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摘要

近年來，隨著深度學習的進步，許多語音生成模型展現了出色的表現。儘管取

得了亮眼的成果，語音生成技術的發展也伴隨了對運算和資料資源的更大需求，

導致其效率受到了限制。本論文旨在從各個方面解決高效語音生成所面臨的挑

戰，包括運算效率、資料效率及其在資料高效的語音自監督學習（Self-Supervised

Learning, SSL）中的應用。

我們首先關注語音生成的運算效率。我們提出了一種高度壓縮的非自迴歸神

經聲碼器 (Neural Vocoder)，顯著減少了模型大小和訓練所需的運算資源。將改進

的架構與額外的後置濾波器相結合，提出的模型無需依賴 GPU加速，即可實現實

時推理和高品質語音輸出。該模型不僅在生成 44 kHz語音方面展現了卓越的性

能，更為高效語音合成樹立了新的基準。

接下來，我們探索自迴歸生成機制，並提高其推理效率。我們引入了創新方

法，頻率自迴歸生成（Frequency-wise Autoregressive Generation, FAR）和位自迴歸

生成（Bit-wise Autoregressive Generation, BAR），它們分別在不同的域進行自迴歸

生成。這些方法大大提高了推理速度，同時保持了良好的語音品質。除了用於神

經聲碼器之外，所提出的技術亦可能適用於其他語音生成任務，包括用於自迴歸

模型以提高推理效率和用於非自迴歸模型以提高輸出品質，從而擴大其影響。

隨後我們將重點轉向資料效率，解決在收集用於文字引導語音轉換（Text-
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Guided Voice Conversion）的標記資料時所面臨的高成本問題。我們引入強化學習

（Reinforcement Learning, RL）和基於人類回饋的強化學習（Reinforcement Learning

from Human Feedback, RLHF）來增強生成語音的表現力。我們的方法減少了對大

型標記資料集的依賴，並提高了模型處理複雜風格的文字描述和產生富有表現力

的語音的能力，從而在客觀和主觀評估方面展現了顯著改進。

最後，我們擴展了研究範圍，透過語音生成技術提高語音 SSL 中的資料

效率。我們利用高品質文字轉語音系統產生的合成語音資料來增強低資源的

（Low-Resource）預訓練（Pre-training）語料庫，減少對大量現實世界語音資料的

需求。提出的方法表明，合成資料可以有效地補充真實資料，從而以更少的資源

達到具有競爭力的性能。

總體而言，本論文對提高語音生成效率及其在語音處理中的應用做出了重大

貢獻。我們引入新穎的架構、生成方法及學習範式來解決運算和資料效率的挑戰，

為該領域的未來進步奠定基礎。

關鍵字：語音生成、運算效率、資料效率
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Abstract

Speech generation models have achieved outstanding performance with the advancement

of deep learning in recent years. Despite the remarkable achievements, the development

of speech generation technology has also been accompanied by greater demands on com-

putational and data resources, resulting in limitations in its efficiency. This thesis aims

to address the challenge of achieving efficient speech generation from various aspects,

including computational efficiency, data efficiency, and its application for data-efficient

speech self-supervised learning (SSL).

We first focus on the computational efficiency of speech generation. We propose a

highly compressed non-autoregressive neural vocoder, significantly reducing model size

and computational resources for training. By integrating the improved architecture with

an additional post-filter, the proposed model achieves high-quality speech output with

real-time inference capabilities without relying on GPU acceleration. This model not only

demonstrates superior performance in generating 44 kHz speech but also sets a new bench-

mark for efficient speech synthesis.

Next, we explore autoregressive generation mechanisms and enhance inference ef-

ficiency. We introduce innovative methods, Frequency-wise Autoregressive Generation

(FAR) and Bit-wise Autoregressive Generation (BAR), which perform the autoregressive
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processes in different domains. These methods drastically improve inference speed while

maintaining high speech quality. Besides neural vocoders, the proposed techniques are

versatile and have the potential to be applied to other speech generation tasks, including

autoregressive models for efficient inference and non-autoregressive models for better

quality, thereby broadening their impact.

Then, we shift the focus to data efficiency, addressing the high costs associated with

collecting labeled data for text-guided voice conversion. We introduce reinforcement

learning (RL) and reinforcement learning from human feedback (RLHF) to enhance the

expressiveness of generated speech. Our approach reduces the dependency on large, la-

beled datasets and improves the model’s ability to handle text descriptions of complex

speech styles and generate expressive speech, achieving significant improvements in both

objective and subjective evaluations.

Lastly, we extend the scope of our research to improve data efficiency in speech SSL

with speech generation techniques. By leveraging synthetic speech data generated from

a high-quality text-to-speech system, we augment the low-resource pre-training corpus,

reducing the need for extensive real-world speech data. The proposed approach demon-

strates that synthetic data can effectively supplement real data, enabling competitive per-

formance with significantly fewer resources.

Overall, this thesis makes substantial contributions to enhancing the efficiency of

speech generation and its applications in speech processing. We introduce novel archi-

tectures, generation methods, and learning paradigms that address computational and data

efficiency challenges, setting the stage for future advancements in the field.

Keywords: Speech Generation, Computational Efficiency, Data Efficiency
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Chapter 1

Introduction

1.1 Motivation

Speech is one of themost commonly usedmediums for human communication. Compared

with writing and reading, speaking and listening skills are mastered by most individuals

earlier when they grow up. In daily life, dialogue is also a more efficient and preferred

method of communication in most scenarios than text messages. The high efficiency of

speech communication is not solely attributed to the ability of humans to rapidly produce,

perceive, and comprehend sounds. The nuances in intonation, intensity, and speaking rate

embedded within speech enhance the transmission of messages, such as accents or emo-

tions, that are challenging to encapsulate in written form. In addition to the way humans

communicate with each other, recently, the way humans interact with machines is shifting

gradually to more intuitive spoken languages from traditional programming languages,

buttons, or text menus. Speech generation technologies play an increasingly important

role in human-computer interaction. These technologies not only facilitate seamless com-

munication between digital entities and humans but also enablemachines to deliver awider
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variety of information more swiftly and naturally through speech, significantly enriching

user experience by emulating human-like interactions.

In the field of speech generation, text-to-speech synthesis (TTS) and voice conver-

sion (VC) stand out as the primary tasks, with TTS focusing on converting plain text into

audible speech and VC on modifying voice characteristics such as speaker identity, ac-

cent, speaking style, or emotional tone. Typically, the process for these tasks involves

two key components: a task-specific synthesizer to generate target acoustic features and

a vocoder to recover speech waveforms from these acoustic features. These components

can be built either separately [1, 2] or jointly [3]. With deep learning achieving promi-

nent performance in computer vision (CV) and natural language processing (NLP), neu-

ral networks (NN) have also dominated the field of speech processing and become the

mainstream speech generation architecture. This evolution has led to significantly better

quality of generated speech, making it more natural, expressive, and closer to human-like

speech than ever before. These advancements can be attributed to innovations in comput-

ing hardware (particularly GPUs), advanced architectures, growing model sizes, and the

availability of high-quality datasets. Despite the remarkable achievements, such develop-

ments have also introduced new challenges and limitations to the efficiency of different

aspects:

1. Computational Efficiency: The early adoption of neural network-based vocoders,

or neural vocoders, marked a significant leap in speech generation quality [1]. These

neural vocoders apply an autoregressive architecture to generate waveform sam-

ples one by one [4, 5], making them with extremely slow inference speed since

there are tens of thousands of samples in a one-second utterance. The low infer-

ence efficiency makes real-time speech generation challenging, especially on de-
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vices without powerful computational resources, such as CPU-only or mobile de-

vices. Some subsequent works focused on non-autoregressive methods to improve

inference speed [6, 7]. However, these methods often require larger model sizes or

increased computational resources at training time to achieve optimal model perfor-

mance. The eager demand for computational resources at training time raises the

threshold and difficulty of building models for different speech generation tasks,

and the low efficiency at inference time directly affects the user experience and

limits the applicability of speech generation technologies.

2. Data Efficiency: The capability of neural networks to model complex data across

various speech tasks is well-recognized. However, this effectiveness heavily de-

pends on the availability of large and high-quality real-world datasets, which of-

ten necessitate considerable efforts to collect for specific tasks. For text-to-speech

synthesis, clean and well-labeled text-speech paired data is essential, while voice

conversion tasks require datasets with diverse speaker styles. More complicated

speech generation tasks, such as text-guided TTS [8, 9] or VC [10, 11], require hu-

man efforts to collect speech data of different speaking styles and carefully label text

descriptions for them. When building these versatile speech generation models, in

addition to architecture design and computational efficiency optimization, it is chal-

lenging to reduce efforts for data collection, alleviate reliance on large datasets, and

utilize available data more effectively.

This thesis focuses on investigating and tackling the inefficiency of speech gener-

ation from different aspects, mitigating the challenges posed by computational resource

demands and data scarcity when constructing speech generation applications. We start

with improving the architectures of neural vocoders and inventing better generation mech-

3
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anisms, boosting computational efficiency at training and inference time. For data effi-

ciency, we introduce an innovative learning paradigm for text-guided voice conversion

under a low-resource scenario. Furthermore, we extend the scope of this work by explor-

ing the application of speech generation methods to improve data efficiency in another

speech task, speech self-supervised learning (SSL) [12, 13], extending the contributions

of this thesis from optimizing the efficiency of speech generation to enhancing data effi-

ciency with speech generation techniques.

1.2 Contribution

Focusing on different aspects of efficiency, the main contributions made by this thesis are

summarized as follows:

1. Computational efficiency: designing a more compact non-autoregressive neu-

ral vocoder architecture for faster training, real-time inference, and high-quality

44 kHz speech. We propose a hybrid neural vocoder model containing two mod-

ules. The first is a compact WaveGlow model [6], which is highly compressed

to reduce model size and required training GPU memory. To further improve the

speech quality and convergence speed, we adopt a lightweightWaveNet-based post-

filter [4]. These modules are optimized jointly with the specially designed losses

and training process to ensure convergence. The proposed model is efficient and

economical at both training and inference time. In particular, the proposed model

is 97.2% smaller in size compared with the original WaveGlow, not only requiring

significantly less GPU memory and training time but also reaching 1.5 times faster

than real-time without any GPU acceleration during inference.

4
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Furthermore, we explore the ability of the proposedmethod to generate high-fidelity

44 kHz speech. We first assess the naturalness of real-world speech recordings at

different sampling rates, demonstrating the importance of speech fidelity in terms

of human perception. Then, we evaluate the quality of the 44 kHz speech generated

from neural vocoders and improve the performance by providing acoustic features

with higher temporal resolution when training neural vocoders.

2. Computational efficiency: rethinking the autoregressive generation mecha-

nism and refining its inference efficiency. We explore the properties and the

effectiveness of autoregressive generation. Based on our observations and assump-

tions, we proposed a novel concept for autoregressive generation. Instead of in the

time domain, the proposed model conducts autoregressive speech generation in the

frequency and bit precision domains more efficiently. In addition, we combine the

characteristics of the proposed autoregressive methods to build a post-filter for bet-

ter speech quality. Compared with its conventional autoregressive counterpart, the

proposed model exhibits comparable high speech quality while achieving inference

speeds up to 244 and 9669 times faster with and without GPU acceleration, respec-

tively, which matches the speeds of non-autoregressive methods.

3. Data efficiency: introducing a more data-efficient learning paradigm for text-

guided voice conversion. We enhance the data efficiency of text-guided voice con-

version by introducing reinforcement learning (RL) and reinforcement learningwith

human feedback (RLHF). To address the challenge of collecting expressive speech

data and extensive human-labeled style descriptions, we first utilize diverse, pub-

licly available datasets to build a text-guided voice conversion model and a reward

model. The reward model is built with contrastive learning and can do zero-shot
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classification for more complex speech styles unseen during training. We specially

design a process to use the reward model to assess the speech styles of converted

utterances. Then, by utilizing the RL algorithm and the discrimination from the re-

ward model, we improve the voice conversion model’s ability to generate speech

when given more complex style descriptions, facilitating the model to learn more

and better from the limited resources without collecting more high-quality labeled

data. Lastly, we further introduce human feedback to enhance the reward model,

which then guides the voice conversion model to generate expressive speech that

is more aligned with human preferences. The proposed method improves the ob-

jective metrics by up to 100% and reaches better subjective scores with statistical

significance. The experimental results indicate that the proposed approach reduces

the reliance on costly, human-annotated data, optimizes the training process, and

expands the model’s versatility in interpreting and applying various speech styles

effectively.

4. Data efficiency: achieving low-resource speech self-supervised learning with

the aid of speech generation. We demonstrate the impact of data scarcity for

building a speech SSL model, including the challenges of overfitting and worse

performance. In such a low-resource scenario, we propose a process to leverage

discrete acoustic representations to construct a speech generation system more ef-

fectively. The speech generation system then generates large amounts of synthetic

speech data, augmenting the pre-training corpora for speech SSL. Experimental re-

sults show that the proposed approach effectively reduces the demand for speech

data by 90% with only slight performance degradation.

6
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1.3 Overview

This thesis is organized as follows:

• Chapter 2 reviews the literature on topics related to this thesis, including neural

vocoders, text-guided speech generation, and speech self-supervised learning.

• Chapter 3 introduces a compact, non-autoregressive neural vocoder that is compu-

tationally efficient at training and inference time.

• Chapter 4 introduces an innovative concept for autoregressive generation and pro-

poses an autoregressive neural vocoder with faster inference speed.

• Chapter 5 explores applying reinforcement learning to text-guided voice conversion

to improve data efficiency.

• Chapter 6 expands the focus on data efficiency from speech generation to speech

self-supervised learning.

• Chapter 7 summarizes this thesis and discusses future research directions.

7
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Chapter 2

Background

2.1 Neural Vocoder

2.1.1 Overview

Neural speech generation has recently achieved remarkable audio qualities in different

speech tasks such as text-to-speech (TTS) [2, 4, 14] and voice conversion (VC) [15]. These

systems typically comprise two separate models: a synthesizer and a vocoder. A synthe-

sizer is usually designed for some specific speech task and outputs acoustic features such

as linear-scaled spectrograms, Mel-spectrograms, F0 frequencies, spectral envelopes, or

aperiodicity information [1, 16–18]. A vocoder is designed to reconstruct audio wave-

forms from the acoustic features [4, 5, 19]. In the early era of neural speech generation,

a hand-crafted vocoder [19–21] or the Griffin-Lim algorithm [22] was adopted to recon-

struct speech waveforms [16, 23–25]. However, speech signals have a high temporal

resolution, and neither conventional vocoders nor heuristic methods can reconstruct high-

quality natural speech, remaining modeling raw audio a challenging problem. In Tacotron
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2 [1], a neural network [4] is used as the vocoder to generate speech conditioning on

Mel-spectrograms and has shown the potential of neural vocoder for synthesizing natural

human speech.

Neural vocoders, while proposed for the TTS system, are not limited to this usage. A

neural vocoder can be used for a wide range of applications associated with speech gen-

eration, such as TTS [2, 16, 26], VC [15, 27], speech bandwidth extension (SBE) [28],

and speech compression (SC) [29, 30]. With high-quality vocoders involved, these mod-

els can focus only on processing acoustic features for different speech tasks instead of

directly manipulating speech waveforms. As more and more models process and output

acoustic features while using another neural network to reconstruct speech, the research

about using neural vocoders for waveform modeling becomes influential on the natural-

ness of generated speech [31–33].

2.1.2 Autoregressive Neural Vocoder

In the beginning, most of the neural vocoders for speech generation are autoregressive.

Given a waveform x = {x1, x2, ..., xT} and its acoustic features c, where xt is the audio

sample at time t, the joint probability of x given c can be factorized as follows:

p(x|c) =
T∏
t=1

p(xt|c, x1, x2, ..., xt−1). (2.1)

An autoregressive vocoder is built based on this factorization and trained to maximize

p(x|c), where c can be extracted from real waveforms or predicted by a synthesizer. It

generates future audio samples conditioning on previous ones to model long-term depen-

dencies in speech waveform, resulting in an iterative generation process. WaveNet [4],

10
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as one of the earliest and most representative autoregressive neural vocoders, models the

waveform using dilated convolutional layers and gated activation units from [34]. This

architecture has shown effectiveness in modeling speech waveforms [6, 35, 36] and has

been widely applied in various speech processing tasks [37–39].

Some variants of autoregressive vocoders are later proposed to improve synthesis

speed by leveraging more lightweight architectures and more efficient generation pro-

cesses. FFTNet [40] improves efficiency by an architecture resembling the Fast Fourier

Transform. In WaveRNN [5], the deep convolutional networks in WaveNet are replaced

with smaller recurrent neural networks to model long-term dependencies. This work also

introduces Sparse WaveRNN and Subscale WaveRNN to reduce the complexity at infer-

ence time. Inheriting the compact architecture of WaveRNN, LPCNet [41] adopts linear

prediction to enhance the efficiency of speech generation. Based on LPCNet, Bunched

LPCNet [42] proposed sample bunching and bit bunching to increase inference speed,

and [43] applies tensor decomposition to reduce model parameters further.

Another branch applies the subband analysis technique and significantly improves ef-

ficiency [44–47]. By splitting a full-band waveform into several subband signals, autore-

gressive models can iterate on different subbands simultaneously and generate multiple

samples in parallel. Based on subband LPCNet [47], [48] proposed to predict a subband

signal conditioning on generated samples from the current and other subbands.

In addition to modifying model architectures and generation methods, some other

works turn from Python frameworks to highly optimized implementations in C to improve

inference efficiency 1 2. The efforts above have successfully improved the efficiency of

1https://github.com/NVIDIA/nv-wavenet
2https://github.com/xiph/LPCNet
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autoregressive vocoders. However, these autoregressive models are inherently serial and

can not fully utilize parallel processors like GPUs or TPUs.

2.1.3 Non-Autoregressive Neural Vocoder

Recently, many non-autoregressive models have been proposed to better improve the in-

ference efficiency of the neural vocoder. These methods discard the iterative generation

process and target to simultaneously predict all samples x1, x2, ..., xT in a waveform x. To

this goal, various approaches are proposed to estimate and optimize the probability of x

given acoustic features c, p(x|c), without the factorization used in autoregressive genera-

tion.

Some works try to distill outputs of autoregressive models to non-autoregressive

ones, for example, Parallel WaveNet [49] and Clarinet [50]. The student networks un-

derlying both Parallel WaveNet and Clarinet are based on inverse autoregressive flow

(IAF) [51]. Though the IAF network can run in parallel at inference time, the teacher-

student-based knowledge distillation strategy makes the training process inefficient and

the whole framework complicated for users to implement.

Inspired by the success of the flow-based model in image generation [52], Wave-

Glow [6] is proposed. Instead of the autoregressive process in IAF, WaveGlow adopts

the affine coupling layer, which is more efficient, and the synthesis speed is 25 times

faster than real-time. Another group of vocoders utilizes generative adversarial networks

(GAN), which calculate the probability implicitly, for example, MelGAN [53] and Paral-

lel WaveGAN [35]. Aside from the flow-based and GAN-base models, diffusion-based

(or score-based) methods, such as DiffWave [36] and WaveGrad [54], model the multi-

12
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step generation as a Markov process and refine the output waveform over steps, making

it possible to trade off between inference speed and speech quality.

2.1.4 Efficiency, Quality, and Stability of Neural Vocoders

Autoregressive and non-autoregressive vocoders have different generation processes, re-

sulting in their respective advantages and limitations regarding computational efficiency,

quality, and stability.

Computational Efficiency

Autoregressive vocoders inherently generate samples sequentially, inevitably requiring

tens of thousands of predictions to generate an utterance of a few seconds. The inference

speed is thus drastically slower than real-time. Even in the faster variants[5, 40–48], ef-

ficiency remains a concern as these models cannot generate all samples in parallel due to

the nature of autoregressive generation in the time domain. In contrast, non-autoregressive

models generate all signal samples in one computation, allowing for real-time synthesis

even without a GPU when the architectures are compact. With the parallel synthesis ca-

pability, non-autoregressive vocoders demonstrate a significantly faster inference speed

than their autoregressive counterparts. Nevertheless, many non-autoregressive methods

use more computational resources during training to reach decent performance [6, 7, 54],

making it challenging to build applications with limited GPU budgets.

13
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Quality

Even though non-autoregressive models are much faster at inference time, empirical ev-

idence suggests that most of these methods are less performant than autoregressive ones.

To better support this claim, we survey the subjective evaluations in different famous

non-autoregressive works, including flow-based, GAN-based, and diffusion-based mod-

els. We organize our observations as follows. All the comparisons are in terms of the

naturalness of the generated speech.

• Flow-Based Model

◦ FloWaveNet and WaveFlow do not outperform WaveNet in their original pa-

pers [55, 56].

◦ Though the performance of WaveGlow is better than WaveNet in the original

paper [6] and [53], it usually performs worse than WaveNet in most other

recent works [7, 36, 56, 57].

• GAN-Based Model

◦ MelGAN performs worse than WaveNet in the original paper [53] and [7].

Also, in [54], both MelGAN and its improved version, MB-MelGAN [58],

are less performant than WaveRNN.

◦ Although Parallel WaveGAN outperformsWaveNet in the original paper [35],

we found the WaveNet used in the experiments is smaller than in [57], [36],

and [7]. In [57] and [54], both WaveNet and WaveRNN show better results

than Parallel WaveGAN. Furthermore, in another work to improve Parallel

WaveGAN by the same authors [59], WaveNet with noise-shaping [60] out-

14
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performs both the original and the improved Parallel WaveGAN models.

◦ HiFi-GAN is a recently proposed vocoder and outperforms WaveNet in the

original paper [7]. Yet works that include HiFi-GAN and other autoregressive

methods as baseline comparisons are currently limited.

• Diffusion-Based Model

◦ In DiffWave [36], WaveNet outperforms all proposed BASEmodels and other

non-autoregressive baselines. The proposed LARGE model is only slightly

better than WaveNet in the subjective evaluation.

◦ In WaveGrad [54], WaveRNN outperforms all proposed BASE models and

other non-autoregressive baselines. The proposed LARGE model is only sli-

ghtly better than WaveRNN in the subjective evaluation.

From the evaluation results of the literature, the comparative autoregressive baselines,

mostly WaveNet or WaveRNN, usually perform better than non-autoregressive models.

Furthermore, most autoregressive models in these works are their original versions. They

are not implemented with improving techniques proposed later [40, 41, 45, 60]. The obser-

vations above indicate that non-autoregressive vocoders still struggle to consistently out-

perform autoregressive ones regarding speech quality, whether evaluated in the original

papers [36, 53–56, 61] or as comparative models in other works [7, 36, 54, 56, 57, 59, 61].

A similar tendency has been observed in natural language processing (NLP), where

studies have indicated the effectiveness of autoregressive models in capturing sequen-

tial dependencies and contextual information [62–65]. Moreover, a comprehensive sur-

vey [66] on multiple tasks, including neural machine translation (NMT), automatic speech

recognition (ASR), and TTS, demonstrates that the difficulty of non-autoregressive gen-
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eration correlates with the target token dependency. In light of the literature above, we

attribute the superior quality of autoregressive vocoders to their ability to model long-term

dependencies and capture time-dependent nuances in pitch, energy, and other acoustic

features. Conditioning future audio samples on previous ones, autoregressive vocoders

capture temporal coherence, producing more natural speech with fine-grained acoustic

details. Consequently, despite the high efficiency of non-autoregressive models, autore-

gressive vocoders gain an advantage in speech quality.

Stability

Besides efficiency and quality, autoregressive and non-autoregressive methods also differ

in stability. While autoregressive models generally excel in speech quality, they can some-

times experience error propagation, which hampers their stability. Error propagation [67]

refers to the phenomenon where errors in earlier predictions can propagate and amplify

throughout the generation process, potentially affecting the overall stability of the output.

On the other hand, non-autoregressive methods, with the ability of parallel synthesis, are

not affected by this issue and offer improved stability. Though autoregressive models may

encounter error propagation in some scenarios, it is worth noting that their overall quality

is still better, as mentioned previously.

2.2 Text-Guided Speech Generation

2.2.1 Overview

Recent years have witnessed significant advancements in speech generation technology,

evolving from robotic articulations to systems capable of producing natural speech with
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various styles, including specified speaker identity, manner of speaking, emotion, and ac-

cent. However, these styles are typically predefined or extracted from reference speech,

limiting the model’s expressiveness to style categories in the training set or prepared

speech prompts. Consequently, the diversity of generated speech styles and the flexibility

for users to specify desired styles are constrained. On the contrary, in image and music

generation, generative models that condition output styles on text descriptions have flour-

ished, demonstrating remarkable achievements and allowing users to specify a broader

range of styles more freely. This discrepancy has led to a paradigm shift towards text-

guided speech generation, where natural language provides a more intuitive and flexible

interface for defining and customizing voice styles. As a result, text-guided speech gen-

eration is emerging as a prominent research direction and is increasingly applied to tasks

such as text-to-speech synthesis and voice conversion.

2.2.2 Text-Guided Text-to-Speech Synthesis

A typical expressive multi-speaker TTS model produces speech with content and style

determined by the input text sequence and additional specified conditions, respectively.

These conditions contain features of the target style, such as speaker identity and emotion.

The style can correspond to a class seen during the training stage and specified by the class

ID at inference time. Alternatively, it can represent a new, unseen style derived from a ref-

erence utterance. Recent works explore the extraction of conditions from human-written

descriptions. [68] proposes to take short written-style tags as input and model the re-

lationship between linguistic embeddings and speech styles. Similarly, PromptTTS [8]

introduces two datasets (real and synthesized versions, denoted as PromptSpeech-R and

PromptSpeech-S, respectively) to develop a TTS model capable of adjusting speech char-
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acteristics such as speed, pitch, volume, and emotion through text descriptions. Following

these works, InstructTTS [9] endeavors to encapsulate more nuanced styles into speech

from more subjective and abstract descriptions akin to sentences used in daily life. The

authors create a speech dataset with varied and expressive styles, carefully annotated with

detailed text prompts in free-form natural language. The resulting InstrctTTS model al-

lows users to unrestrictedly describe diverse speech attributes, including speed, emotion,

and conceptual scenarios. Besides focusing on the form of text descriptions, some ad-

vanced research uses specialized speaker prompts only for describing speaker characteris-

tics [69, 70], leaving the rest of the speech variation handled by other model components.

Table 2.1 lists text prompts used to describe styles in different works, demonstrating dif-

ferent aspects of speech characteristics to control. Complementary research directions

include applying multi-modal inputs to specify styles [71], a unified architecture that un-

derstands linguistic and acoustic features [72], and leveraging large language models to

reduce the reliance on human-written style descriptions [72–75].

2.2.3 Text-Guided Voice Conversion

The goal of speech conversion is to transform the input speech into an utterance of a

specific speaker without altering the original spoken content. Like in the TTS task, tradi-

tionally, the target speaker can be specified by a class ID or referring to a speech utterance.

Recently, progress has beenmade in utilizing text descriptions to characterize target speak-

ers and styles. In PromptVC [10], the authors propose using a diffusion model to learn

the mapping from linguistic features to style embeddings extracted from given reference

speech. In Kuan et al. (2023) [11], a combination of TTS systems and speech process-

ing toolkits are employed to create a dataset with a large amount of paired data, which
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Table 2.1: Example text descriptions in different works. Descriptions in other languages

(Lang.) are translated into English.

Name Lang. Example

PromptSpeech-R [8] en
Her sound height is really high, the volume is

normal, but she speaks very slowly

PromptSpeech-S [8] en A lady whispers to her friend slowly

Coco-Nut [76] ja
A young man is speaking in a high-pitched

voice, as if he is excited.

FSNR0 [68] ko with affection

NLSpeech [9] zh
There was a sense of joy in the words, an

expression of joy in the heart, mixed with pride.

PromptTTS++ [69] en

(style) A woman speaks slowly with low volume

and low pitch.

(speaker) The speaker identity is described as soft,

adult-like, gender-neutral and slightly muffled.

PromptSpeaker [70] zh a husky voice from a middle-aged man

includes text descriptions of target styles and the corresponding pre- and post-conversion

speech utterances. The authors adopt an architecture similar to AudioBox [72], building

a unified model to concurrently learn to interpret the style specified by linguistic features

and convert acoustic features accordingly. By integrating textual guidance, the advance-

ments of TTS and VC tasks highlight the shift towards more flexible, controllable, and

customizable speech generation technologies.
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Table 2.2: Details of text-guided speech generation models, including task, language

(Lang.), attributes specified in text descriptions (Attr.). The asterisks (*) indicate that

the training datasets or codes for building datasets are open-source. -: not reported.

Name Task Lang. Attr.

Kim et al. (2021) [68] TTS ko
emotion, intention,

voice tone, speed

PromptTTS* [8] TTS en
gender, pitch, speed,

volume, emotion

InstructTTS [9] TTS zh
overall perceived emotion,

emotion level, style

PromptStyle [77] TTS zh speaking style

PromptTTS 2* [73] TTS en
gender, pitch,

speed, volume

PromptTTS++ [69] TTS en
speaker characteristics,

pitch, speed, volume

PromptSpeaker [70] TTS zh speaker characteristics

Zhang et al. (2023) [74] TTS zh
speaking scenario, emotion,

loudness, pitch, speed

MM-TTS [71] TTS en
gender, emotion,

emotion level

Audiobox [72] TTS multilingual

age, gender, audio quality,

pitch, speed, accent,

emotion, environment

Lyth et al. (2024) [75] TTS en
gender, accent, speed,

pitch, audio quality

PromptVC [10] VC zh -

Kuan et al. (2023) [11] VC en
gender, pitch, speed, volume,

emotion, SoX effects [78]
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Table 2.3: Details of text-guided speech generation datasets reported in different works,

including language (Lang.), data source (Src.), total duration (Dur., in hours), number of

utterances (Uttr.), and number of speakers (Spk.). -: not reported.

Name Lang. Src. Dur. Uttr. Spk.

Publicly Available

PromptSpeech-R [8] en LibriTTS [79] - 27893 1191

PromptSpeech-S [8] en TTS - 160124 4

Coco-Nut [76] ja YouTube 8 7600 -

Proprietary

FSNR0 [68] ko professional voice actors 26 18700 8

NLSpeech [9] zh internal 44 32000 7

PromptStyle [77] zh internal 12 - 8

PromptTTS++ [69] en LibriTTS-R [80] 585 - 2456

PromptSpeaker [70] zh

internal,

AISHELL-3 [81],

DiDiSpeech [82]

- 21760 792

Zhang et al. (2023) [74] zh artistic storytelling shows 60 30000 1

MM-TTS [71] en MEAD 36 31055 47

PromptVC [10] zh internal - 50000 6

Kuan et al. (2023) [11] en
internal,

PromptSpeech [8]
700 405000 2460
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2.2.4 Data Resources of Text-Guided Speech Generation

Table 2.2 shows details of text-guided speech generationmodels, highlighting a significant

reliance on proprietary datasets, particularly for works in languages other than English and

involving complicated styles [9, 10, 70, 74, 77]. This reliance often leads to the utilization

of extensive, private collections of data, limiting the reproducibility and generalization

of such models. Table 2.3 lists details of datasets used in text-guided speech generation

works. These datasets are mainly closed-source, with only a few being publicly available.

Moreover, the open-source datasets typically encompass less expressive speech from a

TTS dataset or model [8], resulting in reduced diversity. Given these constraints, some

works have sought to mitigate the need for human-annotated data by leveraging large

language models for data retrieval or augmentation. Despite these efforts, how to effi-

ciently utilize existing datasets to enhance the diversity of text descriptions and speech

data, thereby constructing a more robust model, remains a significant challenge.

2.3 Self-Supervised Learning in Speech Processing

2.3.1 Overview

Self-supervised learning (SSL) in speech processing has evolved as a significant advance-

ment, enabling models to learn from unlabeled data. An SSL model first undergoes pre-

training on extensive corpora; then, it extracts robust representations useful across various

speech tasks. This learning paradigm is facilitated through pretext tasks, specifically de-

signed to assist the model in capturing high-level abstract information from the raw audio

signals. During pre-training, the model is tasked with predicting some aspects of the input
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utterance based on other parts of the same utterance. In [83], the authors group the pre-

text tasks for speech self-supervised learning into three main categories. The first one is

generative approaches, in which the input speech features are partially masked by zeros or

other features at randomly selected frames [84–86]. The model learns to reconstruct the

missing features with the information from the unmasked parts. The second is contrastive

approaches, which introduce contrastive learning methods to extract representations that

can distinguish designed positive samples from negative ones [12, 87–89]. The last cat-

egory is predictive approaches, in which the model aims to generate speech features of

future frames given features from previous frames [90–93]. These pretext tasks encour-

age the model to understand underlying patterns and structures in speech data, such as

phonetic nuances or speaker characteristics, without relying on explicit annotation.

After an SSL model is trained on a large dataset of unlabeled speech, it can be fine-

tuned using labeled data for specific downstream tasks such as automatic speech recog-

nition, speaker identification, or sentiment analysis [94]. This fine-tuning process adapts

the general-purpose representations learned during the pre-training to the specifics of the

targeted task. The representations can be the outputs of the SSL model or hidden outputs

from the intermediate layers. Importantly, SSL has shown to be particularly effective in

speech processing, outperforming traditional supervised learning methods, especially in

scenarios where labeled data is scarce or in multi-modal contexts. This has led to signif-

icant improvements over traditional supervised methods, which often require extensive

labeled datasets that are costly and labor-intensive to create.
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2.3.2 Data Resources of Self-Supervised Learning in Speech Process-

ing

Despite significant advances in SSL for speech processing, these methods exhibit a pro-

nounced dependence on extensive datasets during pre-training. While WavLM and Hu-

BERT have achieved state-of-the-art (SOTA) performance with little labeled data [13,

94, 95], the best models are pre-trained using datasets comprising tens of thousands of

hours of speech. This heavy reliance on vast amounts of unlabeled data poses substan-

tial challenges for applying these SOTA methods to specific knowledge domains or low-

resource languages with limited available speech data. Additionally, using large-scale

speech datasets raises concerns regarding copyright and privacy issues, as they often con-

tain proprietary or personally identifiable information. Furthermore, despite SSL achiev-

ing notable successes across computer vision, natural language processing, and speech

processing domains, research on reducing the dependence on extensive unlabeled datasets

remains limited. This scarcity of solutions exacerbates the issue, maintaining it as a sig-

nificant challenge within the field. Consequently, developing methods to enhance the data

efficiency of SSL with smaller, more domain-specific datasets without compromising per-

formance remains a pivotal area of research.
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Chapter 3

Computational Efficiency in Speech

Generation: Better Architecture Design

for Non-Autoregressive Neural Vocoder

3.1 Introduction

In the previous chapters, we identified limitations in the computational efficiency of speech

generation systems. First is the slow inference speed of autoregressive neural vocoders.

Subsequently, although some non-autoregressive alternatives, such as WaveGlow [6] and

ParallelWaveGAN [35], are proposed to improve inference efficiency, thesemethods have

deeper model architectures [6] or more complicated training frameworks [7, 35], which

instead result in higher demands for training resources.

To address the latter limitation, in this chapter, we aim to design an efficient, high-

quality, and small-footprint waveform generationmodel. Startingwith a non-autoregressive

WaveGlow vocoder, we first compress the model by applying the weight-sharing tech-
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nique across different layers, significantly minimizing the model size and GPU memory

required during training. Then, we adopt a WaveNet-based [4] post-filter to avoid the

compression harming the speech quality. The architecture of WaveNet has shown remark-

able performance in various speech processing tasks [6, 35, 37, 38]. Since the post-filter

only needs to amend the output of the compressed WaveGlow, a small network is com-

petent, keeping the overall model fast and lightweight. With the streamlined architecture

and specially designed losses in the frequency domain, the proposed model, referred to

as WG-WaveNet, possesses improved convergence speed while maintaining high-quality

output. Besides, WG-WaveNet requires much less computational cost at both training and

inference time. The contributions of this study are summarized as follow:

• We propose a hybrid neural vocoder model, which is composed of a highly com-

pressed WaveGlow model and a WaveNet-based post-filter. The proposed model,

WG-WaveNet, is efficient and economical during training. WG-WaveNet has only

2.5 M parameters, which is 2.8% of those in the original WaveGlow. It can be

trained on an NVIDIA 1080Ti GPU (using less than 8 GB GPU memory) in 4 days,

while 8 NVIDIA GV100 GPUs were used in the original WaveGlow paper [6].

• The proposed methods significantly improve the inference efficiency. In particular,

the inference speed of the proposed WG-WaveNet is higher than 960 kHz using an

NVIDIA 1080Ti GPU and 1.5 times faster than real-time even without any GPU

acceleration.

• For speech quality, perceptual experiments show that the proposed model can gen-

erate speech with similar quality compared with WaveNet, WaveGlow, Squeeze-

Wave [96], and Parallel WaveGAN [35].
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• We also study the quality of 44 kHz audiowaveforms (high-fidelity audio) generated

by neural vocoders. We explore the performances of ground truth recordings with

various sampling rates and the effects of different parameters of short-time Fourier

transform for training vocoders. The proposed method not only makes it possible to

synthesize 44 kHz audio samples on a single CPU 1.2 times faster than real-time but

also achieves a score of 4.01 in theMOS test, which even betters 16 kHz recordings.

3.2 Related Work

3.2.1 WaveGlow: A Flow-Based Neural Vocoder

WaveGlow [6] is a flow-based neural vocoder. It learns a bijective mapping f between

real-world speech data and a predefined distribution, a zero mean spherical Gaussian here.

This mapping can be considered as a series of bijective transformations, f = fk ◦ fk−1 ◦

... ◦ f1, where k is the total number of transformations. The mapping process can be

formulated as

z = fk ◦ fk−1 ◦ ... ◦ f1(x), (3.1)

where z ∼ N (0, I), and x is a speech waveform from the dataset. Following that, since

each transformation fi is invertible, we have

x = f−1
1 ◦ f−1

2 ◦ ... ◦ f−1
k (z). (3.2)

For each speech waveform x from the training set, a WaveGlow model with param-

eters θ is trained to minimize the negative log-likelihood of x. The log-likelihood can be
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calculated by applying the change of variables technique to Eq. 3.2:

log pθ(x) = log pθ(z) +
k∑

i=1

log |det(J(fi(x)))| , (3.3)

Where J is the Jacobian. The first term in Eq. 3.3 can be easily derived from the Gaussian

distribution, N (z; 0, I). To make the second term, the sum of the log-determinant of the

Jacobian of each transformation, easy to calculate, WaveGlow adopts multiple techniques

to build invertible and tractable transformations.

Figure 3.1 (a) shows the architecture of WaveGlow. The input speech signals are first

reshaped into groups of 8 audio samples, followed by 12 transformations, each consisting

of an invertible 1x1 convolution [52] and an affine coupling layer [97].

1x1 Invertible Convolution

An 1x1 invertible convolution fconv is a simple transformation to mix information across

different channels, formulated as

fconv(x) = Wx, (3.4)

where x is the input of each transformation, and W is the weight matrix, which is ini-

tialized to be orthonormal and invertible. The log-determinant of the Jacobian of this

transformation can be simply calculated fromW :

log |det(J(fconv(x)))| = log |detW | . (3.5)
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Figure 3.1: (a) WaveGlow network. (b) WaveGlow network (inverted). TheWN module

also takes Mel-spectrograms as input, which are omitted in this figure.

Affine Coupling Layer

In an affine coupling layer facl, the input x is first split along the channels into two parts:

xa, xb = split(x). (3.6)
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xa serves as the partial output and the input of anothermoduleWN , calculating parameters

to transform xb as the remaining output:

log s, t = WN(xa,mel), (3.7)

x′b = s⊙ xb + t, (3.8)

facl(x) = concat(xa, x
′
b), (3.9)

wheremel is a Mel-spectrogram used to provide acoustic information of speech. The pro-

cess of facl is designed to be invertible, regardless of the architecture ofWN . WaveGlow

applies WaveNet [4] as the backbone ofWN , which consists of convolutional layers and

gated activation units [34]. When the model is inverted to generate speech, as formulated

in Eq. 3.2, the affine transformation (Eq. 3.8) is also inverted as

xb =
x′b − t

s
. (3.10)

Figure 3.1 (b) shows the complete inverted process.

Due to the simplicity of affine transformation, the log-determinant of the Jacobian of

facl can be written as

log |det(J(facl(x)))| = log |s| . (3.11)

After deriving the log-determinant of the Jacobian of each transformation, we can

rewrite Eq. 3.3 as follows:

log pθ(x) = −z
⊤z

2σ2
+

k∑
i=1

(log si + log |detWi|), (3.12)

where z = f(x) is the model output duringWaveGlow training, σ is the standard deviation
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of the predefined Gaussian distribution. The model is then trained to optimize this log-

likelihood.

3.3 Method

The proposed WG-WaveNet is composed of two components, shown in Figure 3.2 (a).

The first part is a highly compressed WaveGlow model, which will be introduced in Sec-

tion 3.3.1. In Section 3.3.2, to further improve the sound quality, we employ a WaveNet-

based post-filter trained with loss functions on the frequency domains.

3.3.1 Highly Compressed WaveGlow

AWaveGlow model consists of several transformations to progressively map speech data

to the Gaussian space. A transformation is composed of an affine coupling layer [97] and

an invertible 1x1 convolution layer [52]. Each affine coupling layer in WaveGlow adopts

a deep WaveNet-like module. Consequently, the overall model is huge and hard to train.

We apply cross-layer parameter sharing to reduce parameters and make the model

more compact. The cross-layer parameter sharing has shown to be helpful in NLP task

pre-training [98] and source separation [99]. As shown in Figure 3.2 (a), transformations

in the compressedWaveGlow share the same affine coupling layer 1. This approach keeps

the model from drastically growing in size when it gets deeper. Considering these trans-

formations are processes of gradually mapping data from one distribution to another, in-

vertible 1x1 convolution layers remain different across transformations to keep variability.

1To make the affine coupling layer shareable here, we remove the early-output mechanism used in the

original WaveGlow to keep the output shape the same across layers.
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Figure 3.2: (a) Architecture of WG-WaveNet. (b) Training of WG-WaveNet.

We found that this improved the quality of generated speech in preliminary experiments.

We also change the upsampling method from deconvolution to layers of duplication and

convolution to further reduce parameters.

The training process is the same as mentioned in [6], shown by the green path in

32



doi:10.6342/NTU202401934

Figure 3.2 (b). The loss function, denoted as Lz, is the negative log-likelihood of the

training data. The proposed compression approach reduces the number of parameters in

the WaveGlow and considerably cuts down the requirements of GPU memory. In the

following section, we propose to use a post-filter to further speed up the convergence and

improve the performance of the compressed WaveGlow.

3.3.2 WaveNet-Based Post-Filter

A random noise z is sampled from the Gaussian distribution as the input of the inverted

compressedWaveGlow. The output ofWaveGlow is then used as the input of theWaveNet-

based post-filter to generate x̂ in parallel [100, 101] conditioned on an upsampled Mel-

spectrogram. The WaveNet-based post-filter is trained by minimizing the loss function

Ls(x, x̂), in which x is the ground truth samples, while x̂ is the output of the post-filter.

TheWaveNet-based post-filter and the inverted compressedWaveGlow are jointly learned

to minimize Ls(x, x̂)
2. Since the WaveNet here synthesizes audio samples based on the

output of the inverted compressed WaveGlow, its parameters can also be highly reduced.

For Ls, we utilize loss functions on the different frequency domains. Spectral losses

have been shown effective for training waveform generation models in [102], [103], and

[35]. We modify the multi-resolution short-time Fourier transform (STFT) auxiliary loss

in [35] as follows:

Ls(x, x̂) =
1

M

M∑
i=1

(Li
sc(x, x̂) + Li

mag(x, x̂) + Li
mel(x, x̂)), (3.13)

where M is the number of different parameter sets of STFT; Lsc and Lmag are the spectral

2Since the WaveNet-based post-filter is irreversible, it can not be trained jointly by maximizing the

likelihood as WaveGlow.
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convergence loss and the log STFT-magnitude loss from [104]:

Lsc(x, x̂) =
∥|STFT (x)| − |STFT (x̂)|∥F

∥|STFT (x)|∥F
, (3.14)

Lmag(x, x̂) =
1

Nmag

∥log |STFT (x)| − log |STFT (x̂)|∥1 , (3.15)

where ∥·∥F is the Frobenius norm, ∥·∥1 is theL1 norm, |STFT (·)| is the STFTmagnitude,

and Nmag is the number of elements in the magnitude. To make Ls more representative

of human perception, we add a Mel-scale STFT-magnitude loss:

Lmel(x, x̂) =
1

Nmel

∥log |MEL(x)| − log |MEL(x̂)|∥1 , (3.16)

where |MEL(·)| and Nmel denote the Mel-scaled STFT magnitude and the number of

elements in the magnitude, respectively. The number of Mel bands differs in different

STFT parameter sets.

The WaveNet-based post-filter is trained jointly with the inverted compressed Wave-

Glow, as shown by the red path in Figure 3.2 (b). The loss function for training WG-

WaveNet is a linear combination of Lz and Ls:

Ltotal = λLz + Ls, (3.17)

where λ is a scalar to balance the loss terms. In practice,Ls is calculated every n iterations.

Eventually, the overall WG-WaveNet (compressed WaveGlow plus WaveNet post-

filter) is 2.8% of the original WaveGlow in model size. Model details will be discussed in

Section 3.4.2.
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3.4 Experimental Setup

3.4.1 Datasets

Two datasets were used in the experiments. One was the LJ Speech Dataset [105]. This

English dataset consists of 13100 clean audio clips (about 24 hours) of a female speaker.

The sampling rate is 22050. The other was an internal Mandarin corpus, which contains

9004 utterances (about 6.8 hours) from a female speaker. The recordings were sampled at

44 kHz. 100 utterances were selected from each dataset for evaluation.

We used the 80-band Mel-spectrogram as the condition to synthesize audio. For

WG-WaveNet, the FFT size, hop size, and window size for STFT are 2048, 200, and 800,

respectively.

3.4.2 Model Details

The WaveNet-based post-filter in the proposed WG-WaveNet is composed of 7 layers

of dilated convolution blocks with 64 channels. The original WaveGlow has 12 trans-

formations. With the help of the post-filter, the compressed WaveGlow consists of only

4 transformations. The WaveNet-like module in the shared affine coupling layer has 7

layers with 128 channels. The WG-WaveNet model was trained for 1 M steps using the

Adam optimizer [106] with a batch size of 8. The learning rate was 4e−4 and reduced by

half every 200 K steps. We set λ = 1 and n = 3 based on preliminary experiments. The

parameters for calculating Ls in Section 3.3.2 are listed in Table 3.1. We also built a faster

version of WG-WaveNet, denoted as g-20. In WaveGlow and original WG-WaveNet, the

input is reshaped to groups of 8 samples [6]. Inspired by [96], the input of g-20 is reshaped
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Table 3.1: Parameters for calculating Ls (reported in samples).

FFT size 4096, 2048, 1024, 512, 256

hop size 400, 200, 100, 50, 25

window size 1600, 800, 400, 200, 100

# of Mel bands 640, 320, 160, 80, 40

Table 3.2: Comparison of model sizes.

Model Size

WaveNet 24.7 M

WaveGlow 87.9 M

SqueezeWave 23.7 M

Parallel WaveGAN 1.3 M

WG-WaveNet (ours) 2.5 M

WG-WaveNet (g-20) 3.1 M

to groups of 20 samples.

We compared ourmethodwith four baselinemodels: WaveNet,WaveGlow, Squeeze-

Wave, and Parallel WaveGAN. To ensure that the models were consistent compared to the

original models, for the first three, we used pre-trained models from public implementa-

tions 3 4 5. Note that the pre-trained models ofWaveGlow and SqueezeWave were released

by the official. We followed the setup in [35] to train the Parallel WaveGAN.

The numbers of parameters of different models are listed in Table 3.2. Both the

WaveNet-based post-filter and the compressed WaveGlow have fewer layers and chan-

nels than the original WaveNet and WaveGlow, making WG-WaveNet much more com-

3https://github.com/r9y9/wavenet_vocoder
4https://github.com/NVIDIA/waveglow
5https://github.com/tianrengao/SqueezeWave
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pact. WaveNet has 24.7 M parameters, and WaveGlow has 87.9 M parameters. WG-

WaveNet, on the other hand, has only 2.5 M parameters, which is 10.1% and 2.8% of

those in WaveNet and WaveGlow, respectively.

3.4.3 Evaluation Metrics

To evaluate the performance of the proposedmodel and the baselinemodels, we conducted

subjective and objective evaluations to assess speech quality.

• Subjective Evaluation: We conducted Mean Opinion Score (MOS) tests to rate

the quality of generated speech under human perception. In these MOS tests, raters

were asked to score each speech utterance on a five-point scale based on naturalness.

A higher score denotes higher quality and a closer resemblance to authentic human

speech. We randomly selected 10 utterances from the evaluation set to generate,

and each utterance was rated by at least 20 raters.

• Objective Evaluation: We calculated Mel-cepstral distortion (MCD, reported in

dB) [107] as the objective metric to evaluate the distortion in the frequency domain.

We first extracted 25-dimensional Mel-Frequency Cepstral Coefficients (MFCCs)

from both ground truth and synthesized speech signals. Subsequently, the root mean

square error (RMSE) was calculated on a frame-by-frame basis. The average RMSE

per frame was then used to determine the overall MCD score. A lower MCD score

implies greater similarity between the generated and ground truth speech, indicating

higher quality in the frequency domain. This evaluation was conducted using 10

utterances randomly selected from the evaluation set.
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Table 3.3: Comparison of computational cost and speed during training and inference

time. The units of memory, time, and speed are GB, days, and kHz, respectively.

Model
Training

Memory / Time

Inference Speed

CPU / GPU

WaveNet - 0.1 / 0.12

WaveGlow - 10 / 279

SqueezeWave - 330 / 4486

Parallel WaveGAN 14.4 / 2.7 18 / 841

WG-WaveNet (ours) 7.7 / 3.5 33 / 967

WG-WaveNet (g-20) 5.2 / 2.5 53 / 1634

3.5 Results

3.5.1 Speed and Computational Cost

We evaluated the speed and memory usage of different models during training and infer-

ence. Parallel WaveGAN and WG-WaveNet were trained on the same server using an

Nvidia V100 16GB RAM GPU to fairly evaluate the computational cost at the training

stage. The testing environment was a personal computer with an Intel i7-6700K CPU

and an Nvidia 1080Ti GPU. Since the computational cost of parallel synthesis methods

might be affected by the output length at the inference stage, we tested the models using

utterances with various lengths uniformly distributed from 2 to 9 seconds.

The results are shown in Table 3.3. Though the training time of WG-WaveNet is

slightly longer than that of Parallel WaveGAN, the training memory is 47% less. The

inference speed of WG-WaveNet is at a rate of 967 kHz with GPU and 1.5 times faster

than real-time without GPU. Moreover, the faster WG-WaveNet variant, g-20, can be
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Table 3.4: MOS and MCD results compared with other models. Mel-spectrograms were

extracted from the ground truth. The MOS results are reported with 95% confidence in-

tervals.

Model MOS MCD

WaveNet 4.49±0.101 4.619

WaveGlow 3.71±0.159 4.393

SqueezeWave 2.96±0.121 3.608

Parallel WaveGAN 4.24±0.108 4.026

WG-WaveNet (ours)

λ = 1, n = 3 4.08±0.118 3.783

λ = 1, n = 1 3.23±0.159 2.948

λ = 0, n = 1 3.65±0.164 2.407

g-20 3.75±0.124 3.848

Ground Truth 4.61±0.096 -

optimized withmuch fewer computational resources and generate 22 kHz speech 2.4 times

faster than real-time without GPU.

3.5.2 Audio Quality Comparison

The subjective and objective evaluation results are shown in Table 3.4. To assess the

effects of Lz and Ls on model performance, we trained WG-WaveNet with different λ

and n. Figure 3.3 shows the trade-off between audio quality and inference speed.

The observations based on Table 3.4 and Figure 3.3 are concluded as follows: (1)

WaveNet has the highest MOS, which is close to that of the ground truth data, yet there is

a gap between the performance of parallel and autoregressive synthesis methods. (2)MCD
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Figure 3.3: Trade-off between MOS and GPU inference speed.

is not strongly related to human perception. Training a model using Ls (λ = 0, n = 1)

leads to the lowest MCD but not the best MOS, while WaveNet has the highest MOS and

MCD. A similar contradictory result was also found in [40]. (3) Though we used the of-

ficially released models to synthesize utterances, WaveGlow and SqueezeWave did not

perform well. Subjects reported there were noise and reverberation effects in the gener-

ated speech. (4) The ablation study shows that both Lz and Ls are crucial for training

WG-WaveNet. We found that training using only Ls (λ = 0, n = 1) led to good quality

at the voiced parts of speech but significant high-frequency glitches at the unvoiced parts.

(5) The MOS decreases rapidly when the generating efficiency improves. WG-WaveNet,

however, has a faster speed and an MOS of 4.08, which is close to that of Parallel Wave-

GAN. This indicates that the proposed WG-WaveNet can greatly increase the synthesis

speed while preserving a comparable performance.

3.5.3 High-Fidelity Audio Generation

Due to the fast inference speed and high quality ofWG-WaveNet as shown in Sections 3.5.1

and 3.5.2, we show that WG-WaveNet can generate high-fidelity audio (44 kHz) in this
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Table 3.5: MOS results of high-fidelity audio generation with 95% confidence intervals.

Mel-spectrograms were extracted from the ground truth sampled at 44 kHz.

Model MOS

Parallel WaveGAN

w1600 3.12±0.134

w800 3.04±0.126

WG-WaveNet (ours)

w1600 3.15±0.148

w800 3.71±0.131

w800 (g-20) 4.01±0.110

Ground Truth (16 kHz) 3.72±0.147

Ground Truth (22 kHz) 4.15±0.127

Ground Truth (44 kHz) 4.44±0.105

subsection. To evaluate the performance, we trained WG-WaveNet and Parallel Wave-

GAN on the 44 kHz speech dataset mentioned in Section 3.4.1. We only compared WG-

WaveNet with Parallel WaveGAN here because only Parallel WaveGAN and Squeeze-

Wave are efficient enough to synthesize 44 kHz audio, and the audio quality of Squeeze-

Wave is not comparable with Parallel WaveGAN.MOS tests with the same setups as those

in Section 3.4.3 were conducted on the generated waveform and ground truth data with

different sampling rates.

The results are shown in Table 3.5. ”w800” denotes that the window size for ex-

tracting Mel-spectrograms is set to 800. The FFT size, hop size, and the number of Mel

bands are also the same as mentioned in 3.4.1. ”w1600” denotes that the window size is

doubled to 1600, and the other parameters are also doubled. Since the sampling rate is

changed from 22050 to 44100, doubling STFT parameters (w1600) makes the temporal
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Table 3.6: MOS results and GPU inference speed (in kHz) compared with other models.

Mel-spectrograms were generated by the Tacotron 2 model. The MOS results are reported

with 95% confidence intervals.

Model MOS Inference Speed

Tacotron 2+GL 2.11±0.139 -

Tacotron 2+WaveNet 3.96±0.116 0.12

Tacotron 2+Parallel WaveGAN 3.72±0.127 841

Tacotron 2+WG-WaveNet (ours) 3.68±0.133 967

Ground Truth 4.36±0.108 -

resolution of extracted features the same as in Section 3.5.2, while the temporal resolution

is doubled in ”w800”. Similarly, parameters for calculating Ls in ”w800” are the same

as in Table 3.1, while they are doubled in ”w1600”. We first found that the sampling

rates of the ground truth samples significantly affect their perceptual scores. The raters

considered the ground truths with higher sampling rates to be better. Experiments reveal

that when the temporal resolution of acoustic features is fixed (w1600), it is harder to

generate 44 kHz speech than to generate 22 kHz one. We observed that Mel-spectrograms

with higher temporal resolution (w800) helped improve the performance ofWG-WaveNet

(w800). WG-WaveNet outperformed Parallel WaveGAN in both ”w800” and ”w1600”

cases. Eventually, the faster WG-WaveNet reached 4.01 MOS, which is even better than

that of 16 kHz ground truth speech.

3.5.4 Text-to-Speech

We combined WG-WaveNet with a Tacotron 2 model to evaluate the proposed method as

a vocoder. The Tacotron 2 was built following [1]. Data preprocessing for training the
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TTS model and vocoders were set to the same as mentioned in Section 3.4.1.

The results of MOS tests and GPU inference speed of vocoders are reported in Ta-

ble 3.6. Note that the ground truth inherently has better prosody and quality than those of

the speech generated by Tacotron 2. We found that the performance gap betweenWaveNet

and the parallel synthesis methods narrowed. WG-WaveNet has an MOS comparable to

that of Parallel WaveGAN, and the inference speed is faster than other methods, which

shows the advantage of WG-WaveNet as a vocoder for fast, high-quality speech synthe-

sis.

3.6 Summary

This chapter aims to address the computational efficiency challenges of non-autoregressive

vocoders. We introduce WG-WaveNet, a flow-based vocoder with a compressed WaveG-

low model and a WaveNet-based post-filter. By applying the weight-sharing technique to

compress WaveGlow, we significantly reduce the model size and GPU memory required

during training. The proposed post-filter further speeds up the convergence, leading to

less training time. Besides training efficiency, we show that WG-WaveNet achieves a

high inference speed without sacrificing speech quality. Finally, we investigate the qual-

ity of high-fidelity audio and show that the proposedWG-WaveNet can real-time generate

high-quality 44 kHz audio samples without GPU acceleration.
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Chapter 4

Computational Efficiency in Speech

Generation: Applying

Non-Autoregressive Mechanism for

Efficient Autoregressive Generation

4.1 Introduction

In the previous chapters, we discussed the evolution of neural vocoders, the emergence

of non-autoregressive models designed to improve the speed of speech generation, and

the associated challenges in training efficiency. Chapter 3 specifically studied reducing

the computational efficiency required for training a flow-based non-autoregressive model.

The literature review in Chapter 2 and the experimental results fromChapter 3 underscored

the superior quality provided by autoregressive models. Building on these observations,

Chapter 4 shifts the focus back to autoregressive models, investigates their characteristics,

and rebuilds the autoregressive algorithm to achieve a more efficient generation process.
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This chapter aims to enhance the efficiency of autoregressive methods while main-

taining their superior speech quality, thereby establishing a rapid, high-quality vocoder

for speech generation. To better explain the properties of autoregressive methods, we

first explore and hypothesize the reason for the high quality and the low efficiency, then

introduce the proposed methods motivated by the hypothesis.

Autoregressivemethods have been successfully applied in various fields and achieved

high-quality results. These methods predict targets word by word [108–110], frame by

frame [1, 16], or pixel by pixel [34, 111–113]. Similarly, in waveform generation, con-

ventional autoregressive vocoders generate speech signals sample by sample [4, 5]. All

these methods predict only a small part of the whole target in each generation, conditioned

on the previous predictions. We hence hypothesize that, in a generative task, dividing the

target intomultiple smaller parts and predicting one part at a time conditioned on the

predicted parts reduce the complexity and difficulty of modeling real data. The pre-

dicted parts can provide more detailed information for the subsequent generation process,

resulting in better next predictions. For speech synthesis, by leveraging the conditioning

mechanism, autoregressive vocoders can better capture and model time dependencies in a

waveform, leading to superior speech quality. The hypothesis above also explains the in-

efficiency of autoregressive methods in speech synthesis, primarily attributed to dividing

the target in the time domain. This division significantly increases the computational cost

at inference, forming a predicting process that iteratively generates tens of thousands of

samples. Figure 4.1 (a) illustrates the predicting process of the conventional autoregres-

sive methods. To address the inefficiency problem while maintaining speech quality, we

turn to explore alternative domains to divide a speech waveform for iterative generation.

Motivated by the success of subband analysis in speech synthesis [44–48, 58], we
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Subband 4

Subband 2
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Subband 3

Full-Band

1-Bit

2-Bit

3-Bit

8-Bit

Figure 4.1: Overview of different autoregressive methods and their orders of generation.

(a) Conventional autoregressive generation. Samples at different time steps are gener-

ated sequentially. (b) Frequency-wise autoregressive generation (FAR). Subbands are first

generated autoregressively and combined to form the full-band waveform. (c) Bit-wise

autoregressive generation (BAR). The spectrograms in (b) and Mel-spectrograms in (c)

are only for visualization and not for generation.
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first shift the focus from the time domain to the frequency domain. Some previous works

have shown correlations between speech subbands [114, 115], and others, not restricted to

speech processing, leveraged the subband correlation in their proposed methods [44, 115–

117]. Combined with our hypothesis, the subband correlation revealed in the previous

works inspires a thought of dividing and sequentially predicting signals in the frequency

domain. Following the idea, we propose frequency-wise autoregressive generation (FAR).

In FAR, a full-band speech utterance is divided intomultiple frequency subbands by analy-

sis filters. Autoregressively in the frequency domain, themodel learns to predict a subband

given the previous one. As shown in Figure 4.1 (b), each subband contains partial informa-

tion of the full-band waveform, and successive subbands are correlated, sharing similar

time-dependent acoustic information provided in conventional autoregressive vocoders,

such as energy, f0, formants, or voicing status. A subband signal can thus provide help-

ful information for the next subband prediction. The FAR model generates the whole

subband utterance in a single computation. As a result, the time needed to derive the full-

band waveform is not dependent on the speech length. Instead, it is proportional to the

number of subbands, which typically is considerably less than the speech length.

We further probe other possible domains for autoregressive generation. Inspired by

the idea of dividing signals into different precision in [5], we investigate autoregressive

generation in the bit precision domain and propose bit-wise autoregressive generation

(BAR). In BAR, each speech sample is quantized into an 8-bit representation using µ-

law companding transformation. The value of an 8-bit sample ranges from 0 to 255. The

first bit, which represents whether the value of the speech sample is greater than 127, is

predicted first. Then the second and the third bits are sequentially predicted, conditioned

on the previously predicted bits. Finally, the first three bits are used to generate a com-
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plete 8-bit sample. Figure 4.1 (c) shows the overview of BAR. It is evident that even the

1-bit waveform shows clear f0 and formant contours. Since low-bit-coded signals contain

partial acoustic information of the 8-bit waveform, they can serve as conditions to predict

signals in other bit precision, implying the feasibility of BAR. Similar to FAR, the BAR

model also generates signals in the same bit precision in parallel, and the time for inference

is only proportional to the number of precision we divided.

The novel FAR and BAR greatly enhance efficiency by minimizing the number of

required iterations, yet they retain the iterative generative process to ensure the high quality

of generated speech. Furthermore, FAR andBAR can be combined and applied to the same

model. We show in experiments the effectiveness of combining FAR and BAR and the

importance of the generation orders.

The contributions of this chapter are twofold. First, this work proposes to explore

and design new directions for autoregressive methods to improve efficiency. Instead of

in the time domain, the proposed model conducts autoregressive speech generation in the

frequency and bit precision domain. Second, a post-filter is applied for sampling from out-

put posteriors and restores high-fidelity 16-bit samples instead of 8-bit ones. We combine

the characteristics of the proposed autoregressive methods to design the training objective

for the post-filter. To validate our hypothesis and assess the effectiveness of the proposed

FAR, BAR, and post-filtering methods, we conducted comprehensive experiments com-

paring them with existing autoregressive and non-autoregressive vocoders. Objective and

subjective experimental results consistently demonstrate that the proposed method, aug-

mented with a grouping mechanism, achieves real-time synthesis and matches the quality

of state-of-the-art neural vocoders. Furthermore, in addition to neural vocoders, the pro-

posed methods have the potential to be applied to autoregressive models in various speech
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synthesis tasks and improve efficiency.

4.2 Method

4.2.1 Rethinking the Direction for Autoregressive Generation

The conventional autoregressive neural vocoder, as shown in Figure 4.2 (a), formulates the

synthesis problem as maximizing the joint probability of a waveform x = {x1, x2, ..., xT},

which can be factorized as follows:

p(x) =
T∏
t=1

p(xt|x1, x2, ..., xt−1), (4.1)

where xt is the audio sample at time t and generated conditioned on signals from pre-

vious time steps. Teacher forcing can be easily applied for parallel computing during

training. While at inference time, the signal xt at time t is not able to be predicted until

all x1, x2, ..., xt−1 are inferred. The total iterations and time are inevitably proportional

to the target audio length. Twenty-two thousand calculations are conducted iteratively to

generate a one-second speech with a 22 kHz sampling rate.

To increase inference efficiency and preserve the quality of the audio output, we

redesign the autoregressive method to compute in domains other than the temporal one. A

waveform sequence x is first split into N subsequences, x1, x2, ..., xN , where N is some

fixed number, and each xn is a time series. As shown in Figure 4.2 (b), the prediction of

the nth subsequence xn is conditioned on the previous subsequence xn−1. Eq. 4.1 can be

reformulated as follows:

p(x) =
N∏

n=1

p(xn|xn−1). (4.2)
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Figure 4.2: (a) Conventional autoregressive model. Each blue circle represents a scalar.

(b) Proposed autoregressive model. The speech is generated iteratively in the frequency

domain or the bit precision domain. Each green block is the model illustrated in Figure 4.5

(a), and each orange block represents a time series.
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Figure 4.3: Frequency-wise autoregressive generation.

The redesigned process takes fixed N iterations in total and can be parallel in the time

domain by designing the model architecture, e.g., using only layers of CNN. We will

discuss the splittingmethods in Section 4.2.2 and 4.2.3. Note that the conditioning acoustic

features are omitted and will be detailed in Section 4.2.4.

4.2.2 Frequency-wise Autoregressive Generation (FAR)

The first splitting method is subband analysis, which divides a speech utterance into mul-

tiple subband signals using a subband analysis filter bank, and each represents information
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in different frequency bands. The analysis process can be written as follows:

{x1, x2, ..., xN} = ϕ(x), (4.3)

where ϕ is the analysis filter bank,N is the number of subbands, and xi is the ith subband

utterance. While splitting a signal with length L into N subband signals, each length is

shortened to L/N . Though some works leverage this method to improve the efficiency

of autoregressive vocoders [44, 45, 47], they only make use of the property of length

shortening to enable models to synthesize N shorter subband utterances in parallel. The

inference time still grows substantially as the signal length increases.

In FAR, we replace the time domain with the frequency domain for autoregressive

generation, making the model compute parallelly in the time domain and instead perform

autoregressive synthesis in the frequency domain. As shown in Figure 4.3, the model first

takes as input a noise Z from the normal distribution N(µ, σ) and generates the signal of

the first subband, x1. In each forward operation, xi serves as a condition to generate the

next subband signal, xi+1. Finally, a full-band L-length speech x can be generated with N

different subband signals and a synthesis filter bank ψ:

x = ψ(x1, x2, ..., xN). (4.4)

We follow [118] to design analysis and synthesis filter banks. In our proposed model, a

speech utterance is divided into eight subband signals, and the model iteratively generates

from the subband with the highest frequency to the one with the lowest. The total number

of iterations is consequently fixed to eight, which is much less than that in traditional

autoregressive methods and makes the model more efficient.
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Figure 4.4: Bit-wise autoregressive generation.

4.2.3 Bit-wise Autoregressive Generation (BAR)

FAR enables models to generate speech samples with a fixed number of iterations while

conditioned on the previous and future information. To provide more information for

autoregressive speech generation, in this section, we further investigated another domain

to split the signals. The proposed BAR is an autoregressive method in the bit precision

domain.

In BAR, we follow [4] to model the output as 8-bit samples transformed by the µ-

law algorithm. In a transformed 8-bit signal, samples are integers ranging from 0 to 255,

denoted as 8-Bit Signal (Scalar) in Figure 4.4. Samples can also be represented as binary
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Figure 4.5: (a) Overview and detailed block diagram of the proposed model. The model

predicts the ith subband xi conditioned on the previous subbandxi−1. hi is the hidden state,

and f i is the upsampled acoustic feature. BAR is integrated in each FAR prediction, and

bi,1, bi,2, bi,3 are the first three bits of xi. Channel sizes are shown in gray and parenthesized.

(b) WN module.
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sequences of length eight, denoted as 8-Bit Signal (Binary Encoded). As shown in Fig-

ure 4.4, the first step is to take an initial vector Z as input to generate the first bits (0 or 1)

of the samples at different time steps. The first bit represents whether the value of a speech

sample is greater than 127. All previous bits are used as conditions to generate the next

bits. The output signal gradually becomes more precise as the bits are predicted. Although

the model can iteratively generate each bit in the binary sequences, we empirically found

that the 8-bit integers in a signal can be directly predicted by conditioning solely on the

first three bits, thereby fixing the total number of iterations at four. In our implementation,

we integrate BAR into each FAR iteration, and the initial vector Z is the hidden output in

the model. Besides, we employ four separate layers for predicting the first three bits and

the 8-bit integers. Further implementation details will be provided in the next section.

4.2.4 Proposed Vocoder Architecture

In the previous sections, we introduced a new concept for autoregressive generation and

demonstrated FAR and BAR. The two proposed autoregressive methods can be combined

and applied to the same model. We will show in Section 4.4.1 that the model with both

FAR and BAR outperforms the models with only either method. This section details how

to combine FAR and BAR as an autoregressive neural vocoder.

Figure 4.5 (a) shows an overview and a detailed block diagram of the model, consist-

ing of two WaveNet-based modules (WN) and convolutional layers (Conv) with kernel

sizes (ks) of 5 and 1 (1X1). Figure 4.5 (b) shows the WN module, which is mainly com-

posed of dilated convolutional layers (DConv) and gated activation units [34]. The WN

module was originally proposed in WaveNet [4] and has been widely adopted in many

works [6, 35, 101, 119].
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To conduct FAR, the model predicts the ith subband xi conditioned on the previous

subband xi−1. Each xi is a sequence of 8-bit integers transformed by the µ-law algorithm.

The input for predicting x1 is randomly sampled from N(0, 0.25) and also transformed

into 8-bit integers. The acoustic feature, a full-band Mel-spectrogram, is upsampled to the

same length as the subband signals in the time domain by an upsampling network. The

network consists of four convolutional layers, followed by Mish activation layers [120]

andwith kernel sizes of 2, 5, 5, and 1, respectively. Nearest neighbor upsampling is applied

before the second and third convolutional layers. The upsampled feature is split along the

channel into eight partitions. For the ith subband generation, the ith partition is used as

the conditioning feature, denoted as f i. Inspired by [5], we use hi as a hidden state to pass

information across different iterations. All subbands are predicted by the samemodel with

the same weights. We denote the model as FAR and formulate the process as follows:

xi, hi = FAR(xi−1, hi−1, f i). (4.5)

BAR is integrated into each FAR iteration. In Figure 4.5 (a), the first output channel

of each purple blocks is used to predict the first three bits of the ith subband sequence

xi, denoted as bi,1, bi,2, and bi,3, respectively. The remaining channels are passed to Mish

activation layers and are concatenated with predicted bits (ground-truth bits at training)

as input of the next layer. Conditioned on the first three bits, the 8-bit integers in xi are

then predicted using a WNmodule followed by 1X1 and Mish activation layers. Note that

instead of using the same WN module to predict the first three bits and the 8-bit integers,

for better efficiency, we adopt three single layers to predict the first three bits, respectively.

The idea of using different functions in autoregressive prediction has been introduced in

[121, 122].
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(Integers from 0 to 255)

-0.492 -0.497 0.497 0.496
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(Decimals from -1 to 1)

256
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Post-FilteringArgmax / Sample

Output Posteriorgram
(  in Eq. 9)

Figure 4.6: Different methods to sample output from posteriorgram. Argmax: Choosing

the category with the greatest probability. Sample: Sampling according to the probability

distribution. Post-Filtering: Using a network to predict 16-bit samples.

Denoting the output for predicting bi,1, bi,2, bi,3, and xi as pbi,1 , pbi,2 , pbi,3 , and pxi , we

formulate the processes of sampling from the posterior as follows:

bi,1 = Sample(σ(10× pbi,1)), (4.6)

bi,2 = Sample(σ(10× pbi,2)), (4.7)

bi,3 = Sample(σ(5× pbi,3)), (4.8)

xi = Sample(Softmax(10× pxi)), (4.9)

where Sample is randomly sampling from probabilities and can be a post-filter network

when predicting xi, which will be detailed in the next section. Similar as in [45], each

posterior is steepened, and the prediction becomes less noisy. We use the cross-entropy

loss for training [4, 5, 41].
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4.2.5 Post-filtering for Posterior Sampling

The output of a conventional autoregressive vocoder is usually a sequence of probability

distributions [4, 5, 41], and waveform signals can be generated by two different methods:

(1) Selecting the category with the most significant probability (Argmax). (2) Random

sampling according to the probability distributions (Sample). The orange path in Fig-

ure 4.6 represents these two sampling methods. [40] has shown that Argmax and random

sampling from the output distribution introduce noise and distortion. In [40] and [41], the

authors leveraged voicing or pitch information and designed different rules for sampling

from the distribution. While in this work, instead of carefully handcrafted sampling rules,

we proposed using a neural network as a post-filter for sampling (the blue path in Fig-

ure 4.6). The proposed post-filter aims to solve two problems: (1) It reduces the effort of

manually designing sampling rules by learning to restore high-quality speech from prob-

ability distributions. A well-trained post-filter can generate more accurate samples than

sampling according to the distributions (2) It mitigates the noise and distortion introduced

when transforming originally 16-bit samples into 8-bit representations. By directly pre-

dicting 16-bit samples, the network improves the detail and fidelity of the signal. Instead

of posterior distributions of 216 classes, the post-filter outputs the values of 16-bit samples,

which are decimals ranging from -1 to 1. The process is formulated as:

xi = PF (AR(xi−1)), (4.10)

where PF is the post-filter, and xi denotes the ith subband. AR is the proposed autore-

gressive model (hi−1 and f i are omitted), and the output of AR is a posteriorgram, i.e.,

Softmax(10 × pxi) in Eq. 4.9. All subbands are predicted by the same post-filter with
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Figure 4.7: Post-filter and two paths for training. Channel sizes are shown in gray and

parenthesized.

the same weights. The architecture of the post-filter is shown in Figure 4.7.

An autoregressive model is trained under teacher-forcing manners, which means xi

is generated conditioned on its previous ground truth subband x̂i−1. Two different types

of posteriorgrams, AR(x̂i−1) and AR(xi−1
ntf ), can be used for training PF , formulated as

follows:

xitf = PF (AR(x̂i−1)), (4.11)

xintf = PF (AR(xi−1
ntf )), (4.12)

where tf and ntf denote the sequence is generated with and without teacher forcing,

respectively. Note that at inference time, PF works the same as Eq. 4.12.

We train the post-filter using two different losses in the time and frequency do-

mains, respectively. Figure 4.7 shows the two training paths. In each step of the post-

filter training, we perform both paths and apply different loss functions as the input type

changes. When calculating the time domain loss, if the frequency domain condition (Mel-

spectrogram) is the only ground truth information provided, generating a waveform close

60



doi:10.6342/NTU202401934

to the ground truth in the time domain is challenging. Using a teacher-forcing posterior-

gram as input (the orange path) makes it more feasible to optimize the time domain loss,

as partial information excluded from a Mel-spectrogram, such as phase, is provided in the

ground truth input x̂i−1. The model learns to utilize this information to generate a wave-

form close to the real signal in the time domain. The time domain loss LD is written as

follows:

LD =
1

N + 1
(MAE(xtf , x̂) +

N∑
i=1

MAE(xitf , x̂
i)), (4.13)

where xtf = ψ(x1tf , x
2
tf , ..., x

N
tf ), x̂ = ψ(x̂1, x̂2, ..., x̂N), and MAE is the mean absolute

error.

For calculating the frequency domain loss, since frequency information is provided

in the input Mel-spectrogram, the post-filter can take a generated posteriorgram as input

(the blue path) and minimize the distance between xntf and x̂ in the frequency domain,

where xntf = ψ(x1ntf , x
2
ntf , ..., x

N
ntf ). This kind of measurement has been shown to be

effective [7, 35, 57, 102]. The frequency domain loss LS is modified from the multi-

resolution short-time Fourier transform (STFT) auxiliary loss [35] as follows:

LS =
1

M

M∑
m=1

(Lm
sc(xntf , x̂) + Lm

mag(xntf , x̂)), (4.14)

whereM is the number of different parameter sets of STFT; Lsc and Lmag are the spectral

convergence loss and log STFT-magnitude loss from [104]:

Lsc(a, b) =
∥|STFT (a)| − |STFT (b)|∥F

∥|STFT (a)|∥F
, (4.15)

Lmag(a, b) =MAE(log |STFT (a)| , log |STFT (b)|), (4.16)

where ∥·∥F is the Frobenius norm, and |STFT (·)| is the band-limited STFT magnitude.
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(a) (b)

Figure 4.8: Average pooling in LS . (a) STFT magnitude. (b) Band-limited STFT magni-

tude.

We use the magnitude information with the frequency ranging from 0 to 8000 Hz. Magni-

tudes with higher frequency are average pooled in the frequency and time axes to extract

only local and global energy information. As shown in Figure 4.8 (a), the blue box repre-

sents calculating the average per frame; the red box represents calculating the average per

frequency. The frame-level averages are concatenated to each frame, and the frequency-

level averages replace all values on each frequency. Figure 4.8 (b) is the extracted mag-

nitude. The blue box represents an average per frame (duplicated along the frequency

axis for visualization); the red box represents an average per frequency, and the value is

duplicated along the time axis for calculating LS . The average pooling is to reduce the

synthetic noise resulting from applying LS , as mentioned in [57, 61, 123].

In each training step, themodel generates both xitf and xintf using the samemini-batch

data. Then different loss functions, LD and LS , are applied for the two cases, respectively.
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The final loss function LPF is a linear combination of LD and LS:

LPF = 100LD + 0.1LS. (4.17)

We empirically decided the scalars in Eq. 4.17 in preliminary experiments. A large scalar

for LD and a small scalar for LS made the training more stable and led to better per-

formance. If the scalar for LS is too large, the generated utterances will be with more

synthetic noise mentioned in [57, 61, 123].

4.3 Experimental Setup

4.3.1 Dataset

Four datasets were used in our experiments.

• LJ Speech LJ Speech [105] is a high-quality speech dataset widely used for training

and evaluating TTS models and neural vocoders. The audio clips are recorded with

a sampling rate of 22 kHz by a female English speaker. It contains 13100 utterances,

and the total duration is approximately 24 hours.

• VCTK CSTR’s VCTK corpus [124] is a multi-speaker English speech dataset con-

taining about 44k utterances and transcriptions. Approximately 400 sentences are

read by 109 English speakers with different accents. The total duration is about 44

hours. The audio clips are with a sampling rate of 48 kHz and downsampled to 22

kHz in our experiments.

• CMU ARCTIC Initially designed for unit selection speech synthesis, the CMU
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ARCTIC databases [125] consist of clean audio clips of different English speakers.

We used utterances from a male (bdl) and a female (slt) speaker as a test set for

experiments in Section 4.4.3. All the utterances were downsampled to 22 kHz.

• Internal Mandarin Speech Corpus The corpus is designed for building Mandarin

TTS systems. It consists of 9004 high-quality speech utterances of a Mandarin

female speaker. The total duration is about 7 hours. We used the audio clips with a

sampling rate of 44 kHz for high-fidelity speech synthesis.

4.3.2 Acoustic Feature

We used an 80-dimensional Mel-spectrogram as the conditioning acoustic feature for

speech synthesis. For computing the STFT, the FFT size, hop size and window size were

set to 1024 (46 ms), 200 (9 ms), and 800 (36 ms), respectively.

4.3.3 Model Details

Baseline and TTS Models

Five baseline vocoder models were used in our experiments. We trained three vocoder

models, including autoregressive and non-autoregressive methods. We also trained a TTS

model to evaluate their performance for speech synthesis.

• WaveNet An 8-bit WaveNet from public implementation 1 were used. The model

was with 30 layers, 3 dilation cycles, 128 residual channels, 256 gate channels,

and 128 skip channels. The upsampling layers for acoustic features had upsam-
1https://github.com/r9y9/wavenet_vocoder
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pling rates of {5,8,5}. Both input and output were 8-bit one-hot vectors quantized

using µ-law companding transformation. We trained the model with an Adam op-

timizer [106] for 500k iterations.

• WaveRNN We used the public implementation 2 to build an 8-bit WaveRNN as a

faster autoregressive baseline. The dual softmax layer and efficiency optimization

techniques proposed in [5] were not adopted. Two GRU layers in the models had

512 channels. The upsampling layers for acoustic features had upsampling rates of

{5,8,5}. The input and output were 8-bit quantized vectors. The network is trained

with an Adam optimizer for 500k iterations.

• Parallel WaveGAN Though there were many GAN-based neural vocoders pro-

posed recently [7, 35, 123, 126], we chose Parallel WaveGAN from public imple-

mentation 3 as a non-autoregressive baseline for its stable and efficient training.

The upsampling rates for acoustic features were {5,8,5}. We followed [35] to set

the parameters of the generator and discriminator. The discriminator was fixed for

the first 100k steps and jointly trained with the generator for 400k steps. An Adam

optimizer were used during training.

• Tacotron 2 A Tacotron 2 [1] was built as a frontend for text-to-speech synthesis.

The model was modified from the public implementation by NVIDIA 4. We applied

the reduction factor in [16] to improve convergence speed. The implementation is

publicly available 5.

The other two vocoder models were LPCNet and WaveGlow. The implementations
2https://github.com/fatchord/WaveRNN
3https://github.com/kan-bayashi/ParallelWaveGAN
4https://github.com/NVIDIA/tacotron2
5https://github.com/BogiHsu/Tacotron2-PyTorch
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of these two models were officially released by the authors. Note that the original train-

ing settings were not exactly the same as those mentioned above. However, changing

the settings without further parameter tuning may lead to suboptimal performance, and

for these two models, it’s not easy tuning the parameters and extensively retraining. The

input of LPCNet is specially designed acoustic features [41], including 18-dimensional

BFCC and two pitch parameters (period and correlation), which are different from a Mel-

spectrogram. Training a WaveGlow model takes eight GPUs and several days [6]. Hence,

using the official pre-trained models is a simple and practical way to show the best per-

formance of these methods, and we only used them in the single speaker evaluations.

• LPCNet The pre-trained LPCNet model was from the official implementation 6.

The acoustic features used and the detailed parameters were set following [41]. The

model was implemented in Python using Keras and trained on 16 kHz utterances.

At inference time, the model generated speech in either Python or C.

• WaveGlow The pre-trained WaveGlow model was from the official implementa-

tion 7, built in Python using PyTorch, and trained on LJ Speech. The model took

Mel-spectrograms as input and generated 22 kHz utterances. The detailed parame-

ters were set following [6].

Proposed Models

Figure 4.5 and Figure 4.7 show detailed parameters of the proposed model and post-filter,

including kernel sizes, channel sizes, and numbers of layers. The WN modules in Fig-

ure 4.5 (a) and Figure 4.7 had the same dilation size growth rate. The dilation sizes of
6https://github.com/xiph/LPCNet
7https://github.com/NVIDIA/waveglow
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Table 4.1: Details of the multi-resolution STFT auxiliary loss. m denotes the number in

Lm
sc and Lm

mag.

m 1 2 3

FFT size 2048 (93 ms) 1024 (46 ms) 512 (23 ms)

Hop size 400 (18 ms) 200 (9 ms) 100 (5 ms)

Window size 2000 (91 ms) 1000 (45 ms) 500 (23 ms)

different layers grew exponentially in cycles, i.e., [1, 2, 4, ..., 32, 1, 2, 4, ...]. The upsam-

pling network had upsampling rates of {5,5} and 80 channels, except for the output layer,

which had 256 channels.

We first trained all modules but the post-filter with the cross-entropy loss for 500k

steps. In each training step, the model generated subbands from the first to the eighth

with ground truth previous subbands as input (i.e., the teacher-forcing mechanism). Then

we fixed the weights and followed the same training process to train only the post-filter

with LPF for 500k steps. We set M = 3 for calculating LS . Table 4.1 lists the detailed

parameters for the STFT. We used a batch size of 8 and the Ranger optimizer [127] during

training.

To further improve the synthesis speed, we applied the grouping mechanism in [6]

to both WN modules in Figure 4.5 (a). The modified WN module is shown in Figure 4.9.

TheWN input sequence, hidden state, and acoustic feature are first reshaped. The channel

sizes increase while the lengths are shortened inversely. We denote the model with this

mechanism as g-i, where i indicates the factor for reshaping. Note that we did not apply

the grouping mechanism to the post-filter to preserve the performance. The method was

initially used to build a flow-based model for 1-D speech signals. It has shown effective-

ness in improving inference efficiency since the input length is significantly reduced while
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Figure 4.9: WNmodule with the grouping mechanism (g-5). Some operations are omitted

for simplicity. (c, t) represents a t-length sequence of c-dimensional vectors.
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Table 4.2: Details of different models. For Parallel WaveGAN, only the parameters of the

generator are counted.

Model Label Type Arch. Loss

WaveNet WN AR WN CE

WaveRNN WR AR RNN CE

LPCNet LPC AR RNN CE

WaveGlow WG NAR WN+Flow Flow

Parallel WaveGAN PWG NAR WN Adv.+Aux.

Proposed Proposed AR WN CE+Aux.

-PF -PF AR WN CE

g-5 g-5 AR WN CE+Aux.

g-10 g-10 AR WN CE+Aux.

the channel sizes of the hidden layers remain the same [57, 96].

All the baseline, TTS, and proposed models were trained on a single NVIDIA V100

GPU using PyTorch. Table 4.2 lists the details of different models. The third column

shows whether the model is autoregressive (AR) or non-autoregressive (NAR). The fourth

column describes the main architecture used to build the model, the WN module men-

tioned in Section 4.2.4, RNN models (RNN), or a specially designed flow-based model

(Flow) [6]. The fifth column lists the loss functions for training, including cross-entropy

loss (CE), adversarial loss (Adv.), auxiliary loss in [35] (Aux.), and specially designed loss

for the flow-based model (Flow) [6]. As described in Section 4.2.4, we applied FAR and

BAR to WaveNet to build the proposed models. Consequently, the details of the proposed

models are the most similar to the WaveNet model.
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4.3.4 Evaluation Metrics

Weused four objective and one subjectivemetrics in the following experiments to evaluate

the distortion of the generated speech in different perspectives and the quality under human

perception.

• Objective EvaluationWeusedMel-cepstral distortion (MCD, reported in dB) [107]

to evaluate the distortion in the frequency domain. Mel-cepstrums were first ex-

tracted from ground truth and generated speech. The rootmean square error (RMSE)

was then calculated frame-by-frame, and the average RMSE per frame represented

the distortion. To further show the pitch accuracy of generated speech, we calcu-

lated the RMSE of F0 (F0-RMSE, reported in Hz) and log2F0 (LogF0-RMSE,

reported in 10−2log2Hz). We also calculated the error rate of voiced/unvoiced (V/

UV) flags (V/UV Error, reported in %), which was the percentage of the frames

with mismatched V/UV flags. The F0 and V/UV information were extracted using

pYIN algorithm [128].

• Subjective EvaluationWe conducted modified MUltiple Stimuli with Hidden Ref-

erence and Anchor (MUSHA) tests [129] to rate the quality of generated speech un-

der human perception. In our MUSHRA test, samples with the same speech content

but generated by different systems were presented to the raters side by side. The

raters then scored the samples from 0 to 100 based on their naturalness. A higher

score indicates better quality in naturalness. Similar to the setup in [31, 33], and

[130–134], when evaluating samples with the same speech content, the raters were

not forced to score at least one system with 100. We used the ground truth sample

as the upper anchor and an extra system to generate the lower anchor. The system
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simply reconstructed the speech signal from a Mel-spectrogram using a 1-iteration

Griffin-Lim algorithm [22]. All the raters were recruited using Amazon Mechan-

ical Turk. The raters should self-report as native speakers (English or Mandarin,

depending on the evaluation). We also asked the raters to wear headphones and

stay in a quiet environment while taking the test. We randomly selected 20 utter-

ances for the evaluation, and each utterance was scored by at least 15 subjects.

After the objective and the subjective evaluations, paired t-tests were conducted to

show the statistical significance. In the ablation study, we calculated the p-values between

the proposed method without PF and other systems for better comparison. For the rest

of the experiments, we calculated the p-values between the proposed method and other

systems.

4.4 Results

4.4.1 Objective Evaluation

In this section, we used different objective metrics to evaluate the efficiency and perfor-

mance of the proposed methods and other vocoders. All the models were trained using

the LJ Speech corpus. We separated 100 utterances as the test set.

Model Sizes and Inference Speed

Table 4.3 shows the model sizes of different methods and their inference speed. The

second column reports the number of model parameters (in millions). Among all meth-

ods, Parallel WaveGAN was the smallest in size. The adversarial network [135] enabled
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Table 4.3: Details and inference speed (w/o and w/ GPU) of different models. The values

in the brackets are the standard deviations.

Model Size (M) Code CPU (kHz) GPU (kHz)

WN 4.7 py 0.19 (0.00) 0.13 (0.00)

WR 4.3 py 1.14 (0.02) 1.87 (0.02)

LPC 1.8 py/c 0.04 (0.00)/103.7 (1.5) 0.04 (0.00)/-

WG 87.7 py 6.2 (0.2) 1203.8 (487.2)

PWG 1.3 py 19.5 (1.5) 1325.8 (62.6)

Proposed 5.8 py 8.9 (0.3) 393.1 (4.0)

-PF 5.6 py 9.2 (0.3) 415.6 (3.4)

g-5 7.0 py 27.9 (0.8) 891.6 (205.1)

g-10 7.3 py 46.3 (1.1) 1257.0 (480.4)

the lightweight generator in Parallel WaveGAN to learn effectively with a discriminator.

WaveGlow, on the other hand, was the largest model. The flow-based architecture made

the network inevitably deep [6, 52]. The proposed model had about 30%more parameters

than WaveNet since the network was deeper. The sizes of those with the grouping mecha-

nism (g-5 and g-10) were with more parameters since their channel sizes were 5 times and

10 times larger in the hidden layers, respectively, as shown in the blue path of Figure 4.9.

As for measuring the inference speed, we tested these models using an Intel i7-6700K

CPU and an NVIDIA 2080Ti GPU. Since the efficiency of non-autoregressive models

might be affected by the length of the target speech at the inference stage, we selected 8

utterances with various lengths. The duration of the audio clips ranged from 2 to 10 sec-

onds, and the average duration was 5.8 seconds. The fourth and fifth columns of Table 4.3

shows the generating rates (number of generated samples per second, in kHz) with and

without GPU, respectively. We concluded our observations as follows:
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• The autoregressive models in Python generated speech slowly with and without

GPU. WaveNet was a deep network with many convolutional layers. It took much

computing time in each iteration and could only generate hundreds of samples per

second. WaveRNN used two GRUs to replace the convolutional layers, making it

faster and more lightweight, but both methods were far from real-time (22 kHz).

LPCNet was built and trained in a different framework (Keras). It was inefficient

while generating in Python. However, with the highly optimized implementation

in C, the inference speed without GPU reached 103.7 kHz, even faster than all the

other non-autoregressive methods. Since there are no other C implementations of

the non-autoregressive models for comparison, the results of LPCNet are listed only

to show the improvement of the C implementation over the Python implementation.

• The non-autoregressive methods generated utterances more efficiently with and

without GPU. Parallel WaveGAN was at 1325.8 kHz and reached 60 times faster

than real-time with GPU. In the case of inference only with CPU, it was still at a rate

of 20 kHz. The high efficiency came from Parallel WaveGAN’s lightweight gener-

ator and its parallel synthesis architecture. WaveGlow, when with GPU, reached a

similar result to Parallel WaveGAN. The inference speed was much slower without

GPU since the model size was larger, making the power of parallel computing more

critical.

• The proposed model increased the autoregressive inference speed by changing from

the time domain to the frequency domain and the bit precision domain. We also

showed in the fourth and fifth rows that using a compact PF to sample signals from

posteriorgrams had only a little degradation on speed. The proposed model was

18 times faster than real-time with GPU, shortening the performance gap between
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Table 4.4: Objective evaluation results (means and standard deviations) when us-

ing ground truth acoustic features from the test set of LJ Speech. p-value < 0.05 ;

p-value < 0.01 .

Model MCD F0-RMSE LogF0-RMSE V/UV Error

(dB) (Hz) (10−2log2Hz) (%)

WN 3.82 (0.37) 8.83 (16.86) 4.51 (3.97) 6.91 (2.45)

WR 2.98 (0.30) 3.97 (1.63) 2.61 (2.00) 4.42 (2.41)

WG 3.16 (0.22) 4.90 (2.38) 3.10 (1.70) 5.14 (2.29)

PWG 2.41 (0.11) 5.06 (2.67) 3.47 (2.76) 6.55 (3.49)

Proposed 1.93 (0.13) 4.05 (1.66) 2.66 (1.82) 5.09 (3.12)

-PF 2.59 (0.22) 4.14 (1.37) 2.67 (1.51) 4.64 (2.18)

g-5 1.94 (0.12) 4.20 (1.09) 2.67 (0.58) 5.03 (2.59)

g-10 2.26 (0.14) 4.29 (1.22) 2.73 (0.69) 5.15 (2.58)

autoregressive and non-autoregressive methods. Finally, we measured the rate of

the proposed models with the grouping mechanism and showed the mechanism’s

effectiveness in improving efficiency. When inference only with CPU, g-5 and g-

10 achieved 1.3 and 2.1 times faster than real-time, respectively.

• Unlike the autoregressive models, which had a fixed input length, the input length

of the non-autoregressive models varied according to the length of the target speech.

Hence, for the non-autoregressive models, the standard deviations of the inference

speed were much larger, indicating that their efficiencies were affected more by the

various speech lengths.
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Table 4.5: Objective evaluation results (means and standard deviations) when using

ground truth acoustic features from the test set of LJ Speech. To compare with LPCNet,

ground truth and generated utterances were downsampled to 16 kHz before evaluating.

p-value < 0.05 ; p-value < 0.01 .

Model MCD F0-RMSE LogF0-RMSE V/UV Error

(dB) (Hz) (10−2log2Hz) (%)

WN 3.70 (0.38) 7.82 (12.70) 4.13 (2.96) 6.51 (3.03)

WR 2.60 (0.29) 4.00 (1.92) 2.52 (1.16) 4.70 (2.72)

LPC 8.45 (0.37) 15.87 (4.97) 9.99 (2.00) 17.62 (3.64)

WG 2.11 (0.20) 5.00 (2.12) 3.03 (1.19) 5.18 (2.55)

PWG 2.45 (0.12) 5.07 (2.21) 3.19 (1.34) 6.67 (2.92)

Proposed 1.91 (0.15) 5.00 (2.88) 3.15 (2.03) 4.61 (2.65)

g-5 1.91 (0.13) 5.85 (6.11) 3.34 (2.45) 4.79 (2.61)

g-10 2.24 (0.16) 5.07 (4.91) 2.85 (1.00) 5.23 (2.59)

Evaluation Results

We took all the test set of LJ Speech to evaluate the models using different objective

metrics. The results are listed in Table 4.4. The proposed models (Proposed, g-5, and g-

10) and Parallel WaveGAN had a lowerMCD, which indicated the magnitude information

was better restored. We attributed the performance to the STFT auxiliary loss [35] since

it directly optimized the magnitude distortion in the frequency domain. Regarding F0-

RMSE, WaveRNN outperformed the others, but the difference was small since the values

of F0 varied at a much larger scale. Besides, the difference between WaveRNN and the

proposed models is not significant. Similarly, for LogF0-RMSE and V/UV Error, the

results of most models were close.

75



doi:10.6342/NTU202401934

Since LPCNet generated 16 kHz speech, we also downsampled the ground truth and

the generated utterances to 16 kHz for another evaluation. The results are listed in Ta-

ble 4.5. We found that LPCNet performed worse than the others. The distortion may be

introduced when applying the block-sparse matrices to reduce the model complexity [41].

Ablation Study

We conducted a comprehensive ablation study to examine the effectiveness of the pro-

posed methods and validate our hypothesis in Section 4.1. The different settings based on

the proposed model without PF (-PF) are denoted as follows:

• BAR-2 The BAR in -PF was modified to generate only the first two bits before

generating the 8-bit signal.

• -BAR The BAR in -PF was removed. The architecture remained the intact; only

each channel to predict the first three bits and to take them as input was removed.

• -FAR,MB The FAR in -PF was removed while keeping the architecture intact. The

same model independently predicted one of the eight subbands (MB) at a time.

• -FAR, FB The FAR in -PF was removed while keeping the architecture intact. The

model directly predicted a full-band (FB) waveform.

• -AR, MB The FAR and BAR in -PF were removed while keeping the architecture

intact. The same model independently predicted one of the eight subbands (MB) at

a time.

• -AR, FB The FAR and BAR in -PF were removed while keeping the architecture

intact. The model directly predicted the 8-bit signal of a full-band (FB) waveform.
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• FL2H The FAR in -PF was modified to generate subbands from the lowest to the

highest frequency.

• BL3B The BAR in -PFwasmodified to generate the last three bits before generating

the complete 8-bit signal.

• FGTn and BGTn For i ≤ n, after a sequence was generated in the ith prediction,

it was replaced by the ground truth and used as input for the next prediction. For

example, in BGT1, the real first bits of each subband replaced the generated ones;

in FL2H, FGT1, the real lowest-frequency subband replaced the generated one to

predict the next subband and to synthesize the full-band waveform.

• FGT4mix Similar to FGTn, four subbands were replaced by the ground truth for the

next prediction. Instead of replacing the first four subbands, the first (the highest-

frequency), third, fifth, and seventh subbands were replaced.

The results are listed in Table 4.6, and Figure 4.10 shows the Mel-spectrograms of

the generated utterances. We first discuss the effectiveness of the proposed methods and

how the results support our hypothesis, concluded as follows:

• The performance degraded when removing FAR (-PF → -FAR, MB/FB), BAR (-

PF → -BAR), or PF (Proposed → -PF) or when reducing the number of different

bit precision in BAR (-PF → BAR-2), indicating the effectiveness of the proposed

methods. Applying FAR, BAR, or PF effectively improved performance, and com-

bining the three methods led to the best results.

• Directly predicting a waveform without autoregressive methods (-AR, FB) yielded

severely distorted results, whereas dividing the target waveform into subbands (-
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Table 4.6: Ablation study results (means and standard deviations) when using ground truth

acoustic features from the test set of LJ Speech. p-value < 0.05 ; p-value < 0.01 .

Model MCD F0-RMSE LogF0-RMSE V/UV Error

(dB) (Hz) (10−2log2Hz) (%)

Proposed 1.93 (0.13) 4.05 (1.66) 2.66 (1.83) 5.09 (3.12)

-PF 2.59 (0.22) 4.14 (1.37) 2.67 (1.51) 4.64 (2.18)

Ablation Study on the Proposed Methods (based on -PF)

BAR-2 2.70 (0.21) 4.31 (1.80) 2.77 (1.58) 5.30 (2.63)

-BAR 4.79 (0.36) 4.61 (3.18) 2.95 (2.54) 5.00 (2.31)

-FAR, MB 6.91 (0.58) 7.11 (2.01) 4.76 (1.32) 27.28 (9.74)

-FAR, FB 11.57 (0.54) 9.61 (3.01) 7.00 (1.94) 52.54 (11.67)

-AR, MB 9.91 (0.54) 5.34 (2.86) 3.47 (2.37) 7.04 (3.10)

-AR, FB 15.41 (0.61) 7.03 (3.17) 4.55 (1.76) 17.86 (7.87)

Ablation Study on the Generation Order (based on -PF)

FL2H 6.15 (0.57) 8.22 (6.62) 5.50 (3.94) 36.43 (10.75)

FL2H, FGT1 3.68 (0.37) 3.04 (1.13) 1.89 (0.69) 2.73 (1.89)

FL2H, FGT2 1.95 (0.22) 2.42 (1.04) 1.48 (0.60) 2.13 (1.85)

FGT1 2.52 (0.22) 3.42 (1.02) 2.16 (0.57) 4.66 (2.58)

FGT2 2.54 (0.21) 3.53 (1.44) 2.20 (0.88) 4.70 (2.43)

FGT4mix 3.39 (0.29) 3.28 (2.16) 2.12 (1.69) 4.11 (2.29)

BL3B 6.20 (0.43) 3.89 (1.10) 2.46 (0.62) 5.40 (2.52)

BL3B, BGT1 6.28 (0.42) 4.30 (2.16) 2.70 (1.23) 5.32 (2.50)

BL3B, BGT2 5.87 (0.41) 4.47 (4.11) 2.80 (2.79) 5.14 (2.53)

BGT1 2.74 (0.38) 2.54 (1.24) 1.57 (0.71) 3.74 (2.37)

BGT2 2.49 (0.24) 2.31 (1.29) 1.46 (0.74) 2.71 (2.11)

-FAR, FB, BGT1 9.99 (0.53) 4.63 (1.26) 2.95 (0.72) 8.33 (3.51)

-FAR, FB, BGT2 6.63 (0.53) 2.07 (0.93) 1.28 (0.55) 2.71 (2.04)
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Figure 4.10: Mel-spectrograms of generated speech using ground truth acoustic features

from LJ Speech (LJ050-0241).

AR, MB) improved performance. Additionally, applying an autoregressive mech-

anism further enhanced speech quality. Specifically, FAR (-AR, MB → -BAR)

demonstrated improvements across all metrics, and BAR (-AR, MB/FB → -FAR,

MB/FB) led to a better MCD. The findings above strongly support our hypothesis

that dividing a target into multiple smaller parts and iteratively generating each part
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conditioned on predicted parts reduce prediction complexity.

• Although -FAR, MB/FB exhibited worse pitch-related results (F0-RMSE, LogF0-

RMSE, and V/UV Error) than -AR, MB/FB, the degradation was due to the archi-

tecture instead of the autoregressive mechanism. In -FAR, MB/FB, 1-bit signals

were first predicted without using the second WN module, as shown in Figure 4.5

(a). Besides, as mentioned in Section 4.1, 1-bit signals contain precise F0 contours.

The two facts above suggest that -FAR, MB/FB predicted much pitch information

leveraging only a portion of the model capacity, leading to less accurate results. In

contrast, -AR, MB/FB directly predicted the complete 8-bit signals, fully utilizing

the entire model to produce pitch information. The BAR in -PF was not affected by

this issue, which will be discussed together with the generation order of BAR in the

subsequent paragraphs.

The ablation study results also demonstrate the importance of the generation orders

in FAR and BAR. Specifically, inverting the generation order of FAR from generating the

highest-frequency subband first to the lowest-frequency one first (-PF→ FL2H) resulted

in increased distortion and errors. This can be explained based on the following facts:

• Since the lower-frequency subbands containmore speech information, such as pitch,

energy, and voicing status, these subbands have a greater impact on speech quality.

• In autoregressive generation, it is commonly observed that predictions in the early

steps are less accurate due to the lack of information from previous predictions or

hidden states. Without previous information, the first generation process is the same

as predicting without an autoregressive mechanism.
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Without sufficient previous information in the first generation step, the first predicted

highest-frequency subband in -PF and lowest-frequency subband in FL2H were distorted.

However, FL2H was much less performant since the degraded lowest-frequency subband

had a more negative impact on speech quality than the degraded highest-frequency sub-

band.

In FL2H, the lowest-frequency subband was first predicted without previous predic-

tions, hence of low quality. The distorted lowest-frequency subband and the lack of infor-

mation in the early steps would negatively affect subsequent predictions. Consequently,

the distorted lower-frequency subbands led to worse speech quality. To demonstrate the

importance of lower-frequency subbands, we evaluated FL2H, FGT1 and FL2H, FGT2.

With ground truth low-frequency subbands provided, the improvements were significant,

indicating the importance of lower-frequency subbands to high-quality speech.

Although the higher-frequency subbands in -PF were first generated and could also

be distorted, the performance was less affected as these subbands containmuch less speech

information. Also, the improvements were not as significant as in FL2Hwhen ground truth

high-frequency subbands were provided (-PF→ FGT1 and -PF→ FGT2). These findings

indicate that the higher-frequency subbands have minimal impact on speech quality and

can be generated in the early steps.

Regarding BAR, we conducted similar experiments. Inverting the generation order

from generating the first three bits first to the last three bits first (-PF → BL3B) also

showed worse results, while providing the ground truth last few bits (BL3B, BGT1, and

BL3B, BGT2) did not improve the performance. On the other hand, providing the ground

truth first few bits (BGT1, and BGT2) led to better pitch-related results, indicating that the
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first few bits are more crucial for accurately predicting pitch. The importance of the first

few bits, combined with the previously mentioned lack of information issue in the early

steps, provides another explanation for why -FAR, MB/FB performed worse on pitch-

related metrics, which is that BAR in -FAR, MB/FB predicted low-bit-coded signals with

less accurate pitch information in the early steps. In contrast, the BAR in -PF was less af-

fected by the lack of information. Despite generating the first three bits in the early steps,

-PF still produced high-quality speech since it combined FAR and BAR. In -PF, the lower-

frequency subbands, which were more critical to high-quality speech, were predicted with

more acoustic information from previous subbands and hidden states. The hidden states

possessed rich information about previous predictions since they were iteratively com-

puted throughout the generation process. Sufficient information helped the BAR in -PF

to predict high-quality low-bit-coded signals of the lower-frequency subbands, leading to

better results.

We also observed that in BAR, theMCD increasedwhen the real first target was given

(-PF → BGT1 and BL3B→ BL3B, BGT1) and decreased when the real first two targets

were given (-PF→ BGT2 and BL3B→ BL3B, BGT2) 8. We inferred this was due to the

mismatch between the consecutive subbands when the given ground truth information was

insufficient. BGT1 generated a subband with only partial ground truth information (the

first bits). The generated subband might still have differences, such as phase discrepancy,

from the ground truth, leading to a mismatch with the ground truth first bits given in the

next subband prediction. In BGT2, with more ground truth information (the first and

the second bits), the generated subband was closer to the ground truth, decreasing the

mismatch. The explanation above also applies to BL3B, BGT1 and BL3B, BGT2.

8The first two targets of -PF were the first two bits of the 8-bit signal, and the first two targets of BL3B
were the last two bits.
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Figure 4.11: MUSHRA results when using ground truth acoustic features from the test set

of LJ Speech. *: p-value < 0.05; **: p-value < 0.01.

To verify that a mismatch may occur when consecutive subbands are partial ground

truth and partial generated, we evaluated FGT4mix. In FGT4mix, a generated subband

mismatched the ground truth next subband since the former was not predicted conditioned

on the latter. The MCD results hence worsened despite more information being provided,

indicating that the mismatch between subbands affects speech quality. Note that FGT1

and FGT2 did not suffer any mismatches since the generated parts were predicted con-

ditioned on the ground truth subbands. Furthermore, for -FAR, FB, which applies only

BAR and directly predicts a full-band waveform, there was no mismatch since the sub-

band mechanism was removed. All metrics were improved when part of the ground truth

were given (-FAR, FB → -FAR, FB, BGT1 and -FAR, FB → -FAR, FB, BGT2). These

observations well support the claim that mismatches between subbands degraded speech

quality.

The comprehensive ablation study shows the importance of the generation orders and

explains how we decided the orders for FAR and BAR according to the results.
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4.4.2 Subjective Evaluation

Evaluation on Ground Truth Acoustic Features

We randomly selected 20 utterances from the test set of LJ Speech for the subjective eval-

uation. The MUSHRA results of different models are listed in Figure 4.11. We concluded

our observations as follows:

• Among the baselinemodels, the autoregressivemodels bettered the non-autoregressive

ones with significant differences (p-value < 0.01). Besides, the baseline models

with the same type (autoregressive or non-autoregressive) performed similarly, and

there was no significant difference (p-value > 0.05).

• The proposedmodel outperformed the others and reached aMUSHRA score of 75.8.

There was no significant difference between the proposed method and WaveNet,

showing that both models generated utterances closest to natural human speech,

yet the proposed method reached thousands of times more efficient than WaveNet

according to Table 4.3.

• WaveGlow and Parallel WaveGAN achieved intermediate results in the objective

evaluation. However, they were still relatively low-quality to the competitive sys-

tems, and subjects in the MUSHRA test tended to give lower scores. The audio

samples on the demo 9 page better show the quality of different vocoders.

• The score of the proposed model without PF dropped by 3.6, indicating the impor-

tance of PF in synthesizing natural speech. As for the grouping mechanism, the

9https://bogihsu.github.io/TASLP2021-Parallel/Demo/demo.html
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Figure 4.12: MUSHRA results when using ground truth acoustic features from the test

set of LJ Speech. To compare with LPCNet, ground truth and generated utterances were

downsampled to 16 kHz before evaluating. **: p-value < 0.01.

scores of g-5 and g-10 degraded slightly but still close to WaveNet and WaveRNN,

showing the ability to improve the synthesis efficiency while preserving the quality.

Similar to in Section 4.4.1, to compare with LPCNet, we also downsampled the ut-

terances to 16 kHz and ran another MUSHRA test. The results are listed in Figure 4.12.

LPCNet performed worse than WaveNet and the proposed methods but still bettered non-

autoregressive WaveGlow.

Evaluation on Acoustic Features from Tacotron 2

We combined vocoders with a Tacotron 2model as complete TTS systems for further eval-

uation. The Tacotron 2 was trained using the training set of LJ Speech. During inference,

we selected 20 sentences from Harvard Sentences [136] as the text input for the systems.

The results are shown in Figure 4.13. Compared with the evaluation using ground
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Figure 4.13: MUSHRA results when using acoustic features generated from Tacotron 2.

**: p-value < 0.01.

truth acoustic features, the scores between the baseline methods become closer. We found

that features from Tacotron 2 had more distortion than ground truth features. In this case,

WaveNet and WaveRNN were unstable and less performant. The reduced robustness of

the autoregressive models to artificial acoustic features could be attributed to the error

propagation from autoregressive properties in the time domain. When a suboptimal sam-

ple is generated with distorted acoustic features, it is used as the condition for the next

prediction. Even if the acoustic features are clean in subsequent time steps, a flawed sam-

ple from the previous step can lead to further erroneous predictions, causing the errors to

propagate and resulting in speech with noise and artifacts.

In contrast, the non-autoregressive Parallel WaveGANwas much more stable regard-

less of the quality of the input features. The proposed models, possessing the properties of

autoregressive and non-autoregressive methods, were not affected by error propagation,

either. All three models maintained high quality and outperformed the baseline models

with significant differences (p-value < 0.05).
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4.4.3 Generalization Evaluation

In this section, we studied the generalization abilities of the baseline and proposed models

under different situations, including synthesizing speech of unseen speakers and high-

fidelity speech with a 44 kHz sampling rate.

Generalization to Unseen Speakers

To build a multi-speakers version of the vocoders, we used the VCTK dataset for training.

We use utterances from speaker bdl and slt in CMU ARCTIC as a male and a female test

set, respectively. For each test set, we took 30 utterances (arctic_b0500∼arctic_b0529)

for objective evaluation and randomly selected 10 audio clips for subjective evaluation.

Table 4.7 and Figure 4.14 list the results. The tendency of the objective scores be-

tween different models is similar to the results in Section 4.4.1. WaveRNN performed

slightly worse in MCD, reflected in generated speech with more noise and a lower per-

ceptual score. The MUSHRA results showed that WaveNet generalized best. The pro-

posed model also had a higher score than WaveRNN and Parallel WaveGAN, indicating

its ability to generalize to unseen speakers.

Generalization to High-Fidelity Dataset

To study the performance when generalization to high-fidelity dataset, we trained the

vocoders on our 44 kHz internal Mandarin speech corpus. All STFT parameters in sam-

ples remained the same as described in Section 4.3 and Table 4.1, i.e., STFT parameters in

milliseconds were halved in this 44 kHz experiment. We took 30 utterances from the test

set for objective evaluation and randomly selected 20 utterances for subjective evaluation.
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Table 4.7: Objective evaluation results (means and standard deviations) when using

ground truth acoustic features from speaker bdl and slt in CMU ARCTIC. The vocoders

were trained on VCTK corpus. p-value < 0.05 ; p-value < 0.01 .

Model MCD F0-RMSE LogF0-RMSE V/UV Error

(dB) (Hz) (10−2log2Hz) (%)

bdl (male)

WN 2.58 (0.21) 3.20 (2.52) 4.01 (3.61) 8.22 (4.93)

WR 2.64 (0.21) 2.95 (0.66) 3.64 (0.85) 11.00 (6.02)

PWG 2.90 (0.31) 3.68 (2.53) 4.62 (3.09) 7.93 (4.62)

Proposed 1.98 (0.23) 3.01 (1.33) 3.80 (1.83) 7.22 (5.01)

slt (female)

WN 2.49 (0.23) 3.81 (1.37) 2.88 (1.00) 4.81 (3.10)

WR 3.56 (0.33) 3.34 (1.11) 2.69 (0.85) 2.79 (2.51)

PWG 2.71 (0.15) 4.35 (1.46) 3.49 (1.09) 4.03 (3.19)

Proposed 2.16 (0.18) 3.04 (1.42) 2.42 (1.09) 2.75 (2.39)
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Figure 4.14: MUSHRA results when using ground truth acoustic features from speaker

bdl and slt in CMU ARCTIC. The vocoders were trained on VCTK corpus. **: p-value

< 0.01.

Table 4.8: Objective evaluation results (means and standard deviations) when using

ground truth acoustic features from the test set of our 44 kHz internal mandarin speech

corpus. p-value < 0.05 ; p-value < 0.01 .

Model MCD F0-RMSE LogF0-RMSE V/UV Error

(dB) (Hz) (10−2log2Hz) (%)

WN 4.32 (0.88) 31.10 (45.57) 18.94 (19.43) 15.43 (6.63)

WR 5.11 (0.37) 4.59 (3.00) 3.23 (3.70) 7.12 (4.08)

PWG 3.25 (0.20) 9.32 (10.21) 5.71 (4.48) 11.06 (6.08)

Proposed 2.10 (0.26) 6.70 (13.37) 2.49 (1.10) 6.07 (3.48)

The results are shown in Table 4.8 and Figure 4.15. The objective evaluation results

showed a similar tendency as previous. We found that speech volume from WaveNet

varied in the same utterance, leading to worse objective evaluation results. As for the

MUSHRA results, utterances from WaveRNN had a bit more noise but were still graded

with good scores. Besides, Parallel WaveGAN failed to generate natural results. On the
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Figure 4.15: MUSHRA results when using ground truth acoustic features from the test set

of our 44 kHz internal mandarin speech corpus. **: p-value < 0.01.

other hand, both WaveNet and the proposed model achieved close scores to the ground

truth, and there was no significant difference between these two systems, indicating their

ability to synthesize natural high-fidelity speech.

4.5 Summary

This chapter addresses the limitations of conventional autoregressive vocoders by intro-

ducing innovative methods: frequency-wise autoregressive generation (FAR) and bit-wise

autoregressive generation (BAR). FAR iteratively generates utterances across different

frequency subbands, while BAR progressively generates utterances with varying bit pre-

cision. We further enhance speech quality through a post-filter applied for posterior sam-

pling. Unlike traditional autoregressive methods, our proposed approaches operate with a

fixed number of iterations, making inference time independent of speech length. Con-

sequently, our model demonstrates high inference efficiency. Compared with the au-
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toregressive WaveNet model, the proposed model achieves inference speeds up to 244

and 9669 times faster with and without GPU acceleration, respectively, which matches

the speeds of non-autoregressive vocoders. Perceptual evaluations further show the pro-

posed model consistently outperforms non-autoregressive methods withMUSHRA scores

higher than or close to other autoregressivemethods, confirming that the proposed vocoder

can produce natural, high-quality speech in various scenarios.
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Chapter 5

Data Efficiency in Speech Generation:

Improving Text-Guided Voice

Conversion with Reinforcement

Learning and Human Feedback

5.1 Introduction

In the previous chapters, we discussed and studied the challenges of computational effi-

ciency in speech generation from various aspects, examining both non-autoregressive and

autoregressive neural vocoders. We introduced methods to significantly reduce the com-

putational resources required during training and inference. Expanding our exploration

of efficient speech generation, in this chapter, we aim to improve the data efficiency of

speech generation. Specifically, we focus on text-guided speech generation and set text-

guided voice conversion as our primary task in this study. Text-guided voice conversion

involves converting the style of source speech based on text descriptions while preserv-
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ing the content. These styles include variations in pitch, speaking rate, speaking method,

and emotion, described using human-written sentences without a fixed form. Existing

text-guided generation works typically require collecting rich speech data annotated with

detailed descriptions to build a model that can comprehend complex sentences and pro-

duce expressive speech. In order to alleviate the heavy dependency on human-curated

private datasets, this work aims to leverage only publicly available datasets and explore

a more effective learning paradigm for developing a text-guided voice conversion model.

To this end, we build our model based on a pre-trained open-source model and explore two

advanced learning strategies for text-guided voice conversion: reinforcement learning and

reinforcement learning from human feedback.

Reinforcement learning (RL) introduces a paradigm where models learn through in-

teracting with specially designed environments. These environments incorporate appro-

priate metrics and feedback mechanisms to reward model outputs. Since models can learn

to maximize rewards through continuous trial and error rather than learn from paired

data, this approach improves model performance without additionally collecting more

real-world data for the task. Based on RL, reinforcement learning from human feedback

(RLHF) [137, 138] uses a small amount of human feedback on model outputs and builds

a reward model with similar preferences to humans. This reward model is used as the

environment in RL to assess the output of the target model, which is then guided to make

predictions more aligned with human preferences. RLHF has shown remarkable results in

the field of NLP, and related works are booming [139–141]. In contrast, research applying

RL and RLHF to enhance speech generation models has yet to be explored. We argue that

RL and RLHF can be more data-efficient methods to improve text-guided voice conver-

sion models since the models can be refined by interacting with environments without the
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need to collect more paired text-speech data.

To effectively apply RL and RLHF to our task, building a robust reward model is

essential. This reward model needs to accurately evaluate the relevance between input de-

scriptions and output speech, guiding the learning process of the voice conversion model.

Given the scarcity of high-quality, diverse text-speech data in our setting, we develop our

reward model using contrastive learning. A model built with contrastive learning, such

as CLIP [142], has shown powerful zero-shot classification ability competitive with fully

supervised models without the necessity for training on labeled data. Our reward model

scores the similarity between a speech utterance and a text description, and we show in

the experiment that it outperforms traditional classifiers in classifying speech style. Fol-

lowing the RL algorithm and the discrimination from the reward model, we fine-tune the

proposed model and significantly improve the conversion results when given complex

style descriptions as input. Moreover, we study the help of RLHF. We collect preferences

annotated by human raters based on the relevance between generated speech and text de-

scriptions. Then, we explore different strategies to apply human feedback in RL and the

impact of using different amounts of human feedback. The subjective evaluation results

show that RLHF can improve the model to generate expressive speech more aligned with

human preferences.

The contributions of this work are summarized as follow:

• This study pioneers the application of RL and RLHF in speech generation to enrich

expressiveness and styles of generated speech. We explore various ways to build

a performant reward model and investigate how to leverage human feedback ef-

fectively. With the RL algorithm and the guidance of the reward model, we refine
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the proposed text-guided voice conversion model, setting a foundation for future

advancements in applying RL and RLHF in speech technology.

• Experimental results validate the effectiveness of the proposed methods. In the

objective evaluation, both RL and RLHF greatly enhance the expressiveness and

style accuracy of the output speech by up to 100%, ensuring it better follows the

textual descriptions provided. Subjective evaluation results also confirm that after

applying RL or RLHF, the proposed model can generate speech that is much more

consistent with the target style, and the improvements are statistically significant. In

addition, RLHF outperforms RL in pairwise preference tests, indicating a superior

alignment with human preferences. Both objective and subjective evaluation results

show that the proposed methods learn from the limited data more effectively and

efficiently without the need to collect more high-quality, diverse, and paired text-

speech data.

5.2 Related Work

5.2.1 Diffusion-Based Text-to-Audio Generation

Research using text to guide speech generation or voice conversion is limited due to the

lack of publicly available datasets, as mentioned in Section 2. In contrast, another closely

related field, text-to-audio (TTA) generation, has seen significant development. With

plenty of public training data, building models to generate audio that matches given text

prompts describing styles or events is a popular and growing research direction. In this

work, we leverage the ability of a well-trained diffusion-based TTA model to initialize

the proposed model. In the following paragraph, we introduce recent works related to
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diffusion-based TTA generation.

In TTA, given a text description of the target sound, the model aims to generate audio

corresponding to this description. Recently, diffusion models, known for their significant

progress in image generation [143], have been widely applied to the TTA task and demon-

strated promising results. Diffsound [144] introduces a vector-quantized variational au-

toencoder (VQ-VAE) [145] to convert audio into discrete acoustic units. An autoregres-

sive model is built to generate these acoustic units based on text descriptions, followed

by a diffusion model that reconstructs audio Mel-spectrograms from the generated units.

In [146] and AudioLDM [147], the authors adopt latent diffusion models [143] (LDM)

and show high-quality results. Building upon these innovations, TANGO [148] leverages

FLAN-T5 [149], an instruction-tuned large language model, as the text encoder to further

improve the ability of the TTA model. Beyond the standard TTA task, [146] and Audi-

oLDM 2 [150] extend the capabilities of TTA models to multimodal scenarios, allowing

the models to generate audio from text, images, or video inputs. These approaches, utiliz-

ing various pre-trained models as encoders for different modalities, enhance the versatility

of TTA models and enable them to produce high-quality audio in diverse contexts.

5.2.2 Reinforcement Learning in Speech Processing

In reinforcement learning (RL), a model learns by interacting with the environment that

provides rewards according to model outputs. During training, models target to maximize

expected rewards from these environments and progressively refine their predictions. Re-

cently, many works have applied RL techniques to various speech tasks [151], includ-

ing automatic speech recognition [152–157], speaker recognition [158], speech emotion

recognition [159, 160], and speech enhancement [161, 162]. These methods employ ob-
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jective metrics [159, 161] or well-optimized systems [162] to assess model predictions

and provide feedback rewards. Algorithms such as policy gradients [152–156, 161] or

proximal policy optimization [158] are then adopted to ensure improvements.

For the application of RL in speech generation, [163] utilizes speech emotion recog-

nition and RL to improve TTS, enhancing the emotional expressiveness of the synthesized

speech. Another work leverages RL and human preferences to improve the naturalness of

TTS outputs [164]. These works focus on simple goals, such as improving solely emo-

tional expressiveness or overall speech quality. In contrast, our study aims for a more

complex setting, where the model generates speech with specified compound styles. A

compound style is a combination of speech styles in different aspects, such as speaking

method and emotion. Given the impracticality and cost of collecting data for all style

combinations for supervised learning, we introduce RL as an effective solution. Further-

more, this work focuses on text-guided speech generation rather than TTS, a relatively

unexplored area compared to the well-studied field of TTS.

5.2.3 Reinforcement Learning and Human Feedback in Audio Gen-

eration

Some concurrent works to ours recently explore the use of RL or human feedback to

improve the TTA task. Tango 2 [165] proposes an approach to generate a pairwise text-

audio preference dataset and apply direct preference optimization (DPO) [140] to optimize

the TTAmodel. With a similar goal, BATON [166] collects human feedback to finetune an

off-the-shelf TTA model. Both works are built on the previously proposed text-to-audio

model [148], aiming to make the generated audio more aligned with the complex scenario

described in the input text. Besides, for TTA, plenty of paired text-audio data is available
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to build a good model even before further finetuning [167]. In contrast, our work targets

a different and limitedly explored speech generation task, text-guided voice conversion,

where we need to design an architecture that takes multiple input conditions to control the

content, speaker identity, and style of the output speech. Furthermore, the scarcity of high-

quality data highlights the challenge of this task. In this work, we introduce RL to design

a more effective learning pipeline under such a low-resource scenario and build a better

text-guided voice conversion model. Moreover, the concurrent works leverage either RL

or human feedback to refine their models, whereas we adopt both and benefit the proposed

model. We study how reinforcement learning with human feedback (RLHF) helps speech

generation and how to apply it, which has yet to be discussed before in speech or audio

generation.

5.3 Text-Guided Voice Conversion

In text-guided voice conversion, the model takes source speech, a text description of the

target style, and a target speaker embedding as input to generate converted speech. The

converted speech retains the linguistic content of the source speech, while its speech style

and speaker identity aremodified according to the text description and speaker embedding.

The speech styles can be different speaking rates, speaking methods, or emotions, and the

text descriptions are human-written sentences in any format. The training data for building

a text-guided voice conversion model consists of speech utterances in diverse styles paired

with corresponding text descriptions, and text transcriptions of the speech content are not

required for this task.

This section introduces how we build the proposed text-guided voice conversion
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model based on a pre-trained model. Section 5.4 further studies improving model per-

formance with reinforcement learning and human feedback. Lastly, the training data will

be detailed in Section 5.5.

5.3.1 Modifying a Pre-TrainedModel for Text-Guided Voice Conver-

sion

We utilize a pre-trained text-to-audio (TTA)model as the backbone of the proposedmodel.

In TTA, there is plenty of public data [167] available, and many open-source models are

built with remarkable performance in comprehending text sentences and producing sound

events [147, 148, 150]. Hence, we take advantage of their text understanding and sound

generation abilities in our text-guided voice conversion model. While TTA models con-

ditioned on textual descriptions can mimic human-like sounds, they lack the capability

to generate meaningful speech content. To apply a TTA model in text-guided voice con-

version, we need to adapt its architecture to control the output speech content. In the

following paragraphs, we first introduce the TTA model we adopt, TANGO [148]. Then,

we detail the proposed architecture for text-guided voice conversion.

TANGO

TANGO is a TTA model employing an instruction-tuned large language model, FLAN-

T5 [149], to comprehend and encode input text, followed by a latent diffusion model

(LDM) [143]. The LDM iteratively generates sounds from xT to x0, where T is the num-

ber of generation steps, xT is random Gaussian noise, and x0 is the latent representa-

tion of the output sound. During training, x0 is derived by encoding the target sound

using a pre-trained VAE encoder [147]. xT , xT−1, xT−2, ..., x1 are then calculated through
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the forward diffusion process [168]. At each training step, xt is randomly sampled from

{xT , xT−1, xT−2, ..., x1} as input, and the model is trained to optimize pθ(xt−1|xt, τ) with

encoded text embeddings τ as extra conditions. The generation process follows the reverse

diffusion process [168] to generate xt one-by-one, starting from random sampled Gaus-

sian noise xT . After the iterative generation process, the final output x0 is passed to the

pre-trained VAE decoder and a HiFi-GAN [7] vocoder to reconstruct Mel-spectrograms

and waveforms, respectively. The original TANGO was built for general-purpose TTA

generation. It can produce sounds consistent with the scenarios described in the text, but

it cannot precisely control the style and content of the output speech. Hence, we modify

the architecture to take a speech utterance as additional input, which provides detailed

content information.

Proposed Model

Figure 5.1 depicts an overview of the proposed model modified from pre-trained TANGO.

We first convert the source speech, which specifies the content of the output speech, into

HuBERT units [13]. These discrete representations have shown a good ability to remove

speaker information and retain content information [30], allowing the model to specify

different target speakers for the output speech through additional speaker embeddings.

The HuBERT units specifying the speech content, the speaker embedding of the target

speaker, and the text prompt describing the target style are encoded by a unit encoder. The

output unit embeddings ϕ are concatenated with the LDM input, which is the intermediate

(xt) in the reverse diffusion process, and the text embeddings τ provide style information

through the cross-attention mechanism [148]. We use a pre-trained d-vector [169] model 1

1https://github.com/yistLin/dvector
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Figure 5.1: Overview ofmodifying a pre-trained text-to-audiomodel for text-guided voice

conversion.

to extract speaker embeddings. At each training step, we randomly select five utterances

of the same speaker but with different styles to extract the average speaker embedding,

making the embeddings contain less information about a specific speech style and urging

the model to control the output styles following text descriptions. We follow the same

training process except for the augmentation trick in the original TANGO paper [148] to

optimize the LDM. The loss function is denoted as Lldm. All input conditions are from

the same utterance during training and can be specified separately at inference time.

The unit encoder is illustrated in Figure 5.2 (a), primarily composed of CNN and bidi-

rectional LSTM layers. Following TANGO, we use pre-trained FLAN-T5-LARGE [149]

to encode the input text, combined with the speaker embedding as the output τ . We re-
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Figure 5.2: (a) Architecture of the unit encoder. (b) Architecture of the duration model.

Note that ground-truth instead of predicted duration is used as input to the range predictor

and the Gaussian upsampling module at training time.

move the repetitions in the unit sequence to eliminate prosody-related and speed-related

information in the source speech. The information will be re-specified by a durationmodel

according to the text description and speaker embedding. We apply a self multi-head at-

tention pooling (SMHA) [170] layer to extract a vector representing style and speaker

information. The duration model is illustrated in Figure 5.2 (b). We follow [171] to con-

struct a duration predictor, a range predictor, and a differentiable Gaussian upsampling

module. During training, we use ground-truth duration as input to the range predictor and

the Gaussian upsampling module. For the duration predictor, we clip the minima and the

maxima of the target duration to 1 and 20, respectively, making it a 20-class classification

model trained to minimize the cross-entropy loss Ldur. Finally, all modules are jointly
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trained to minimize the loss Ltotal = Lldm + Ldur.

5.3.2 Duration Model Fine-Tuning

During the joint training process, we found that the duration and diffusion models have

different convergence speeds. Therefore, after the joint training, we freeze the model and

separately fine-tune the duration predictor in the duration model and the SMHA pooling

layer before it. Besides, we add a new GRU and linear layers upon the CNN block in the

duration predictor. The modified duration predictor predicts duration autoregressively.

The input and output of the CNN block and the duration of the previous time step are

concatenated together as the input of theGRU to predict the next duration. During training,

ground truth duration is used as input in a teach-forcing manner, and the SMHA pooling

layer, the CNN block, and the GRU layer are updated to minimize Ldur.

5.4 Improving Model Performance with Reinforcement

Learning and Human Feedback

The proposed model built in Section 5.3 has a preliminary voice conversion ability to pro-

duce utterances of the target speaker with the specified style and the exact content of the

source speech. In the previous training stage, the training data is a combination of pub-

licly available datasets, and each dataset contains different aspects of speech style, such as

accent or emotion. During training, each input description only specifies styles from one

dataset. The model has never seen a description simultaneously specifying multiple styles

from different datasets. Hence, in this section, we explore leveraging reinforcement learn-

ing (RL) to improve the model performance when using more complex style descriptions,
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making it more effectively benefit from the diverse datasets with various kinds of styles.

The datasets used in this work will be introduced in Section 5.5. Note that in the follow-

ing, we combine two aspects of speech styles to generate complex style descriptions, but

the proposed method can be generalized to cases with more styles.

We select different styles from different datasets to combine and generate their style

descriptions. Specifically, we select three speaking styles (speak, shout, whisper) and

eight emotions (neutral, happy, angry, sad, disgust, sleepiness, surprise, fear), combin-

ing them into 24 compound styles. These combinations simultaneously specify multiple

styles from different datasets, which are unseen during the previous training. Besides,

due to the lack of real speech data of these compound styles, we cannot directly apply

the supervised joint training process mentioned in Section 5.3. Consequently, our model

so far cannot convert speech into such complex styles well. To address this problem, we

introduce reinforcement learning for this scenario. For simplicity, during training, we fix

the descriptions for these 24 styles in the form of “A man/woman <speaking style> in a/

an <emotion style> tone.” 2 Wewill show in multiple experiments that the model can still

generalize well when using more diverse forms of descriptions 3 during inference.

5.4.1 Reward Model

We first build a reward model for the subsequent reinforcement learning. Given a text

description xtext and a speech utterance xspeech, the reward model RM aims to score their

relevance, i.e., how consistent the speech style is with what the text describes. The reward

model consists of a text encoder Etext and a speech encoder Espeech. The text encoder

2E.g., “A man whispers in a happy tone.”
3E.g., “Listen to the man as he communicates his joy in a whisper.”
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includes a pre-trained and frozen FLAN-T5-LARGE [149], followed by a bidirectional

LSTM layer, a linear layer, and an average pooling layer to output a vector vtext rep-

resenting the global information. The speech encoder has the same architecture except

that FLAN-T5-LARGE is replaced by WavLM Base+ [95], and the output is denoted as

vspeech. The reward model outputs the cosine similarity between vtext and vspeech to score

their relevance. The scoring process is formulated as

RM(xtext, xspeech) = cosine_similarity(vtext, vspeech), (5.1)

vtext = Etext(xtext), (5.2)

vspeech = Espeech(xspeech). (5.3)

FollowingCLIP [142] andCLAP [172], we optimize the rewardmodel through contrastive

learning. At each training step, we randomly sample a mini-batch ofN speech utterances

and the corresponding text descriptions from the same dataset 4 for encoding. Next, we

calculate the similarities between vtext and vspeech vectors, resulting in a similarity matrix

C ∈ RN×N . The similarities on the diagonal of C represent the relevances between the

paired text and speech samples in a mini-batch. The loss function is formulated as

Lcl = 0.5× (ltext(C) + lspeech(C)), (5.4)

l =
1

N

N∑
i=1

log diagi(softmax(C × ρ)), (5.5)

where ρ is a learnable temperature scalar to scale C and diagi is the ith element on the

diagonal. ltext and lspeech indicate that the softmax is operated along the text and speech

4Section 5.5 introduces the seven datasets used in this work, and speech utterances in a mini-batch are

from the same dataset.
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axes of C, respectively. Eventually, the reward model is optimized to increase similarities

between text and speech encodings with the same styles and decrease those with different

styles.

After training the reward model, given a speech utterance generated by the voice

conversion model with one of the 24 style descriptions, we first follow Eq. 5.1 to calculate

similarities between the utterance and the 24 style descriptions. Then, we apply softmax

to the 24 similarities. Among the resulting 24 values, we define the reward as the one

corresponding to the target style of the output utterance, indicating the relevance between

the generated speech and the input text description.

5.4.2 Denoising Diffusion Policy Optimization

Figure 5.3 (a) shows the overview of the proposed RL process. Our RL algorithm follows

denoising diffusion policy optimization (DDPO) [173], which investigates the applica-

tion of reinforcement learning to diffusion models in image generation. Given an input c

(containing source speech, a text description, and a target speaker) and the trained voice

conversion model with parameters θ, the diffusion model outputs x0 conditioned on c. We

use the reward model to calculate the reward and score the relevance between the gener-

ated speech and the text description in speech style. The RL objective is to update θ to

maximize the reward, which is formulated as

J(θ) = Ex0∼pθ(x0|c)[r(x0, ctext)], (5.6)

where ctext is the text description in c, r is the process illustrated in the last paragraph of

Section 5.4.1 to calculate rewards, and pθ(x0|c) can be derived during the reverse diffusion
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is optimized with the reward model and RL algorithm. (b) Overview of the RLHF pro-

cess, including collecting human preferences and building a reward model with human

feedback. The reward model learns from human feedback and is used to optimize the

text-guided voice conversion model with the same RL algorithm as in (a).

process. Note that x0 is converted to speech through the VAE decoder and HifiGAN

vocoder before being scored through r. We omit this process for simplicity.

We update θ through estimating∇θJ . At training step k, we use themodel parameter-

izedwith θk to generatem samples, each ofwhich is a denoising trajectory {xT , xT−1, ..., x0}

from the reverse diffusion process. These trajectories and the conditions to generate them

are kept to update model parameters. We use the same samples to update the model for n

steps and generate new samples at step k+n. At step k+ i, the gradient can be estimated

with importance sampling [174]:

∇θk+i
J = E[

T∑
t=1

pθk+i
(xt−1|xt, c)

pθk(xt−1|xt, c)
∇θk+i

log pθk+i
(xt−1|xt, c)r(x0, ctext)], (5.7)
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where each xt is an element in the trajectory generated by θk. The practical implemen-

tation follows DDPO and proximal policy optimization (PPO) [175], which apply trust

region [176] by clipping.

5.4.3 Reinforcement Learning from Human Feedback

We further adopt a more advanced RL algorithm for speech generation, reinforcement

learning from human feedback (RLHF) [137, 138], which introduces real-world human

feedback to the learning paradigm of RL. The proposed RLHF procedure is modified from

[139], including three steps: (1) collecting human preferences for generated speech, (2)

building a reward model with human feedback, and (3) applying DDPO with the new

reward model. The overview of the RLHF process is illustrated in Figure 5.3 (b).

We first prepare input samples from the training data to generate speech. Each input

sample contains randomly selected source speech, a style description, and a target speaker.

For each input sample, we use the voice conversion model trained with DDPO to generate

two speech utterances. Then, we recruit human raters. Given a description and two con-

verted utterances, the raters are asked to label the utterance that has a style more relevant

to the description. The collected human feedback data is denoted asDhf . Each sample in

Dhf is a set of (xtext, xwspeech, xlspeech), where xtext is the text description and xwspeech is the

preferred speech utterance compared with xlspeech. Following [139], the reward model is

optimized to score the output speech in a way more aligned with human preferences. The

loss function is formulated as

Lhf = −E(xtext,xw
speech,x

l
speech)∼Dhf

[log(σ(RM(xtext, x
w
speech)−RM(xtext, x

l
speech)))],

(5.8)
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whereRM(·) is calculated following Eq. 5.1. We investigate two training strategies. One

is optimizing Lhf only and fine-tuning a reward model trained using Lcl. The other is

jointly optimizing Lcl + Lhf from scratch. Finally, we adopt the reward model built with

human feedback and follow the DDPO algorithm to optimize the text-guided voice con-

version model.

5.5 Datasets

Developing a text-guided voice conversion model that can comprehend complex text de-

scriptions and generate speech with diverse styles requires a large amount of high-quality,

expressive speech recordings and human-written text descriptions. Previous works in-

volve professionals for recording and annotating, expensively building proprietary datasets

specifically for text-guided speech generation. In contrast, this study aims to accom-

plish the task by leveraging only publicly available datasets. We extensively collect seven

speech datasets for various tasks, forming a collection with over 200 hours of speech data.

We group these datasets into four main categories for the following introduction. Details

of the datasets are listed in Table 5.1.

5.5.1 PromptSpeech Dataset

PromptSpeech [8] was initially proposed for text-guided text-to-speech generation and

consists of rich speech data and corresponding style descriptions. It is composed of two

subsets. One is derived from the LibriTTS [79] dataset, denoted as PromptSpeech-R. Each

speech utterance has a sentence describing the styles in four aspects (gender, pitch, speed,
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Table 5.1: Details of datasets used in this work, including total duration (Dur., in hours),

number of utterances (Uttr.), number of speakers (Spk.), and contained styles.

Name Dur. Uttr. Spk. Styles

PromptSpeech Dataset [8]

PromptSpeech-R 38 27k 1191 gender, pitch, speed, volume

PromptSpeech-S 97 50k 4 gender, pitch, speed, volume, 5 emotions

Emotion Datasets

EmoV-DB [177] 9 7k 4 gender, 5 emotions

ESD [178] 13 18k 10 gender, 5 emotions

CREMA-D [179] 5 7k 91 gender, 6 emotions, 4 emotion levels

Accent Dataset

VCTK [124] 41 44k 110 gender, 12 accents

Sound Event Dataset

AudioCaps [167] 13 5k sound events

volume). The other subset, denoted as PromptSpeech-S, is synthesized by Azure TTS 5

and annotated with text descriptions of styles in five aspects (general, shout, whisper,

cheerful, sad). For the synthesized subset, We use the same 50k utterances as in [11]. We

only use the officially released training splits of the two subsets and exclude 100 utterances

from each as the validation sets.

5.5.2 Emotion Datasets

We collect three emotion datasets, EmoV-DB [177], ESD [178], and CREMA-D [179],

which contain various emotion styles and expressive speech data. EmoV-DB includes five
5https://azure.microsoft.com/en-us/products/ai-services/text-to-speech/

#overview
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emotion styles (neutral, amused, anger, sleepiness, disgust), and ESD also includes five

emotions (neutral, happy, angry, sad, surprise) with some overlaps. There are six different

emotions (neutral, happy, anger, sad, disgust, fear) in CREMA-D, and each emotion is

presented at four different levels (xx, low, mid, high). The combination of these three

datasets includes totally eight unique emotion styles (neutral, happy, angry, sad, disgust,

sleepiness, surprise, fear). We exclude 90, 100, and 100 utterances from EmoV-DB, ESD,

and CREMA-D, respectively, as the validation sets.

The speech data in these datasets are only labeled with emotion tags, while building

a text-guided voice conversion model requires sentences describing target speech styles.

Hence, we use a large language model (LLM) to convert labels into text descriptions.

Specifically, we provide the gender and emotion information and ask ChatGPT 6 to pro-

duce different text prompts describing the same given styles. For EmoV-DB and ESD,

we generate 20 descriptions per gender-emotion pair. For CREMA-D, we generate four

descriptions per gender-emotion-level pair.

5.5.3 Accent Dataset

VCTK [124] is a high-quality dataset containing recordings of 110 speakers with 12 dif-

ferent accents. Similarly, we use ChatGPT to generate text descriptions based on gender

and accent information. We generate eight descriptions per gender-accent pair. We split

110 utterances (one per speaker) as the validation set. Note that the use of VCTK only

aims to increase the data diversity during training, i.e., providing more speakers with dif-

ferent accents. Although we prepare text prompts describing accents as model input, the

accent of the output speech is primarily affected by the target speaker embedding that we

6https://chat.openai.com/
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additionally provide. Section 5.3 illustrates more details about speaker embedding.

5.5.4 Sound Event Dataset

AudioCaps [167] is derived from AudioSet [180], a large-scale dataset for sound event

classification. Audio clips in AudioCaps are annotated with a sentence describing the

content of the sound. Since the audio data is collected from YouTube with extensive

topics and scenarios, the vocabulary of the text descriptions is much richer than other

datasets mentioned above. We use the subsets annotated as human speech and exclude

100 utterances as the validation set. Similar to the accent dataset, AudioCaps is used only

to augment the diversity of text descriptions and speech styles during training. In our

setting, the content of the converted speech is decided by the input source speech instead

of the text description.

5.6 Experimental Setup

5.6.1 Data Preprocessing

We use all seven datasets introduced in Section 5.5 for the joint training, the duration

model fine-tuning, and the contrastive learning of the reward model. For RL and RLHF,

due to the small total training steps, we only use the three emotion datasets. All speech

utterances are resampled at 16 kHz. Speech units are extracted using the official HuBERT

implementation and the pre-trained HuBERT Base model. 7 We extract HuBERT features

from the 9th layer and run k-means clustering on our speech data with k = 100.

7https://github.com/facebookresearch/fairseq/tree/main/examples/hubert
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We prepare in-domain (ID) and out-of-domain (OOD) validation sets for the follow-

ing experiments. The ID set consists of the validation sets of the three emotion datasets.

All speakers are seen during training, and the text descriptions are the same as those used

in RL, i.e., in the form of “Aman/woman <speaking style> in a/an <emotion style> tone.”

The OOD set contains speech utterances randomly selected from the train-clean split of

LibriTTS [79]. These utterances are not included in PromptSpeech [8], and all speak-

ers are unseen. Besides, we use ChatGPT to randomly generate unseen text descriptions

given different genders, speaking styles, and emotions. For both validation sets, we ran-

domly generate (source speech, target speaker, style description) combinations as model

input conditions. Elements in a combination can be from different ground truth utterances.

The ID and OOD validation sets contain 290 and 177 combinations, respectively.

For RLHF, We follow the process introduced in Section 5.4 to use the voice conver-

sion model trained with vanilla RL to generate utterances and recruit raters to label them.

The input units, text descriptions, and speaker embeddings are randomly selected from

different utterances of the three emotion datasets. A total of 12600 samples are collected,

of which 12000 are for training and 600 for validation.

5.6.2 Models and Training

Figure 5.1 and Figure 5.2 show the details of the proposed model, including channel sizes

and kernel sizes of different layers. The pre-trained TANGO model is from the official

GitHub repository. 8 We use the tango-full-ft-audiocaps checkpoint, and the pre-trained

VAE and HifiGAN vocoder are adopted from [147]. The joint training process follows the

setting in [148], except that we do not apply the data augmentation method proposed in

8https://github.com/declare-lab/tango

114

https://github.com/declare-lab/tango


doi:10.6342/NTU202401934

the original paper. We use a per GPU batch size of 2 with 4 gradient accumulation steps.

We train the model on one V100 GPU for 10 epochs, resulting in an effective batch size

of 2(sample)× 4(accumulation)× 1(GPU) = 8.

After the joint training, we freeze the model and fine-tune only the duration predictor

and the SMHA pooling layer with the cross-entropy loss for another 10 epochs. The

effective batch size and the learning rate are set to 64 and 3e-4, respectively. The remaining

settings are the same as the joint training. Since works about text-guided voice conversion

and aiming to convert both speaking styles and emotions are limited, we use this fine-tuned

model as the baseline model in this work. The diffusion model uses DDPM [168] with

1000 diffusion steps at training time. We apply DDIM [181] with 100 steps at inference

time and with 30 steps in reinforcement learning for better efficiency.

For RL and RLHF, we apply LoRA [182] with a rank of 4 to the attention layers in

the diffusion model and update only the LoRA layers. The remaining parameters are kept

frozen. We found this stabilized the RL process compared with updating the whole model.

We setm = 128 and n = 4 for DDPO, i.e., we generate 128 outputs and then use them to

update the model for 4 steps with an effective batch size of 32. To avoid out-of-memory,

we use a batch size of 1 and 32 gradient accumulation steps in our implementation. The

training is done on one NVIDIA V100 GPU with the AdamW optimizer [183] and a fixed

learning rate of 3e-4 for 2000 steps. We found that training for too many steps leads

to worse quality and distortions in output speech, as reported in [173]. We keep the

checkpoint with the best validation loss as the final model.

The bidirectional LSTM and linear layers in the reward model have 256 and 512

channels, respectively. For contrastive learning, we train the rewardmodel on the collected
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Table 5.2: Configurations to train the reward model with human feedback. Size: size of

the human feedback dataset. lr.: learning rate. bsz.: batch size to sample data from the

human feedback dataset. Start Step: step to start updating the model with Lhf . Update

Steps: every how many steps to update the model with Lhf . Max Steps: total training

steps. Best Step: step of the best checkpoint.

Label Size lr. bsz. Start Step Update Steps Max Steps Best Step

Fine-tuning

ft-4k 4k 5e-5 2 1 1 8k 3.1k

ft-8k 8k 3e-4 1 1 1 8k 6.3k

ft-12k 12k 1e-4 2 1 1 8k 6.1k

Training from scratch

tfs-4k 4k 3e-4 2 25001 5 50k 40k

tfs-8k 8k 3e-4 1 1 5 50k 40k

tfs-12k 12k 3e-4 1 1 4 50k 45k

seven datasets. We set the batch size to 8 and gradient accumulation steps to 4, resulting

in an effective batch size of 32. As mentioned in 5.4, the eight samples in each mini-batch

are randomly selected from the same dataset. We use the Adam optimizer [106] with a

learning rate of 3e-4 and a cosine learning rate scheduler with 5000 warm-up steps. The

model is trained for 50k steps on one 2080Ti GPU, and we keep the best checkpoint at

step 45k as the reward model for vanilla RL.

For RLHF, we try two training strategies to leverage the human feedback dataset:

fine-tuning and training from scratch. For fine-tuning, we directly fine-tune the trained

reward model with the objective Lhf using the Adam optimizer and a fixed learning rate.

For training from scratch, we train a randomly initialized model with the objective Lcl +

Lhf . To study the impact of data size on RLHF, we divide the human feedback dataset
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into three splits with 4k, 8k, and 12k training samples, respectively. We search different

training parameters to ensure the best results. Table 5.2 lists the best configurations when

training with different strategies and on different splits. The remaining settings are the

same as those in contrastive learning.

5.6.3 Evaluation Tasks

We use objective and subjective evaluations to assess the ability to convert styles and show

the benefits of applying RL and RLHF.

Objective Evaluation

We conduct the objective evaluation on both ID and OOD validation sets. For each input

condition in the validation sets, we generate three speech utterances and evaluate them in

the following tasks:

• Style Classification with the Reward ModelWe use 3-class speaking style classi-

fication (SS), 8-class emotion classification (Emo.), and 24-class description clas-

sification (Des.) tasks to evaluate converted speech. Following CLIP [142], we

use our reward model to classify speech utterances. The reward model is the same

as in RL, trained with contrastive learning and without human feedback data. For

speaking style classification, we extract encodings of the generated speech and three

different style descriptions in the form of “A man/woman <speaking style> tone.”

Then we calculate the cosine similarity between the speech and text encodings. The

pair with the highest similarity indicates that the generated speech is classified to

the corresponding speaking style. Emotion classification follows the same process,
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except that the style descriptions are in the form of “A man/woman speaks in a/

an <emotion style> tone.”. Similarly, 24 style descriptions in the form of “A man/

woman <speaking style> in a/an <emotion style> tone.” are used in description

classification. Genders in all descriptions are aligned with the target speakers. All

classification results are reported in accuracy (%).

• Style Classification with Style Classifiers For better reference in the SS and Emo.

tasks, we train a 3-class speaking style classifier and an 8-class emotion classifier to

evaluate converted speech. 9 The architectures are the same as the speech encoder

in the reward model. We only modify the channel sizes of the last linear layers and

optimize these classifiers with the cross-entropy loss. All classification results are

reported in accuracy (%).

• Speaker Similarity (SSIM) To assess the speaker similarity between the generated

speech and the input speech specifying the target speaker, we use the d-vector model

to extract the speaker embeddings of the two utterances. Then, we calculate their

cosine similarity. The result ranges from -1 to 1, and a higher score indicates a better

speaker similarity.

Subjective Evaluation

Following [147], [148], and [150], we ask human raters to assess speech utterances on

a 5-point scale in two aspects: overall audio quality (OVL) and relevance to the style

descriptions (REL). For each voice conversion model, we generate 48 speech utterances

with different target style combinations (two genders, three speaking styles, and eight

9For the Des. task, it is infeasible to build a 24-class classifier with supervised learning due to the lack

of paired data, as mentioned in Section 5.4.
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emotion styles). The source speech, target speakers, and text descriptions are randomly

selected from the OOD validation set. Each utterance is scored by at least eight raters.

To better demonstrate the benefits of introducing human feedback, we perform pairwise

preference tests between models trained with RL and RLHF. We use the same 48 speech

utterances in the tests. In each test, two utterances, which are generated using the same

input conditions but different models, are provided to human raters. The raters are asked to

decide which utterance is more relevant to the input style description. Each pair is scored

by at least 15 raters. All raters in the subjective evaluation are recruited using Amazon

Mechanical Turk.

5.7 Results

5.7.1 Objective Evaluation

Performances of the Evaluation Models

We first evaluate ground-truth speech data in the objective evaluation tasks and show the

performances of the evaluation models. For emotion classification, since the classifier has

an 8-class output while each emotion dataset contains only five to six emotion styles, we

ignore those irrelevant classes when calculating accuracies. For SSIM, we first calculate

the average speaker embedding of a speaker. Then, we calculate the similarity between the

speaker embedding of each utterance and the average embedding. The results are listed in

Table 5.3. We conclude our observations as follows:

• The reward model reaches accuracies of over 97% on PromptSepeech-S, EmoV-

DB, and ESD, indicating its ability to discriminate different speaking styles and

119



doi:10.6342/NTU202401934

Table 5.3: Style classification and speaker similarity results on different datasets.

Dataset # of Styles
Classification Acc.

SSIM
Reward Model Classifier

PromptSpeech-S 3 98.3 49.2 0.761

EmoV-DB 5 98.9 53.3 0.622

ESD 5 97.0 55.0 0.704

CREMA-D 6 77.0 52.0 0.885

emotions. Although the accuracy drops on CREMA-D, we attribute the degradation

to the lower recording quality and more noisy speech data in this dataset.

• We found that the style classifiers easily overfit on the training set, making parame-

ter searching and fewer training steps crucial to reaching optimal results. However,

the reward model still performs much better than the style classifiers, showing the

effectiveness of contrastive learning on the collected datasets with various styles.

• All speaker similarities are over 0.6. PromptSpeech-S consists of clean synthesized

speech, resulting in a higher average similarity of 0.761. As for CREMA-D, there

are more speakers, and some have only one utterance in the validation set, leading

to multiple speaker similarities of 1 and the highest average SSIM.

Classification Results of Generated Speech

Table 5.4 lists the classification results of the proposed models before and after applying

reinforcement learning. Base denotes the proposed model after the joint training and du-

ration model fine-tuning. The default batch size is set to 8 in the joint training. We study

the impact of the batch size by setting a larger batch size of 32, denoted as b32. Base-
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Table 5.4: Style classification results of the proposed model. Base denotes the model

after the joint training and duration model fine-tuning. b32 uses a batch size of 32. Base-

RL applies RL and only updates the LoRA layers in the diffusion model. +ue and +dur.

further apply LoRA to the SMHA pooling layers for the unit encoder and the duration

model, respectively.

Model
Reward Model Classifier

SS Emo. Des. SS Emo.

ID validation set

Base 40.9 27.7 10.5 38.7 20.6

Base (b32) 39.5 27.8 12.2 33.9 20.9

Base-RL 44.0 46.8 21.5 41.6 29.9

Base-RL (+ue) 42.3 45.3 18.2 38.6 31.3

Base-RL (+ue, +dur.) 39.8 58.5 26.2 38.3 36.9

OOD validation set

Base 42.4 37.3 16.6 34.8 27.1

Base (b32) 41.2 37.3 18.1 34.5 26.2

Base-RL 49.9 51.2 24.7 40.1 29.0

Base-RL (+ue) 47.6 52.5 26.6 36.0 28.1

Base-RL (+ue, +dur.) 45.8 60.8 30.5 36.2 33.5

RL is the model with RL. We also show the effects of tuning more parameters in RL by

applying LoRA to the SMHA pooling layers for the unit encoder and the duration model.

Our observations are concluded as follows:

• The results evaluated with the reward model on the ID validation set show that

the proposed model possesses a preliminary ability to convert speaking styles and

emotions. The model reaches 40.9%, 27.7%, and 10.5% in SS, Emo., and Des.,
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respectively. 10

• Using a larger batch size of 32 does not lead to significant improvements but requires

four times more computational resources. Hence, we set the default batch size to 8

in this work.

• Applying RL shows better classification results, implying that the converted speech

is much more expressive and aligned with the target styles. The improvements are

especially significant in the Emo. and Des. tasks. The accuracies relatively increase

by approximately 70% and 100%. Trained on the same amount of data, the model

greatly improves after RL, indicating that the proposed learning paradigm helps

build a text-guided voice conversion model more efficiently and effectively.

• Tuning more parameters in RL does not lead to much better results. AlthoughBase-

RL (+ue, +dur.) shows higher accuracies in Emo. andDes., we found the converted

speech has a longer duration, and the speaking rate is unnaturally slower. The dura-

tion predictor of this model is negatively affected after RL. We also tried optimizing

all model parameters in RL. However, the training became less stable, and the loss

exploded easily.

• The results evaluated with the style classifiers show lower accuracies, which can be

attributed to the worse performances of the classifiers, as shown in Table 5.3. Be-

sides, since speech utterances in the OOD validation set are from LibriTTS, which

are cleaner and high-quality, the results on this validation set are slightly better.

Despite the discrepancies between validation sets or evaluation models, all results

demonstrate a similar tendency as the above observations.

10The accuracies of random guesses in SS, Emo., and Des. are 33.3%, 12.5%, and 4.2%, respectively.
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Table 5.5: Classification results of the reward models trained or fine-tuned with different

amounts of human feedback. Human Feedback is a validation set separated from the

collected human feedback data. orig. denotes the original reward model built without

human feedback data. Details of other validation sets and reward models can be found in

Section 5.5 and Table 5.2, respectively.

Reward Model

orig. ft-4k ft-8k ft-12k tfs-4k tfs-8k tfs-12k

Va
lid

at
io
n
Se
t

Human Feedback 52.5 61.7 65.3 66.0 56.0 57.3 61.0

PromptSpeech-S 98.3 91.5 52.5 83.1 98.3 100 100

EmoV-DB 98.9 94.4 37.8 86.7 100 97.8 98.9

ESD 97.0 77.0 41.0 62.0 96.0 97.0 97.0

CREMA-D 77.0 59.0 17.0 55.0 78.0 71.0 78.0

Performances of Reward Models with Human Feedback

Table 5.5 lists the performances of the reward models when training with different strate-

gies and amounts of human feedback. We found that fine-tuning leads to the best result for

predicting human feedback. However, it also introduces performance degradation in style

classification tasks, especially for tfs-4k, which is trained for more steps with a larger

learning rate. On the contrary, training from scratch by jointly optimizing Lcl and Lhf

shows lower accuracies in predicting human feedback but maintains good performances

in other tasks. Based on the results, we select three reward models, ft-12k, tfs-4k, and

tfs-12k, for RLHF in the following experiments to study the impact of different training

strategies and data sizes.
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Table 5.6: Style classification results of the proposed models without RL, with RL, and

with RLHF.

Model Reward Model
ID Validation Set OOD Validation Set

SS Emo. Des. SS Emo. Des.

Base - 40.9 27.7 10.5 42.4 37.3 16.6

Base-RL orig. 44.0 46.8 21.5 49.9 51.2 24.7

Base-RLHF-v1 ft-12k 34.4 37.7 13.4 36.9 49.2 18.1

Base-RLHF-v2 tfs-4k 43.2 46.2 19.5 51.6 48.8 24.7

Base-RLHF-v3 tfs-12k 42.0 51.8 21.5 45.0 53.1 26.0

Classification Results of Applying RLHF

Table 5.6 shows the style classification results of the proposed models with RLHF. Similar

to applying RL, applying RLHF greatly improves the proposed models, outperforming

Base by up to 100% relatively. We found that fine-tuning the reward model leads to less

performant results, which reflect the worse ability of ft-12k in style classification shown in

Table 5.5. On the contrary, the reward models trained from scratch with human feedback

are comparable to the original one, and therefore, Base-RLHF-v2 and Base-RLHF-v3

perform similarly to Base-RL. We hence conclude that the objective evaluation results

are mainly affected by the style classification abilities of the reward models. We will

demonstrate how human feedback helps model performance in the subjective evaluation.

SSIM Results of Generated Speech

Table 5.7 shows the SSIM results in speaker conversion. For better reference, we include

results of YourTTS [184], a popular text-to-speech and voice conversion model. Note

that YourTTS does not support converting speaking styles or emotions. We only use it
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Table 5.7: Speaker similarity results of the proposed models without RL, with RL, and

with RLHF.

Model Reward Model SSIM (ID) SSIM (OOD)

Base - 0.389 0.513

Base-RL orig. 0.354 0.485

Base-RLHF-v1 ft-12k 0.372 0.473

Base-RLHF-v2 tfs-4k 0.323 0.461

Base-RLHF-v3 tfs-12k 0.329 0.443

YourTTS [184] - 0.355 0.650

to perform speaker conversion, so it achieves good results more easily. The proposed

models show SSIM results comparable to YourTTS, demonstrating its ability to convert

the speaker of the output speech according to the input speaker embedding. Since this

work primarily focuses on voice conversion guided by text descriptions, we do not specif-

ically design or apply other tricks for speaker conversion. We leave improving the speaker

conversion ability as a future research direction.

5.7.2 Subjective Evaluation

Table 5.8 lists the subjective evaluation results. We report OVL and REL scores for

ground-truth speech as well as speech generated by the proposed models without RL,

with RL, and with RLHF. Our observations are summarized as follows:

• Both OVL and REL scores of ground-truth utterances are worse than those of gen-

erated ones. We attribute this to the fact that each ground-truth utterance contains

only one style, either a speaking style or an emotion. On the contrary, the generated

speech contains one of the 24 compound styles, making it much more expressive.
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Table 5.8: Subjective evaluation results of the proposed models without RL, with RL, and

with RLHF. All scores are reported with 95% confidence intervals.

Model Reward Model OVL REL

Base - 3.25±0.091 3.03±0.098

Base-RL orig. 3.22±0.094 3.26±0.098

Base-RLHF-v1 ft-12k 3.21±0.094 3.25±0.104

Base-RLHF-v2 tfs-4k 3.18±0.096 3.22±0.101

Base-RLHF-v3 tfs-12k 3.15±0.090 3.28±0.096

Ground Truth - 2.46±0.101 2.65±0.102

Table 5.9: Subjective pairwise preference test results. A percent preference greater than

50% indicates the proposed RLHF model is preferred over Base-RL. All results are re-

ported with 95% confidence intervals.

Model Reward Model Pref.

Base-RLHF-v1 ft-12k 0.521±0.037

Base-RLHF-v2 tfs-4k 0.525±0.037

Base-RLHF-v3 tfs-12k 0.559±0.036

Besides, we found that some ground-truth utterances are noisy or with echoes, and

some are not that similar to the emotions they are labeled with. The results high-

light the challenge of building a text-guided voice conversion model using only

publicly available datasets rather than using collected high-quality datasets like in

other works.

• For REL, models with RL or RLHF are much better than Basewith significance (p-

value < 0.05). Base-RLHF-v3 reaches the highest score, although no significant

difference exists between models with RL or RLHF. These results imply that the

126



doi:10.6342/NTU202401934

proposed RL and RLHF approaches can effectively help the model learn to convert

speech styles according to guidance from text descriptions.

• For OVL, the generated speech has higher scores. The proposedmodels may benefit

from the high-quality TTS data, such as PromptSpeech-R and VCTK, in the training

set. Since we do not include quality metrics to calculate rewards in RL, all proposed

models have no significant difference (p-value > 0.05).

To better show the improvements made by leveraging human feedback, we conduct

pairwise preference tests and list the results in Table 5.9. All three models with RLHF are

preferred over Base-RL. In addition, strategies to leverage human feedback and build re-

ward models also affect performance. Training from scratch outperforms fine-tuning and

reaches the best with sufficient human feedback data. Overall, the subjective evaluation

results underline the difficulty of text-guided voice conversion with only public datasets

and the effectiveness of using RL and RLHF under such a limited scenario.

5.8 Summary

This chapter addresses the data efficiency challenges in text-guided voice conversion by

utilizing reinforcement learning (RL) and reinforcement learning from human feedback

(RLHF) to refine speech generation models. We introduce a novel approach that leverages

publicly available datasets to train a text-guided voice conversion model, significantly re-

ducing the reliance on costly, proprietary datasets. We adapt a pre-trained text-to-audio

model for our specific needs and demonstrate how to enhance model performance us-

ing RL techniques that facilitate the model to learn from another reward model built via

contrastive learning. For RLHF, we examine the effects of varying the amount of human
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feedback and explore different strategies to incorporate it in RL. Our experiments validate

that both RL and RLHF can significantly improve the expressiveness and style accuracy of

the generated speech. Particularly, as confirmed by subjective evaluations, RLHF outper-

forms standard RL and shows a closer alignment with human preferences. This approach

showcases the potential of using RL and RLHF in speech generation and highlights their

effectiveness in making voice conversion models more data-efficient and responsive to

textual guidance.
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Chapter 6

Enhancing Data Efficiency in

Self-Supervised Learning with Speech

Generation

In the preceding chapters, we studied the challenges and advancements related to speech

generation efficiency, focusing on the computational efficiency of neural vocoders and

the data efficiency of text-guided voice conversion. In Chapter 6, we extend the scope of

this thesis by exploring the application of speech generation methods to improve the data

efficiency of self-supervised learning (SSL) in speech processing. Specifically, we study

the potential of speech generation as a powerful method for data augmentation in SSL,

aiming to mitigate the substantial demand for unlabeled speech data. This research not

only enhances the data efficiency of SSL in speech processing but also broadens the con-

tributions of this thesis from optimizing the efficiency of speech generation to enhancing

data efficiency with speech generation techniques.
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6.1 Introduction

Using enormous amounts of unlabeled data and tiny fractions of labeled ones helped

self-supervised learning methods achieve remarkable results in the field of computer vi-

sion [185, 186], natural language processing [109, 110], and speech processing [13, 95].

Such dependency, however, has raised concerns for certain applications [187–189], may

be incorporated at pre-training, leading to potential leakage to downstream applications.

In the field of speech processing, the leakage can be related to speaker identity or unique

timbre in speech utterances [190]. The text content, on the other hand, is simpler to

anonymize by using only public domain text data [191]; hence, it doesn’t face the same

level of scrutiny as speech data that deeply entangles speaker identity and style into the

spoken content.

Most recent SSL speech models are pre-trained on thousands to tens of thousands

of hours of real-world speech data to achieve outstanding performance [12, 13, 95]. This

study aims to alleviate this heavy reliance on large amounts of real speech data by lever-

aging synthetic data to augment the training corpus. For example, can we train a compet-

itive SSL speech model solely using 100 hours of audio-only data and 10 hours of paired

audio and labeled data? The proposed approach involves utilizing the high-quality dis-

crete representation units learned by an SSL model to build a high-quality text-to-speech

(TTS) system, which subsequently augments speech corpus for pre-training a better SSL

model. We first pre-train an SSL model on a small amount of real-world speech data.

Discrete units are then extracted from the speech data using the SSL model to construct

a multi-speaker unsupervised unit-to-speech model. Next, we build a text-to-unit model

using limited text-speech paired data. Following that, a TTS system is built by integrating
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the text-to-unit and unit-to-speech models. We use this TTS system to generate a large

synthetic corpus and pre-train a better SSL model. The contributions of this work are

summarized as follows:

• We investigate the performance of a speech SSL model pre-trained solely on a 100

hours audio-only dataset and demonstrate the impact of data scarcity on SSL mod-

els, including the challenge of overfitting and the resulting degradation in perfor-

mance due to the limited pre-training data.

• We propose a TTS system to augment the limited data for SSL pre-training. By

leveraging discrete units obtained from the SSL model pre-trained on 100 hours

of audio-only data, we build unit-to-speech and text-to-unit models to construct a

high-quality multi-speaker TTS system, which is then used to generate a large pre-

training speech corpus.

• Experimental results show that the proposedmethod effectively reduces the demand

for real-world pre-training data by 90% with only slight performance degradation

compared to SOTA SSL approaches on the standard LibriSpeech benchmark.

6.2 Related Work

6.2.1 Self-Supervised Learning with Unpaired Text Data for Speech

Processing

Many works have explored enhancing speech SSL models by incorporating additional

unpaired text data. In [192], the authors propose using a well-trained TTS model and

text data to create a paired dataset and combine it with speech-only data for SSL model
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pre-training. With rich data resources, the joint learning paradigm of speech and text ef-

fectively improves the performance of the SSLmodel in the downstream automatic speech

recognition (ASR) task. Besides using text data and a TTS model to produce more data,

some other works [193–197] proposes to learn joint representations for speech and text

modalities and buildmultimodality SSLmodels. The resultingmodels demonstrate promi-

nent improvements in various speech-text tasks such as ASR and speech translation.

Even though pre-training SSL models with speech and text data has demonstrated

remarkable improvements in speech processing, the previous approaches still heavily rely

on rich paired or unpaired data. None of these works have explored the development of

an SSL model with limited data resources.

6.2.2 Speech Generation for Data Augmentation

Leveraging synthetic speech to enhance ASR performance has been an established and

effective strategy [198–201, 201–204]. These methods employ text data and TTS models

to create extensive paired datasets, thereby augmenting the training data for ASR. By

generating speech data with increased acoustic and lexical diversity, these approaches

effectively lead to better ASR results, demonstrating the benefits of utilizing synthetic

speech data in the development of ASR systems, especially in low-resource settings.
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Figure 6.1: Overview of the proposed system.

6.3 Method

6.3.1 Overview

In this work, we choose HuBERT [13] as the SSL model to improve in a low-resource

setting. The training datasets are in three settings: limited text-speech paired data, limited

speech data, and rich-resource text data. More information about the datasets is detailed

in Section 6.4.1.

The high level idea of this work is illustrated in Figure 6.1. In Stage I, we first pre-

train a HuBERTmodel on the limited unpaired speech data. This model is used in Stage II

to extract discrete speech representation [13]. We use the SSL representation to help build

a multi-speaker TTS system and generate a large synthetic dataset from the rich-resource
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Table 6.1: Average length ratios (unit length / phoneme length) with different postpro-

cessing methods.

Remove repetitions DPDP Ratio

7 7 4.2

3 7 2.1

3 3 1.7

text dataset. The synthetic dataset is then augmented and used for pre-training a better

HuBERT model (Stage III).

6.3.2 Extracting Discrete Speech Representation

In Stage II, we first extract speech representations using a HuBERT model. The model is

a 12-layered BASE model [13] and pre-trained for three iterations on the limited speech

dataset in our setting. We then extract the representations from the 9th layer and apply

k-means clustering to convert continuous features into discrete units. We set k = 500 in

our experiments. Lastly, we adopt the duration-penalized dynamic programming (DPDP)

algorithm proposed in [205] and remove repeated tokens [13]. The duration penalty is set

to 1.0.

Table 6.1 shows the average length ratios between unit and phoneme sequences with

different postprocessingmethods. The DPDP algorithm smooths the unit sequence, result-

ing in a shorter sequence after removing repetitions, which we found helpful for building

the TTS system.
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6.3.3 Text-to-speech Modules

A common multi-speaker TTS pipeline usually consists of an acoustic feature predictor

and a vocoder to restore waveform from acoustic features [1, 2]. The former is usually

trained on a large amount of paired data, and the latter only on speech data. In our set-

ting, the total speech data for training is limited to about 100 hours, and the text-speech

paired data is even scarcer (about 10 hours). With only 10 hours of paired data, it is hence

challenging to build a multi-speaker TTS from scratch. Some low-resource TTS works

leverage additional data from rich resource languages [206] or apply ASRmethods to help

TTS training [207, 208], while in this work, we convert speech into discrete representation

to reduce the difficulty of training.

The proposed TTS system comprises four components: (1) A session encoder (SE)

encodes each speech utterance into a vector, representing information such as speaking

style in the utterance. The representation is used during training and generation. (2) A

text-to-unit model (T2U) predicts the discrete units representing speech information from

given text. In preliminary experiments, we found that it was significantly easier to predict

discrete units than continuous acoustic features such as Mel-spectrograms. With only a

limited amount of paired data, a multi-speaker text-to-Mel model failed to converge and

failed to generate intelligible speech. (3) Two variance predictors predict more detailed

prosody and pitch information from discrete units. A duration predictor (DP) predicts

the duration of each discrete unit, and a pitch predictor (PP) predicts the log(F0) at each

frame. It is worth noting that only speech data is required to train both predictors. Com-

pared with a common TTS model, which takes paired data to train the whole acoustic

feature predictor [1, 2], the proposed method allows training parts of the acoustic feature
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predictors without text labels; hence, the amount of training data is less restricted. (4) Fi-

nally, a unit-to-speechmodel (U2S) is trained to synthesize the waveform using predicted

discrete units and acoustic features.

Session Encoder (SE)

We follow [209] to build SE and extract x-vectors as session embedding. 1 The model is

trained on the limited speech dataset in our setting. To preserve the diversity of speech

utterances, we do not average the x-vectors of the same speaker. Instead, we extract an

x-vector for each speech utterance and use the utterance-level x-vectors for training and

synthesis.

Text-to-unit Model (T2U)

T2U is implemented based on Tacotron 2 [1]. A text sequence is first converted into a

phoneme sequence and passed as input to T2U, which then generates a unit sequence.

The session embedding from SE is concatenated to the output of the encoder, allowing

T2U to generate units in different speaking styles. We append end-of-sentence (EOS)

tokens to the end of both input and output sequences, guiding the decoder to predict a stop

token when attending to the last input or an EOS token has been predicted at the previous

timestep. We remove repeated tokens in target unit sequences during training, and the

model follow [16] to predict two units at each timestep. This process shortens the output

length and makes it closer to the input length, leading to faster convergence speed and

more stable attention alignments, as mentioned in [16].

1Session encoder training is done on NTU infrastructure on publicly available data.
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Duration Predictor (DP) and Pitch Predictor (PP)

Similarly to [210, 211] a duration predictor is trained to restore repeated tokens in unit

sequences removed in training T2U. The model takes a deduplicated unit sequence as

input and predicts the number of repetitions for each unit.

To generate more acoustic information before restoring the speech waveform, we

train a pitch predictor. The model takes a unit sequence (with repetitions) as input and

predicts the log-scaled fundamental frequency (F0) at each frame.

Both predictors adopt the same architecture. The input sequence is first encoded by

convolution layers with skip connections, followed by an LSTM layer and a combination

of several convolution layers and layer normalization. The session embedding is con-

catenated to each timestep of the input. The predictors are trained to minimize the mean

absolute error, and log(F0) is used for calculating the loss.

Unit-to-speech Model (U2S)

We follow [30, 210] to build a unit-to-speechmodel with somemodifications. The original

unit-based HifiGAN from [30] uses the normalized and quantized log(F0) to provide

additional pitch information, while in this work, we simply use the unnormalized and

continuous log(F0). U2S takes in units, log(F0), and the x-vector to reconstruct the

waveform.

To further enhance the quality of the generated speech, we add a variational auto-

encoder (VAE) to model the acoustic information that is not explicitly captured in units,

log(F0), and x-vectors. During training, a Mel-spectrogram is first extracted from the tar-

137



doi:10.6342/NTU202401934

get waveform, and the VAE encoder encodes theMel-spectrogram into sequences of mean

and variance vectors, which are then used to generate latent representations by the repa-

rameterization trick. The latent representations, the units, the log(F0), and the x-vector

are concatenated and passed to the decoder to reconstruct the original Mel-spectrogram.

The output of the last hidden layer is used as an additional condition for U2S. At inference

time, we discard the encoder and use the normal Gaussian distribution as the prior of the

latent representations. The VAE is built using convolution layers with skip connections,

and we train the VAE and U2S jointly.

Data Augmentaion and Oversampling

To enrich the diversity of the synthetic dataset, we augment the generated utterances with

twomethods. First, we observed that the generated utterances exhibit a length 80% shorter

than natural speech. Consequently, for each utterance, we multiply the durations predicted

by DP with a scalar uniformly sampled between 1.0 to 1.5. This process stretches the

speech, making the speaking rate various and closer to natural speech. Secondly, we add

background noise from our noise dataset to the generated speech with a random SNR

between 0 to 15.

Finally, we combine the augmented synthetic data and the limited real-world speech

data as the training set to build the HuBERT model. We found that oversampling the

natural speech utterances improves the performance. Specifically, with an oversampling

rate of r, the natural utterances are sampled for pre-training r times more frequently than

synthetic ones.
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6.4 Experimental Setup

6.4.1 Datasets

We use LibriSpeech [191] for pre-training, fine-tuning, and evaluation. The dataset is split

into several splits for different purposes. All the speech data is downsampled to 16 kHz.

• S-100hr. In our setting, we limited the total duration of speech data to 100 hours.

Instead of directly using the train-clean-100 split in LibriSpeech, we select utter-

ances from the train-clean-100, train-clean-360, and train-other-500 splits, making

a new split with clean and noisy speech data. This split contains 29721 speech clips

from 245 speakers (123 males and 122 females) without text transcriptions.

• ST-10hr. We use the 10-hour split of Libri-light [212] as the low resource paired

dataset. This split contains 2763 utterances from 24 speakers, and the total duration

is about 10 hours. Speech utterances in ST-10hr are included in S-100hr.

• S-960hr. This split includes all training splits in LibriSpeech, which contains 281241

utterances from 2338 speakers with a total duration of about 960 hours. We use the

split to pre-train the topline HuBERT model in our experiments.

• T-960hr. This split includes all text transcriptions of the total 960 hours data in

LibriSpeech. These transcriptions are used to generate the synthetic dataset.

• T-LM. This split includes the text used to train the language model in LibriSpeech.

The data is used to generate the large synthetic dataset in Section 6.5.3.

• dev-clean and dev-other. We use the dev-clean and dev-other splits of LibriSpeech

for validation while building the systems and for evaluating the performance.
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We use the MUSAN dataset [213] for data augmentation when training the SE model

and augmenting the synthetic dataset. We replaced the speech part of MUSAN with S-

100hr to prevent using additional speech data.

6.4.2 Comparing Systems

• Baseline HuBERT (S0). The baseline in this work is a HuBERT BASE model

pre-trained only on limited speech data, S-100hr. We pre-train the model for three

iterations. Models in different iterations are pre-trained for 200k steps, 400k steps,

and 400k steps, respectively. After pre-training, the model is fine-tuned for the

ASR task on ST-10hr for 40k steps. In each iteration, we experiment with different

settings and select the best model as the teacher [13] for the next iteration, as shown

in Table 6.2. In this study, we denote different S0 models as S0-xth-kmy-last (best)-

lz, which means the model is from the xth iteration, the cluster number for k-means

is set to y, the last (best) checkpoint during pre-training is selected, and we are

referring to the zth layer of the model.

We use the official HuBERT implementation and configurations provided in the

Fairseq toolkit [214] for pre-training and fine-tuning. The model is pre-trained on

32 GPUs and fine-tuned on 8 GPUs. If not specified, the HuBERT models in the

following systems are pre-trained and fine-tuned with the same setting of S0-1st-

km100.

• Topline HuBERT (S1). Similar to the BASE model in [13], S1 is pre-trained on

S-960hr. This model is considered a topline system built with high-resource speech

data.
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• Off-the-shelf TTS (S2 and S3). To show the performance that can be reached with

a high-quality TTS model trained on the high-resource TTS dataset, we select two

off-the-shelf TTS models released in ESPnet [215]. In S2 and S3, we adopt VITS

models [3] trained on the VCTK dataset [124] and on the clean splits (train-clean-

100 and train-clean-360) of LibriTTS [79], respectively. We use the pre-trained

TTS models and T-960hr to generate two synthetic datasets. While generating, the

target speakers are randomly sampled from the seen speakers. There are 108 speak-

ers in S2 and 1151 in S3. Two HuBERTmodels are then pre-trained on the different

synthetic datasets, respectively.

• Proposed (S4). To build the proposed system, we first extract discrete units from

the speech data in S-100hr and ST-10hr. We use the features from the best S0-

3rd model (refer to Section 6.5.1) and generate units as described in Section 6.3.2.

T2U is trained on limited paired data, ST-10hr, while SE, DP, PP, and U2S are

trained on limited speech data, S-100hr. All modules are trained on 8 NVIDIA

V100 GPUs, except for SE on 1 NVIDIA 2080Ti GPU. We use T-960hr to gen-

erate the dataset. Target speakers are randomly selected from the 245 speakers in

S-100hr. The synthetic dataset is then augmented and combined with S-100hr for

HuBERT pre-training.

6.4.3 Evaluation Methods

To evaluate the quality of the discrete units extracted using S0 in different iterations, we

calculate phone purity (PP) and cluster purity (CP) [13] on dev-clean and dev-other. For

the fine-tuning results, we report the word error rate (WER) on dev-other, decoded with

a 4-gram language model trained on the official LibriSpeech language modeling data.
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All the evaluation metrics are from the official HuBERT implementation in the Fairseq

toolkit.

6.5 Results

6.5.1 Performance without Synthetic Data

We first evaluate the performance of the baseline model, S0, pre-trained on mere 100

hours of speech data of S-100hr. The results are presented in Table 6.2. The column Feat.

indicates the type of the pre-training target, which is either mfcc or representations ex-

tracted from the model of the previous iteration with the best WER result. K denotes the

number of clusters for k-means clustering. We report the WERs on the dev-other split of

LibriSpeech. -last and -best represent that the last and the best model checkpoints during

pre-training are used for fine-tuning, respectively. It is worth noting that the WER-last

gets worse in the 2nd and 3rd iterations, deviating from the findings in [13]. This diver-

gence could be attributed to overfitting as we constrain the amount of training data to

100 hours only. Even fine-tuning with the best checkpoints during pre-training fails to en-

hance the performance. Thus, we can deduce that a HuBERT BASEmodel can only reach

a WER of approximately 25% when pre-trained on limited speech data. For comparison,

the topline model (S1) attains 14.2% when pre-trained on 960 hours of speech data.

As the proposed system relies on discrete units generated using S0 and k-means clus-

tering, we first evaluate the quality of the units. We select S0 models in different itera-

tions with the best WERs, which are S0-1st-km100-last, S0-2nd-km100-best, and S0-3rd-

km500-best. We also consider the officially released pre-trained HuBERT BASE model
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Table 6.2: Results of pre-training on natural speech data.

Feat. K WER-last (%) WER-best (%)

S0-1st

mfcc 100 25.0 / 25.1 31.1 / 33.8

S0-2nd

S0-1st-km100-last-l6 100 33.6 / 32.4 27.6 / 26.7

S0-1st-km100-last-l6 500 38.2 / 37.8 27.1 / 27.6

S0-3rd

S0-2nd-km100-best-l9 100 34.1 26.5

S0-2nd-km100-best-l9 500 34.6 25.4

S1-1st

mfcc 100 14.2 14.4

for comparison. The features of different layers are extracted from S-100hr, then k-means

clustering with different k is conducted on these features. The results are listed in Ta-

ble 6.3. Unlike our previous findings, the quality of units improves with more pre-training

iterations. We select S0-3rd-km500-best-l9 and k = 500 to generate units for the proposed

system as the setting is the most performant.

6.5.2 Performance of Off-the-Shelf TTS Methods

We use off-the-shelf TTS methods to generate synthetic datasets and pre-train a HuBERT

models, as described in Section 6.4.2. The results are listed in Table 6.4. Nat. and Synth.

denote the total duration of the natural and the synthetic data for pre-training, respectively.

The dataset generated by S2 is smaller and contains only 652 hours of speech data. The

WERs are also much worse than the baseline. For S3, the TTS model is trained on a
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Table 6.3: Quality analysis of discrete units.

Layer K PP (%) CP (%)

S0-1st-km100-last

6 100 48.36 21.20

6 500 58.21 8.59

S0-2nd-km100-best

9 100 54.69 26.25

9 500 64.32 9.42

S0-3rd-km500-best

6 100 55.43 23.87

9 100 59.03 27.53

11 100 58.38 27.22

12 100 60.49 28.03

6 500 61.93 7.82

9 500 67.32 9.39

11 500 67.05 9.54

12 500 66.97 9.57

Pre-trained HuBERT BASE

6 500 68.12 8.99

dataset with 1151 speakers and adopts an x-vector to specify the target speaker. When

synthesizing a dataset, we randomly sample x-vectors of 24, 245, and all 1151 speakers

from the training data and all 2338 speakers from S-960hr. The results show that speaker

diversity of the dataset is crucial for pre-training a good HuBERTmodel. With the number

of speakers increasing from 24 (same as ST-10hr), 245 (same as S-100hr), to 1151, the

WER improves accordingly from 27.0%, 26.0%, to 23.2%. The best result of S3 is about
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Table 6.4: Results of pre-training on synthetic speech data generated by off-the-shelf TTS

methods.

Sys. # of spk. Nat. (hr) Synth. (hr) WER-last (%) WER-best (%)

S0 245 100 - 25.0 31.1

S1 2338 960 - 14.2 14.4

S2 108 - 652 34.3 50.0

S3 24 - 800 27.3 27.0

S3 245 - 805 26.0 26.0

S3 1151 - 809 23.2 23.2

S3 2338 - 826 22.3 22.2

22.2%.

6.5.3 Performance of the Proposed System

Table 6.5 shows the performance of the proposed system. We report WER-last except

for the 2nd iteration of S0. Spk. per uttr. indicates how many speech utterances of

different speakers are generated for each text utterance. Synth. FT denotes the size of

additional synthetic data used for fine-tuning. We conclude our observations as follows:

(1) augmenting the 100 hours natural speech with background noise, denoted as S0n, does

not improve the performance; (2) the proposed TTS method attains a similar WER to S3

(23.5% vs. 23.2%), while the latter uses a large high-quality dataset to build the TTS

model; (3) generating the same utterance with different speaker styles and a higher over-

sampling rate for the natural speech effectively improve theWER to 20.4%; (4) increasing

the pre-training steps from 200k to 400k slightly helps for a larger synthetic dataset.

To further improve the performance, we augment the fine-tuning data with the paired

145



doi:10.6342/NTU202401934

data synthesized from T-LM. Note that this text dataset has been used in all systems to

build the 4-gram language model for decoding. Table 6.6 shows the results. We generate

extra 100, 1k, and 10k hours of paired data for fine-tuning and improve the WER by 3%

to 17.5%. Lastly, we run the pre-training for the 2nd iteration. The best WER attains

15.8%, which is close to the performance of the topline. Compared with S0, the proposed

system decreases the WER by about 10% (from 25.0% to 15.8%). Compared with S1, the

proposed system reduces the demand for speech data by approximately 90% (from 960

hours to 100 hours) with only slight degradation in WER.
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6.6 Summary

This chapter aims to improve the data efficiency of self-supervised learning in speech pro-

cessing by utilizing synthetic speech to augment a low-resource pre-training corpus. We

first construct a high-quality TTS system with limited data resources. The TTS system is

subsequently employed to generate large amounts of speech data for pre-training a Hu-

BERT model. Our experiments show a significant performance loss when pre-training a

HuBERT model with only 100 hours of speech data, about 10% of the original setting.

On the contrary, by incorporating synthetic data for pre-training, the proposed approach

drastically alleviates the substantial demand for real-world speech data by 90% with only

minimal performance degradation.
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Chapter 7

Conclusion

7.1 Thesis Summary

This thesis centers on efficient speech generation, a crucial component in human-computer

interaction. We explore different aspects of efficiency: training, inference, and data ef-

ficiency, each of which is studied through a speech generation task. Subsequently, we

extend our research by applying speech generation to improve data efficiency for another

speech-related task. For training and inference efficiency, we optimize model architec-

tures and generation methods for non-autoregressive and autoregressive neural vocoders.

For data efficiency, we study utilizing reinforcement learning and human feedback for

data-efficient text-guided voice conversion without extensive labeled data. Lastly, we

extend our contributions to enhance data efficiency in speech self-supervised learning,

demonstrating the broader applicability of efficient speech generation. We summarize the

contributions of this thesis from two perspectives: the achievements of each chapter and

the impact on subsequent works, setting the stage for future advancements in efficient

speech generation.
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7.1.1 Achievements of Each Chapter

In Chapter 3, we proposed an improved architecture for the non-autoregressive WaveG-

low vocoder to address the challenge of computational efficiency in speech generation.

The proposed architecture reduced the model size by 97% and the required computational

resources through weight-sharing and an additional post-filter, achieving faster training

and inference capabilities without compromising speech quality. Our experiments demon-

strated that this streamlined architecture generated high-quality 44 kHz speech in real-time

without GPU acceleration, significantly improving over traditional methods that relied on

more resource-intensive models.

Chapter 4 introduced innovative methods to enhance the inference efficiency of au-

toregressive neural vocoders. From rethinking the generation direction of the conventional

autoregressive approach, we redesigned new techniques, frequency-wise autoregressive

generation (FAR) and bit-wise autoregressive generation (BAR), enabling faster genera-

tion while maintaining high speech quality. The proposedmethods allowed for the integra-

tion of non-autoregressive models to speed up the autoregressive generation process. Ex-

periments revealed that the proposed model achieved significantly faster inference speed

than conventional autoregressive methods, matching the speeds of non-autoregressive

vocoders. Perceptual evaluations further confirmed that the proposed model generated

speech with higher quality than other competitive models, demonstrating a novel and ef-

fective solution to the trade-off between speed and quality for speech generation technolo-

gies.

In Chapter 5, we focused on improving the data efficiency of text-guided voice con-

version. The proposed model was built only on publicly available datasets. We pioneered
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the research of adopting reinforcement learning (RL) and reinforcement learning from

human feedback (RLHF) in speech generation to enrich expressiveness and styles of gen-

erated speech, demonstrating that the integration of RL and RLHF effectively enhanced

performancewithout requiring additional human-annotated speech-text data. Experiments

showed that models with RL or RLHF improved objective evaluation results up to two

times better and generated much preferred converted speech in subjective evaluations.

The proposed approach provided a more effective learning paradigm to reduce the depen-

dency on large, costly datasets and enhance the model’s ability to handle more complex

style descriptions unseen in the training datasets.

Chapter 6 explored how speech generation techniques can help data efficiency in

other speech processing tasks. We studied building a text-to-speech (TTS) system with

discrete speech units and low data resources. The TTS system generated synthetic datasets

and augmented training data for speech self-supervised learning. By using synthetic data

to supplement real speech datasets, we demonstrated a reduction in the need for extensive

labeled datasets. Our results showed that the proposed method significantly decreased the

reliance on real-world data by 90%without substantial losses in performance, thus extend-

ing the achievements of this thesis from efficiency improvements in speech generation to

broader efficiency advancements in speech processing.

7.1.2 Impact to Subsequent Works

The achievements in Chapter 3 and Chapter 4 demonstrate how modifying model ar-

chitecture and redesigning the generation process can drastically reduce computational

resources. The proposed methods, such as model compression, post-filtering, and re-

designed autoregressive generation, are not only applicable to the models used in these
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chapters but also hold great potential for broader application. These techniques are flexi-

ble enough to be adopted in advanced neural vocoders and other speech generation models

to reduce the number of parameters or speed up generation while maintaining high speech

quality. For example, weight-sharing can be applied to models with multiple layers of

identical structures. This approach has been shown as an effective technique for com-

pressing transformer-based models for various tasks [98, 216], implying that our method

in Chapter 3 can potentially be applied to transformer-based text-to-speech models, which

are widely used in current speech generation research. Besides, similar to BAR in Chap-

ter 4, some recent speech generation models iteratively generate discrete speech units

from coarse to fine precisions, achieving a balanced trade-off between inference speed

and speech quality with remarkable success. These results highlight the potential of our

methods to inspire future work in achieving more efficient speech generation with fewer

computational resources.

In Chapter 5, we identified the challenges posed by limited data resources in text-

guided voice conversion and demonstrated how to apply RL and RLHF as a solution to

facilitate more effective learning. Given the limited research applying RL to speech gen-

eration, this pioneering work showcases not only the feasibility of integrating RL with

speech generation but also extensive experiment results, including how to construct effec-

tive reward models, the necessary amount of human feedback, and various strategies to

utilize human feedback, laying a crucial foundation for future research.

Chapter 6 expands the scope of efficient speech generation to broader applications.

We demonstrated how to leverage less speech data, SSL features, and discrete speech units

to construct a high-quality text-to-speech model, confirming that speech generation can

serve as an effective data augmentation method in low-resource settings to enhance the
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performance of speech models. The proposed methods and experiment results point the

way for future research not only in speech self-supervised learning but also in tackling

low data resource challenges across various speech processing tasks.

7.2 Future Work

7.2.1 Exploring Applications and New Domains for Redesigned Au-

toregressive Generation

The FAR andBARproposed in Chapter 4 have shown significant promise in efficiency and

quality. One direction for future work is to extend this success to later autoregressive or

diffusion-based waveform generation models [36, 54, 217] to enhance inference speeds.

Similarly, non-autoregressive methods such as GAN-based vocoders [7, 35] can adopt

FAR and BAR to introduce autoregressive generation paradigms for better speech quality.

Another research direction is to find new domains other than the frequency and bit

precision domains for autoregressive waveform generation. For example, one can follow

the principle of latent diffusion models [143] to first transform speech into the latent space

of a pre-trained variational autoencoder. Within this latent space, autoregressive gener-

ation is then conducted along the channel axis. Additionally, by employing specialized

loss functions or architectural designs, one can encode different granularities of speech

information into different channels. This design can enable autoregressive generation to

iteratively produce speech representations in the latent space from coarse to fine granular-

ities, potentially enhancing the quality of generated speech.

Extending to the idea of finding new domains, the proposed autoregressive generation
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concept applies not only to speech generation but also to other speech tasks that use autore-

gressive models, like automatic speech recognition [218] and speech translation [219]. By

following the core principle of “autoregressive generation in domains other than the tem-

poral one,” these speech models can utilize appropriate domains, just like the frequency or

bit precision domains in waveform generation, and adapt their autoregressive generation

processes to drastically enhance the generation speed without compromising quality.

7.2.2 Expanding Applications of Reinforcement Learning in Speech

Generation

RL and RLHF for speech generation introduced in Chapter 5 have achieved notable suc-

cess. However, existing research integrating RL and audio generation typically only uses

text prompts describing simple sound events or combinations of speech styles. A future

research direction can explore generating or converting speech based on more detailed

descriptions. For example, specifications in descriptions can include speaking environ-

ments, background noise, delicate emotional variations in various real-world situations,

and nuances in intonation or volume across different parts of an utterance. This direction

involves designing and generating intricate style descriptions and developing rewardmod-

els to accurately assess the relevance between the speech and these detailed descriptions.

Another potential direction involves incorporating multi-faceted rewards in the exist-

ing RL framework, which can simultaneously evaluate speech in various aspects besides

text-speech relevance, such as naturalness and speaker similarity. The multi-reward RL

can optimize model performance in terms of different evaluation metrics. This direction

focuses on designing learning algorithms to integrate multiple types of rewards while re-

taining effective and stable training.
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7.2.3 Extending Iterative Training for Self-Supervised Learning and

Speech Generation

Chapter 6 demonstrated the effectiveness of leveraging speech generation to support low-

resource SSL in speech processing. The proposed method uses a low-resource SSL model

to extract features to build a TTS model. The TTS model then generates synthetic data

to augment the SSL training dataset, which is used to train a better SSL model. Inspired

by HuBERT [13], future research can further extend this iterative learning process. The

improved SSL model can again be used to extract features and build a better TTS model,

leading to another round of data augmentation and SSL pre-training. By repeating the

cycle of SSL pre-training, building a TTS model on SSL features, and data augmentation,

one can iteratively enhance the performance of both TTS and SSL models.

Inspired by the recent success of using a single decoder-only transformer for various

speech tasks [220, 221], another research direction is to incorporate a unified model with

the proposed method, iteratively learning and augmenting datasets for different tasks. One

can first build a decoder-only transformer on the SSL task. Then, this model is used to

extract SSL features and is trained for other speech tasks, such as TTS, voice conversion,

and ASR. Subsequently, this model can generate more speech-only or paired text-speech

data to augment training data. Similarly, this process can be repeated multiple times to

enhance model performance and build better synthetic datasets. This approach aims to

learn more efficiently when the data sizes of different modalities are imbalanced (e.g.,

scarce speech data and rich text data), creating a unified model that benefits frommultitask

training and generates better training data in a self-training manner [222, 223].
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