturing PCS, or (2) the

challenge occurs before the compromise, capturing FS. Any other scenario is considered

invalid by the predicate.

The helper function tExp(ID, ctr) returns exp[ID, ctr] if ∃k : qk = OExpose(ID) or -1

otherwise. The helper function hasupd(ID, T ) returns true if the commit corresponding

to the control message T contains proposals that affects ID by add, removal, or updates.

A Our–CGKA scheme is defined to be secure if the adversary’s advantage to win

the game is negligible. Let (t, q) adversary denote an adversary with running time t and

having at most q query accesses, we define the security of CGKA as follows.
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CCGKA : ∀(i, ID, ctr ∈ (0, exp–ctr]) : qi = OChallenge(t∗i ),

(ID /∈ usrs[t∗i ])∨
(∃(ti, c) : tExp(ID, ctr) < ti ≤ t∗i∧
hasUpd(ID,T[ti, ‘com′, c]) ∧ (C[ti] = c)∨
(t∗i < tExp(ID, ctr))

Figure B.3: Cleanness predicate for key indistinguishability, where the adversary makes
queries q1, . . . , qn.

Definition 5 (CGKA security of Our–CGKA). A our-CGKA protocol is (t, q, ϵ)-KIND-

secure w.r.t the cleanness predicate CCGKA if for any (t, q) adversary A,

∣∣∣∣Pr[KINDA
Our–CGKA,CCGKA

(1λ) = 1
]
− 1

2

∣∣∣∣ ≤ ε.

B.2 Security Game for Chatbot Adversaries

In order to model the capabilities of a chatbot adversary, we introduce a new oracle,

Setup, which discloses the states and keys of a chatbot identified by CID. The oracle

captures the fact that the adversary acts as a chatbot CID and is accessible to the following

two security games for chatbot adversaries. Note that the oracle Setup can be invoked

multiple times, which captures that there can be multiple malicious chatbots.

B.2.1 Sender Anonymity Game

The game Anon, as illustrated in Figure B.4, is parameterized with an adversary A,

a protocol Our–CGKA. We use sender indistinguishability to model sender anonymity for

group messaging, similar to the definition used in [17, 27]. Similar to the KIND game,

a random bit b is chosen initially, and the adversary can query the oracles multiple times.

Finally, the adversary outputs the guess b′, and wins the game if b = b′.
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The challenge oracle allows the adversary to select two usermembers, denoted ID0, ID1,

along with a chatbot CID within the group. The oracle then triggers an key update by the

chosen user member idb, which is accessible to the chatbot CID. The adversary finally re-

ceives the group key k, the control message T , and the chatbot’s state ST[CID]. This output

simulates the information that a chatbot would receive following a group key update

AnonA
Our–CGKA(1

λ)

1 : b←$ {0, 1}
2 : b′ ←$ AO(1λ)

3 : return 1b=b′

OChallenge(ID0, ID1,CID)

1 : assert ep[ID0], ep[ID1], ep[CID] ̸= −1
2 : (γ, P )←$ prop(ST[IDb],⊥,CID, upd)
3 : (γ, T, k)←$ commit(γ, (P ))

4 : t← ep[IDb]

5 : T[t, ‘comm′,++comm–ctr]← T

6 : K[t+ 1]← k; ST[IDb]← γ

7 : return k, T, ST[CID]

Figure B.4: Sender anonymity game (Anon) for our-CGKA.

Definition 6 (Sender Anonymity of Our–CGKA). A our-CGKA protocol is (t, q, ϵ)-Anon-

secure if for any (t, q) adversary A,

∣∣∣∣Pr[AnonA
Our–CGKA(1

λ) = 1
]
− 1

2

∣∣∣∣ ≤ ε.

B.2.2 Selective Message Access Game

The game SMA, as illustrated in Figure B.6, is parameterized with an adversary A,

a protocol Our–CGKA, and a predicate CCGKA. The game aims to model key indistin-

guishability against chatbot adversaries unauthorized to the keys. So the game is almost

identical to the KIND game, the only difference is that the Expose oracle now can only

expose the state of a chatbot, and we don’t record the epochs of exposures anymore, since

the adversaries are allowed to be the chatbots at anytime.
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SMAA
Our–CGKA(1

λ)

1 : b←$ {0, 1}
2 : chall[·], exp[·]← false
3 : b′ ←$ AO(1λ)

4 : assert CCGKA–cbt

5 : return 1b=b′

OReveal(t)

1 : assert (K[t] ̸=⊥) ∧ ¬chall[t]
2 : chall[t]← true
3 : return K[t]

OExpose(CID)

1 : exp[CID]← true
2 : return ST[CID]

OChallenge(t)

1 : assert (K[t] ̸=⊥) ∧ ¬chall[t]
2 : chall[t]← true
3 : if b = 0 return K[t]
4 : if b = 1 return r ← {0, 1}λ

Figure B.5: Selective message access (SMA) game for our-CGKA, parameterized by the
cleanness predicate CCGKA–cbt.

The adversary can compromise chatbots’ states to act as a chatbot. Our objective is

to secure keys derived from updates that do not involve these compromised chatbots. To

prevent trivial attacks, such as those where a chatbot CID is compromised and then used

to challenge an authorized key, we employ a cleanness predicate CCGKA–cbt, as defined as

follows, where hasUpdCbt(CID, t, c) returns true if T[t, ‘comm′, c] contains any proposal

P with type upd–cbt and the argument C⃗ID includes CID.

CCGKA–cbt : ∀(i,CID) : qi = OChallenge(t∗i ),

(¬ exp[CID])∨
(∄c : hasUpdCbt(CID, t∗i − 1, c))∧
(C[ti] = c)

Figure B.6: Cleanness predicate for selective message access, where the adversary makes
queries q1, . . . , qn.

Definition 7 (SelectiveMessage Access ofOur–CGKA). A our-CGKA protocol is (t, q, ϵ)-

SMA-secure w.r.t the cleanness predicate CCGKA–cbt if for any (t, q) adversary A,

∣∣∣∣Pr[SMAA
Our–CGKA,CCGKA–cbt

(1λ) = 1
]
− 1

2

∣∣∣∣ ≤ ε.
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