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Abstract

As cities worldwide move toward transportation electrification and carbon
neutrality, electric buses are increasingly recognized not only as clean transport solutions
but also as distributed energy storage units through Vehicle-to-Grid (V2G) systems.
However, managing a large-scale V2G operation presents considerable complexity. It
involves simultaneously coordinating bus dispatch schedules, solar generation
fluctuations, time-of-use (TOU) electricity peak prices, battery degradation, and
infrastructure constraints. These factors require careful alignment between charging,
discharging, and route needs. As such, simple rule-based strategies are insufficient; an
optimization-based framework is essential for maximizing cost-effectiveness while
maintaining operational feasibility. To address this challenge, this study proposes an
optimization-based framework that integrates V2G operations with rooftop solar
photovoltaic (PV) systems in an urban transit context. A mixed-integer linear
programming (MILP) model is developed to minimize total operational costs while
considering real-world bus schedules, depot constraints, and solar generation from
adjacent school rooftops in Taipei City. The model simulates 3 bus depots and 9 routes
under various energy and policy scenarios. Baseline results show V2G can reduce
monthly operational costs by NT$220,000, though the payback periods payback period
exceeds 36 years hdue to high initial investment. Sensitive analyses using Latin
Hypercube Sampling (LHS) and Sobol methods identify building solar electricity selling
price which usually considering as feed in tariff (FIT) and TOU rates as dominant policy
leverages. When some favorable conditions are applied NT$2/kWh solar feed-in price,
NT$10/kWh TOU peak rate, 500 kWh battery capacity, and NT$0.26/kWh degradation
cost the payback periods can be reduced to under six years. The model also finds that

V2G becomes viable only when at least 75% of the fleet is electrified and recommends a
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charger-to-bus ratio of 1:2.22 to minimize capital investment. These insights provide a
data-driven foundation for transit agencies and policymakers to design scalable, cost-
effective, and policy-responsive V2G deployment strategies for sustainable urban

transportation.

Keywords: Vehicle-to-Grid (V2G), Electric Buses, Depot Infrastructure, Solar

Photovoltaics, Economic Feasibility, Mixed-Integer Programming, Sensitive Analysis
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1. Introduction

Unlike traditional vehicle operations, Vehicle-to-Grid (V2G) systems must
simultaneously manage charging and discharging timing, energy cost, solar variability,
and battery degradation behavior. These multidimensional interactions make simple
scheduling infeasible and require an optimization framework to achieve cost-

effectiveness and operational feasibility.

1.1 Background and Motivation

In this era of rapid urban development, the swift growth of has led to a significant
decline in the energy self-sufficiency of urban communities. Rely on the traditional way
with the electricity system is not sustainable anymore, therefore we are urge to find an
innovative way to refresh it. At the same time, the increasing adoption of electric buses
(EVs) in cities presents new opportunities to leverage EVs batteries as distributed energy
storage resources. Our research purpose aims to explore how electric vehicles resources
can be integrated existing power grid to support the planning and development of future
urban energy systems. Therefore, this research will try to give a possible future planning

for Taipei area by 2030.

In terms of development for sustainable city in the future, the National
Development Council (NDC) of Taiwan has pointed out a strategy. First of all, in the
energy field the NDC set 35% of decarbonization by renewable energy like solar energy
and advanced technology for storage energy from 2023. About transportation field, NDC
outlined 16% of decarbonization by applying green transportation like electric public
transportation. This plan includes fully electrifying urban bus fleets by 2030. As of
January 2024, a total of 630 electric buses have been deployed in Taipei City. However,

With the increase of the electrified fleet may cause higher pressure on grid. Accordingly,
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we believe that Taipei possesses a sufficient number of electric buses that can serve as
energy storage units within a V2G system and have the positive interaction effect with

the solar system located in the urban city area [1].

In Taiwan, despite policy efforts to electrify urban bus fleets, limited depot charging
infrastructure, lack of dynamic dispatch systems, and underutilization of rooftop solar
resources pose challenges for scalable, economically viable deployment. A data-driven

V2G strategy is urgently needed to bridge this gap.

1.1.1 Urban Transportation Electrification Trends and Challenges

In response to the global push for carbon neutrality, countries are accelerating the
electrification of public transportation. An urban bus system is not a plug-and-play
process. Operators must coordinate vehicle dispatch schedules, solar energy fluctuations,
time-of-use (TOU) electricity peak prices, battery degradation profiles, and charging
infrastructure limits. These variables interact across time and space, making the system
too complex for heuristic or rule-based scheduling. Therefore, a robust optimization
framework is necessary to identify feasible and cost-effective operation strategies under
real-world constraints. There are several foreign studies focus on urban electric buses
development we also want to review, some mentioned the electric buses faced the longer
charging time than diesel fuel buses which created the challenge of scheduling[2], some
paper mentioned robust optimized schedule can help for formulating[3], some research
urge for integrating with closing depot renewable energy[4, 5]. Some paper mentioned
to conduct incentive policy[6], and utility design of the buses depot are also matter [7].
These gave us an incentive to dig out the Taiwan’s urban electric buses status and policy

for us to form our model and recommendations.

To expand upon the complex plan in the green urban transportation plan in Taiwan,

several documents have served as guiding lights in the darkness. For example,
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Automotive Research & Testing Center (ARTC) did a guideline, they imply that
European Union has plans to reduce carbon dioxide emissions with electrify its all the
public bus fleet by 2030. In contrast, Taiwan, due to the background of its bus industry
developing history, has initially prioritized the electrification of urban bus systems which
has been highlighted as the main transportation resources in our future planning. With
this ambitious, Taiwan’s Ministry of Economic Affairs (MOEA) and Ministry of
Transportation and Communications (MOTC) have jointly launched a three-year national
project focused on the domestic production of ten major components, aiming to
strengthen local design and development capabilities and ultimately support the local
manufacturing of electric buses in Taiwan. Aligned with the broader objectives of
transport electrification, the Forward-looking Infrastructure Development Program,
approved by the Executive Yuan, has designated green energy infrastructure as a priority.
As part of our thesis initiative, MOEA and MOTC are collaboratively implementing the
“DMIT Program” (Design, Manufacturing, Integration, and Testing) for intelligent
electric buses with green transportation which include V2G system. Under this program,
MOEA s tasked with coordinating industry collaboration for the development of key
systems and complete vehicle designs, accelerating the localization of entire vehicles and
four major subsystems which gave a great opportunity to develop energy management
system for electric buses. Consequently, a large number of electric buses are expected to
be deployed across Taiwan's urban areas. This study, therefore, provides an important

contribution to the development of auxiliary systems for electric buses in the near future

[8].

However, the rapid growth of electrified buses, if not supported by effective energy
management and the integration of renewable energy, may lead to increased dependence

on grey energy electricity generated from fossil fuels thus undermining the intended goals
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of green energy transition. Therefore, it is essential to consider the operational demands
and constraints of domestic electric bus systems. Here is study from Taiwan government
aims to shave peak-time charging pressure through scheduling strategies. MOTC induce
the TOU pricing and capacity contracts with buses for encourage operators to adjust
charging schedules in response to grid demand. The study further argues that refresh the
traditional sequence charging, smart charging strategies should be prioritized.
Additionally, the integration of solar photovoltaic (PV) systems is recommended by the

government as well [9].

Lee interviewed several bus companies, including Taoyuan and Hsinchu Bus
operators, to explore suitable scheduling patterns for electric buses. Her research helped
clarify how electric buses operate differently from diesel buses, especially in terms of
charging behavior. Most operators charged buses at night during off-peak hours, but many
also added charging at noon to ensure full-day operation. This strategy matches well with
solar power generation at midday, which improves energy efficiency. The study also
pointed out that scheduling must follow Taiwan’s labor regulations on driver working
hours. This requirement encourages more discussion about integrating electric buses with
intelligent vehicle systems [10]. Lin used a simulated annealing algorithm to optimize
electric bus operations. His results showed that adjusting charging schedules through
optimization could reduce extra costs, such as overtime and early returns. This finding
highlights the potential of algorithm-based scheduling to improve operational efficiency
in electric public transport [11]. Chen analyzed the economic conditions of electric bus
operations in Taiwan. He noted that, with government subsidies, electric buses currently
have a short-term cost advantage over diesel buses. However, he emphasized that long-

term sustainability depends on how well operators adopt clean energy technologies, such
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as green electricity. Without such measures, electric buses may lose their competitiveness
when subsidies end [12].

Another topic is incentive from previous is to utilized optimization model to
optimize the idle time with these electric buses, in order to this opinion we survey several
studies have investigated the idle periods of electric buses. For example, in California’s
bus system, vehicles typically experience 14 to 16 hours of idle time per day, particularly
between 20:00 and 06:00. To accommodate peak-hour demands, a portion of the fleet
also remains idle during daytime hours. In cases where buses are designated for school
transport or other lower needed area, the idle duration can extend to 18 to 20 hours per
day [13].

1.1.2 Renewable Energy Policy and Power Grid Trends and Challenges

Speak of the energy policy, since 1979 Taiwan Power Company (Taipower) has
implemented demand side management strategies aimed at encouraging users to shift
electricity consumption away from peak periods. By offering electricity rate discounts,
Taipower incentivizes users to participate in load shifting which can solve the fluctuations
of renewable energy for energy generation to meet the balance from generation and using.

In these regions, TOU pricing mechanisms have proven effective in reducing peak
demand by increasing electricity prices during high-load hours like winter evenings or
summer nights. In Taiwan, our peak time of the grid usually in the summer night which
Taipower are trying focus on.

Taiwanese government also provided a Renewable Energy Development Act,
requiring that at least 30% of the rooftop area of new or renovated buildings be used for
installing solar panels. According to estimates from the Ministry of Economic Affairs,
every 20 square meters of rooftop space can support about 1 kilowatt of photovoltaic (PV)

capacity. Based on this policy, we expect that Taipei City holds strong potential for
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decentralized solar development, opening new opportunities for sustainable urban energy
solutions. Taipei City Government previously conducted studies on solar energy potential
across different parts of the city. Before 2019, they estimated an installable capacity of
around 29 megawatts. In addition, research by the Taiwan Green Productivity Foundation
in 2008 suggested that if all schools under the Taipei City Department of Education
installed solar PV systems, they could collectively generate at least 2.7 MWp of electricity.
With ongoing improvements in solar PV technology, we believe that Taipei’s potential
for solar power generation will continue to grow [14].

To better understand the structural challenges of electricity transmission in northern
Taiwan, this study takes a closer look at the 2023 power grid situation as shown in Figure
1. We found that most of the base load electricity supply in the region has shifted from
natural gas. We assumed that the V2G can set as a replacement of the natural gas base
load energy. Therefore, this research began by analyzing the grid systems in Taipei City,
New Taipei City, Keelung, and Taoyuan. This helps us evaluate the possible limitations
of a centralized power grid and lays the foundation for discussing the potential of
developing a V2G system in this area. We used data provided by Taipower to examine
the grid conditions in northern Taiwan, especially focusing on the northeastern and
northwestern power systems. The region faces a power shortfall of about 3,500 MW,
while its electricity demand typically ranges between 10,000 and 11,000 MW. About 66%
of the electricity comes from thermal power plants, while the remaining 27% is supplied
from central and southern Taiwan. Further analysis of thermal power generation shows
that most of the electricity comes from the Tatan Natural Gas Power Plant located in
Taoyuan. Electricity is transmitted into Taipei through two major extra-high voltage
substations: Dinghu and Xiandu. This setup reveals a potential weakness in the grid.

Therefore, developing decentralized and self-sufficient energy systems appears necessary

doi:10.6342/NTU202502274



for improving energy security in northern Taiwan. According to the international energy
agency the grid distribution cost up to NT$0.5/kWh, no to say the cost of massive power
failure. With this understanding we can see the opportunity of decentralized grid which
is involved V2G.

We used web-scraped data to analyze the power grid over a one-day period,
focusing on the four private natural gas power plants that supply electricity to the Taipei
area. The data shows that these plants reach their peak generation between 16:00 and
23:00. This generation pattern aligns with the peak demand period defined by the time-
of-use pricing system discussed earlier. This finding is organized in Figure 2. In the
appendix we based on the the emission profiles of northern Taiwan’s electricity mix and
pollutant factors [15], gived the estimated health externality cost is approximately NT$1.8
per kilowatt-hour, demonstrating the public health value of V2G systems through air

pollution reduction.
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1.2 Literature review with V2G Applications

Several recent studies have explored how V2G and Vehicle-to-Building (V2B)
systems can optimize energy usage across various scenarios. In general, many studies
focus on the societal benefits of V2G systems, particularly how they integrate with
transportation networks to promote decarbonization. About seasonal effect, He applied
clustering analysis to classify power usage patterns across different seasons. They
examined how electric vehicle (EV) integration could be optimized in commercial
buildings by evaluating the effects of EV quantity on both electricity cost and grid
demand. The results showed that when accounting for seasonal solar generation, building
load curves, and electricity pricing, the ideal number of EVs varied by season with 25
vehicles in summer and 9 in winter. Their model demonstrated that electricity costs could
be reduced by at least 50% during the summer, providing strong empirical support for
applying smart energy strategies in buildings [16]. There are also V2B experiment here
in Taipei, Taiwan with optimization model to determine using stand battery system and
electric vehicles and show it has economy and environmental benefit [17].

For instance, V2G load shifting has been shown to reduce carbon emissions by
1.1% [18], while V2G systems using school buses can contribute to a 0.36% reduction in
the state fleet located [19]. Other studies, such as Yang's research, emphasize the role of
V2G in achieving carbon neutrality [20]. Some studies also examine the impact of local
electricity generation systems on carbon emissions by analyzing charging patterns, which
is useful for urban energy planning incorporating V2G systems [15]. Additionally, some
papers explore the potential of V2G systems working with islanded microgrids to
facilitate black start capabilities, in cooperation with existing electricity generation
systems [21]. Furthermore, other research delves into how charging patterns influence the

V2G system and its interaction with electricity loads [13]. In summary, V2G systems are
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a multifaceted area of research, involving a range of perspectives, parameters, and
methods for energy optimization. The following literature review will examine studies
that build on these foundational concepts, providing further insights into the application
and future directions of VV2G research.

Liao demonstrated that over a 30-year operational period, an EV fleet in Michigan,
USA, could achieve an economic return of up to 30% of the initial operating costs in Net
Present Value (NPV) terms. They also noted that larger EV batteries present better
opportunities for V2G applications [22]. In economic analysis with V2G studies goes
back to Shirazi [23] conducted a NPV analysis of electric school buses operating under a
V2G system, using school buses in Pennsylvania as their case study. The study estimated
that the cost per seat for electric buses, compared to diesel buses, was approximately USD
7,200 (NT$216,000) higher. One key finding was that temperature had a significant
impact on both the operation and economic benefit of the V2G system. Specifically, if
the system did not include thermal management and was shut down at temperatures below
-6.7°C, the potential revenue could drop by 22%. Based on this, the authors suggested
that V2G systems are more suitable for warmer climates. In this paper, it supposed bigger
electric buses has more potential with V2G system due to scale effect. Hsu, Kuo, Tsai,
and Yeh conducted a NPV analysis to examine the economic benefits of integrating
electric buses with the power grid in the Taipei area. The study compared three
operational models: diesel buses, electric buses, and electric buses combined with a V2G
system. It considered fixed costs, variable costs, and tax-related expenses, while also
testing different TOU electricity peak pricing levels at NT$8, NT$10, and NT$12 per
kWh. The results confirmed the economic feasibility of electric bus operations under
these scenarios. From a financial perspective, electric buses demonstrated better cost-

effectiveness than diesel buses. When including government subsidies and V2G revenue,
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the net present value of electric buses reached up to NT$277.4 million, significantly
higher than the diesel bus model, which peaked at around NT$201.9 million. However,
the study did not include data on battery degradation, which presents a valuable research
gap. Our study builds upon their findings by incorporating a broader range of hidden costs
and operational scheduling benefits [24]. Compared to Shirazi, who based their
evaluation on a 14-year bus depreciation period in the U.S., Hsu et al.’s study used
Taiwan’s standard 8-year depreciation. This difference highlights the importance of
considering depreciation period as a key parameter, which we include in our model.
Through reviewing literature that applies the NPV method, we find consistent evidence
supporting the overall effectiveness of V2G systems. In transportation engineering,
applying optimization models allows researchers to extract more precise parameter
changes, which are critical for sensitive analysis. Some studies have already attempted to
define and evaluate key V2G parameters through simulation and comparison. Based on
Shirazi we found three essential factors that shape the economic viability of V2G which
is initial capital cost, battery, and TOU pricing. These elements serve as the foundation
for our upcoming review of optimization based V2G models [23].

Taking TOU pricing as an example, Moradipari’s research showed that focused on
the TOU price can leads to 62.5% of operation reduction, if it can combine with solar PV
system even can reduce 91.3% operation cost, there method will be shifting the charging
schedule into night and have free charging with solar energy in V1G scenario (No
discharging)[25]. Onsite solar PV system with V2G system in Italian scenario can
approximately cut total annual cost up to 5.6% ~ 17.1% with Mixed Integer Linear
Programming (MILP) approach for the optimization in Italian electricity market [26].

Fei pointed out that different electricity market mechanisms can lead to varying

economic outcomes. In their comparison between Frequency Control Reserve (FCR) and
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Sale by Market Price (SoMP) models, they found that the SbMP model makes more
aggressive use of arbitrage strategies like buying electricity at low prices and selling at
higher prices. However, this also results in more frequent battery discharging, which
increases the risk of battery degradation. Our study will focus on the SbMP model,
optimizing power dispatch based on TOU pricing while also accounting for battery
degradation [27]. Based on Fei findings, we also consider that fleet-scale plays a role in
profitability. Specifically, a minimum of 14 vehicles is needed for the operator to benefit
from adjusting service hours to match price differentials in the electricity market. This
consideration will be included when designing the fleet configuration in our model [27].
Tian also used TOU pricing as a core parameter to optimize the timing of electric vehicle
(EV) charging and discharging, aiming to improve grid stability. In his optimization
model, the objective function was designed around a TOU-based V2G power control
strategy, with the goal of minimizing electricity costs for EV owners while reducing stress
on the grid. The strategy analyzed electricity price fluctuations throughout the day to
determine the most efficient charging and discharging times, optimizing overall energy
usage. The results showed that the V2G system significantly improved both grid stability
and operational efficiency. In case studies conducted in Beijing and Jilin, the model
reduced peak grid load by up to four times. Given Taiwan’s long-standing implementation
of TOU pricing, this study will adopt insights from Tian’s work and incorporate the local
TOU scheme into our optimization model to evaluate the applicability of V2G strategies
in the Taiwanese context [28]. Arsalan analyzed the use of household vehicles in V2G
operations through market transactions with the Japan Electric Power Exchange (JEPX).
The study simulated the potential profits and challenges arising from daily V2G
operations. It found that shifting the original charging time from 8:00-12:00 and

discharging time from 0:00-3:30 to a new schedule of 9:00-15:00 for charging and
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17:00-21:00 for discharging could significantly increase short-term revenue. However,
this new strategy may lead to faster battery degradation over the long term. Therefore, the
study highlighted the need to balance profit gains with battery life in long-term operations.
It is also worth noting that Arsalan’s research did not account for the upfront capital
investment required to implement the system. In contrast, our study will include initial
capital costs as part of the model to better reflect real-world financial conditions [29].

The study also proposed an optimization model that considers the actual operating
conditions of electric buses. It integrates the planning of charging infrastructure with
scheduling strategies based on real-world bus operations. By aligning planning with real
service patterns, the model can effectively reduce both total operational costs and peak
electricity charges. In particular, optimizing infrastructure during the planning phase can
lower costs by around 20%, while optimizing charging strategies during the operational
phase can further reduce operating costs by 68%. In this study, the initial investment cost
for high-power charging equipment was defined as over USD 25,000 (NT$750,000), and
battery costs were estimated at USD 700/kWh (NT$21,000/kWh). These values are
adopted as key reference parameters in the present research [30].

Battery degradation is also a common focus in optimization models. Borge-Diez
defined and formulated the cost calculation for battery degradation within their model
assumptions [31]. Ager-Wick Ellingsen studied electric vehicle batteries made of
different chemical compositions and conducted destructive testing to verify battery
cycling behavior, particularly within the 20% to 80% state-of-charge range [32].

Lee highlighted the critical role of battery degradation in V2G system design,
outlining various parameters and relationships involved in battery degradation, such as
"Cycle Degradation,” "Temperature,” and "Voltage." [33]. Zeng emphasized that, based

on simulation results, if charging control is not properly managed, the degradation cost
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of EV batteries could exceed the actual charging cost by more than ten times or 87.26%
of total operation cost [34]. Manzolli conducted a case study in Coimbra, Portugal, where
battery degradation was incorporated into both the objective function and constraints of
their optimization model. Their results showed that when battery prices dropped below
EUR 100/kWh (NT$3,700/kWh), the cost-effectiveness of electric buses improved
significantly. By comparing the 30-year total cost of ownership (TCO) between electric
and diesel buses, they found that electric buses could reduce overall costs by up to 38%
[35]. Also, there is a research reveal that under RMB 600/kWh can reduce 75.32% of

total operational cost [36].
1.3 Research Gap

Based on the literature review studies, it is evident that V2G systems hold promising
potential to address urban energy challenges and support transportation electrification in
Taiwan. However, several critical research gaps remain, limiting the practical
applicability of V2G solutions, especially for urban electric bus fleets. These gaps can be

summarized as following context.

1.  Lack of integrated multi-factor optimization frameworks
Most existing studies focus on single-dimensional analyses are consider only one
or two variables in analysis, failing to capture the complex interdependencies
among technical, economic, and policy factors. For example, TOU peak pricing,
solar generation, and battery degradation are often modeled independently or under
simplified assumptions, which reduces realism and decision-making relevance.

2.  Gap related to urban localization
Many studies are conducted in suburban, low density urban contexts or focus on
private electric vehicles. They often neglect localized conditions prevalent in dense

East Asian cities like Taipel, such as rooftop solar availability on public facilities,
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inflexible bus scheduling, and Taiwan’s unique TOU electricity peak pricing. This
limits the transferability of findings to such urban environments.
3. Perspective gap regarding public transit operators
Existing research tends to emphasize macro-level social benefits, such as carbon
mitigation and grid support, while overlooking the operational constraints and
economic incentives of public transit operators. Since these stakeholders are crucial
for real-world V2G implementation, neglecting their perspective can lead to
impractical or infeasible strategies.
These gaps hinder the development of actionable, location-specific V2G strategies
for electric bus systems, and reduce the utility of current models for public-sector
infrastructure planning. Without addressing these challenges, policy recommendations

and infrastructure planning risk remaining conceptual rather than operationally robust.
1.4 Research Objectives

To address these issues, this study aims to investigate the economic feasibility and
sensitive-driven optimization of integrating rooftop solar energy with V2G systems in
urban electric bus operations. The specific objectives are list here.

o To develop a mixed-integer linear programming (MILP) model that incorporates
real-world operational constraints, including bus dispatch schedules, rooftop solar
potential, battery degradation, and TOU electricity peak pricing.

o To quantify the impact of key policy-related and science-oriented parameters on
total operational costs and payback periods using Latin Hypercube Sampling (LHS)
and Sobol sensitive analyses.

o To identify cost-effective and policy-feasible parameter combinations that

minimize payback periods while ensuring energy sustainability.

Therefore, this thesis is structured as follows.
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Chapter 2 presents the overall modeling framework, including the formulation of
the mixed-integer linear programming (MILP) model, key assumptions, and
constraint design.

Chapter 3 describes the simulation results under baseline and sensitive conditions,
including cost-saving potential, optimal parameter settings, and scenario
comparisons.

Chapter 4 concludes the study by discussing key findings, model limitations, policy
implications, and recommendations for future research and implementation in

Taiwan.
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2. Methodology

2.1 Research Framework and Scope

This study follows the overall framework shown in Figure 3. First, data related to
energy, transportation, and electricity policies are collected and fed into a Gurobi-based
optimization model to obtain preliminary results. Next, key model parameters are
projected to the year 2030 to build an interval-based parameter model. In the sensitive
analysis stage, the first phase uses Latin Hypercube Sampling (LHS), which has faster
convergence, to perform the initial optimization analysis. A regression analysis is then
applied to the optimized results to evaluate the impact of each parameter on total system
cost. In the second phase, Sobol sampling and global sensitive analysis are used to capture
both second-order effects and variance contributions, allowing for a more complete
understanding of parameter interactions and their influence on overall system

performance.
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Figure 3 Overall Research Scope
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In this study, we integrate three major bus depots and their associated routes into
our research framework, using nearby schools as representative sites for solar energy
generation and scheduling, as illustrated in Table 1 and Figure 4. Our scope includes a
total of 110 electric buses operating across 9 different routes in Taipei City, with the fleet
distributed among three major depots, 44 buses at the Songzhi Depot, 39 at the Jiuzhuang
Depot, and 27 at the Wuxing Depot. Each depot is strategically paired with nearby
educational facilities identified as having rooftop solar energy potential. Specifically, the
Songzhi Depot is linked to both Songshan Vocational High School and Yongchun High
School provide 20510 m? rooftop availability and 82040 m? floor area, the Jiuzhuang
Depot is associated with Jiuzhuang Elementary School which offers 4028 m? rooftop
space and a total floor area of 16112 m?, and the Wuxing Depot is paired with Wuxing
Elementary School with 6428 m? rooftop availability and 25712 m? floor area. These
depot-school pairings form localized renewable energy clusters that support integration
with the V2G system. Each depot manages its own energy transactions with its
corresponding solar source, while all depots collectively aim to minimize total operational

cost through optimized dispatching and coordinated energy scheduling.

Table 1 Depots-Schools Integration Information

Songzhi Depot | Jiuzhuang Depot | Wuxing Depot Total
Operating routes 3 3 3 9
(routes)
Buses Amount 44 39 97 110
(buses)
Available school
rooftop area (2) 20,510 4,028 6,428 30,966
School floor area
(r2) 82,040 16,192 25,712 123,944
18
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2.2 Estimation of Urban Solar Energy Potential

To assess the renewable energy surplus, we evaluate the solar power generation

potential of rooftop areas located near bus depots. Smart meters installed by National

Taiwan University are used to estimate each building’s electricity self-sufficiency rate.

By calculating this self-sufficiency, we are able to determine the amount of surplus solar

energy available for potential integration with the V2G system. The overall structure of

this evaluation process is illustrated in Figure 5.
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Figure 5 Solar Energy Research Scope

2.2.1 Estimation Method for Urban Rooftop Solar Energy Potential

For solar power estimation, this study uses Equation 1, which requires inputs

including the solar conversion efficiency, rooftop area, solar irradiance, and ambient

temperature [37].

Solaryeperation = Mpy *100f * I x (1 —0.005 * (T — 25))

1)

Studies on Taipei City’s overall rooftop solar power potential whether based on

geographic information system (GIS) modeling or building-type extrapolation
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consistently indicate strong potential across the Greater Taipei region. Han used
geographic information system (GIS) modeling to analyze solar irradiance patterns in
selected areas of Taipei and estimate their corresponding solar power generation potential
[38]. An assessment of illegal rooftop structures in Taipei also revealed significant
untapped potential for solar power generation due to the large total surface area of these
rooftops [39]. Beyond generation potential, building electricity usage data can also be
used to estimate the solar self-sufficiency rate of buildings in Taipei [40]. In this study,
we calculate solar self-sufficiency rates and validate them using the method proposed
which takes into account regional differences, seasonal variations, and the number of
building floors to ensure the robustness of our estimation. For solar irradiance and
temperature data, we use publicly available datasets from the Central Weather
Administration’s CODIS meteorological observation network in Taiwan, which we

preprocess and adapt for modeling purposes.

2.2.2 ldentification of Solar Building Locations Near Bus Depots

This study focuses on three schools located near bus depots in Taipei City as the
main research sites: Songshan High School of Commerce and Home Economics in Xinyi
District, Jiuzhuang Elementary School in Nangang District, and Wuxing Elementary
School in Daan District. These three schools, along with Fanghe Experimental High
School in Daan District which has installed rooftop solar panels and operates its own solar
power generation facility are all located along the southern edge of the Taipei Basin. The
actual solar generation data from Fanghe Experimental High School is used as a reference
to validate the accuracy and feasibility of the solar potential estimates developed in this
study. In our estimation, the total rooftop is around 1200 m? with the equation of
Equation 1 we get 25519 kWh. According to Fanghe Experimental High School offered

us data, it has an installed solar capacity of 169.92 kWp in Phase | and 43.56 kWp in
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Phase 11, totaling 213.48 kWp. With Intensity set about 3.25 kWh/m2/day [41], it will be
about 20814 kWh in June. is quite close to the real situation with the data they’ve offered

us in June shown as Figure 7. This mean the calculation system on our hand is quite

mature enough and it can really work in a real site.
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The rooftop area of the three selected school campuses in this study was analyzed
using a geographic information system (QGIS). As shown in Figure 8, Jiuzhuang
Elementary School serves as an example of how this spatial analysis was conducted. We
selected school buildings located near bus depots as the target sites for potential solar
panel installation, in order to enhance the feasibility of early-stage pilot implementation.

As illustrated in Figure 9, we overlaid the Taipei City map and building footprint
data provided by the Taipei City Government within QGIS to perform rooftop area
calculations. Once the target area was identified, we used the GIS model to compute the
total rooftop surface area within the selected boundary. In the case of Jiuzhuang
Elementary School, the original zoned area was approximately 40,067 square meters,
while the total rooftop area of the selected buildings was calculated to be 3,212 square

meters. This rooftop area was then used as input in Equation 1 to estimate the expected

hourly solar power generation.

Figure 8 School — Bus Station Location’s Relationship
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Figure 9 GIS information for School Sample

In our research, we compare the three depots based on their solar energy potential
and the energy use intensity of the nearby schools integrated with each depot. Table 2
below shows the solar potential and school energy usage conditions for each depot-school
combination. These indicators help us understand how much solar energy can be used
locally and how the school buildings may influence energy distribution in the integrated
system. According to Energy Administration, the elementary school EUI should around
14~27 kWh/year-m? and high school should around 23~34 kWh/year-m? which make the

data here become reasonable.[42]
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Table 2 Energy Generation and Consumption of three depots Information

Songzhi Depot | Jiuzhuang Depot | Wuxing Depot
& Schools &Schools &Schools
Solar potential 3.692 795 187
(kWp)
Solar potential 604,874.83 119,000.25 189,573.04
(kWh/month)
Consumption of School 343,050.50 67,711.71 107,515.01
(kWh/month)
EUI of School
(kWh/month-m”2) 4.18
EUI Guide
(kWh/year-m~2) 23-34 14-21
Self Sufficient Rate
(%) 104
Li & Han et al.(2022) 123
Self Sufficient Rate (%)

2.2.3 Estimation of Building Electricity Demand Based on Function

For electricity usage estimation, this study uses the Civil Engineering Research
Building at National Taiwan University as a reference and applies a floor area-based
scaling method to estimate the electricity consumption of the target buildings during
specific time periods. Taking Jiuzhuang Elementary School as an example, the building
has four floors and a rooftop projected area of 3,212 square meters, giving a total floor
area of 12,848 square meters. Since typical elementary and junior high school buildings
in Taiwan do not use centralized chilled water systems and mainly rely on individual air
conditioning units, we assume a rooftop utilization rate of 100%. According to data from
Lo [37], the Civil Engineering Research Building has a projected area of 2,300 square
meters and nine floors, giving an estimated total floor area of approximately 20,700
square meters. Based on this ratio, we adjust the electricity usage using data from NTU’s
campus digital smart meter monitoring system to estimate the expected electricity

demand of the selected teaching buildings during specific time periods. This method
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allows us to simulate electricity use characteristics of educational buildings throughout
different timeframes such as summer and winter breaks, class hours, and idle periods
ensuring that the power demand estimations in this study reflect realistic usage patterns

with school type building.

2.2.4 Estimation of Building Solar Self-Sufficiency and Surplus Energy Potential

Based on the previously estimated solar generation and electricity demand of each
building, this study calculates both the building's solar self-sufficiency rate and the
surplus energy generated. The surplus energy at each time step is determined based on
the excess generation from the previous hour. However, due to current Taiwan Power
Company’s (Taipower) policies, which offer feed-in tariff (FIT) for building selling solar
energy, many buildings sell their solar energy back to the grid rather than utilizing it
locally such as Fanghe Experimental High School. With this concept, the study also
explores alternative ways to set building solar energy that could better support progressive
policies for community-based microgrids.

Using Jiuzhuang Elementary School as an example, the building’s solar self-
sufficiency rate in June is calculated to be 103.87%. This result aligns reasonably well
with the value provided by [40], which estimated a June solar self-sufficiency rate of
123% for four-story residential buildings in Taipei. This comparison demonstrates the
feasibility and validity of the self-sufficiency estimation method used in this study,

providing a reliable foundation for future research.
2.3 Electric Bus Operation Pattern Analysis

When electric buses depart from the designated depot sites, their operations follow
the unique characteristics of public transportation systems. This study also investigates
the surrounding bus stations operated by Metropolitan Transport Corporation (= i € %

i#) near the selected sites namely Songzhi Station, Jiuzhuang Station, and Wuxing
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Station and provides an analysis of current operations along with future planning
perspectives. Taking Jiuzhuang Station as an example, it serves four routes: Route 276,
Route 306, Minibus Route 6, and Route 823. Among these, Routes 276, 306, and 823 are
currently operated using diesel-powered Daewoo BS120CN buses from South Korea,
while Minibus Route 6 is operated through a joint-operation minibus system. Based on a
2023 survey of the domestic electric bus market, the electric buses currently used by
Metropolitan Transport Corporation commonly include the Master Bus MB120SE by
Master Transportation, the Model T by Foxtron (Horizon Plus), the RACE150 by RAC
Electric Vehicles, and the K9 by BYD. However, due to the larger wheelbase and width
of these models, they are not suitable for the narrow roads and turning radii required for
operating Minibus Route 6. Therefore, for Jiuzhuang Station, electric bus replacement
planning focuses on Routes 276, 306, and 823. This study refers to manufacturer provided
specifications for the above mentioned electric bus models. Considering that key factors
such as battery capacity and energy consumption per kilometer have a significant impact
on the performance of V2G systems, and given the ongoing trend toward domestic
production of electric buses, the Foxtron Model T is selected as the representative model
for this study. All replacement scenarios assume substituting the current South Korean
Daewoo BS120CN diesel buses with the Foxtron Model T on the identified routes in our
research assessment. Based on the above assumptions, a total of 39 diesel buses from
Routes 276, 306, and 823 are considered for electrification. The operational schedule of
these electric buses is based on the public timetable released by Metropolitan Transport
Corporation. Taking Route 276 from Jiuzhuang Station as an example, its service hours
run from 6:00 AM to 9:00 PM. During weekday peak periods, buses operate every 15 to
20 minutes, while off-peak and weekend periods follow a fixed schedule. This study uses

Python for data processing. Given the fixed time intervals between departures, we model
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the bus dispatches on an hourly basis using probabilistic methods. A Poisson distribution
is applied to estimate the expected number of electric bus dispatches per hour. For
example, during weekday peak and off-peak periods on Route 276, we simulate the
random arrival of electric buses at intervals of 15-20 minutes. This method is similarly
applied to Routes 306 and 823, producing 24-hour Poisson-based dispatch distributions

for each route shown as Figure 10.

Poisson Distribution of Monthly Combined Bus Dispatches for Jiuzhuang Depot
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B Weekend

Probability
(=]
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Figure 10 Poisson Distribution of Combined Bus Dispatches for Jiuzhuang Depot

Similarly, after calculation, we derive the expected number of bus dispatches per
hour, as shown in Figure 11. This expected simplified how a depots to deal with
transportation need, in this graph it can echo to previous study that sometime the electric
buses will stay in the depot and being idle [13]. The average idle time for electric buses
will be 58% ~ 83% depends on different route. In our research it will be around 78% for
idle time in the JiuZhuang depot according to the estimation which means this bus

operation has relative low departure rate.
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June Bus Operation Expectation Values For JiuZhuang Depot
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Figure 11 June Bus Operation Expectation Values for JiuZhuang Depot

This result supports the subsequent development of the optimization model. Once
the solar self-sufficiency of the selected buildings and the dispatch patterns of the electric
bus depots are confirmed, we map their spatial relationships based on geographic
proximity. This allows us to establish the connections among depots, buildings, and
electric buses, forming the foundational structure of this study's site-to-bus allocation

model.

2.4 Optimization Model Development

In optimization modeling, there are two models one is linear and mixed-integer
linear programming methods, and another one is gradient-based nonlinear optimization
techniques. The following section compares these two approaches and explains the reason

for adopting mixed-integer linear programming methods in this study. Figure 12 is the
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scope of the optimization model in our research to build up what we want to optimized

while we want to form a V2G model.

(A) Parameter Setting

* Vehicle parameters
* Battery parameters
* Time-Of-Use Prices

Binary Control
o B,y,M

(B) Operational Constraint (C) Energy Constraint

* Driving Schedule * Solar Energy Setting

(D) Working Constraint

* Charging and Discharging
* Operation Consumption

(E) Objective Function

* Economical Cost Per Month

Figure 12 Scope of Model

2.4.1 Overviews of Gradient-Based Nonlinear Optimization Methods

A wide range of optimization algorithms can be broadly categorized into derivative-
based and derivative-free methods. Derivative-based techniques utilize gradient
information, such as the first-order derivative Vf, to determine the search direction and
guide to the optimization results. One example is the Conjugate Gradient (CG) method,
which is suited for solving large-scale unconstrained linear minimization problems. This
method accelerates convergence by searching along conjugate directions rather than

simply following the steepest descent of -Vf. It iteratively updates the gradient -Vf to reach
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the optimal solution. Second-order methods extend this idea by introducing the Hessian
matrix (V&), which allows for more precise convergence based on curvature information.
These methods are more accurate for scientific computation but come with significantly
higher computational costs. In contrast, derivative-free methods operate like black-box
optimizations, requiring only function values. One well-known example is the Nelder-
Mead method, which compares function values at multiple points ex., f(-1), f(1), ..., f(n)
to gradually move away from high-value regions and approach the minimum. However,
both derivative-based and derivative-free methods are prone to getting stuck in local
minima, which may distort the final results. Additionally, because these algorithms rely
heavily on continuous derivatives, they are not suitable for solving mixed-integer linear

programming (MILP) problems [43].

2.4.2 Overviews of Mixed-Integer Linear Programming Methods

In the Mixed-Integer Linear Programming Methods, there is a useful package called
gurobi which primarily uses the Branch-and-Bound algorithm, supplemented by various
heuristic methods, to solve optimization problems and obtain optimal solutions. In this
study, mixed-integer formulations are frequently encountered. For example, the number
of buses is treated as an integer variable, while power-related behaviors like energy flow
are modeled as continuous variables. These two types of variables need to be optimized
together within a single integrated model. For linear problems, feasible regions defined
by constraints and objective functions can be solved using the simplex method. This
approach iteratively swaps basic and non-basic variables at the vertices of the feasible
region to identify the optimal solution. For solving mixed-integer problems, Gurobi
applies the Branch-and-Bound algorithm to find the optimal solution. The process begins
by relaxing the integrality constraints and solving the corresponding linear programming

(LP) problem to obtain an optimal LP solution. If the solution contains fractional values
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in integer variables, the algorithm selects one of these variables and branches on it,
rounding it up and down to create two new subproblems. If a solution is found where all
integer variables take integer values, the algorithm terminates. If a node is infeasible or
the current solution's objective value is worse than an existing feasible solution, that
branch is pruned. This process continues until all branches have either been solved to
optimality or pruned due to infeasibility or minor than current integral solution. In this
study, many optimization tasks involve mixed-integer formulations, where both discrete
decisions (such as the number of buses) and continuous variables (such as energy
consumption) must be solved together. Gurobi's hybrid method is well-suited to

efficiently handle such mixed-variable problems like V2G problem [44].

2.4.3 Comparative Analysis of Gradient-Based and MILP Optimization
Approaches

Based on the literature review and the needs of this study, a commercial solver
designed for mixed-integer linear programming was selected. Compared to nonlinear
optimization methods that rely on derivatives, mixed-integer linear programming offers
several advantages. It is especially suitable for large-scale problems involving both
integer and continuous variables, which matches the structure of urban energy scheduling
models used in this research. Following are several for choosing mix-integer linear

programming method.

1.  Mixed-Variable Modeling Capability
Mixed-integer programming methods are specifically designed to solve problems
that involve both integer and continuous variables. These models are commonly
encountered in practical scheduling and planning tasks. Compared to such
approaches, gradient-based nonlinear optimization techniques are typically limited
to continuous variable problems. When applied to models with discrete decisions,
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these methods often require additional relaxations or transformations, which can
increase the complexity and computational cost.

Solution Stability and Initialization Robustness

Gradient-based methods rely on derivatives to guide the search process, making
them effective for nonlinear and non-convex problems. However, they are often
sensitive to initial values and may converge to local minima. In contrast, mixed
integer programming methods use structured algorithms such as branch and bound,
which explore multiple solution paths and are less affected by initial conditions,
offering greater reliability in finding global optima in well formulated models.
Application Suitability for Grid Scheduling

Problems involving grid scheduling and energy dispatch commonly feature binary
or fixed allocation decisions. Mixed integer programming methods are well
optimized for such discrete models, allowing accurate representation of practical
constraints like unit requirement, charging schedules.

Urban Scale and Computational Efficiency

The selected solver incorporates advanced features such as automatic method
selection, multithreaded computation, and presolve routines, which enhance
performance in solving large scale optimization problems. These features are
essential in urban-scale applications, where models may include hundreds of
thousands of variables and constraints. Without such enhancements, convergence
speed and memory usage would become critical problem.

Solution Interpretability and Sensitive Analysis

In addition to computational performance, mixed integer programming methods

provide structured output, including optimality conditions, dual values, and shadow
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prices. These results are useful for post-analysis, scenario evaluation, and policy

interpretation, especially in planning and decision-support contexts.

To conclude, MILP method give us more robust, reliable optimization model to
conduct with V2G analysis.

With this understanding, and given Mixed-Integer Linear Programming Method’s
reliance on multi-core processor performance, this study was conducted using high-
performance CPUs: the AMD Ryzen 9 7950X and the Intel i7-12650H. In each
optimization scenario, the model contains approximately 600,000 constraints and around
320,000 variables. A single optimization run takes approximately 10 minutes, while

sensitive analysis can require more than one week of continuous computation.

2.4.4 Design the V2G model with MILP Optimization Approaches
To complement the insights illustrated in the Figure 12, we introduce a pseudocode

that outlines the optimization goal and relevant parameters as shown in Figure 13.

Algorithm : Monthly V2G Economic Cost Optimization

Input:
Bus fleet data, PV generation, TOU pricing,
Battery capacity, SOC initial, charging power,
Gurobi optimization constraints

Qutput:
Optimal charge/discharge schedule with cost minimization

1 Initialize model with parameters:
- SOC initial, Bus_Capacity, Fast/Slow charging
- TOU electricity prices, PV generation profile, Buses dispatch schedule profile
For each bus in each depot (Songzhi, Jiujuang, Wuxing):
For each time step (1 hour as a time step):
Estimate solar power generation and load
Calculate demand and storage states
Apply constraints on:
- S0C range
- Charging/discharging power
- Grid selling/buying cost
- Battery degradation cost
7 Formulate MILP with:
- Objective: minimize net operation cost
8 Solve MILP via Gurobi
9 Record dispatch result and cost
10 Aggregate and compare across depots
11 Return optimized strategy and cost analysis

DU WN

Figure 13 V2G optimization model Pseudocode

34 doi:10.6342/NTU202502274



2.5 Baseline Parameter Settings

In the V2G operation setup, this study assumes the use of the Foxtron Model T
electric bus, with a standard battery capacity of 300 kwWh. The initial state of charge (SOC)
Is set at 50%. According to historical interview data from the Institute of Transportation,
Ministry of Transportation and Communications, the average operating speed of electric
city buses in Taiwan is 20 km/h, and the average energy consumption is 0.9 kWh per
kilometer. Under the baseline setting, fast charging is defined with a maximum power of
135 kW, and slow charging with a maximum power of 7 kW. The optimization model
determines the best allocation of resources using mixed-integer programming. For grid
electricity pricing, the model adopts the time-of-use charging rates announced by
Taipower in November 2024 for electric vehicle charging stations [45]. Peak-time
electricity is priced at NT$9.34 per kWh, and off-peak at NT$2.29 per kWh. Peak periods
are defined as weekdays from 16:00 to 22:00, all other hours are considered off-peak.
Regarding the baseline solar feed-in tariff, we follow Taipower’s solar energy buy-back
rate of NT$3 per kWh. For the pricing gap between fast and slow charging, the model
adopts a baseline price multiplier of 2.41, based on comparisons with domestic and
international EV charging tariffs [46-48]. Additionally, for the sale of electricity back to
the grid, this study follows the three steps time-of-use pricing scheme announced by
Taipower in November 2024. The electricity rates are defined as follows: NT$6.92 per
kWh during peak periods (weekdays 16:00-22:00), NT$4.54 per kWh during mid-peak
periods (weekdays 9:00-16:00), and NT$1.96 per kWh during off-peak hours (all other
times). The baseline battery degradation cost is set at NT$0.45 per kWh, based on the
typical cost of lithium titanate (LTO) batteries used in electric buses. Further details and
equations related to battery degradation will be explained in the battery sensitive analysis

section.
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(A) Parameter Setting

* Vehicle parameters
« Battery parameters
* Time-Of-Use Prices

Vehicle Parameter Battery Constraint Time-Of-Use Prices

20% <= SOC;; < 80% EVs Charging -> Peak $9.34/kWh, Off Peak $2.29/kWh
Electricity-> Peak $6.92/kWh, Half Peak $6.92/kWh,
Off Peak $2.29/kWh

Ce < 135kw

Djy < 7kw

Battery Capacity = 300 kWh

Operation Consumption = 18 kWh/hr

Figure 14 The Road Map of operation model’s parameter

The following initialization constraints are derived from the physical limitations of
the electric bus systems and must be considered in the simulation. To account for battery
health and realistic operation, we set both upper and lower bounds on the battery state of
charge (SOC). According to battery-related literature, such as [32], the typical operating
range for battery charge should be constraint. Our research definition is between 20% and
80% of total capacity, as shown in Equation 2. In addition, we acknowledge limitations
imposed by basic charging infrastructure particularly for V2G discharge rates. To reflect
the capabilities of real-world systems, the maximum discharging power for slow charging
is set at 7 KW, as shown in Equation 3. The maximum fast charging power is set at 135
kW, as shown in Equation 4. This ensures that the simulation remains within feasible

hardware boundaries.

Battery Boundary Constraint:

20% < SOC;; < 80%

@)
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Charging Pile Discharging Constraint:

Ci,t < 135kW

(3)
Charging Pile charging Constraint:

Di,t < 7kw

(4)
2.6 Model Constraints

2.6.1 Binary Constraints for Bus Operational States

In formulating the mathematical model for electric bus operation strategies, it is
essential to ensure that each bus performs only one activity at any given time. This
exclusivity of operation is enforced through a set of binary variables: a, 8, y, and n each
representing a distinct operational mode: in-service operation, fast charging, slow

charging, and discharging, respectively.

Vperiod € nperiods, Yunit € units, a+B+y+n <1

()

2.6.2 Constraints on Solar-Powered Charging Availability
This constraint ensures that, at any given time, the total energy used by the solar
charging system does not exceed the available surplus energy generated by the solar
panels. Specifically, the sum of solar-powered fast charging and slow charging must
remain within the solar surplus capacity at that time. Mathematically, this is enforced by
limiting the combined solar slow charging amounts SSC;. and solar fast charging
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amountsSFC; ; based on the available surplus energy. The binary variables  and y indicate

whether fast charging or slow charging is activated, respectively.

units

Z SFCi,t x f + SSCi,t * y < Building Solar Energy Surplus

unit=1

(6)

2.6.3 Constraints on Electric Buses Dispatch Requirements

To ensure that the bus system maintains its transport efficiency while operating
under a V2G framework, it is necessary to guarantee that a sufficient number of buses
remain in service during scheduled operation hours. The following describes how
operating time periods across a one-week schedule are defined and how the corresponding
dispatch of buses is managed. Let P represent the set of time periods, with d = 24 periods

per day. The variable aypitperioa denotes the operational status of a specific bus unit at a

given time period whether it is in active service.

The operation-level constraint is defined as follows:

units

Vperiod € nperiods, Z Qunitperiod = Dispatch Demand

unit=1

()

In practice, most bus dispatches typically last longer than one hour. However,
implementing detailed dispatch duration constraints can significantly increase the
computational load of the optimization model. To address this, a sub study is conducted
to compare two scenarios: one with a minimum dispatch duration constraint of three hours
and one without such a restriction. The goal is to observe whether this real dispatch

situation constraint has a significant impact on the optimized operational cost or not.
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. This study modifies Equation 7 by adding a constraint that enforces a minimum
dispatch duration of three hours like Equation 8. To avoid logical conflicts in the model,
the original time-based dispatch restriction is adjusted. When a dispatch is initiated
identified by the condition (period — period—1) = 1, the sum of dispatch indicators over
the current and following two periods (period, period + 1, period + 2) must exceed 3. This
ensures that once a vehicle begins service, it remains in operation for at least three coming
hours, aligning the model close to world scheduling behavior.

units
Vperiod € nperiods — 2, Z Qunitperiod = Dispatch Demand
unit=1
(8)

o‘unit,period + aunit,period+1 + 0‘unit,period+2 =3 x* (aunit,period - 0(unit,period—l)

©)

Heatmap of 3 hour Dispatch model

Unit

0 5 10 15 20

Hour

Figure 15 3-hour Dispatch Model
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When this constraint was added, the optimized operating cost was NT$433,070,
which is within the margin of error compared to NT$422,615 without the constraint.
However, the computation time increased by more than 10 to 20 times. Therefore, in the

subsequent setup, this study simplified the operating time constraint.

2.6.4 Battery Scheduling and State-of-Charge Constraints

To initialize the system, this study defines the state of charge (SOC) at time period
zero for each bus SOCjas 50%. Based on the assumption that the battery's full capacity is
300 kWh, each electric buses start with an initial energy level of 150 kwWh for calculation

and optimization purposes.

SOCynito = 50% * Battery Capacity
(10)
To prevent the electric bus operation systems from being excessively affected by
the V2G discharging process, this study imposes a condition that every three days, the

state of charge (SOC) must be reset to its initial level.
SOCunit,n = SOCunit,n—3 = SOCunit,O

(11)

To define the system’s behavior and ensure continuity between time periods, this
study forms the battery state of charge (SOC) dynamics based on Equation 12. The SOC
at time period n is determined by the SOC at time period n—1, plus the Battery Increment
variable and minus the Battery Decrement variable. SOC,;t,, represents the state of
charge of the electric bus at time period n, ISOCy,;; , denotes the battery charge increment,

and DSOC,j, denotes the battery discharge amount during time period n.
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SOCunitn = SOCynign-1 + ISOCypign + DSOCynign
(12)
The battery charge increment ISOC,,; , define the sum of all charging activities for
electric bus unit i at time period t, including slow charging from the grid SC;. , fast
charging from the grid FC; , slow charging from solar power SSC;., and fast charging
from solar power SFC;; at the corresponding depot charging system. This formula
captures the total charging behavior during each time period. The binary variables B and

vy indicate whether fast charging or slow charging is activated.

ISOC; = SCi * B+ FCjy* y+ SSCjy* B+ SFCjt * v

(13)

The battery discharge amount DSOC; is defined as the sum of all discharging
activities for electric bus unit i at time period t, which includes both energy consumed
during bus operations and energy discharged back to the grid through V2G services.
Consump;, represents the energy consumption caused by dispatch operations for bus
unit i at time period t, and 1 is the binary variable indicating whether the bus is discharging
during operation. D; represents the amount of energy discharged to the grid by bus unit
1 at time period t, and o is the binary variable indicating whether activate the V2G

discharging system.
DSOC; = Consumption;; * o + Dj * 1

(14)

The incremental battery degradation cost defined the product of the additional
battery degradation by V2G discharging and the battery degradation cost per unit of

energy. BD: represents the total amount of battery degradation at time period t, Dit
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represents the amount of V2G discharge by electric bus unit i at time t, and a is the binary

variable indicating or not.

units

BD; = BC = Z Die* a

unit=1

(15)

According to some of the previous studies, battery degradation models are
nonlinear. However, in this research, the battery degradation cost is modeled linearly to
simplify computation. This linear assumption is necessary to ensure computational
efficiency, given the scale of the model and the need to simultaneously account for

multiple interacting variables. [33, 49]

This study refers to the works of Borge-Diez, Manzolli, and Choudhary to compare
and integrate different approaches to battery degradation modeling. Based on these
references, we define the linear degradation formula adopted in this study as Equation 16.
[31, 35, 50] In this formula, when battery degradation reaches a point where it no longer
meets operational requirements, battery replacement cost is BATcost; The total number of
charge-discharge cycles before requiring replacement is DoDcycle; DoD represents the

usage cycle depth for the electric bus battery.

BATCost

BC =
DOD¢y e * DOD

(16)

2.7 Objective Function Definition
To define the optimization objective, this study sets the objective function as a
minimization problem, targeting the minimization of the total operational cost of the

electric bus system. The total cost is calculated by summing all relevant components
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across the selected depots, including city power slow charging costs, city power fast
charging costs, solar energy fast charging costs, solar energy slow charging costs, and
battery degradation costs, as shown in Equation 17. Specifically, SSP represents the total
cost of solar-powered slow charging, SFP represents the total cost of solar-powered fast
charging, DP represents the total revenue from VV2G discharging, and BDP represents the

total cost of battery degradation.

fields

minimize Z SP + FP + SSP + SFP — DP + BDP
field

(17)

Among the various cost components, this study first defines the calculation for the
total cost of grid-based slow charging. This cost is obtained by multiplying the slow
charging amount for each electric bus unit i at each time period t by the corresponding
time-of-use electricity price. This cost is obtained by multiplying the slow charging
amount for each electric bus unit i at each time period t by the corresponding time-of-use
price EVCPt, and then summing across all buses and time periods, as shown in Equation
18. Here, SP represents the total cost of slow charging, EVCP; are the time-of-use price
for EV grid charging at time t, y is the binary variable indicate slow charging is activated

or not, and SCi,t is the slow charging amount for unit i at time t.

nperiods ynits

SP = z z EVCP, * SCi¢ * y

period unit

(18)

To define the cost of city power fast charging, this study calculates it by multiplying
the fast charging amount of each electric bus unit i at each time period t by the

corresponding time-of-use electricity price EVCP; , and then summing across all buses
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and time periods, as shown in Equation 19. The price difference between fast and slow
charging is reflected by a multiplier SFC, set at 2.41. This adjustment accounts for the
higher infrastructure requirements for fast charging since it need transfer from city

power’s alternating current to direct current for EVs.

nperiods ynits

FP = SFC Z z EVCP, * FC;, * B

period unit

(19)

To define the cost of building-based solar slow charging, this study calculates it by
multiplying the solar slow charging amount of each electric bus unit i at each time period
t by the corresponding building solar electricity selling price BSoP, and summing across
all buses and time periods, as shown in Equation 20. Here, SSP represents the total cost
of solar-powered slow charging, BSoP is the price at which surplus building-generated
solar energy could otherwise be sold back to the grid, with a baseline rate of NT$3 per

kWh as previously mentioned.

nperiods ynits

SSP = Z Z BSoP * SC; * y

period unit

(20)

To define the revenue generated from VV2G discharging by electric buses, this study
calculates it by multiplying the V2G discharge amount of each electric bus unit i at each
time period t by the corresponding time-of-use electricity price TPy, and then summing
across all buses and time periods, as shown in Equation 21. Here, DP represents the total
revenue from V2G discharging, TP:is the three-tier time-of-use electricity price at time t,
Ditis the V2G discharge amount for unit i at time t, and ) is the binary variable indicating

whether discharging is activated.
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nperiods ynits

DP = z ZTPt*Di,t*n

period unit

(21)

To define the cost caused by battery degradation, this study calculates it as the sum
of battery degradation costs over all time periods. Specifically, BDP represents the total
battery degradation cost across all periods, and BD: represents the battery degradation

cost at time period t.

nperiods

BDP = z BD,

period

(22)

2.8 Capital Cost and Infrastructure Allocation

To allocate the number of capital equipment, this study incorporates constraints
based on three depots into the model to modify the optimization results, as shown in
Equation 23. This study does not consider the actual limitations of depot space on the
number of charging systems; instead, it focuses solely on analyzing the investment cost

of the systems and the profits generated through the V2G system.

units units units
z B+ Z Y+ z n < Charging System Amount
unit unit unit

(23)

Equation 23 incorporates the binary variables B, y, and n, which represent fast
charging, slow charging, and V2G discharging activities. The sum of these three binary

variables at any given time should not exceed the number of available charging stations
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at the depot which give us an opportunity to study the changing of amount on charging
systems with the ultimate payback years of the V2G system. When we changing the

system constraint the behavior will be like what we can see in Figure 16 as the heat map.

Heatmap of Charging Pile Constraint
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Figure 16 Heat Map Example of Charging Pile Constraint for Buses Behavior

2.9 Parameter Sampling Strategy

After obtaining the optimal solution through the Gurobi optimization model based
on the model settings, this study aims to plan future urban power grids by adjusting the
model parameters. There are three sampling methods available for sensitive analysis:
Monte Carlo Sampling, Latin Hypercube Sampling, and Quasi-Monte Carlo Sampling,
the example of distribution of three different sampling method as shown in Figure 17.
Then we try to used the sampling method with optimization model to conduct sensitive

analysis.
To be more specific, Monte Carlo methods rely on random sampling within a
defined range, where each sample is randomly distributed based on its probability
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distribution. The Monte Carlo sampling method randomly places samples within the
defined range and reconstructs the input distribution by repeated sampling after
completing the specified number of iterations. However, due to the randomness and
slower convergence, this method is less efficient for our study. In contrast, Latin
Hypercube Sampling cut the input distribution into equal intervals, ensuring uniform
sampling across each dimension. This approach requires fewer iterations and reduces
computational costs when combined with Gurobi optimization. Quasi-Monte Carlo
methods, such as Sobol sequences, fill the space with low-discrepancy sequences, making
them ideal for high-dimensional sensitive analysis and numerical integration. Therefore,
in this study, we adopt Latin Hypercube Sampling for one-dimensional analysis to cover
a broader range of parameters while minimizing redundant optimization computations

and utilize Quasi-Monte Carlo Sampling for higher-order indices.

To sum up, the reason we do not choose Monte Carlo as our sampling method is
that it is random-based, which can significantly increase computational pressure. In
contrast, Latin Hypercube Sampling and Quasi-Monte Carlo Sampling are more efficient,
as they divide the interval into segments and place each sample at equal intervals,

ensuring better coverage of the required range showed in Figure 17.
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0 5 " - A . 5 . >
- ,

. v . . . . - .
0.8 M * & 08 o " . . .‘ 081 . . *
. . .

. . . "
0.4 s 04 e . 04
R . N . .

Figure 17 Sampling Method of Parameters
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2.10 Global Sensitive Analysis Method

To analyze the influence of multiple parameters on optimization outcomes, this
study first extends the Latin Hypercube Sampling (LHS) method used in one-dimensional
analysis to two-dimensional cases. However, when more than two parameters interact,
the combined effect on the objective function is often nonlinear and cannot be captured
accurately by local sensitive approaches. LHS, as a form of local sensitive analysis,
exhibits monotonicity and threshold limitations, and its results are highly dependent on
the initial sampling points. As reported in prior studies, such limitations may lead to
biased interpretations of parameter influence, underestimation of system capacity, or
overly optimistic economic forecasts, thereby compromising the system's robustness and

flexibility under uncertainty [51, 52].

To address this, the study incorporates a global sensitive analysis approach using
the Sobol method, a variance-based sensitive analysis (VBSA) technique. Sobol analysis
leverages low-discrepancy sequences for uniform sampling across the entire input space,
enhancing the coverage and reliability of sensitive results. This method constructs two
independent sample matrices, each with n samples and d variables as shown in Figure 18,
to evaluate both first-order and total-order sensitive indices. Unlike LHS, the Sobol
method is capable of identifying nonlinear relationships and high-order interactions
between parameters, offering a more comprehensive understanding of how combinations
of uncertain variables jointly affect system performance. This enables more conservative
and resilient system design, particularly in energy-related applications with high

parametric uncertainty.
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Figure 18 Sobol Computaional Matrix [53]

Next, a mixed matrix is created by sequentially swapping rows [53]. For instance,
the “i" row of matrix N is swapped with the “i" row of matrix M to form a new mixed
matrix. This process results in an n x (d + 2) dimensional sample matrix where n is the
number of samples and d is the number of variables, which serves as the sample space for
sensitive index estimation. This method allows for the evaluation of multi-variable
interaction effects, as discussed by several studies. [54-56]

This swapping method effectively avoids the traditional method of fixing one
parameter and performing sampling integration on another, which would require N x N
evaluations. With the Sobol method, the number of samples becomes N + N + N x d, or
N x (d + 2). [54]

Here are some examples of the outcome with the sobol analysis, due to its’ variance
based we introduce the meaning of indices from these analysis with following equations.

In the results analysis, we will use first-order sensitive matrices, second-order sensitive
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matrices, and global sensitive indices to analyze the outcomes of the relevant parameters.
Equation 24 defines the first-order Sobol sensitive indices, which measures the
contribution of a single input variable to the variance of the output variable. Here, V
represents variance, E represents expectation, Y represents the output variable, and X;
represents the i input variable. The numerator represents the variance in the model output
Y when X; changes, which reflects the main effect strength of a single variable X; on the
global model output. The denominator represents the total variance contributed by all
variables in the model.
_ VIE(YIX))|
V(Y)

(24)

Equation 25 defines the second-order Sobol sensitive index, which measures the
contribution of two input variables to the variance of the output variable. Here, X; and X;
represent two different input variables. The second-order Sobol index S2 quantifies the
interaction effect between X; and X on the variance of the model output. After removing
the main effects of both variables from the total variance, the remaining portion represents
the interaction effect. If S2 approaches 0, it indicates that the two variables have minimal

interaction.

9 - VIE(YIX;, Xj)| — VIE(YIXp)| — VIE(Y|Xj)|
B V(Y)

(25)

Equation 26 defines the total Sobol sensitive index, which helps us understand the
overall effect of a coefficient, including its interaction effects. In practice, this is

calculated by fixing other variables and then performing a reverse calculation to observe
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the total impact of Xi. If the total effect of a coefficient, defined as ST - S, is large, it

indicates significant interaction effects for that variable in the model.

_ VIE(Y|X.))|
ST =1- V(Y)
(26)

In the original definition of the total index, if there are no interaction effects in the
model, it is referred to as an additive model, where the sum of all first-order sensitive

indices equals 1.
ST = S1 + S2 + --

(27)

>1 doi:10.6342/NTU202502274



52

doi:10.6342/NTU202502274



3 Results and Discussion

3.1 Baseline Optimization Outcomes

Based on the baseline parameter settings used in Section 2.5, we obtained the
baseline optimal solution for the V2G system at three electric bus stations, which is
$422,615. In the optimization process, using the June 1st, 24-hour schedule of the
Songshan High School station as an example as Figure 19, each line is determined by
balancing both the bus dispatch demand and the charging/discharging optimization model
to decide how the battery behavior should change. Through the analysis of this result, we

can also ensure that this optimization model system adheres to the bus dispatch constraints.

SOC Values for ramdom 5 Vehicles in SongZi Depot (6/1)
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Figure 19 State of Charge for each vehicle in SongShan Vocational School Station

The input weather data in the model is presented in a graphical format as shown in
Figure 20. From this, we can observe that at the beginning of June, the blue-marked area
shows a significant drop in temperature due to the influence of frontal systems, which

also brought some rainfall. In such climatic conditions, the solar power generation of the
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buildings used by the electric buses is significantly low as indicated by the yellow line.
However, when the Pacific high pressure strengthens, as shown in the yellow-marked
area, the environmental temperature rapidly rises. During this period, the solar power
generation of the buildings used by the electric buses increases significantly. Meanwhile,
the city power fast charging system was activated during the frontal weather in early June,
as shown in the blue-highlighted area. Meanwhile, towards the end of June, with the
strengthening of the Pacific higher pressure, as shown in the yellow area, more solar
power was generated, leading to a lower operation of the city power fast charging system

in this period as shown in Table 3.

Cold Rain Warm Sunny

June Temperature Over Time

Temperature (°C)
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Figure 20 Taipei’s June Weather

Table 3 demonstrates that the model can effectively adjust the solar power
generation from buildings based on weather patterns. The discharging behavior is
strongly positively correlated with the three-stage TOU peak pricing for the V2G system,
we can see that during weekends, the model does not discharge because the TOU peak
price settings define these periods as off-peak. On the other hand, during weekdays,
discharging occurs due to the peak-off-peak differences, which aligns with the original
expectations, proving the model's effectiveness.
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This study also analyzes the daily energy usage, taking June 3rd for a station energy
schedule as an example, as shown in Figure 21. Based on the time-of-use electricity
pricing, the day is divided into three time periods: off-peak, semi-peak, and peak hours.
First, from 11:00 PM to 9:00 AM, this period is off-peak and designated for discharging.
During this time, the electricity grid also operates in off-peak hours, so the discharging
system remains inactive. Simultaneously, the grid's slow charging system operates at a
low power level, often referred to as trickle charging. Next, from 9:00 AM to 4:00 PM,
this is the semi-peak period. During this time, it is also the key charging period for
building solar systems. Some electric buses charge using the building's solar power, while
others discharge to the grid, responding to the higher semi-peak time-of-use rates. Finally,
from 4:00 PM to 11:00 PM, this is the peak period, when the discharging system is most
active due to the higher time-of-use rates. Simultaneously, the building's solar power
charging and the grid's charging systems are typically turned off to align with the high
electricity demand during the evening peak period. Meanwhile, we can observe that the
daily results vary on other days. As shown in Figure 22, when solar energy is insufficient,
the daytime charging schedule shifts to the city power fast-charging system, represented
by the red line. This behavior differs from that of solar fast charging, as the power level
does not reach the same peak when solar energy is unavailable. This is because, in the
optimization model, the system shifts to using cheaper nighttime electricity instead of

relying on higher-priced daytime city power.
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Table 3 Charging Status for EVs
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Total Charging and Discharging for 3 different stations (6/3)
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Figure 21 Typical Daily Charging Schedule of V2G system
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Figure 22 Rainy Daily Charging Schedule of V2G system

In addition to the weather changing has influence on the daily result, shows that the
weekday/ weekend’s electricity policy changing cause different result. In weekend’s
scenario, daily result tends to utilize slow charging to deal with the transportation

operation need instead of discharging.
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Total Charging and Discharging for 3 different stations (6/2)
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Figure 23 Weekend Daily Charging Schedule of V2G system

In the discussion of the baseline optimization results, this study also analyzes the
total cost through graphical representation, as shown in Figure 24. The original model is
compared with a scenario where the V2G system is not involved, referred to as V1G (No
discharging). The chart displays the individual costs for V1G and V2G. From the chart,
it is evident that when the discharging system is inactive, V1G primarily relies on trickle
charging to meet the operational needs, as it only needs to satisfy the bus scheduling
requirements. Therefore, the charging demand is relatively low. According to the current
operation of electric buses, charging typically occurs during nighttime trickle charging
and in small time slots during daytime scheduling intervals. Additionally, the building's
solar charging costs are slightly higher than the nighttime trickle charging costs due to
the electricity sales price, so during low charging demand, only a small portion of the
charging time utilizes the solar charging system. Furthermore, as seen in Figure 24, the
number of cost categories increases rapidly, and this can be attributed to the addition of
the discharging system. As a result, the charging demand rises, requiring more extensive
and varied charging during the appropriate time slots. With the integration of the Vehicle-

to-Grid (V2G) system, the building's solar power system generates energy during the day,
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while the grid charges during the night, with excess energy sold back to the grid based on

the grid's demand.
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Figure 24 Monthly for V2G Revenue

The baseline optimization result obtained from the V2G system shows a monthly
value of NT$422,615. The payback periods is calculated as shown in Figure 24.
Comparing V1G and V2G, the total operating cost across the three bus stations has
decreased by NT$224,383 per month. This result demonstrates that via V2G system can
increase the utilization of solar energy generation which meet our goal in the initial
mindset. What’s more, in the baseline V2G optimization our estimation of the battery
degradation cost is about 4% which imply that the policy-related parameter may took the
important role in the V2G development.

In the initial construction phase, the cost of the V2G system is estimated per unit.
The construction of the V2G system includes a power control system, inverter, converter,
and package engineering (EPC), with each system priced at NT$435,000 per system. The
charging pile costs NT$135,000 refer to per system [57], bringing the total to
approximately NT$570,000 per system. Similar cost estimates from First Student Inc.
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which is a school buses operator in North America, their estimate for electric buses used
as school buses range from NT$300,000 to NT$900,000 per system [58]. Therefore, our
total initial V2G capital cost with 110 systems will be NT$47,850,000 and charging pile
in total will be NT$14,850,000. For the operation and maintenance cost, we refer to
Razmjoo and estimated it will be 1% of total initial cost [59].

In the Equation 28, the capital cost payback periods is calculated, by dividing the
total cost of implementing the V2G system by the monthly reduction in total operating
costs achieved after transitioning to V2G operations. Specifically, UCap refers to the
capital cost for infrastructure setup, CharCap is the capital cost for installing bidirectional
V2G charging piles, UO&M represents the monthly operation and maintenance (O&M)
cost of the infrastructure system, CharO&M is the monthly O&M cost of the bidirectional
V2G charging piles, and Rev denotes the monthly cost savings like profit from V2G-
enabled system operations. The payback periods is thus defined as the number of months
required for the cumulative cost savings (Rev) to recover the combined capital and

ongoing O&M expenditures of the V2G system.

Ucap + CharCap
Rev — UO&M — CharO&M

Payback periods =

(28)

According to the chart, the calculated payback periods is 432 months in Table 4,
meaning it would take 36 years to break even. However, based on the study by Razmjoo
the typical service life of relevant infrastructure is approximately under 20 years [59].
Therefore, we set up our payback periods should be under 10 years which is 120 months

since our weather data background is based on June.
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Table 4 Payback periods Calculation of V2G system in Baseline Scenario

V2G SAVING
V1G Scenario Cost NT$646,998
V2G Scenario Cost NT$412,615
Total per month saving with V2G NT$234,383
V2G Capital Cost
V2G Installed Capital Cost NT$47,850,000
V2G Charging Pile Capital Cost NT$14,850,000
V2G Installed O&M Cost NT$39,875
V2G Charging Pile O&M Cost NT$12,375
V2G ROI (months) 344.25

3.2 Battery Parameter Sensitive Analysis

In the baseline optimization results, battery degradation cost emerges as an
optimizable parameter. In the previous study, battery degradation cost shows its dominant
influence to total cost. Therefore, this study analyzes trends in electric vehicle (EV)
battery applications over the past decade. While solid-state batteries possess the highest
energy density and stability, they are not yet commercially viable and are thus excluded
from this study. Instead, the analysis focuses on three commercially available battery
types: Lithium Iron Phosphate (LFP), Nickel Manganese Cobalt oxide commonly known
as ternary lithium batteries (NMC), and Lithium Titanate (LTO). This study aims to assess
whether these different battery chemistries, under varying material properties and
contextual conditions, can effectively reduce the costs associated with V2G system
integration. Compared to the baseline battery type LTO both LFP and NMC batteries
exhibit higher energy density measured in Wh/kg, as shown in Table 5. Consequently,
major EV manufacturers such as Tesla, VVolkswagen, and Kia Motors have increasingly
adopted NMC batteries in their passenger vehicles. Meanwhile, the Chinese EV giant
BYD has continued to expand its market share by leveraging its proprietary blade type

LFP battery technology.
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Table 5 2024 Energy Density Data

Energy Density(Wh/Kg)
LTO 50-110 Wh/kg
LFP 140-200 Wh/kg
NMC 200-350 Wh/kg

3.2.1 Electric Buses Battery Degradation Prices Impact

Following the comparative analysis of different electric bus battery types, this study
references financial reports on the EV battery market to obtain by year projected prices

per kilowatt-hour (NT$/kWh) for each battery type, as illustrated in Figure 25.
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Figure 25 Battery Degradation Price (NT$/kWh)

Among the three, lithium-titanate (LTO) batteries show significantly higher unit

capacity costs due to their lower energy density. Specifically, because LTO batteries store
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less energy per unit of weight, more material is required to achieve the same energy
capacity, driving up the cost per kWh [60]. Furthermore, LTO battery prices exhibit wider
fluctuations; the baseline optimization in this study uses the lowest observed price for
LTO. Nickel Manganese Cobalt (NMC) batteries, on the other hand, have slightly higher
prices due to the volatility in nickel (Ni) supply a critical rare-earth element in their
composition resulting in less stable pricing. In contrast, Lithium Iron Phosphate (LFP)
batteries benefit from broader adoption and extensive research and development, leading
to more stable and generally lower per-kWh costs compared to the other two types [61,
62]. Based on the annual price trends of electric vehicle (EV) batteries per unit capacity
(NT$/kWh) obtained in earlier sections, and using the cost formulation defined in
Equation 16 which links the cost per unit of discharged energy to the battery’s unit
capacity cost this study calculates the degradation cost of different battery types under
the V2G scenario. A critical parameter in this calculation is the battery's lifecycle,
measured in terms of the number of charge-discharge cycles it can endure. To estimate
this, we refer to the experimental data from Ager-Wick Ellingsen, in which various EV
batteries were subjected to repeated destructive charge-discharge testing: discharging
from a State of Charge (SOC) of 90% to 10%, followed by charging back to 90%. This
full 90%-10%-90% sequence is defined as one complete cycle. The process continued
until the battery's capacity dropped to 80% of its original manufacturing capacity. Using
the average cycle life of each battery type (LFP, NMC, LTO) as reported in that study,
summarized in Table 6, we integrate these values with year-specific battery prices to
estimate the battery degradation cost per unit of discharged energy for each type. This
provides the basis for the sensitive analysis on alternative battery materials in the V2G

system [32].
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Table 6 Discharge of Depth Table

Depth of Discharge Cycle

LTO 20000 times
LFP 6000 times
NMC 4000 times

By incorporating the battery life cycle (number of charge-discharge cycles) and the

unit manufacturing cost of batteries ($NT/kWh) into Equation 16, and applying the 90%-

to-10% State of Charge (SOC) cycling definition from Ager-Wick Ellingsen’s work, we

derive Table 7. This table presents the calculated cost per kilowatt-hour of energy

discharged for three different battery types (LFP, NMC, LTO) across the years 2025,

2027, and 2030. Among the results, the Nickel Manganese Cobalt (NMC) battery exhibits

the highest cost under the worst-case scenario, reaching 1.266 $NT/kWh. Conversely,

under the most favorable scenario, the Lithium Iron Phosphate (LFP) battery achieves the

lowest cost, as low as 0.258 $NT/kWh.
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Table 7 Battery Degradation Scenario

Discharge Degradation LTO LFP NMC
$NT/KWh

2025 0.642 0.625 1.266

2027 0.542 0.478 0.938

2030 0.457 0.258 0.543
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500,000 y Y D cs

450,000
® o o
400,000

350,000

300,000

3 Different Fleet V2G Total Cost (NT$)

250,000 ; .
’ e  Optimal Solutions

Regression Line

y = 110496.46x + 301425.95

200,000 \ . . 1 .
1.2 1.1 1.0 0.9 0.8 0.7
Battery Degradation Prices (NT$/kWh)

0.6 0.5

0.4 0.3

Figure 26 Battery Degradation Prices Sensitive Analysis

Using the data from Table 7 and the Latin Hypercube Sampling (LHS) method

described in Section 2.9, a monotonic sensitive analysis was conducted, resulting in

Figure 26 reveals that within the global parameter space, reducing battery degradation

cost could lower the total operational cost by up to 24%. Compared to the 38% reduction

reported in the study by Manzolli, this highlights the regional differences in the impact of

battery degradation costs [35]. In our assumption, today’s battery degradation is about
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NTO0.45/kWh which means it is limited to improve by 2030 meanwhile it is significant

right now for monopoly test.

For the year 2025, the discharge cost per kilowatt-hour for Lithium Iron Phosphate
(LFP) and Lithium Titanate (LTO) batteries does not differ significantly, whereas Nickel
Manganese Cobalt (NMC) batteries exhibit a notably higher cost. Referring to Figure 26,
when using NMC batteries at NT$1.266/kWh, the total optimized operational cost
reaches approximately NT$490,000. In contrast, for LTO and LFP batteries, the
optimized operational cost is around NT$420,000. In the baseline scenario used in this
study, the degradation cost aligns with that of LTO batteries projected for 2030, estimated
at NT$0.45/kWh. If the material were switched to the most favorable case, LFP batteries
with a cost of NT$0.26/kWh the optimized total operational cost could drop to
approximately NT$390,000. This would further reduce the payback periods by roughly

291 months, bringing the payback period down to 24 years.

3.2.2 Electric Buses Battery Capacity Impact

Beyond battery degradation cost, the total energy capacity of the battery also
significantly influences the operational benefits of electric buses, as it determines the
maximum storable energy. In this study, the baseline battery capacity for electric buses is
set at 300 kWh. Based on data from previous literature, we investigate the feasible
capacity ranges for Lithium Titanate (LTO), Lithium Iron Phosphate (LFP), and Nickel
Manganese Cobalt (NMC) batteries, with the corresponding minimum and maximum
capacities summarized in Table 8. These variations in battery capacity are considered
under the assumption of technological advancements that improve energy density
(Wh/kq), rather than simply increasing battery mass. As shown in Table 8, the minimum
capacity for LTO batteries is approximately 50 kWh, while the maximum capacity
reaches nearly 300 kWh, consistent with this study’s baseline and it can recalled to
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Behnia’s paper mentioned under 300 kWh already worked for V2G structure [2].

Sensitive analysis based on these values is illustrated in Figure 27.

Table 8 Estimated Battery Capacity Table

Estimated Minimize Estimated Maximize
Capacity(kWh) Capacity(kWh)
LTO 50 330
LFP 170 600
NMC 200 1050

Starting from the baseline battery capacity of 300 kWh, the corresponding

optimized total operating cost is approximately NT$410,000. When using Nickel

Manganese Cobalt (NMC) batteries with a maximum capacity of up to 1000 kWh, the

optimized cost can be reduced to around NT$310,000 representing a cost reduction of

NT$100,000 so as approximately 23.4% of the total operating cost. This study further

reveals that in the monotonic optimization analysis, the most rapid decline in operating

cost occurs within the range of 300 ~ 600 kWh. Beyond 600 kWh, the rate of cost

reduction begins to plateau, forming a quadratic-like decline curve. This phenomenon is

likely attributed to limitations in the total renewable energy available and the maximum

allowable charging power.

67

doi:10.6342/NTU202502274



Sensitivity Analysis of Battery Capaci
420,000 y Y ty Capacity

y|=-140.79x + 440654.17

400,000 -

380,000 1

360,000 1

340,000 1

320,000 T . S
o Optimal Solutions ®

3 Different Fleet V2G Total Cost (NT$)

— Regression Line

300,000
3

00 400 500 600 700 800 900 1000
Battery Capacity (kWh)

Figure 27 Battery Capacity Sensitive Analysis

3.3 Solar Energy Parameter Sensitive Analysis

In the model design, the original intent of this study was to store surplus solar
energy generated by buildings during midday via the V2G system, enabling effective
energy dispatch. However, in the baseline optimization results, a portion of the charging
behavior still relies on grid-based slow charging to meet demand. This outcome diverges
somewhat from the initial design goal of daytime charging and nighttime discharging.
Therefore, this study further conducts a sensitive analysis on various solar-related

parameters associated with the buildings.

3.3.1 Conversion Transfer Rate Impact

To analyze the impact of building-integrated solar energy, this study first
investigates the parameter of photovoltaic (PV) conversion efficiency. By examining
variations in this conversion rate, we aim to understand how different levels of solar
generation influence the reduction in total operating costs. Based on the literature [63],

the current range of solar PV conversion efficiencies spans from 15% to 30%, as
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summarized in Table 9, covering five commonly used photovoltaic materials. The lowest
conversion efficiency, at 15%, is found in Organic PV, which has gained popularity due
to its flexibility, making it suitable for curved glass surfaces. Some startups have applied
this material to the roofs of electric vehicles. Next is Perovskite PV, which offers partial
transparency and is often integrated into curtain walls of high-rise buildings, enabling
vertical solar power generation without compromising indoor daylight autonomy. Silicon
PV, the most widely used in building rooftop installations, is known for its high reliability
and widespread deployment. Finally, the highest conversion efficiencies are achieved by
I11-V compound PVs, particularly Gallium Arsenide (GaAs) cells, which are commonly
used in power systems for space stations due to their higher power output per unit area.
In the 30% conversion rate field, we also found out that with Silicon PV and Perovskite
PV to absorb lower/longer wave length can meet this conversion rate as shown in Figure

28 which A means wavelength of sunlight.

Short A

Long A

Figure 28 Solar PV Combination of Increasing Conversion Rate

This study conducts a sensitive analysis based on the aforementioned solar
conversion efficiencies. Under the assumption that the baseline feed-in tariff for building-
generated solar power remains constant regardless of the photovoltaic (PV) material used,
we aim to evaluate how variations in solar energy conversion efficiency attributed to

different PV technologies affect the total operating cost of the system.

Furthermore, if space-grade materials such as gallium arsenide solar cells are
adopted as the building-integrated photovoltaic system in this study, and their production

costs are significantly reduced due to technological advancements allowing building
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owners to sell the generated electricity to the V2G system at a rate of NT$3 per Kilowatt-
hour the total operating cost could be further reduced to NT$385,000. This scenario
corresponds to a 7.8% reduction in total operating cost in the monotonic sensitive analysis

as shown in Figure 29.

Table 9 Commercial Solar Transfer Rate Technology

A B C D E

Solar energy 15% 18% 20% 25% 30%
transfer rate
Material Organic | Perovskite | Silicon | I1I-V GaAs (thin film

PV PV PV cells PV | cell)

*111-V cells PV*

Pros and Cons Lower | Fitfor3D | Traditio Higher cost,

cost architectur | n Extreme

Flexible | e design Reliable Environment

(ex. (ex. Space)

Curve)
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Sensitivity Analysis of Solar Transfer Rate
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Figure 29 Building Solar Energy Transfer Rate Sensitive Analysis

3.3.2 Building Solar Energy Seasonal Variability

Similar to the seasonal V2G system analysis conducted by Z. He [16], this study
also performs a seasonal solar energy assessment for the Taipei region. Specifically, the
solar generation and building electricity consumption data for December are compiled to
evaluate whether seasonal variations in solar output and building demand significantly
affect the total operating cost. The analysis reveals that the total surplus solar generation
in June reaches 261,824 kWh, while in December, it drops to 176,237 kWh which
represent a decrease of approximately 100,000 kWh which is similar to energy transfer
rate effect from 18% to 16%. However, in the June optimization model, the total energy
demand for electric bus charging is 149,545 kWh, of which only 51,000 kWh is supplied
through the building’s solar system. This indicates that the current model is not utilize
daytime solar resources, resulting in insufficient reliance on building-integrated
photovoltaics. To sum up, this study further discusses possible improvements to better

align with the original objective of “charging during the day, discharging at night.”
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3.3.3 Building Solar Energy Surface Area Coverage Impact

After understanding the impact of building-integrated solar systems, this study
further considers the application of perovskite solar cells as mentioned in Table 9 for
building facades and curtain wall designs. Specifically, we examine the effect of
expanding the solar coverage area on a cube-like building structure, assuming a fixed
solar conversion efficiency of 18%. The analysis ranges from solar panels installed on a
single surface to a maximum of five surfaces of the cube. In the context of fagade-
integrated solar system design, there are several research, in higher latitude like Adelaide
in Australia, Zhao estimated that about 9.8% of facade/rooftop solar potential in the
integrated solar system [64]. However, Yu estimated that the potential solar energy
generated from curtain wall glass can reach approximately 68.2% of the rooftop solar
capacity [65]. Based on this estimation, the total realistic solar energy generation potential
of a building can be approximated at 168.2%. As shown in Figure 30, when the effective
solar panel area reaches 1.5 to 2 times the rooftop area, the total operating cost of the V2G
system achieves its lowest value in the monotonic sensitive analysis. This further
demonstrates that under the current parameter settings, promoting fagade-integrated
photovoltaic design in buildings can result in a win-win outcome for both architectural
energy efficiency and electric bus V2G operations. Specifically, when the solar-enabled
area reaches 1.6 times that of the rooftop, the total operating cost of the V2G system can

be reduced by approximately 2.3%.
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Figure 30 Building Solar Energy Surface Area Sensitive Analysis

3.4 Infrastructure and Fleet Configuration

In addition to battery types and building-integrated solar parameters, the
configuration of physical infrastructure at bus depots may also significantly influence the
total operating cost of a V2G system. Therefore, this chapter defines and adjusts key
hardware related parameters such as the number of charging piles and the size of the bus
fleet and conducts sensitive analyses to evaluate their impact on system performance and
cost. The findings provide valuable insights for infrastructure planning and investment

decision-making in future V2G deployments.

3.4.1 Maximum Charging Power Impact

In the previous sensitive analysis on battery capacity, this study observed that
beyond a certain threshold, increases in battery size result in diminishing returns in terms
of reducing total operational costs. Meanwhile, many electric vehicle manufacturers have
recently developed so called Megawatt Charging Systems (MCS), aiming to significantly

reduce charging time by increasing power output. In light of this trend, this study also
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investigates the potential impact of increasing the maximum power capacity of charging
piles on the optimization results of electric bus operations and the V2G system. A
corresponding sensitive analysis is conducted to assess the effects of enhanced charging
power infrastructure. According to Figure 31, the monotonic sensitive analysis reveals
that under the current parameter settings, increasing the maximum charging power yields
minimal impact on the total operational cost. This suggests that, within the context of this
study, high charging power capacity is not a critical factor in achieving V2G profitability.
Instead, operational effectiveness relies more heavily on optimizing charging scheduling

and managing the rate of energy transfer.

Sensitivity Analysis of Maximum Charging Power
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Figure 31 Maximum Charging Power Sensitive Analysis

3.4.2 Electric Buses Fleet Scale Impact

In terms of depot configuration, this study also examines the impact of electric bus
fleet size on total operational costs. For a single depot, the energy supply capacity is
positively correlated with the fleet size, which is itself constrained by available space and

closely related to the operational strategies of depot and bus operators. Through sensitive
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analysis, this study aims to explore how variations in fleet size affect operational
efficiency, with a particular focus on identifying the threshold at which meaningful
operations become feasible and analyzing the associated cost-saving or profit-generating

potential.

As illustrated in Figure 32, the model begins to generate valid operational cost
results when the fleet size reaches 75% of the baseline setting. This situation is likely due
to the minimum dispatch requirement for buses which means below this level, the

optimization model cannot meet operational constraints and therefore fails to converge.

Sensitivity Analysis of Fleet Scale
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Figure 32 Fleet Scale Sensitive Analysis

Further analysis reveals that doubling the baseline fleet size can lead to a total
operational cost reduction of up to 161.6%, highlighting the potential benefits of larger
fleets in supporting grid participation and energy management. While this finding offers
valuable insight for bus operators when considering fleet expansion or depot development,

the actual number of buses deployed must still account for factors such as depot space
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limitations, route density, and passenger demand. As such, the results of this analysis

should be interpreted as a reference for exploring potential operational improvements.

3.5 Policy-Oriented Parameters

This chapter focuses on adjusting policy-related parameters governing the charging
and discharging operations of electric buses. Unlike the previous chapters, which
emphasize technological improvements, this section concentrates on parameters
influenced by government interventions, such as subsidies and pricing mechanisms. By
conducting sensitive analyses on various policy-related factors, this study aims to identify
which adjustments can most effectively reduce the total operating cost of the system,

thereby providing insights into the most impactful policy measures.

3.5.1 Building Solar Electricity Selling Price Impact

In previous sections, this study found that setting the building-integrated solar
electricity selling price at NT$3 per kWh may cause the V2G system from adopting the
intended charging pattern of "charging during the day and discharging at night." This
pricing strategy limits the effective utilization of solar power. For instance, under the
baseline optimization result, the building sold 51,288 kWh of solar energy to the bus
operator. However, this electricity could alternatively be sold to Taiwan Power Company.
Taipower currently faces a severe financial deficit, with cumulative losses exceeding
NT$420 billion. Continuing to purchase solar energy at a price higher than its resale price
would exacerbate its financial challenges. As a result, Taipower has gradually reduced its
feed-in tariff (FIT) for solar electricity, from NT$11.75/kWh in 2010 to as low as

NT$3.5/kWh in 2023 [66].

Installation Price

Solar, =
price per kwh Npy * Iday * kWp per m?

(29)
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This trend is consistent with global cost reductions. According to Lazard , the
levelized cost of solar energy ranges from NT$0.72/kWh to NT$3.51/kWh depending on
system type and scale [67]. There also has a report for Taiwan’s Bureau of Energy, also
projected that the cost of solar electricity would fall below NT$2/kwWh by 2026 [68]. In
Taipei, local solar generation potential is estimated at 3.25 kWh/m3day. Using this
irradiance level with an 18% panel conversion efficiency, 80% system efficiency, a 25-
year lifetime, and a rooftop area requirement of 6.7 m2per kWp with Equation 29, the
annual output is estimated at 28,616 kWh per kWp. According to PRO360 , installation
costs per KWp range between NT$40,000 and NT$70,000 [69]. From this, the levelized
cost of electricity (LCOE) for rooftop solar in Taipei is approximately NT$1.39 to

NT$2.45/kWh.

Based on these findings, this study recommends setting the building solar electricity
selling price from buildings to V2G bus operators within a reasonable range of NT$1 to

NT$3/kWh, balancing optimization performance with financial feasibility.

Based on the above assumptions, this study sets NT$3 per kWh as the baseline
building solar electricity selling price for building integrated solar power and conducts a
sensitive analysis within a range from NT$1 to NT$3 per kWh. It is further assumed that
future advancements in solar technology will enable solar power generation costs to drop
below those of most other energy sources. The analysis reveals that when the price is
reduced to NT$2/kWh, the optimized total operating cost rapidly decreases to
NT$200,000. If the price drops to NT$1/kWh, the total operating cost even becomes
negative and reach NT$25,000, indicating a surplus. This demonstrates that the building
solar electricity selling price is an extremely sensitive policy parameter, influencing up to

125.1% of the total operating cost across the global interval.
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Figure 33 Building Solar Electricity Selling Price Sensitive Analysis

3.5.2 TOU Peak Price and Duration on V2G Operations Impact

Beyond adjusting the charging price, one of the most intuitive strategies to realize
the “charging during the day, discharging at night” model is to increase the peak time
discharging electricity price, thereby creating more room for V2G system profitability.
Therefore, this study conducts a sensitive analysis on the discharging price of the V2G

system.

In the baseline optimization scenario, the peak-time electricity price is set at
NT$6.92 per kilowatt-hour (kWh), based on the 2024 time-of-use pricing scheme from
Taipower’s report. To define a reasonable analysis range, this study considers two distinct
scenarios. First, based on electricity pricing data from 2025, countries such as the U.S.
(both Texas and other states), British, Germany, report peak-time electricity prices
averaging around NT$10/kWh according to each countries’ electricity market and policy.
Second, during previous energy crises such as natural gas shortages and extreme weather
events the peak prices in several countries surged above NT$30/kWh. Anticipating future
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instability driven by geopolitical and climate-related factors, this study sets the upper limit

of discharging prices at NT$30/kWh as shown in Figure 34.

When the TOU peak-time price is increased to NT$10/kWh, the optimized total
operating cost in this study decreases from approximately NT$400,000 to NT$200,000,
achieving a significant cost reduction of NT$200,000 which can reduce 42.7% of
operation cost. This finding can be compared with the study by Moradipari, which
analyzed a V1G electric bus fleet in California, showing a total operating cost reduction

of 62.5% under optimized charging strategies [25].

Under extreme scenarios as high as NT$270/kWh due to supply shortages and
privatized market dynamics. To simulate such critical conditions, this study analyzes the
V2G system under a peak-time electricity price of NT$30/kWh. The results reveal that
under this scenario, the optimized total operating cost drops to NT$910,000 which give
us about 320.2% of operational cost reduction and indicating not only full cost recovery

but also a substantial profit margin.

In addition to TOU peak price, peak price period is also what we concerned about. We
started with 6 hours of peak time step, and increase it into 9 hours of peak time step as

shown in Figure 35 which give us 17.2% of total operational cost reduction.
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3.6 Comparative Results of Monopoly Sensitive Analysis

To sum up the V2G monopoly test with Latin Hyper Cube Sampling, we found out
that there are several things we can analysis as shown as Figure 36. First, we can find out
that policy-related parameter like TOU peak price and building solar electricity selling
price are the most dominant parameter. Science-Oriented parameters shows it influence
but not that effective. This table can give us a primal understanding about each parameter

relation with V2G system.

Total Operation Cost Impact (%)

TOU Peak Price (NT30$/kWh) 3202%

Fleet Scale 161.6%
Building Solar Selling Price
TOU Peak Price (NT10$/kWh) 42.7%
Battery Degradation Price
Battery Capacity 23.4%

TOU Peak Time Step 17.2%

Solar Energy Transfer Rate {8 7.8%
Solar Area {§5.8%

Charging Amount 10.1%

0 50 100 150 200 250 300
Total Impact of Operation Cost (%6)

Figure 36 Total Operation Cost Impact of LHS Sampling Sensitive Analysis

3.7 Capital Investment Impact

In addition to previously discussed factors such as battery type, building solar
energy generation, and TOU peak electricity pricing, one of the most direct ways to
influence the return on investment is by reducing the system’s initial capital expenditures.
Lowering upfront costs has a significant impact on shortening the payback year and
enhancing overall financial feasibility. First, we consider system sizing and deployment

configuration.
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In this study, we adjusted the number of installed charging systems to assess its
impact on the payback periods. First, we reconfigured the number of V2G charging
systems at each site to 10 units at Songzhi Station, 5 units at Jiuzhuang Station, and 5
units at Wuxing Station. Compared to the original setup 44 systems at Songzhi, 39 at
Jiuzhuang, and 27 at Wuxing, the reduced configuration significantly increased the total
operating cost of the V2G system. Specifically, the optimized operating cost rose by
NT$440,000, from the baseline NT$412,615 to approximately NT$855,597.
Consequently, the net profit margin dropped from NT$234,383 in the baseline scenario
to NT$56,604, resulting in a decrease of approximately NT$180,000. While reducing the
number of charging systems effectively lowers capital expenditures, it also leads to a
substantial reduction in potential operating savings from VV2G participation. Based on the
payback periods calculation shown in Table 10, the payback period under the reduced
system configuration extends to 281 payback months (about 23 years), significantly

longer than the baseline scenario.

Table 10 Capital Investment Sensitive Analysis Scenario 1

V2G SAVING
V1G Scenario Cost NT$912,301
V2G Scenario Cost NT$855,697
Total per month saving with V2G NT$56,604
V2G Capital Cost
V2G Installed Capital Cost NT$10,875,000
V2G Charging Pile Capital Cost NT$3,375,000
V2G Installed O&M Cost NT$4,531
V2G Charging Pile O&M Cost NT$1,406
V2G ROI (months) 281.25

As shown in Table 11, the system configuration was set to 15 units at Songzhi
Station, 8 units at Jiuzhuang Station, and 8 units at Wuxing Station. Under this

configuration, the total optimized operating cost of the V2G system increased to
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approximately NT$670,000 which gave an increase of NT$260,000 compared to the
baseline. The profit margin was consequently reduced from NT$234,383 (baseline) to
NT$85,165, resulting in a loss of approximately NT$150,000 in profit. However,
compared to the more conservative setup of 10, 5, and 5 systems at the respective stations,
this configuration improved profitability by about NT$30,000. Despite the improved
operating margin, the increased capital expenditure associated with installing more
systems led to a slightly longer payback periods. As shown in Table 11, the payback

period rose from 281 months to 254 months.

Table 11 Capital Investment Sensitive Analysis Scenario 2

V2G SAVING
V1G Scenario Cost NT$756,999
\/2G Scenario Cost NT$671,834
Total per month saving with V2G NT$85,165
V2G Capital Cost
V2G Installed Capital Cost NT$16,530,000
V2G Charging Pile Capital Cost NT$5,130,000
V2G Installed O&M Cost NT$13,775
V2G Charging Pile O&M Cost NT$4,275
V2G ROI (months) 254.54

In Table 12, we examine another configuration by increasing the number of V2G
charging systems to 20 units at Songzhi Station, 10 units at Jiuzhuang Station, and 10
units at Wuxing Station, to evaluate its impact on the payback periods. Under this
configuration, the baseline total operating cost of the V2G system increases by
approximately NT$180,000, reaching NT$590,000. Despite the higher system cost, the
profit margin improves significantly compared to the previous case (15, 8, and 8 systems),
increasing from NT$85,165 to NT$201,061. This value approaches the baseline

optimization result as NT$234,383, indicating that this configuration recovers much of
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the economic benefit while keeping the system investment relatively close to the original.

As a result, the payback periods is reduced to 160.73 months, or approximately 13 years.

Table 12 Capital Investment Sensitive Analysis Scenario 3

V2G SAVING
V1G Scenario Cost NTS$793,084
V2G Scenario Cost NT$592,023
Total per month saving with V2G NTS201,061
V2G Capital Cost
V2G Installed Capital Cost NTS21,750,000
V2G Charging Pile Capital Cost NTS6,750,000
V2G Installed O&M Cost NTS18,125
V2G Charging Pile O&M Cost NTS5,625
V2G ROI (months) 160.73

Continuing the adjustment of the number of V2G charging systems, this scenario
sets the configuration to 25 units at Songzhi Station, 25 units at Jiuzhuang Station, and
13 units at Wuxing Station to examine the resulting changes in Return on Investment.
The analysis shows that the profit margin does not increase under this configuration.
However, due to the continued rise in capital expenditures, the payback periods gradually

declines, reaching 218 months equivalent to 18 payback years as shown in Table 13.

Table 13 Capital Investment Sensitive Analysis Scenario 4

V2G SAVING
V1G Scenario Cost NTS697,741
V2G Scenario Cost NTS502,845
Total per month saving with V2G NTS$194,896
V2G Capital Cost
V2G Installed Capital Cost NTS27,405,000
V2G Charging Pile Capital Cost NTS8,505,000
V2G Installed O&M Cost NTS22,838
V2G Charging Pile O&M Cost NTS7,088
V2G ROI (months) 217.67
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Based on the comparison of charging system quantities and their corresponding
payback years, summarized in the Figure 37, this study finds that payback periods
follows a quadratic trend as the total number of charging systems increases suggesting
the existence of an optimal number of charging units. This outcome can be attributed to
the limited number of electric buses in operation. When the number of charging stations
exceeds a certain threshold, the utilization rate of charging piles decreases, diminishing
their overall value. Conversely, when the number of systems is too low, the V2G system
cannot fully leverage electricity price fluctuations to discharge and resell energy, thus
missing out on potential revenue. This study estimates that the optimal number of
charging systems is approximately 36% of the total electric bus fleet, where the capital

investment and the economic return from VV2G operations are most effectively balanced.

ROI vs Number of Systems

350

325 1

300 4

(]

-]

wn
!

250 A

ROI (months)

>

200 4

40 60 80 100
Number of Systems

Figure 37 Payback Years considered with Installation Capital Investment
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3.8 Multi-Parameter Sensitive Analysis of Interacting V2G Factors

This chapter will explore the trends and related conclusions from the one-
dimensional sensitive analysis using a multi-parameter approach, aiming to provide
further constructive recommendations for the electric bus system. Based on the one-
dimensional LHS sensitive analyses, the time-of-use electricity pricing parameter
emerged as the most sensitive. Therefore, this study will first focus on the time-of-use
pricing parameter and pair it with other sensitive parameters to explore the global impact

of time-of-use pricing.

Next, a multi-parameter sensitive analysis will be conducted using parameters other
than the time-of-use pricing to discuss the sensitive levels of various parameters in a
global context. By using methods like iteration, the study will define the degree of
influence of each parameter, providing valuable insights for future electric bus V2G

system planning.

3.8.1 Interaction Analysis between TOU Peak Pricing and Battery Parameters

In this second-order sensitive analysis, regardless of whether the peak time-of-use
electricity price is set at NT$30/kWh or NT$10/kWh, the interaction effects between the
peak pricing parameter and the battery degradation cost, as well as between the peak
pricing and battery capacity, remain minimal, as shown in Figure 38 and Figure 39. In
contrast, a slight interaction is observed between the battery degradation cost and battery
capacity in the second-order Sobol indices under the three-parameter setting when the

maximum of time-of-use price is NT$30/kwh.
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Figure 38 Time-of-use price max in NT$30/kWh with Battery Related Parameter
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By summing the first-order and second-order sensitive results, we obtain the total
sensitive indices. The analysis reveals that the time-of-use peak pricing parameter exerts
the most influence on the model, followed by the battery degradation cost and then the
battery capacity showed as Figure 40 and Figure 41. Due to the insignificance of the
second-order effects, this parameter combination exhibits characteristics of an “additive
model”, where the time-of-use pricing parameter serves as the dominant driver. This
phenomenon, commonly referred to as the “showing effect” in sensitive analysis,
indicates that the model output variance is primarily governed by a single input parameter,
with minimal contribution from interactions. We can also see this dominant situation if
we put battery degradation parameter and TOU peak price into LHS sampling with two

dimension to give us a 3D graphing in Figure 42.
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Figure 40 Time-of-use price max in NT$30/kWh with Battery Related Parameter
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3.8.2 Interaction Analysis between TOU Peak Pricing and Solar Energy
Parameters

Similar to previous sections, in the three-parameter sensitive analysis involving
time-of-use pricing and battery-related parameters, the peak electricity price coefficient
remains the dominant factor when set at its maximum value of NT$30/kWh. Under this
setting, the building solar electricity selling price coefficient shows greater global
sensitive than the solar conversion rate, indicating its more critical role in the system’s
response as shown in Figure 45. In the second-order Sobol sensitive analysis, the
interaction effect (S2) between the time-of-use peak price and the building solar
electricity selling price is 0.0114, suggesting a weak relationship. Meanwhile, the S2
value between the building solar electricity selling price and the solar conversion rate is
0.0324, which is the most prominent interaction in this analysis, indicating relatively

higher joint sensitive as shown in Figure 43.

When the peak electricity price is reduced to NT$10/kWh, its influence on the
system decreases. As a result, the building solar electricity selling price coefficient
accounts for a larger share in the total sensitive index (ST), and its interaction with the
solar conversion rate becomes more significant like Figure 44. This reflects the increased
explanatory power of this parameter pair under such conditions. Considering the total
Sobol indices (ST), the building solar electricity selling price shows a higher total
sensitive than the peak electricity price, making it the second most influential factor as
shown in Figure 46. Notably, both parameters are policy-adjustable, suggesting that
future policy interventions aiming to improve system performance should prioritize

adjustments to building solar electricity selling prices and peak electricity pricing.
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Second-order Sobol Indices S2 Heatmap
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Figure 43 Time-of-use price max in NT$30/kWh with Solar Energy Related
Parameter Second-order Heatmap
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Figure 44 Time-of-use price max in NT10/kWh with Solar Energy Related

Parameter Second-order Heatmap
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Total-order Sensitivity (ST)

Total-order Sobol Index ST

Price Coef. (Time-of-Use) Building Selling Solar Price Coef. Solar Efficiency Coef.

Figure 45 Time-of-use price max in NT$30/kWh with Solar Energy Related

Parameter Total Sensitive Analysis Bar chart

Total-order Sensitivity (ST)

Total-order Sobol Index ST

Price Coef. (Time-of-Use) Building Selling Solar Price Coef. Solar Efficiency Coef.

Figure 46 Time-of-use price max in NT$10/kWh with Solar Energy Related

Parameter Total Sensitive Analysis Bar chart
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3.8.3 Interaction Analysis between Battery and Solar Energy Parameter
In this section, we’ve eliminated TOU peak price parameter, and found out that
the Building Selling Solar Price Coefficient emerged as a new dominant coefficient

according to the SoBoL analysis as shown in Figure 47.

Total-order Sensitivity (ST)

0.8 1

=]
(=)}

0.4

Total-order Sobol Index ST

0.2 4

0.0 -
Battery Degradation Coefficient Battery Capacity Coefficient Building Selling Solar Price Coef. Solar Efficiency Coef.

Figure 47 Battery and Solar Energy Related Parameter
Total Sensitive Analysis Bar Chart

Additionally, in the second-order SoBoL sensitive index, after removing the
influence of the TOU peak price parameter, the Battery Degradation Coefficient exhibited
interaction effects with other parameters. The relationship between the Building Solar
Price Coefficient and the Solar Conversion Efficiency also maintained a certain level of
interaction, consistent with the previous analysis. The Battery Degradation Coefficient is

the most likely to cause second-order effects on other parameters as shown in Figure 48.
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Second-order Sobol Indices S2 Heatmap
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Figure 48 Time-of-use price max in NT$30/kWh with Solar Energy Related

Parameter Second-order Heatmap

In order to compared the dominant parameter and its influence on the operational
cost, we’ve tried to utilize the energy and solar related parameter to found out the
sequence of the dominant total sensitive indices. What we did is we eliminate the
dominant parameter step by step, to gradually give the result. And we found out the
dominant sequence from Figure 49 and Figure 50 that the parameters are ranked as
follows: TOU peak price > Building Selling Solar Price Coefficient > Solar Conversion
Efficiency = Battery Degradation > Battery Capacity by different combination . Among
this sequence, the solar efficiency coefficient and Battery Degradation efficiency showed

it complex result with the background data in the SoBoL analysis.
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Figure 49 Battery and Solar Energy Related Parameter Total Sensitive Analysis

Bar Chart Eliminate Building Solar Electricity Selling Price Coef.
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3.8.4 Interaction Analysis of Battery, Solar, and Fleet Scale and Charging Power
Parameters

Aside from battery and solar energy-related parameters, this study also incorporates
utility-related parameters into the Sobol sensitive analysis, expanding the scope to five
parameters as shown in Figure 51. The heatmap reveals that the battery degradation price
coefficient and solar efficiency coefficient exhibit dominant second-order interactions
with other parameters. This aligns with observations made in the earlier Latin Hypercube
Sampling (LHS) sensitive analysis, where battery capacity was found to interact with
maximum charging power. However, the influence of this interaction remains relatively
limited and does not significantly alter the global sensitive ranking of the maximum
charging power parameter. From Figure 52, it is evident that the charging maximum
power consistently holds the lowest sensitive index among all parameters in the global
sensitive analysis. Additionally, the ranking of battery and solar energy-related
parameters remains unchanged, confirming their dominant influence in the system across

different configurations.
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Second-order Sobol Indices S2 Heatmap
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Figure 51 Battery, Solar Energy and Utility Related Parameter Second-order

Heatmap
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Figure 52 Battery, Solar Energy and Utility Related Parameter Bar Chart
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3.8.5 Interaction Analysis of Battery, Solar Energy and Fleet Scale Parameters

From the Figure 53, we observe that when the fleet scale parameter is included in

the Sobol analysis, several sensitive indices decrease in significance. However, the

interaction between the fleet scale coefficient and the building solar electricity selling

price coefficient becomes prominent, suggesting that as the fleet size expands, the

building solar electricity selling price emerges as the most influential second-order factor.

We also did a total sensitive analysis with this coefficient in Figure 54, fleet scale

coefficient shows it dominant within this combination. We also try to compared it with

following experiment with time-of-use prices.
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Figure 53 Battery, Solar Energy and Fleet Scale Related Parameter Second-order

Heatmap
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Figure 54 Battery, Solar Energy and Fleet Scale Related Parameter Bar Chart

Proceed with the previous knowledge, we conduct the Sobol analysis with TOU
peak price, Fleet Scale and Building Selling Solar Price Coefficient in the following
research. First, in second-order interaction fleet scale continued its interaction with fleet

scale shown as Figure 55.

Second-order Sobol Indices S2 Heatmap
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Figure 55 Policy-Orientated and Fleet Scale Related Parameter Second-order
Heatmap
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This total sensitive analysis demonstrated the previous understanding, in this
combination it is in the order of fleet scale, building solar electricity selling price and

TOU peak price coefficient.

Based on our earlier study, we set the highest TOU peak price at NT$30/kWh. We
saw a clear rise in the second-order effect between fleet size and TOU peak price, which
supports the past finding that policy-related factors interact strongly with fleet size as
shown in Figure 57. In this case, the building solar electricity selling price of electricity

only went down a little.

In Figure 58 we found out that the result has changed from Figure 56, when the
TOU prices goes to NT$30/kWh as maximum then the sequence of each parameter has
change which means the define of TOU peak price can lead to different background for

V2G urban operation.
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Figure 56 Policy-Orientated and Fleet Scale Related Parameter Bar Chart
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Second-order Sobol Indices S2 Heatmap
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Figure 57 Policy-Orientated and Fleet Scale Related Parameter Second-order
Heatmap when TOU peak prices set in NT$30/kWh
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Figure 58 Policy-Orientated and Fleet Scale Related Parameter Bar Chart when
TOU peak prices set in NT$30/kWh

3.9 Depot Design Discussion

In this research we survey 3 different depots with its’ associate school rooftop as its
renewable resource. In order to V2G discharging revenue. We found that in general when
redundance goes up it will lead to higher V2G amount as Table 14. However, the actual
solar charging amount associate to bus depot behavior, if most of bus are occupy when

solar energy has redundance will lead to lower utilization of building redundance energy.
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Table 14 Depot Design Comparison

Building Solar Energy Solar Charging V2G Discharging

Amount (kWh/bus) Amount (KWh/bus) Amount (KWh/bus)
Songzhi Depot 5,951 1,178 955
Jiuzhuang Depot 1,315 751 781
Wuxing Depot 3,982 1,603 1,052

Moreover, a higher operational demand for bus routes increases the need for solar
energy, even when the battery discharging capacity is nearly saturated. Based on this
understanding, we estimate the optimal integration of rooftop solar resources and bus
depot operations under various scenarios. For instance, in locations such as JiuZhuang
Station, where available rooftop solar energy is relatively limited, the system tends to rely
more heavily on city power to support V2G operations. Conversely, in areas with greater
solar potential, the focus shifts toward optimizing charging and discharging behavior to

effectively manage the surplus energy.

To expand this concept across other bus depots in Taipei City, the availability of
nearby surplus solar energy plays a critical role in the effectiveness of a V2G system.
While some depots benefit from adjacent public school’s rooftops, others lack such
opportunity. For instance, the Xinxin Bus Zhongxing Depot, located in a suburban area
of Taipeli, serves as a major bus charging facility. As shown in Figure 59, it is situated
next to abandoned Taipei steel plant with large rooftop areas. Although these rooftops
offer solar potential, they involve more complicated coordination due to private
ownership and the diversity of stakeholders which is different from the relatively
straightforward use of publicly owned school buildings. In contrast, urban depots
surrounded by dense residential neighborhoods often lack accessible public rooftops
altogether. In such cases, the absence of public building infrastructure such as schools or
government facilities means that solar energy must be sourced from privately-owned

residential buildings. This leads to even higher fragmented ownership and makes revenue
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sharing and infrastructure coordination more complex, posing a significant barrier to V2G

deployment in these urban contexts.

TOYOTA b

—~
i

Figure 59 Charging Allocation with Electric Buses in Xinxin Bus Zhongxing Depot
3.10 Discussion Summary

These findings not only validate the effectiveness of the proposed model but also
offer actionable insights for policymakers and transit operators. First, policy-related
parameters emerge as the most influential factors in both primary and advanced sensitive
analyses. Unlike previous studies in the literature review, our analysis identifies the solar
conversion efficiency as a critical physical parameter with long-term influence. While it
may not be the most dominant factor initially, its impact becomes increasingly significant
under varying parameter conditions, ultimately exerting a strong influence on the system's

outcomes.
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We conduct second-order interaction with sobol analysis. Battery degradation
prices parameter shows notable second-order interactions in the Sobol sensitive analysis.
Meanwhile, solar conversion efficiency interacts significantly with building solar
electricity selling price, underscoring the need to co-optimize both policy and technical
variables to maximize system-level benefits. The building electricity selling price and
TOU peak price shows its significant second interaction with fleet scale as well. Fleet-
scaled parameters also exhibit strong second-order interactions with policy-related
variables, such as TOU peak pricing and feed-in tariffs. Importantly, our analysis reveals
that V2G deployment becomes economically feasible when at least 75% of the current
fleet is electrified. Additionally, our findings highlight that optimizing the charger bus

ratio be 1:2.22 can significantly reduce payback periods by 15 years.

It is also important to acknowledge the model-included parameters such as fleet
size, available rooftop area, and maximum charging power, which are primarily
determined by fleet operators or building owners and are not directly modifiable by public
policy. Furthermore, our analysis indicates that the influence of charging power on
payback periods is relatively limited. Taken together, these findings highlight the
importance of prioritizing pricing mechanisms especially feed-in tariffs and TOU peak
price rate design in energy policy to guide market behavior and promote efficient resource

allocation.

3.11 Limitation

This study faces several limitations related to model simplifications, data
availability, and real-world deployment considerations. First, the optimization framework
incorporates certain mathematical assumptions and simplifications, which combined with
limited access to real-world operational data, constrain the model’s ability to fully capture

actual system behavior. Additionally, the analysis is conducted using a one-month time

104 doi:10.6342/NTU202502274



horizon, rather than a full-year scope, which may limit the generalizability of the results
across seasonal variations. In terms of bus operations, the dispatch schedule is randomly
generated without incorporating realistic constraints such as a minimum dispatch interval,
and the absence of real-time floating dispatch data hinders accurate simulation of
operational dynamics. For renewable energy modeling, the system does not fully capture
the nonlinear characteristics of solar generation, nor does it consider efficiency losses
caused by dust urban form factors such as building-induced shading. Similarly, Battery
degradation is modeled as a linear cost, without considering nonlinear factors such as
temperature variation. On the policy side, the model only includes a single electricity
pricing mechanism, omitting important market structures such as contracted capacity,
demand response strategies, and frequency-based ancillary services. The physical design
of charging infrastructure is also simplified, without accounting for actual station layout,
equipment deployment, or spatial constraints. Moreover, the model does not distinguish
between alternating current (AC) and direct current (DC) configurations, which may
introduce additional complexity in practical V2G depot designs due to conversion
equipment requirements. From an economic perspective, inflation, depreciation, and
long-term financial risks are not considered, and capital and operational expenditures are
treated independently rather than through an integrated financial framework. Additionally,
the study excludes the participation of private electric vehicles (PEVS) in the V2G system.
While PEVs may offer additional grid flexibility, their involvement depends heavily on
user willingness, introducing uncertainty and potential complications in system control.
Lastly, the study focuses solely on urban electric buses within metropolitan areas and
does not extend to other types of electric vehicles or regional contexts, potentially limiting

the generalizability of the finding.
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In addition to these modeling limitations, the practical implementation of VV2G
systems in Taiwan faces systemic and regulatory barriers. According to interviews with
transportation research institutions, public bus operators continue to adopt diesel-based
operational logic, which impedes the strategic transition toward V2G-enabled fleet
management. Moreover, in the discussions with local industry stakeholders revealed that
Taiwan’s V2G ecosystem is still under development. For instance, only the CHAdeMO
charging standard currently supports bidirectional charging, while other protocols
commonly used in electric bus systems remain incompatible. Communication
mismatches between charging stations and control systems further complicate integration.
Equipment vendors in Taiwan have yet to commercialize certified V2G products, and
regulatory frameworks such as fire safety codes and energy dispatch laws remain rigid.
These standards often fail to address issues like cable thermal fatigue under high-
frequency charging and discharging, which are critical for safe and scalable V2G
deployment. Together, these institutional and infrastructural gaps highlight the need for
comprehensive policy updates and industry coordination to enable real-world

implementation of the proposed optimization framework.
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4. Conclusion

This study developed a MILP model focused on evaluating the economic feasibility
of integrating rooftop solar energy and VV2G systems in urban electric bus operations. The
model incorporates real-world operational constraints, including dispatch scheduling,
solar resource availability, battery degradation costs, and TOU electricity peak pricing.
Through both first-order and second-order sensitive analyses, the research identifies the

key drivers influencing operational costs and payback periods.

Under current conditions, V2G deployment can reduce monthly operational costs
by approximately NT$ 220,000 in our case. However, the estimated payback periods may
exceed 30 years, indicating limited economic incentive. When adopting the recommended
scenario proposed in this study, put policy-related parameter into building solar electricity
selling price of NT$2/kWh, TOU peak price of $10/kWh if science-oriented parameters
battery degradation cost of $0.258/kWh, and a solar transfer rate of 30% and battery
capacity of 500 kWh, this can lead to the payback periods payback period be shortened

to within 12 years. This combination shown as Table 15.

Table 15 Combination of V2G economic feasible solution

Solar Selling Price | TOU peak Price Battery Capacity |Battery Degradation
($/kWh) ($/kWh) (kWh) ($/kWh)
|Recommend Scenario 2 10 500 0.258 30%

Solar Transfer Rate

Further optimization of capital installation with a charger-to-bus ratio of 1:2.22 can
reduces payback periods by an additional 15 years, and when combined with operational
scheduling optimization, the payback periods can be reduced to just 6 years. We found
out this scenario also contributes to a monthly emission of -4.5 tCO:-eq, while the
conventional one-way V1G system by 13.4 tCO:-eq, aligning with Taiwan’s 2030 net-

zero carbon targets.
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This study confirms that both policy-related variables like TOU pricing and
building solar electricity selling price and science-oriented factors like battery
degradation and solar efficiency rate play complementary roles in influencing system
performance and economic outcomes. It is important to note that parameters such as fleet
size, available rooftop area, and maximum charging power while included in the model
are largely determined by fleet operators or building owners and are not directly
modifiable by public policy. Furthermore, the impact of charging power on payback
periods is relatively limited. Therefore, this study emphasizes that government policies
should focus on pricing mechanisms such as building solar selling price which usually is
FIT and TOU rate design to effectively guide market behavior and promote resource

allocation.

In the future work we think it can be multi stakeholder dimensions analysis, include
external and resilience benefits to see the robust optimized solutions. As demonstrated in
the Nissan project in Ishikawa, Japan, V2G systems have shown their potential to support
black-start capabilities during disaster-induced grid failures. Such resilience applications
highlight the importance of expanding V2G evaluation frameworks beyond pure
economic measurement[70]. In addition, future research should incorporate real-time
robust optimization frameworks that can adapt dynamically to fluctuating inputs such as
energy demand, renewable generation, and electricity pricing. By integrating real-time
data and uncertainty modeling, the system will be able to generate recommendations that
are both resilient and context-aware, improving decision-making accuracy under diverse

operational scenarios.

To sum up, despite our contributions, the model simplifies certain technical and
financial aspects, which should be addressed in future research to enhance applicability
and robustness.
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Appendix

Table A1l Daily Environmental Cost of Northern Taiwan

Hour Total Electricity Generation [Environmental cost
(r) MW) ($/kWh)
1 6458.26 1.66
2 6387.75 1.65
3 6329.40 1.63
4 6319.10 1.63
5 6222.36 1.60
6 6207.61 1.60
7 6113.14 1.57
8 6089.09 1.56
9 6388.84 1.63
10 6308.11 1.60
11 6480.23 1.64
12 6548.98 1.66
13 6454.34 1.63
14 6630.75 1.67
15 6709.15 1.69
16 6759.37 1.70
17 6960.37 1.75
18 6994.40 1.76
19 7044.84 1.78
20 7041.81 1.78
21 7062.33 1.79
22 7006.25 1.78
23 6945.10 1.76
24 6625.50 1.69
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Table A2 Carbon Dioxide Daily Environmental Cost of Northern Taiwan

Hour Total Carbon Emission Carbon Emission Amount [Carbon Environmental Cost
(hr) (kg) (kg/kwh) ($/kwh)
1 4073131 0.41 1.63
2 4044805 0.40 1.62
3 4009403 0.40 1.60
4 4003905 0.40 1.60
5 3937911 0.39 1.58
6 3917550 0.39 1.57
7 3851536 0.39 1.54
8 3825610 0.38 1.53
9 3992928 0.40 1.60
10 3927892 0.39 1.57
11 4036258 0.40 1.61
12 4085162 0.41 1.63
13 4011740 0.40 1.60
14 4111681 0.41 1.64
15 4161117 0.42 1.66
16 4184804 0.42 1.67
17 4314065 0.43 1.73
18 4336769 0.43 1.73
19 4376953 0.44 1.75
20 4381879 0.44 1.75
21 4395104 0.44 1.76
22 4366733 0.44 1.75
23 4332154 0.43 1.73
24 4158299 0.42 1.66
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Table A3 NOx Daily Environmental Cost of Northern Taiwan

Hour Total NOx Emission NOx Emission Amount NOx Environmental Cost
(hr) (kg) (kg/kwh) ($/kwh)
1 1158.24 0.00012 0.01
2 1159.84 0.00012 0.01
3 1157.20 0.00012 0.01
4 1158.30 0.00012 0.01
5 1149.56 0.00012 0.01
6 1142.68 0.00011 0.01
7 1129.01 0.00011 0.01
8 1118.52 0.00011 0.01
9 1136.63 0.00011 0.01
10 1104.60 0.00011 0.01
11 1140.05 0.00011 0.01
12 1150.22 0.00012 0.01
13 1119.92 0.00011 0.01
14 1135.68 0.00011 0.01
15 1144.52 0.00011 0.01
16 1136.32 0.00012 0.01
17 1166.59 0.00012 0.01
18 1169.61 0.00012 0.01
19 1176.08 0.00012 0.01
20 1178.75 0.00012 0.01
21 1180.40 0.00012 0.01
22 1178.14 0.00012 0.01
23 1174.66 0.00012 0.01
24 1156.81 0.00012 0.01
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Table A4 Sox Daily Environmental Cost of Northern Taiwan

Hour Total SOx Emission SOx Emission Amount SOx Environmental Cost
(hr) (kg) (kg/kwh) ($/kwh)
1 2306.32 0.00023 0.015
2 2311.03 0.00023 0.015
3 2307.13 0.00023 0.015
4 2309.81 0.00023 0.015
5 2294.40 0.00023 0.015
6 2280.70 0.00023 0.015
7 2254.58 0.00023 0.015
8 2233.31 0.00022 0.015
9 2264.22 0.00023 0.015
10 2198.17 0.00022 0.015
11 2269.62 0.00023 0.015
12 2289.06 0.00023 0.015
13 2227.23 0.00022 0.015
14 2256.45 0.00023 0.015
15 2273.06 0.00023 0.015
16 2254.07 0.00023 0.015
17 2313.06 0.00023 0.015
18 2318.40 0.00023 0.016
19 2330.18 0.00023 0.016
20 2335.63 0.00023 0.016
21 2338.50 0.00023 0.016
22 2334.96 0.00023 0.016
23 2329.15 0.00023 0.016
24 2299.04 0.00023 0.015
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Table A5 PM10 Environmental Cost of Northern Taiwan

Hour Total PM10 Emission PM10 Emission Amount PM10 Environmental Cost
(hr) (kg) (kg/kwh) ($/kwh)
1 179.31 1.80E-05 0.00256
2 180.49 1.80E-05 0.00258
3 179.19 1.80E-05 0.00256
4 179.11 1.80E-05 0.00256
5 175.54 1.80E-05 0.00251
6 173.01 1.70E-05 0.00247
7 169.19 1.70E-05 0.00242
8 166.45 1.70E-05 0.00238
9 170.43 1.70E-05 0.00244
10 165.41 1.70E-05 0.00237
11 170.18 1.70E-05 0.00243
12 173.13 1.70E-05 0.00248
13 167.82 1.70E-05 0.00240
14 170.47 1.70E-05 0.00244
15 172.61 1.70E-05 0.00247
16 172.39 1.70E-05 0.00247
17 178.40 1.80E-05 0.00255
18 179.56 1.80E-05 0.00257
19 182.53 1.80E-05 0.00261
20 183.76 1.80E-05 0.00263
21 184.37 1.80E-05 0.00264
22 184.18 1.80E-05 0.00263
23 183.29 1.80E-05 0.00262
24 179.91 1.80E-05 0.00257
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