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摘要

作為人工智能領域的一項重大進展，脈衝神經網絡以其獨特且受大腦啟發的

解題、推理和推斷方法，展現了巨大潛力。這種潛力促使眾多組織和企業投入於

算法和硬件設計的開發，目標是應對並克服未來的技術挑戰。然而，現有的硬件

和算法解決方案在仿真硬件的成本效益及深度神經模型的推理效率方面存在局

限。本研究提出了一種旨在實現高成本效益和高效運作的硬件設計與算法改進。

在硬體層面，該硬件使用計算型非揮發性記憶體，其特點是無需權重移動、低比

特成本和提高的面積效率，這些特性共同提升了處理能力和成本效益。在算法層

面，本研究開發了專門為脈衝神經網絡加速器設計的神經模型。為了實現此硬件

與演算法的共同優化，該研究著重於三個部分：(1)由於記憶體單元的不完美而導

致的可靠性降低；(2)非揮發性記憶體的大粒度與高延遲造成效能損失；以及 (3)

為實現準確的計算結果而需多次脈衝處理次數。針對圖像識別與解題應用，我們

對各種記憶裝置進行了可靠性分析。此外，我提出了架構設計以減緩處理速度損

失，並提出將神經模型轉化為二進制神經網絡，以微小的準確度的犧牲，換得顯

著提升分類推理的能效。我們的研究結果指出，在校準具有小開關比和高信噪比

的單元時，會有巨大的電容成本，為此應選用電晶體為主的記憶體。此外，我們

的設計在MAX-CUT、數獨和 LASSO任務上明顯優於以往的數位型 SNN處理器，

分別實現了 3.1倍、1.8倍和 2.2倍的加速。最後，與 4位元 SNN相比，我們整合

的容錯二進制神經網絡不僅將電容大小減半，能源消耗減少了 57％，同時也大幅

降低了兩個數量級的延遲，並保持了分類的準確性。

關鍵字：脈衝神經網路、快閃記憶體、記憶體內運算、神經態運算、可靠度分析
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Abstract

As a significant advancement in the field of artificial intelligence, spiking neural

networks showcase a unique, brain-inspired approach to computational problem-solving,

reasoning, and inference. This notable potential drives various organizations and indus-

tries to dedicate efforts to the development of algorithms and hardware design, aiming

to achieve a substantial leap in addressing and overcoming imminent technological chal-

lenges of the future. However, the existing hardware and algorithmic solutions demon-

strate a lack of cost-effectiveness in terms of emulation hardware and inefficiency in the

inference of deep neural models. This thesis presents a hardware design and algorithmic

improvements aimed at achieving cost-effective and efficient operation. From a hardware

perspective, the hardware utilizes computational non-volatile memory, characterized by

its ability to operate without weight movement, lower bit costs, and improved area effi-

ciency, which collectively enhances processing throughput at a reduced cost compared to

prior architectures. On the algorithmic front, this study develops a neural model specially

tailored for a spiking neural network accelerator. However, to fully implement this infer-

ence system, it is necessary to address three critical challenges: (1) the decline in reliability

due to imperfections in memory cells, (2) the considerable size and extended latency as-

sociated with non-volatile memory macros, and (3) the requirement for multiple spiking

processing cycles to achieve accurate computational outcomes. In response, we conduct

a reliability analysis of various memory devices for image classification and optimization

problem-solving. Additionally, we delve into architectural designs to counteract losses in

processing throughput, especially when dealing with sparse inputs or a limited input de-

gree of network model inference. We also propose transforming neural models into binary

neural networks to substantially improve processing speed and energy efficiency with mi-

nor sacrifices in accuracy for image classification. Our results highlight the substantial

capacitance expense incurred when calibrating cells with a minimal ON-OFF ratio and a

high signal-to-noise ratio. Thus, transistor-based memory is suggested. The design we

vii
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propose significantly outperforms previous digital-based SNN processors, achieving pro-

cessing speeds that are 3.1x, 1.8x, and 2.2x faster for MAX-CUT, SUDOKU, and LASSO

tasks, respectively. In addition, when compared to 4-bit SNNs, our approach of integrating

error-resilient binary neural networks (ER-BNN) into the probabilistic inference machine

not only cuts the capacitor size by 50% and reduces energy consumption by 57%, but also

significantly decreases latency, all while preserving the accuracy of classification.

Keywords: Spiking Neural Network, FlashMemory, Computing inMemory, Neuromor-
phic Computing, Reliability Analysis
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Chapter 1 Introduction

1.1 Inference of Spiking Neural Network

In the realm of artificial intelligence, the spiking neural network (SNN) emerges as

a noteworthy innovation inspired by the brain’s complex mechanisms. This sophisticated

system operates through spiking neurons, which collaborate seamlessly, exchanging infor-

mation through spike signals. This harmonious integration enables the network to perform

inference tasks effectively, applying its unique capabilities to solve real-world challenges.

The innovative approach to computing offers a potential method for efficient inference

processing. This significant potential motivates organizations and industries to dedicate

efforts to the development of algorithms and hardware design, aiming to achieve a strate-

gic edge in meeting future technological challenges. Google has experimented with using

temporally encoded spiking signals for recognition tasks to create an energy-efficient fun-

damental component [1]. Additionally, various organizations have unveiled their spiking

neural accelerators, providing essential hardware to speed up spiking signal processing.

For instance, IBM introduced TrueNorth [2], Stanford developed Neurogrid [3], and Intel

launched Loihi [4].

However, the low economic efficiency and the time domain encoding [1] hinder their

extensive adoption in everyday life. The inefficiency in these architectures, especially

when processing spiking neural networks, stems largely from the need to store network

parameters, like weights, in SRAM or scratchpad memory. Additionally, the inherently

stochastic nature of spiking neural networks necessitates multiple spike signal processing
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cycles to achieve accuracy competitive with traditional models, limiting the processing

throughput. In response, this thesis seeks to enhance the cost-efficiency and reduce the

latency of spiking neural network inference by employing a storage device for weight

storage and proposing neural model enhancements for low-latency inference. To accom-

plish these objectives, we face three primary challenges. The non-ideal characteristics of

non-volatile memory, such as current variation and leakage, pose risks to accuracy and

necessitate an analysis of model reliability. The inherent long latency and large granu-

larity of non-volatile memory present a significant challenge in maintaining processing

throughput. The spiking neural model must be re-engineered to balance competitive ac-

curacy with reduced inference latency. To address these challenges, this thesis is divided

into three main components:

• A reliability analysis to understand the impact of cell nonideality on spiking neural

network applications.

• The development of architecture and hardware designed to manage the challenges

posed by the large granularity of cost-effective non-volatile memory devices.

• Training the model to be more compatible with spiking neural networks, aiming to

achieve higher processing throughput than direct deployment of traditional neural

models.

1.2 Reliability Analysis for Non-volatile Synaptic Devices

Organizations or companies have proposed a variety of specialized hardware acceler-

ators to perform the computations of SNNs. Notable examples are BrainScaleS [5], Loihi

[4], TrueNorth [2], SpiNNaker [6], and NeuralGrid [3]. While the prevalent method for

buffering synaptic strength in prior works is SRAM, recent investigations have revealed

the potential advantages of employing a non-volatile memory (NVM)-based synapse ar-

ray for reducing cost, area, and energy consumption in comparison to SRAM, as discussed

2
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in [7, 8]. Exceptional synergy is achieved by combining non-volatility with analog com-

putations. NVM-based accelerators with analog computation provide high computational

parallelism, increasing the chip area efficiency [7]. In SNNs, input activities are encoded

as spike trains. These spikes are passed through synapses, i.e., NVM cells, which perform

the analog weighting and return weighted currents. Then, the weighted currents from all

synapses connected to the neuron circuit are summed by Kirchhoff’s circuit law. This

summed current is transmitted to the neuron circuit, charging a membrane capacitor. The

neuron emits a spike when the voltage exceeds a predefined threshold voltage. However,

the non-ideal nature of current from NVM cells in analog computing leads to reliability

concerns. Therefore, choosing an appropriate device for synaptic operations to ensure re-

liable computation is crucial. Prior analytic works discussed the impact of focus on the

impact of resistive memory on accuracy loss of image classification [9–11]. A compre-

hensive analysis of various memory devices is still not available. Moreover, the impact of

NVM cells on the annealing function of SNNs remains largely unexplored. Most impor-

tantly, the selection of membrane capacitor, Cmem, needs to match the cell current charac-

teristic to achieve the inference process with minimal time and energy consumption, but

the requirements of Cmem for each memory devices are not yet discussed. Evaluating the

influence of various NVM cells’ nonidealities and circuit awarded evaluation on target

applications, including image classification and optimization solving, is essential for de-

signing brain-like computing systems under strict energy, space, and latency constraints.

Specifically, our contributions are as follows:

• We analyze the impact of NVM nonidealities on the cost of membrane capacitor,

Cmem, on the accuracy of image classification and success rate of solving optimiza-

tion problems. We also derive a Poisson model, which accurately describes the

operation of the SNNs. Moreover, it connects the neuron circuit parameters (e.g.,

capacitance and currents) and the precision of the analog computations, enabling

formal investigations of the nonideality effects.

• We evaluate the effect of NVM nonidealities on targeted applications in the ex-
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periments by controlling the circuit parameters using the aforementioned Poisson

model. As the memory technologies, we use the data of NVM, including NOR

Flash, FeFET, WOx ReRAM, and HfOx ReRAM. As nonidealities of the NVMs,

we consider current variation, OFF-state leakage. Additionally, we further evaluate

the effect of temperature-induced drift on the application of solving optimization

problems.

1.3 Architecture Design for Efficient Inference

The enhancement of spike signal processing schemes has played a crucial role in the

evolution of spiking neural network hardware, leading to significant advancements in em-

ulating neural dynamics. Digital-based architectures, such as SpiNNaker [6], TrueNorth [2],

Tianjic [12], and Loihi [4], have been developed to meet these requirements. On the other

hand, the mixed-signal architecture, represented by Neurogrid [3], has also been intro-

duced, aiming for maximized energy efficiency. Despite various proposals for spiking

neural network accelerators, these architectures struggle to handle spiking neural networks

that exceed the capacity of spiking neuron hardware. This is especially true when consid-

ering limited memory capacity and neuron circuit constraints. Recent designs for spiking

neural networks, such as SpinalFlow [13] and Parallel Time Batching (PTB) [14], are en-

gineered as spiking signal processors. They are primarily focused on handling spiking

neural models buffered in DRAM. Nonetheless, the inevitable core switching required

to process different sets of neurons introduces a significant delay in loading and storing

neuron states and weights. This results in a substantial performance drop [14].

To address the critical challenge of switching overhead, the tick-batching technique,

as proposed in [13–15], plays a pivotal role. This technique aims to capitalize on the reuse

of loaded weights and neuron states to amortize latency when switching between neurons

during processing. The tick-batching technique can be seamlessly applied to feedforward

networks without compromising accuracy due to the independence between inputs and
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outputs, as elaborated in [16]. However, it is not as effective for networks with recur-

rent structures. Applying the tick-batching technique to a recurrent neural network could

lead to computing errors from unsynchronized input neural activities. This is due to the

input and output dependency inherent in recurrent structures. These errors could alter

the converged state, negatively impacting optimization problem-solving in diverse fields.

Such fields include planning efficient routes for vehicles [17–23] in delivery systems [24–

26], making decisions about product lines [27–32], analyzing genomics data [33–40], and

managing investment portfolios [41–44], among others.

To ease the switching overhead with minor costs in neuron synchronization, process-

ing at the place where data is located eases the performance drop from weight movement.

Previous studies, such as RESPARC [45], Nebula [8], and NFCA [46], have demonstrated

that non-volatile synaptic arrays can mimic neural synapse behavior in compliance with

Kirchhoff’s current laws. Compared to SRAM, these non-volatile memory devices offer a

lower bit cost for storing weights, while the analog synaptic device provides competitive

computing throughput to digital alternatives. However, these 2D structures have limited

capacity under area constraints. The solution to this problem is stacking these synapse

arrays into 3D structures. The 3D NOR Flash memory is a novel 3D synaptic device

providing lower bit cost and higher bit density than its 2D counterparts, with competitive

processing throughput. Furthermore, 3D-NOR Flash inherits a substantial ON-OFF ratio,

negligible leak-current, and small noise-ratio from NOR-Flash cells, making it a reliable

device for computing purposes [47, 48]. These improvements reduce computational errors

caused by cell leakage currents. Nonetheless, the extended setup time of 3D-NOR Flash

requires a larger input granularity to maintain processing throughput. A spiking network

characterized by neurons with limited input connections and high spatial sparsity in input

spikes results in reduced throughput.

Conclusively, the main challenge lies in effectively harnessing the weight-moving

free, high-bit density, and high ON-OFF ratio of 3D-NOR Flash technology while ensur-

ing optimal utilization of its processing throughput. To mitigate the throughput reduc-
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tion in 3D-NOR Flash synaptic arrays, the presented architecture employs a collabora-

tive hardware-software design strategy. This method is tailored to augment processing

efficiency while simultaneously diminishing negative impacts on the process of solving

optimization problems. Our primary contributions to this research are as follows:

• We are the first spiking signal processor that optimizes for solving optimization

problems. Moreover, the proposed architecture is synergy with 3D NOR-Flash

memory, outperforms throughput of synapse operation, and eliminates the require-

ment of weight movement.

• We introduce three innovative designs to enhance spiking processing throughput

using 3D NOR-Flash memory as a synaptic array. These include (a) a novel finite-

disturbance input spike coarsening unit that reduces synapse operations while main-

taining neuron firing time accuracy, (b) a synaptic array architecture designed to

reduce input granularity, achieved through a 1D-systolic array derived from the cir-

cuit under array (CuA) technique, and (c) a run-time pruning technique that skips

polarized neurons, significantly decreasing processing time.

• We benchmark our design against prior spiking signal processing units on optimiza-

tion applications. The results show that our proposed design provides 3.1x, 1.8x,

and 1.2x gains compared to the state-of-the-art SNN spiking processors for solv-

ing SUDOKU, MAX-CUT, and LASSO problems. Our proposed Neureka also

achieves 6.6x, 1.8x, and 2.96x faster than other heuristic methods for processing

on high-end CPUs and GPUs.

1.4 Algorithmic Enhancement for Image Recognition

The rise of deep learning has significantly improved classification accuracy across

various fields like image recognition [49, 50], speech processing [51], and object detec-

tion [52, 53]. To process these complex models efficiently, numerous accelerators have
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been developed for energy-efficient inference. An alternative approach is to adopt the

brain’s signal processing methods, specifically through spiking neural networks (SNNs).

Existing research has explored various methods for encoding multi-bit neural activities

in the time domain, including delay [13, 54, 55], rank [56, 57], and stochastic encod-

ing [58, 59]. Among these, stochastic encoding aligns well with deep neural models. In

this scheme, the weights and connections of the SNN can be derived from a pre-trained

neural model, while input activities are translated into spike rates. This stochastic com-

puting approach can maintain classification accuracy through multiple cycles of binary

input operations.

However, stochastic encoding methods typically require numerous spike operations,

which can slow down inference and increase energy consumption. To address this, net-

work models with binary inputs have been developed to enable single-cycle computation.

As the encoded probability is either one or zero, encoding can be completed in just one

cycle. Additionally, binary neural networks (BNNs) can be further optimized through

training schemes and network structure searches to reduce computational requirements

without compromising accuracy [60, 61]. They can also be made error-resilient [62, 63],

enhancing the noise margin for SNNs and improving area and energy efficiency [48]. This

research is pioneering in leveraging the advantages of BNNs for SNNs, achieving signif-

icant improvements in area, latency, and power efficiency without sacrificing accuracy.

Our novel contributions in this section are:

• We reveal the impact of deploying error-resilient BNNs to analog-based SNN ac-

celerators on reducing the membrane capacitor size Cmem.

• We demonstrate how the resiliency of BNNs, especiallywhen trained in the presence

of bit errors, increases the robustness of SNN computation and enables significant

Cmem reduction with marginal inference accuracy loss.

• We show that error-resilient BSNNs achieve 50% reduction inCmem size, two mag-

nitudes of improvement in latency, and 57% in energy compared to the baseline
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(4-bit) SNN implementation under minimal accuracy cost of 3% same as BNN.

1.5 Organization of the Dissertation

This thesis aims to build a general-purpose probabilistic inference machine that can

predict the output distribution from the sampling process. Three aspects are addressed to

improve the processing speed to achieve this goal. Firstly, this thesis provides a reliabil-

ity analysis while utilizing non-volatile memory to accelerate the spiking neural network.

Unlike prior analysis, this thesis further discusses the relation between cell current charac-

teristics and neuron circuit requirement. Secondly, the architectural design is proposed to

speed up the evolving spiking neuron purpose. This thesis further designs the architecture

for the annealing purpose and addresses the issues while utilizing computing-in-memory

to accelerate synaptic operation. Thirdly, this thesis proposes a neural model conversion

scheme for image classification to enable the probabilistic inference machine, dramati-

cally speeding up image recognition tasks. The overall structure of the dissertation is as

Fig. 1.1.
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Chapter 2 Related Work

2.1 Reliability Analysis of Processing in Memory

The exploration of spiking neural networks (SNN) in recognition applications has

addressed the reliability of stochastic-based computing schemes. Prior works have con-

structed error models for neurons, synapses, and routers for reliability analysis [64, 65].

Synapse errors, attributed to manufacturing defects or voltage-induced approximation er-

rors, are analyzed through the raw bit error rate from bit-flipping and stuck-at-faults, im-

pacting image classification tasks [66, 67]. Furthermore, the errors of spiking neurons,

including dead neuron fault, stuck signal fault, and delay fault, have been explored for

their effect on reliability [66]. Particularly, the work in [67] delves into a transistor-level

model, providing a detailed view of how single transistor faults impact neuron behav-

ior and overall image classification applications. The reliability analysis also extends to

router faults and network parameter errors [64].

Despite these developments, it’s crucial to note that all the above error models are

built from the digital domain, which differs from the analog domain. An alternate ap-

proach for implementing synapse operation, i.e., the inner product, processes in memory

by weighting input spikes and accumulating them to the output current, leading to direct

accumulation of current noise. To assess reliability in this context, analog-based synapse

error models have been introduced to evaluate the impact of current noise on applica-

tions like image classification [9, 68] and robot controlling [69]. However, as memory

devices and neuron circuits are interconnected, the reliability of neuron circuit behavior is
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inevitably influenced by the memory cell. This thesis, therefore, considers both memory

cells and neuron circuits for a comprehensive reliability analysis.

2.2 Spiking Neural Network Architecture

Several organizations have proposed the spiking neural network (SNN) accelerator

aiming to achieve high recognition capability and efficiency akin to the human brain.

The University of Manchester has been at the forefront with its development of SpiN-

Naker [6], a system engineered with an intricate array of microprocessors. This platform

is particularly noted for its method of integrating microprocessors, which involves the

transmission of inter-chip spikes through synchronized messages, facilitating complex

neural network simulations. Building on these technological strides, Stanford Univer-

sity’s Neurogrid [3] represents a significant advancement. This architecture operates on a

mix-signal basis, specifically designed to emulate continuous-time neural dynamics, offer-

ing deeper insights into brain-like processes. In a concurrent technological advancement,

BrainScaleS [70] has unveiled its wafer-scale analog spiking neural network hardware,

integrating a fault-tolerance design. This design ensures that the hardware remains func-

tional even when a few transmitters are dysfunctional. Such an innovation significantly

reduces the necessity for inter-chip communication, thereby enhancing overall efficiency.

Additionally, this approach effectively mitigates the issue of yield drop, which is com-

monly associated with wafer-scale chip production, ensuring more reliable and robust per-

formance of the hardware. IBM’s contribution to this field comes with the development of

TrueNorth [2], which consists of synapse crossbars. This design innovatively transforms

spike waveforms into digital pulses and is a complete application-specific integrated cir-

cuit, focusing on reducing power consumption and achieving a compact design. Comple-

menting these advancements, Intel has unveiled Loihi [4], a digital-based spiking accel-

erator. Loihi is unique in its integration of brain-like learning functions, blending digital

computing with neural network emulation. Tsinghua University’s Tianjic [12] is designed

to be compatible with both spiking neural networks and artificial neural networks, offering

10
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a versatile approach to neuromorphic computing. Together, these developments mark sig-

nificant milestones in neural network hardware, each contributing uniquely toward more

efficient and accurate emulation of neural processes. However, these works cannot eco-

nomically evolve the spiking neural model due to the significant SRAM or scratchpad

memory required for weight storage. To address this challenge, we employ innovative,

non-volatile computational memory. This approach accelerates synaptic operations, re-

ducing the storage bit cost and increasing processing throughput per area.

2.3 Binarizad Spiking Neural Network

In [71], SNNs are acquired by training BNNs with the methods proposed by Hubara

et al. [72]. After converting the BNNs to SNNs, simple design and run-time explorations

are employed to achieve inference latency improvements. In [73], a method for training

SNNs with binarized weights is proposed without conversion from BNN to SNN. The

role of the membrane capacitor in analog-based implementations of SNNs has been iden-

tified in [48]. The study focuses on how the non-ideal characteristics of various memory

technologies affect the size requirement of the membrane capacitor. In [46], the authors

evaluate SNNs on NOR flash computing array under input noise, relying on the inherent

noise resiliency of NNs to sustain high accuracy. The capacitor size is set to a constant

value for the LeNET-5 NN model. The study in [74] surveys the resiliency properties of

SNNs trained with various state-of-the-art algorithms and proposes an approach to train

SNNs for resiliency. Their main focus is on different types of synapses or neuron fail-

ures. The two studies in [75, 76] focus on fault analysis in hardware-implemented SNNs,

assuming similar types of failures.

The above studies focus on the reliability issues that emerge from process variation,

soft errors, and neuron and synapse faults. Methods for reducing membrane capacitor size

have not been explored, although membrane capacitor size constitutes one of the major

bottlenecks in analog SNNs, i.e., it determines energy, latency, area, and accuracy. To
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the best of our knowledge, we are the first to investigate that. In this thesis, we evalu-

ate the impact of deploying error-resilient BNNs on the analog implementation of SNN

and formally show that the membrane capacitor size and latency can be reduced signifi-

cantly compared to multi-bit models for BNNs. We then conduct extensive experiments

to support this.
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Chapter 3
Impact of Non-volatile Memory

Devices on Spiking Neural Network

3.1 Background and Motivation

3.1.1 Probabilistic Inference with Spiking Neurons

Humans have a remarkable capability to predict future events through incomplete or

unclear stimuli from the environment. Prior research has indicated that the human brain’s

cognitive and reasoning functions are akin to probabilistic inference processes [77–80].

The general form of probabilistic inference is expressed as Eq. 3.1.

σ(f) =

∫
g

σ(f |g)σ(g)dg (3.1)

The equation represents the marginal distribution of the predicted state, f, computed

by the given distribution of the observed state vector, g. The integral of the
∫
g
σ(f |g)σ(g)dg

formulates the process of the probabilistic inference, which utilizes the uncertain state of

g to predict the state distribution of f. For the recognition process, the g is the uncertain

sensory input, and the f is the distribution of the representative vector. On the other hand,

probabilistic inference can also apply to solving optimization problems. If the f and g are

both in sequential relation, i.e., g[t+1] = f[t], the discrete form of the Eq. 3.1 is also known

13



doi:10.6342/NTU202400540

as a Markov chain. The eigenvector of the Markov chain’s transition matrix represents

the converged distribution. By properly designing the transition matrix, the state with the

highest probability is considered the solution to the optimization problem. However, the

computing complexity to calculate the margin distribution is O(2N+M) where N and M

are dimensions of g and f, which is impractical for finite-time inference.

The Spiking Neural Network (SNN) embodies a brain-inspired methodology that

processes probabilistic inference via sampling, substantially reducing computational com-

plexity toO(MN).Within this brain-mimicking framework, spiking neurons engage through

spike transmission and modulate their firing rates by weighting and integrating incoming

spikes. This stochastic computing approach allows SNNs to balance computational pre-

cision with processing time effectively for image classification. The dynamic interaction

consistently drives the spiking neurons to evolve towards a one-hot vector closely related

to the input state for classification tasks and toward a state representing the optimization-

approximated solution for combinatorial problems.

3.1.2 SNN Model and IF Circuit

FF

Vth

…

…

Cmem

Iary Neuron

Synapse Array Synapses W1x1

x2

x3

x4

x5

x6

x7

xn

Reset

Figure 3.1: Implementation of Analog SNN Computation. We utilize a memory array to
implement synapses and provide input spikes to the horizontal bit-line. Summed current
is transmitted to integrated and fire (IF) neurons.
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The spiking neural model used in this thesis is a self-sustained system that does not

rely on external inputs to drive its states. It undergoes iterative updates of neural activities,

allowing the model to evolve its state over time. The overall flow of the spiking neural

model is illustrated in Fig. 3.4. In each iteration, the neural activities serve as inputs to

the SNN macro, and the output of the macro is the firing time, which is subsequently

converted into a gradient. This gradient is then used to update the neural activities for

the next iteration. The SNN macro follows the classical current-based integrated-and-

fire model, as described in references [4, 81]. The input spike is generated through a

sampling process defined by Eq. 3.2. This process involves Bernoulli sampling, where the

probability of generating an input spike is proportional to the input activity ui relative to

the maximum possible input valueMAXi{ui}, denoted as Z. These input spikes generate

currents that charge a membrane capacitor in an output neuron. Once the accumulated

charges surpass a threshold value, the output neuron fires.

The dynamics of the spiking neural network system are governed by the differential

equations presented in Eq. 3.3 to Eq. 3.5.

P (xi = 1 | t) = ui

Z
, (3.2)

vmem[t+ 1] = vmem[t] + γ
∑
i

wixqi[t]− Vthδ[t− Tfire], (3.3)

Tfire = t+ 1 if vmem[t] + γ
∑
i

wixqi[t] ≥ Vth, (3.4)

ui[s+ 1] = ui[s] + Êt∈{0,τ−1}[
∑
i

wixqi[τs+ t] ] (3.5)

Ê[
∑

xqiwi] =
∑

Ê[xqi]wi =
CmemVth

Tfire

Icell (3.6)
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The SNN system evolves the state variable of membrane voltage, Vmem, and neural

activities, ui. The fire rate of a neuron is proportional to ui. The γ is a factor that converts

the numerical inner product result into a physical variable, i.e., IcellTwidth
Cmem

.

The evolution of Vmem in Eq. 3.3 is realized by an integrate-and-fire circuit with a

synapse array as shown in Fig. 3.1. Vmem is the voltage across the membrane capaci-

tor Cmem. The input spikes charge Cmem with the voltage change ∆Vmem across Cmem,

∆Vmem = Twidth

Cmem

∑
i wixi[t]Icell, in which the w, weights, is encoded by the number of cell

in ON-state. After the neuron fires at the time at which Vmem ≥ Vth, a reset signal triggers

the discharge path, resetting Vmem to zero.

The neural activities ui (defined in Eq. 3.2, which is proportional to the input spike

probability) is also updated per time window of τ as Eq. 3.5. The value s is the number

of time windows: s = ⌈ t
τ
⌉. Because of the random process to generate input spikes, the

updated value of neural activities has deviations from the expected value of
∑

i wixi [82],

i.e., Ê[
∑

i wixi] = E[
∑

i wixi] + ξ[t], where Ê is the sample mean from the beginning of

the time window until the neuron returns a spike signal.

To prevent the ADC from sensing the current at each cycle, the Ê[
∑

i wixi] is cal-

culated when the neuron produces an output spike, i.e., at time Tfire, see Eq. 3.6. A re-

ciprocal function [83] is required to convert the spike time of a firing event to frequency.

The reciprocal can be used for multiple neurons without a bottleneck in throughput. Mul-

tiple neurons with the same firing time can share the reciprocal calculation. Moreover, the

discrete and finite firing timing enables a lookup table to alternate the reciprocal unit.

3.1.3 Precision Modulation for Image Recognition

3.1.3.1 Neural Network with Quantizated Input

The neural network models, including multiple-layer perception, convolutional neu-

ral networks, and transformers, are all constructed by layers of Perceptron. Each per-
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ceptron processes the inner product of the input and weight vectors’ inner product. The

product results are converted by the nonlinear function and transmitted to the next layer as

inputs. Recent network models are designed to be hardware-friendly without sacrificing

classification accuracy dramatically. One widely adoptedmethod quantizes the model into

low-bit precision inputs that simplify the complexity multiplication circuits [60, 84–90].

The low-precision neural model also increases noise tolerance because the inner prod-

uct result with small disturbance can be quantized into the same levels, performing as a

noise filter. The noise-tolerable margin enables the spiking neural network, the stochas-

tic computing-like process scheme, to achieve a higher inference energy efficiency and

throughput from the noise margin.

3.1.3.2 Precision Modulation

Inputs of spiking neural networks are considered random variables. Thus, the dy-

namic of the spiking neural network is a random process. The relation among computing

precision, circuit parameters, and array current is theoretically discussed based on the

stochastic system.

In Figure 3.2, the binary inputs are resampled at each time step with a length of τ. The

output current also changes at each time step. The resampling process is continued until

the neural fire. Once the neuron fires, Equation (5) can be rewritten as Equation (12) in

which the tfire is the required duration to generate an output spike. The expected value of

the sampled output current is defined as Equation (13), where E is called the observed array

current. Once T is equal to tfire, the expected value can be formulated as Equation(14)
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Figure 3.3: Definition of Constraint Satisfaction Problem (CSP). Each variable is a value
selected from a value domain. The selected values meet a constraint if the selected value
set is in the rule set. The constraint-fitted solution is a selection of values meeting all
constraints.

by combining Equation (12) and (13). The expected current of the stochastic system is

as Equation (15). Based on the above condition, the law of large numbers is formulated

as Equation (16) and Equation (17). The Nfire in Equation (16) is a required time step

number to fire the neuron where τNfire is equal to tfire. The law of large numbers shows

that the observed array current will converge to the system’s expected current if Nfire

is increased. In other words, the precision of the observed current is correlated to the

number of Nfire. Equation (18) shows the relation between circuit parameters, computing

precision, and observed array current. Nfire indexes the precision of sum-of-produce and

can be modulated by the factor of

3.1.4 Stochastic Annealing for Optimization Solver

3.1.4.1 Constraint Satisfaction Problem

The constraint satisfaction problem (CSP) is to find out the value of variables that

meet a set of objectives. All combinatorial optimization problems can be represented as

CSP [91]. A CSP is described by a tuple T (Xcsp,D,C). Xcsp = {xc1, xc2, xc3, ..., xcn} is a

set of variables, and D = {D1, D2, D3, ..., Dn} is the corresponding set of values for each
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TwidthIcell

of which the corresponding gradient is one over maximal neural activities, i.e., 1
MAXi{ui} .

The neurons that do not get to fire within τ cycles are considered not firing, i.e., Tfire = ∞.
The model then converts the Tfire to the expected gradients, i.e., Ê[

∑
xqiwi], and updates

the neural activities for the next iteration. In the meantime, the updated state is examined
to determine whether the corresponding solution meets all the rules.

variable as shown in the Fig. 3.3. We have a value selection function f selecting a value

from Di for variable xci, i.e., f : f(xci) → vi, vi ∈ Di. C = {C1, C2, C3, ..., Cm} is a set

of constrains. Ci ∈ C is a pair (Si, Ri) where S ⊆ Xcsp and Ri is a set of allowed answer

to check Si, i.e., checking {f(z)|z ∈ Si} ∈ Ri. The solution of a CSP is a selection of

values from Di for each value of xi, and the selected values meet all the constraints of C.

For example, in Sudoku, we have 81 variables in Xc since we have a 9x9 matrix.

Each valuable of D is in {N |N ≤ 9}, where N ∈ N. The constraints are: Each N occurs

only once in a row of 9 elements, once in a column of 9 elements, and once in every 3x3

sub-block. To solve the problem, the empty spaces in the grid need to be filled such that

the constraints are satisfied.

The search space grows exponentially as the number of variables increases, which

makes finding solutions a difficult challenge or outright infeasible. To get a solution to

CSPs under affordable time cost, SNNs provide a brain-inspired methodology.
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Figure 3.5: Example of Flow for Solving CSPs. The problem is converted into quadratic
unconstrained binary optimization (QUBO) form and deployed to the SNN annealer. By
evolving the state of SNN, the state vector Xq converges to the state with less loss. The
converged state (X∗

q) is converted back to the value vector (XCSP), and it is checkedwhether
all rules are met.

3.1.4.2 SNN Annealing Machine

Figure 3.6: Annealing Machines. (a) Metropolis: Check the loss of re-sampled states. (b)
Hopfield: Sample a new state from a gradient with noise. (c) SNN annealer: Converge
the probability of the SNN state to the state with a smaller loss.

The overall flow to solve the CSP is shown in Fig. 3.5. The CSP is a deterministic

problem that checks whether the provided answer of Xcsp meets all the constraints. Yet,

this format does not fit into the annealing machine.

To solve combinational optimization problems by annealing machines, the CSP is

converted into the quadratic unconstrained binary optimization (QUBO) form [92, 93].
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The QUBO describes the problem of finding an Xq ∈ Bn for a given W such that

the loss function −XT
qWXq is minimized, i.e., find X∗

q = argminXq −XT
qWXq. To apply

QUBO, the Xcsp and C in CSP need to be converted into Xq andW. Each element of xq is

a binary number that represents a selection of a possible value of Xcsp, i.e., xq[i, j] = 1 →

xcsp[i] = vj . TheW is directly derived from C, which can be achieved by the procedure

described in [92].

The time needed to ensure finding theX∗
q grows exponentially as the number of vari-

ables increases. To solve this issue, several annealing algorithms are proposed to get ac-

ceptable solutions in an affordable search time. These annealing algorithms iteratively

switch the state of Xq to approach the state with the lowest loss, considered as the solu-

tion, as in Fig. 3.6. One of the classic annealing algorithms is Metropolis [94, 95], which

switches the current state to a sampled state by the probability of their loss ratio. How-

ever, the sampling process is inefficient because the state switches to a lower loss state

only when the state is sampled. Recent works utilize the Hopfield network to accelerate

the annealing process [96–99]. Due to the gradient of the loss function, the new state

tends to have a smaller loss, which anneals more efficiently than Metropolis sampling.

However, due to the gradient-based minimization, the samples of new states are close to

old states, which not only limits the search space but also leads to local minima. As a

result, the solution quality is highly related to initial states [99, 100].

To overcome the issue of Metropolis sampling and Hopfield networks, the brain in-

spired annealing machines realized by SNNs [101–103] offer higher probability to find

rule-fitted solutions. The SNN-based annealing machine is capable of finding solutions

with a smaller loss compared to Metropolis sampling and Hopfield networks, as shown in

Fig. 3.7. Different from prior annealing machines, the SNN annealing machine does not

iteratively switch the state vector of Xq. Instead, the SNN annealing machine considers

Xq as the distribution and aims to converge the distribution to the state vector with the

smallest loss, i.e., P (Xq = argminXq{−XT
qWXq}) = 1. To achieve this, we define the

tendency matrix of A = (U1,U2, ...,Un), where Ui represents the selected potential of
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each variable for a xcsp. The Ui is a vector with the same length as the number of possible

values of xcsp. We further define Hi as a binary vector of which each element represents

the selection of a value of xcsp. The concatenation of all individualHi forms a state vector

of Xq. During the annealing process, Hi is a sampled vector following the distribution

of Ui
Z
. After the annealing process, Hi is a one-hot vector of Ui, which has corresponding

elements with maximal potential set to 1 and others to 0.

The procedure for updating the potential is described in Eq. 3.9.

∇L(X) =<
∂L
∂xq1

,
∂L
∂xq2

, ...,
∂L
∂xqn

> (3.7)

∂L
∂xqk

= −
∑
i ̸=k

xqi(wik + wki)− 2
∑

xqkwkk (3.8)

∆bfU =<
∑

xqjw1j,
∑

xqjw2j, ...,
∑

xqjwnj > (3.9)

The loss function of the QUBO is L(X) = −XT
qWXq.

Due to the symmetry of the weight matrix in QUBO, the partial derivative of Eq. 3.8

is ∂L
∂xqk

= −2
∑

xqiwik. The negative gradient is the vector pointing to the state with a

smaller loss. With the goal of converging the state distribution to the state with the smallest

loss, we update the state by ∆U = −∇L(X) as shown in Eq. 3.9.

3.1.5 Unreliability Issues in SNNs

To leverage the high parallelism from analog computing [7] and to minimize the

ADC process [8], synapse operation on NVM-memory crossbar and integrate and fire in

the analog domain is utilized. However, in analog computing, both non-ideal memory

cell current and circuit constraint of neuron circuits induce errors in applying SNN to

classification and solving optimization problems.
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3.1.5.1 Impact of Memory Cells

In this thesis, theW is represented by the conductance of memory cells. However,

when we program theW into memory cells, the practical conductance will be disturbed

by cell current variation, OFF-state leak, and temperature-induced drift. The disturbance

causes the programmedW to be not the same as the expectedW.

In the application of classification, the noise added to the weights leads to the change

of inner product result WX. The example is in Fig. 3.8(a). The error injected on the

weight changes the predicted item with the maximal inner product result that causes the

prediction error.

The noise injected into the weights also negatively impacts the quality of solving

optimization problems. To solve CSP, we convert the constraints C into aW matrix [92],

and evolve the state of SNNs to find Xq such that the loss −XT
qWXq is minimized. Once

the W is disturbed, the energy function is changed as the blue curve in Fig. 3.9(a). As

a result, the state solved from the disturbedW is not the same as the expected state. The

change will cause the solution not to meet the constraints of CSPs.

3.1.5.2 Impact of Circuit Constraints

The precision of the multiply-and-accumulation (MAC) is reduced by the restricted

size of Cmem as shown in Fig. 3.10 while processing the inner product through a spiking

neural computing scheme, which the MAC result is proportional to 1
Tfire

as Eq. 3.6. Once

the capacitance of Cmem is too small, the firing signal of the output neuron is easily miss-

triggered only by a few random spikes. As a result, the firing time exhibits significant

variation, leading to low MAC precision, and the firing time may be shorter than the

sensing time resolution. We denote such noises from the insufficient size of capacitance

as NoiseCmem.

In the application of classification, the limited size of Cmem induces the NoiseCmem
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Figure 3.8: Impact of Synapse Devices and Small Size of Membrane Capacitor on Clas-
sification. (a) The noise on weight changes the inner product result, causing classification
errors. (b) Low precision computing (through small capacitor size) causes uncertainty in
determining classification results.

Figure 3.9: Impact of Synapse Devices and Small Size ofMembrane Capacitor on Solving
Optimization Problems. (a) The energy function disturbed by cell variation causes wrong
solutions. (b) Low precision computing (through small capacitor size) causes noise in the
update of the state distribution.

on the inner-product result, causing uncertainty as shown in Fig 3.8 (b). The additional

noise also increases the hazard of inducing classification errors.

In the application of solving optimization problems. The annealing process of SNN

iteratively updates the distribution to converge the probability to the state with the least

energy. The updated probability of each iteration is vector-matrix multiplication (VMM),

the result ofWX of which the primitive operation is multiply-and-accumulation (MAC).

The noise from limited Cmem disturbs the distribution update. When the size of Cmem is

too small, the NoiseCmem will dominate the gradient, i.e., |NoiseCmem| ≫ |∇E(ϕ)| →

NoiseCmem
∼= ∆U. As a result, the annealing process is dominated by noise and causes

the distribution hardly to converge to a low energy state.
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Figure 3.10: Impact of Cmem Capacitance. MAC′

MAC
is the ratio between MAC calculated

from a spiking neuron and its expected value. One over variation of the ratio is considered
as computing precision. The capacitance reduction decays the computing precision and
becomes sensitive to limited sensing frequency, as shown in arcs of 1pF.

3.1.5.3 Overall Scope of Reliability Analysis

The prior reliability analytic work [9] has revealed the impact of random telegraph

noise (RTN) and stuck-at-faults (SAFs) on image classification. However, the relationship

between circuit constraints and memory cell characteristics is not explored. Moreover, the

prior analysis only focuses on image classification, and the reliability analysis on solving

optimization problems is not discussed. In this thesis, both circuit and cell parameters

are considered to evaluate the reliability of image classification and solving optimization

problems. The overall scope of the reliability analysis is shown in Fig.3.11. In image clas-

sification, the primitive operations of the convolution and fully connected layers, i.e., the

inner product, are implemented through the spiking processing scheme. The noise model

is built considering the circuit and memory cell current for efficient simulation, while the

memory cell is characterized by ON-state current, normalized standard deviation, and ON-

OFF ratio. Then, the model is inserted into the simulator for reliability analysis. On the

other hand, the optimization problems are transformed into QUBO form and deployed into

spiking neural network annealing matching. The noise model is also inserted to analyze

the impact of physical parameters on the success rate for solving optimization problems.
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3.2 Design Tradeoff

Increasing the capacitance of Cmem also increases computing precision. However,

the capacitance is a major bottleneck in the circuit design of IF-SNNs, as it leads to high

energy, area, and latency cost [46, 48, 104]. To analyze the impact of the capacitance,

variations, and leak currents on the success rate of CSP-solving SNNs, we derive a model

to connect the neuron circuit parameters and the precision of the analog computations.

In this section, we show how to utilize the Poisson process to assess the precision

of inner product results directly from the circuit parameters and show the validation of

the stochastic model from circuit simulations (Section 3.2.0.1). Moreover, we discuss

the impact of current variation and leakage current on the requirement of capacitance to

achieve high success rates of the CSP-solving SNNs.(Section 3.2.0.2)
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3.2.0.1 Impact of Capacitance

Reducing the capacitance reduces the precision of the MAC result. We show this

based on experimental data in Fig. 3.10. This effect can be theoretically deduced from

two ingredients: (1) The statistics of the current that is charging Cmem and (2) the model

of the SNN spiking behavior by the Poisson process [9, 48, 105].

E[Ic] =
∑

E[xqi]wiIcell (3.10)

E[Ic] ≡
Events

Tfire

∗ Charge per Event (3.11)

Events ∼ Posi(λt) (3.12)

The E[Ic] is the expected current charging Cmem. E[Ic] is equal to the weighted sum

of input spikes multiplied by the cell currents Icell. E[Ic] can also be modeled by the

Poisson process. The Poisson process describes the probability of the total number of

events occurring based on a given expected event count. In the Poisson process, λ is the

arrival rate, and t is the considered time duration. λt is the expected number of events that

occur within the considered time duration. A Poisson process function is modeled with

a certain variance σ2 = Ncp and mean µ = Ncp. We use the Poisson process to model

the random process of the spike occurrence charging membrane capacitors of neurons in

SNNs. In SNNs, λt is the expected number of spike events. The distribution of the number

of spike arrivals can then be defined in Eq. 3.12. Since the current is charge divided by

time, Eq. 3.11 holds. Now, we connect the Poisson process with the circuit parameters

of SNNs. λt can also be expressed in terms of Cmem, Vth, Twidth and Icell. CmemVth is

the charge in the capacitor at spike time, Tfire. Twidth is the duration of an input spike,

and Icell is the current of one memory cell. Based on this, the number of spike events
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λt = Ncp in Eq. 3.13 can be calculated, establishing the connection between the Poisson

process and the circuit parameters. By multiplying Eq. 3.10 by Tfire, it results in CVth,

which is inserted into Eq. 3.14. As a result, we acquire the distribution of the charging

current in Eq. 3.14.

Ncp =
CmemVth

TwidthIcell
(3.13)

∑
i

E[xqi]wi
Tfire

Twidth

∼ Posi(Ncp) (3.14)

Cmem =
TwidthIcell
(σ
µ
)2Vth

(3.15)

With the properties of the Poisson process, we can obtain the normalized standard

deviation (σ
µ
=

√
λt
λt

=

√
Ncp

Ncp
), which is N−1/2

cp in a Poisson process.

The value of Ncp in Eq. 3.13 is influenced by the parameters Cmem, Vth, and Twidth.

To decreaseNcp, we can increaseCmem and Vth or decrease Twidth. However, when the ob-

jective is to maintainNcp while using different memory devices, Cmem becomes a critical

factor. It enables scalability for a broad range of cell currents, spanning from microamps

(uA) to nanoamps (nA). Unlike Vth and Twidth, which are subject to limitations imposed

by electronic physics, the scalability of Cmem is achieved by sacrificing area. Although

enlarging the capacitance may not be cost-effective, it is a viable option.

Increasing Cmem alleviates the normalized standard deviation but increases the re-

quired energy for generating an output spike. The energy of the synapse array is defined

by Eq. 3.16. In this equation, the term
∫ Tfire

0
Icell

∑
xi(t)widt represents the charge stored

in the capacitance while the neuron fires. To establish the connection to Cmem, we substi-

tute this term with VthCmem, resulting in Eq. 3.17. This modified equation shows that the

energy required to generate an output spike is directly proportional to Cmem.
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Energy =

∫ Tfire

0

Vd Icell
∑

xi(t)widt (3.16)

Energy = Vd Vth Cmem (3.17)

In conclusion, enlargingCmem can reduce the normalized standard deviation but with

the cost of energy. The following subsection further introduces the impact of memory cell

properties on the capacitance of Cmem.

3.2.0.2 Impact of Cell Current on Cmem

The non-ideality of cell current includes the current variation and the OFF-state leak

current. Although these current properties can be controlled to some extent, they are un-

avoidable in analog computations.

3.2.0.3 Current Variation

Due to inherent variations occurring in analog computing, it is unavoidable that the

programmed weights have variations. Therefore, the currents suffer from variations as

well. To alleviate the effects of current variations, in this thesis, we propose to duplicate

memory cells.

By replicating memory cells, the normalized current distribution is narrowed [48,

106]. When we connect cells’ output into one, the expected output current grows faster

than its standard deviation. As a result, the normalized standard deviation is reduced,

which is illustrated in Fig. 3.12.

We reduce the normalized standard deviation to n−1/2 of the memory cell by copying

the conductance of a memory cell to cells sharing the same inputs. However, the cost

is that the mean current is increased by n times. The increase of Icell enlarges N
−1/2
cp

(see Eq. 3.14). To reduce the normalized standard deviation again, a larger membrane
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Figure 3.13: Implementation of the Signed Weight on a Pair of the Memory Array. The
equivalent-and-signed firing time is calculated from the firing time of two neurons.

capacitance is required.

3.2.0.4 Leak Current from IOFF

When a cell is at the OFF state, in ideal scenarios, the conductance is assumed to be

zero and, therefore, the resistance to be infinite. However, in practice, the resistance of a

non-volatile memory cell is always finite. When the input spike is provided to the neuron,

the OFF-state current contributes to the charging of the membrane capacitor. As a result,

these leak currents cause earlier firing times (compared to the ideal firing times) and,

therefore, lead to low computing precision. As can be seen in Eq. 3.18 and Eq. 3.19, we
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can acquire the firing time by dividing the total charge ofCmemVth by the expected current.

These two equations show that the Tfire will be larger than the firing time with leakage

Tfire_l when the Ileak in the denominator contributes current. The factor ofWMAX −Wi is

the number of cells in the OFF state. Thus, as can be seen in Eq. 3.20, the Ileak is positive

and increased when IOFF increases, causing earlier firing times.

The earlier firing time can cause computing errors. Due to the differential neuron pair

for the negative weight (see Fig. 3.13), the firing time can be scaled back by the factor of
Icell−IOFF

ION
, as can be seen in Eq. 3.22. The scaling factor can be deduced from setting

wi = w+
i − w−

i , and alternating the ws
i Icell into the one in Eq. 3.19. , where the sign s is

denoted by + or -.

T s
F ire =

CmemV th∑
E[xqi]ws

i Icell
(3.18)

T s
F ire_l =

CmemV th∑
E[xqi](ws

i Icell + Isleak)
(3.19)

Isleak = (wMAX − ws
i )IOFF (3.20)

∑
E[xqi]wiIcell =

CmemV th

Tfire_eq
(3.21)

Tfire_eq =
T+
fire_lT

−
fire_l

T−
fire_l − T+

fire_l

Icell − IOFF

Icell
(3.22)

Although the impact of IOFF can be eliminated, the leak current effectively con-

tributes charges to Cmem. These charges from leak current occupy charge capacity of

CmemVth, and the remaining capacity available for operation is decreased. We get the ef-

fective capacitor size Cmem_eff from Cmem minus the occupied capacitance in Eq. 3.23.
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Cmem_eff (Tfire) = Cmem −
∑

E[xqi]IleakTfire

Vth

(3.23)

The Cmem_eff is decreased by increasing of Ileak. Moreover, the reduction of Cmem

for operation reduces the charge capacity available for operation and causes low comput-

ing precision as shown in Eq. 3.13 and Eq. 3.14. As a result, an increase of Ileak induces

a reduction of Cmem_eff , and a larger Cmem is required to preserve computing precision.

3.3 Reliability Evaluation for Image Classification

3.3.1 Evaluation Setup

3.3.1.1 Simulation Framework

To simulate the effect of cell current characteristics on the requirement of circuit cost,

the simulation framework is built to evaluate classification accuracy under circuit parame-

ters. The simulation framework architecture is shown in Fig. 3.14. A convolutional neural

model is provided to the Inference Engine. The engine utilizes the SNN Simulation Ker-

nel to decompose both convolutional layers and fully-connected layers in convolutional

neural network (CNN) into vector-matrix multiplication (VMM) and deploys these VMM

operations into the SNN macro of Fig. 3.1. To explore the effects of cell current charac-

teristics on classification accuracy, the Noise Injector adds noise to weights based on cell

current distributions of collected memory technologies. Finally, the SNN dynamic model

of Eq. 3.3 is provided to the SNN Simulation Kernel to evaluate spiking neural dynamics.

In this thesis, the size of a memory crossbar is set to 128x128. The current transporter gain

pf κ is 0.01. The widely used workload of 4-bit CNN7 on the CIFAR10 dataset shown in

Fig. 3.15 is adopted to analyze the effect of cell current characteristics on classification

accuracy.
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1T-NOR [46] WOx [108] HfOx [109]
ON-OFF Ratio >1000 40 >1000

Vd, Vg 1.5V, 5V 0.6V,- 0.2V,-
ON State Current (ION ) 10uA 30uA 130uA

σ/ION < 5% < 5% <30%
Accuracy (0.1pF,1pF,10pF) 10%,90%,91% 10%,10%,91% 10%,80%,83%

2T-NOR [110] FeFET-Low [111] FeFET-Normal [111] FeFET-High [111]
>1000 40 570 >1000
0.2V,0 0.2V, 0.6V 0.2V, 0.6V 0.2V, 0.6V
1.5uA 6uA 10uA 10uA
5% 30% 15% 7%

91%,91%,91% 10%,10%,79% 10%,87%,88% 10%,89%,91%

Table 3.1: Summary of Cell Characteristic for Accuracy Evaluations. The evaluations are
under the condition of membrane capacitors of 0.1 pF, 1 pF, and 10 pF.

…

SNN_CNN

SNN_FC

VMM Form

Assign to Crossbar

(a) SNN Simulation Kernel

Inject Noise

SNN Dynamic 

Model

(b)

Memory Cell 

Parameters

Noise Injector

SNN Dynamic 

Model

SNN Simulation Kernel

Inference Engine

Figure 3.14: Overview of Simulation Framework

3.3.1.2 Collection of Various Technologies

To analyze how cell current characteristics affect classification under limited cir-

cuit cost using existing memory techniques, various non-volatile memory technologies

are collected for simulation. The memory properties, including cell current character-

istics, operation conditions, and classification accuracies under different sizes of mem-

brane capacitors, are listed in Table 3.1. These collected technologies include NOR flash,

WOx ReRAM, HfOx ReRAM, 2TNOR, and FeFET. The cell characteristics of the WOx

ReRAM are based on [107], which shows WOx ReRAM has a small ON-OFF ratio but

with a tight distribution.
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Figure 3.15: The CNN Model of VGG7. “CN ”means a convolutional layer with N
output channels,“MPN”represents the max-pooling of N by N, and ”FC10” means a
fully-connected layer with the output node number of 10.
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Figure 3.16: Current Distribution and Vg-Id Curves of 2T NOR.

Conversely, HfOx in [108] has a large ON-OFF ratio but with a large normalized

standard deviation (σ/Ion). NOR flash technologies are also selected. The 2T-NOR [110],

different from general 1T-NOR [46], has an additional selecting transistor beside a flash

cell. The cell current can be trimmed by selecting the transistor without operating flash

cells on the near-threshold region with large noises. Thus, 2T-NOR can get a small current

without large noises, as in Fig. 3.15. Furthermore, three design scenarios of FeFET [111]

are included: high, normal, low remnant polarization and coercive field (PR & EC) rep-

resenting the boundary conditions in the P-V loop of FE caused by process variation.

The high PR & EC FeFET results in a larger memory window but with higher Vt varia-

tion than the other two FeFETs. The FeFET current distribution and statistics of Vt from

TCAD simulations are shown in Fig. 3.17 (after careful calibration with measurement data

for both the underlying 14nm FinFET device and the upper FE layer included in the gate

stack [111]).
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Figure 3.17: Current Distributions and Vg-Id Curves of FeFET. Three design scenarios of
FeFET with high, normal, and low remnant polarization and coercive field (PR & EC) are
included in the accuracy evaluation.
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Low Normal High
μ of Low Vt 0.266 0.138 -0.028
σ of Low Vt 0.01 0.017 0.026
μ of High Vt 0.629 0.732 0.874
σ of High Vt 0.011 0.017 0.029

Capacity (Δμ/∑σ) 17.3 17.5 16.4
Table 3.2: FeFET Parameters of Design Schemes

3.3.2 Experiment Result

3.3.2.1 ON-OFF Ratio

The ideal OFF-state current is 0. However, the value of resistance hardly reset

to infinite. The effect of these OFF-state currents should be considered. As shown in

Fig. 3.18(a), the red bars are the accuracies dropped by the finite ON-OFF ratio of cell

currents. The reason for the accuracy loss is that the accumulation of these OFF-state cur-

rents shifts output current while the shifting current from OFF-state cells is expected to be

0. A method to eliminate the effect of OFF-state current is inspired from [112]. Thanks

to encoding weight by differential pair, the effect of OFF-state current can be eliminated

by rescaling the parameter of β in Eq. 3.24.

ΣE[Xi]Wi = αβ′CmemVth/tfire/κ (3.24)

β′ = β
ION

ION − IOFF

(3.25)

The accuracy after calibration is as shown in blue bars in Fig. 3.18 where the ac-

curacies of low ON-OFF ratio are recovered. However, these OFF-state currents still

contribute currents to array output currents. As the conclusion of Eq. 3.14, the increas-

ing array current will reduce the precision of the computing result. The simulation result

shows that both FeFET-Low in Fig. 3.19(a) and WOx ReRAM in Fig. 3.19(b) with the
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Figure 3.18: Accuracy Evaluation Considering OFF-state Current(a) Accuracy with and
without OFF-current calibration without membrane capacitor size constraints. (b) Re-
quirement of membrane capacitor for memory technologies with ON-OFF ratio >1000
including NOR Flash memory, HfOx ReRAM, and FeFET-High. When the ON-OFF ra-
tio exceeds 1000, the accuracy is equivalent to zero OFF current.

ON-OFF ratio of 40 require 10x the size of the membrane capacitor to preserve the accu-

racy compared to the case of no OFF-state current. On the contrary, the requirement of

membrane capacitors for memory technologies with an ON-OFF ratio >1000 is the same

as OFF-current free, as shown in Fig. 3.19(b).

3.3.2.2 ON-state Current

Memory cells with large ON current also require a large size of the membrane ca-

pacitor. The large cell currents charge the membrane capacitor easily, and the large mem-

brane capacitor is required to prevent neuron firing by few input spikes. As shown in

Eq. 3.14, the large size of the cell current directly decreases the number of Ncp, which

reduces output precision. The theoretical conclusion is also shown in Fig. 3.20(a) that

the required size of the membrane capacitor is proportional to the size of the ON-state
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Figure 3.20: Effects of ON-state Current and Variation. (a) Requirement of membrane
capacitor size for various memory technologies without considering ON-OFF ratio. (b)
Accuracy loss from normalized standard deviation without duplication of weights. (c)
Duplication of weights increases accuracy, but a larger membrane capacitor is required.
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Figure 3.21: Current Replication Eases Current Variation. (a) Current distributions accu-
mulated from 120, 125, 130, 135 FeFET-Normal cells and (b) Those distributions with
four copies of duplicating weight arrays.

current. ReRAM HfOx [109] enlarges the ON-OFF ratio by increasing ON-state current

to 130uA. The required size of a membrane capacitor is up to 10pF, which is ten times

larger than the required size of a 1T-NOR flash. Moreover, both FeFET and 1T-NOR

Flash are designed for low-latency and error-free reading. Thus, the output currents are

not well trimmed for spiking neuron purposes. With the ON-state current up to 10uA, 1pF

of membrane capacitor is still required. Although the design scenario of Low RP&EC

FeFET reduces ON-state current, the normalized standard deviation is increased, limiting

the classification accuracy as Fig. 3.20(b). On the contrary, the 2T-NOR trims its current

down to 1.5uA with a controllable current variation. The required size of the membrane

capacitor 2T-NOR is only one-tenth of the size of 1T-NOR Flash.

3.3.2.3 Normalized Standard Deviation

Normalized standard deviation is an index of noise-to-signal ratio and is defined as

σ/ION. To purely analyze the accuracy loss from the normalized standard deviation, the

membrane capacitor is enlarged for those technologies with large ON-state current and

small ON-OFF ratio. Fig. 3.20(b) shows that the accuracy drops while the normalized
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standard deviation of the cell current is >10. The effect of normalized standard deviation

can be alleviated by duplication of weights by combining output currents as in Fig. 3.21.

With duplication, the growth of signal (window) is faster than noise (standard deviation)

as described as Eq. 3.26 and 3.27.

E[ΣnUi] = n(E[Ui]− E[Vi]) (3.26)

DEV (ΣnUi − ΣnVi) =
√
nDEV (Ui − Vi) (3.27)

The U and V are two random variables of sum-of-product results, and the ∑nUi and ∑nVi

are the output current from the weights duplicated by n times. The simulation result of

Fig.3.21 shows that the duplication of weights can reduce overlapping areas of output

current distribution. However, the output current is also increased by weight duplication.

Based on the conclusion of Eq.3.14, the duplication methodology increases output current

and requires a large membrane capacitor to preserve classification. In other words, the

duplication of weight can alleviate the effect of cell current variation, but the cost is to

enlarge the membrane capacitor, increasing computing energy. Taking FeFET-Normal

Low as an example, the normalized standard deviation of a single cell is up to 30%, and

the accuracy drops to 80%without weight duplication as in Fig. 3.20(b). After duplication

of weights by 4x, the maxima accuracy can be recovered to 87%, but four times the size

of the membrane capacitor is required as in Fig. 3.20(c).

3.3.3 Discussion

The non-volatile memory specifications for storage are not the same as those for spik-

ing neural networks. For storage purposes, both high ON-OFF and cell capacity, indexed

by signal-to-noise ratio as shown in Table 3.2, are considered to reduce sensing latency and

raw bit error rate. The memory technologies designed for SNN place greater emphasis on

ON-state cell current and normalized standard deviation. ReRAM HfOx has a high ON-
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OFF ratio, but its large current requires a large membrane capacitor to preserve precision.

On the other hand, FeFET-Normal is with higher capacity than FeFET-High, as shown in

Table 3.2, but two times of membrane capacitor is required as shown in Fig. 3.20(c). The

reason the storage capacity of vt is not a feasible index for a spiking neuron network is

that the spiking neural network evaluates its dynamic by charging the membrane capaci-

tor with cell currents directly without filtering current noise, while the conventional read

operation is to compare vt with reference voltage regardless noisy current beyond refer-

ence current. Moreover, high precision is not enough to minimize the requirement of a

membrane capacitor. The ON-OFF ratio also needs to be considered at the same time. For

example, ReRAM WOx with low normalized standard deviation still has low classifica-

tion accuracy under 1 pF of membrane capacitor because of its low ON-OFF ratio. Ten

times of themembrane capacitor is required to reach the classification accuracy of ReRAM

WOx without IOFF current. Transistor-based memory technologies are good candidates

because of their high ON-OFF ratio and low standard deviation. However, the memory

cell currents must be tuned to small without increasing current variation. The 2T-NOR de-

vice is an example that meets the requirement. The cell current of 2T-NOR is trimmed by

an additional selecting transistor beside the NOR flash cell, which the variation is more

easily controlled by the process than the NOR-Flash cell. In this case, 2T-NOR can be

trimmed to a small current with a controllable current variation. However, the 2T-NOR

costs more than conventional flash-based memory cells. FeFET is a candidate that can

be trimmed to a small current and ease the current variation with the proper setting of

operating conditions.
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3.4 Reliability Evaluation for Annealing Purpose

3.4.1 Evaluation Setup

3.4.1.1 Collection of CSP Models

The CSPs for SNN annealer include a 2D-square-lattice Ising Model, Sudoku, and

Traveling Salesman Problem (TSP) as listed in Table 3.3. These CSPs have been used in

previous works [101, 102]. The metric for reliability analysis is the success rate of the

solution of the SNN annealer meeting the constraints.

The 2D-square-lattice Ising model depicts a spin class system. Each spin is coupled

with its neighbor’s spins. The coupling of J represents the interaction between spins.

Jij(Vj) is the coupled state of spin i given the state of spin j. The rule is to check whether

the expected state from neighbor spins is the same as the current state of the spin i. The

weight of Jji is 1 for positive interaction, -1 for negative interaction, and 0 otherwise. The

size of the 2D lattice square is 64x64.

Sudoku is a puzzle game in which the numbers in a 9x9 matrix meet the following

constraint: Each number only occurs once in the same column, row, and 3x3 submatrix.

The weights are 1 when they represent the relationship between different numbers in the

same column, row, and 3x3 block. Negative weights represent the relationship between

the same numbers (under the same setting).

The TSP is one of the most famous CSPs. A salesman visits all cities on a map where

the traveling distance is smaller than a given criterion of K, and each city can only be

visited once. The TSP is based on data of Berlin52 from TSPLIB95 [113] with 52 cities.

We convert the TSP into the QUBO form by using the method in [101], as described

in Sec. 3.1.4.2. In the TSP problem, the distances are normalized by 0.5x the maximal

distance and quantized to 4 bits. The weights representing the selection of multiple cities

at the same time or the re-selection of the same city are set to the negative average distance
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between a certain city and its neighbors. Otherwise, the weights representing the selection

that meets the constraints are set to 15 minus distance.

3.4.1.2 SNN Model Setup

The dynamic process of IF circuits is approximated by the modified Poisson process

(MPP), as shown in Eq. 3.28. By the MPP, the term E[
∑

i wixi ] in Eq. 3.5 is sampled

from aGaussian distribution, where only positive y is sampled. The Poisson process can be

closely approximated by a Gaussian distribution, which we employ for efficient sampling

on GPUs. We deduce the MPP from Eq. 3.2, 3.14, 3.21.

∑
E[xqi]wi =

CmemVth

⌈NcpZ

y
⌉Twidth

,

where y ∼ G(xact,
Kcxact√

Ncp

)

(3.28)

The xact is a MAC value, i.e.,
∑

uiwi. Kc is the fitness constant set to 1.6. The com-

parison of MAC results generated from a dynamical process and a Poisson-like sampling

is shown in Fig. 3.22. The selection of proper temporal resolution is important to pro-

vide efficient simulation while preserving accurate reliability analysis. In the stochastic

model, the temporal resolution is delineated by the pulse width of the input spike. The

specific voltage waveform present during this pulse does not affect the neuron’s firing

cycle. Rather, the emphasis is on the total charge accumulated over the entire duration

of the pulse width. Therefore, a detailed representation of the waveform within the pulse

width is not essential for the simulation. The comparison shows that the sampling process

meets the trend of results from evolving the dynamic system.

Moreover, in order to illustrate that the success rate of solving the CSP is constrained

by the capacitor size, we investigate the impact of varying capacitance sizes. We use

capacitor sizes ranging from sizes that preserve the success rate to sizes that lead to solving

failures.
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Figure 3.22: Comparison of Cycle Level Simulation and SNNBehavior Model. The cycle
level simulation is the process of sampling input spikes and converting the output firing
time into MAC value cycle by cycle. The SNN behavior model directly samples the MAC
result through its expected value. The SNN behavior model fits the average and standard
deviation from the cycle-level simulation.

3.4.1.3 Energy Model Setup

The energy model of the SNN hardware is based on [114]. Its energy consumption

comprises the analog spike process and the algorithmic circuit at the 65 nm technology

node. The algorithmic part is independent of the memory devices. We select a time win-

dow, τ , to 800 cycles per iteration for our energy evaluation. The energy of the analog

spike process considers the current mirror. Thus, the energy of the spike process is two

times the energy in Eq. 3.17.

3.4.1.4 Collection of Memory Devices

We collect device data from four types of memory technologies, including resistive

memory (ReRAM) with WOx and HfOx and field-effect transistor (FET) based memory
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with 2T-NOR Flash and FeFET. The memory device parameters are shown in Table 3.4

and 3.5. The HfOx-based ReRAM includes two architectures: Pt/HfOx/Ti/Al and TiN/

HfO2/Ti/TiN. They have different ON-OFF ratios. The 2T-NOR device is NOR Flash

memory with one additional selection transistor, which optionally can reduce the cell cur-

rent variation.

We use three design settings of the FeFET device, with low, normal, and high pro-

gramming voltage [111, 115].

We collect temperature models for each memory (except RRAM with Pt/HfOx/Ti/

Al). We also build up the current drift model ofWOxReRAM, TiN/HfO2/Ti/Tin ReRAM,

2T-NOR, and FeFET for a temperature range from 273K to 358K as seen in Fig. 3.23.

Table 3.3: Constraint Satisfaction Problems

Ising Sudoku TSP

Variables States in 2D
latice-square

Values in
9x9 matrix

Selected city
at each time

Value
Domain [up,down] [1 to 9] Set of City

Subset of t {(xi, xj)|
si, sj binded}

{(x1, ..., x9)|
x in same col,
same row, or

same 3x3 block}

{(x1, ..., x9)|∀X}

Rules (Vi,Vj) = tk
Vi = Jij(Vj)

∀(Vi, Vj) ⊂ tk
Vi ̸= Vj

∀(Vi, Vj) ⊂ ti
Vi ̸= Vj∧

Distance ≤ K

Table 3.4: Parameters of Resistive Memory Technologies

WOx [108] Pt/HfOx/Ti/Al [109] TiN/HfO2/Ti/TiN [116]
ION (uA) 10.4 179 53.0
ION/IOFF 21.6 > 1000 3.6

σ/u 0.036 0.3 -

Table 3.5: Parameters of Transistor-based Memory Technologies

2T-NOR [117] FeFET [111, 115]
Low Normal High

ION 0.146 6.00 10.0 10.0
ION/IOFF > 1000 40 570 > 1000

σ/u 0.01 0.3 0.15 0.075
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Figure 3.23: Temperature-induced Drift Curve of 2T NOR Flash, WOx, TiN/HfOx/Ti/
TiN, and FeFET.
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Figure 3.24: Impact of Cell Current Variation on Success Rate. The normalized standard
deviation > 5% and > 15% decays the success rate of solving Sudoku and TSP, respec-
tively. The process of solving the Ising model tolerates all the cell variation.
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Figure 3.25: Impact on the Requirement of Membrane Capacitance for Different Repli-
cation of Memory Cells. Increasing the number of replications increases the success rate,
but a higher capacitance is required.

3.4.2 Experiment Result

3.4.2.1 Impact of Current Variation

The simulation results in Fig. 3.24 show the impact of current variation, where the

OFF-state leakage current is set to zero. The application of the Ising model can tolerate the

cell normalized standard deviation up to 50%. Due to the high tolerance, all the memory

technologies can preserve the success rate.

On the contrary, solving Sudoku requires a normalized standard deviation <5% to

sustain the success rate, such as WOx ReRAM and 2T-NOR. The success rate drops to

80% when the normalized standard deviation increases to 7% as FeFET-High. It fails to

solve the Sudoku while the normalized standard deviation is more than 25%. The success

rate of solving TSP is preserved until the normalized standard deviation increases to 15%.

Thus, memory devices such asWOx, 2T-NOR, FeFET-Low, and FeFET-Normal with nor-

malized standard deviation <10% can apply to solve TSP with an ignorable success rate

drop. On the contrary, FeFET-Low and Pt/HfOx/Ti/Al ReRAM, with a normalized stan-

dard deviation of around 30%, dramatically drop the success rate.
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Figure 3.26: Id-Vg curve of FeFET Devices with Low, Normal, and High Programming
Voltage.

FeFET-Normal and FeFET-Low operate in the sub-saturation region with large vari-

ation, as shown in Fig. 3.26. On the other hand, FeFET-High operates in the saturation

region, and the current variation is reduced to <5%.

WOx ReRAM and 2T-NOR also have a normalized standard deviation of < 5%.

The WOx ReRAM can separate the currents into eight non-overlapping levels, while the

2T-NOR eases current variation by a selection transistor, which represses the normalized

standard deviation. Among all the simulations in Fig. 3.24, we observe that the cell nor-

malized current variation needs to be smaller than 5% to achieve success rates without

significant drops.

3.4.2.2 Cost of Calibrating Current Variation

Fig. 3.25 shows the requirement of the membrane capacitance for different numbers

of replication. Because the Ising model can tolerate the current variation of all memory

technologies without any drop in the success rate, we only show the results for TSP and

Sudoku. In the simulation, the leak current is set to zero. The memory technique of 2T-

NOR, WOx, and FeFET-High with normalized standard deviation < 10% hold success

rates of > 80% without replication of memory cells for solving both TSP(K<12750) and

Sudoku. The FeFET-Normal with normalized standard deviation< 15% can also perform
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with a success rate of 90% for the application of TSP (K<12750) without any replica, and

it only requires 1pF of capacitance. However, its success rate of solving Sudoku is< 62%.

With weight cells replicated by 16, the success rate increases to 96%, but the capacitance

requirement is 10pF , which is 10 times the requirement of no replication. Both memory

techniques, Pt/HfOx/Ti/Al and FeFET-Low, have success rates < 65% without replica.

To increase the success rate of solving Sudoku, cells are replicated 16 times to reduce the

normalized standard deviation to 8%. As a result, the success rate rises to 80%, but the

required capacitance is 100pF and 1nF for FeFET-Low and Pt/HfOx/Ti/Al, respectively.

Those required capacitance sizes are >10 times the required capacitance of no replica.

These simulation results show the trend that those memory technologies with a nor-

malized standard deviation of> 30% limit the success rate. They require more replicas to

increase the success rate, but they also require a sufficient size of membrane capacitance.

Due to the law of large numbers, the replication can reduce the normalized stan-

dard deviation. However, this is always at the cost of higher capacitance, described in

Eq. 3.14. The replication increases the cell currents flowing into the membrane capacitor,

which reduces the precision of the MAC result. Consequently, the capacitance needs to

be increased to reduce the precision loss from duplicated cell currents. If we consider the

limitation of the membrane capacitor, the cell currents need to have a small normalized

standard deviation to preserve the success rate. 2T-NOR, WOx, and FeFET-High having

normalized standard deviations of < 7% are required for solving CSP with high success

rates.

3.4.2.3 Impact of Leak Current

The impact of the leak current is shown in Fig. 3.27. In this simulation, the memory

cell is replicated to reduce the normalized standard deviation of < 15% and of < 5% for

TSP and Sudoku, respectively. Moreover, a set of membrane capacitances is chosen to

make Ncp equal to 5, 50, 500, or 5000. The success rate when considering the OFF-state

leakage current of 2T-NOR, FeFET-High, and Pt/HfOx/Ti/Al is similar to the success
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rate without leak current. In the case of Ncp = 50, the success rate of the three memory

technologies with ON-OFF ratio > 1000 reach success rates of > 60%. FeFET Normal

with ON-OFF ratio = 570 requires Ncp of 500 to prevent success rate drop while solving

TSP. Moreover, FeFET-Low and WOx with ON-OFF ratio < 100 fail to solve TSP and

Sudoku even though the Ncp is increased to 500.

The normalized standard deviation of the MAC result is proportional to N
−1/2
cp as

shown in Eq. 3.14. The leak current causes the reduction of effective capacitance as de-

scribed in Eq. 3.23. The reduction of effective capacitance reduces Ncp and causes an

increase in normalized standard deviation. We observe that the effect of leakage current

can be neglected when the ON-OFF ratio > 1000. On the contrary, the leakages of those

memory technologies with the ON-OFF ratio of < 100 decay the Ncp dramatically. Con-

sequently, the normalized standard deviation increases when Ncp is reduced, which drops

the success rate. The simulation results show that more than 100x of Ncp is required to

preserve the success rate compared to the case with no leakage current when the ON-OFF

ratio < 100.

3.4.2.4 Impact of Temperature

We select the size of the membrane capacitance such that the success rate is> 80% at

the temperature of 300K. The impact of temperature from 273K to 358K for each memory

technology is shown in Fig. 3.28. For both memory technologies, WOx and FeFET,

the success rate drops dramatically with an increased temperature of > 338K. For 2T-

NOR devices, the success rate stays above 60% while solving the Ising model and TSP.

However, it fails to solve Sudoku when the temperature increases above 338K.

The TiN/HfO2/Ti/TiN devices can reach a success rate of> 66% for all the problems

except the TSP at 358K. The memory technologies WOx and FeFET-High both drop the

success rate and the ON-OFF ratio with increasing temperature, as shown in Fig. 3.29.

In Fig. 3.27, the ON-OFF ratio< 1000 requires sufficient capacitance to preserve the
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Figure 3.27: Impact of OFF-state Leakage on the Requirement of Cmem. The capacitance
is selected such that NCP = [5,50,500,5000]. The impact of OFF-state leakage can be
neglected in Pt/HfOx/Ti/Al, FeFET-High, and 2T NOR Flash with an ON-OFF ratio >
1000.

success rate. However, when the temperature increases from 300K to 338K, the ON-OFF

ratio of FeFET-High drops from 1.6k to 90. In selecting the required capacitance for 300K,

the capacitance is not enough for 338K, and the success rate drops dramatically. Similar

phenomena can also be observed for WOx. With the temperature rising from 300K to

338K, the ON-OFF ratio drops from 22 to 13, which in turn drops the success rate from

80% to 60%. On the contrary, in the case of 2T-NOR Flash with an ON-OFF ratio above

105, OFF-state leakage is insignificant. The success rate reaches above 80% even though

the ON-OFF ratio of 273K drops to 0.5 times of 300K. Moreover, TiN/HfOx/Ti/TiN with

an ON-OFF ratio changing smaller than 17% with temperature < 338K preserves the

success rate > 76%.

The ON-state current drift also decreases the success rate. The ON-state current of

2T-NOR increases dramatically, as shown in Fig. 3.23. The ON-state current of 338K and
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358K increases to 2x and 3x compared to the current at 300K. The increased Icell induces

low computing precision as shown in Eq. 3.14, and causes 20% reduction of the success

rate compared to 300K.

Based on the observation that both the reduction of ON-OFF ratio under ON-OFF

ratio < 1000 and ON-state current drift decay the succeed rate of solving TSP, we design

aRobust Index to indicate the reliability under different temperatures, shown in Eq. 3.29.

Robust Index(T ) =

R(T )
R(300)

− 1

R(T )
1000

+ 1
+ log(

√
ION(300)

ION(T )
) (3.29)

R(T ) =
ION(T )

IOFF (T )
(3.30)

The Robust Index is calculated using three components: R(T )
R(300)

, R(T )
1000

, and ION (300)
ION (T )

.

If the ON-OFF ratio of a certain T is smaller than the default temperature of 300K, the

value R(T )
R(300)

− 1 becomes negative. However, this term can be decreased by R(T )
1000

+ 1.

When the ON-OFF ratio of T and R(T ) is ≫ 1000, the term of ( R(T )
R(300)

− 1) / (R(T )
1000

+ 1)

converges to 0. Another factor is precision loss from increased cell current. Because the

normalized standard deviation is increased by
√
Icell as shown in Eq. 3.14, we utilize the√

ION (300)
ION (T )

, representing the computing precision. The cell current at the temperature of

T is larger than the current at the default T , i.e., 300K, which increases the normalized

standard deviation, and the term of ION (300)
ION (T )

< 1 which is negative after application of the

logarithm. The Robust Index of each memory technology under different temperature

states and their predicative are shown in Fig. 3.29. The result shows that when the

Robust Index has a score > 0, success rates of 80% are achieved. The result also shows

that the Robust Index score < -0.14 indicates a success rate drop to < 76%.

Among all results, the memory cell with a large ON-OFF ratio can tolerate the ON-

OFF ratio drop caused by temperature changes. A stable ON-state current is also required

to preserve the success rate. A temperature that can be tolerated satisfies the condition

Robust Index(T ) > 0. 2T-NOR provides a high ON-OFF ratio from 273K to 358K, but
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Figure 3.28: Impact of Temperature on the Success Rate of Ising, Sudoku, and TSP. WOx
and FeFET-High have success rate drops as temperature increases, while 2R-NOR and
TiN/HfO2/Ti/TiN are not affected much.
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Figure 3.29: ON-OFF Ratio and Robust Index for Each Memory Technology and Tem-
perature. The ON-OFF ratio reduction drops the robust index of WOx and FeFET-High,
while the cell current drift drops the index of 2T-NOR.

the drift of the ON-state current drops the success rate. For WOx and FeFET, the success

rate drops when the ON-OFF ratio dramatically drops below 1000. The TiN/HfO2/Ti/TiN

provides a stable ON-OFF ratio and ON-state current, but its low ON-OFF ratio requires

large capacitance inducing high energy costs. We conclude that the memory technologies

examined here cannot tolerate temperature changes under reasonable capacitor size.

We select the size of membrane capacitance to maintain a success rate of over 80%

for each memory device, and the comparison of their energy consumption is shown in

Fig. 3.31. The results indicate that the energy consumption from processing input spikes

through 2T-NOR, FeFET-Normal, and FeFET-High synapses array with IF neural circuit

are less than 5% of the energy consumed by the algorithmic circuit. The energy con-
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Figure 3.30: Predictability of Robust Index for Each Problem. The robust index score’s
positive value can sustain the success rate while the index score< −0.2 drops the success
rate to ≤ 0.6.

sumption of WOx and FeFET-Low is comparable to that of the algorithmic circuit. The

energy consumption of the TiN/HfO2/Ti/TiN synapse array dominates the overall energy

consumption. The 2T-NOR and FeFET-High devices exhibit tolerable current noise and

ON-OFF ratios > 1000, resulting in lower requirements for membrane capacitance and

less energy consumption than others. The FeFET-Normal, with a finite ON-OFF ratio,

requires twice the membrane capacitance than FeFET-High despite having a similar ON-

state current. Additionally, for the application of solving Sudoku, four times replication

is required to mitigate the impact of current variation compared to solving the Traveling

Salesman Problem (TSP) when using FeFET-Normal and Pt/HfOx/Ti/Al as the synapse

device. Consequently, the energy consumption required to solve Sudoku is four times

higher than that for solving TSP. WOx and FeFET-Low, with an ON-OFF ratio smaller

than 100, dramatically increase the requirement for membrane capacitance, which is fifty

times larger than FeFET-Normal. The TiN/HfO2/Ti/TiN, with an ON-OFF ratio of less

than 5, also significantly increases the size requirement of the membrane capacitance. As

a result, the energy consumption of the synapse array and integrate-and-fire neuron domi-

nate the overall energy consumption. In conclusion, the results demonstrate that replicat-

ing memory cells increases the required energy to solve the problem linearly. However,

a finite ON-OFF ratio leads to a dramatic increase in energy requirements. An ON-OFF
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Figure 3.31: Energy Consumption of an SNNMacro per Iteration. The y-axis is the energy
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ratio > 1000 is recommended to minimize energy costs from leakage current. Devices

with tolerable noise can prevent additional energy losses.
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Chapter 4
A Neuromorphic

Spiking Signal Processor with
Advanced Memory Technology

4.1 Background

4.1.1 SNN Annealing Machine

The optimization problems are transformed into a loss function, and the annealing

machine, or Ising machine, is a device to find the state of the variables to make the output

of the function approach to the minimal loss score [47, 118, 119]. The SNN annealing

machine leverages the spiking neural network’s embedded stochastic behavior and con-

vergence characteristic to find the optimization-approaching solution for NP-hard opti-

mization problems [47]. The following sections will introduce the dynamical system of

a spiking neural network, the formulation of an optimization problem, and how to utilize

the spiking neural model to solve the optimization problem.

4.1.1.1 Recurrent-structured SNN

The recurrent-structured SNN is constructed by spiking neurons connected by the

closed-loop network topology. This structure creates a dynamical system in which the
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neural activity of each neuron is iteratively updated following the rule that mimics neuron

cells [120–125]. The neural stochastic dynamics is described as eq. (4.1) to (4.5).

V ch
j [t+ 1] = V ch

j [t] + ΣiXi[t]W
ch
i,j − Vthδ[1− Ech

j [t]] (4.1)

Ech
j [t+ 1] =


1, if V ch

j [t] + ΣiXi[t]W
ch
i,j ≥ Vth

0, if V ch
j [t] + ΣiXi[t]W

ch
i,j < Vth

(4.2)

∆Pj[t] = ηδ[1− Ee
j [t]]− ηδ[1− Eh

j [t]] (4.3)

Pj[t+ 1] = Rec.(Pj[t] + ∆Pj[n]) (4.4)

Xj[t] ∼ Bernoulli(Pj[t]) (4.5)

Each neuron-j contains the internal variable of membrane voltage (V ch
j ), which con-

tains the channel of excitation (V e
j ) and inhibition (V h

j ). These membrane voltages are

charged by the current of ΣiXi[t]W
ch
i,j , which is the sum of weighted input spikes. The

ΣiXi[t]W
s
i,j is known as a synapse operation that can be interpreted as vector-matrix mul-

tiplication with binary input. Once the membrane voltage exceeds the threshold voltage,

Vth, the membrane voltage resets to 0 and updates the neural activities, Pj , of the neuron-j.

The excitation and the inhibition of the neural activities are based on the channel of the

membrane voltage as eq. (4.4) in which the Rec. is the rectifier unit to ensure the updated

neural activities are normalized between 0 and 1. At each cycle, the spike rates of the

neuron-j transmitted to others are based on the neural activities as eq. (4.5). The network

structure is a direct graph in which the connection strength from neuron-i to neuron-j is

represented by W s
i,j . The network to solve the optimization problem is recurrent struc-

ture [126–129]. This recurrence implies that the future input spikes of a neuron depend on
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its present state. Evolving neural states without using up-to-date neurons will negatively

impact solving optimization problems as introduced in Sec. 4.2.1.2.

4.1.1.2 Formulation of Optimization Problems

The optimization problems involve finding the state vector X that minimizes the

loss function. The general form for most of the optimization problems is formulated as

Loss(X) = αXTWsX + βXTS + γ|X|1 whereWs and S are related to the applications.

One example is the combination optimization problem, which aims to find variable options

that satisfy specific rules. These problems can be formulated as quadratic unconstrained

binary optimization (QUBO) [130–132], where the objective is to find X that minimizes

−XTWsX, with Ws encodes the relation of state variables in the X. Another example

is LASSO, a common linear programming problem that seeks a sparse representation X

using a dictionaryWdict such thatWdictX approximates a given sample Y. The objective

of LASSO [4, 133–136] is to find X that minimizes XTWT
dictWdictX− 2XTWdictY+ |X|1

that also meets the quadratic form the Loss function.

4.1.1.3 Solve Optimization Problem by SNN

The SNNannealer processes the flow of sampling eq. (4.5), calculate gradients eq. (4.1),

and update states eq. (4.2) and eq. (4.4). This process drives the spiking neuron to the

state with less loss. The spike generation units sample the state of X from the latent vari-

able of P. The spiking neuron then calculates and integrates the minus gradient of the

loss function, -∇XLoss(X) = −αWsX − βS − γsign(X), where the WsX is processed

in the synaptic array and other scalar terms are implemented in the rectifier unit. Then,

the minus gradient updates the latent variable of P to change the distribution of X. This

process is iterative until the probability of the observed X converges. The feature of the

SNN framework is that all the states of X are equally distributed in the beginning. During

the annealing process, the probability of the state X is converged to the state with less

loss. Different from gradient decent [137, 138], the SNN annealing machine calculates
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the gradient from the sampled spikes that provide the variance to escape the local minima.

Additionally, the initialization of P can be configured so that X follows a uniform distri-

bution, allowing the sampled state X to flexibly surmount potential barriers, mimicking

the behavior of the quantum tunneling effect [139]. This approach helps to prevent the

final state from being trapped by the high-wall convex where the initial state is located.

4.1.2 Spike Signal Processor

Different from the neuron-distributed spiking neural network accelerators such as

TrueNorth [2] and Spinnaker [140], which primarily focus on scalability, recent advance-

ments like SpinalFlow [13] and PTB [14] are addressing the challenge of evolving large

spiking neuralmodels under cost constraints. These newer approaches consider the reusabil-

ity of spike signal processors, aiming to efficiently evaluate spiking neural networks be-

yond the capabilities of existing spiking neuron circuits. However, the evolution of neural

states under finite neuron circuits necessitates sharing physical spiking processing devices.

The associated cost of sharing these physical devices lies in the switching process, which

includes loading synapse weights from external memory to scratchpad, storing current

state variables, and loading variables that require processing.

Two design strategies have been proposed to mitigate the impact of moving data

from off-chip memory: the tick-batching technique and computing in memory. These

approaches aim to optimize the processing efficiency and minimize the challenges asso-

ciated with data movement, allowing for the evolution of spiking neural networks more

cost-effectively.

4.1.2.1 Tick-batching

The tick-batching technique [13, 14] aims to amortize the switching cost by reusing

previously loaded weights and neural activities to evolve successive states, regardless of

whether input neuron activities are up-to-date during the process. Fig. 4.1 shows the ex-
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ample of processing four neurons under one processing core that can only process three.

The example shows if the spiking processor priority evolves the neuron state to update to

the same time points, the spiking signal processor frequently switches to process different

neurons, and the frequent setting up drops the processing throughput.

X1

X2

X3

X4

W1,4

W2,4
W3,4 W4,1

Set 1

Set 2

① Setup Core to Process Set2

CoreHBM W1,4 W2,4 W3,4

Core
Set2

HBM IN1 IN2 IN3
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1st Done (1st Time Point Complete) 2nd Done
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P4
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Figure 4.1: Switching Cost of a Spiking Processing Core. This example shows a pro-
cessing core switching the neurons to be processed. The synchronized evolution of neu-
ron states leads to the frequent switching of neurons, while the tick-batching technology
amortizes the switching cost.

To amortize setup latency, which includes moving weights and neural activities,

loaded parameters are reused throughout a time window. The window size is called tick-

batching size, denoted as TW. To enable amortization, equations (4.4) and (4.2) in the

neural dynamics aremodified to equations (4.6) and (4.8). This tick-batching technique re-

models the spiking neural dynamics, balancing the accuracy loss from non-synchronization

and evolving performance by selecting the size of TW [15].

Pj[nTW + k] = Pj[nTW ] for k = 1, 2, 3, ..., TW − 1 (4.6)

∆T [n] = ΣTW−1
t=0 ∆Pj[nTW + t] (4.7)
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Pj[(n+ 1)TW ] = Rec.(Pj[nTW ] + η∆T [n]) (4.8)

4.1.2.2 Digital Synapse Operation

The primary function of a spiking neural network’s dynamical system is the synapse

operation,ΣiXi[t]Wi,j . SpinalFlow [13] optimizes a synapse operation accelerator specif-

ically for handling highly sparse input spike events. This design batches input spikes and

processes them sequentially. When a spike is received from the input spike buffer, the cor-

responding weights are retrieved from the SRAM adjacent to the neuron circuit to execute

the synapse operation, as illustrated in Fig.4.2(a). In contrast, the PTB architecture [14]

employs a systolic array to facilitate the synapse operation, which is suitable for dense

spike trains, as depicted in Fig.4.2(b). This architecture also includes a spike packing unit

that densifies the input spikes, enhancing utility and increasing processing throughput.
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Figure 4.2: Prior Architectures of Spiking Processing Core of (a) SpinalFlow, and (b)
PTB.

4.1.2.3 Synapse Operation in 3D-NOR Flash

An alternative method to mitigate the impact of weight movement is to perform

synaptic operations directly at the weight’s location. The synaptic operation, given by
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ΣiXi[t]Wi,j , can be implemented using a non-volatile synaptic array [8, 45, 46]. To ad-

dress the capacity limitations that spiking signal processors face due to the restricted den-

sity of 2D non-volatile synaptic arrays, a novel approach involves using a 3D-NOR Flash

synaptic array for matrix multiplication [141]. This device employs a vertically stacked

synaptic array, which offers a significantly higher bit density for synaptic operations than

2D arrays. Binary input spikes are fed into a specific layer’s word lines (WLs) to access

the corresponding weights. The current in the source line (SL) reflects the outcome of the

synaptic operation and is directed to the neuron located adjacent to the stacked array, as

depicted in Fig. 4.3.
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Figure 4.3: Structure of 3D-NOR Flash Synaptic Array. The core of a 3D-NOR Flash
comprises vertical cylinders, with both the source and the drain located within each cylin-
der. A binary input vector is introduced to a designated layer’s word line (WL). The en-
suing current on the source line (SL) represents the synaptic operation’s outcome, guided
by Kirchhoff’s current laws.

4.2 Motivation

This paper introduces a spiking neural network accelerator, which functions as a plat-

form for an annealing machine aimed at solving optimization problems. We leverage
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3D-NOR Flash Memory [141] to enhance the efficiency of synapse operations, thereby

accelerating the evolution of the spiking neural network. The subsequent subsection will

explore the benefits and challenges of using 3D-NOR Flash Memory as a synaptic array.

4.2.1 Opportunity of 3D-NOR Flash Synaptic Array for Solving Op-

timization Problems

The baseline architecture referred to PTB [14] is composed of spiking neural network

processing cores interconnected via a high-bandwidth memory (HBM) with a bandwidth

of 64GB/s [142]. Each core includes a digital-based 16x16 systolic array operated at

200MHz and 2KB SRAM for buffering weights. This architecture, depicted in Fig. 4.5,

faces bottlenecks stemming from either the synapse operation or weight movement.

4.2.1.1 Computing-dominated Case

One scenario is that the capacity of spiking neuron circuits exceeds the model size,

and neuron circuits can evolve neuron states without stalling for loading weight. The other

scenario is that the switching step takes place, but the tick-batching technique amortizes

the switching cost. Once the amortized switching time is far shorter than the spiking

processing time, the processing throughput approaches the scenario without considering

weightmovement as TW=256 and core=16 in Fig. 4.5. In the above two scenarios, synapse

operations dominate most of the processing, and the throughput of the spiking processing

constrains the performance bottleneck.

4.2.1.2 Switching-dominated Case

The tick-batching technique is effective for amortizing switching costs. However, the

tick-batching technique results in the asynchronous evolution of neuron states, which can

lead to diminished solution quality in solving optimization problems as introduced in

Fig. 4.7 and Fig. 4.8. When considering the limited tick-batching size, bus contention for
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loading weights becomes the bottleneck, as depicted in Fig. 4.5 with TW=64 and core=16.

To alleviate the bottleneck caused byweight movement in switching-dominated cases

and provide superior dense vector-matrix multiplication (VMM) processing throughput

for computing-dominated scenarios, the 3D-NOR Flash synaptic array [141] is utilized

to expedite synapse operations. The 3D-NOR Flash synaptic array takes advantage of

the intrinsic in-situ processing of weights to eliminate weight movement while ensuring

competitive spike processing throughput for efficient computation, as shown in Fig. 4.5.

Compared to digital-based accelerators, the 3DNOR Flash offers double the performance-

to-area efficiency and a bit cost 60 times lower than a digital-based accelerator using 28nm

technology, as shown in Fig. 4.6. Moreover, compared to other memory technologies, the

NOR Flash cell with a high ON-OFF ratio, stuck-at-fault free, and fine-tuned cell current

provides reliable operation with less calibration cost [47, 48].

The 3D-NOR Flash has an access latency of up to a hundred nanoseconds and, there-

fore, requires hundreds of input granularity sizes to achieve superior processing through-

put than prior digital-based synapse processing cores, as referenced in [13]. However, the

challenge is fully utilizing the input granularity to prevent processing throughput loss. In

the following, we will delve deeper into the challenges of input utilization rate when using

3D-NOR Flash memory as a synaptic array.

4.2.2 Challenge of applying 3D-NOR Flash as Synaptic Array

The 3D-NOR Flash synaptic array delivers superior dense VMMprocessing through-

put. However, its large input granularity poses a challenge in fully utilizing computational

parallelism. Three issues that drop the computational parallelism, including (1) spatial

sparsity of input spike, (2) small input degree of network connectivity, and (3) ineffective

pruning of weak neurons, are addressed in this thesis.
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Figure 4.4: Overall Scope of Neureka. This thesis aims to provide a spiking signal pro-
cessor serving the annealing platform for solving optimization problems. The 3D-NOR
Flash memory is the synaptic array providing weight movement-free, low bit cost, and
high processing throughput per area. To further optimize the processing throughput, we
address the issues leading to processing throughput loss, including (1) sparse spike inputs,
(2) small input degrees of neurons, and (3) ineffective pruning.

4.2.2.1 Sparse Input Spike

At each moment, the inputs of a neuron are loaded as a binary vector and transmitted

to the synaptic array to process the synapse operation. However, if the input vector is

sparse, few input spikes occupy the synaptic array’s input, leading to the waste of spike

processing throughput.

4.2.2.2 Small Input Degree

The input degree is the number of inward connections to a neuron. Once the input

degree of neurons is smaller than the synaptic array input pins, the inputs are also not fully

utilized.
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4.2.2.3 Ineffective Pruning

Two types of pruning networks to accelerate the processing of spiking neural network

has been proposed. One is pruning weak weights [143–149] while the other is pruning

weak neurons [150–152]. Weight pruning can not be applied to the network for solving

optimization problems. The reason is that the magnitude of weight corresponds to the

constraints for the target problems, and the pruning of weight would lead to the weight

not meeting the constraints, resulting in the found solution not meeting the constraint. The

other pruning neuron technique is to drop the neurons that hardly generate spikes. How-

ever, the pruning of weak neurons is non-structured, and the synaptic array hardly benefits

from the non-structure pruning. As a result, although the neuron sparsity is increased, the

required synaptic array access time is not reduced.

We propose three designs to address the above three challenges, including a time

coarsening unit, granularity-reduced synaptic array, and runtime-pruning methodology as

Fig. 4.4.
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4.3 Proposed Architecture-Neureka

The overall architecture of the proposed design, as shown in Fig. 4.9, of which a

3D-NOR Flash memory accelerates the synaptic operation. To address the challenges

associated with using the 3D-NOR Flash as a synaptic array, we introduce a time coars-

ening unit, granularity-reduced synapse 3D NOR array, and run-time pruning technique

to enhance processing throughput.

4.3.1 Time Coarsening Unit

The proposed time coarsening unit aims to reduce the access of the synaptic array.

This reduction is achieved by identifying and bypassing time points without input spikes.

However, naturally-generated spike trains rarely contain a time point without spikes that

can be bypassed. A time coarsening unit has been introduced to increase the occurrence

of such bypassable time points without affecting the timing of output spikes, as illustrated
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in Fig. 4.10. The proposed method accesses spikes from the latest two-time points and

determines if all input trains contain no more than one spike in the coarsened time point.

If this condition is met for each input train, the two time points are merged into one,

allowing the other to remain empty for bypassing.

The detailed design is introduced in Fig.4.11. The spikes at two time points are ac-

cessed to re-distribute the input spike per cycle. Owing to the two-time points coarsening,

whether the spike count is two can be determined simply by an AND operation. Moreover,

the disturbance of input spikes is bounded by a one-time point. Each input channel i con-

tains four registers within the FIFO: t0[i], t1[i], t2[i], and t3[i], the output register Out[i],

and the remaining spike registerR[i]. If allR[i] registers are empty, spikes in t0[i] and t1[i]

are accessed. Otherwise, spikes in t0[i] and R[i] are accessed. If at least one spike exists

in the two accessed registers for channel i, the corresponding Out[i] is set to 1. The AND

result of the two accessed registers is considered the residual spike, which is placed back

into R[i] or t0[i] according to the rules shown in Fig.4.11. Three specific register-setting

rules are proposed to simplify the FIFO by supporting only two element-wise shifts. If

all R[i]s are empty, the coarsening unit deposits the residual spike into R[i]. If there are

spikes in t1[i] without any residual spikes, the coarsening unit also transfers t1[i] to R[i].

If there are spikes in t1[i] with residual spikes, the coarsening unit deposits the remaining
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spikes into t0[i] and cleans R[i]. These rules ensure that the FIFO requires shifting by

two elements or none. Furthermore, this mechanism is implemented using a few logical

operations, as shown in Fig.4.11.

The effectiveness of the time coarsening unit is demonstrated in Fig.4.12. It reveals

that the coarsening unit successfully creates time points without spikes, which can be

bypassed to reduce the number of synaptic array operations. The impact analysis of the

timing coarsening unit, tested from randomweight, input, and dynamic parameters, is also

presented in Fig. 4.12. It indicates that the disturbance to output spike timing is negligible

when the time coarsening unit is used to redistribute input spike trains.

4.3.2 Reduction of Input Granularity of Synaptic Array

To prevent the spike processing throughput loss from neurons with a small number

of inputs, this thesis leverages temporal-wise input spikes to increase the input utilization

of the synaptic array, as shown in Fig. 4.13. To leverage the sub-sequence input spikes,

the bit-line (BL) inputs of the synaptic array are partitioned into several groups. The

subsequent input spikes are as a vector provided to adjacent groups to increase the usage
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of synaptic array input. To reduce the time difference between input groups, the output

current of each group is decoupled from the common source line by a gated current mirror

(gCM). The gCMprevents the interference between groups’ output current on the common

source line during stabilization. The gCM also reduces the time difference between spikes

in different time points from the whole 3D-NOR sensing time of a hundred nanoseconds

into a source line signal transmission delay of 30 ns.

The gCM is controlled by an enable signal. Once the output current of a group sta-

bilizes, the enable signal triggers the gCM to redirect the output current from the ground

to the common source line, as shown in Fig.4.14. A one-dimensional systolic array ar-

chitecture ensures precise timing control of the gCM. Input vectors are transferred from

one side to another, enabling the control signal provided by a delay chain with the same

delay as the time difference between input vectors. The flow is illustrated in Fig.4.14.

The enable signal is applied to the delay chain in the first phase while the output current

stabilizes. The enable signal can reach the next gCM in the subsequent phase when the

output current of the next group becomes stable.

To equip the gated current mirror (gCM) to decouple the output current from the

source line, the circuit under array (CuA) [153–155] is utilized, offering an additional

72



doi:10.6342/NTU202400540

t0t1 R

0

0

0

Condition 1 (IS_COND_ONE  == 1)

0 0

t2

0 1

1 0

t3

0 1

1 0

0 0

…

Case 1

Next 
Cycle

t0t1 R

0

0

0

t2

0 0

0 1

1 0

Out

1

1

0

t0t1 R

0

0

0

0 0

t2

0 1

1 0

t3

0 1

1 0

1 1

IS_PHASE_ONE == 1

…

Case 2

Next 
Cycle

t0t1 R

0

0

1

t2

0 0

0 1

1 0

Out

1

1

1

t0t1 R

0

0

1

Condition 2 (IS_COND_ONE  == 0)

0 0

t2

0 1

1 0

t3

0 1

1 0

0 0

…

Case 1

Next 
Cycle

t0t1 R

0

1

0

t2

0 0

0 1

1 0

Out

1

0

1

t0t1 R

0

0

1

0 0

t2

0 1

1 0

t3

0 1

1 0

0 1

IS_PHASE_ONE == 0

…

Case 2

Next 
Cycle

t0t1 R

0

0

0

t2

0 0

1 0

0 1

Out

1

0

1

Implementation of Time Coarsening unit 

IS_COND_ONE = Πi NOT( R[ i ] )
If IS_COND_ONE : # Condition 1

Out_next[ i ]  = OR( t0[ i ], t1[ i ] )
If Σi AND( t0[ i ] , t1[ i ] ) == 0 :

# Case 1
R_next[ i ] = 0
t0_next[ i ] = t2[ i ]
t1_next[ i ] = t3[ i ]

Else:
# Case 2
R_next[ i ] = AND( t0[ i ], t1[ i ] )
t0_next[ i ] = t2[ i ]
t1_next[ i ] = t3[ i ]

Else: # Condition 2
Out_next[ i ]  = OR( t0[ i ], R[ i ] )
If Σi AND( t0[ i ] , R[ i ]  ) == 0 :

# Case 1
R_next[ i ] = t1[ i ] 
t0_next[ i ] = t2[ i ]
t1_next[ i ] = t3[ i ]

Else:
# Case 2
R_next[ i ] = 0 
t0_next[ i ] = AND( t0[ i ], R[ i ] )
t1_next[ i ] = t1[ i ]

Figure 4.11: Implementation of Time Coarsening Unit. The time-coarsening access to
spike in two-time points and re-distribute spike to registers. The proposed design does not
require an adder; instead, it requires a few simple logic operations. Moreover, the FIFO
only needs to shift two elements or non-shift, simplifying the shift logic overhead.

dimension for accessing the output current on the source line. The detailed architecture, as

illustrated in Fig. 4.14, differs from the standard 3D-NOR Flash architecture by including

two source line paths. One is the data source line for typical access, indicated by a red

line. The other, the SNN source line, is designed to redirect the output current to the gated

current mirror beneath the synaptic array. The gated current mirror and the delay chain are

implemented beneath the synaptic array to facilitate the desired timing and current flow,

as shown in Fig. 4.14.

4.3.3 Skipping Polarized Neuron for Optimization Applications

The prior pruning technique [150–152] prune the weak neurons, which the pruning is

non-structured. However, this non-structured pruning technique is ineffective in reducing

synapse operation because few highly active neurons still access the whole synaptic array.
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Figure 4.12: Result of Coarsening Unit on 128 Input Spike Trains over 256 cycles. The
coarsened input spikes train generates time points without any spike but with negligible
disturbance on the output spike time.

To tackle the issue of non-structured pruning, the run-time pruning technique is proposed

to deal with those highly active winner neurons. Based on the observation that the neural

firing rate polarizes to 1 or 0 while applying the SNN to solving optimization problems,

the activities of those polarized neurons tend to preserve the same as the previous cycle,

saving time for synapse operation and getting the same result.

The implementation of the run-time pruning is present in Fig. 4.16. After setting up

the core to process a set of neurons, the local controller, CTRL, checks whether all these

neurons are polarized. If all these neurons are determined as polarized, they only have

a low probability, Holdiong Rate (HR) = 0.1, to update their activities. Once these

neurons are determined to preserve the same as the previous cycle, the SNN core sets up

the STOP_FLAG to the host controller to release its processing resource for updating the

states of the next cycle.
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Figure 4.13: Design Concept of Input Granularity Reduction. The subsequent input spikes
are provided to adjacent inputs to fully utilize the synaptic array’s bit-line (BL) input. The
output source line has a gated current mirror (gCM) to decouple the output current from
the output source line while current stabilization.

4.4 Evaluation Setup

4.4.1 Latency Evaluation

We built up the simulator to evaluate the latency. The simulator comprises three

components: a neural activity generator, a network partitioner, and a latency evaluator.

The neural activity generator evolves the state of spiking neurons considering the un-

synchronization from the tick-batching technique. It generates the neural activities at each

cycle for latency evaluation. The network partitioner receives the graph of SNN topology

and partitions the spiking neurons into subsets, of which the size is the neuron number

in an SNN core. The latency evaluator emulates the system with the architecture shown

in Fig. 4.9. The latency assessment incorporates both core initialization and neuronal

state evolution. In this framework, we implemented an accumulation-based evaluator to

measure processing latency.

To assess the latency associated with core initialization, this tool evaluates the delay

resulting from the rotational allocation of bus resources to each Spiking Neural Network

(SNN) core for data access. The data exchanged encompasses both the input and output

neural activities. Additionally, the loading of weights is only for architectures that incor-
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Figure 4.14: One-Dimensional Systolic Array. The encounter of the propagated con-
trol signal and stable output current redirecting to the output port is considered a one-
dimensional systolic array.

porate digital synapses. Our design utilizes High BandwidthMemory 2 (HBM2), boasting

a read bandwidth of 64GB/s, as the primary memory. This configuration is similar to that

of a single-die HBM2, as explored in [142]. The architecture’s specifications include a

row-to-row delay (tRRD) of 2 cycles, a write-to-read time (tWTR) of 8 cycles, and a write

recovery time (tWR) of 16 cycles. The data rate per pin for each of the 256 pins in the

single die is 2 Gb/s.

To assess the latency associated with the assessment of neuronal state evolution, the

tool evaluates the duration required to process spikes within a specified time window.

After the firing rate of input neural activities is configured in the spike generator, the

latency accumulator calculates the needed access cycles for the 3D-NOR Flash synaptic

array, which functions with a unit size of 512x128 cells and has an access latency of 120ns.

When an SNN core finishes its task, it switches to an idle mode, waiting for the bus

to become available for the next assignment. The duration required to configure weights

in the non-volatile synapse array is linked to the word line’s stabilization time, which is

90 ns for 3D NOR Flash. In contrast, setting up weights in a digital synapse core entails

loading the weight from HBM. This loading latency is only accumulated if the necessary

weight is not pre-existing in the local cache.
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Figure 4.15: Architecture of 3D-NOR Flash Synaptic Array. The inputs are provided
to the global bit-line. Then, one of the local bit-lines is selected and transmits the input
current to the synaptic array. The output current is redirected to the circuit under the array.
The one-dimension systolic array is implemented by gated current mirrors controlled by
an enabling signal propagated by a delay chain.

The latency evaluator can also be configured to prior architectures. The implemented

latency model of prior architectures includes the SpinalFlow [13], MRAM-XB in Neb-

ula [8], and PTB [14]. The SpinalFlow processes a spike at each cycle and loads 128

weights from the nearby SRAMoperated at 200MHz. The spike count of incoming spikes

is utilized to evaluate the latency. TheMRAM-XB implements synapse operation through

spintronics-based magnetic tunnel junction (MTJ) devices, each with a size of 128x128

and an access latency of 110ns. The latency is the count of the crossbar access multiplied

by the access latency. The PTB implements the synapse operation through the 16x16 sys-

tolic array operated by the same frequency as SpinalFlow’s. The input of the systolic array

comprises spikes at different time points instead of input neurons. Each 16 time-point of

an input spike train is grouped as a pack. Each pack is an input unit to the systolic array,

and the packs without spikes are bypassed. In the above evaluations, the tick-batching

size is set to 128, of which the synchronization can be tolerated as Fig. 4.8.
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POLARIED_FLAG = Πi OR(Pi>U, Pi<L)

SOFT_FLAG = GREATER( rand(), HR )
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Figure 4.16: Implementation of Runtime Soft Neuron-pruning Algorithm. The local con-
trol unit checks whether the Pi (in Eq. 4.4) of Neurons in the SNN core are polarized
(Pi > upper bound∨Pi < lower bound). The checking is processed during transmission
and setting up P⃗ . If all these neurons are polarized, the STOP_FLAG has the probability
of 1-Holding Rate to rise and skip the process.

4.4.2 Evaluation Across Diverse Applications

Three applications were selected for latency evaluation: 9x9 SUDOKU, MAX-CUT,

and LASSO. SUDOKU and MAX-CUT are combination optimization problems, while

LASSO involves dynamic programming. All these problems are mapped onto a recurrent

network by converting the problems into weights [47, 102, 133, 156]. The 9x9 SUDOKU

is to select a number from 1 to 9 for each file of a 9x9 table such that each column, row,

and 3x3 block does not have any redundant number. The problem of the MAX-CUT

is to separate the vertexes of a given graph into two groups, and the sum of the edge

weight between different groups is maximized. We use the 800 vertexes graph of Gset/G1

from the graph dataset [157, 158] for our evaluation. The LASSO problem is to convert

a CIFAR10 image into a 4k sparse vector. The construction of the recurrent network

involves convolution and de-convolution operation, employing 64 kernels sized 7x7 and

a stride of 4.

Themetric tomeasure the solving quality is different for applications. For SUDOKU,

the solving quality is the success rate of the result meeting all the rules. For the MAX-

CUT, the solving quality is the ratio between the cut-sum from Goemans-Williamson al-

gorithm [159] and the result from the annealing machine. For the LASSO application, the

solving quality is quantified using the minus log root mean square error,i.e., -log(RMSE),
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between the original raw image and the image reconstructed from the encoded 4k vector

representation.

4.4.3 Implementation of Heuristic Methods

We also compare our Neureka with other heuristic methods processed on the high-

end i9-12900K CPU and RTX-4090 GPU. We apply the mean-field (MF) [160, 161] ap-

proximation as an alternative for the iterations of binary spikes, which can be efficiently

processed on the CPU or GPU. We also implement the classic simulated annealing (SA)

algorithm-metropolis sampling [162] to solve the combination optimization problem, in-

cluding MAX-CUT and SUDOKU. We utilize the Adam optimizer [163] to solve the

LASSO. We also implement the Goemans-Williamson (GW) algorithm [159] to solve the

MAX-CUT and recurrent reasoning network [164, 165] to solve the SUDOKU. All these

methodsmeet the constraint of cut sum>95% of GW’s forMAX-CUT, success rate>90%

for SUDOKU, and -log(RMSE)>0.9 for LASSO.

4.5 Evaluation Result

4.5.1 End to End Comparison

The effects breakdown of the proposed methodologies on accelerating solving op-

timization problems are shown in Fig. 4.17. The proposed input granularity reduction,

denoted as NEU(SYS), provides 1.52x, 1.59x, and 3.83x faster than simply utilizing 3D-

NOR Flash as synaptic arrays for solving MAX-CUT, SUDOKU, and LASSO, respec-

tively. With the time coarsening unit, NEU(SYS+COAR), the processing throughput is

further improved by 7%, 13%, and 29%. The breakdown in the case of LASSO shows

that the processing throughput is bound by weight movement for digital-based SpinalFlow

and PTB as the SNN core increases. On the contrary, both MRAM-XB and Neureka

break the memory wall. As a result, the NEU(SYS+COAR) can achieve 2.19x faster than

79



doi:10.6342/NTU202400540

R
el

at
iv

e 
La

te
n

cy

44.0 13.523.7

65.3% Sparsity 92.8% Sparsity 92.5% Sparsity

R
el

at
iv

e 
La

te
n

cy

0.1

1

10

100

1 2 4 8 16 32 1 2 4 8 16 32 2 4 8 16 32 64

MAX-CUT SUDOKU LASSO

Latency Comparison of Architectures

SpinalFlow MRAM-XB PTB NEU NEU(SYS) NEU(SYS+COAR) NEU(SYS+COA+SKIP)

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

PTB SpinalFlow NEU (SYS+COAR)

Breakdown of MAX-CUT

Moving Weight Processing Spikes Other

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

PTB SpinalFlow NEU (SYS+COAR)

Breakdown of SUDOKU

Moving Weight Processing Spikes Other

0

1

2

3

4

5

6

7

8

2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

PTB SpinalFlow NEU (SYS+COAR)

Breakdown of LASSO

Moving Weight Processing Spikes Other

(l
o

g)

Figure 4.17: Processing Time Comparison amount Architectures. The proposed Neureka
provides 3.1x and 1.8x processing throughput faster than PTB due to the outperformed
processing throughput of the 3D-NOR Flash synaptic array, and it provides 2.2x faster
processing throughput SpinalFlow due to breaking the memory wall of weight movement.

SpinalFlow while adapting to solve LASSO in the case of 64 cores.

The breakdowns of MAX-CUT and SUDOKU show that the processing of spikes

dominates the overall performance. The reason is that the model selected for evalua-

tion is too small to access all the spike processing cores, leading to negligible switch-

ing costs. The spiking processing throughput of NEU(SYS+COAR) provides compet-

itive (1.19x) processing throughput of PTB operating on 92.8%sparsity while solving

SODUKU and outperforming (1.91x) the processing throughput of PTB operating on

65.3%sparsitywhile solvingMAX-CUT. Synergywith the run-time pruning scheme, NEU(SYS

+ COAR + SKIP), the proposed Neureka is further improved by 1.59x and 1.52x process-

ing throughput. As a result, compared with PTB, the NEU(SYS + COAR + SKIP) pro-

vides 3.05x and 1.81x faster processing throughput for solvingMAX-CUT and SUDOKU,

respectively.
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4.5.2 Effect of Skipping and Coarsening

The performance gain throughout the annealing process is shown in Fig. 4.18. The

proposed coarsening unit, COAR, reduced the overall processing time from 0.7 to 0.9. The

coarsening unit is more effective in the annealing process than the latter. The coarsening

unit is less effective because some neurons becomemore active,i.e., high firing rate, during

the annealing process. Those highly active neurons generate massive spikes, reducing the

probability of obtaining the time point without a spike. Taking an example of a spiking

neuron polarizing its firing rate to 1, it is impossible to redistribute spikes to empty the

spikes of a time point.

On the other hand, in the latter half of iterations, the processing time reduction of

the run-time pruning, SKIP, ranges from 50% and 70% for the application of SUDOKU

and MAX-CUT, respectively. In contrast, the prior pruning weak neurons technique,

PRUN-WEAK, is ineffective. For neuron-competing applications such as SUDOKU and

MAX-CUT, neurons are polarized to either non-spike or highly activated. Those firing-

rate-polarized neurons are considered stable neurons, of which the synapse operations are

skipped to save processing time. Conclusively, on fore-iteration of the annealing process,

the coarsening of input spike is effective thanks to the non-polarization of spiking neu-

rons. In the latter half of iterations, the run-time pruning technique is effective due to the

polarization of spiking neurons.

The requirement of soft skipping, having a probability of not skipping polarized neu-

rons, is shown in the annealing process of SUDOKU, in which the neurons are temporally

polarized but not yet anneal to the solution at the beginning. In the case of the neuron

being considered as polarized but not yet annealing to the solution, the non-update of tem-

porally polarized neurons leads to the SNN not reaching final solutions. The proposed

soft skipping technique provides a small probability, i.e., 0.1, being skipped to enable the

update of those temporal polarized neurons and reach the SUDOKU solution.
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Figure 4.18: Effective of Proposed Design Throughout the Annealing Process. The time
coarsening unit, COAR, is initially effective, and the proposed run-time pruning technique,
SKIP, becomes effective during annealing. In contrast, the prior pruning weak-spiking
neuron is ineffective.

4.5.3 Discussion of Neural Firing Rate Scaling

The impact of the scaling firing rate is shown in Fig. 4.19. The neural activities are

linearly encoded to the maximal firing rate. The less the maximal firing rate is, the higher

the probability that an empty time point can be bypassed. However, the reducing of the

scale down of the firing rate leads to the enlarge of noise due to the scaling back of the

observed firing rate, i.e., pobserved = Spike Count
TW

1
Maximal F iring Rate

, enlarge the variation

by ( 1
Maximal F iring Rate

)2. The result shows that for all the applications in this thesis, the

scaling down of the maximal firing rate drops the solving quality. In solving MAX-CUT

and SODOKU, themaximal firing rate = 0.6 selection can hold the solving quality. Yet, for

solving LASSO, the -log(RMSE) drops by reducing the maximal firing rate. The maximal

firing rate needs to be set to one to get the best-solving result.

4.5.4 Comparison with CPU and GPU

The comparison of other heuristic algorithms running on Nvidia RTX4090 and Intel

i9-12900K CPU under the same solving quality is present in Fig. 4.20. The result shows

that the proposed Neureka provides 6.58x, 1.78x, and 2.96x faster than other heuristic
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Figure 4.19: [Impact of Maximal Firing Rate. MAX-CUT and SUDOKU tolerate the
scale of the max firing rate to 0.6

methods running on the high-end CPU or GPU while solving MAX-CUT, SUDOKU, and

LASSO, respectively. The simulated annealing algorithm [162], SA, for solving MAX-

CUT and SUDOKU requires calculating the loss to determine the probability of accepting

the sampled state. The calculation of the loss involves access to all the neuron states.

Moreover, sampling to flip states of a few variables requires the index access of the state

vector, and additional condition branch [166] is also included in the code. As a result, the

simulated annealing process is not purely vector-matrix multiplication, which discounts

the process throughput of GPU. Moreover, the Adam optimizer [163], a widely used op-

timization tool nowadays, for solving LASSO requires accessing all the neuron states to

calculate the global loss and back propagates to the neuron states, which increases addi-

tional memory access and calculation. Compared to the SA and Adam, the spiking neural

network annealing machine does not access all the neuron states to calculate the global

loss. Each neuron evolves its state through a rule inspired by biological neurons. The

cooperation of these neurons realizes the annealing process.

Moreover, the spiking neural network can process the annealing process without

training the model. The recurrent reasoning network (RRN) [164, 165] proposed that the

optimization problem can be solved by training a reasoning network. Despite the RRN

achieving the proposed Neureka’s performance, data collection is required for training.

Compared to the RRN, the spiking network does not require training the model. Instead,

the weight can be transformed directly from the QUBO form.
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The spiking neural network can be approximated by mean-field (MF) approxima-

tion [160, 161], which simplifies the neuron state by the expected firing ratewith additional

disturbance, which allows the GPU to evolve the spiking neural network efficiently but

with floating-point input and high-precision computation for each iteration being required.

The result shows that the proposed Neureka with eight cores provides more than 25.7x,

81.1x, and 4.86x faster than MF running on GPU for solving MAX-CUT, SUDOKU, and

LASSO, respectively. For solving LASSO, the acceleration is up to 15.8x while setting

the core to 256.
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Figure 4.20: Comparison with other Heuristic Method Processing on CPU and GPU. The
Neureka achieves 6.58x, 1.78x, and 2.96x faster than Von-Newmann’s architecture for
solving MAX-CUT, SUDOKU, and LASSO, respectively.
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Chapter 5
Efficient and Error-resilient Spiking
Neural Networks through Binarization

5.1 Background and Motivation

The success of deep neural networks (DNNs) has brought significant benefits to nu-

merous fields while impacting our daily lives. However, the high inference accuracy

comes at the cost of large resource demand because NNs require a huge number of pa-

rameters and a massive number of MAC operations. This poses an immense challenge

because high-performing NN models are becoming increasingly larger, while low-power

operation for sustainability is rapidly gaining importance in a wide range of application

domains, especially for embedded systems.

5.1.1 Spiking Neural Networks (SNNs)

SNNs are a computing scheme that is heavily influenced by the dynamics of biologi-

cal neurons and are similar to them. In SNNs, neural activity is event-driven and described

by the integration of voltage spikes over time. When a neuron receives a certain number

of spikes, a predetermined threshold potential may be passed, causing the firing of an out-

put spike. The sparse-spike-based operations use efficient coding and enable low-power

operations because accelerators built with simple analog or digital components can be
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employed for computation [167].

5.1.2 Existing challenges in SNNs

Onemajor challenge in SNNs is to process inputs coded in the time domain efficiently

without influencing inference accuracy. Although recent studies claim that temporal input

coding with one bit can implement multi-bit multiplication through single-bit operations,

they are not yet proven to be effective on complex tasks [168–170]. If stochastic encod-

ing of the inputs is used instead of temporal coding, the high accuracy from well-trained

models is inherited. However, stochastic coding necessitates many computation cycles

to achieve high accuracy. Due to this, in analog computing-based implementations, a

large membrane capacitor (Cmem) is inevitably required to reliably accumulate and hold

the charges of multiple cycles. Otherwise, the required inference accuracy cannot be sus-

tained. A large Cmem size results in high energy, long latency, and expensive area cost,

constituting one of themajor bottlenecks in SNN hardware accelerators [46, 48]. Although

reducing the size of Cmem offers numerous benefits, the reduction of Cmem dramatically

decreases inference accuracy. It is because the reduction of Cmem decay the precision of

the firing time, which encodes the inner product result. Hence, if the SNN is error-prone,

reducing Cmem size will aggressively degrade the inference results. All in all, efficient

and error-resilient SNN models allow the optimization of membrane capacitors, resulting

in energy, area, and speed improvements with minimal accuracy loss. Achieving this goal

is concisely the focus of this thesis.

5.1.3 Binarized Neural Networks (BNNs)

Due to the lightweight implementation, BNNs have recently received remarkable

attention since their inception [72, 171]. Binarization has three major benefits for the effi-

ciency of NNs. (1) BNNs have significantly smaller model sizes and hence reduce move-

ments of data between memories and computing units. (2) Binarization of the weights and
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activations enables replacing complex MAC circuits with simple XNOR logic gates. (3)

BNNs can be optimized to achieve high error resiliency [62, 63].

5.1.4 Binarized Spiking Neural Networks (BSNNs)

To optimize SNN modes computations in which Cmem size is minimized while the

required level of inference accuracy is still sustained, we investigate the effectiveness of

SNNs based on binary representation of model parameters instead of integer representa-

tion, as done in state of the art. SNNs and BNNs synergize outstandingly in their moti-

vations and were designed with similar objectives in mind. For both BNNs and SNNs,

energy efficiency, low latency, and error tolerance are crucial properties. Therefore, re-

cent studies have focused on deploying BNNs on SNN hardware [73, 172]. The promise of

BNNs for SNNs is twofold: First, concerning computations, XNOR can be used instead

of multiplications, and at the same time, stochastic input representation is not anymore

necessary leading to single-sample computation. Secondly, BNNs can be optimized for

high error resiliency, which enables a significant reduction of Cmem size. This leads to

a profound increase in the efficiency of SNNs because Cmem size determines energy, la-

tency, and chip area. However, the benefit of BNNs for SNNs on reducing Cmem size and

hence obtaining area, latency, and power savings without sacrificing accuracy has not

been researched yet, and this is the first thesis.

5.2 System Model

5.2.1 Binarized Neural Networks (BNNs)

BNNs training: A common method for NN training applies stochastic gradient de-

scent (SGD) with mini-batches. The training data is described with

D = {(x1, y1), . . . , (xI , yI)} with
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Figure 5.1: Overall Structure of Binarized SNN

xj ∈ X as the inputs,

yj ∈ Y as the labels, and

L : Y × Y → R as the loss function.

W = (W 0, . . . ,WL) are the weight tensors of layer 0, . . . , L and fW (x) is the out-

put of the NN. The goal is to find a solution for the optimization problem, i.e., W =

argminW 1
I

∑
(x,y)∈D L(fW (x), y) by a mini-batch SGD strategy, computing gradients us-

ing backpropagation. To train BNNs, the weights and activations are binarized in the

forward pass. For backpropagation, the floating point numbers are used for parameter

updates [72].

BNNs inference: In BNNs, the weights and activations are binarized. Due to this,

the MAC operations of a layer can be computed as follows:

popcount(XNOR(Wℓ
i ,Xℓ−1)) > T, (5.1)

In this equation, the popcount counts the number of ‘1’s in the XNOR result,Wℓ
i describes

the weights, Xℓ−1 the inputs, ℓ the layer number, i the filter, and T is a learnable thresh-
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Figure 5.2: XNOR Logic Gate Realization for Binarized Multiplication in SNNs.

old parameter (attained by the batch normalization paramters [173]), whose comparison

produces binarized values, which are fed to the subsequent hidden layer as inputs [72].

Error tolerance of BNNs: It has been shown that BNNs feature remarkable er-

ror resiliency under bit errors in the weights. Importantly, if errors are induced during

training, the error resiliency can be increased even further [62]. To optimize BNNs for

error resiliency, the state-of-the-art method for multiclass classification problems applies

a modified hinge loss based on margin-maximization alongside error induction during

training [63]. The advantage of this method over the standard cross entropy loss has been

evaluated for a variety of BNN models in [63].

5.2.2 Spiking Neural Networks (SNNs)

Stochastic input coding in SNNs: State-of-the-art SNN implementations use stochas-

tic input coding for multiplication with multi-bit or binary weights. The stochastic input

encoding is widely used [174–176], because it exploits the noise tolerance capability of

NNs for computing efficiency. The input to the bit-line is the random variable following

a Bernoulli distribution, with the firing rate Xi

XMAX
, where Xi is the input and XMAX the

maximum range of the input value in binary representation. The firing rate is interpreted

as the probability of a spike. For the binary input case, the XMAX is 1, and pi is either 1

or 0.

Crossbar array for general multiplication: The typical operation of computing in

memory is to compute logical ANDbetween input and storedweights. TheANDoperation
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Figure 5.3: Typical AND Mode and BNN XNOR Mode

becomes binary multiplication when both input and weight are in binary representation.

In our case, Xi is always binarized after stochastic conversion. This simplifies the multi-

plication to a certain number of AND operations determined by the number of binary cells

to represent the weights.

XNOR-based crossbar for binarized SNNs: In this thesis, the XNOR array is

adopted for the implementation of BNNs. To realize XNOR in function, twomemory cells

(e.g., FeFET transistors, see [177]) are needed. Our XNOR design is based on the work

in [178], see Fig. 5.2. The XNOR crossbar needs to be extended for the first layer, whose

inputs are positive multiple-bit. To realize the multiplication in this case, the method of

subtracting NOT(W), inspired from [174] is adopted.
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Analog implementation of SNNs: The implementation of SNNs using a memory

crossbar and the input transformation is shown in Fig. 5.3. The design of the memory

crossbar with analog neuron circuit is based on [107]. The crossbar can implement both

AND and XNOR operations, as Fig. 5.3. The steps of operation for SNNs are as follows:

(1) The input spikes are provided to the bit-lines of all memory cells in parallel. The

binary operation results (XNOR or AND) in all word lines are computed in parallel

as well. Finally, the output currents of all binary gates in a word line are accumulated

by Kirchhoff’s circuit law and passed to the neuron circuit.

(2) The accumulated output current charges the membrane capacitor Cmem. Note that

when stochastic input encoding is used, the same binary operation and accumulation

in steps 1 and 2 may need to be repeated for several cycles, with new input samples

in each cycle, until the voltage across the capacitor surpasses the predetermined

threshold voltage Vth. Once the voltage across the membrane capacitor reaches Vth,

the neuron generates an output spike. The observed frequency of the output spike is

determined by 1 over the time to first spike tfire and converted to an inner product

by
∑

i WiXi = XMAX
Cmem·Vth

Ion
1

tfire
, where i denotes the index of different partial

inner products and ION = VBLGcell is the on-state current of the cell in the binary

gate (Gcell is the conductance, VBL the bitline voltage).

(3) The firing time for each neuron may be different. In the crossbar architecture, bit-

line signals held for those neurons that are not fired yet still contribute current to

fired neurons. To eliminate cell currents flowing to the fired neuron, the fired neuron

will generate a signal to turn off cells on the word line that are connected to the fired

neuron.

(4) The tfire is acquired by a digital counter. Subsequently, the sampling number is

converted to an inner product by a time-to-digit unit. Because of the limited crossbar

size, all the inner product computations need to be separated into a series of smaller
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(a) Iary over time for stochastic input NNs. (b) Iary over time for BNNs.

Figure 5.4: Iary over Time

inner products. For this reason, adders are needed for accumulation. After that,

the result is ready for subsequent layer computations. As this follows conventional

designs, the details of these devices are not shown in this thesis for brevity.

5.3 Impacts of Binarization on SNNs

As shown in Fig. 5.4a, all binary inputs are sampled from the given probability at

each cycle. The expected current, E[Iary], is equal to Ion
∑

i WiPi, where Pi is the nor-

malized input of Xi, Wi the binary weight, and Ion is ON-state cell current. Due to the

stochasticity of the SNN computing scheme, sampled inner product currents can vary. To

reduce discrepancy, multiple samples are required for averaging.

In analog computing SNNs, the sampled current contributes charges to the membrane

capacitor over time.

The observed average current, Ê[Iary], is equal to the total charges in the capacitor

divided by the total charging time. When a neuron fires, it follows that the total charge in

the capacitor has reached CmemVth. The observed average current can be obtained from

Ê[Iary] =
CmemVth

tfire
. (5.2)

To reduce the discrepancy between observed average currents Ê[Iary] and system expected

currentE[Iary], a certain number of samples is required based on the law of large numbers.

The way to increase the number of samples is by increasing Cmem size such that more
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samples of inner product currents are required to make the neuron fire.

In short, the inner product precision is a function of the membrane capacitor size,

which needs to be configured based on the number of required samples to achieve a certain

inference accuracy. In the following, we will discuss the implications of binarization and

resiliency, focusing on membrane capacitor size reduction and its effects on analog SNN

accelerators with respect to energy and latency.

5.3.1 Impact of Binarization in SNNs on Membrane Capacitor

When deploying BNNs as SNNs, the inputs of the BNN are bi-state, which is either

1 or 0. The probability of binary input is also either 1 or 0. In other words, the inputs are

the deterministic values, and the output current is a constant value. Taking advantage of

the deterministic output when deploying BNNs as SNNs, the SNN does not need multiple

cycles to collect multiple output currents to achieve high precision output, unlike multi-bit

SNNs. That is, the stochastic behavior of SNN is eliminated for any size of membrane

capacitor selected. Therefore, in the case of binarized weights and inputs, it is possible to

reduce the size of the membrane capacitor. In the following, we focus on two impacts of

binarization on SNN computation. First, we discuss the one-cycle computation stemming

from binarization and why this allows a reduction of Cmem size. Then, we explain why

the accumulated charges are expected to be smaller with binarization.

Binarization allows Cmem reduction: The computing error in stochastic sampling

needs to be small enough to prevent inference accuracy VAR

loss [174], and we describe it as VAR(Ê[Istochary ]) ≤ K, where K > 0 is a certain

model-dependent criterion, which needs to be defined at design or run time to sustain a

certain SNN inference accuracy. To reduce VAR(Ê[Istochary ]), the sampling number S needs

to be increased, since the variance becomes smaller with a higher number of samples S

due to the law of large numbers, i.e. VAR(Ê[Istochary ]) ∝ 1
S
. The sample number depends

on S = Cstoch
mem Vth

Ion
· 1∑

i WiPi
· 1
τ
, and since the on-state current Ion and the targeted inner
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product value
∑

i wipi can be replaced with Ê[Istochary ] = Ion
∑

i WiPi, we can write

Ŝ =
Cstoch

mem Vth

Ê[Istochary ]
· 1
τ
≥ Q,

where τ > 0 is the pulse width, which is limited by circuit parasitics. For sustaining

accuracy, the number of samples S needs to be high enough, i.e., S > Q such that the

variance has an upper bound VAR(Ê[Istochary ]) < K for any inner product value. The

number of minimum samplesQmust be found empirically based on the NNmodel for the

stochastic input case. For BNNs, there is no bound Q since S = 1. For BNNs, S can be set

to 1 because VAR(Ê[Ibinary]) = 0, since the input is deterministic. Due to this, in BNNs,

no Q needs to be found, and the variance is independent of the size of the membrane

capacitor. Thus, in BNNs, the membrane capacitor size can be reduced without accuracy

cost stemming from a low number of samples.

When there is a minimal requirement for the precision of the sampled current, in the

stochastic case, more charges (proportional to sample numberS) may be needed compared

to the binarized case. We assume there is a constraint, the minimum charge unit qmin =

IONτ , for storing accumulated currents in the membrane capacitor, where ION is the cell

current and τ is the pulse width determined by circuit parasitics. In the stochastic case,∑
s

∑
i q

min will be stored in the capacitor. In the binarized case, this is
∑

i q
min, since

only one sample is necessary. Charge needs to be accumulated equal or more times in the

stochastic case than in the binarized case, i.e.,
∑

i q
min ≤

∑
s

∑
i q

min. This implies that

a larger membrane capacitor size is needed in the stochastic case to hold the charge. When

the capacitor size is set to be smaller in BNNs, the voltage across the capacitor increases

faster, causing earlier spikes. For the stochastic case, the required charge is larger, and

the required spiking time is also increased. However, the firing times vary based on the

distribution of the inner product. There are still minimum and maximum firing times,

which are model-dependent. Although firing time is related to latency, it cannot be used

as a metric for measuring and comparing latency between binarized and stochastic cases

since the slowest firing time of neurons determines latency.
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5.3.2 Impact of Binarization in SNNs on Latency

As described above, the latency of a neuron depends on the inner product value,

determining tfire. However, for different numbers of samples, S, and a number of bits

used for encoding weights or inputs, the distribution and the range of the inner product

may differ greatly. This is why it is difficult to compare tfire among different models and

sizes of Cmem. To fairly compare latency among different cases, we propose a metric we

call guaranteed response time (GRT).

The guaranteed response time (GRT) log(tG) is an upper bound for the latency of a

neuron, as illustrated in Fig. 5.5. We define the GRT as the maximum time that is given to

a neuron, within which it must respond with a spike, i.e., the maximum allowed latency of

a neuron is set to tG. The neurons with log(tfire) > tG are considered as no-fire, and their

tfires are set to infinity (inner product 0). Once the neurons are considered as no-fire, the

information of those neurons is lost. The information loss metric is the available region

ratio of output value defined by B−K
B

. The relation between tfire and
∑

i WiXi is defined

as tfire = CmemVth

ION
· XMAX∑

i WiXi
. For convenience, we take the logarithm, which results in:

log(tfire) = log(CmemVthXMAX

ION
) − log(

∑
i WiXi). For values with log(

∑
WiXi) > B-K

of inner product values is lost. Thus, we define the information loss metric as:

B −K

B
= 1− K

B
= 1− tG

log(CmemXMAXVth

ION
)

(5.3)

where B andK are labels in Fig. 5.5, 1
XMAX

is unit of input x, and 10tG is provided gaurantee

response time.

Our metric describes the information loss for an arbitrary guaranteed response time

of 10tG . It is evident in Eq. (5.3) that the metric is indexed by the product of CmemXMAX ,

which implies that a smaller membrane capacitor leads to higher information loss. To

minimize information loss, Cmem should have a large value. However, when a low value

of the information metric is desired, the guaranteed response time needs to be set to a large

value, affecting the latency. +
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Figure 5.5: Description of Information Loss Metric.

5.3.3 Impact of Binarization in SNNs on Energy

The required energy to make the neuron fire is reduced with a smaller membrane

capacitor size. The energy consumption of analog-based SNNs is mainly determined by

the synapse array, neuron circuit, and analog-to-digital conversion. When emerging de-

vices with steep sub-threshold slopes are employed, the static energy consumption of an

amplifier in a neuron circuit is eliminated by a single transistor [179]. Furthermore, the

conversion from tfire to a digital representation only needs to be performed at firing time.

This means the energy consumption is mainly determined by the current that is produced

by memory arrays performing inner products.

The consumed energy of the crossbar array is proportional to the charge coming out

from the memory array as shown in Eq. (5.4). Charge from the memory array is stored in

thememory capacitor and increases themembrane voltage. The neuron only fires when the

required charge reaches CmemVth. Therefore, with a reduction of the membrane capacitor

size, the energy consumed from the array is also reduced.

E = VBLVthCmem (5.4)

As shown in (5.4), due to E = VBL

∫ tfire
0

Iarydt and
∫ tfire
0

Iarydt = VthCmem, the

energy of the systems depends on bitline voltage VBL, threshold voltage Vth, and mem-

brane capacitor size Cmem. VBL is set such that reduction of VBL would cause further

reliability issues. The required capacity for charges corresponds to the factor of CmemVth.
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The scalability of the charge capacity depends on the size ofCmem, while Vth has a limited

operation margin in an analog circuit. Thus, in this thesis, the Vth is set to a constant, and

the requirement of the charge capacity is indexed by the size of Cmem.

5.3.4 Errors by Cmem Reduction and Countermeasures

Errors from information loss: With a small capacitor size, parts of the inner product

may not be considered during computation due to the voltage increasing faster, causing

earlier spikes. This error can be described with tILfire = tfire − ϵIL due to earlier firing

time. Using a small GRT has the same effect since it reduces tfire by a constant value. To

control the information loss, the capacitor size needs to be set accordingly.

Errors from limited sampling frequency: With smaller firing times caused by

smaller Cmem size, the sensing frequency of the FF needs to be increased. Consider the

case of one rising edge at time tre and one spiking signal at tfire. The spiking signal is not

latched until the following rising edge. The sensing error is then described by tre − tfire

(see Fig. 5.6). The error manifests itself as a neuron timing error, i.e., the shifted firing

time is t∗fire = tfire + ϵSF . To alleviate this, the sampling frequency of the FF needs to

be increased accordingly with a smaller capacitor size to minimize ϵSF . However, fSF

cannot be set arbitrarily high due to fundamental limits.

Combined effect of errors and countermeasures: We denote the error due to re-

duced capacitor size, with errors from information loss (IL) and from limited sampling

frequency (SF) as

tIL,SFfire = tfire − ϵIL + ϵSF . (5.5)

These errors may degrade inference accuracy significantly. Fortunately, the BNNs em-

ployed in deploying SNNs can be optimized for error resiliency, making it feasible to toler-

ate timing errors without substantial degradation in accuracy. For this reason, we can uti-

lize the method for resiliency optimization proposed in [63], where bits of the weightsWi

are flipped. Due to the property of XNOR, a flip in oneWi from 0 to 1 causes the popcount-
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Figure 5.6: Waveform of SNN Circuit.

result (corresponds to inner product, see Eq. (5.1)) to increase by 1, whereas a flip from

1 to 0 causes a reduction by 1, which we denote with the flipping error ϵFLIP . With this

flipping scheme, in BNNs, we can describe the errors with
∑

i WiXi ± ϵFLIP > T. Due

to the similarity of the errors, we expect that the method for increasing general error re-

siliency of BNNs in [63], i.e., using the modified hinge loss in combination with bit flip

injection with a certain flipping probability pFLIP , will allow reduction of capacitor size

in SNNs with minimal accuracy cost.

5.4 Evaluation

To evaluate the impact of binarization in SNNs, we consider as a baseline a stochastic

input NN with multi-bit weights, given Cmem size and a certain inference accuracy. Our

goal is to evaluate to what extent binarization combined with error resiliency optimization

can reduce capacitor size, energy, and latency while sustaining inference accuracy.

5.4.1 Experiment Setup

For evaluation, we utilize the FashionMNIST dataset to prove our primary concept.

The NNs have two convolutional and two fully connected layers. As the first layer, the
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NNs have a convolutional layer with 64 filters, followed by maxpool (MP), batch nor-

malization (BN), and activation (A). This is followed by another convolutional layer with

64 filters, then by MP-BN-A. The subsequent layer is a fully connected layer with 2, 048

neurons, then BN-A. The output layer has 10 neurons. All MPs have size 2 × 2, and all

filter sizes are 3×3×depth. In the case of BNNs, the A-functions return binarized values,

while in the 4-bit weights baseline model, ReLU is used. Both the BNNs and 4-bit NNs

have the same architecture, except for the activation function and weight precisions.

For the BNNs, we use the modified hinge loss (MHL) with the hyperparameter b =

128 (see [63]). We use BNNs that were trained in two separate ways. One BNN was

trained only with theMHL. The other BNNwas optimized for error resiliency by injecting

a probability of error pFLIP = 10%per binaryweight. We use batch sizes of 256 and initial

learning rates of 10−3. The learning rate is decreased exponentially every 25 epochs by 50

percent. We used the Adam optimizer [163] for 200 training epochs. For the 4-bit model,

which serves as the baseline to compare the binarized SNNs, we use quantization-aware

training. The number of training epochs is 33, as it reaches full convergence earlier. The

initial learning rate is 0.01, which we decay by 0.1 every tenth epoch. We use the Adam

optimizer here as well.

The stochastic model of SNNs for the binarized and 4-bit case is built from samples

of circuit simulation. Samples are pairs of fire time and inner product generated from

randomly generated input and weight vectors. The stochastic model is provided in the

SNN evaluation tool. The crossbar size is set to be 256 × 256, which can operate 128

inputs in parallel.

The memory technology used for evaluation is FeFET [111]. The cell architecture is

simulated based on the measured data. The design scenario of high polarization (PR) and

coercive field (EC) is adopted because of its high ON-OFF ratio. In this design scenario,

the ON-state cell current is 10uA, operating at Vg = 0.6V with the ON-OFF ratio over

1000.
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Circuit Parameters per Crossbar (256x256) @ 65nm Technology Node
Component Spec Energy (pJ)
Counter [180] 1.4 pJ/cycle 1.4 GRT/25ns
Adder (8 bits) [181] 0.16 pJ/spike 40
Crossbar+Neuron 2VBLVthCmem pJ/spike 512VBLVthCmem

Time-to-digit [182] 107.5 pJ/spike 27520
RNG (8bits) [183] 135.76 pJ/cycle 135.76 GRT/25ns

Table 5.1: Energy Configurations of SNN Macro.

SNN Model SF=1GHz SF=2GHz
4-bits NN 15.8pF 15.8pF
BNN 12.6pF 10pF

ER-BNN 10pF 7.9pF
Table 5.2: The Cmem Size to Sustain Inference Accuracy ≥ 0.88

The circuit energy configurations are listed in Table 5.1. The role of each component

is described in Subsec. 5.2.2.

5.4.2 Experiment Results

In the following, we first reduce the membrane capacitor in BNNs and 4-bit NNs

without employing any countermeasures and show that the errors (from information loss

and small sensing frequency) become large and drastically impact inference accuracy. As

the first countermeasure, we increase the sensing frequency to reduce the sensing errors.

We then evaluate to which extent the membrane capacitor can be reduced when we fully

exploit the error resiliency of ER-BNNs. Finally, we compare the latency and energy con-

sumption of the 4-bit model, BNN, and ER-BNN with maximum capacitor size reduction

under an accuracy goal.

Information loss: To ideally have no error interference by the limited sampling fre-

quency, in Fig. 5.7, we set the sampling frequency to infinity. In the figure, we show the

errors from information loss (see Sec. 5.3.4) for the BNNs in subplot (a) and for the 4-bit

case in subplots (b) - (e). We observe that in BNNs, the errors from information loss are

always zero in the tested cases. This is due to the small charge in the capacitor when BNNs
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Figure 5.7: Normalized Error from Information Loss

are run. We do not show the errors for all capacitor sizes for BNNs since the errors are al-

ways zero. In the 4-bit case ((b) - (e)), the errors from information loss get larger when the

capacitor size is reduced. There are larger charges in the 4-bit case than in BNNs since, in

the 4-bit case, multiple samples are needed to estimate the inner product. Combined with

a small membrane capacitor, early firings will be induced, leading to information loss.

Capacitor optimization under sensing frequency: Here, we focus on errors caused

by limited sampling frequency for the case of BNNs since BNNs do not experience errors

from information loss from small capacitors and, therefore, provide a better initial point

for optimization. In Fig. 5.8a, we show how increasing the sensing frequency in BNNs

from 1 GHz to 2 GHz allows capacitor size reduction while sustaining accuracy at a high

level. In Fig. 5.8b, we show that the normalized computing error in BNNs can be reduced

by increasing sensing frequency. The reason is the increase of sensing frequency reduces

the upper bound of timing error described in Fig. 5.6.

Capacitor optimization under ER-BNNs: Although deploying BNNs on SNNs can

reduce the size ofmembrane capacitors with high sensing frequency, there are fundamental

limits, which we consider here to be 2 GHz. To enable further reduction of membrane

capacitor size without increasing sensing frequency, we aim to exploit the error resiliency

of BNNs to tolerate the sensing errors. We show the benefit of ER-BNNs in Fig. 5.9a.

In the ER-BNN, the capacitor size can be reduced by 20% compared to the BNN model

without ER. In Fig. 5.9b, we plot the sensing frequency error for the case in which a

101



doi:10.6342/NTU202400540

(a) (b)

Figure 5.8: Effect of Sensing Frequency (SF)

(a) Requirement of Cmem size (b) Normalized error

Figure 5.9: Noise Tolerance with Sensing Frequency (SF) 2GHz

capacitor of size 7.9 pF is selected such that the accuracy is above 0.88. Although the

sensing errors in the case with 7.9 pF are larger than with 10 pF, the ER-BNN can tolerate

them. As a result, the classification accuracy is sustained for smaller capacitor sizes, where

the size of Cmem for ER-BNN is 50% smaller than that for the 4-bit model.

Latency improvement: The guaranteed response time (GRT) over accuracy is shown

in Fig. 5.10a. The BNN can sustain accuracy with a smaller GRT than the 4-bit model,

while the ER-BNN can sustain high accuracy with a smaller GRT than the BNN with no

ER. In Fig. 5.10b, the GRT for the 4-bit model is higher. The reason is that a lower GRT

causes more information loss than BNNs. In some cases, the expected firing time may

exceed GRT, which is assumed to be a no-fire. The 4-bit model cannot sustain accuracy

in these cases due to high information loss. In summary, the GRT of the different mod-

els are shown in Fig. 5.11a. The BNN has two orders of magnitude in GRT improvement

compared to the 4-bit model, while the ER-BNN shows 20%GRT improvement compared
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(a) Effects of guarantee response time (b) tfire plots considering GRT

Figure 5.10: Comparisons of Guaranteed Response Time (GRT).

(a) GRT for Models (b) Energy for 256 Neurons

Figure 5.11: Computing Efficiency for Each Model

to the BNN without ER.

Energy saving: The energy configuration of our considered system is shown in

Tab. 5.1. The energy used in each model is as shown in Fig. 5.11b. The result indi-

cates that the required energy to generate a spike in BNNs without ER is 36.7% less than

the 4-bit model, while the ER-BNN can reduce by 57% of energy compared to the 4-bit

model.
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Chapter 6 Conclusions

The spiking neural network is a brain-inspired probabilistic inference machine where

spiking neurons connect and communicate via binary spikes. We propose a synergy of

computing-in-memory-based architecture and model optimization to enhance process-

ing speed. To ensure reliable and superior processing speeds, we delve into reliability

analysis, architecture design, and model-level optimization in this dissertation. For re-

liable analysis, we assess the noise from various memory devices in image classifica-

tion and optimization-solving applications, finding that devices with high ON-OFF ratios

and adjustable currents are preferable. For architecture design, we tackle the low process

throughput utilization rate with three designs, including a 1D-systolic array, a time coars-

ening unit, and a skipping processing scheme. For model optimization, we reveal that

deploying an error-resilient binary neural network to the spiking neural network acceler-

ator surpasses the image classification throughput of the 4-bit neural model. We present

results on reliability evaluation considering circuit constraints (Chapter 3), acceleration

through granularity reduction and structured sparsity (Chapter 5), and achieving superior

throughput with noise-tolerated binary neural networks (Chapter 4).

6.1 Memory Device Reliability Analysis

6.1.1 Reliability on Image Classification

This thesis provides a reliable perspective on the accuracy of SNNs using NVM

synapses. Both theoretical analysis and simulation are presented. The theoretical analysis
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shows that the membrane capacitor can be used as a modulator that increases output pre-

cision with the cost of computing energy. The low output current eases the requirement of

a large membrane capacitor. We tested our hypothesis by simulating the SNN with exist-

ing memory technologies, including NOR Flash, WOxReRAM, HfOx ReRAM, 2T-NOR,

and Ferroelectric FET (FeFET). The simulation results show that low cell current (<10uA)

and high ON-OFF ratio (>1000) are required to preserve the accuracy using an affordable

membrane capacitor of 1pF. Moreover, the normalized standard deviation of ON-current

should be < 10% to ensure network accuracy. It is recommended that the NOR-type Flash

and FeFETwith the large ON-OFF current ratios and tunable cell currents <10uA are good

candidates for realizing accurate SNN circuits.

6.1.2 Reliability on Solving Optimization Problems

Constrained Satisfaction Problems (CSPs) happen in a wide range of applications.

The spiking neural network (SNN) is a viable framework for solving CSPs. Combining

non-volatile memory (NVM) arrays with analog computations provides high computa-

tional parallelism and area efficiency. Yet, reliability issues such as current variation,

finite ON-OFF ratio, and current drift affect the success rate of finding constraint-fitted

solutions under finite membrane capacitance in the SNN circuit. We simulated SNN cir-

cuits with memory technologies 2T-NOR, WOx, HfOx resistive memory, and FeFET to

evaluate the effect of reliability issues on the success rate. Throughout the simulations, 2T-

NOR and FeFET-High with normalized standard deviation (< 5%) and ON-OFF > 1000

are good candidates to preserve a success rate of finding constraint-fitted solutions. Thus,

they are good candidates for realizing synapses for analog computing at room temperature.

However, as the temperature increases from 300K to 358K, the ON-OFF ratio reduction

of FeFET and the ON-state current drift of 2T-NOR drop the success rate between 20%

and 90% for solving TSP and Sudoku. The requirements of capacitor size and design to

tolerate the effects of temperature need to be explored in future work.
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6.2 ArchitectureDesignOptimized for SolvingOptimiza-

tion Problems

Optimization problems nowadays have a wide variety of applications. There is a

high demand for platforms that can effectively solve optimization problems. The brain-

inspired annealing machine offers a novel approach to meet this requirement. However,

the problem-solving time is bounded by restricted synapse operation computation or the

movement of weights. The proposed architecture utilizes a 3D-NOR Flash as a synaptic

array, outperforming processing throughput and negating the need for weight movement.

To further improve processing throughput, we design a finite-disturbance spike alignment

scheme to reduce processing cycles that reduces the processing cycle from spike sparsity,

leverage the CuA technique to realize 1-D systolic arrays, which equivalently reduce the

input granularity, and propose a runtime pruning scheme to skip the synapse operation of

stable neurons. The result shows that the proposed Neureka provides 3.1x, 1.8x, and 2.2x

faster than prior digital-based SNN processors for applying MAX-CUT, SUDOKU, and

LASSO, respectively. Neureka, with eight cores, also performs 6.6x, 1.8x, and 3.0x faster

than other heuristic methods processed on high-end computation devices while maintain-

ing the same solving quality.

6.3 Binary Spiking Neural Network

We studied the impact of deploying error-resilient BNNs (ER-BNNs) on analog im-

plementations of SNNs. We focused on the reduction of the membrane capacitor size

since it constitutes one of the major bottlenecks in analog SNNs, determining inference

accuracy, energy usage, latency, and area. By analyzing the properties of analog SNN cir-

cuits, we showed that binarization allows capacitor size reduction with less accuracy cost

than in multi-bit SNNs since binarization leads to deterministic inputs and less capacitor

charge. We also established the connection between the latency and the membrane capac-
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itor size, from which we deduced that binarization allows higher latency reduction than

in multi-bit cases. We also showed that the energy consumption depends on the mem-

brane capacitor size. However, the membrane capacitor size reduction comes at the cost

of timing errors, for which we developed a model for evaluating the trade-off between

membrane capacitor size and the SNN inference accuracy. As a countermeasure to the er-

rors, we optimize BNNs for ER to tolerate the errors while sustaining high accuracy. Our

experiments evaluated the trade-off between the capacitor size reduction and the errors.

Our results indicate that, compared to 4-bit SNNs, deploying ER-BNNs as SNNs leads

to 50% and 57% reduction of capacitor size and energy, respectively, and two orders of

magnitude in improvement in latency, while high inference accuracy is sustained.

6.4 Future Works

A pivotal component of our future work involves the refinement and expansion of

the spiking neural behavior model. This model, crucial for system-level simulations, has

been our cornerstone in understanding and emulating neural network behaviors. The next

phase will involve the implementation of this model using a field-programmable analog

array (FPAA). The use of FPAA will facilitate real-time emulation, a crucial step toward

achieving more dynamic and responsive spiking neural network systems. The develop-

ment of an advanced emulator is a key objective. This emulator will not only serve as a

proof-of-concept for the theoretical models we have developed but also enable the emu-

lation of large-scale neural models. Such a tool will be invaluable in testing and refining

neural network designs before their practical application, thereby reducing the time and

resources needed for development.

One of the most formidable challenges in neural network research is replicating

human-like abstract thinking and reasoning. Our future endeavors will focus on bridg-

ing this gap. While our current work has made strides in this direction, there remains a

substantial amount of research and experimentation necessary to match and eventually
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exceed human brain capabilities in this area. The long-term goal of our research is the

development of human-like general intelligence agents. These agents are expected to be

more energy-efficient and time-effective, capable of handling various complex tasks and

challenges. Future efforts will be directed towards integrating our deepening understand-

ing of brain functions into the design of these agents. This integration is anticipated to

revolutionize the way we approach problem-solving and decision-making processes in

artificial intelligence.

In conclusion, the path ahead is both challenging and exhilarating. As we delve

deeper into the mysteries of the brain and its functioning, we anticipate groundbreaking

advancements in neural network technology. Our journey is just beginning, and the po-

tential for what can be achieved is immense. This future work will not only contribute

significantly to the field of artificial intelligence but also has the potential to profoundly

impact various aspects of society and industry.
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