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Abstract

With the advancement of Internet technology, the issue of misinformation is

increasingly serious. Among the many methods of dealing with misinformation,

fact-checking is considered the most trustworthy means. However, the traditional

fact-checking process, which verifies the authenticity of information manually, may

be too time-consuming to keep up with the speed of information generation. Thus,

the automation of fact-checking has become a highly valuable goal. Automated

fact-checking is generally divided into four stages, including claim detection, verified

claim retrieval, evidence retrieval, and claim verification.

This study focuses on solving claim detection in tweets. The goal of claim detec-

tion is to determine which part of the content is a claim, and a claim can be defined

as ”an assertion of something as a fact”. Verifying the truth of these claims is the

process of fact-checking. In this research, we first propose two issues that have not

been adequately addressed in claim detection within tweets : tweet’s noisy format

and task definition, and propose corresponding methods to solve these problems.

In addition, we also validate the effectiveness of our proposed methods through

experiments and summarize the insights and findings from the experiments.

Keywords: Automatic Fact-checking, Claim Detection, Natural Language Pro-

cessing
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摘摘摘要要要

隨著網際網路技術的進步，假信息的議題日益嚴重。在眾多處理假信息的方

法中，事實查核被視為最值得信任的手段。然而，傳統的事實查核通過人力驗證

信息真偽的過程可能耗時過長，無法趕上信息產生的速度，因此事實查核的自動

化成為了一個極具價值的目標。自動化事實查核通常分為四個階段，包括宣稱檢

測、已驗證的宣稱檢索、證據檢索、與宣稱驗證。

本研究著重於解決推文中的宣稱檢測問題。宣稱檢測的目標是確定哪部分內容

是宣稱，而一個宣稱可被定義為「宣稱某事是事實」，驗證這些宣稱的真偽即為

事實查核的過程。在這項研究中，我們首先提出了過去在推文中進行宣稱檢測時

兩個未被充分處理的問題：推文的混亂格式與任務定義，並提出了相應的方法來

解決這些問題。此外，我們也透過實驗去驗證我提出的方法的有效性，並總結了

實驗中的啟示與發現。

關關關鍵鍵鍵字字字: 自動化事實查核, 宣稱檢測, 自然語言處理
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Chapter 1

Introduction

Thanks to the flourishing of the Internet and social media, obtaining information

nowadays has become very easy. Although this brings a lot of convenience, it also

gives rise to a significant problem associated with this convenience: how can we

assess the accuracy of the information we obtain? This becomes a major issue when

the information we receive could be misinformation.

Misinformation can be defined as ”false information that is spread, regardless of

whether there is intent to mislead”1. Misinformation flooding on the Internet and

social media has become a significant issue as it misleads those who believe in it

and diminishes people’s trust in online platforms. To address this, fact-checking

comes into play. Fact-checking can be referred to as the action of verifying the

truth of a claim. By fact-checking all the claims in an article, its credibility can be

evaluated and its categorization as misinformation or not can be more accurately

determined. To date, there are many organizations such as the Taiwan FactCheck
1https://www.dictionary.com/browse/misinformation

1

https://www.dictionary.com/browse/misinformation
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Center2, FactCheck.org3, Snopes4, PolitiFact5, and FullFact6 worldwide that are

dedicated to the task of fact-checking. The Duke Reporters LAB7 maintains a

website that lists all of the active fact-checking organizations around the world,

currently contain approximately 400 organizations.

Figure 1.1: Tweet generation per day from 2006 to 2013, as calculated by Internet

Live Stats. Because we couldn’t find any other statistics containing more recent

data that are equally trustworthy, we used this older statistics.

2https://tfc-taiwan.org.tw/
3https://www.factcheck.org/
4https://www.snopes.com/
5https://www.politifact.com/
6https://fullfact.org/
7https://reporterslab.org/fact-checking/

https://tfc-taiwan.org.tw/
https://www.factcheck.org/
https://www.snopes.com/
https://www.politifact.com/
https://fullfact.org/
https://reporterslab.org/fact-checking/
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Despite the existence of fact-check organizations, the capability of humans to

fact-check can’t keep pace with the proliferation of misinformation. Figure 1.1

shows the number of tweets generated per day from 2006 to 2013, as calculated

by Internet Live Stats8. In 2013, about 500 million tweets were generated per day.

To understand the rate of fact-checking, consider the daily fact-check report num-

ber published on PolitiFact, which typically does not exceed 10. Although we can’t

determine the actual number of misinformation instances, these figures suggest that

the throughput of manual fact-checking is grossly insufficient. Therefore, automat-

ing the fact-checking process is necessary to handle the vast amount of information.

Manual fact-checking practices may vary among different fact checkers due to

personal habits, but for machines, a clear process is required. A. Barron-Ced, et al.

proposed a pipeline for automatic fact-checking in their work introducing the com-

petition they organized[3]. This pipeline divides fact-checking into four sub-tasks

that can be addressed independently. Figure 1.2 shows the pipeline we derived from

theirs, which consists of claim detection, verified claim retrieval, evidence retrieval,

and claim verification. The claim detection stage aims to identify any claims within

an article. Next, the verified claim retrieval stage determines whether the detected

claims have already been checked; if they have, the verification of that claim can

be directly obtained from historical data and the pipeline stops; otherwise, the next

stage continues. The third stage involves retrieving the evidence needed to assess

whether the claim is true or false. Finally, with the gathered evidence, verdicts for

those claims can be formulated. Based on these verdicts, the original article can be

categorized as misinformation or not.
8https://www.internetlivestats.com/twitter-statistics/

https://www.internetlivestats.com/twitter-statistics/
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Figure 1.2: Automatic Fact-Checking Pipeline

Although fully automated fact-checking seems ideal, the trustworthiness of machine-

derived verdicts is still a matter of debate. Research conducted by FullFact[23]
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reveals that a majority of expert fact-checkers do not yet trust verdicts made by

machines. According to their study on the needs of fact-checkers, the process of

automatic fact-checking should conduct by partial automating the pipeline to assist

fact-checkers, rather than fully automating the entire process and allowing machines

to render verdicts about the veracity of information.

In this work, we concentrate on automating the claim detection stage because

we believe this degree of automation is acceptable by fact-checkers and could really

integrating into their fact-checking process. A claim can be defined as ”an assertion

of something as a fact”9. With a proper definition of claim and a suitably annotated

dataset, we can employ machine learning techniques to automate claim detection.

On the other hand, from a data source perspective, we are primarily concerned

with addressing misinformation on social media. Unlike articles on news media,

users on social media can post articles with almost no restrictions and without a

rigorous review process. This freedom makes social media a fertile ground for the

propagation of misinformation. Another reason for focusing on social media is its

pervasive usage. Figure 1.3 provides statistics from Pew Research10 depicting the

daily usage of 1500 adults in the US. As seen, more than half of these users access

social media at least once a day. With higher engagement comes an increased risk

of misinformation absorption. Therefore, tackling misinformation on social media

is both urgent and valuable. Lastly, our research is primarily focused on tweets, as

most existing datasets aiming at claim detection on social media gather their data

from Twitter.

While there exist several methods to achieve this task, we observe that some

problems have not been adequately addressed, which will be detailed in Chapter 4.
9https://www.dictionary.com/browse/claim

10A survey about social media use

https://www.dictionary.com/browse/claim
https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/#fnref-27044-1
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Figure 1.3: Social Media Daily Usage in 2021. The number means the percentage

of user.

Therefore, the objective of this research is to propose methodologies aimed at re-

solving these problems, which are anticipated to further improve performance on

this task.
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Chapter 2

Related Work

In this section, we’ll first introduce the work related to misinformation. Subse-

quently, we’ll provide an overview of the models and techniques utilized in this

research.

2.1 Style-Based Misinformation Detection

In response to the growing volume of misinformation, increasing amounts of re-

search are being dedicated to its automated management. The simplest approach

involves classifying an article as misinformation based solely on its writing style,

a method we refer to as style-based misinformation detection. A standard

procedure for constructing a style-based misinformation detection system entails

training a machine learning model on a dataset composed of articles labeled either

as misinformation or not misinformation[25]. This approach hinges on the robust

assumption that the writing style of articles containing misinformation differs from

those that do not. This assumption is plausible as some misinformation indeed em-

ploys specific writing styles, such as exaggeration or sensationalism, to seize public

7
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attention. However, it is neither reasonable nor persuasive to presume all misinfor-

mation follows this pattern. Consequently, automatic fact-checking appears to be a

more credible and accepted method to combat misinformation effectively.

2.2 Automatic Fact Checking

The fact-checking approach tackles misinformation by verifying the veracity of the

claim being made. After reaching a verdict, it provides evidence to either support

or refute these claims, making it a more convincing method compared to style-based

misinformation detection.

A significant amount of research in automatic fact-checking focuses on the first

stage(claim detection) or the fourth stage(claim verification)[33, 34], as these tasks

are relatively new. Stages two(verified claim retrieval) and three(evidence retrieval)

resemble information retrieval, a well-studied topic, and are therefore perceived as

less novel for research. These stages can refer to Figer 1.2. Some work also attempts

to cover the entire fact-checking pipeline. For instance, in [13], the authors propose

a pipelined system called ClaimBuster, which is capable of performing end-to-end

fact-checking without the need for human intervention.

2.3 Claim Detection

Prior to fact-checking, claim detection had already emerged as a research topic in

argument mining. Back in 1958, Toulmin proposed an argument model[35] that de-

constructed arguments into six parts. This model has been widely used in argument

mining. The six parts include the claim, grounds, warrant, qualifier, rebuttal, and

backing. Among them, the claim is the most important component as it represents
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the assertion the author aims to prove. With this argument model in place, argu-

ment mining became a task that sought to automatically extract these parts of an

argument[17]. Thus, claim detection naturally appeared as a subtask of argument

mining[1, 18, 19]. Later in fact-checking, Toulmin’s definition of a claim continued

to be referenced by many[6, 12].

Claim detection plays a pivotal role as the initial step in fact-checking. If the out-

come of claim detection is inaccurate, the subsequent stages of fact-checking will be

a futile labor since the verdict on a non-claim is meaningless and, therefore, cannot

contribute to judging the authenticity of the entire article. From this perspective,

the accuracy of claim detection is critical to the success of automated fact-checking.

2.4 Language Model(LM)

Language models refer to those models that aim to understand the natural language

used by humans. The research on language models has a long history, dating back

to the emergence of the word n-gram in a paper written by C.Shannon in 1948[31].

However, the capabilities of language models were not significantly impressive until

the rise of neural networks. With the advent of these networks, many attempted to

build language models using different network types[4, 8].

The state-of-the-art language models are mainly established by the attention

mechanism proposed by Ashish Vaswani et al. in 2017[36] and self-supervised learn-

ing that leverages the power of massive unlabeled texts online. Currently, there are

two mainstream self-supervised training objectives for constructing attention-based

neural language models. The first objective involves sequentially predicting the next

word given a string, with the most famous model of this type being GPT[26, 27, 5].

The second approach involves predicting the word that is masked in the given string,
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for which BERT[7] is the most representative one.

Recently, language models have become larger, resulting in the emergence of a

new term, Large Language Model (LLM). LLMs refer to those language models con-

taining over a billion parameters. Among these, GPT has been the most recognized

since its second version.

2.5 Semantic Role Labeling(SRL)

SRL aims to extract all the semantics within a given paragraph of text. Semantic is

an essential unit that expresses meaning when communicating via natural language

by providing the information “Who did What to Whom(When and Where)”[16].

Each semantic consists of one predicate that points out “What” in this seman-

tic and the rest of the component is called argument which points out “Who”,

“Whom”, “When” and “Where”. Usually, predicate is a verb and argument is the

noun around that verb that is related to it. The history of Semantic Role Label-

ing(SRL) can be traced back to 1968, when Charles J. Fillmore proposed to build

the project FrameNet[2] which constructed the first dataset for SRL. In FrameNet,

they refer each semantic as a “frame” and this synonym has also been widely used

when referring to semantics that are extracted by a SRL model.

To achieve SRL, the most commonly used approach is to first extract all the

predicates from the given input. A predicate is an essential component that forms a

semantic. These predicates are usually verbs, making their identification relatively

straightforward. Then, for each predicate, the next step involves tagging each of

the remaining words. This tag specifies whether the word is related to the predicate

and, if so, how it is related. Finally, one predicate and all its related words together

form a semantic. Figure 2.1 shows an example of a sentence and its SRL result. The
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state-of-the-art method for SRL currently involves using a language model(LM) as

an encoder to transform each word into an embedding. This word embedding is

then used to predict its semantic role label[9].

Figure 2.1: SRL example. The words colored in blue and red represent two semantics

extracted by SRL. The circled words are the predicates, and the words pointed to

by the predicate are the arguments of that semantic.

2.6 Bidirectional Encoder Representations from

Transformers(BERT)

Going back to 2018, when Google first proposed the Bidirectional Encoder Repre-

sentations from Transformers (BERT) model[7], it quickly seized the attention of the

NLP community and has since become widely adopted. In BERT, two training ob-

jectives - Masked Language Model (MLM) and Next Sentence Prediction (NSP) - are

used to pre-train the model with massive amounts of unlabeled online content. The

bidirectional model architecture, coupled with the MLM objective, enables BERT

to excel at understanding text by generating meaningful embedding vectors. This
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feature makes BERT a strong model for solving tasks such as classification.

Many variations of BERT have been proposed to optimize its performance in

various contexts. For example, RoBERTa[20] alters the pre-training procedure to

enhance stability. These continuous advancements have led to the widespread adop-

tion of BERT-based models to date.

2.7 Generative Pre-trained Transformer(GPT)

Since 2018, when OpenAI introduced the concept of the Generative Pre-trained

Transformer(GPT)[26], it has continuously updated its model. To date, four versions

have been released. Beginning with version 2[27], the model size of GPT expanded

to the order of billions, featuring 1.2 billion parameters, which qualifies it as a

Large Language Model(LLM). In GPT-3[5], the model size was further increased to

an astounding 175 billion parameters. This growth in model size has been proven

effective, as evidenced by the steadily improving performance of the GPT series.

The pre-training method adopted by GPT(i.e., sequentially predicting the next

word) naturally makes it an effective language generator. Its prominent language

capabilities, showcased in ChatGPT(an application developed by OpenAI for con-

versing with GPT), also contributed to its widespread recognition. These capabilities

enable GPT to be applied to any downstream NLP task by converting the task into

a question-answering format. The question asked to facilitate GPT’s understanding

of the downstream task is commonly referred to as a “prompt,” and the tuning of

prompts has recently become a popular research topic.
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2.8 Text Style Transfer

Text Style Transfer (TST) is a task that aims to transfer the original writing style of

content to a specific writing style, such as converting informal language to formal[28],

impolite to polite[21], or offensive to non-offensive[24], etc. This task can be treated

as a natural language generation task where, given a paragraph of natural language,

the output is also a paragraph of natural language. Most state-of-the-art methods

that achieve text style transfer use paired data, which contains the same content

written in two different writing styles. This kind of data is used to train a language

model that guides the transition from one writing style to another. TST can be

applied to many kinds of specific downstream tasks[15], such as making the content

more attractive and engaging, or anonymizing user identity by obfuscating their

writing style, etc.
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Chapter 3

Task Definition, Dataset &

Current Approach

n this chapter, we will first define the task of claim detection in tweets that we

aim to solve. Then, we will introduce some existing datasets, compare them, and

identify the ones used in this research. Lastly, we will discuss some of the current

approaches employed to accomplish this task

3.1 Task Definition

The definition of claim detection we are trying to solve is as follows:

Definition 3.1.1 (Claim Detection) Given a tweet, determine whether it con-

tains any claims.

Therefore, the input is a tweet, and the output should be a binary value. A value

of 0 represents that there are no claims in the tweet, while a value of 1 represents

that there is at least one claim made in the tweet.

14
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3.2 Article-Level Dataset

Table 3.1 shows three existing claim detection datasets that fit the definition de-

scribed above. LESA is the model abbreviation proposed by S. Gupta et al.[12].

Although their work primarily focuses on proposing a model architecture that better

deals with claim detection regardless of the data source, they also built a dataset

sourced from Twitter. In building the dataset, their definition of a claim to guide

annotators is ”state or assert that something is the case, with or without providing

evidence or proof.”

CheckThatLab! is a competition held by CLEF(Conference and Labs of the

Evaluation Forum), which focuses on tasks related to misinformation. Since 2018,

they have conducted this competition annually, and we chose to use the dataset they

released in 2022. In 2022, they proposed several subtasks related to misinformation,

and among them, subtask 1b is the dataset that best fits the definition of claim

detection we provided. The claim they aim to detect adds an additional condition

that it should be verifiable. According to their definition, a verifiable factual claim

is ”a sentence claiming something to be true, and this can be verified using factual

verifiable information such as statistics, specific examples, or personal testimony.”

Lastly, BioClaim is a dataset focused on tweets related to four diseases, which

was proposed in the work by A. Wuhrl, et al.[37]. The claim definition they use is

”the argumentative component in which the speaker or writer expresses the central,

controversial conclusion of their argument.”

Since the amount of data in BioClaim is significantly limited, we only utilized

the first two datasets, LESA and CheckThatLab! 2022 task 1b, to verify the

method we proposed.



doi:10.6342/NTU202302992

CHAPTER 3. TASK DEFINITION, DATASET & CURRENT APPROACH 16

# Data Avg

length

Data

Source

Topic Output

Format

Percentage

of claim

LESA[12] 9981

tweets

26.36 Twitter covid-19 Binary 87.43%

CheckThatLab!

2022 task 1b[22]

4793

tweets

37.56 Twitter covid-19 Binary 63.43%

BioClaim[37] 1200

tweets

31.23 Twitter Disease Binary 44.75%

Table 3.1: Article-Level Datasets

3.3 Sentence-Level Dataset

Other than the dataset at the article-level, there are additional sentence-level datasets

available, as shown in Table 3.2. In the ClaimSpotter module of ClaimBuster[13],

they train their claim detection model using a dataset that gathers US presidential

debates from 1960 to 2012. In their dataset, they treat every sentence stated by

each candidate as individual data points. NewsClaims[29] is a dataset sourced

from news articles. In addition to claim detection, they also define other tasks such

as detecting the claimer and identifying the object being claimed, etc. VG, WD,

PE, OC, WTP, and MT are six datasets released in [6]. Originally, these six

datasets were not dedicated to claim detection. Instead, most of them were pro-

posed to handle argument mining. However, as claim detection is an important

component of argument mining, the author of [6] converted them into sentence-level

claim detection datasets.

Although the sentence-level and article-level datasets both aim to achieve claim

detection, their meanings differ due to the input level. In the article-level dataset,
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# Data Avg

length

Data Source Output

Format

Percentage

of claim

ClaimBuster[13] 23533 sentences 15.54 US Presidential

Debate

Binary 34.49%

NewsClaims[29] 7848 sentences 18.97 News Article Binary 11.33%

VG 2824 sentences 21.25 Newspaper Edito-

rials, Parliamen-

tary Records, Ju-

dicial Summaries

Binary 19.81%

WD 3899 sentneces 21.75 Blog Posts, User

Comments

Binary 5.41%

PE 7116 sentences 20.69 Persuasive Essays Binary 29.62%

OC 8946 sentences 14.04 Online Comments Binary 7.85%

WTP 9140 sentences 20.69 Wiki Talk Pages Binary 12.45%

MT 449 sentences 19.74 Micro Texts Binary 24.94%

Table 3.2: Sentence-Level Datasets
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claim detection refers to the definition 3.1.1. On the other hand, for the sentence-

level dataset, claim detection means ”determining whether a sentence is a claim.”

Despite our research focus on dealing with claim detection in tweets, which is at the

article-level, we also utilize these sentence-level datasets in our method.

3.4 Current Approach

Because the host of CheckThatLab! request participants to write a working note

about their work every year after the competition, we have a sufficient number

of methods[22] proposed by the participants to compare with. Most of the works

use the BERT-based encoder structure, combined with a classifier, as shown in

Figure 3.1, to achieve this task. The function of the encoder is to encode all the

tokens in the input into embedding vectors. In addition to the original tokens, one

special token named CLS(classification) is also generated during encoding. The CLS

token compresses the semantics of the whole input into its single embedding vector,

which is designed to achieve the classification task. After obtaining the embedding

vector of the CLS token, the classifier uses it as input to classify whether the tweet

contains any claim or not. Most of the classifiers are just fully connected layers that

map the embedding vector size to the label set size(in this binary classification task,

2) in order to specify which class this input should be classified into.

The structure described above only considers the semantic features in the tweet.

In fact, some works also consider syntactic features such as POS(Part of Speech) and

DEP(Dependency Parsing). For instance, Check square[11], the participating team

of CheckThatLab! 2020, proposed a structure shown in Figure 3.2. This structure

simultaneously considers four features of a tweet to help predict whether the tweet

contains any claims. Within the structure, POS Tagger and Dependency Parser are
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Figure 3.1: Structure that most of the current approach adopt

two machine learning models that extract the syntactic features, while NE Recog-

nition and BERT are two other machine learning models that extract the semantic

features. After independently extracting these features, they are concatenated and

inputted into a classifier to output the final result.

Coincidentally, S. Gupta et al. also proposed a structure named LESA(Linguistic

Encapsulation and Semantic Amalgamation)[12], which also considers syntactic fea-

tures. They use three machine learning models to separately extract different fea-
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Figure 3.2: Check square Structure[11]

tures from the article, and then combine them using an attention mechanism. Fig-

ure 3.3 shows the structure, where BERT is used for extracting semantic features,

and POS and DEP are used for extracting syntactic features. The experiments con-

ducted in these two works show that by additionally considering syntactic features,

the performance does increase.

Although we can see some innovative methods proposed for claim detection,

we believe they are not specifically designed for dealing with articles on social me-

dia. Since our research targets articles on social media, we argue that we can find

methods that specifically deal with social media, which may further improve the
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Figure 3.3: LESA Model Structure[12]

performance.
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Chapter 4

Research Questions

In this chapter, we will introduce two observations we obtain in this task, which are

two problems that haven’t been properly solved in existing work. From these two

observations, we have derived two research questions we want to answer.

4.1 Tweet’s Format

The first observation pertains to the format of tweets, but we believe this observation

can be applied not only to tweets but to all social media platforms. When compared

to other traditional media outlets(such as news outlets or blogs), the format of

social media tends to be more ”noisy”, resulting in reduced understandability. This

”noisiness” can be attributed to two commonly observed features in social media.

The first feature is the use of special symbols and URLs. ’#’ and ’@’ are two

special symbols on social media used to perform the functions of hashtag(classifying

posts using keywords) and tagging(mentioning other users), respectively. Emojis are

another type of special symbol that also frequently appear, used to convey the user’s

emotions. Additionally, we often encounter URLs, which provide more information

22
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Figure 4.1: An example of the noisy symbols in tweets. The content highlighted in

red represents the symbols and URLs that create the ”noise” in a tweet.

about the context described in a social media post. While these symbols make the

use of social media more convenient and interesting for human beings, we argue that

their usage may complicate the post and make it difficult for language models to

understand. Figure 4.1 provides an example of this feature.

Figure 4.2: An example of the informal writing style in tweets. The content high-

lighted in red represents the informal writing style that create the ”noise” in a tweet.

The second feature is the informal writing style. Since social media platforms

are primarily used for socializing between people, we can observe that the writing

style on them is more casual and informal. Informal grammar, incorrect grammar,

verbosity, and abbreviations are all common on social media. The informal writing
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style can make it challenging to understand even for humans, and indeed, we believe

it also poses difficulties for machines to comprehend. Figure 4.2 provides an example.

Based on this observation, we formulated our first research question:

Research Question 4.1.1 Does reducing noise in the formatting of tweets help

improve the performance of claim detection?

My intention is to explore approaches that can enhance the comprehensibility of

tweets.

4.2 Improper Task Definition

The second observation focuses on the definition of claim detection in these article-

level datasets(Table 3.1). According to Definition 3.1.1, the input is a tweet, which

may consist of multiple sentences. Although tweets are usually not long, we can

still treat them as articles. However, the claim itself may be just a sentence, not

necessarily the entire tweet. Figure 4.3 shows an example in which the highlighted

sentences represent two claims made within the tweet. Therefore, the input(tweet)

and the item being judged(claim) are on different levels(article level vs. sentence

level). we believe this inconsistency may lower the judging ability of LM.
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Figure 4.3: An example of inconsistency between tweet-level and claim-level. The

content highlighted in red includes two claims present within this tweet, in our

opinion.

On the other hand, let’s recap the fact-checking pipeline in Figure 1.2. After

the claim detection stage, we need to extract the claim in order to retrieve related

information. Unfortunately, based on the definition and existing work on these

datasets, we can only determine whether the tweet contains a claim, but not the

specific claim that has been made. Therefore, we cannot proceed automatic fact-

checking using this outcome.

In order to find out if there is any way to mitigate this problem, our second

research question is:

Research Question 4.2.1 Does reducing the inconsistency between the level of in-

put and claim help improve the performance of claim detection?
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Chapter 5

Methodology

In this chapter, we will introduce the model architecture we adopted to achieve claim

detection and the methodology we proposed to address the two research questions

raised in the last chapter.

For the model architecture, we used the one that most of the existing work

adopted, which been introduced in 3.4 as Figure 3.1. The encoder been used is

RoBERTa-large[20], which has been widely used in NLP research. As for the clas-

sifier, we simply employed a fully connected layer that maps the embedding vector

size to the label set size, as described in 3.4.

The method we proposed focuses on how to preprocess the tweet in order to

address two of our research questions. In the following section, we will present these

approaches.

26



doi:10.6342/NTU202302992

CHAPTER 5. METHODOLOGY 27

5.1 Reducing Noise in the Formatting of Tweets

To answer the first research question(4.1.1), we can first concentrate on special sym-

bols and URLs. Previous studies have also addressed special symbols and URLs,

with some attempting to normalize them and some remove them directly[37, 30]. In

our opinion, we believe these special symbols and URLs complicate tweet compre-

hension and should be eliminated. Eliminating them can be easily achieved through

a rule-based approach, as illustrated by Figure 5.1.

Figure 5.1: An example of eliminating the special symbols and URL in a tweet

Although we can easily solve the problem of special symbols and URLs through a

rule-based approach, dealing with informal writing styles remains a significant chal-

lenge. To tackle this challenge, we propose leveraging the powerful language abilities

of GPT. We assume that GPT, with its extensive transformer structure and abun-

dant training data, can comprehend the deep semantics of even the messiest tweets.

By prompting GPT to rewrite the tweet, we hope it can convey the intended mean-

ing of tweets in a clearer and more understandable manner. Figure 5.2 presents the
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Figure 5.2: An example of a tweet rewrite by GPT using prompt ”rewrite:”.

rewritten result of the example provided in Figure 4.2 using the prompt ”rewrite:”.

Choosing the right prompt for a specific task is a significant question that has

recently become a popular research issue[38, 14, 10]. However, the search for the best

prompt is not the primary focus of this research. Therefore, the prompts we’re using

are crafted by ourselves, without a systematic selection process. We will showcase

the prompts we use in Chapter 6.3.

Figure 5.3: Pipeline for dealing with tweet’s noisy format. The Model mentioned

here can be refer to the Model in Figure 3.1.

The method proposed above can be treated as a data preprocessing module.

Prior to being input into the encoder, tweets will first be rewritten by GPT, and

then go through the elimination of special symbols and URLs. Figure 5.3 shows this
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pipeline.

5.2 Reducing the Inconsistency between the Level

of Input and Claim

From the example provided in Figure 4.3, we can easily tell that the claim in the

tweet is only the first sentence and a sub-sentence of the second sentence, which

has been highlighted. In this situation, the rest of the tweet would be noise that

reduces the probability of predicting this tweet as containing a claim. Following this

thought, the method we proposed is very simple - splitting the tweet into sentences

and inputting them separately, allowing the model’s input to be at the sentence-level

as a claim. By doing this, we simplify the task from determining whether there are

any claims in an article to determining whether a sentence is a claim.

Although very simple and straightforward, it raises an inevitable problem re-

garding the label. Due to the original definition of claim detection in the dataset

we targeted(table 3.1), we only have the label at the article-level. If we use the

same dataset to train the model, we have to train it on article-level input and only

split the tweet into sentences during testing. This could cause another inconsistency

between the training and testing data. To mitigate this inconsistency, we suggest

leveraging other claim detection datasets that are at the sentence-level during train-

ing. Currently, we found eight such datasets available, as introduced in 3.3. With

the help of these datasets, we can anticipate what our model tries to accomplish

when training and testing are aligned, both to determine whether a sentence is a

claim or not - by inputting the data at the sentence level during both the training

and testing stages.
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Figure 5.4: Result of rule-based splitting the tweet

Figure 5.5: Result of using SRL extract sentences in the tweet

After addressing the label problem, the next question is how to split tweets into

sentences. For the simplest approach, we can use rule-based methods that treat

specific punctuation marks like ’.’, ’?’, or ’!’ as signals of the end of a sentence

for splitting. Referring to the example in Figure 4.3, the rule-based method allows

us to effectively separate the first claim from the rest of the tweet, as shown in

Figure 5.41. However, in some cases, a claim may exist within a sub-sentence, such

as the second highlighted claim in Figure 4.3. In these situations, using a rule-based
1NLTK rule-based sentence splitting tool

https://www.nltk.org/api/nltk.tokenize.html
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Figure 5.6: An example of combine the predictions from sentence-level back to

article-level.

method to split sentences is not sufficient. To further address this issue, we propose

splitting tweets using SRL(Semantic Role Labeling). With SRL, we can extract

all the semantics within the tweet. Since semantics represent minimal units that

express something, we can assume that a claim must form at least one semantic,

which can be successfully extracted by SRL. Therefore, utilizing SRL to split tweets

may further improve the alignment between the level of input and claim. Figure 5.5

displays the result of SRL2. We can observe that SRL accurately extracts all the

claims in this case.

Finally, assuming the tweet is split into N sentences and we input them sepa-

rately into the model, we will get N binary predictions at the sentence level, which
2AllenNLP SRL tool

https://demo.allennlp.org/semantic-role-labeling
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represent whether each sentence is a claim. The last issue is how to combine these

N predictions back into the tweet level. This is equivalent to determining whether

a tweet contains a claim or not based on the predictions of whether each sentence

within the tweet is a claim. Therefore, the most reasonable way is to predict that

the original tweet contains claims if any of the sentences is predicted as a claim. This

is how we combine the sentence-level predictions back to the tweet level. Figure 5.6

provides an example of this conversion. By using this method to predict whether

a tweet contains any claims, we can also obtain the claims that have been made.

Thus, the outcome of this method can provide the result needed for proceeding au-

tomatic claim detection. Putting it all together, Figure 5.7 shows the pipeline of all

the methods introduced in this section.

Figure 5.7: Pipeline for dealing with improper task definition. The Model mentioned

here can be refer to the Model in Figure 3.1.

The splitting result using the AllenNLP SRL tool may contain some issues. Fig-
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ure 5.8 shows the original splitting result of the same tweet depicted in Figure 5.5.

We can observe that some of the sentences are merely sub-sentences of others, which

may not provide sufficient context. To prevent these incomplete semantics from mis-

leading the prediction, we implement a filtering process to exclude these types of

semantics. Algorithm 1 demonstrates how we filter out those incomplete semantics.

We first sort the frames extracted by SRL in descending order, then check if the

shorter sentence is a sub-sentence of a longer one by counting the same word occur-

rences between them. The sentence displayed in Figure 5.5 is the result of applying

this algorithm to the sentences shown in Figure 5.8.

5.3 Combine All

In sections 5.1 and 5.2, we have separately shown how we dealt with the two re-

search questions we raised. To address them simultaneously, Figure 5.9 illustrates

the combined pipeline. By rewriting the tweet using GPT before splitting it into

sentence-level segments, these two proposed methods can be easily combined. Fig-

ure 5.10 illustrates how a tweet is processed, first rewritten by GPT, then split into

sentences.

All the methods we proposed are highlighted in different colors in Figure 5.9,

and they can be used independently. In Chapter 6.6, we will conduct an ablation

study to determine the best combination among them.
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Figure 5.8: An example showing the original splitting result by AllenNLP SRL tool.
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Algorithm 1: SRL Frames Filter
Input : a list of frames extract by SRL tool F = [f1, f2, ..., fn−1, fn]

Output : a list of frames which been filtered F ′ = [f ′
1, f ′

2, ..., f ′
k−1, f ′

k]

1 Function Filter(F):

2 Sort F by the words length of each frames in descending order

3 for fi in F do

4 for fj in F do

5 m = The number of same words between fi and fj

6 d = len(fj)

7 overlap = m/d

8 if (overlap > 0.7) then

9 discard fj in F

10 end if

11 end for

12 end for

13 F ′ = F

14 return F ′;
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Figure 5.9: Pipeline for dealing two problem simultaneously. The Model mentioned

here can be refer to the Model in Figure 3.1.
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Figure 5.10: An example of a tweet process through rewrite by GPT then split into

sentence-level.
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Chapter 6

Experiments

In this chapter, we present the experimental results obtained to verify the effec-

tiveness of the methods proposed. In addition to displaying these results, we also

provide some analysis.

6.1 Experimental Setting & Evaluation Metric

As described in Chapter 3, we use only two datasets to verify the method we pro-

posed: LESA[12] and CheckThatLab! 2022 1b[22]. For LESA, we used the

script they provided to split the dataset and balance the classes to enable a fair

comparison with the scores shown in their paper. In that script, they split the

dataset into training and testing set using an 85:15 ratio, which resulted in 1498

tweets in the testing set. They balanced the classes only in the training set, which

retained 2148 tweets. The original statistics of LESA can be referred to in Ta-

ble 3.1. As for CheckThatLab! 2022 1b, the dataset was split into training,

development, and testing sets in an approximate ratio of 70:25:5, according to the

organizers’ release. This resulted in 3324 instances in the training set, 1218 in the

38
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development set, and 251 in the testing set.

For all the experiments, we conducted them on 2 NVIDIA GeForce RTX 2080 Ti

devices, with a batch size of 8 for each device, which resulted in 16 data points being

updated at each step. To alleviate the stochastic nature of the results, each score is

the average of 3 runs, using different seeds to initialize the classifier of model. Some

of the hyperparameters and experimental settings can be referred to in Table 6.1.

learning rate 2e-6

epoch 10

optimizer AdamW

learning rate

schedule

linear with warm

up

Table 6.1: Hyperparameter and experimental setting.

For the evaluation metric, we consider accuracy, the F1 score of the positive

class(in this task, claim), and the macro F1 score. These measures follow the

existing work, allowing for comparison with them[22, 12]. The macro F1 score is

the average of all per-class F1 scores, which, in the case of this binary classification

task, is calculated as follows:

F1macro = F1positive + F1negative

2

6.2 Elimination of Special Symbols and URLs

In the first experiment, we aim to determine whether eliminating special symbols

and URLs in tweets truly aids model comprehension of the tweet, and subsequently

improves the results. While many studies have performed elimination or normaliza-
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tion of these elements, they typically process the special symbols deemed influential

without any experimental evidence to validate the benefits of such deletion. We

argue that the influence of each symbol isn’t very intuitive, thus necessitating ex-

perimentation for determination. The deletions we have undertaken can be referred

to Table 5.1.

Delete Symbols CheckThatLab! 2022 1b LESA

Accuracy F1 macro F1 Accuracy F1 macro F1

Without Delete 0.745 0.805 0.719 0.761 0.85 0.625

Delete URL 0.722 0.792 0.687 0.766 0.854 0.631

Delete Emoji 0.736 0.80 0.705 0.762 0.851 0.625

Delete ’#’ 0.728 0.794 0.696 0.768 0.856 0.628

Delete ’@’ 0.733 0.797 0.703 0.729 0.823 0.601

Delete tail hash-

tag and tagging

0.749 0.808 0.723 0.761 0.85 0.629

Replace user 0.728 0.793 0.697 0.752 0.843 0.624

Delete URL,

Emoji, ’#’, tail

hashtag and tag-

ging (Baseline)

0.738 0.80 0.711 0.772 0.858 0.635

Table 6.2: Experiment result of deleting special symbol and URL.

Table 6.2 presents the results. The first row displays the outcomes when no

symbols or URLs are deleted, while rows 2 through 6 demonstrate the results of

deleting only one type of symbol. In the cases of Delete ’#’ and Delete ’@’,

we merely remove the symbols ’#’ and ’@’, but retain the text attached to these
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symbols. This is because those texts may contribute to the semantic in tweet, and

their direct removal could disrupt this semantic. Conversely, Delete tail hashtag

and tagging refers to the process of removing both the symbol and the text attached

to it at the end of the tweet. This is due to many tweets incorporating hashtags

and taggings at the end, which do not contribute to the tweet’s internal semantic.

Figure 6.1 illustrates these two distinct processes.

Figure 6.1: The difference between Delete ’#’ ’@’, and Delete tail hashtag and

tagging. The left example is Delete ’#’ ’@’, which literally deletes the symbols

’#’ and ’@’, but retains the text attached to them. The right example is Delete

tail hashtag and tagging, which aims to delete those hashtags and taggings at

the end of a tweet by deleting both the symbol and the text attached.

For LESA, we observe that the performance slightly improves after deleting

URL, Emoji, ’#’, or tail hashtag and tagging. However, deleting ’@’ does

not seem to aid performance; it instead considerably decreases it. The decrease
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in performance upon deletion of ’@’ is not entirely surprising, given that many

usernames following ’@’ are nonsensical strings, as shown in Figure 6.2. Without the

prefix ’@’, these strings may not be correctly interpreted as usernames. On the other

hand, most deletion operations did not improve the results in the CheckThatLab!

2022 1b experiment; in fact, performance marginally dropped.

After deleting each item individually, we selected those deletions that improved

performance in LESA and combined them. Row 8 shows the results when URL,

Emoji, ’#’, and tail hashtag and tagging are deleted simultaneously, which

again improved the performance in LESA.

Subsequent experiments will adopt the deletion of URL, Emoji, ’#’, and tail

hashtag and tagging as the default setting. The results of Deleting URL,

Emoji, ’#’, tail hashtag and tagging will be used as a baseline for comparison

in other experiments. Although the performance of Deleting URL, Emoji, ’#’,

tail hashtag and tagging did not improve in CheckThatLab! 2022 1b, we still

adopt this combination of deletion as the default setting in subsequent experiments

on this dataset. This is because we want the model to base its predictions on

semantics, not on these symbols.

Figure 6.2: Nonsense user name example.
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6.3 Different Prompt when Rewriting Tweets

After removing special symbols and URLs, the next step in handling the noisy format

of tweets involves a method we proposed: using GPT to rewrite the tweet in order to

alleviate the informal writing style. However, determining how to effectively prompt

GPT remains a significant challenge, and studies have shown that the performance

of GPT varies greatly depending on the prompt provided[38, 32]. While the main

focus of this work is not to find the optimal prompt, we have tested some intuitive

keywords that we believe are beneficial in the context of rewriting tweets in a more

understandable manner. The GPT version we use is 3.5-turbo. To reduce the

randomness of GPT’s response impacting the performance, we set the ’temperature’

(a hyperparameter controlling the randomness of GPT’s generation) to 0.

Prompt CheckThatLab! 2022 1b LESA

Accuracy F1 macro F1 Accuracy F1 macro F1

Baseline 0.738 0.80 0.711 0.772 0.858 0.635

rewrite: 0.719 0.784 0.69 0.767 0.855 0.629

explain: 0.689 0.759 0.66 0.779 0.865 0.634

clarify: 0.726 0.789 0.7 0.756 0.848 0.609

rephrase: 0.726 0.789 0.7 0.774 0.861 0.631

normalize: 0.733 0.791 0.71 0.735 0.832 0.604

Long Prompt 0.724 0.792 0.69 0.758 0.848 0.626

Guidelines 0.715 0.782 0.684 0.76 0.849 0.633

Table 6.3: Experiment result of different prompt. The prompt is using as the part

highlighted in blue in Figure 6.4.

Table 6.3 presents the results. The first row corresponds to the last row in ta-
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ble 6.2, while rows 2 through 6 represent the outcomes of rewriting tweets using

different keywords as prompts. An example of the same tweet rewritten by GPT

using different prompts can be seen in figure 6.5. Most results show that rewrit-

ing with GPT does not enhance performance. Only the scenarios where explain

and rephrase were used as prompts for rewriting tweets in LESA show a slight

improvement in terms of accuracy and F1 score, but still, insignificant. Another ob-

servation is that different prompts greatly impact performance, thereby reaffirming

the challenge of prompt engineering.

Although the performance did not improve overall, we still observed success

of rewriting in some instances. Figure 6.3 shows an example of a tweet that was

incorrectly predicted before, but was correctly predicted after the rewrite. This

tweet is identical to the example given in Figure 5.2, which represents the informal

writing style. As the readability of the tweet improved significantly, we believe

this is what enabled the model to understand it correctly, thus making the correct

prediction.

Figure 6.3: A success case which turn the wrong prediction to right after rewriting.
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One issue with this method arises from the undesirable responses generated by

GPT. Some responses, akin to the final example in Figure 6.5, represent a refusal

to rewrite the tweet due to the presence of inappropriate content within the original

tweet. Other responses introduce new content not originally found in the tweet, as

shown in Figure 6.4. These unwanted rewriting responses can negatively impact the

quality of training. Using responses that refuse to rewrite as training data would

intuitively make no sense. On the other hand, the addition of new content by GPT

could further introduce noise into the model training process.

Figure 6.4: A tweet rewrite by GPT using ”rephrase” as prompt. The content

highlighted by red were not present in the given tweet.
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Figure 6.5: Same tweet rewrite by GPT with different prompt
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To further address the issue described above, we first filter out those responses

that are obviously denying the rewrite, using keywords such as ”As an AI language”,

”I cannot”, and ”I’m sorry”. Then, to mitigate the situation where GPT adds content

that didn’t occur in the original tweet, we elaborate the prompt to more detail and

add context which guides GPT to avoid performing such behavior. Figure 6.6 shows

the elaborated prompt we used. As seen, after using the prompt, which specifies

not to add extra information, GPT provides the desired response. The performance

of using this prompt to rewrite the tweet is shown in the Long Prompt row in

Table 6.3. Unfortunately, the performance still did not improve.

Figure 6.6: A more detailed prompt we elaborate to rewrite the tweet.

Upon further investigation into the insufficiency, we found that the prompts we

used were somewhat vague, employing terms such as ”clearer”, ”understandable”,

and ”interpretation”. We hypothesize that this might have confused GPT, thus

preventing it from performing the task as expected. Furthermore, GPT may modify

the syntactic structure of the original tweet, as illustrated in Figure 6.6, potentially
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distorting the original claim that the annotator identified in the tweet. To address

this issue, we also try a different type of prompt, which provides GPT with explicit

guidelines on how to perform the rewrite, as depicted in Figure 6.7. With this type of

prompt, GPT’s responses more consistently align with the original tweet’s syntactic

structure. The performance of this prompt in rewriting is shown in the Guidelines

row of Table 6.3, which, once again, shows no improvement.

Figure 6.7: A prompt we elaborate to rewrite the tweet which using clearly guide-

lines.

6.4 Split Tweets into Sentence-Level

In this experiment, we aim to verify whether splitting the tweet into sentence-level

segments during testing helps improve performance. Additionally, we seek to deter-

mine which method is more effective for splitting: the rule-based method or SRL.



doi:10.6342/NTU202302992

CHAPTER 6. EXPERIMENTS 49

Split Method CheckThatLab! 2022 1b LESA

Accuracy F1 macro F1 Accuracy F1 macro F1

Baseline 0.738 0.80 0.711 0.772 0.858 0.635

Split by Rule-

based

0.732 0.796 0.702 0.786 0.868 0.648

Extract by SRL 0.753 0.807 0.731 0.815 0.891 0.645

Table 6.4: Experiment result of different split method

Table 6.4 shows the results. For LESA, it is evident that the performance im-

proves regardless of the method used for splitting. Furthermore, using SRL when

splitting outperforms the rule-based method, which corroborates the notion men-

tioned in Chapter 5 that utilizing SRL can enhance performance. As for Check-

ThatLab! 2022 1b, using SRL proves effective as well, but the performance

declines when considering the use of rule-based method for splitting.

To further demonstrate the effectiveness of the proposed method, we present two

prediction results using the LESA dataset. Table 6.5 shows an example in which

splitting tweets into sentence-level improves the prediction accuracy compared to not

splitting. As the example demonstrates, when the entire tweet is inputted into the

model, the given prediction is negative, which is incorrect. However, after splitting

it into sentence-level, the first sentence is successfully predicted as a claim by the

model, which verifies the effectiveness of our proposed methodology. Regarding the

scenario where SRL splitting outperforms the Rule-based method, please refer to

Table 6.6. In this case, the rule-based method fails to successfully split the claim

apart, but the SRL method succeeds. After splitting them apart, the model correctly

identifies them as claims.
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Split Method input label prediction

Without Split Leader of the free world suggesting

that mainlining disinfectant might cure

coronavirus. Did I just dream that,

surely nobody is actually that much of

a dumbass that they would suggest it

1 0

Split by Rule-based
Leader of the free world suggesting

that mainlining disinfectant might cure

coronavirus.

- 1

Did I just dream that, surely nobody is

actually that much of a dumbass that

they would suggest it

- 0

Extract by SRL
Leader of the free world suggesting

that mainlining disinfectant might cure

coronavirus.

- 1

I just dream that, surely nobody is ac-

tually that much of a dumbass that

they would suggest it.

- 0

Table 6.5: Example of the prediction after splitting. The text highlighted in red is

the claim present in this tweet in our opinion.
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Split Method input label prediction

Without Split thread i mostly talk about movies on

here but here goes we are currently piv-

oting our factory to solely make surgi-

cal masks and other medical garments

in short supply we can make 2 million

masks a day and are looking to help

in any way possible during this time

covid19

1 0

Split by Rule-based thread i mostly talk about movies on

here but here goes we are currently piv-

oting our factory to solely make surgi-

cal masks and other medical garments

in short supply we can make 2 million

masks a day and are looking to help

in any way possible during this time

covid19

- 0

Extract by SRL

i mostly talk about movies on here. - 0

we currently pivoting our factory to

solely make surgical masks and other

medical garments in short supply.

- 1

we can make 2 million masks a day. - 1

we we looking to help in any way pos-

sible during this time covid 19

- 0

Table 6.6: An example of the prediction after splitting. The text highlighted in red

and blue is two claims present in this tweet in our opinion.
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6.5 Train with Sentence-Level Dataset

After observing that splitting tweets into sentences improves performance, our next

experiment involves training using a dataset originally at the sentence level. We

hypothesize that aligning the levels of the training and testing sets will enable the

model to perform consistently during both stages, potentially improving perfor-

mance. Refer to table 3.2; there are 8 existing sentence-level datasets. Thus, another

goal of this experiment is to identify the sentence-level dataset, or a combination

among these 8 datasets, that best fits the target article-level dataset. As shown in

table 3.2, all sentence-level datasets exhibit an unbalanced class distribution. To

avoid bias towards the non-claim class, we balance them via undersampling prior

to training. All experiments in this section split tweets in the target article-level

dataset into sentences using SRL, as it was demonstrated in the previous section

that this method outperforms rule-based splitting.

Table 6.7 presents the results of this experiment. We observe significant variation

in performance across different training sets. We attribute this to two factors that

may affect the performance: the dataset size and the writing style. Larger datasets

yielded better performance, as did writing styles more aligned with tweets. Initially,

each dataset was trained separately, with the results shown in rows 2 to 9. Notably,

PE and MT performed poorly, with F1 scores around merely 10%. The data in PE,

collected from essays, exhibits a formal writing style, contrasting significantly with

the informal style found in tweets. Therefore, the poor performance is understand-

able. As for MT, the poor performance can be attributed to the insufficient data

size, containing only 224 data instances after balancing the classes. Conversely, CB

and OC surprisingly outperformed the original dataset in terms of F1 score when

targeted at CheckThatLab! 2022 1b and LESA, respectively. However, when
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considering the macro F1 score, we observe a substantial decrease.

Dataset CheckThatLab! 2022 1b LESA

Accuracy F1 macro F1 Accuracy F1 macro F1

Original Dataset 0.753 0.807 0.731 0.815 0.891 0.645

ClaimBuster 0.744 0.82 0.689 0.671 0.788 0.56

NewsClaims 0.49 0.312 0.453 0.402 0.499 0.375

WD 0.487 0.394 0.38 0.394 0.375 0.276

WTP 0.568 0.678 0.437 0.678 0.757 0.462

VG 0.538 0.61 0.389 0.638 0.676 0.409

PE 0.412 0.077 0.322 0.135 0.034 0.126

OC 0.587 0.74 0.37 0.856 0.922 0.512

MT 0.434 0.154 0.356 0.148 0.063 0.139

ClaimBuster +

OC

0.776 0.833 0.745 0.541 0.658 0.478

ClaimBuster +

OC + WTP

0.745 0.804 0.719 0.458 0.569 0.418

ClaimBuster +

OC + WTP +

VG

0.697 0.777 0.653 0.506 0.626 0.446

LESA + Claim-

Buster

- - - 0.828 0.899 0.663

CheckThatLab!

2022 1b + Claim-

Buster + OC

0.754 0.823 0.71 - - -

Table 6.7: Experiment result of different training set
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After testing the effectiveness of each sentence-level dataset, we also combined

them to ascertain whether this further improved the performance. For simplicity, we

only selected those sentence-level datasets that achieved an F1 score higher than 0.5,

and combined them sequentially as shown in rows 10 ∼ 12, with the order of combi-

nation determined by their performance. Finally, we combined the best-performing

one describe above with the original article-level dataset, as demonstrated in rows

13 and 14, for LESA and CheckThatLab! 2022 1b, respectively.

For CheckThatLab! 2022 1b, it is quite surprising that the combination

of ClaimBuster and OC yields the best performance, regardless of the metric

considered, and further combining it with the original dataset does not improve the

results. For LESA, when considering accuracy and F1 score, the best results are

achieved when using only OC. However, the macro F1 score significantly decreases

in this case, which indicates that the false positives have substantially increased.

To maintain the judgement of non-claims, we could consider the penultimate row,

which combines LESA and ClaimBuster as the training set. The accuracy and F1

score in this scenario are slightly lower than when using OC, but it still outperforms

the model trained solely on the original dataset, and the macro F1 score is the best

among all.

In this experiment, we observed that utilizing sentence-level datasets for training

helped enhance performance. However, which one is superior, and why it is superior,

remains an open question that lacks a clear explanation at the moment. Our best

hypothesis is that the distribution of those sentence-level datasets, which performed

well, is closer to the targeted article-level dataset. Therefore, the selection of the

sentence-level dataset we’re currently using is essentially a brute force approach,

which lacks efficiency.
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6.6 Combined All

Finally, our concluding experiment amalgamates all our proposed methods and com-

pare them with the state-of-the-art(SOTA) techniques. The SOTA for CheckThat-

Lab! 2022 1b is represented by the winner of that subtask[30], while the SOTA for

LESA corresponds to the method proposed in the same paper that introduces the

dataset[12]. For rows 7 and 8, the training dataset utilized for CheckThatLab!

2022 1b is ClaimBuster + OC, and for LESA, it is LESA + ClaimBuster

since these combinations yielded the most appropriate performance in the previous

experiment.

In this experiment, we examined the new outcomes of combining the rewrite

method with sentence-level splitting, as represented in rows 6 and 8. The rewrite

prompt we used for CheckThatLab! 2022 1b was ”normalize:”, as it demon-

strated the best accuracy among all prompts. For LESA, we employed ”explain:”,

considering its optimal F1 score. The results shown in the other rows represent

the best outcomes from previous experiments. For CheckThatLab! 2022 1b,

we observed that the performance decreased after combining these two methods,

regardless of the metric considered. In the case of LESA, there was an increase in

both accuracy and F1 score, but it came with a significant trade-off—a considerable

decrease in the macro F1 score, which is unacceptable. In our view, the reason this

amalgamation was not more effective is primarily due to the problem mentioned in

Chapter 6.3—GPT cannot always perform the rewrite task accurately.

We also attempt to solve this task directly through GPT via zero-shot learning,

which simply involves providing GPT with the tweet and a prompt instructing it to

classify whether the tweet contains any claims. The prompt we used can be referred

to Figure 6.8, and the performance can be seen in the zero-shot by GPT row of
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Figure 6.8: An example demonstrating how we prompt GPT to directly classify

whether the tweet contain any claims.

Table 6.8. The performance is significantly behind that of the fine-tuning approach,

which confirms the necessity of using fine-tuning for this task.
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Pipeline CheckThatLab! 2022 1b LESA

Accuracy F1 macro F1 Accuracy F1 macro F1

SOTA 0.761 - - - 0.89 0.67

zero-shot by GPT 0.625 0.701 0.6 0.575 0.699 0.489

Baseline 0.738 0.80 0.711 0.772 0.858 0.635

Rewrite -> Model 0.733 0.791 0.71 0.779 0.865 0.634

Split to Sentence-

Level -> Model

0.753 0.807 0.731 0.815 0.891 0.645

Rewrite -> Split

to Sentence-Level

-> Model

0.715 0.757 0.705 0.833 0.904 0.633

Training Dataset: With Sentence-Level Dataset

Split to Sentence-

Level -> Model

0.776 0.833 0.745 0.828 0.899 0.663

Rewrite -> Split

to Sentence-Level

-> Model

0.711 0.784 0.673 0.869 0.929 0.529

Table 6.8: Experiment result of combined all proposed method. The Model men-

tioned here can be refer to the Model in figure 3.1

For CheckThatLab! 2022 1b, in contrast to the state of the art(SOTA), we

observed an increase in performance on all metrics when training on other sentence-

level datasets and splitting the tweets into sentence-level units for testing. Regard-

ing LESA, splitting tweets into sentence-level units outperformed the SOTA on

F1 score, and when trained with other sentence-level datasets, it further improved.
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Considering the macro F1 score, none of the methods we proposed outperformed

the SOTA, but the macro F1 score achieved by training with other sentence-level

datasets and splitting tweets into sentence-level units during testing produced most

nearly results. Based on these statistics, we conclude that the most effective com-

bination of the methods we proposed involves training with other sentence-level

datasets and splitting tweets into sentence-level units using SRL during testing.
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Conclusion

When considering RQ 4.1.1, we first eliminate special symbols and URLs using a

rule-based method. Then, we propose addressing the informal writing style of tweets

by rewriting them with GPT. Although the rewriting results appear adequate, the

performance did not improve. A possible reason for this is that the quality of the

rewriting may still be insufficient. At present, the quality of the rewriting results is

assessed purely based on our opinion, which could be subjective and lack credibility.

Therefore, determining how to accurately measure the rewriting results of GPT

is another potential issue that could improve outcomes. At this point, we are not

suggesting that addressing the noisy format of tweets is insignificant; further research

is still needed to make a definitive determination. Furthermore, in addition to using

GPT to rewrite the tweets, another viable approach to mitigate the informal writing

style could be the use of a style transfer model. S. Rao and J. Tetreault released a

corpus containing pairs of informal/formal sentences, and trained models that could

transform the informal writing style text into formal writing style[28]. As the task

of style transfer naturally aligns with the requirement of not changing semantics,

the results may be more in line with our expectations. In their research, they also

59
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propose some metrics for automatically evaluating the transferred text, which could

be used to assess the quality of rewriting by GPT as well.

On the other hand, the consistently improved performance in splitting tweets

into sentence-level components demonstrates that our RQ 4.2.1 is indeed significant

and that the proposed method effectively addresses it. Additionally, our results sug-

gest that using Semantic Role Labeling (SRL) outperforms the rule-based method

for tweet segmentation, reinforcing our hypothesis. From this, we can infer that

SRL appears to be a promising choice when the task involves extracting a narra-

tive from given content. Utilizing other sentence-level claim detection datasets to

assist in training has further improved performance. However, selecting the appro-

priate dataset in a more systematic way is still an area requiring further research.

Furthermore, we found that the performance improves when the writing style of

the sentence-level dataset aligns more closely with tweets. Perhaps transferring the

writing style of these datasets to be more aligned with tweets could further improve

the performance.

Overall, we achieved claim detection in tweets by adopting a viewpoint different

from existing works, focusing on addressing the two problems we proposed - the noisy

format of tweets and the inconsistency between tweet and claim levels. Although not

all the methods we proposed proved effective, we identified the feasibility of some

by achieving performance comparable to, and in some cases slightly surpassing, the

state-of-the-art.
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