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Abstract

Machine learning techniques, especially deep neural networks, have gradually be-
come important tools in the field of high-energy physics. These methods have shown
encouraging results in various applications. In recent years, the combination of machine
learning and quantum computing has led to the development of a new field of research
field called the “Quantum Machine Learning”, which is expected to offer advantages in

handling increasingly complex data.

This dissertation proposes the Quantum Complete Graph Neural Network (QCGNN)
designed for learning tasks on fully connected graphs, which is a VQC-based algorithm,
where VQC stands for “Variational Quantum Circuit”. The QCGNN makes use of pa-
rameterized quantum circuits and aims to benefit from quantum parallelism, potentially

providing computational advantages compared to classical approaches.

We apply the QCGNN to the task of jet discrimination in proton-proton collisions at
the Large Hadron Collider (LHC). In this context, jets, which are collections of particles
originating from energetic partons, are represented as complete graphs. Since jet classi-
fication plays a crucial role in understanding particle interactions, an effective model is
necessary to distinguish between different jet types. The QCGNN shows the ability to
process graph-based jet data efficiently, which may be helpful for future analyses at the

high-luminosity LHC.

In addition, we compare the QCGNN with classical deep learning models to evaluate
its performance. We also test the implementation of QCGNN on IBM quantum hardware

to examine its feasibility on real devices. The results suggest that the QCGNN has poten-
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tial for further exploration in both quantum computing and high-energy physies research.

Keywords: Machine Learnning, Quantum Machine Learning, Quantum Computation, Jet
Discrimination, High-Energy Physics
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Annual number of papers at the intersection of high-energy physics and
machine learning, from 2000 to 2025 (as of May 23, 2025). This plot is
adopted from [5]. . . . . . . ...

A schematic diagram illustrating the hadronization process, as shown in
[31]. In step (i), a quark (qp) and an antiquark (q,) are created from a hard
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generated from the vacuum, as shown in step (ii1). This process continues,
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shows the event display of a proton-proton collision at the Large Hadron
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Chapter 1

Introduction

1.1 High-Energy Physics (HEP)

Throughout the development of physics, scientists have continuously sought to explore
the fundamental properties of the universe. In the early period, classical mechanics provided a
basis to model physical systems using deterministic rules. Nevertheless, it was eventually rec-
ognized that such theories could not fully account for particle behaviour at microscopic scales.
This drawback led to the rise of quantum mechanics, which brought novel ideas including the

uncertainty principle and the wave-particle duality.

Later on, quantum mechanics was extended by incorporating special relativity, leading to
the framework known as quantum field theory (QFT). In QFT, each elementary particle has a
corresponding field, and the particles are recognized as the excitations of fields. The interactions
are described through field theory and symmetry principles, i.e., gauge symmetries. Using this
approach, the Standard Model (SM) was formulated. It offers a unified explanation of three out
of the four fundamental interactions: strong, weak, and electromagnetic forces. The SM also
predicted the existence of the Higgs boson, which is the excitation of the Higgs field, and was
experimentally confirmed in 2012 [1, 2].

To verify the predictions of the SM and explore potential new physics, experiments operat-
ing at extremely high energies are necessary. In CERN (the European Organization for Nuclear
Research), the Large Hadron Collider (LHC) collides protons at velocities approximately the
speed of light, LHC enables the recreation of conditions similar to those just after the Big Bang.
This capability makes it possible for physicists to investigate elementary particles and their fun-

damental interactions in great depth.

Although the SM is highly successful, it still cannot explain several important issues, such

as dark matter, which could be a possible candidate to explain the origin of neutrino mass,
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Standard Model of Elementary Particles
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Figure 1.1: The elementary particles of Standard Model presented as a table. Matter particles,
known as fermions, consist of quarks and leptons, and are grouped into three distinct generations.
The force carriers, or bosons, which are responsible for mediating interactions, include the gluon
(9), photon (7), Z and W= bosons, as well as the Higgs boson (H). Figure adapted from [3].
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and the incorporation of gravity. To explore these unanswered questions, the High-Luminosity
LHC (HL-LHC) project has been proposed for the search for new physics. This upgrade will
significantly increase the luminosity of collisions, allowing more data to be collected. With this
improvement, researchers hope to find evidence of new particles or interactions that go beyond
the SM.

In summary, HEP aims to answer fundamental questions about the universe. With the
development of advanced theoretical frameworks and powerful experimental facilities like the

LHC, scientists continue to push the boundaries of our knowledge.

1.2 Machine Learning (ML)

Machine learning, which aims to find efficient and automatic methods capable of learning
complex or intrinsic relations from data and achieves great success in different applications,
is a growing field of artificial intelligence and computer science. In the early stages, many
ML models were based on well-defined mathematical rules and decision processes. Examples
include the binary decision tree (BDT), which splits data into different branches based on feature
thresholds, and the support vector machine (SVM), which finds a hyperplane to classify points in
the high-dimensional latent space. These methods were widely used for tasks such as regression

and classification due to their simplicity and interpretability.

As the demand for more powerful models increased, researchers began exploring neural
networks, which are motivated by neurons in our brains. A neural network is constructed by
several layers of neurons that process input data through complicated computations with tunable
parameters and non-linear operations. Neural networks can represent complex functions and are
able to discover intrinsic features from data, especially when the network is deep and constructed

with many layers.

The progress in hardware, especially with the emergence of graphics processing units
(GPUs), has accelerated the development of artificial neural networks. Owing to the property
of parallel computation, GPUs can handle massive datasets efficiently, thereby allowing it fea-
sible to train deep neural networks that contain millions or even billions of parameters. This

advancement has significantly contributed to the growth in scale of deep learning models.

A notable milestone in modern ML is the introduction of large language models (LLMs),
which are built upon the transformer framework [4]. Originally designed for sequence-to-
sequence applications, the transformer architecture makes use of self-attention mechanisms as
its core computational strategy, allowing it to capture global dependencies between tokens in

long-sequential data. Thanks to their straightforward structure and strong scalability with in-
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Number of HEP-ML Papers by Year
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Figure 1.2: Annual number of papers at the intersection of high-energy physics and machine
learning, from 2000 to 2025 (as of May 23, 2025). This plot is adopted from [5].

creasing data and model size, transformers have been chosen as the backbone of state-of-the-art
LLMs. Examples such as ChatGPT, DeepSeek, Claude, and Gemini have shown successful per-

formance in different tasks by leveraging extensive parameter counts and vast training datasets.

In conclusion, ML has evolved from rule-based models to highly complex neural archi-

tectures, powered by advances in computational resources. These developments continue to
transform various scientific and industrial fields.

1.3 Jet Discrimination with ML in HEP

Jets arising from energetic proton-proton interactions at the LHC appear as bunches of par-
ticles, typically emerging from the hadronization process of high-energy partons, which consist
of gluons and quarks. Accurately identifying and categorizing these jets is vital for probing
the underlying particle interactions and for uncovering potential evidence of new physics. The
term jet discrimination encompasses a range of techniques aimed at tracing the origin of jets and
distinguishing those produced by different initiating particles.

Deep neural networks (DNNs) have gained significant traction in HEP [5-7], and have

proven effective in addressing jet classification challenges in recent years. These models are

4 doi:10.6342/NTU202501658


http://dx.doi.org/10.6342/NTU202501658

1.3 Jet Discrimination with ML in HEP

capable of learning complex features and intrinsic correlations within the data, thereby improv-
ing the accuracy of jet tagging based on their internal properties. One widely adopted approach
is to represent jets as graphs, where individual particles serve as nodes and their interactions
are encoded as edges [8—21]. This graphical formulation allows both local and global structural

information to be captured, making it particularly advantageous for jet-related learning tasks.

However, as the number of particles within jets grows, the computational cost of graph-
based algorithms grows roughly quadratically. This scalability issue becomes especially promi-
nent in the high-luminosity upgrade of the LHC, where both the total dataset size and the number
of particles are projected to rise substantially.

Quantum machine learning (QML) [22-26] integrates machine learning and quantum com-
putation. It presents a potentially powerful strategy for tackling the growing complexity of data
in HEP. By using properties such as superposition and entanglement, QML facilitates compu-
tations that would otherwise be challenging or infeasible using conventional computing archi-

tectures.

This dissertation introduces and provides a detailed implementation of the Quantum Com-
plete Graph Neural Network (QCGNN) [27], a new QML framework tailored for jet classifica-
tion using fully connected graph representations. Although inspired by the design of classical
graph neural networks (GNNs), the QCGNN incorporates quantum algorithms to improve both
computational performance and efficiency. When analyzing jets containing N particles, stan-
dard GNNs often require a computational cost scaling as O(N?). In contrast, the QCGNN
achieves a more favourable scaling of O(N) by taking advantage of quantum computational
principles. This efficiency gain allows QCGNN to handle more extensive datasets and cap-
ture finer jet substructures, making it a compelling candidate for applications in upcoming HEP

experiments.

This dissertation is arranged as the following structure: Chapter 2 gives a comprehensive
introduction to jets in HEP, including their generation mechanisms, properties, and the common
observables used for jet discrimination. Chapter 3 examines traditional ML approaches for jet
classification, with special attention paid to GNNs and their variants. In Chapter 4, we transition
into QML, beginning with foundational concepts in quantum computing and gradually moving
toward the study of variational quantum circuits [28—30]. Chapter 5 is devoted to the develop-
ment of the QCGNN, where we detail its architecture and evaluate its computational advantages
in the context of quantum acceleration. Chapter 7 presents a performance comparison between
QCGNN and conventional ML-based jet discrimination techniques. The results show the fea-
sibility of QCGNN, and underscore its potential in advancing research within the HEP domain.
The dissertation concludes by summarizing key insights and proposing future directions for the

development and application of QCGNN in experimental studies.
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Chapter 2

Jet in High-Energy Physics

In this chapter, we will discuss the hadronization process and the concept of jet discrimina-
tion in high-energy physics. We will begin by introducing the hadronization process, which is
crucial for understanding how jets are formed from partons in high-energy collisions. We will
then explore the cylindrical coordinate system used in particle detectors, followed by a detailed
explanation of the anti-kp algorithm, which is widely used for jet clustering. Finally, we will

introduce particle flow features that are essential for characterizing jets and their constituents.

2.1 Hadronization and Jet Discrimination

_ do 90
1) ®
do do
if) -
9o q 9 qo
iii) - o
4 499 q 9 449 4o

iv) ® @ ® ®

*""‘-—-._._‘_H____ } l. /
v) o Y& .

Figure 2.1: A schematic diagram illustrating the hadronization process, as shown in [31]. In
step (1), a quark (qo) and an antiquark (gy) are created from a hard scattering event. In step (ii),
the quark and antiquark move apart, and as the distance between them increases, another quark-
antiquark pair is generated from the vacuum, as shown in step (ii1). This process continues, as
depicted in step (iv), and eventually, color-neutral hadrons are formed in step (v).

doi:10.6342/NTU202501658


http://dx.doi.org/10.6342/NTU202501658

2.1 Hadronization and Jet Discrimination

In the LHC, the high-energy proton-proton collisions create sprays of particles called jets,
where energetic quarks and gluons go through a process known as hadronization and produce
narrow sprays of particles. According to quantum chromodynamics (QCD), partons that carry
color charge, namely quarks and gluons, cannot exist freely at long distances. This behavior,
known as color confinement, ensures that only color-neutral combinations, or singlet states,

appear as observable hadrons at the end of the process.

When two protons collide at relativistic energies, partons within the protons interact and
undergo hard scatterings, often imparting large transverse momenta to the outgoing partons.
These energetic quarks or gluons then initiate parton showers through successive emissions of
gluons and quark-antiquark pairs, a process that is governed by QCD splitting functions and is

well-modeled using perturbative techniques up to a certain energy scale.

As the virtuality of the partons decreases and the coupling strength o« becomes large,
the perturbative description breaks down. At this non-perturbative stage, the partons undergo
hadronization, a complex transition into colorless hadronic states. During hadronization, the
potential energy between quarks grows linearly with distance, as described by the confining
potential:

V(r) =or, (2.1)

where o is the string tension and 7 is the distance between the quarks. As partons move apart,
the energy in the string between them becomes large enough to produce quark-antiquark pairs
from the vacuum, leading to the formation of new color-neutral hadrons. Figure 2.1 illustrates
this process, where a quark and an antiquark are created from a hard scattering event. The
hadronization process results in a spray of hadrons that are spatially clustered around the original

parton’s direction of motion.

The resulting structure, observed in detectors as a localized clustering of energy and particle
tracks, is identified as a jet. The identification and reconstruction of jets are essential for probing
the dynamics of the initial partonic interaction, inferring the properties of the initiating partons,
and testing predictions of QCD. Jet clustering algorithms, such as anti-k;, are employed to
cluster final-state particles into jets in a theoretically and experimentally consistent manner.
Figure 2.2a shows a real event captured by the CMS detector, and Figure 2.2b shows the jets

reconstructed through some jet clustering algorithm.

At the LHC, a variety of particles can produce jets (see Figure 2.3), including light quarks
(u, d, s), gluons, heavier quarks such as bottom (b), charm (c), and top (¢), as well as gauge
bosons (IW/Z) and Higgs bosons. Jet discrimination, also known as jet identification or jet tag-
ging, encompasses techniques used to determine the origin of jets and distinguish those produced

by different particle species.
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CMS Experiment at the LHC, CERN
- Data recorded: 2015-Sep-28 06:09:43.129280 GMT

)

Run / Event / LS: 257645 / 1610868539 / 1073

(a) An event collected by the CMS detector.

CMS Experiment at the LHC, CERN
4| Data recorded: 201 5-Sep-28 06:09:43.129280 GMT
P g Run / Event / LS: 257645 / 1610868539 / 1073

(b) Jets clustered with brown cones.

Figure 2.2: A real event captured by the CMS detector, adopted from [32]. Figure 2.2a shows
the event display of a proton-proton collision at the Large Hadron Collider, captured by the CMS
detector. The brown cones in Figure 2.2b represent the jets reconstructed through a jet clustering
algorithm.
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u,dors jet corb jet pileup jet

W or Z jet

Figure 2.3: An illustration of different types of jets produced in high-energy collisions, adopted
from [33]. The figure shows the different types of jets, including gluon jets, heavy quark jets,
and light quark jets.

2.2 Cylindrical Coordinate System

In high-energy collider experiments, the momentum of a particle is commonly expressed in
Cartesian coordinates as p = (p,, py, p»), where p,, p,, and p, denote the components along the
orthogonal axes. While Cartesian coordinates are suitable for theoretical formulations, they are
often suboptimal for experimental applications due to the geometry of detectors, such as those
at the LHC, which exhibit cylindrical symmetry about the beamline.

To better exploit the symmetry and practical layout of modern detectors, a cylindrical co-
ordinate system is employed, characterized by the pseudorapidity 7, the azimuthal angle ¢, and

the transverse momentum pr, defined by:

1= () e
¢ = arctan (&) , (2.3)

pr = /P2 + D2, 2.4
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7= +00 4

\ center of
N < — the LHC

AT TR ATLAS

Figure 2.4: Illustration of the cylindrical coordinate system used in the CMS detector, adapted
from [34]. The longitudinal axis of the is set to be the direction of the beam axis, which is
aligned with the z-axis. The polar angle 6 is defined as the difference between the particle track
and the positive z-direction. The pseudorapidity 7 is defined as n = — In(tan(6/2)), providing
a measure of the angle relative to the beam axis. The IP in the center denotes the interaction
point. The azimuthal angle ¢ is defined in the transverse plane, where the x and y direction can
be set arbitrarily.

where [p| = /p? + p2 + p? is the magnitude of the momentum vector, with the z-direction
defined as the beam axis. The transverse momentum p, represents the momentum component
perpendicular to the beam axis and is crucial in identifying events with missing energy or trans-
verse imbalance. The angle ¢ describes the particle’s azimuthal orientation in the transverse

plane, while 7 serves as a logarithmic measure of the particle’s angle relative to the beamline.

Importantly, these cylindrical variables exhibit distinct transformation behaviors: pr re-
mains invariant under both rotations about and boosts along the z-axis; ¢ is invariant under
longitudinal boosts but changes under rotations respect to the beam axis; and 7 is invariant un-

der azimuthal rotations but not under longitudinal boosts.

Figure 2.4 depicts the cylindrical coordinate system centered at the interaction point, de-
fined as the spatial location where the proton-proton collision is presumed to occur. The polar
angle 6 is measured from the positive z-axis and the corresponding particle track. The zy-plane
lies transverse to the beam, and the beam axis is in the z-direction. The pseudorapidity can be
related to € through the identity:

B p|+p-\ 1+cosf\ 0
n= ln(|p|—pz =—1In [ —oost ) = In |tan 5 )| (2.5)

In summary, the adoption of cylindrical coordinates in collider physics is a reflection of
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both the symmetry of the detector geometry and the need for variables that behave predictably
under Lorentz transformations. These coordinates provide a natural and powerful framework

for characterizing the kinematics of particles produced in high-energy collisions.

2.3 Anti-kp Algorithm

In particle detectors, such as the CMS experiment, only particle-level information is di-
rectly accessible. Consequently, algorithms are required to cluster individual particles into jets.
The anti-k algorithm [35] is one of the most widely used jet clustering algorithms in high-
energy physics, particularly at the LHC. Its primary function is to efficiently identify and recon-
struct jets from the particles produced in high-energy collisions.

Initial Combine the 2 particles  Continue iteratively combining particles (at each step
particles with smallest dij combine the protojets with smallest djj)
° .0 * L ] . ® . ® . ®
o o° [ L Qe @
. L . =>
. -. . b . .. . o . .. - b . .. .' . .. ..
@ o @ Qe Y
e N e ° I )
. o . - ) . « ® . « ® .
® L . [ ] ® . [ ] .. ®

®
o <> @ .=>. °.
® o o

C_iE >tdiB Found4  4jets, each with N
stop jets constituents
clustering

Figure 2.5: This figure illustrates the jet clustering process, adapted from [36]. Particles are
clustered into jets iteratively, with the algorithm successively merging the closest particles or
pseudo-jets (intermediate jet candidates) based on a distance measure. This process continues
until all particles are assigned to jets.

The algorithm clusters particles into jets by comparing pairwise distances between particles
(7, 7) as well as the distance between each particle and the beam axis (denoted by B). In the
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anti-kr algorithm, these distance measures are:

1 1\ A%
d;; = min | —, —— Y (2.6)
! ( 2Tz p%“,j) R?
1
dip = ——, (2.7)
Pr;

where pr; represents the transverse momentum of the ¢-th particle, and

Ay = /(01 — 6,2 + (1 — my)? (2.8)

is the distance between two particles in (7, ¢) space, where the particle indices are denoted with i
and j. The parameter R is the clustering radius, where smaller values of R lead to more compact
jets, and larger values of R result in jets with a greater number of constituent particles. In the
CMS experiment, typical values for R are 0.4 and 0.8 for analyses conducted at center-of-mass
energy of /s = 13 TeV.

The anti-k7 algorithm operates iteratively, as depicted in Figure 2.5. Initially, each particle
is treated as an individual jet candidate. The distances between all particle pairs and between
each particle and the beam axis are calculated. The two closest objects, whether particles or
pseudo-jets, are then merged into a single jet. If the smallest distance corresponds to a parti-
cle and the beam axis, the particle is labeled as a finalized isolated jet. This iterative process
continues until a satisfactory jet configuration is achieved. The distance measure ensures that
particles with higher transverse momentum are clustered first, promoting the formation of more

physically meaningful jets.

2.4 Particle Flow Features

Once the particles produced in a collision are grouped together to form jets via a jet clus-
tering algorithm, the momentum of each jet is computed by the summation of the 4-momentum
of all the constituent particles. The properties of jets can thus be described in cylindrical coor-
dinates, including the azimuthal angle ¢;, pseudorapidity 7, and transverse momentum p’;f

These features provide an efficient means of characterizing the jet in HEP experiments.

In such experiments, the interaction point on the beam axis in the lab frame, where the
particles collide, does not necessarily happen to be in the center of mass (COM) frame of the
parton-level interaction. This discrepancy arises from the stochastic nature of parton momentum
fractions, as described by parton distribution functions (PDFs). Since the protons are collided

at high energies, the laboratory frame can be Lorentz-boosted along the z-direction to transform
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into the COM frame. While the azimuthal angle and the transverse momentum of the jet are
invariant under this Lorentz z-boost, the pseudorapidity can be significantly affected by the

frame mismatch.

On the other hand, rapidity, another quantity used to describe the motion of particles in

high-energy collisions. A particle with energy £ has the rapidity:

1 E+p,
=—1 . 2.9
y 2n(E_m> (2.9)

Although rapidity is not invariant under a Lorentz z-boost, the difference between the rapidities

of two objects is invariant under such a boost, i.e.,

Vi —Yi =Y — Y (2.10)

in two frames related by a z-direction Lorentz boost. This property ensures that jet analyses
remain consistent across different reference frames, which is essential in high-energy collisions,

where the center-of-mass frame may not align with the laboratory frame.

In practice, pseudorapidity 7, which is defined as

= lln <M> =—In (tan Q) , (2.11)

, where 6 is the angle between the particle tracks and the beam axis, is often preferred over rapid-
ity y in HEP experiments. This preference arises because the energy E of particles is not always
directly measured with high precision. Additionally, pseudorapidity can be approximated as
rapidity in the ultra-relativistic limit, where the particle’s mass is negligible compared to its
momentum. This approximation holds for most particles produced in high-energy collisions,
where their energies are significantly larger than their rest masses. Under this approximation

(E = |p|), the difference in pseudorapidity is Lorentz invariant under z-direction boosts.

Within jet analyses, individual particle contributions to a jet are characterized using particle
flow features, which provide insights into the distribution and behavior of particles within the

jet. These features are defined as follows:

Pri
Zi = et ?
T
2.12
An, =mn; — Miets ( )
Ag; = ¢ — Pje-

Here, z; represents the fraction of the transverse momentum of jet carried by the i-th particle.

This feature is essential for understanding how each particle contributes to the overall energy
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flow within the jet. The quantities An; and A¢; represent the differences in pseudorapidity
and azimuthal angle, respectively, between axis of jet and the i-th particle. Specifically, the
differences An; and A¢; quantify how far each particle is from the jet’s central direction in the

n and ¢ planes. Figure 2.6 shows samples of jets represented in the 2D (An, A¢) plane.

These particle flow features provide physical understanding into the structure of jets, facili-
tating the discrimination between different types of jets (e.g., light quark jets, gluon jets, and jets
originating from heavy flavor particles like b and ¢ quarks). Furthermore, these features play a
crucial role in jet tagging algorithms, which are used to determine the partonic origin of jet. The
invariance of these quantities under specific Lorentz transformations enhances their applicabil-
ity in various experimental analyses, ensuring consistency and reliability when characterizing
jets in particle detectors, e.g., CMS and ATLAS at the LHC.

In conclusion, particle flow features such as z;, An;, and A¢; are essential tools in the
analysis of jet structure and dynamics. By incorporating these features, we ensure that our
jet reconstruction and analysis methods are independent of reference frames, enabling us to

distinguish between different types of jets based on their underlying partonic origins.
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Figure 2.6: Samples of jets represented in the 2D (An, A¢) plane. The first row shows three
samples of top quark jets (denoted as Top), while the second row presents three samples light
quark and gluon jets (denoted as QCD). The samples are selected from the public dataset [37].
In each image, the = and y-axis represent the differences to the jet of particles in pseudorapidity
(An) and azimuthal angle (A¢), as defined in Equation 2.12, respectively. The color of each
point corresponds to the ratio of the pr of particles and their corresponding jet described in
Equation 2.12, denoted as z;. This representation provides a visualization of the spatial distri-
bution of jets in the (An, A¢) plane, highlighting their momentum characteristics and spatial
arrangement.
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Chapter 3

Classical Machine Learning

To compare with quantum models, we provide an overview on applications of deep learn-
ing in jet discrimination in this chapter, focusing on the challenges posed by the undetermistic
number and types of particles inside jets. We discuss different representations of jets, including
image-based, sequence-based, tree-based, graph-based, and set-based approaches. Each repre-
sentation has its own advantages and limitations, and we highlight the importance of selecting

a suitable representation based on the specific task at hand.

We discuss the classical models based on graph or set representations that are widely used in
jet discrimination tasks, and introduce the general architecture of graph neural networks, which
are designed to learn from set-based data while preserving permutation invariance. Furthermore,
we then present the Particle Flow Network (PFN), Particle Net (PNet), and Particle Transformer
(ParT) architectures, which leverage graph representations and message-passing mechanisms to
capture the relationships among jet constituents. These models serve as classical benchmarks

for comparison with our quantum model.

3.1 An Overview of Applications in Jet Discrimination

Deep neural networks (DNNs) have gained widespread attention due to their flexibility
in architecture and remarkable capability for capturing intricate patterns, making them increas-
ingly prominent in high-energy physics [5—7]. DNNs have demonstrated substantial success in
addressing challenges such as particle classification, event reconstruction, and jet discrimina-
tion. Nevertheless, designing an efficient DNN model specifically tailored for jet discrimination
remains challenging. This difficulty arises primarily from the inherently variable number and
types of constituent particles within jets, as jets do not exhibit uniform structures, and each

constituent particle contributes uniquely to the overall jet characteristics. To address these com-

17

doi:10.6342/NTU202501658


http://dx.doi.org/10.6342/NTU202501658

3.1 An Overview of Applications in Jet Discrimination

BODOED
S@lelel]

Sequence

Figure 3.1: The representations that frequently used for jets, including sequences (top-left),
images (top-right), graphs (bottom-left), and sets (bottom-right).

plexities, multiple data representations and corresponding deep learning architectures have been
proposed, with the aim of effectively encoding jet information into forms suitable for DNN in-

puts. Figure 3.1 shows different representations commonly chosen for jets.

One prevalent method represents jets as two-dimensional images, where jet constituents
are projected onto a grid whose axes typically correspond to physically meaningful quantities,
such as pseudorapidity 1 and azimuthal angle ¢. Each grid cell encodes particle properties
such as energy or transverse momentum within its corresponding spatial region. This approach
leverages well-established convolutional neural network (CNN) architectures that have proven
highly effective at extracting spatial features from image-based data [38—45]. Despite notable
successes, jet images have limitations, including potential loss of precise particle momentum
and positional information. Additionally, image representations for jets also face the problem
of sparsity when increasing the resolution of the grid, as many pixels may remain empty due to

the limited particle number inside jets.

Alternative representations utilize sequences [46—52] or trees [53, 54], ordering jet con-
stituents according to specific criteria. In sequential representations, particles are often arranged
by decreasing transverse momentum, allowing the model to capture dominant particles first.

Tree-based structures, conversely, aim to encode the hierarchical relationships, with each node
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representing individual particles and edges denoting parent-child connections. While sequence
and tree structures facilitate capturing certain relational aspects among particles, they inherently
introduce ordering biases instead of retaining the property of permutation invariance, and lim-

iting generalizability across jets with varying particle arrangements.

Graph-based approaches have increasingly been adopted due to their capability in capturing
particle relationships while maintaining permutation invariance [8—21]. Here, jet constituents
are represented as nodes in a graph, and edges encode relational properties such as spatial dis-
tances, energy correlations, or other physically relevant metrics. This method offers significant
flexibility in modeling jet substructure, enabling sophisticated representation of particle corre-
lations. Graph neural networks (GNNs) are designed for learning this representation, and have
shown particular promise in effectively learning complex particle interdependencies. Nonethe-
less, graph representations introduce computational challenges, especially in scenarios involving
large particle multiplicities and complicated relational structures, potentially requiring advanced
network architectures and optimization strategies. Also, defining the edges between particles

can be nontrivial, as it may depend on the specific physics context or the task at hand.

Another prominent representation treats jets as sets of particles, viewing jet constituents
as unordered collections of particle properties [55—-64]. Set-based representations naturally ex-
hibit permutation invariance, a desirable characteristic for modeling jets with variable particle
numbers and arrangements. By encoding particle information without imposing explicit order-
ing constraints, set-based models can flexibly learn particle correlations and effectively manage
jets of varying sizes. Similar to graph representations, however, set-based models also neces-
sitate complex architectures and high computational costs, particularly when dealing with large

particle multiplicities.

Despite extensive advancements, each jet representation brings different challenges and
trade-offs. Jet images, while benefiting from straightforward application of CNNs, risk infor-
mation loss due to fixed discretization and inherent symmetries. Sequence and tree-based meth-
ods impose artificial ordering constraints, potentially obscuring essential physical properties
due to loss of permutation invariance. On the other hand, graph and set-based approaches pro-
vide enhanced flexibility in capturing detailed particle correlations and remaining permutation-
invariant, but they introduce additional complexity in terms of computational resources and
model design. Consequently, selecting a suitable representation and corresponding model re-
quires careful consideration of task-specific demands, available computational resources, and

desired balance between representational accuracy and model complexity.

In Chapter 5, we give an introduction to a brand new quantum neural network architecture,
QCGNN, that employs a complete graph representation, where all particles within a jet are fully
connected with each other. Accordingly, this chapter focuses on the application of graph-based
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representations and various GNN architectures used for benchmarks. In addition, we discuss the
necessary and sufficient conditions for a model to have the property of permutation-invariance

over a set.

3.2 Graph Representation

Graphs provide a powerful and flexible abstraction for modeling systems characterized by
complex pairwise relationships. They appear ubiquitously across diverse scientific and practical
fields, such as social networks, biological systems, knowledge graphs, and recommendation
systems. The intrinsic structure of graph data enables representation of entities as nodes and
their mutual interactions as edges. Extracting information from the graph and designing an

efficient algorithm are fundamental challenges in GNNss.

Formally, a graph G consists of an ordered pair (V, £), where V represents the collection
of nodes (also called vertices), and £ C V x V specifies the edge set. Let N = |V| represent
the number of nodes. An edge connecting two nodes ¢ and j is denoted by E;;. Typically, an
undirected graph implies symmetry in the edge set, i.e., F;; = Ej;. Moreover, many practical
scenarios assume graphs to be unweighted, assigning equal importance to each edge by neglect-
ing numerical weights or attributes. In this dissertation, we focus on undirected, unweighted

graphs if not specified otherwise.

Figure 3.2: Illustration of a complete graph with 7 nodes, where each node is directly connected
to every other node. Adapted from [65].

A graph is said to be complete if its every distinct node pair is connected by an edge,
formally expressed as £;; € £ forall 7,5 € V with ¢ # j. An example of a complete graph
is shown in Figure 3.2. For undirected, unweighted complete graphs, the graph structure is
fully characterized by nodes and is mathematically equivalent to a set. In this special case, the

complete graph is used to emphasize the pairwise relationships among all elements.
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Each node i € V is has a vector x; € R? that corresponds to their feature, where d denotes
the size of the feature space. These vectors contain information that describes the correspond-
ing entities. In machine learning applications, node features act as the initial representations
used by models to carry out various downstream tasks, including classifying nodes, predicting

connections, and making decisions at the level of entire graphs.

Understanding and effectively utilizing the structural properties of graphs, such as node
features and connectivity patterns, remains a key area of ongoing research. The combination of
discrete structure and continuous feature representations makes graph learning both conceptually
rich and technically demanding, requiring continued development of innovative models and

computational techniques.

3.3 The Deep Set Theorem

In many machine learning tasks, particularly those involving sets or graphs, the input data
commonly manifests as unordered collections of elements. In these scenarios, models must
inherently respect the symmetry of the data, ensuring that their outputs are invariant under per-
mutations of the input elements. This property, known as permutation invariance, is crucial
for neural networks designed to handle sets or graphs since reordering the elements should not
affect the predictions or representations produced by the network. This concept extends nat-
urally from sets to graphs, where node permutations should leave the essential properties and

structures unchanged.

The Deep Set Theorem [66] provides a rigorous mathematical foundation for permutation-
invariant functions defined over sets, thus guiding the construction of deep learning models
suitable for set-based data (the neighbors of a graph’s node also form a set). This theorem has

widespread applicability across inputs inherently lack meaningful ordering.

Formally, consider a set X = {z1,x9,...,2y}, where each element x; € X denotes an
individual item, and NNV represents the set’s cardinality. Such a set X could represent diverse
contexts, including the neighborhood of a node within a graph, where node features are treated
as elements of the set. A function f is considered permutation-invariant with respect to X if it

satisfies the condition:

f({xﬂ(l), l’w(g), ce ,.IF(N)}) = f({ZL’l,[L’Q, Ce ,JIN}), (31)

for any permutation 7 of the indices {1, 2, ..., N}. This criterion implies that the output should
be unaffected by arbitrary rearrangement of the elements, ensuring the model’s output depends

solely on the intrinsic properties of the set rather than on any imposed ordering.
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The Deep Set Theorem characterizes permutation-invariant functions by stating that a func-

tion f acting on sets could be written into a canonical form:

f(X)=g (Z h(w)) : (32)

with some appropriate transformations or neural network modules denoted as g and h. Specif-
ically, the function h independently transforms each element x € X, after which the resulting
representations are summed, generating a global set embedding. Subsequently, the function g
acts upon this aggregated embedding to yield the final output. This formulation inherently en-
sures permutation invariance, as the summation operation is commutative, and the subsequent

transformation via g does not impose any ordering constraints.

The Deep Set Theorem serves as a foundational principle in the design of neural network
architectures for processing set-based or graph-based data, ensuring that learned representations
inherently respect permutation invariance. An illustrative application is jet discrimination in
particle physics, where the input data is a set of particles characterized by various features. Since
the physical identity and jets’ properties do not depend on any order in which its constituent
particles are presented, the classification must also be insensitive to such permutations. Thus,
employing models inspired by the Deep Set Theorem is essential to accurately capture invariant

properties and produce robust predictions.

In summary, the Deep Set Theorem provides a critical theoretical framework enabling the
construction of neural networks tailored for unordered data, guaranteeing that learned models
maintain the essential property of permutation invariance required across many practical appli-

cations.
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3.4 Message-Passing Graph Neural Network

Motivated by the Deep Set Theorem, Message-Passing Graph Neural Networks (MPGNNs)
represent a general and flexible neural network architecture that preserves permutation invari-

ance. Formally, MPGNNSs can be mathematically formulated as follows:

X =0 X0 @ o0 (x| (33)
JEN (i)

where ®() aggregates information from neighboring nodes N (7), and ") updates node features
at iteration [. Including the original SUM, MPGNN generalizes the > in Equation 3.2 by em-
ploying various aggregation methods (denoted as &), such as, MEAN, MAX, and MIN. These
aggregation methods can be formally expressed through suitable transformations which can be
absorbed into v and ®. For example, the MAX function can be represented using the limit of

the infinite norm:
— 1 D
MAX(X) = phm ( EEXx ) : (3.4)

Here, the set X is assumed to be positive real numbers. This assumption does not lose generality,
as the MAX function can be transformed into a positive domain by simply a shift, or through
a suitable transformation such as x — e, which is a monotonic function. Either way can be
absorbed into v and ®. Similarly, MIN can be expressed with an additional transformation

xr — %, which can also be absorbed into v and ®.

In short, the MPGNN has four steps:

1. Message passing: computes the pairwise information between neighbor particles.
2. Node aggregation: aggregates the correlations from neighbor particles.
3. Repeat steps 1 & 2 (optional).

4. Graph aggregation: final aggregation over nodes in the graph.

The procedures above are also depicted in Figure 3.3.

In the following subsections, we discuss prominent variants of MPGNN architectures widely
employed in high-energy physics, particularly jet discrimination tasks, including the Particle
Flow Network [55], Particle Net [8], and Particle Transformer [56]. These models serve as

classical benchmarks in comparison to the QCGNN approach discussed later in Chapter 6.
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Figure 3.3: A high-level overview of the procedures of MPGNN with an example of 3-particle
jet represented as a complete graph. Including (1) Message passing: computes the pairwise
information between neighbor particles. (2) Node aggregation: aggregates the correlations from
neighbor particles. (3) Repeat steps 1 & 2 (optional). (4) Graph aggregation: final aggregation
over nodes in the graph.
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3.4.1 Particle Flow Network (PFN)

The Particle Flow Network (PFN) [55], illustrated in Figure 3.4, leverages the set repre-
sentation of jet constituents. Each particle’s feature vector is individually processed through a
transformation ¢, aggregated using a summation operation (SUM), and finally passed through
another transformation v to yield the classification score £'. In practice, both ® and v are im-
plemented with neural networks, typically consisting of multiple fully connected layers. Math-

ematically, we can express it in the form of:

F=x

> @(xi)] . (3.5)

The PFN architecture is designed to be permutation-invariant, as the summation operation en-

sures that the order of particles will not affect the model output.

Particles Observable

Per—Particle Representation Event Representation

b —

I_w BN Foe

| ENSEENI
EYNNYK

Energy/Particle Flow Network

Figure 3.4: Architecture of the Particle Flow Network (PFN), adapted from [55].
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3.4.2 Particle Net (PNet)

The Particle Net (PNet) [8], inspired by the dynamical GNN proposed in [67], utilizes
EdgeConv blocks to manage computational complexity associated with graph representations
of jets. These blocks define fixed-size graphs using the k nearest neighbors (k-NN), as depicted
in Figure 3.5b, where k is the number of maximum edges to be constructed for each node. The
higher the £ value, the more edges are created, leading to a denser graph and more computational
costs. The initial metric used for calculating the distances between nodes are computed based

on coordinates in (7, ¢) space:

Dy = \/(Adi = Ay)? + (A — Argy)2. (3.6)
After the first iteration, the subsequent metrics used in latent feature space is the Euclidean norm:

l !
Dy; = [Ix{" —x{].. 3.7)
In the EdgeConv formulation, feature updates at each layer follow:

=0 P a0 <X§l—1>7xgl—1>_x§l—1>> , (3.8)
JENL (i)

where N} (i) denotes the k nearest neighbors of i-th node at [-th layer. Typically, both ® and ~
are implemented with fully connected layers.

The EdgeConv block captures local features by aggregating information from neighboring
nodes, effectively modeling the relationships among particles within a jet. Specifically, the
dynamical graphs in PNet are directed, as the corresponding k£ nearest neighbors depend on

nodes.

PNet aggregates node features via global mean pooling and then employs fully connected
layers to produce the final prediction, as illustrated in Figure 3.5a. The dynamic £-NN and

global pooling ensure permutation invariance within this model.
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Figure 3.5: Particle Net (PNet) architecture, adapted from [8].
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3.4.3 Particle Transformer (ParT)

Particle Transformer (ParT) [56] employs Transformer architectures, which is the founda-
tion that widely recognized in large language models nowadays. Without positional embeddings,
the attention blocks in the Transformers inherently operate as permutation-invariant models re-
sembling complete graphs. The attention mechanism computes relationships among all node

pairs through query (Q), key (K), and value (V') transformations (typically via linear matrices):

Attention(Q, K, V') = Softma (QKT) Vv (3.9)
VK, V) = X :
Vdy,

Here, (), K, and V result from applying linear mappings to the input features, and d;, denotes
the dimensionality of the projected latent space. The attention mechanism captures all pairwise
relationships among particles, including local and global, allowing the model to learn complex

interactions.

Since the attention mechanism computes interactions between all pairs of nodes, it inher-
ently represents a complete graph structure. Moreover, the Softmax operation constitutes a valid
aggregation function within this framework, as the exponential transformation and subsequent
normalization can be integrated into the functions ® and y defined in Equation 3.3. The attention
mechanism is rather complicated such that it is difficult to express it in the form of Equation 3.3.
Although the attention mechanism is relatively complex and does not readily fit the formulation
of Equation 3.3, it can still be viewed as a variant of message passing, for which each node ex-
changes mutual-information with every other node. This interpretation aligns closely with the
fundamental concept of MPGNNSs.

Specifically, ParT realizes the global pooling via a designated class token, then passing the
aggregated information through multi-layer perceptrons and a activation function via Softmax

to obtain the final classification score.

In summary, the attention mechanism and global pooling provide inherent permutation
invariance to the ParT architecture, and the pairwise computations among all particle pairs allow

capturing complex particle interactions.

28 doi:10.6342/NTU202501658


http://dx.doi.org/10.6342/NTU202501658

3.4 Message-Passing Graph Neural Network

Class token

L blocks
y A
(o)
-,g Particle Particle Particle At?“f? At(tjlaf§ o %
Particles |3 Attention Attention fp=======- Attention B‘lm 11?11 B‘lm 11?“ g g
‘é x0 Block Block xL-1 Block oc oC 3
) A A
(o)
5| u
Interactions —»| § ........ —_)
g
=
!
Xclass
A
( )
P-MHA 2

( MatMul )

v A
SoftMax
U — —>@-

0 K
( Linear ) (Linear ) ( Linear )
1 7

|
X
-1 L
X Xclass X

(c) Class Attention Block

(b) Particle Attention Block
Figure 3.6: Particle Transformer (ParT) architecture, adapted from [56].
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Chapter 4

Quantum Machine Learning

To properly introduce our model, QCGNN, it is essential first to establish foundational
knowledge concerning quantum computing and quantum machine learning. This chapter aims
to review fundamental principles of quantum computation, beginning with an overview of quan-
tum bits (qubits), quantum operations and quantum gates. These concepts are the basis for un-
derstanding quantum information processing and computing. Additionally, we briefly cover the

overview on the hardware of IBM quantum computers.

We subsequently focus on the Variational Quantum Circuit (VQC) framework, a hybrid
quantum-classical approach for quantum neural networks. In this framework, classical opti-
mization routines iteratively update quantum circuit parameters to minimize a predefined cost
function, effectively integrating quantum computational power with classical optimization tech-
niques. At the end of this chapter, we discuss the techniques and the concepts frequently used

in constructing VQCs, which are also foundations of our QCGNN.

4.1 A Review on Fundamentals of Quantum Computating

4.1.1 Qubits and Quantum Entanglement

In quantum computation, the quantum bit, or qubit, serves as the elementary unit of quan-
tum information. Unlike classical bits that only have two distinct states, O or 1, a qubit is able to

lie in a linear superposition of those two states. Mathematically, the expression of the quantum

a
= H , (4.1)

doi:10.6342/NTU202501658

state of a single qubit can be described as:

0

[Y) =al0) +b]1) =a (1) +b
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|1)

Figure 4.1: A visualization of a qubit on the Bloch sphere. The angles 6 and ¢ define the qubit’s
position on the sphere. This figure is adapted from [68].

where |0) and |1) represent the computational states, and a and b are complex coefficients that
determine the probability amplitudes for measuring the qubit in each of these states. The uni-
tarity of the quantum state requires |a|® + |b|> = 1 to ensure that the sum of the probabilities of

all measuring outcome will add up to one.

Figure 4.1 provides a visualization of a qubit, which the jargon calls it the Bloch sphere. In
this representation, the qubit’s state is characterized by two arguments, which are the azimuthal

angle ¢ and the polar angle 6. The state of the qubit is usually written as:

1) = cos (g) |0) + €' sin (g) 1), (4.2)

where the global phase €'* is omitted, as it does not influence the physical properties of the state.

For multi-qubit systems, the total state of the qubits can be expressed in the form of product

of tensors that described each qubit state. For instance, consider two qubits in arbitrary states:

[91) = a1 0) + b1 [1),

(4.3)
|1h2) = a2]0) + b2 [1) .
The combined state of the two qubits is given by the tensor product:
V) = [11) ® [tha)
= (a1 |0) + b1 [1)) @ (a2[0) + b2 [1)) (4.4)

= a102 |00> + CL1b2 |01> + b1a2 |10> + blbg ’11> .
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Here, |ij) denotes the tensor product |i) ® |j). A general quantum state of two qubits can thus

be expressed as a linear combination of the four computational basis:
’w> = Coo ’OO> + Co1 ‘01> + C1o |10> + C11 ’11> s (45)

where ¢;; are coefficients with complex numbers corresponding the probability amplitudes for
each of the basis states. A two-qubit system is considered entangled if the state can not be
decomposed into a simple tensor product of single qubit states. E.g., \/%(]00> + |11)) is an
entangled state, whereas |01) = |0) ® |1) and |10) = |1) ® |0) are not entangled.

4.1.2 Unitary Transformations and the Quantum Gates

The time evolution of a quantum state, as stated by the principles of quantum mechanics,
follows unitary transformations. These operations are described using unitary matrices, which
ensure that the inner product is preserved, thereby maintaining the normalization of the quantum

states. A unitary matrix U satisfies the relation:
Ul =1, (4.6)

where UT denotes the Hermitian conjugate (complex conjugate transpose) of U, and I stands for
the identity matrix. When a unitary operator acts on a quantum state |¢/), the resulting expression

becomes:
") =U ), 4.7)

where |¢') is the transformed state. Just like classical logic gates, quantum gates serve as essen-
tial building elements in quantum circuits. These gates modify qubit states and are mathemati-

cally expressed as unitary matrices operating on quantum state vectors.

In quantum computers, the unitary transformations are implemented through quantum gates,
which are the basic components of quantum circuits. Quantum gate consists of single-qubit gates
and multi-qubit gates. Single qubit gate is applied on one qubit at a time, while multi qubit gates
operate on two or more qubits simultaneously. The quantum circuits are drawn as sequences
of quantum gates operated on qubits. The quantum circuit diagram consists of horizontal lines
representing qubits, and quantum gates are represented as boxes. The final state of the qubits
is obtained via implementing the gates in sequence and is traditionally depicted to be operated

from left to right. Here, we show some of the quantum gates that will be frequently used later.

* Hadamard Gate (H): The Hadamard gate creates superpositions of computational basis.
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_H_

Figure 4.2: The Hadamard gate depicted on the quantum circuit.
It is represented by the matrix:

g (b1 (4.8)
B 1 —1|° '

The Hadamard gates transform the computational basis |0) and |1) as follows:

1

H10) = —=(|0) + 1)),
\? (4.9)
HI1) = E(M) —[1)).

* SWAP Gate: The SWAP gate is a two-qubit gate that swaps the states of two qubits. It

N

Figure 4.3: The SWAP gate depicted between two qubits.

is represented by the matrix:

SWAP = (4.10)

o O O =
o = O O
o O = O
— o O O

The SWAP gate transforms the basis states as follows:

SWAP [00) = |00)
SWAP |01) = |10,
SWAP |10) = |01)
SWAP|11) = |11)

I

(4.11)

* CNOT Gate (Controlled-NOT): The CNOT gate is a two-qubit gate that is crucial for
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creating entanglement. It is represented by the matrix:

CNOT =

_ o O O

0
0
1
0

o O O =
o O = O

CNOT |00) = |00),
CNOT |01) = [01),
CNOT [10) = [11),
CNOT [11) = |10),

)
\' %

CNOT — SWAP - CNOT - SWAP,

Figure 4.6: General single-qubit gate.

35

Figure 4.4: The CNOT gate, where the control qubit and the target qubit are depicted as the first
and second qubit, respectively.

(4.12)

The CNOT gate flips the state of the target qubit if the control qubit is in the state |1):

(4.13)

where the first qubit is the control qubit and the second qubit is the target qubit in con-

ventional notation. To get the representation where the first qubit is the target qubit and

Figure 4.5: The CNOT gate, where the control qubit and the target qubit are depicted as the
second and first qubit, respectively.

the second qubit is the control qubit, we can use the following transformation:

(4.14)

such that the CNOT gate undergoes a unitary transformation by the SWAP gates.

* Rotation Gates (2., I, and 2.): The rotation gates are single-qubit gates that apply a
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rotation with the SU(2) generators, also known as the Pauli matrices. The Pauli matrices

X:[O 1], Y:[Q _1, Z:[1 0], (4.15)
10 i 0 0 —1

which are known as Pauli matrices. These rotation gates are single-qubit gates and are

are defined as:

represented as follows:

0
A cos (%
R.(0) = e X/2 = cos (Q) I —isin (Q) X = ¢
2 2 (
| ; . [eos(®) —sin

— —i0Y /2 _ -z P _ —
R,0)=e cos (2)1 zsm<2>Y . .
2 2

—i6/2
— ,—10Z/2 _ Q — 741 Q — ‘ 0
R.(0)=e =cos| 5 I —isin i Z =

0 61'9/2

These rotation gates rotate the qubit state vector by an angle # around the respective axis
(X, Y, or Z) of the Bloch sphere. Any single-qubit gate can be expressed as a combination
of these rotation gates with an additional global phase, which is not relevant to the final

computation. Ignoring the global phase, any single-qubit gate can be decomposed as:

e 0T/ 2 cos (8)  —e'®)/2sin (§)
R(¢,0,w) = R,(w)R,(0)R.(¢) = . (4.17)
677:((13*"-’)/2 sin (g) ei(¢+w)/2 cosS (g)

4.1.3 Measurements and Observables

In quantum mechanics, measurement is the special operation of obtaining information from
a quantum system. When measuring a qubit, it turns out to be one of its basis states of the
observable with a probability corresponded to the coefficients of the basis, where the qubit is
said to be collapsed. For example, if a qubit is in the state [¢)) = «|0) + 3 |1) and measured with
a Z observable, the probabilities of measuring |0) and |1) are given by || and | 3|2, respectively.
Given an observable O, the expectation value of in the state |¢)) corresponding to observable O
is given by:

(0) = WO Y). (4.18)

An observable must be Hermitian, meaning it has real eigenvalues and orthogonal eigen-
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X

0O— H R
7

X

1) X

Figure 4.7: A Bell state |¢)) = \%(|01) + |10)) where the first qubit and the second qubit

are measured in the X-basis and Z-basis, respectively. The calorimeter symbol stands for the
measurement.

states. According to the spectral theorem, any Hermitian operator can be decomposed as linear

combinations of its eigenstates:

O => "\ lwi) (W], (4.19)

where \; are the eigenvalues and |1);) are the corresponding eigenstates. For example, the com-

monly used Pauli matrices can be decomposed as:

0 1

X = | 0] = [1) (0] +10) (1],
0 —i] .

Y = Z. o] =4|1) (0] —]0) (1], (4.20)
1 0

Z = o _1] = 10y (0] — 1) (1].

Figure 4.7 shows an example of a two-qubit quantum circuit, where the final quantum state
is a Bell state [¢) = \%(\Ol} +|10)). The first qubit is measured in the X -basis, and the second

qubit is measured in the Z-basis.

4.2 1BM Quantum Computers

Several physical platforms have been explored for the realization of quantum computation,
each leveraging different physical phenomena to implement and manipulate qubits. These in-

clude trapped ions, which use the internal electronic states of ions confined by electromagnetic
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fields; neutral atoms in optical lattices; nitrogen-vacancy centers in diamond; nuclear magnetic
resonance (NMR); and photonic systems using single photons and linear optics. Each of these
platforms has distinct advantages and challenges in terms of scalability, coherence times, gate

fidelity, and readout mechanisms.

IBM Quantum Computers [69] are based on superconducting qubits, which are macro-
scopic quantum systems engineered from electrical circuits. These systems operate at cryo-
genic temperatures and leverage the principles of circuit quantum electrodynamics (cQED) to
control, manipulate, and measure quantum information. In this subsection, we give a brief intro-
duction of the underlying physical architecture, Hamiltonian formulation, gate implementation,

and readout mechanisms that enable quantum computation on the IBM quantum platform.

4.2.1 Superconducting Qubits and Circuit Hamiltonian

IBM’s qubits, also known as the transmon qubits, are realized using nonlinear supercon-
ducting circuits, most notably based on variations of the LC' (inductor-capacitor) oscillator. In

the classical regime, the Hamiltonian of an ideal linear LC' oscillator is given by:

1 1
H = 5LI2 + 5Ov2, 4.21)

where V' is the voltage between the plates of the capacitor, and [ is the current through the
inductor. Using the relations ) = C'V and I = ‘Z—?, where () is the charge stored on the
capacitor, we can express the Hamiltonian as:

1 @
=L@+~ (4.22)

This leads to the classical Lagrangian
£0Q.0l = 1¢? — & (4.23)
2 2C
The canonical momentum conjugate to () is given by:
_ 9L _
oQ

where ® is identified as the magnetic flux. Therefore, the Hamiltonian expressed in canonical

P : LQ, (4.24)

variables becomes:
®” @& 4.25
H=—+—=2. )
2L a0 (4.25)
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The Hamiltonian is structurally identical to the form of a harmonic oscillator:

p* 1
H="— 4+ —mw?a? (4.26)
2m 2
with the correspondences () <> x, ® <> p, L <> m,and w = \/% Upon quantization, () and ¢
become operators satisfying the canonical commutation relation:
[Q, d] = ih. (4.27)
The energy spectrum then follows:
_ 1
En:hw(n+§), n=0,1,2,... (4.28)

However, the equidistant spacing of energy levels in a harmonic oscillator prevents its direct use
as a qubit. An externally applied microwave pulse resonant with the |0) — |1) transition could
also unintentionally excite the |1) — |2) transition, leading to leakage out of the computational

subspace.

To address this issue, the linear inductor is replaced with a nonlinear element known as
the Josephson junction. A Josephson junction is constructed with two superconductors that

seperated by a thin insulating barrier, and its current-phase relation is given by [71]:

I = I.sin (i—ﬁ@(t)) : (4.29)

0

where the critical current is denoted as /., and &, = 2—”’6 is the magnetic flux quantum. In the

junction, the corresponding potential energy stored is obtained via:

2 Dol
U(p) = —/[(QD) d® = —Fjcos (—WCD) , with E;= : ) (4.30)
q)o 21

where F; is referred to as the Josephson energy.

If the inductor inside the LC oscillator is replaced by a Josephson junction, the total Hamil-
tonian becomes: )

H:%—chos(gzﬁ), (4.31)

where ¢ = %’SCI). This is the Hamiltonian of a nonlinear oscillator, commonly referred to as a
Josephson junction qubit. Specifically, the transmon qubit operates in the regime where E; >
Ec, with B = % being the charging energy [72]. In this limit, the system behaves like
a weakly anharmonic oscillator, where the energy levels remain nearly harmonic but exhibit

sufficient nonlinearity to distinguish the states |0) and |1) from higher levels.

The cosine potential introduces the required anharmonicity, enabling reliable qubit opera-
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Figure 4.8: Image adopted from [70]. (a) LC' circuit. (b) The energy spectrum of quantum
harmonic oscillators. (¢) LC' circuit replaced by a Josephson junction. (d) The energy levels of
the quantum anharmonic oscillator, where the Josephson junction introduces the anharmonicity.
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tions restricted to the two-level subspace. This design prevents leakage and becomes foundations

for several superconducting quantum computing architectures, such as those deployed by IBM.

4.2.2 Qubit Control via Microwave Drive
C
p
Cext I
Vi) (V)0 L

-

E,

S

Figure 4.9: A single transmon qubit coupled to an external driving microwave field. Figure
adapted from [71].

The transmon qubit is manipulated through the application of externally driven microwave
pulses. This control is implemented by coupling the superconducting circuit to a voltage source
via an external capacitor. The presence of this capacitor modifies the system’ s Lagrangian,

originally given in Eq. 4.23, to the following form [71]:

Llp, 4] = %& + Eycosd + 026’“ (V(t) - q's)g , (4.32)

where Cey, is the external coupling capacitance, and V' (t) is the time-dependent driving volt-
age. The total system now behaves as a weakly anharmonic oscillator subject to an external
drive, allowing selective control of transitions between energy levels. The effective interaction
Hamiltonian induced by the microwave drive can be expressed as:

H o V() [sin(wt)ox — cos(wt)ay], (4.33)

nt

where w 1s the drive frequency, and o’y and oy are Pauli operators acting on the qubit. By
selecting a suitable voltage waveform V' (¢) (e.g., a sinusoidal), one can implement arbitrary

rotations around axes in the Bloch sphere.

To implement entangling gates between qubits, direct interaction between multiple trans-

mons must be introduced. A common coupling mechanism is through a shared capacitor or bus
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resonator. Consider two transmon circuits coupled with capacitors, the total Hamiltonian can
be written as:
H = Hy + Hy + Hi, (4.34)

where H; and H, are the individual transmon Hamiltonians, and the interaction term is:
Hint - Cg‘/l‘/Qa (435)

with Cy representing the mutual coupling capacitance, and Vi, V5 the voltage operators associ-
ated with the two qubits.

In the qubit basis, and under appropriate approximations, this capacitive interaction induces
terms such as o{ o3 or ojo;, which form the basis of commonly used entangling quantum gates,
e.g., the controlled-Z (CZ) or iSWAP. These gates are realized by tuning the drive frequency
near the avoided crossing of specific multi-qubit energy levels or by parametrically modulating
the interaction strength.

These entangling operations are important for universal quantum gates. The specific cou-
pling architecture determines the available gate set, the strength and type of interactions, and the
gate speed. Careful calibration and error mitigation techniques are used to ensure high-fidelity
two-qubit operations, with IBM Quantum systems currently achieving two-qubit gate fidelities

above 99% in several devices.

4.2.3 Cryogenic Environment and Dilution Refrigeration

Quantum computers based on superconducting circuits require extremely low temperatures
to operate correctly. IBM Quantum systems achieve this by placing the quantum processor inside
a specialized cryogenic system known as a dilution refrigerator, often informally referred to as
the ”big fridge”. This refrigerator cools the qubit chip down to temperatures as low as 10 -
15 millikelvin, and operational temperatures are typically around 4 millikelvin, which is just a

fraction of a degree above absolute zero.

The dilution refrigerator works by taking advantage of the special features of a mixture of
two helium isotopes: “*He and *He [74]. Maintaining this ultra-cold environment is critical for

the proper operation of superconducting qubits. There are three main reasons:

1. Superconductivity: The materials used in the qubits must be in a superconducting state
to function. Superconductivity only occurs below certain critical temperatures. At mil-

likelvin temperatures, superconductivity is stable and reliable.

2. Reducing thermal noise: At higher temperatures, thermal energy can excite the qubit
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Figure 4.10: A dilution refrigerator used to cool quantum processors to millikelvin temperatures.
Multiple temperature stages are stacked vertically, with the quantum processor mounted at the
bottom-most plate. Figure adapted from [73].
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from the ground state to higher states, causing decoherence or unintended operations. By
cooling the system to 4 mK, the thermal energy k57" becomes much smaller than the qubit

energy gap hw,, suppressing these excitations.

3. Improving coherence times: Low temperatures reduce the interactions between the sur-
rounding environments (such as phonons or stray photons) and qubits. This leads to longer

coherence times, allowing more quantum operations to be performed before errors occur.

Figure 4.10 shows an illustration with the similar structure of an IBM dilution refrigerator.
The quantum chip is mounted at the bottom stage, where the temperature is lowest. Higher tem-
perature stages are used to shield and support the system, ensuring minimal thermal load reaches
the qubits. This cryogenic environment is essential to implement superconducting circuits and
protect the qubits, allowing IBM’ s quantum computers to perform coherent quantum operations
with high fidelity.

4.3 Variational Quantum Circuit (VQC)

4.3.1 The Ansatz of Variational Quantum Circuit

The Variational Quantum Circuit (VQC) [28-30] is a hybrid approach that integrates quan-
tum and classical components to address optimization problems in quantum computing. This
framework utilizes quantum features such as the entanglement and the superposition, while em-
ploying classical techniques for optimization. In a VQC, the quantum circuit is governed by
tunable classical parameters. These parameters are refined through repeated application of clas-

sical optimization routines, with the goal of reducing a predefined cost function.

As shown in Figure 4.11, a VQC typically comprises two main components: data encoding
and introduction of tunable parameters, with the corresponding unitary transformations denoted
as Ugne and Uparawm, respectively. For an n-qubit VQC, the circuit’s output can be expressed

as:
f(x,0) = (0]*" U'(x,0)PU(x, 6)]0)*", (4.36)

where P is a Pauli string representing a measurement observable, and U is a unitary operator.
The quantum state begins in the n-qubit |0) state, denoted |0)". The unitary gate U will encode
classical data x on the qubit while also introducing tunable parameters 6.

A Pauli string refers to a product of Pauli operators acting on multiple qubits, typically
structured as a tensor product. For instance, X; ® Z; represents a configuration where the 1st

qubit is associated with an X measurement and the 2nd qubit with a Z measurement. In actual
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Figure 4.11: An example of a VQC circuit with three qubits, with all qubits initialize to |0). The
data x € R is encoded through the rotation gates, and the tunable parameters 6; are introduced
through the rotation gates, then the circuit is applied with a series of controlled gates to produce
the entanglement. The final output is the expectation value of the X -basis measurement in the
first qubit.

implementations, quantum hardware is generally limited to measurements defined by specific
sets of observables. To address this, many observables are rewritten as sums over multiple Pauli
strings. As a result, in the context of variational quantum circuits (VQCs), the observable P is
often selected as a Pauli string or as a sum over such strings, allowing it to be represented in

terms of Pauli matrices.

In most cases, both data encoding and parameterized unitary operations are implemented
using general rotation gates as described in Equation 4.17. Consequently, the data x is usually
normalized to a specific range, typically either [0, 1] or [—, 7|, to ensure that the parameters

remain within the operational range of the rotation gates.

The process follows a structure similar to classical machine learning workflows. After the
quantum circuit is evaluated, the expectation values of the observable P are either passed to
another classical neural network or used directly as output. The loss function is then defined
based on these values, and the gradients of the tunable parameters are computed. The gradients
are collected to iteratively tune the parameters until the loss function converges, ensuring the

optimal quantum circuit configuration.
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4.3.2 The Parameter-Shift Rule

Unlike classical computing, where outputs are deterministic, quantum computation is in-
herently probabilistic, causing expectation values to be affected by noises from statistical fluc-
tuations. Consequently, traditional finite difference methods become impractical for computing
gradients of VQCs. To circumvent this challenge, the PARAMETER-SHIFT RULE (PSR) [75-77]
provides an analytical method to compute these gradients precisely, requiring only minor mod-
ifications of the original VQC. Here, we derive the PSR specifically for single-qubit rotation
gates generated by Pauli matrices. A comprehensive discussion on more general single-qubit
gates is discussed in [75-77].

Consider a single-qubit rotation gate parameterized by an angle 6 and generated by a Pauli
matrices 0 € {X,Y, Z} (defined explicitly in Equation 4.20). The corresponding unitary oper-

ator can be expressed as:

, 0 0
U,(0) = €127 = cos (5) I —isin <§) o. (4.37)

For an n-qubit VQC initialized to |0)*", with unitary operations
Uy, ..., U, Us(0),Uiyq, ..., Uy, (4.38)
followed by measurement of an observable P, the output function f(#) is given by:

£0)= Ul .. .Ulu, U, .. U PUy.. .U U, 0)U;... U [0)*" (4.39)

= (V| Us(0)T AU, (6) [v) , (4.40)
where 1) = U;... U, |0)*" and A = UJH .U\ PUy ...U;. The derivative of the expecta-
tion value, i.e., the model output f(#), with respect to € can be computed as:

d »
VO _ o) [ 020)40,0) ) + (1 VL0 A2, 0)] [
1 —1i0
Al—=U,(0 Al—=U,(0
<¢|[\/_ Ui(9)] [\/5 ()]|¢><|[\/— Ui(9)] [\/i ()] 1¢)

(4.41)
= (0| [sin(5)ioUL(9)] Aleos(7) U (9)] 1)

+ (] oos( UL O AL sin(F)ioU, (6)] [)

where the property of Hermicity of Pauli matrices, i.e., ¢ = of, are used. By exploiting the

periodic structure of Pauli rotations and using trigonometric identities, the gradient can be rep-
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resented in terms of function evaluations at shifted parameter values:

J0+5) = WIULO + D)AUL(0+ 7))
= (W] [(cos(]) + isin(})o)UL(0) | AU (9) ) (442)

+ (W UJ(0)A |(cos() — isin($)o)Un (6)] 1),
and

f(60 = 3) = @|UL6 - 5)AV,(63) |¥)

2

= (U] |(cos(§) — isin(F)o)U3(6) | AU (0) [) (443)

+ (| Uf(0)A [(cos(%) +isin(T

Do) [0).

Through algebraic simplification, one arrives at the explicit form of the PSR for gradients respect

to rotation gates generated by Pauli matrices:
df(f) 1 s T
w ~3lf(0+3)-r(e-3)] (449

Figure 4.12 demonstrates an illustration of how PSR implemented respect to a single qubit,

typically a rotation gate, with tunable parameters w, ¢, 6.

—(z7 - —fo =
2 ! —Eb - g}
200 " Z(HEB- gz

Figure 4.12: An illustration of parameter-shift rule respect to a single qubit with parameter 6.
The other parameters w and ¢ stay constant when calculating the partial derivative respect to 6.

Equation 4.44 enables efficient and exact computation of gradients within VQCs, solving
the issues from the inaccuracies caused by finite difference approximations. This approach is
particularly advantageous in large-scale quantum circuits, significantly improving scalability
and precision. Furthermore, the PSR naturally extends to multi-qubit gates by applying the rule

individually to each parameterized gate acting on the constituent qubits of the circuit.
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4.3.3 Data-Reuploading Technique

To enhance the expressiveness of VQCs, the data-reuploading technique [78] is frequently
utilized. This method involves repeatedly encoding the input data into the quantum circuit,
eventually allowing the circuit to capture more complicated relationships of the data. By intro-
ducing multiple repetitions of the data encoding step interleaved with parameterized gates, each
reuploading introduces distinct tunable parameters, thus significantly augmenting the model’s

capacity to represent complex data relationships.

Typically, as illustrated in Figure 4.13, the data-reuploading approach alternates between
data encoding gates (Ugnc) and parameterized gates (Uparam). For practicality, the data en-
coding ansatz usually remains fixed across reuploading steps, while the parameters of the gates

differ each time to enhance model expressiveness.

Uparam (90) UENC(-T) Uparam (91) Ugne (I) Uparam (9L—1) Ugne (l’) Uparam (9L)

Figure 4.13: A VQC example that employs the data-reuploading technique. The data encoding
gates Ugnc (red) and parameterized gates Uparam (green) alternate and are applied L times (or
L + 1 times with an additional Uparam at the beginning). While the encoding ansatz remains
the same across repetitions, distinct parameters 6 are utilized in each repetition, significantly
increasing circuit expressiveness.

A formal mathematical justification of the increased expressiveness provided by data-
reuploading is presented in [79]. Here we outline a concise yet rigorous argument from the
literature. Without loss of generality, we assume the Hamiltonian associated with the data en-
coding gate (Ugnc) is diagonal. Specifically, any Hermitian matrices can be diagonalized via
unitary transformations, with these transformations can be absorbed into the parameterized gates
(Uparam)- Denoting the eigenvalues of the encoding Hamiltonian as {1, ..., Ay}, with d rep-

resenting its dimensionality, one defines:

Aj=X 4+ A with j € [d]*, (4.45)

JLs

which are sums of all d* combinations of eigenvalue sums. These sums determine a real-valued
set:
Q={Ac—4A; with k,je[d"}. (4.46)

As demonstrated in [79], the output function of the VQC given input data x is a summation of
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Fourier series, and can be written as

VQC(z) = ) a,e™, (4.47)

weQ
where a,, denotes Fourier coefficients corresponding to frequencies w € (). As the number
of reuploading L increases, the set {2 expands due to the combinatorial increase in eigenvalue
combinations. Consequently, the circuit can approximate increasingly intricate functions even
with a fixed encoding ansatz. Thus, the data-reuploading technique substantially enhances the

expressiveness of VQCs, facilitating their scalability and capability to model complex tasks.
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Chapter 5

Quantum Complete Graph Neural
Network (QCGNN)

For this chapter, we give an detailed explanation of the Quantum Complete-Graph Neural
Network (QCGNN). In short, the QCGNN is a quantum variant of the graph neural network
and specifically designed for complete graphs. This architecture is particularly suitable for jet
discrimination tasks in HEP, where each particle within a jet is treated as a node in a fully

connected graph.

The QCGNN is constructed to be permutation invariant and supports both classification
and regression tasks. It leverages quantum entanglement and parallelism by employing VQCs
with carefully chosen observables. We also analyze the computational complexity of QCGNN
and demonstrate its potential efficiency advantage over classical models. Furthermore, we ex-
plore its connection to quantum kernel methods, which is known as a well-studied approach
in theoretical machine learning, and discuss extensions of the QCGNN to sequential data and

general graph structures.

5.1 Model Architecture of QCGNN

The QCGNN employs two distinct quantum registers, where the 1st quantum register is
called index register (IR). The “index” stands for the reason of relations to indices of data. On
the other hand, the 2nd quantum register is named network register (NR) for reason of containing
trainable parameters. For a complete graph with IV particles (N nodes), the IR encodes particle
indices, while the NR is used for the quantum neural network (i.e., the VQC ansatz). Although
the particles are indexed during preprocessing (seemingly breaking permutation invariance), we
show that with a properly designed measurement observable, the final output remains permuta-

tion invariant.
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The IR consists of n; = [log, V| qubits, sufficient to represent N basis states. For ex-
ample, five particles are encoded as [000) to |100) in binary. The NR consists of ng qubits,
a tunable hyperparameter analogous to the number of hidden neurons in classical MLPs. In-
creasing ng enhances the model’s expressive power. A long-standing hypothesis in quantum
computing is that deeper and wider VQCs can learn richer representations than classical models,

potentially enabling quantum advantage.

Step 1: Uniform Superposition Initialization

)
O

0)— X — R,|—2arccos ( 1/5)]

|0) H

0) H—

Figure 5.1: A quantum circuit of uniform state oracle that prepares a uniform superposition over
N =5 states.

We initialize the IR into a uniform superposition of N basis states:

50 = — le ) o) (5.1)

where |i) spans the computational basis of the IR and the NR is initialized to |0)*"?. When
N is not a power of two, this state cannot be prepared using Hadamard gates alone. Instead,
specialized circuits known as Uniform State Oracles (USOs) are used to construct this super-
position [80, 81]. Figure 5.1 illustrates such a circuit for N = 5. Section 5.1.1gives a detailed

implementation on USO.
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Step 2: Particle Information Encoding

For i-th particle, the corresponding feature vector x; will be encoded on the NR through a

unitary transformation Ugnc(X;), conditioned on its corresponding IR basis state:

n \ 1 En i) Uene (x:) [0)°"¢if j =4,
Ci'" Upne(xi) [15) 10)7"°] = - _ (5.2)
17)10)"e otherwise.

Applying these controlled gates for all 7 results in the state:

=

1h1) = /i) Upne(x;) 0)7"9 . (5.3)

2=

<.
Il
o

While the construction appears dependent on particle ordering, we will demonstrate that the
output remains permutation invariant after measurement with a suitable observable. Details on

decomposing the multi-controlled unitaries into elementary gates are presented in Section 5.1.2.

r | i T [ I _
(nr =3) . I ] I —
| T T
(anli 2) ) Usnc(X0) | |Uene(x1) | |Usne(x2) | | Uene(X3) | | Usne(Xa)

Figure 5.2: Quantum circuit encoding five particle features via multi-controlled gates. White
and black circles denote control values of 0 and 1, respectively. The NR has ny = 2 qubits.

Step 3: Parameterized Ansatz

We introduce trainable parameters via a standard variational ansatz Uparam () acting solely

on NR:
N-1

Z ‘2 UPARAM UENC(Xz’> |0>®nQ . (5.4)

=0

1
=
|12) param(0) Y1) = N
Each x; is transformed identically under Uparam (@), analogous to the shared ¢ function
of classical MPGNNs in Equation 3.3. To improve expressiveness, we use a data-reuploading

technique, alternating Ugne and Uparam layers across R repetitions:

N-1

> i) HUPARAM 0" Upne (x;) | 10)°" . (5.5)

=0

%\H
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For simplicity, we denote

x;,0) = HUPARAM NUene(x;) | [0)%72. (5.6)

Step 4: Measurement with J ® P

Let P be a Pauli observable on the NR. Measuring the state yields:

=

<¢|P|¢> = <Xz’0|P|XZ’ > (5.7)

2|~
¥

i

To achieve permutation invariance, we consider a Hermitian operator on the IR, denoted as J

and defined as the all-ones matrix. Measuring with J ® P yields:

N—-1N-—
(¥|J @ Ply) = %ZOJZO (x;,6| P|x;,0),
] N-1n-l (5-8)
=5 h(xi, x;; P),
i=0 j=0
where
(xxs; P) = 5 ({50,681 Pl 8) + (x,,8] P [x. )] (5.9)

ensuring symmetry. This measurement aggregates over all pairwise interactions and is therefore

permutation invariant.

In practice, the observable J is constructed as:

J = ®([q+Xq), (5.10)
q=1

where I, and X, denote the identity and X-Pauli operators on the ¢-th IR qubit, respectively. To

exclude self-interactions, we subtract the identity contribution:
nr
J—=J-Q 1, (5.11)
q=1

An example of the affects of different Pauli strings on the IR qubits is shown in Figure 5.3.

In summary, Figure 5.4 illustrates the QCGNN circuit, which consists of a USO, followed
by R repetitions of Ugnc and Uparam layers. The final measurement is performed with the

observable J ® P, yielding a permutation invariant output.
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Figure 5.3: Illustration of how Pauli X observable affects the IR qubits. This figure shows a jet
with six particles. The edges show the different combinations of Pauli X observables acting on
the IR qubits. The edges with same color represent the pair correlations of the same Pauli string.

Re-upload for R times

><$\><

IR | | SO |
(nr =2) ] v E

NR !
omn| i |Usel

UENC(Xl)

UENC(X2)

Uparam(0™) i

MRE MRS

Figure 5.4: An example quantum circuit for the QCGNN with N = 3 particles, using n; = 2
and ng = 4 qubits. The circuit starts with a USO (purple box), followed by R alternating
layers of encoding ansatz (red boxes) and parameterized gates (green boxes). Measurements
are performed on IR in the X basis. For NR, we arbitrarily chosen measurements in the Z
basis. The final output is computed by evaluating the expectation value of J ® P, as defined in

Equations 5.8 and 5.10.
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5.1.1 Uniform State Oracle

The Uniform State Oracle (USO) is a quantum algorithm designed to prepare a uniform
superposition of NV basis states, starting from an initial state in the |0) superposition. One of
the USO ansatz can be found in [80], which requires only O(log, N) two-qubit gates. Here, we
provide a high-level motivation, while leaving the derivation in the original work [80].

7-th 4@ m O O (;(\
w_J .

6-th H 7{
5-th RY O O O O r—H (A)
BB 10— @
) A
2-nd r—H—w (A
) 2

M) )
- @)
) )

0th — | L é)

Figure 5.5: A USO quantum circuit for N = 164, drawn with PennyLane package [82]. The
qubits in the top and the bottom are the most significant and least significant qubits, respectively.
The qubits are labeled from 0 to 7. The 0-th qubit is the least significant qubit and the most
significant qubit is the 7-th qubit.

Consider an even number N = 164. Its corresponding binary representation is 10100100,
where the rightmost qubit (the 0-th qubit) stands for the least significant bit, and the leftmost
qubit (the 7-th qubit) represents the most significant bit. The corresponding USO quantum
circuit is shown in Figure 5.5. The circuit is designed to prepare a uniform superposition of N
states, beginning with the initial state [0)®®, which is the 8-qubit state |00000000). The core
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objective is to create a uniform superposition state as follows:

163

1 1
= — i) = —— [/00000000) + |00000001) + - - - 4 |10100011)] . 5.12
1) = 7757 211 = 7757 100000000) + 100000001) + -+ [10100QLY | $.12

Here, we denote |h) = |0) + |1), where we intentionally omit the normalization factor ==, as it

f)
will be useful later for canceling other factors. We can decompose |¢)) into groups as follows:

) = —= [|0hhhhhhh) + [100khhhh) + [101000kh)] (5.13)

i |

This decomposition is justified by observing that the last state, [10100011), falls into the group
|101000hA). Notably, the groups [0hhhhhhh), |100hhhhh), and |101000hh) correspond to 27,
25, and 22 states, respectively, which sum to 164 = 27 + 2° + 22,

Starting from the state |¢)) = |0)®®, we first apply X -gates to the 5-th and 7-th qubits, while
the 2-nd qubit remains in the |0) state. Subsequently, we further use the Hadamard gates to all
qubits on the right-hand side of 2-nd qubit, such that the result is:

) = [00000000) 2 110100000) £ ,/ 1101000RA) . (5.14)

To create the group |100hhhhh), we need to rotate the 5-th qubit into a superposition of
|0) and |1), with some suitable coefficients. Since the final coefficient is /67 = \/ 5735752+

we apply an R, gate to 5-th qubit via an angle § = —2arccos (« / ﬁ)

922 \V 27+25+22 \/ 27+25+22
—2 arccos _ , (5.15)
27+25+22 \/ 27+25 \/
27+25+22 27+25+22

which ensures that the coefficient of each state in [101000AhR) is 4/ m The quantum state

R,

then becomes:

) = \/ L, _2+7 11000001 %) + = 1101000hA) (5.16)
- 22 97 4 95 1 92 7 195 4 92 : :

Next, we apply controlled Hadamard gates to the 2-nd, 3-rd, and 4-th qubits, with the
condition that the 5-th qubit being in the |0) state, yielding:

C H -gates 1 27 + 25 1

To generate the group |0hhhhhhh), we need to rotate the 7-th qubit. This requires a con-
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trolled R, gate, as we must ensure the group |101000hh) is unaffected. We apply the con-
trolled R, gate, with the condition that the 5-th qubit being in the |0) state, with an angle

6 = —2arccos <1 / %) The corresponding R, gate is:
25 27
25 \/27+25 \/27+25
—2 arccos —_—
2T+ 25

N 27 25
- 27425 27425
which results in the quantum state:

22 1
o7 o5 oz [000RhhhR) + | S ([100hAhAR) +[101000h)) . (5.19)

Note the angle is chosen such that the coefficients of the group |100hhhhh) resultin  / s>

1
27425422

R, : (5.18)

Finally, by applying controlled Hadamard gates to the 5-th and 6-th qubits, with the condi-

tion that the 7-th qubit is the |0) state, we arrive at the final quantum state:

C'H-gates 22 1
) \/ T Tor 5 53 [Onhhhhhh) +

1
=\/ 5735 753 [[OhhRhhAR) + [100hhkhh) + [L01000AH)].

For the case where N is an odd number, say N = 163, with the binary representation
10100011, the final state should be:

o795 gz ([100kARAR) + [101000kR))

(5.20)

1
= ——— |[|0hhhhhhh) + |100hhhRR) + [10100004) + [10100010)] . 5.21
) = | )+ | )+ [10100008) + [10100010)]. (5:21)

The procedure is similar to the even case, i.e., we first apply X -gates to the 7-th, 5-th, and 1-st
qubits. But this time, we skip applying Hadamard gates subsequently, since the maximum basis
is |10100010). Instead, we directly apply rotation gates, and the rest of the procedure follows

similarly.

The full USO algorithm is shown in Figure 5.6. The key distinction between the even and
odd cases lies in the application of Hadamard gates after the X -gates (as depicted in lines 6 and
7).

In summary, this algorithm employs only two-qubit controlled gates (controlled 2, and
controlled H gates) with at most O(log, N) operations. These gates can be easily decomposed
into CNOT or C'Z gates, with additional single-qubit rotation gates.
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Algorithm 1: A quantum algorithm for the preparation of uniform superposition state |¥) =

iz Lo’ 1)

Input: A positive integer M with 2 <M < 2" and M = 2" for any r € IN.

1

Output: A quantum state Uy |0)®" = Vi ):;Vial |j), that is in a uniform superposition of M distinct

states.

1 Function Uniform (M)

10

11

12

13

14

[+ lo,l1,...,l; is an ordered sequence of numbers representing the locations of 1 in the reverse binary
representation of M. */

Compute ly,ly,...,l;, where M = Z?:o 25 with0<ly<lj<...<lg<ly<n-1.

Initialize [¥) = |4,-1) ®|4,-2) ® -+ ®|91) ® |q0) = 0)*".

Apply X gateon |q;) fori=1y, 15, ..., I. /1 Apply X gates on qubits at positions Iy, Ip, ..., I.
Set M = 2k,
[+ If M is an even number, then apply Hadamard gates on the rightmost Iy qubits. * [

if [y > 0 then
L Apply H gateon |g;) fori=0,1, ..., [j—1.

Apply the rotation gate Ry (6,) on |g;, ), where 6, = —2arccos( %)

Apply a controlled Hadamard (H) gate on |q;) for i =1y, [ +1, ..., ; =1 conditioned on g;, being
equal to 0.
form=1tok—-1do

Apply a controlled Ry(0,,) gate, with 6,, = -2 arccos( M—21i711m,1 ), on |q; .,) conditioned on

q1,, being 0.
Apply a controlled Hadamard (H) gate on |g;) for i =1, I, +1, ..., 41 — 1 conditioned on
q1,,,, being equal to 0.
Set M,,, = M,,_1 +2'm.

return [¥)

Figure 5.6: The USO algorithm adapted from [80].
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5.1.2 Multi-Controlled Quantum Gates

For the data encoding of particle features, we introduced the multi-controlled quantum
gates, which are essential for the QCGNN architecture. This subsection elaborates on the con-

struction and implementation of such gates using elementary quantum operations.

We assume the set of fundamental gates comprises the single qubit rotation gate, along with
the controlled-NOT (CNOT) gate. In practice, only two of the three rotation gates are required,
as the third can be constructed from the others. For instance, the R, () gate can be expressed

as:

R.(6) = R, (—%) R.(O)R, (g) . (5.22)

All multi-controlled gates presented here are constructed from these elementary operations.

[T}

4 - -5
—o— e o1}
Figure 5.7: Decomposition of the Toffoli gate using , T, S, and CNOT gates. A NOT operation

is applied to the target qubit by the Toffoli gate if and only if the two control qubits being
simultaneously in the |1) state. Adapted from [83].

The rotation gates also encompass common single-qubit gates, e.g., the Hadamard and

Pauli gates. For instance, the Hadamard gate may be decomposed as:

H =R, ()R, (g) , (5.23)

up to some global phase factor ¢™/2. Similarly, the Pauli gates can be represented as:
X =iR,(m), Y =1iR,(m), Z=1iR,(m), (5.24)

again up to a global phase. In addition, two frequently used single-qubit gates are defined as

S— iR, (E) _ [1 0 . T — (%R, (%) — [(1) e?:{] : (5.25)

2 0 i
where S is also referred to as the phase gate and 71" as the 7 /8 gate.

follows:

We now focus on the three-qubit controlled-controlled-NOT gate, also known as the Toffoli
gate. Its action is to flip the target qubit when both control qubits are in the |1) state. Figure 5.7

presents a circuit-level implementation via only single qubit rotations and CNOT gates.
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|q1)— g
1) —— |2)— '
|G2)—4— [y ' '
|g3)—4— i 0)—D—¢ +—D
) — U 10) > b

I

|qa) U

Figure 5.8: Circuit for implementing a controlled-U gate with three control qubits and one target
qubit. Two ancillary qubits are used and initialized in the |0) state. Adapted from [83].

For controlled gates more than two control qubits, we introduce ancilla qubits (or usually
known as work qubits) to store intermediate logical conditions. These ancilla qubits are initial-
ized in the |0) state and are discarded after computation. The idea is to propagate the control
values of control qubits on the ancilla qubits recursively using Toffoli gates. For example, the
condition from ¢; and ¢, is encoded into the first ancilla qubit, then combined with ¢3 to up-
date the second ancilla qubit, and so forth. For example, Figure 5.8 illustrates the circuit for a

controlled-U gate with three control qubits and one target qubit.

Consider a QCGNN with N particles, we have n; = [log, N|. The number of ancilla
qubits is n; — 1. Hence, we need O(log, V) ancilla qubits, and additional O(N log, N') Toffoli

gates.

If the control condition is |0) (represented as open circles in circuit diagrams), we can
apply X-Pauli gates before and after control gate to invert the control condition, as illustrated

in Figure 5.9.

We now discuss the implementation of general controlled single-qubit rotations, as it is the
case for QCGNN encoding ansatz. For an arbitrary single qubit gate U, it can be decomposed
in the form:

U=¢“AXBXC, where ABC =1. (5.26)

In this form, a controlled-U gate is able to be carried out by using two CNOT gates and three
single-qubit gates, as depicted in Figure 5.10. For QCGNN cases, the multi-controlled rotation
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q1)— ) — X —+—X—

|G2)—¢ |g2) ¢

‘ g3)— X ' X

e Y
N

|q3)

|q1)— U |— |q4) U

Figure 5.9: Conversion of a control condition from |0) to |1) via Pauli X -gates.

* * RZ(O‘) —
U C—b— B A

Figure 5.10: Circuit for implementing a controlled-U gate with U = ¢ “*AX BXC and ABC =
I. The global phase ¢’*/? is omitted. Adapted from [83].
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gates are used for encoding, and the corresponding U can be expressed as:

T 0 0

Ru(0) = Ro(=5)R,(5)X R, (=) X R.(3) (5.27)
0 0
Ry(0) = Ry(5)X Ry(—5)X1 (5.28)
0 0

2

In conclusion, the implementation of multi-controlled rotation gates, as required by the
QCGNN encoding ansatz, is achievable using only Toffoli gates and ancilla qubits. Although
further optimization may reduce gate counts, the current method is straightforward and can be
done using the Toffoli gate and ancilla qubits. We leave the optimization of the QCGNN circuit
for future work.

5.2 Formulating QCGNN within the MPGNN Framework

The QCGNN architecture can be mathematically expressed within the MPGNN frame-
work. Recall that the standard MPGNN formulation consists of two key operations: node-level
aggregation from neighboring nodes, and a graph-level aggregation. Analogously, the QCGNN
performs double summations over particle pairs, which can be interpreted as quantum analogs
of these classical operations.

For the i-th particle, the QCGNN evaluates correlations with all other particles in the graph.
This pairwise interaction is captured through inner products of variational quantum states in the

NR. Thus, the node-level aggregation in QCGNN corresponds to:

P @xix) =) (x,0/P|x;,0), (5.30)
JEN(3) J

=z

Il
=)

where the ®(x;, x;) in Equation 3.3 is implicitly represented through the quantum state overlap

under observable P, and A/ (4) includes all nodes (since the graph is complete).

The transformation v in Equation 3.3, which maps aggregated messages to updated node
embeddings, can be implemented either via classical neural networks or through quantum cir-

cuits such as variational quantum circuits.

In practice, the output of a QCGNN layer, i.e., the aggregated quantum features, can serve
as input to subsequent QCGNN layers, enabling iterative message passing and capturing higher-

order correlations among particles. These iterative operations mimic the classical MPGNN ar-

63 doi:10.6342/NTU202501658


http://dx.doi.org/10.6342/NTU202501658

5.3 Connections Between QCGNN and Kernel Methods

chitecture, where successive rounds of iterations allow for more expressiveness.

Finally, a global graph-level aggregation is performed to yield a graph representation:

Z @ (x5, X;) Z Z (x;,0| Px;,0) = h(x;,x;; P), (5.31)

i=0 jEN(i) i=0 j=0 i

?
r
£
£

Il
o
.

Il
o

which corresponds to Equation 5.8 in the QCGNN formalism. This graph-level feature can
then be fed into classical post-processing networks such as fully-connected neural networks for

downstream tasks including classification or regression.

5.3 Connections Between QCGNN and Kernel Methods

Kernel methods are foundational tools in theoretical machine learning, originating from the
development of Support Vector Machines (SVMs). The core idea lies in the kernel trick, which
allows algorithms to compute without explicitly computing the transformation in latent spaces
that have high dimensionality. Instead, the similarity between two data X; and X is captured via
a kernel function K (X;, X;), which computes the inner products in the implicitly defined latent
space. Here, each data point X; may represent either a fixed-size feature vector or a structured

object such as a graph, for instance, a set of particles within a jet.

Quantum machine learning introduces an analogous idea through quantum kernels [84, 85],
which are typically defined as the inner product of quantum states constructed by a parameterized
quantum circuit, e.g., :

1X,0) =U(X,8)|0). (5.32)

The corresponding quantum kernel is given by
2
Ko(Xi, X;) = (X, 01X;,0) = | (0| UT(X;,0)U(X;,0)[0)] " (5.33)

This kernel can be efficiently estimated on quantum hardware, and has been shown to outper-
form classical kernels in certain tasks under appropriate assumptions on data distributions or

complexity classes.

In contrast to SVMs, neural networks (including quantum neural networks, such as QCGNN)
do not define an explicit kernel function during training. This distinction arises because SVMs
are not trained through parameter tuning; once a kernel and associated hyperparameters (e.g.,
regularization) are specified, the optimal hyperplane is determined by solving a convex quadratic
program. In neural networks, however, model behavior emerges through iterative parameter up-

dates, making the implicit kernel difficult to identify.
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Despite this difference, recent theoretical work has sought to relate neural networks to ker-
nel methods. In particular, the concept of the Neural Tangent Kernel introduced in [86], and
follow-up work such as Path Kernel [87] extended this idea. According to [87], models trained
using gradient-based optimization can, under certain conditions, be described by equivalent ker-
nel methods:

KX, X)) = Vo fu(Xi) - Vi fu(X;), (5.34)

where f,, is the model prediction, and the the tunable parameters are denoted as w.

vy (x)
Vwy(x)

wa(xl)

wa(xl)
Wy (x)

Wy

Figure 5.11: A schematic diagram illustrating the path kernel, adopted from [87]. The tangent
kernel is evaluated at each point along the curve ¢(t) in the parameter space, where ¢ represents
the optimization steps. The path kernel is defined as the integral of the tangent kernel along this
trajectory. The V,,y(z) notation is equivalent to V,, f., ().

During the training of the model, the trajectory of w in parameter space can be viewed as
a curve c(t), with ¢ representing optimization steps, as shown in Figure 5.11. The path kernel is

then defined as an integral of the tangent kernel over the training path:
c(t)

Within this framework, the model output y can be approximated by:

N
limy = yy — I Yi) rea (X X, ), 536
limy = yo /ct); " (X, X;) (5.36)
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To relate this to the path kernel, we define

OL(y},ys)
fc(t) K9(X, Xi)a—yidt

L'y}, i) = 7 (5.37)
S KX, X5)dt
we can rewrite the model output as:
N
i — T (v* v KP .

for which L is the cost function and y; denotes the truth label. In particular, this approximation

holds in the limit of small learning rates e.

These developments provide a theoretical perspective to analyze the neural networks, in-
cluding both classical and quantum models. This connection suggests a pathway for investigat-
ing the quantum advantage of QCGNN in high-energy physics tasks. Future work may leverage
the kernel tricks, following the direction proposed in [88], to analyze the potential quantum ad-
vantage of QCGNN with a particular dataset. Such an analysis could shed light on when and
why QCGNNs might outperform classical neural networks in tasks such as jet classification or

event reconstruction.

5.4 Computational Complexity Analysis of QCGNN

Here, we conduct an analysis on the computational complexity of both QCGNN and MPGNN,
for which both models represent jets through complete graphs. Consider the most trivial case
that each model maps a set of vectors with d dimensions to single-dimension output, namely,
R? — R. Furthermore, consider the case that the cost for a classical model to compute single-
dimension output output is approximately in the same order to the cost for a quantum model to
measure an observable, e.g., a Pauli string. Under this assumption, we demonstrate that the com-
putational complexity of QCGNN scales as O(N), whereas that of MPGNN scales as O(N?).
Although this equivalence in cost is not exact, assuming a linear relation remains intuitive and
reasonable, and eventually leads to the same result. Thus, after the discussion of this section,

we argue that QCGNN provides a polynomial speedup over MPGNN.

Consider a jet consisting of N particles. As shown in Section 5.1.1, the uniform state
preparation in QCGNN requires O(log, N) quantum gates. For particle encoding, an additional
O(log, N) ancillary qubits are needed. Each particle involves multi-controlled gates, which in
turn require O(log, IV) Toffoli gates per particle, as discussed in Section 5.1.2. Consequently,
the total cost of encoding all IV particles is O(N log, N).
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Assume the parameterized quantum circuit employed in QCGNN has gate complexity
O(q(N)) for some function ¢(N). To aggregate the final result, QCGNN measures O(2"1) ~
O(N) Pauli string observables, as indicated in Equation 5.10. Therefore, the overall computa-
tional cost of QCGNN is:

Oq = O(N) - [0(N log, N) + O(q(N))] . (5.39)

For classical models such as MPGNN, the jet is represented as a complete graph, and ob-
taining all pairwise interactions involves O(N?) operations, with each pair evaluated by a neural
network. Assuming a cost function ¢(/N) for obtaining a scalar output, the total computational

complexity of MPGNN becomes:

Oc = O(N?) - O(c(N)). (5.40)

Suppose both classical and quantum models are deep networks, with MPGNN utilizing
many neurons and layers, and QCGNN using deep variational circuits with large ng and multiple
data re-uploading layers. In those cases, it is reasonable to make the assumption that

¢(N)=Q(Nlog, N), q(N)=Q(Nlog, N), and c¢(N)=0(q(N)), (5.41)

where () is the opposite of the big O notation, typically can be understood as the lower bound
asymptotics, and © denotes asymptotic equivalence in scaling. The assumption that ¢(N) =

©(q(N)) is simply set for fair comparison. Under this assumption, the complexities reduce to:

Og = O(N - q(N)), (5.42)
Oc = O(N? - ¢(N)), (5.43)

and thus,
Og =O(N - q(N)) < Oc = O(N? - ¢(N)), (5.44)

demonstrating that QCGNN is polynomially faster than MPGNN.

This assumption is justified in practical scenarios, where the network size is typically deter-
mined by the maximum particle multiplicity in a jet. For example, the number of neurons may
scale as [10Nyax | and the number of layers as [ Nyax/100], yielding an overall complexity of
O(Niiax)-

In summary, assuming QCGNN is trained using deep variational quantum circuits, its com-
putational complexity is O(N - ¢(N)), compared to O(N? - ¢(N)) for MPGNN. This indicates
a polynomial speedup of QCGNN over MPGNN under reasonable scaling conditions.
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5.5 Extending QCGNN for Sequential and Temporal Data

The QCGNN framework can be naturally extended to handle sequential or temporal data,
such as time series or event streams. A straightforward strategy is to concatenate the sequential
information into a single feature vector, which can then be encoded into the NR. Here, we offer

a more physical approach that leverages the inherent structure of sequential data.

A more physical and efficient approach is inspired by Recurrent Neural Networks (RNNs),
in which temporal data are processed in a step-wise, recurrent manner. Recall that QCGNN
employs the data-reuploading technique, whereby the input features are encoded repeatedly on
the quantum states. Let x ) denote the feature vector of the i-th data at time step ¢, where
1 <t <T. For instance, t may correspond to layers of detector, e.g., the hadronic calorimeter
(HCAL) or electromagnetic calorimeter (ECAL), or to sequential points along a particle track

within a tracking system.

To incorporate sequential data, we first generalize the standard data-reuploading formula-

tion in Equation 5.5 as follows:

1
T UN £

At first glance, it may seem that this temporal encoding reduces model expressiveness, since

Zw HUPARAM (0)Uexc(x) | 0)° (5.45)

it replaces the full feature reuploading with time-indexed sequential data. However, this is not
necessarily a limitation. In fact, the original data-reuploading technique can be recovered by
treating the entire sequence as a single unit and applying reuploading over the joint temporal

structure, i.e.,

Z|Z UPARAM NUgne(x) [ |0)E2 . (5.46)

This formulation maintains the expressive capacity of QCGNN while adapting to tem-
porally structured data. This allows QCGNN to act as a quantum analog of RNNs or even
Transformer-like sequential architectures, with potential benefits where temporal or layered

structure is physically meaningful.

5.6 Generalizing QCGNN to Arbitrary Graph Topologies

The QCGNN framework can be generalized to support graphs with weights. As an exam-

ple, consider an undirected graph where the adjacency matrix A is defined as the Kronecker prod-
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uct of some weight vector |w) = > . w; |7), resulting in edge weights of the form A;; = w,w;.
Note this assumption is only valid for specific situations, and the more general cases will be dis-
cussed later. In this setup, the initial quantum state in the IR can be prepared in a non-uniform

superposition:

i) |0)yE"e (5.47)

| |O ®nQ —
where the normalization factor (w|w) guarantees that the quantum states are normalized prop-

erly. As aresult, the expression for the expectation value in Equation 5.8 is adjusted to:

W W5 Ay

(017 @ Pl) = h(xi ;3 P)

(w]w)

This updated formulation incorporates edge weight information into the quantum state by ad-
justing the probability amplitudes in the IR using AMPLITUDE EMBEDDING. In this encoding, the

amplitudes reflect the structure encoded in the weight vector w.

For more general graph topologies, including directed and weighted graphs, the adjacency
matrix A may be non-Hermitian. Any square matrix A € CV*¥ can be decomposed into a

Hermitian part H and a skew-Hermitian part S as follows:
H:§(A+A), S :§(A—A), (5.49)

such that A = H + S’. The Hermitian part H has real eigenvalues, while S’ is skew-Hermitian
and has purely imaginary eigenvalues. We can further extract the imaginary i out of S’ to obtain
a Hermitian matrix S = —iS’ with real eigenvalues. According to the spectral theorem, both
H and S are normal matrices and can be diagonalized via unitary transformations. Thus, the

matrix A can be expanded as:

N N
A=H+i522)\k|uk> <Uk|+iZHk|Uk> (gl , (5.50)

k=1 k=1

where A\, € R and y1;, € R represent the eigenvalues of H and .9, respectively.

To simplify the implementation, one can choose to retain only a subset of dominant eigen-
basis, e.g., those with the largest absolute eigenvalues, and subsequently discard the rest. Each
surviving term corresponds to a rank-one matrix of the form |uy) (ug| or |vg) (vg|, reducing the
problem to the previously discussed outer-product case where the weight vector (w) = . w; |7).
The full result can then be reconstructed by applying QCGNN separately to each eigenbasis
component and summing the contributions weighted by their respective eigenvalues.

However, this approach introduces additional computational overhead, particularly from

diagonalizing A and discarding a subset of eigenbasis, which may result in information loss.
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Moreover, preparing amplitude-encoded states typically demands substantial quantum resources,
for example, extra ancilla qubits and numerous quantum gate operations, which may negate the

practical benefits of using QCGNN when the number of significant eigenvalues is large.

In conclusion, while QCGNN can, in principle, be extended to general directed and weighted
graphs, the practical feasibility of such implementations may be constrained by the cost of state
preparation and diagonalization. Careful trade-off analysis is required to determine whether the
QCGNN is suitable for general graph topologies, especially when the adjacency matrices are

too complicated.
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Chapter 6

Benchmark on Jet Discrimination

To show the performance of QCGNN, we employ jet classification from two public datasets
simulated with Monte Carlo in this chapter. The pretrained QCGNNSs are then evaluated on
real quantum devices provided by IBM quantum platform (IBMQ). The outcomes that obtained
from classical models are treated as comparisons, including MPGNN and popular models such
as ParT, PNet, and PFN.

The full code for the benchmark in this chapter, including the training and evaluation
scripts, is provided on the github repository: https://github.com/NTUHEP-QML/QCGNN. The
code is primarily implemented using the PennyLane [82] and PyTorch [89] libraries.

6.1 Monte Carlo Simulated Jet Datasets

To conduct an experiment on the performance of the QCGNN, we apply it on two public
datasets with simulated events for jet classification via Monte Carlo simulations: the JETNET [90]
and TorQCD dataset [37]. For these two cases, jets are constructed via the anti-k7 algorithm [35,

91], where we have set the distance parameter to be R = 0.8, as described in Section 2.3.

The TopQCD dataset [37] is used for binary classification, for which the main task to
distinguish signals originating from top quarks (denoted as Top) from backgrounds produced in
gluon and quark interactions (denoted as QCD). Those events are generated using PYTHIAS [92]
with its default tune at a center-of-mass energy of 14 TeV, without modeling multiple interactions
or pile-up. For detector simulation, DELPHES [93, 94] is used with the standard ATLAS detector
card. Only the leading jet in each event is retained, and the transverse momentum of the jet is
selected to lie within the range [550, 650] GeV. For each jet, the top 200 constituent particles
(sorted by pr) are saved. Jets with particles less than two-hundred constituents are zero-padded
by the original dataset authors. The dataset includes 1.2M training events, and for both the
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Figure 6.1: The histogram of the number of particles in the jets of the TorQCD dataset and the
JETNET dataset. The momentum threshold for each particle is set to pr; > 0.025p), where ply.
is the jet’s transverse momentum.

validation and testing events, each contains 400K samples. Several samples of jets are shown in
Figure 6.2, while jet and particle histograms of the full dataset are shown in Figures 6.3 and 6.4.
Further details can be found in [95].

The JETNET dataset [90] is designed for multi-class classification, with jets generating from
gluons (g), light quarks (q), top quarks (t), Z bosons (z), and I/ bosons (w). Events are generated
at leading order using MADGRAPHS [96], with parton showering and hadronization performed
by PyTHIA8 [92]. Each jet class consists of approximately 170 thousand events with transverse
momenta centered around 1 TeV. In this study, we select events with jet pr within the range
[800, 1200] GeV. Only the thirty particles in each jet that have the highest p; are used. Some
events are displayed in Figure 6.5, with histograms of the full dataset given in Figures 6.6 and 6.7.

Additional information is provided in [97].

To focus on evaluating QCGNN, we restrict our analysis to the particle flow observables
defined in Section 2.4. Additional features such as electric charge, mass, or particle identifi-
cation are not utilized. The jets are represented with fully connected graphs, for which every
node is treated as a particle, and edges exist between all pairs. To suppress p];f dependence, we
uniformly sample jets from ten equal-width bins within the [550, 650] GeV range for TorPQCD
and [800, 1200] GeV for JETNET.
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Since our models are graph-based, zero-padding is no longer necessary. However, be-
cause QCGNN is simulated on classical hardware, we apply an additional transverse momen-
tum threshold for particles within jets to reduce computational cost. Specifically, we remove
particles with pr; < 0.025 ]fff This significantly reduces the number of particles per jet to
approximately 6-14, as shown in Figure 6.1, enabling faster simulation and training while pre-
serving most of the relevant physical information. The transverse momentum threshold will be

justified in Section 6.3.1 after we discuss the models for benchmark.
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Figure 6.2: Samples in TopQCD dataset: (a) Top jets. The figure continues with the next figure.
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Figure 6.2: (b) QCD jets, from light quarks and gluons. The axes ranges are [—0.8, 0.8], since
R = 0.8 was used for jet clustering.
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Figure 6.5: Samples of the JETNET dataset: (a) Gluon jets. The figure continues on the next
figure.
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Figure 6.5: (b) Light quark jets. The figure continues on the next page.
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Figure 6.5: (c) Top quark jets. The figure continues on the next figure.
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Figure 6.5: (d) W-boson jets. The figure continues on the next page.
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(b) Histograms of the particle flow information of jets in JETNET dataset, generated

from top quarks (t), Z-bosons (z), and W-bosons (w). The jet’s azimuthal angle, pseudorapidity,
and transverse momentum are denoted as ¢, 7', and pl}, respectively. The N is used for
denoting the number of particles in the jet. The histograms are shown in density, namely, the

area under the histogram is equal to 1.
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Figure 6.7: Histograms of the particle flow information of particles within jets in JETNET dataset.
The 7, ¢;, and pr; are the pseudorapidity, azimuthal angle, and transverse momentum of the
particles, respectively. The five classes are denoted as z (Z-bosons), q (light quarks), t (top
quarks), g (gluons), and w (W-bosons). The histograms are shown in density, namely, the area
under the histogram is equal to 1.
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6.2 Classical and Quantum Models

The MPGNN is chosen as the benchmark classical model for the QCGNN, since their
formulation is close and simple. In this section, we first discuss the setup of the MPGNN and the
QCGNN, and how the hyperparameters are determined. Then to demonstrate how the classical
models nowadays perform on the same datasets, we discuss the setup for the models introduced
in Section 3.4, including Particle Transformer (ParT), Particle Net (PNet), and Particle Flow
Network (PFN).

6.2.1 QCGNN and MPGNN Setup

In this subsection, we give the detail implementation on the structure of both QCGNN and
MPGNN in detail and highlight the structural similarities between them. To ensure a meaningful
comparison, we configure the hyperparameters of each model so that their parameter counts are

on a similar scale.

QCGNN Structure

Since the number of particles per jet is reduced to approximately 6 - 14, we restrict our
dataset to jets with 4 < N < 16 particles. Accordingly, the index register (IR) requires n; =
[log, 16] = 4 qubits. For the network register (NR), we consider two configurations: ng = 3

and ng = 6.

The encoding ansatz employs R, and 2, rotation gates, where the mathematical expression
can be found in Equation 4.16. Figure 6.8 shows an example of this encoding for ng = 4, where

the rotation angles are functions of the input features.

For the parameterized ansatz, we adopt the strongly entangling layers proposed in [98],
illustrated in Figure 6.9. Each layer consists of general rotation gates R(¢, 6, w) as defined in
Equation 4.17, along with a full entanglement pattern using CNOT gates. The strongly entan-

gling ansatz is typically repeated multiple times to increase expressiveness.
The complete QCGNN architecture is constructed with the components below:

1. A linear layer mapping the 3-dimensional particle flow features to a 3ng-dimensional

vector. An additional arctan activation function is applied for ensuring the values lie

—z, 1.

between [, 7

2. The QCGNN module, which encodes the transformed features using the ansatz structure
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Une(x?)| =

0 0 0
] Ry(xg,l)o) Rw(xz(,l)l) Ry(xg,l)z) —

Figure 6.8: An illustration of the ansatz for QCGNN data encoding with ng = 4 qubits. Classi-
cal features are embedded into quantum states using rotation gates described in Equation 4.16.
The ng}) is taken as the angle for rotation gates, where the (7, j) denotes the indices for the
particle and the corresponding feature, respectively, where the input features can either be raw
particle flow variables or representations transformed by prior linear layers.

Repeat for L times

UPARAM(H) =

=
2
S

- e o mm Em Em o Em Em e o o o o o o o o Em Em o Em = =

Figure 6.9: Strongly entangling ansatz [98] used in QCGNN with ng = 4 qubits. Each qubit is
acted upon by the three-parameter rotation gate R(¢, 0, w) defined in Equation 4.17. Trainable
parameters 6; ; vary with repetition index [ and qubit index j, where 1 < 5 < 4, and each 0, ;
contains the three angles for the R gate. The ansatz scales naturally for ng > 3; for smaller
systems, alternative circuit designs are recommended to maintain sufficient entanglement.
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shown in Figure 6.8. The variational quantum circuit uses the strongly entangling ansatz

shown in Figure 6.9.

3. The measurement observables for IR and NR are chosen as J and Pauli-Z, respectively.

The J observable is decomposed into Pauli- X, as described in Equation 5.10.

4. Two additional dense layers are used: the first contains 16 hidden units, and the second

has n¢-dimension output, which is the number of classes.

To be more specific, each Pauli-Z observable is treated as an output feature. For a QCGNN
with ng network register (NR) qubits, the output is represented as x? € R"2, where the ¢-th

component is computed as:

x¢ = N [(W]J @ ZX% ) — (Y| ZN%y)]
N—1N-1 N-1 6.1)
= h(x z 7 X; ’ZfIJ\IR Zh X; ’ Xi ’ZNR)
i=0 j=0 =0

where Z?R refers to the Pauli-Z operator applied specifically to the ¢-th qubit in the NR.

This setup effectively mirrors a classical feedforward neural network, where the final layer
consists of n¢ output neurons. In the next subsection, we demonstrate how Equation 6.1 closely
resembles the classical expression in Equation 6.2, thereby highlighting the permutation invari-

ance property of the QCGNN output.

MPGNN Structure

The MPGNN architecture follows Equation 3.3. For each particle pair (i, j), the fea-
tures are concatenated and passed through fully-connected layers with ReLLU activation func-
tions [99]. The ~ transformation is chosen to be the identity function, i.e., no further transfor-
mation is applied after node aggregation. We adopt global sum pooling for graph aggregation,

followed by two additional linear layers, consistent with the QCGNN architecture.

The overall feature of the graph denoted as x© (the output of MPGNN graph aggregation),
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is calculated by:

=> > o) (6.2)
i=0 jAi

As described above, the ® function corresponds to the fully-connected layers with ReLU activa-
(0
J

the ® we only need 6 neurons for the first linear layer (each particle has 3 particle flow features).

tion functions. The inputs of ® is trivially constructed by concatenating x ) and XEO), where in

The structure of MPGNN resembles the PFN model, which will be introduced in the next
subsection. The only distinction is that PFN transforms each particle features individually,
whereas MPGNN concatenates the particle features and calculates the pairwise information

(0) £(0) ;
®(x; ', x; ') between particles.

6.2.2 Number of Parameters in QCGNN and MPGNN

Assume that the parameterized quantum circuit Uparam consists of L repetitions of the
strongly entangling ansatz shown in Figure 6.9, and the number of data-reuploading (including
the initial encoding) is L. Including the parameters from the initial linear transformation layer,
the overall amount of trainable parameters in QCGNN can be computed by:

NQ = 3nQLRLQ + 3(71@ + 1), (63)

where the first term accounts for the variational quantum circuit, and the second term corre-

sponds to the initial linear layer that transforms input features.

For MPGNN, assume each hidden layer contains n,; neurons, and there are Lo hidden

layers in total. The number of trainable parameters is:

NC = G(HM + 1) + nMLC(nM + 1)
(6.4)
= Lendy + (64 Le)nas + 6.

To make sure the comparison is fair to some degree, we set the output dimensions of

QCGNN and MPGNN, and use identical final linear layers. ng = nj; = D is chosen and

constrain ng to be multiples of 3 such that Ly = D/3. Substituting these into above expres-
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sions gives:
Ne = LeD? + (6 + Lo)D + 6, (6.5)
Ng = LgD*+3D + 3. (6.6)

If we further assume Lo = Lr = L, then both QCGNN and MPGNN have comparable com-
plexity, scaling as O(LD?).

In this study, we choose L = 2 and D € {3,6}. This choice reflects a balance between
training efficiency and classification performance, especially given that QCGNN training is

conducted on classical simulators, which are computationally expensive.

In summary, Figures 6.10 and 6.11 illustrate the model structures and hyperparameter set-
tings of QCGNN and MPGNN, respectively.

6.2.3 State-of-the-art Classical Models

To estimate the upper bound of neural network performance on the jet datasets, we bench-
mark three advanced classical models: PFN (Section 3.4.1), PNet (Section 3.4.2), and ParT
(Section 3.4.3). The architectures are adapted from their original papers, with minor modifica-
tions to accommodate the specific jet datasets used in this work. In this section, we describe the

modifications made to each model and outline their configurations.

* Structure of Particle Flow Network (PFN)

Figure 3.4 depicts the overall design of PFN. The input features have dimension 3, cor-
responding to the particle flow observables. A linear layer with 100 neurons is applied,
followed by another linear layer that maps to a 256-dimensional latent space. The particle-
wise features are aggregated using a SUM pooling operation. The aggregated graph fea-
ture is subsequently passed through a multilayer perceptron, where the first hidden layer
contains 100 neurons and the final layer outputs a vector of dimension n¢, correspond-
ing to the number of classes. ReLLU activation functions [99] are used between all linear

layers.

* Structure of ParticleNet (PNet)

Figure 3.5a shows the detailed configuration of PNet. The only modification is that, given
the relatively small amount of particles per jet (at most 16), the number of nearest neigh-

bors for dynamic graph convolution is reduced to £ = 3.

* Structure of Particle Transformer (ParT)
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Figure 6.10: Data reuploading is applied twice (including the initial encoding), and the strongly
entangling ansatz is repeated n¢ /3 times. Two additional linear layers are appended, with the
final layer maps to n¢ classes.
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Figure 6.11: For each particle pair, their features are concatenated and passed through a mul-
tilayer perceptron. For both models, Two additional linear layers are appended, with the final
layer maps to n¢ classes.
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The architecture of ParT is depicted in Figure 3.6. Following the original design in [56],
an interaction matrix is constructed, where for each particle pair (i, j), additional features

are defined as:

Ay = /(A0 — Ag)2 + (A — Any)2, (6.7)
kr;; = min(pr,, prj) N, (6.8)
= )
my; = (Ei+ E;)” — [lpi — psl*, (6.10)

where pr, An, and A¢ are the particle flow features, and F is the particle energy. Since
2

tion matrix. Apart from this adjustment, the rest of the model follows the original ParT

our datasets do not provide energy information, the m; ; term is omitted from the interac-

implementation.

6.3 Training Results of Jet Discrimination

We trained the models using five different random seeds, with each training run lasting
30 epochs. For data preparation, we selected 25,000 samples per class for training and 2,500
samples per class for both validation and testing. The TopQCD dataset is formulated as a binary
classification task involving two classes, whereas the JETNET dataset is structured as a clas-
sification task with five categories. The number of samples per class was chosen to balance

computational cost and demonstrate the capabilities of QCGNN, as detailed in Section 6.3.1.

For the model outputs, binary classification on TopPQCD employs a single output unit ac-

tivated by the Sigmoid layer, namely, S(z) = 5 +i,x. Eventually, the loss function is defined

and optimized using binary cross-entropy loss. In contrast, the JETNET model uses an output

layer with five units and applies the Softmax function, with training guided by the multi-class

cross-entropy loss.

We implement the classical models in the framework of PyTorch [89], and some GNNs are
specifically using PyTorch Geometric [100]. For the simulations of QCGNN were performed
through the QML package: PennyLane [82]. For all models, the Apam optimizer [101] was
optimized by a constant learning rate of 0.001. The size of each training batch was chosen to be

64, mainly limited by memory requirements of quantum circuit simulations.

Computing gradients in quantum neural networks differs substantially from their classical
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counterparts. Standard techniques, such as finite difference methods, are generally not suitable
for quantum hardware. Instead, gradient estimation is performed using the PARAMETER-SHIFT
RuULE (PSR), as explained in Section 4.3.2. However, applying PSR on real quantum devices
remains challenging due to hardware noise, long queue times, and the extensive number of

measurements required for stable gradient estimates.

Given these constraints in the NISQ era [102], QCGNN models were trained on classical
hardware using noiseless quantum simulators provided by PennyLane. While GPU acceleration
is supported, noticeable performance improvements typically occur only when simulating more
than around 20 qubits. Since our models operate on fewer qubits, all simulations were run on
CPUs.

Despite using classical resources, quantum simulations remain computationally demand-
ing. As an illustration, training a QCGNN with a batch size of 64 and 10 qubits (n7, ng) = (4, 6)
on ten thousands samples required roughly one thousand seconds per epoch. Training across

thirty epochs with 5 different random seeds thus costed to almost 30 days of computation time.

6.3.1 Justification of the Transverse Momentum Threshold

In this subsection, we argue that the current dataset size provides a reasonable basis for
assessing the performance of each model. In our study, we trained several advanced classical
models, including ParT, PNet, PFN, and MPGNN, all configured with 64 hidden units denoted

as nyy.

To evaluate the models, we used the TopQCD and JETNET datasets, where each model was
trained using various numbers of training examples per class and repeated with five different
random seeds. The corresponding results are shown in Figures 6.12 and 6.13. We only consid-
ered events containing 4 to 16 particles, except in the *Full-100K” setting, which includes all

particle information without applying a transverse momentum cut.

We observed that model performance tends to stabilize when the number of training sam-
ples per class is between 25K and 50K. This suggests that choosing 25K samples per class, as
done in Section 6.3, offers a good balance between training efficiency and performance. For
datasets that retain all particles without pr filtering, we used 100K samples per class for train-
ing. According to our results, the simplest model, MPGNN, achieved the best performance when
fewer particles are used for training. On the other hand, when all available particle information

was included, the ParT model consistently delivered the highest accuracy.
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Different Number of Samples in TopQCD
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Figure 6.12: AUC and accuracy of classical models with different numbers of data in TorPQCD
dataset. The legend "Full-100K’ denotes using all available particle information that do not
applied with additional selection about the transverse momentum.
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Different Number of Samples in JetNet
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Figure 6.13: AUC and accuracy of classical models with different numbers of data in JETNET
dataset. The legend "Full-100K’ denotes using all available particle information that do not
applied with additional selection about the transverse momentum.
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6.3.2 Classical Models and QCGNN on Simulators

Model JETNET TorQCD

Accuracy AUC # params  Accuracy AUC # params
ParT 65.6+0.6% 88.9+0.2% 2.2 x 105 86.8+£0.9% 94.6+0.5% 2.2 x 106
PNet 66.9+0.4% 89.6+0.3% 1.8 x 10° 88.54+0.6% 95.3+0.3% 1.8 x 10°
PFN 67.5+0.5% 90.0+0.3% 7.3 x 10* 88.5+0.5% 95.4+0.4% 7.3 x 10*
MPGNN - njys = 64 || 68.340.7%  90.3+0.2% 1.3 x 10* 89.64+0.3% 96.14+0.3% 1.3 x 10*
MPGNN -ny =3 || 47.5£14.1% 75.7+£11.0% 1.8 x 10> 86.44+0.6% 92.240.5% 1.3 x 10?
MPGNN -ny =6 || 61.541.0% 86.5+0.4% 3.2 x 10> 86.6+0.6% 92.44+0.6% 2.6 x 10?
QCGNN-ng =3 || 50.5+£1.4% 79.6+0.9% 1.7 x 10> 86.4+0.5% 91.940.6% 1.0 x 102
QCGNN - ng = 6 54340.6% 82.240.3% 2.7 x 10> 86.8+£0.5% 93.2+0.4% 2.0 x 102

Table 6.1: The table compares the metrics of various models conducted with the datasets JETNET
and TorQCD. The ng, refers to the number of qubits in the NR, i.e., 2nd register of QCGNN.
The number of neurons in hidden layers is denoted as n,,;. For each model, the classification
accuracy, AUC, and number of parameters are reported. The AUC is calculated as the mean over
all possible class pairs, while the accuracy reflects the overall classification performance across
all classes. Each result represents the average over five independent runs, with the standard
deviation indicated.

Table 6.1 shows the training metrics of the performance between classical and quantum
models on the ToPQCD and JETNET datasets. When the amount of parameters is of similar
magnitude, the results of inference about the MPGNN and QCGNN models are comparable. As
more qubits are introduced, we anticipate that QCGNN will more closely match the behavior of
MPGNN. On the JETNET dataset, which involves multi-class classification with limited param-
eters, QCGNN exhibits greater training stability, whereas MPGNN shows larger fluctuations

across different runs.

Among the various advanced models we evaluated, MPGNN with n,; = 64 yields the best
inference performance. This observation can be explained by the effect of the preprocessing
procedure, where only 4 to 16 particles are kept for each jet, potentially discarding some soft
particle details. When training is performed using the complete particle information from the
original jet datasets, some of the other competitive models show comparable, or even superior,

performance to MPGNN, as further discussed in Section 6.3.1.

6.3.3 Pre-trained QCGNN on IBMQ

Despite that executing QML remains infeasible on current quantum hardware due to the
limitations of the NISQ era [102], it is still possible to benchmark the inference capabilities of
pretrained QCGNNSs on real devices provided by the IBM Quantum platform (IBMQ) [69]. To

mitigate the impact of hardware-induced noise, the evaluation is restricted to events containing
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Figure 6.14: Performance of pretrained QCGNNs under different levels of simulated quantum
noise. The horizontal axis indicates the probability of amplitude damping and depolarizing
errors applied after each gate. The point labeled “IBMQ” corresponds to execution on the real
quantum device ibm_brussels, while the ideal (noise-free) scenario is shown at zero. Results
are based on binary classification using 400 jet events, each with four particles, corresponding
to n; = 2 qubits in the input register. The vertical axis reports both AUC and classification
accuracy, with error bars denoting the standard deviation across five independent runs.
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only four particles from the TopQCD dataset. This configuration requires only n; = 2 qubits
in the input register, significantly reducing circuit depth for both preparing the initial quantum
state and encoding the data. Under these simplifications, the initialization of quantum state
can be implemented simply by applying Hadamard gates to all qubits in IR. Since IBMQ hard-
ware supports only 1-qubit and 2-qubit gates, the quantum gates multi-controlled conditions
used for encoding particle information in IR are realized according to the methods outlined in
Section 5.1.2.

The hardware tests were performed using the ibm_brussels backend, and the number of
shots is set to 1,024. However, due to the high noise levels inherent in contemporary quantum
devices, the QCGNN outputs, namely, the expectation values, on real hardware was approxi-
mately random, yielding an AUC and classification accuracy near 0.5 in the binary classification
task. To further investigate the performance of QCGNN inference with different noise level, we
conducted noise extrapolation studies using PENNYLANE simulators. In these simulations, de-

polarizing and amplitude damping errors were applied after each quantum gate.

We now describe the implementation of the simulated noise models. Consider the quantum
system expressed via a density matrix p of n qubits. Noise affecting the ¢-th qubit is introduced

via Kraus operators through the following operation:

X(Ih® QL1 QK@ ®--- L, ). (6.11)

The Kraus operators for each type of noise are defined as follows:

* Depolarizing Noise: The depolarizing channel is characterized by the Kraus operators:

%:ﬁtdlq’&: ﬂo1’

01 10

0 — 1 0
KQZ ]_? ' 9 K3: B .
31i 0 310 —1

(6.12)

* Amplitude Damping Noise: The amplitude damping channel is described by the Kraus
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operators:

~

1 0
KO:W[O \/1—]9]7

(6.13)
e |VI=p 0 0 0
Kg—\/]. ’}/[ 0 1], Kg—\/l ’}/[\/ﬁ 0]

In this work, the damping parameter  is set to 0.5.

Here, p denotes the probability that an error occurs. In our simulations, noise is applied
after the USO, after the data encoding operations for each particle within jets, and after the
parameterized variational ansatz. For each noise insertion, each qubit is randomly assigned

either a depolarizing error or an amplitude damping error.

As shown in Fig. 6.14, maintaining inference performance significantly better than random

guessing requires reducing the noise probability to below p ~ 1073,

6.3.4 QCGNN Quantum Gate Runtime Analysis

IBMQ Backend N Tene TPARAM
2 2.567 0.209

ibm_nazca 4 5.352 0.197
8 10.551 0.219
2 2.595 0.217

ibm_strasbourg 4 5.416 0.197
8 11.085 0.211

Table 6.2: Runtime analysis of encoding gate operating time and parameterized layers on vari-
ous IBMQ backends. The encoding runtime 7Tgnc and parameterized-layer runtime Tparanm are
defined in Equations 6.14 and 6.15, respectively. All gate operating times are reported in sec-
onds, and /N denotes the number of particles.

To empirically test the analysis of time complexity discussed in Section 5.4, we executed
untrained QCGNN circuits on several IBMQ quantum backends: ibm_strasbourg and ibm_nazca.

All experiments were performed using g = 100 qubits and 1,024 shots.

We tested QCGNN on input graphs with 2, 4, and 8 nodes, such that the uniform state oracle
(the initial state preparation) only requires Hadamard gates. The measurement of runtime was

structured in three stages:
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1. First, we executed QCGNN without any encoding or parameterized gates to obtain the
baseline runtime 7}, representing the cost of quantum state initialization (including the

uniform state oracle) and measurement.

2. Second, we conducted encoding operations with ten rounds of data re-uploading and

recorded the runtime 77.

3. Third, we appended parameterized operations, consisting of ten strong-entanglement ansatz
per reuploading and ten total reuploading steps, yielding a hundred strong-entanglement

ansatz in total. The resulting runtime was denoted 75.

Each runtime measurement was averaged over 10 executions to mitigate stochastic fluctuations.

The runtime per encoding step was estimated as:

T = 6.14
ENC 0 ( )

and the operating time per strongly entangling layer was computed as:

T, — T

6.15
100 (6.15)

TPARAM -

The summary is shown in Table 6.2. Agreeing to our expectation, the encoding time Tgnc
scales approximately linearly with particle number per jet, consistent with theoretical analy-
sis. In contrast, the time per parameterized layer Tparam remains roughly constant, indicating
that once the circuit depth becomes sufficiently large, the overall runtime is dominated by the

parameterized layers.

This confirms the key conclusion discussed in Section 5.4 that when training with deep
quantum circuits, the cost of data encoding becomes negligible relative to the cost of parame-

terized operations.
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Chapter 7

Conclusion and Future Prospect

7.1 Summary about QCGNN

Representing jets as graphs has become a common strategy in particle physics, primarily
due to the intrinsic permutation invariance of particle orderings. Graph-based representations
allow learning algorithms to process sets of particles in a physically meaningful way without
being biased by arbitrary ordering. Despite their popularity, however, defining graph structures
that accurately reflect the underlying physics of jets remains a nontrivial and largely unresolved
problem. In the absence of rigorous theoretical guidance for edge construction, we adopt a
simple yet general approach by treating each jet as a complete graph, using undirected and
unweighted edges. This assumption ensures full pairwise interaction between particles, which

aligns naturally with the symmetric processing afforded by quantum circuits.

Building on this complete-graph formulation, we give an detailed implementation on the
QCGNN, which is a QML architecture tailored for permutation-invariant learning over jet data.
In QCGNN, aggregation of pairwise information is performed using symmetric functions such
as SUM or MEAN, which are realized through quantum observable averaging. When operating
on N particles of a jet, the computational complexity of QCGNN scales as O(N) under the
assumption of sufficiently deep parameterized operators. This linear scaling stands in contrast to
classical graph neural networks such as MPGNNs, which typically requires O(/N?) complexity
due to the need to process all pairwise combinations, and suggests the potential for polynomial

speedup using quantum resources.

To conduct an experiment on the feasibility of QCGNN, we apply it to the task of jet classi-
fication. As shown in Section 6.3.2, QCGNN achieves performance comparable to its classical
counterpart, i.e., MPGNN, when constrained to a similar number of trainable parameters. No-

tably, QCGNN also exhibits more consistent behavior across different random seeds, suggesting
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greater training stability in some regimes.

To further examine the feasibility of applying our method in practice, we test QCGNN on
actual quantum hardware made available by IBMQ. While some initial experiments using pre-
trained QCGNNSs have already been carried out on real quantum processors, the current presence
of quantum noise still limits the reliability of inference. To assess how this noise might impact
performance in the NISQ regime, we adopt extrapolation techniques over noise through quantum
simulators, as described in Section 6.3.3. Moreover, we evaluate the runtime of QCGNN on real
quantum devices, as explained in Section 6.3.4, and observe that the data encoding cost increases
with the number of particles in a jet roughly with a linear scale. In contrast, the computational
cost of parameterized layers stays relatively stable, which is consistent with our theoretical find-

ings in Section 5.4.

In summary, QCGNN offers a promising and resource-efficient method for learning from
unstructured jet data using quantum machine learning. Its design leverages the symmetry of
complete graphs, supports efficient observable-based aggregation, and remains scalable in prac-
tice. Importantly, the overhead introduced by quantum state initialization and encoding becomes
negligible as the depth of variational circuits increases. Despite these advantages, whether
QCGNN (or QML more broadly) can deliver a provable quantum advantage in high-energy
physics remains an open and fundamental question. Furthermore, the development of more
expressive encoding methods of HEP data on quantum circuits continues to represent a rich
direction for future research, particularly in bridging the gap between theoretical models and

experimental feasibility.

7.2 Future Work

One of the technical challenges in realizing the practical deployment of QCGNN is to mit-
igate the effects of quantum noise. As discussed in Section 6.3.3, the current noise levels in
near-term quantum devices significantly affect the performance and stability of quantum neural
networks, particularly when deeper circuits are involved. These limitations result in the demands
on robust error mitigation strategies. Techniques such as zero-noise extrapolation have shown
promise in recent studies and should be further investigated within the QCGNN framework. In
the longer term, the integration of quantum error correction codes may offer a path toward fault-
tolerant quantum computation, although such schemes currently impose substantial overhead

and hardware requirements.

Another crucial aspect is the optimization of quantum circuit design for QCGNN. Our

current implementation, though conceptually straightforward, employs parameterized quantum
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Figure 7.1: IBM Quantum development roadmap from 2024 through 2033 and beyond. The
roadmap outlines yearly goals in improving quantum circuit quality, increasing gate depth (up to
1 billion), and advancing hardware platforms from Heron to Blue Jay. It also highlights planned
milestones in quantum software services, such as Qiskit platforms, circuit orchestration, and
library development. The roadmap envisions a transition from modular error mitigation to fully
error-corrected quantum computing with thousands of logical qubits by 2033+. Figure adapted
from IBM Quantum.
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circuits that are resource-intensive regarding to both circuit depth and gate count. This design,
while sufficient for proof-of-concept experiments, may not scale efficiently with larger inputs
or more complex tasks. Therefore, developing more efficient quantum data encoding schemes
is an essential direction for future research. The goal is to balance expressive power with circuit

simplicity to preserve the potential quantum advantage of QCGNN.

Moreover, there remains a significant opportunity to deepen the theoretical understanding
of quantum models, especially quantum neural networks, e.g., VQCs. In particular, it is im-
portant to investigate under what conditions QCGNN can outperform classical counterparts not
only in terms of computational complexity but also in learning capacity and generalization. Ex-
ploring these questions will require a combination of analytical tools from quantum information

theory, learning theory, and graph theory.

In conclusion, while QCGNN presents a compelling approach to quantum machine learn-
ing for jet physics, substantial work remains to bring this conceptual work into practice. Re-
ducing quantum noise, optimizing circuit design, and expanding theoretical foundations are all
vital components of the path forward. The intersection of quantum computing and high-energy
physics offers potential for innovation, and future advancements in hardware and algorithms
will determine the ultimate viability of quantum machine learning in real-world scientific appli-

cations.
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