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中文摘要 
 

近年來，城市電動化與淨零排放政策推動下，電動公車不僅是潔淨載具，更

逐漸展現作為電網儲能單元的潛力。然而，V2G（車連網）系統的實際運作牽涉

高度複雜性，其必須同時整合公車排班、太陽能發電變化、時間電價制度

（TOU）、電池衰退成本與充電樁設施配置等多重因素，並考量這些因素之間的

交互影響與時序關聯。由於傳統的操作方法無法處理這類動態、非線性且離散的

調度問題，因此本研究提出一套混合整數線性規劃（MILP）模型，作為最佳化運

算框架，以提升整體營運與能源管理效益。本研究以臺北市為場域，結合三座主

要電動公車場站、九條路線與周邊學校屋頂太陽能系統進行模擬分析。模型結果

顯示，在基線情境下，導入 V2G 系統每月可降低營運成本約新台幣 22 萬元，惟

若初期投資過高，回收期仍可能超過 36 年。透過 Latin Hypercube Sampling

（LHS）與 Sobol 全域敏感度分析，本研究發現”建物售電價格”與”尖峰時間

電價”為關鍵政策參數；而電池衰退成本與太陽能轉換率亦具次要但不可忽視的

影響。在參考政策與技術組合下，如建物售電價格 NT$2/kWh、TOU 尖峰電價 

NT$10/kWh、電池容量 500kWh、衰退成本 NT$0.26/kWh，回收期可縮短至 6 年

內。研究亦指出，當車隊電動化比例達 75%、並採取 1:2.22 的車樁配置時，可

進一步縮短投資回收期並提升經濟效益。本研究提供一套具實證基礎的策略架構，

協助政府與運輸單位在資源有限情境下，有效推動具經濟韌性的電動公車能源系

統整合與永續城市轉型。 

關鍵字: 車連網系統、電動公車、場站基礎設施、太陽能系統、經濟可行性、混

合整數線性規劃、敏感性分析 
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Abstract 
 

As cities worldwide move toward transportation electrification and carbon 

neutrality, electric buses are increasingly recognized not only as clean transport solutions 

but also as distributed energy storage units through Vehicle-to-Grid (V2G) systems. 

However, managing a large-scale V2G operation presents considerable complexity. It 

involves simultaneously coordinating bus dispatch schedules, solar generation 

fluctuations, time-of-use (TOU) electricity peak prices, battery degradation, and 

infrastructure constraints. These factors require careful alignment between charging, 

discharging, and route needs. As such, simple rule-based strategies are insufficient; an 

optimization-based framework is essential for maximizing cost-effectiveness while 

maintaining operational feasibility. To address this challenge, this study proposes an 

optimization-based framework that integrates V2G operations with rooftop solar 

photovoltaic (PV) systems in an urban transit context. A mixed-integer linear 

programming (MILP) model is developed to minimize total operational costs while 

considering real-world bus schedules, depot constraints, and solar generation from 

adjacent school rooftops in Taipei City. The model simulates 3 bus depots and 9 routes 

under various energy and policy scenarios. Baseline results show V2G can reduce 

monthly operational costs by NT$220,000, though the payback periods payback period 

exceeds 36 years hdue to high initial investment. Sensitive analyses using Latin 

Hypercube Sampling (LHS) and Sobol methods identify building solar electricity selling 

price which usually considering as feed in tariff (FIT) and TOU rates as dominant policy 

leverages. When some favorable conditions are applied NT$2/kWh solar feed-in price, 

NT$10/kWh TOU peak rate, 500 kWh battery capacity, and NT$0.26/kWh degradation 

cost the payback periods can be reduced to under six years. The model also finds that 

V2G becomes viable only when at least 75% of the fleet is electrified and recommends a 
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charger-to-bus ratio of 1:2.22 to minimize capital investment. These insights provide a 

data-driven foundation for transit agencies and policymakers to design scalable, cost-

effective, and policy-responsive V2G deployment strategies for sustainable urban 

transportation. 

Keywords: Vehicle-to-Grid (V2G), Electric Buses, Depot Infrastructure, Solar 

Photovoltaics, Economic Feasibility, Mixed-Integer Programming, Sensitive Analysis 
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1. Introduction 

Unlike traditional vehicle operations, Vehicle-to-Grid (V2G) systems must 

simultaneously manage charging and discharging timing, energy cost, solar variability, 

and battery degradation behavior. These multidimensional interactions make simple 

scheduling infeasible and require an optimization framework to achieve cost-

effectiveness and operational feasibility. 

1.1 Background and Motivation 

In this era of rapid urban development, the swift growth of has led to a significant 

decline in the energy self-sufficiency of urban communities. Rely on the traditional way 

with the electricity system is not sustainable anymore, therefore we are urge to find an 

innovative way to refresh it. At the same time, the increasing adoption of electric buses 

(EVs) in cities presents new opportunities to leverage EVs batteries as distributed energy 

storage resources. Our research purpose aims to explore how electric vehicles resources 

can be integrated existing power grid to support the planning and development of future 

urban energy systems. Therefore, this research will try to give a possible future planning 

for Taipei area by 2030. 

In terms of development for sustainable city in the future, the National 

Development Council (NDC) of Taiwan has pointed out a strategy. First of all, in the 

energy field the NDC set 35% of decarbonization by renewable energy like solar energy 

and advanced technology for storage energy from 2023. About transportation field, NDC 

outlined 16% of decarbonization by applying green transportation like electric public 

transportation. This plan includes fully electrifying urban bus fleets by 2030. As of 

January 2024, a total of 630 electric buses have been deployed in Taipei City. However, 

With the increase of the electrified fleet may cause higher pressure on grid.  Accordingly, 
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we believe that Taipei possesses a sufficient number of electric buses that can serve as 

energy storage units within a V2G system and have the positive interaction effect with 

the solar system located in the urban city area [1].  

In Taiwan, despite policy efforts to electrify urban bus fleets, limited depot charging 

infrastructure, lack of dynamic dispatch systems, and underutilization of rooftop solar 

resources pose challenges for scalable, economically viable deployment. A data-driven 

V2G strategy is urgently needed to bridge this gap. 

1.1.1 Urban Transportation Electrification Trends and Challenges 

In response to the global push for carbon neutrality, countries are accelerating the 

electrification of public transportation. An urban bus system is not a plug-and-play 

process. Operators must coordinate vehicle dispatch schedules, solar energy fluctuations, 

time-of-use (TOU) electricity peak prices, battery degradation profiles, and charging 

infrastructure limits. These variables interact across time and space, making the system 

too complex for heuristic or rule-based scheduling. Therefore, a robust optimization 

framework is necessary to identify feasible and cost-effective operation strategies under 

real-world constraints. There are several foreign studies focus on urban electric buses 

development we also want to review, some mentioned the electric buses faced the longer 

charging time than diesel fuel buses which created the challenge of scheduling[2], some 

paper mentioned robust optimized schedule can help for formulating[3], some research 

urge for integrating with closing depot renewable energy[4, 5].  Some paper mentioned 

to conduct incentive policy[6], and utility design of the buses depot are also matter [7]. 

These gave us an incentive to dig out the Taiwan’s urban electric buses status and policy 

for us to form our model and recommendations. 

To expand upon the complex plan in the green urban transportation plan in Taiwan, 

several documents have served as guiding lights in the darkness. For example, 
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Automotive Research & Testing Center (ARTC) did a guideline, they imply that 

European Union has plans to reduce carbon dioxide emissions with electrify its all the 

public bus fleet by 2030.  In contrast, Taiwan, due to the background of its bus industry 

developing history, has initially prioritized the electrification of urban bus systems which 

has been highlighted as the main transportation resources in our future planning.  With 

this ambitious, Taiwan’s Ministry of Economic Affairs (MOEA) and Ministry of 

Transportation and Communications (MOTC) have jointly launched a three-year national 

project focused on the domestic production of ten major components, aiming to 

strengthen local design and development capabilities and ultimately support the local 

manufacturing of electric buses in Taiwan. Aligned with the broader objectives of 

transport electrification, the Forward-looking Infrastructure Development Program, 

approved by the Executive Yuan, has designated green energy infrastructure as a priority. 

As part of our thesis initiative, MOEA and MOTC are collaboratively implementing the 

“DMIT Program” (Design, Manufacturing, Integration, and Testing) for intelligent 

electric buses with green transportation which include V2G system. Under this program, 

MOEA is tasked with coordinating industry collaboration for the development of key 

systems and complete vehicle designs, accelerating the localization of entire vehicles and 

four major subsystems which gave a great opportunity to develop energy management 

system for electric buses. Consequently, a large number of electric buses are expected to 

be deployed across Taiwan's urban areas. This study, therefore, provides an important 

contribution to the development of auxiliary systems for electric buses in the near future 

[8].  

However, the rapid growth of electrified buses, if not supported by effective energy 

management and the integration of renewable energy, may lead to increased dependence 

on grey energy electricity generated from fossil fuels thus undermining the intended goals 
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of green energy transition. Therefore, it is essential to consider the operational demands 

and constraints of domestic electric bus systems. Here is study from Taiwan government 

aims to shave peak-time charging pressure through scheduling strategies. MOTC induce 

the TOU pricing and capacity contracts with buses for encourage operators to adjust 

charging schedules in response to grid demand. The study further argues that refresh the 

traditional sequence charging, smart charging strategies should be prioritized. 

Additionally, the integration of solar photovoltaic (PV) systems is recommended by the 

government as well [9].  

Lee interviewed several bus companies, including Taoyuan and Hsinchu Bus 

operators, to explore suitable scheduling patterns for electric buses. Her research helped 

clarify how electric buses operate differently from diesel buses, especially in terms of 

charging behavior. Most operators charged buses at night during off-peak hours, but many 

also added charging at noon to ensure full-day operation. This strategy matches well with 

solar power generation at midday, which improves energy efficiency. The study also 

pointed out that scheduling must follow Taiwan’s labor regulations on driver working 

hours. This requirement encourages more discussion about integrating electric buses with 

intelligent vehicle systems [10].  Lin used a simulated annealing algorithm to optimize 

electric bus operations. His results showed that adjusting charging schedules through 

optimization could reduce extra costs, such as overtime and early returns. This finding 

highlights the potential of algorithm-based scheduling to improve operational efficiency 

in electric public transport [11]. Chen analyzed the economic conditions of electric bus 

operations in Taiwan. He noted that, with government subsidies, electric buses currently 

have a short-term cost advantage over diesel buses. However, he emphasized that long-

term sustainability depends on how well operators adopt clean energy technologies, such 
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as green electricity. Without such measures, electric buses may lose their competitiveness 

when subsidies end [12].  

Another topic is incentive from previous is to utilized optimization model to 

optimize the idle time with these electric buses, in order to this opinion we survey several 

studies have investigated the idle periods of electric buses. For example, in California’s 

bus system, vehicles typically experience 14 to 16 hours of idle time per day, particularly 

between 20:00 and 06:00. To accommodate peak-hour demands, a portion of the fleet 

also remains idle during daytime hours. In cases where buses are designated for school 

transport or other lower needed area, the idle duration can extend to 18 to 20 hours per 

day [13]. 

1.1.2 Renewable Energy Policy and Power Grid Trends and Challenges 

Speak of the energy policy, since 1979 Taiwan Power Company (Taipower) has 

implemented demand side management strategies aimed at encouraging users to shift 

electricity consumption away from peak periods. By offering electricity rate discounts, 

Taipower incentivizes users to participate in load shifting which can solve the fluctuations 

of renewable energy for energy generation to meet the balance from generation and using. 

In these regions, TOU pricing mechanisms have proven effective in reducing peak 

demand by increasing electricity prices during high-load hours like winter evenings or 

summer nights. In Taiwan, our peak time of the grid usually in the summer night which 

Taipower are trying focus on.  

Taiwanese government also provided a Renewable Energy Development Act, 

requiring that at least 30% of the rooftop area of new or renovated buildings be used for 

installing solar panels. According to estimates from the Ministry of Economic Affairs, 

every 20 square meters of rooftop space can support about 1 kilowatt of photovoltaic (PV) 

capacity. Based on this policy, we expect that Taipei City holds strong potential for 
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decentralized solar development, opening new opportunities for sustainable urban energy 

solutions. Taipei City Government previously conducted studies on solar energy potential 

across different parts of the city. Before 2019, they estimated an installable capacity of 

around 29 megawatts. In addition, research by the Taiwan Green Productivity Foundation 

in 2008 suggested that if all schools under the Taipei City Department of Education 

installed solar PV systems, they could collectively generate at least 2.7 MWp of electricity. 

With ongoing improvements in solar PV technology, we believe that Taipei’s potential 

for solar power generation will continue to grow [14].  

To better understand the structural challenges of electricity transmission in northern 

Taiwan, this study takes a closer look at the 2023 power grid situation as shown in Figure 

1. We found that most of the base load electricity supply in the region has shifted from 

natural gas. We assumed that the V2G can set as a replacement of the natural gas base 

load energy. Therefore, this research began by analyzing the grid systems in Taipei City, 

New Taipei City, Keelung, and Taoyuan. This helps us evaluate the possible limitations 

of a centralized power grid and lays the foundation for discussing the potential of 

developing a V2G system in this area. We used data provided by Taipower to examine 

the grid conditions in northern Taiwan, especially focusing on the northeastern and 

northwestern power systems. The region faces a power shortfall of about 3,500 MW, 

while its electricity demand typically ranges between 10,000 and 11,000 MW. About 66% 

of the electricity comes from thermal power plants, while the remaining 27% is supplied 

from central and southern Taiwan. Further analysis of thermal power generation shows 

that most of the electricity comes from the Tatan Natural Gas Power Plant located in 

Taoyuan. Electricity is transmitted into Taipei through two major extra-high voltage 

substations: Dinghu and Xiandu. This setup reveals a potential weakness in the grid. 

Therefore, developing decentralized and self-sufficient energy systems appears necessary 
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for improving energy security in northern Taiwan. According to the international energy 

agency the grid distribution cost up to NT$0.5/kWh, no to say the cost of massive power 

failure. With this understanding we can see the opportunity of decentralized grid which 

is involved V2G. 

We used web-scraped data to analyze the power grid over a one-day period, 

focusing on the four private natural gas power plants that supply electricity to the Taipei 

area. The data shows that these plants reach their peak generation between 16:00 and 

23:00. This generation pattern aligns with the peak demand period defined by the time-

of-use pricing system discussed earlier. This finding is organized in Figure 2. In the 

appendix we based on the the emission profiles of northern Taiwan’s electricity mix and 

pollutant factors [15], gived the estimated health externality cost is approximately NT$1.8 

per kilowatt-hour, demonstrating the public health value of V2G systems through air 

pollution reduction. 
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Figure 1 Power Generation Profile of Northern Taiwan in 2023 

 

Figure 2 Average Thermal Power Output of Private Natural Gas Plants  

in Northern Taiwan, June 2024 
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1.2 Literature review with V2G Applications 

Several recent studies have explored how V2G and Vehicle-to-Building (V2B) 

systems can optimize energy usage across various scenarios. In general, many studies 

focus on the societal benefits of V2G systems, particularly how they integrate with 

transportation networks to promote decarbonization. About seasonal effect, He applied 

clustering analysis to classify power usage patterns across different seasons. They 

examined how electric vehicle (EV) integration could be optimized in commercial 

buildings by evaluating the effects of EV quantity on both electricity cost and grid 

demand. The results showed that when accounting for seasonal solar generation, building 

load curves, and electricity pricing, the ideal number of EVs varied by season with 25 

vehicles in summer and 9 in winter. Their model demonstrated that electricity costs could 

be reduced by at least 50% during the summer, providing strong empirical support for 

applying smart energy strategies in buildings [16]. There are also V2B experiment here 

in Taipei, Taiwan with optimization model to determine using stand battery system and 

electric vehicles and show it has economy and environmental benefit [17].  

For instance, V2G load shifting has been shown to reduce carbon emissions by 

1.1% [18], while V2G systems using school buses can contribute to a 0.36% reduction in 

the state fleet located [19]. Other studies, such as Yang's research, emphasize the role of 

V2G in achieving carbon neutrality [20]. Some studies also examine the impact of local 

electricity generation systems on carbon emissions by analyzing charging patterns, which 

is useful for urban energy planning incorporating V2G systems [15]. Additionally, some 

papers explore the potential of V2G systems working with islanded microgrids to 

facilitate black start capabilities, in cooperation with existing electricity generation 

systems [21]. Furthermore, other research delves into how charging patterns influence the 

V2G system and its interaction with electricity loads [13]. In summary, V2G systems are 
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a multifaceted area of research, involving a range of perspectives, parameters, and 

methods for energy optimization. The following literature review will examine studies 

that build on these foundational concepts, providing further insights into the application 

and future directions of V2G research.  

Liao demonstrated that over a 30-year operational period, an EV fleet in Michigan, 

USA, could achieve an economic return of up to 30% of the initial operating costs in Net 

Present Value (NPV) terms. They also noted that larger EV batteries present better 

opportunities for V2G applications [22]. In economic analysis with V2G studies goes 

back to Shirazi [23] conducted a NPV analysis of electric school buses operating under a 

V2G system, using school buses in Pennsylvania as their case study. The study estimated 

that the cost per seat for electric buses, compared to diesel buses, was approximately USD 

7,200 (NT$216,000) higher. One key finding was that temperature had a significant 

impact on both the operation and economic benefit of the V2G system. Specifically, if 

the system did not include thermal management and was shut down at temperatures below 

-6.7°C, the potential revenue could drop by 22%. Based on this, the authors suggested 

that V2G systems are more suitable for warmer climates. In this paper, it supposed bigger 

electric buses has more potential with V2G system due to scale effect. Hsu, Kuo, Tsai, 

and Yeh conducted a NPV analysis to examine the economic benefits of integrating 

electric buses with the power grid in the Taipei area. The study compared three 

operational models: diesel buses, electric buses, and electric buses combined with a V2G 

system. It considered fixed costs, variable costs, and tax-related expenses, while also 

testing different TOU electricity peak pricing levels at NT$8, NT$10, and NT$12 per 

kWh. The results confirmed the economic feasibility of electric bus operations under 

these scenarios. From a financial perspective, electric buses demonstrated better cost-

effectiveness than diesel buses. When including government subsidies and V2G revenue, 
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the net present value of electric buses reached up to NT$277.4 million, significantly 

higher than the diesel bus model, which peaked at around NT$201.9 million. However, 

the study did not include data on battery degradation, which presents a valuable research 

gap. Our study builds upon their findings by incorporating a broader range of hidden costs 

and operational scheduling benefits [24]. Compared to Shirazi, who based their 

evaluation on a 14-year bus depreciation period in the U.S., Hsu et al.’s study used 

Taiwan’s standard 8-year depreciation. This difference highlights the importance of 

considering depreciation period as a key parameter, which we include in our model. 

Through reviewing literature that applies the NPV method, we find consistent evidence 

supporting the overall effectiveness of V2G systems. In transportation engineering, 

applying optimization models allows researchers to extract more precise parameter 

changes, which are critical for sensitive analysis. Some studies have already attempted to 

define and evaluate key V2G parameters through simulation and comparison. Based on 

Shirazi we found three essential factors that shape the economic viability of V2G which 

is initial capital cost, battery, and TOU pricing. These elements serve as the foundation 

for our upcoming review of optimization based V2G models [23].  

Taking TOU pricing as an example, Moradipari’s research showed that focused on 

the TOU price can leads to 62.5% of operation reduction, if it can combine with solar PV 

system even can reduce 91.3% operation cost, there method will be shifting the charging 

schedule into night and have free charging with solar energy in  V1G scenario (No 

discharging)[25]. Onsite solar PV system with V2G system in Italian scenario can 

approximately cut total annual cost up to 5.6% ~ 17.1% with Mixed Integer Linear 

Programming (MILP) approach for the optimization in Italian electricity market [26].  

Fei pointed out that different electricity market mechanisms can lead to varying 

economic outcomes. In their comparison between Frequency Control Reserve (FCR) and 
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Sale by Market Price (SbMP) models, they found that the SbMP model makes more 

aggressive use of arbitrage strategies like buying electricity at low prices and selling at 

higher prices. However, this also results in more frequent battery discharging, which 

increases the risk of battery degradation. Our study will focus on the SbMP model, 

optimizing power dispatch based on TOU pricing while also accounting for battery 

degradation [27]. Based on Fei findings, we also consider that fleet-scale plays a role in 

profitability. Specifically, a minimum of 14 vehicles is needed for the operator to benefit 

from adjusting service hours to match price differentials in the electricity market. This 

consideration will be included when designing the fleet configuration in our model [27]. 

Tian also used TOU pricing as a core parameter to optimize the timing of electric vehicle 

(EV) charging and discharging, aiming to improve grid stability. In his optimization 

model, the objective function was designed around a TOU-based V2G power control 

strategy, with the goal of minimizing electricity costs for EV owners while reducing stress 

on the grid. The strategy analyzed electricity price fluctuations throughout the day to 

determine the most efficient charging and discharging times, optimizing overall energy 

usage. The results showed that the V2G system significantly improved both grid stability 

and operational efficiency. In case studies conducted in Beijing and Jilin, the model 

reduced peak grid load by up to four times. Given Taiwan’s long-standing implementation 

of TOU pricing, this study will adopt insights from Tian’s work and incorporate the local 

TOU scheme into our optimization model to evaluate the applicability of V2G strategies 

in the Taiwanese context [28]. Arsalan analyzed the use of household vehicles in V2G 

operations through market transactions with the Japan Electric Power Exchange (JEPX). 

The study simulated the potential profits and challenges arising from daily V2G 

operations. It found that shifting the original charging time from 8:00–12:00 and 

discharging time from 0:00–3:30 to a new schedule of 9:00–15:00 for charging and 
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17:00–21:00 for discharging could significantly increase short-term revenue. However, 

this new strategy may lead to faster battery degradation over the long term. Therefore, the 

study highlighted the need to balance profit gains with battery life in long-term operations. 

It is also worth noting that Arsalan’s research did not account for the upfront capital 

investment required to implement the system. In contrast, our study will include initial 

capital costs as part of the model to better reflect real-world financial conditions [29].  

The study also proposed an optimization model that considers the actual operating 

conditions of electric buses. It integrates the planning of charging infrastructure with 

scheduling strategies based on real-world bus operations. By aligning planning with real 

service patterns, the model can effectively reduce both total operational costs and peak 

electricity charges. In particular, optimizing infrastructure during the planning phase can 

lower costs by around 20%, while optimizing charging strategies during the operational 

phase can further reduce operating costs by 68%. In this study, the initial investment cost 

for high-power charging equipment was defined as over USD 25,000 (NT$750,000), and 

battery costs were estimated at USD 700/kWh (NT$21,000/kWh). These values are 

adopted as key reference parameters in the present research [30].  

Battery degradation is also a common focus in optimization models. Borge-Diez  

defined and formulated the cost calculation for battery degradation within their model 

assumptions [31]. Ager-Wick Ellingsen  studied electric vehicle batteries made of 

different chemical compositions and conducted destructive testing to verify battery 

cycling behavior, particularly within the 20% to 80% state-of-charge range [32].  

Lee highlighted the critical role of battery degradation in V2G system design, 

outlining various parameters and relationships involved in battery degradation, such as 

"Cycle Degradation," "Temperature," and "Voltage." [33]. Zeng emphasized that, based 

on simulation results, if charging control is not properly managed, the degradation cost 
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of EV batteries could exceed the actual charging cost by more than ten times or 87.26% 

of total operation cost [34]. Manzolli conducted a case study in Coimbra, Portugal, where 

battery degradation was incorporated into both the objective function and constraints of 

their optimization model. Their results showed that when battery prices dropped below 

EUR 100/kWh (NT$3,700/kWh), the cost-effectiveness of electric buses improved 

significantly. By comparing the 30-year total cost of ownership (TCO) between electric 

and diesel buses, they found that electric buses could reduce overall costs by up to 38% 

[35]. Also, there is a research reveal that under RMB 600/kWh can reduce 75.32% of 

total operational cost [36]. 

1.3 Research Gap  

Based on the literature review studies, it is evident that V2G systems hold promising 

potential to address urban energy challenges and support transportation electrification in 

Taiwan. However, several critical research gaps remain, limiting the practical 

applicability of V2G solutions, especially for urban electric bus fleets. These gaps can be 

summarized as following context. 

1. Lack of integrated multi-factor optimization frameworks  

Most existing studies focus on single-dimensional analyses are consider only one 

or two variables in analysis, failing to capture the complex interdependencies 

among technical, economic, and policy factors. For example, TOU peak pricing, 

solar generation, and battery degradation are often modeled independently or under 

simplified assumptions, which reduces realism and decision-making relevance. 

2. Gap related to urban localization  

Many studies are conducted in suburban, low density urban contexts or focus on 

private electric vehicles. They often neglect localized conditions prevalent in dense 

East Asian cities like Taipei, such as rooftop solar availability on public facilities, 
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inflexible bus scheduling, and Taiwan’s unique TOU electricity peak pricing. This 

limits the transferability of findings to such urban environments. 

3. Perspective gap regarding public transit operators  

Existing research tends to emphasize macro-level social benefits, such as carbon 

mitigation and grid support, while overlooking the operational constraints and 

economic incentives of public transit operators. Since these stakeholders are crucial 

for real-world V2G implementation, neglecting their perspective can lead to 

impractical or infeasible strategies. 

These gaps hinder the development of actionable, location-specific V2G strategies 

for electric bus systems, and reduce the utility of current models for public-sector 

infrastructure planning. Without addressing these challenges, policy recommendations 

and infrastructure planning risk remaining conceptual rather than operationally robust.  

1.4 Research Objectives 

 To address these issues, this study aims to investigate the economic feasibility and 

sensitive-driven optimization of integrating rooftop solar energy with V2G systems in 

urban electric bus operations. The specific objectives are list here. 

• To develop a mixed-integer linear programming (MILP) model that incorporates 

real-world operational constraints, including bus dispatch schedules, rooftop solar 

potential, battery degradation, and TOU electricity peak pricing. 

• To quantify the impact of key policy-related and science-oriented parameters on 

total operational costs and payback periods using Latin Hypercube Sampling (LHS) 

and Sobol sensitive analyses. 

• To identify cost-effective and policy-feasible parameter combinations that 

minimize payback periods while ensuring energy sustainability. 

Therefore, this thesis is structured as follows.  
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• Chapter 2 presents the overall modeling framework, including the formulation of 

the mixed-integer linear programming (MILP) model, key assumptions, and 

constraint design. 

• Chapter 3 describes the simulation results under baseline and sensitive conditions, 

including cost-saving potential, optimal parameter settings, and scenario 

comparisons. 

• Chapter 4 concludes the study by discussing key findings, model limitations, policy 

implications, and recommendations for future research and implementation in 

Taiwan. 
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2. Methodology 

2.1 Research Framework and Scope 

This study follows the overall framework shown in Figure 3. First, data related to 

energy, transportation, and electricity policies are collected and fed into a Gurobi-based 

optimization model to obtain preliminary results. Next, key model parameters are 

projected to the year 2030 to build an interval-based parameter model. In the sensitive 

analysis stage, the first phase uses Latin Hypercube Sampling (LHS), which has faster 

convergence, to perform the initial optimization analysis. A regression analysis is then 

applied to the optimized results to evaluate the impact of each parameter on total system 

cost. In the second phase, Sobol sampling and global sensitive analysis are used to capture 

both second-order effects and variance contributions, allowing for a more complete 

understanding of parameter interactions and their influence on overall system 

performance. 

 

Figure 3 Overall Research Scope 
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In this study, we integrate three major bus depots and their associated routes into 

our research framework, using nearby schools as representative sites for solar energy 

generation and scheduling, as illustrated in Table 1 and Figure 4. Our scope includes a 

total of 110 electric buses operating across 9 different routes in Taipei City, with the fleet 

distributed among three major depots, 44 buses at the Songzhi Depot, 39 at the Jiuzhuang 

Depot, and 27 at the Wuxing Depot. Each depot is strategically paired with nearby 

educational facilities identified as having rooftop solar energy potential. Specifically, the 

Songzhi Depot is linked to both Songshan Vocational High School and Yongchun High 

School provide 20510 m2 rooftop availability and 82040 m2 floor area, the Jiuzhuang 

Depot is associated with Jiuzhuang Elementary School which offers 4028 m2 rooftop 

space and a total floor area of 16112 m2, and the Wuxing Depot is paired with Wuxing 

Elementary School with 6428 m2 rooftop availability and 25712 m2 floor area. These 

depot-school pairings form localized renewable energy clusters that support integration 

with the V2G system. Each depot manages its own energy transactions with its 

corresponding solar source, while all depots collectively aim to minimize total operational 

cost through optimized dispatching and coordinated energy scheduling.  

Table 1  Depots-Schools Integration Information 

 

Songzhi Depot Jiuzhuang Depot Wuxing Depot Total

Operating routes 

(routes)
3 3 3 9

Buses Amount 

(buses)
44 39 27 110

Available school

 rooftop area (m^2)
20,510 4,028 6,428 30,966

School floor area 

(m^2)
82,040 16,192 25,712 123,944
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Figure 4 Scope of Research on Taipei’s Map 
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2.2 Estimation of Urban Solar Energy Potential 

To assess the renewable energy surplus, we evaluate the solar power generation 

potential of rooftop areas located near bus depots. Smart meters installed by National 

Taiwan University are used to estimate each building’s electricity self-sufficiency rate. 

By calculating this self-sufficiency, we are able to determine the amount of surplus solar 

energy available for potential integration with the V2G system. The overall structure of 

this evaluation process is illustrated in Figure 5. 

 

Figure 5 Solar Energy Research Scope 

2.2.1 Estimation Method for Urban Rooftop Solar Energy Potential 

For solar power estimation, this study uses Equation 1, which requires inputs 

including the solar conversion efficiency, rooftop area, solar irradiance, and ambient 

temperature [37].  

 

(1) 

Studies on Taipei City’s overall rooftop solar power potential whether based on 

geographic information system (GIS) modeling or building-type extrapolation 

𝑆𝑜𝑙𝑎𝑟𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  𝜂𝑃𝑉 ∗ 𝑟𝑜𝑜𝑓 ∗ 𝐼 ∗ (1 − 0.005 ∗  𝑇 − 25 ) 
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consistently indicate strong potential across the Greater Taipei region. Han used 

geographic information system (GIS) modeling to analyze solar irradiance patterns in 

selected areas of Taipei and estimate their corresponding solar power generation potential 

[38]. An assessment of illegal rooftop structures in Taipei also revealed significant 

untapped potential for solar power generation due to the large total surface area of these 

rooftops [39]. Beyond generation potential, building electricity usage data can also be 

used to estimate the solar self-sufficiency rate of buildings in Taipei [40]. In this study, 

we calculate solar self-sufficiency rates and validate them using the method proposed 

which takes into account regional differences, seasonal variations, and the number of 

building floors to ensure the robustness of our estimation. For solar irradiance and 

temperature data, we use publicly available datasets from the Central Weather 

Administration’s CODIS meteorological observation network in Taiwan, which we 

preprocess and adapt for modeling purposes. 

2.2.2 Identification of Solar Building Locations Near Bus Depots 

This study focuses on three schools located near bus depots in Taipei City as the 

main research sites: Songshan High School of Commerce and Home Economics in Xinyi 

District, Jiuzhuang Elementary School in Nangang District, and Wuxing Elementary 

School in Daan District. These three schools, along with Fanghe Experimental High 

School in Daan District which has installed rooftop solar panels and operates its own solar 

power generation facility are all located along the southern edge of the Taipei Basin. The 

actual solar generation data from Fanghe Experimental High School is used as a reference 

to validate the accuracy and feasibility of the solar potential estimates developed in this 

study. In our estimation, the total rooftop is around 1200 m2 with the equation of 

Equation 1 we get 25519 kWh. According to Fanghe Experimental High School offered 

us data, it has an installed solar capacity of 169.92 kWp in Phase I and 43.56 kWp in 
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Phase II, totaling 213.48 kWp. With Intensity set about 3.25 kWh/m2/day [41], it will be 

about 20814 kWh in June.  is quite close to the real situation with the data they’ve offered 

us in June shown as Figure 7. This mean the calculation system on our hand is quite 

mature enough and it can really work in a real site.  

 

Figure 6 Taipei Exist Feng-He High School Rooftop Solar Farm 

 

Figure 7 Feng-He High School Rooftop Solar Farm Generation Data 
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The rooftop area of the three selected school campuses in this study was analyzed 

using a geographic information system (QGIS). As shown in Figure 8, Jiuzhuang 

Elementary School serves as an example of how this spatial analysis was conducted. We 

selected school buildings located near bus depots as the target sites for potential solar 

panel installation, in order to enhance the feasibility of early-stage pilot implementation.  

As illustrated in Figure 9, we overlaid the Taipei City map and building footprint 

data provided by the Taipei City Government within QGIS to perform rooftop area 

calculations. Once the target area was identified, we used the GIS model to compute the 

total rooftop surface area within the selected boundary. In the case of Jiuzhuang 

Elementary School, the original zoned area was approximately 40,067 square meters, 

while the total rooftop area of the selected buildings was calculated to be 3,212 square 

meters. This rooftop area was then used as input in Equation 1 to estimate the expected 

hourly solar power generation. 

 

Figure 8 School – Bus Station Location’s Relationship 
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Figure 9 GIS information for School Sample 

In our research, we compare the three depots based on their solar energy potential 

and the energy use intensity of the nearby schools integrated with each depot. Table 2 

below shows the solar potential and school energy usage conditions for each depot-school 

combination. These indicators help us understand how much solar energy can be used 

locally and how the school buildings may influence energy distribution in the integrated 

system. According to Energy Administration, the elementary school EUI should around 

14~27 kWh/year-m2 and high school should around 23~34 kWh/year-m2 which make the 

data here become reasonable.[42] 
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Table 2  Energy Generation and Consumption of three depots Information 

  

Songzhi Depot 

& Schools 
Jiuzhuang Depot  

&Schools 

Wuxing Depot  

&Schools 

Solar potential 

(kWp) 
3,692 725 1,157 

Solar potential  

(kWh/month) 
604,874.83 119,000.25 189,573.04 

Consumption of School 

 (kWh/month) 
343,050.50 67,711.71 107,515.01 

EUI of School 

 (kWh/month-m^2) 

 

4.18  

EUI Guide  

 (kWh/year-m^2) 
23-34 14-27 

Self Sufficient Rate 

(%) 
104 

Li & Han et al.(2022) 

Self Sufficient Rate (%) 
123 

 

2.2.3 Estimation of Building Electricity Demand Based on Function 

For electricity usage estimation, this study uses the Civil Engineering Research 

Building at National Taiwan University as a reference and applies a floor area-based 

scaling method to estimate the electricity consumption of the target buildings during 

specific time periods. Taking Jiuzhuang Elementary School as an example, the building 

has four floors and a rooftop projected area of 3,212 square meters, giving a total floor 

area of 12,848 square meters. Since typical elementary and junior high school buildings 

in Taiwan do not use centralized chilled water systems and mainly rely on individual air 

conditioning units, we assume a rooftop utilization rate of 100%. According to data from 

Lo [37], the Civil Engineering Research Building has a projected area of 2,300 square 

meters and nine floors, giving an estimated total floor area of approximately 20,700 

square meters. Based on this ratio, we adjust the electricity usage using data from NTU’s 

campus digital smart meter monitoring system to estimate the expected electricity 

demand of the selected teaching buildings during specific time periods. This method 
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allows us to simulate electricity use characteristics of educational buildings throughout 

different timeframes such as summer and winter breaks, class hours, and idle periods 

ensuring that the power demand estimations in this study reflect realistic usage patterns 

with school type building. 

2.2.4 Estimation of Building Solar Self-Sufficiency and Surplus Energy Potential 

Based on the previously estimated solar generation and electricity demand of each 

building, this study calculates both the building's solar self-sufficiency rate and the 

surplus energy generated. The surplus energy at each time step is determined based on 

the excess generation from the previous hour. However, due to current Taiwan Power 

Company’s (Taipower) policies, which offer feed-in tariff (FIT) for building selling solar 

energy, many buildings sell their solar energy back to the grid rather than utilizing it 

locally such as Fanghe Experimental High School. With this concept, the study also 

explores alternative ways to set building solar energy that could better support progressive 

policies for community-based microgrids. 

Using Jiuzhuang Elementary School as an example, the building’s solar self-

sufficiency rate in June is calculated to be 103.87%. This result aligns reasonably well 

with the value provided by [40], which estimated a June solar self-sufficiency rate of 

123% for four-story residential buildings in Taipei. This comparison demonstrates the 

feasibility and validity of the self-sufficiency estimation method used in this study, 

providing a reliable foundation for future research. 

2.3 Electric Bus Operation Pattern Analysis 

When electric buses depart from the designated depot sites, their operations follow 

the unique characteristics of public transportation systems. This study also investigates 

the surrounding bus stations operated by Metropolitan Transport Corporation (大都會客

運) near the selected sites namely Songzhi Station, Jiuzhuang Station, and Wuxing 
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Station and provides an analysis of current operations along with future planning 

perspectives. Taking Jiuzhuang Station as an example, it serves four routes: Route 276, 

Route 306, Minibus Route 6, and Route 823. Among these, Routes 276, 306, and 823 are 

currently operated using diesel-powered Daewoo BS120CN buses from South Korea, 

while Minibus Route 6 is operated through a joint-operation minibus system. Based on a 

2023 survey of the domestic electric bus market, the electric buses currently used by 

Metropolitan Transport Corporation commonly include the Master Bus MB120SE by 

Master Transportation, the Model T by Foxtron (Horizon Plus), the RACE150 by RAC 

Electric Vehicles, and the K9 by BYD. However, due to the larger wheelbase and width 

of these models, they are not suitable for the narrow roads and turning radii required for 

operating Minibus Route 6. Therefore, for Jiuzhuang Station, electric bus replacement 

planning focuses on Routes 276, 306, and 823. This study refers to manufacturer provided 

specifications for the above mentioned electric bus models. Considering that key factors 

such as battery capacity and energy consumption per kilometer have a significant impact 

on the performance of V2G systems, and given the ongoing trend toward domestic 

production of electric buses, the Foxtron Model T is selected as the representative model 

for this study. All replacement scenarios assume substituting the current South Korean 

Daewoo BS120CN diesel buses with the Foxtron Model T on the identified routes in our 

research assessment. Based on the above assumptions, a total of 39 diesel buses from 

Routes 276, 306, and 823 are considered for electrification. The operational schedule of 

these electric buses is based on the public timetable released by Metropolitan Transport 

Corporation. Taking Route 276 from Jiuzhuang Station as an example, its service hours 

run from 6:00 AM to 9:00 PM. During weekday peak periods, buses operate every 15 to 

20 minutes, while off-peak and weekend periods follow a fixed schedule. This study uses 

Python for data processing. Given the fixed time intervals between departures, we model 
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the bus dispatches on an hourly basis using probabilistic methods. A Poisson distribution 

is applied to estimate the expected number of electric bus dispatches per hour. For 

example, during weekday peak and off-peak periods on Route 276, we simulate the 

random arrival of electric buses at intervals of 15–20 minutes. This method is similarly 

applied to Routes 306 and 823, producing 24-hour Poisson-based dispatch distributions 

for each route shown as Figure 10. 

 

Figure 10 Poisson Distribution of Combined Bus Dispatches for Jiuzhuang Depot 

Similarly, after calculation, we derive the expected number of bus dispatches per 

hour, as shown in Figure 11. This expected simplified how a depots to deal with 

transportation need, in this graph it can echo to previous study that sometime the electric 

buses will stay in the depot and being idle [13]. The average idle time for electric buses 

will be 58% ~ 83% depends on different route. In our research it will be around 78% for 

idle time in the JiuZhuang depot according to the estimation which means this bus 

operation has relative low departure rate. 
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Figure 11 June Bus Operation Expectation Values for JiuZhuang Depot 

This result supports the subsequent development of the optimization model. Once 

the solar self-sufficiency of the selected buildings and the dispatch patterns of the electric 

bus depots are confirmed, we map their spatial relationships based on geographic 

proximity. This allows us to establish the connections among depots, buildings, and 

electric buses, forming the foundational structure of this study's site-to-bus allocation 

model.  

2.4 Optimization Model Development 

In optimization modeling, there are two models one is linear and mixed-integer 

linear programming methods, and another one is gradient-based nonlinear optimization 

techniques. The following section compares these two approaches and explains the reason 

for adopting mixed-integer linear programming methods in this study. Figure 12 is the 
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scope of the optimization model in our research to build up what we want to optimized 

while we want to form a V2G model.  

 

Figure 12 Scope of Model 

2.4.1 Overviews of Gradient-Based Nonlinear Optimization Methods 

A wide range of optimization algorithms can be broadly categorized into derivative-

based and derivative-free methods. Derivative-based techniques utilize gradient 

information, such as the first-order derivative ∇f, to determine the search direction and 

guide to the optimization results. One example is the Conjugate Gradient (CG) method, 

which is suited for solving large-scale unconstrained linear minimization problems. This 

method accelerates convergence by searching along conjugate directions rather than 

simply following the steepest descent of -∇f. It iteratively updates the gradient -∇f to reach 
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the optimal solution. Second-order methods extend this idea by introducing the Hessian 

matrix (∇²f), which allows for more precise convergence based on curvature information. 

These methods are more accurate for scientific computation but come with significantly 

higher computational costs. In contrast, derivative-free methods operate like black-box 

optimizations, requiring only function values. One well-known example is the Nelder-

Mead method, which compares function values at multiple points ex., f(-1), f(1), ..., f(n) 

to gradually move away from high-value regions and approach the minimum. However, 

both derivative-based and derivative-free methods are prone to getting stuck in local 

minima, which may distort the final results. Additionally, because these algorithms rely 

heavily on continuous derivatives, they are not suitable for solving mixed-integer linear 

programming (MILP) problems [43]. 

2.4.2 Overviews of Mixed-Integer Linear Programming Methods 

In the Mixed-Integer Linear Programming Methods, there is a useful package called 

gurobi which primarily uses the Branch-and-Bound algorithm, supplemented by various 

heuristic methods, to solve optimization problems and obtain optimal solutions. In this 

study, mixed-integer formulations are frequently encountered. For example, the number 

of buses is treated as an integer variable, while power-related behaviors like energy flow 

are modeled as continuous variables. These two types of variables need to be optimized 

together within a single integrated model. For linear problems, feasible regions defined 

by constraints and objective functions can be solved using the simplex method. This 

approach iteratively swaps basic and non-basic variables at the vertices of the feasible 

region to identify the optimal solution. For solving mixed-integer problems, Gurobi 

applies the Branch-and-Bound algorithm to find the optimal solution. The process begins 

by relaxing the integrality constraints and solving the corresponding linear programming 

(LP) problem to obtain an optimal LP solution. If the solution contains fractional values 
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in integer variables, the algorithm selects one of these variables and branches on it, 

rounding it up and down to create two new subproblems. If a solution is found where all 

integer variables take integer values, the algorithm terminates. If a node is infeasible or 

the current solution's objective value is worse than an existing feasible solution, that 

branch is pruned. This process continues until all branches have either been solved to 

optimality or pruned due to infeasibility or minor than current integral solution. In this 

study, many optimization tasks involve mixed-integer formulations, where both discrete 

decisions (such as the number of buses) and continuous variables (such as energy 

consumption) must be solved together. Gurobi's hybrid method is well-suited to 

efficiently handle such mixed-variable problems like V2G problem [44]. 

2.4.3 Comparative Analysis of Gradient-Based and MILP Optimization 

Approaches 

 Based on the literature review and the needs of this study, a commercial solver 

designed for mixed-integer linear programming was selected. Compared to nonlinear 

optimization methods that rely on derivatives, mixed-integer linear programming offers 

several advantages. It is especially suitable for large-scale problems involving both 

integer and continuous variables, which matches the structure of urban energy scheduling 

models used in this research. Following are several for choosing mix-integer linear 

programming method. 

1. Mixed-Variable Modeling Capability 

Mixed-integer programming methods are specifically designed to solve problems 

that involve both integer and continuous variables. These models are commonly 

encountered in practical scheduling and planning tasks. Compared to such 

approaches, gradient-based nonlinear optimization techniques are typically limited 

to continuous variable problems. When applied to models with discrete decisions, 
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these methods often require additional relaxations or transformations, which can 

increase the complexity and computational cost. 

2. Solution Stability and Initialization Robustness 

Gradient-based methods rely on derivatives to guide the search process, making 

them effective for nonlinear and non-convex problems. However, they are often 

sensitive to initial values and may converge to local minima. In contrast, mixed 

integer programming methods use structured algorithms such as branch and bound, 

which explore multiple solution paths and are less affected by initial conditions, 

offering greater reliability in finding global optima in well formulated models. 

3. Application Suitability for Grid Scheduling 

Problems involving grid scheduling and energy dispatch commonly feature binary 

or fixed allocation decisions. Mixed integer programming methods are well 

optimized for such discrete models, allowing accurate representation of practical 

constraints like unit requirement, charging schedules. 

4. Urban Scale and Computational Efficiency 

The selected solver incorporates advanced features such as automatic method 

selection, multithreaded computation, and presolve routines, which enhance 

performance in solving large scale optimization problems. These features are 

essential in urban-scale applications, where models may include hundreds of 

thousands of variables and constraints. Without such enhancements, convergence 

speed and memory usage would become critical problem. 

5. Solution Interpretability and Sensitive Analysis 

In addition to computational performance, mixed integer programming methods 

provide structured output, including optimality conditions, dual values, and shadow 
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prices. These results are useful for post-analysis, scenario evaluation, and policy 

interpretation, especially in planning and decision-support contexts. 

To conclude, MILP method give us more robust, reliable optimization model to 

conduct with V2G analysis. 

With this understanding, and given Mixed-Integer Linear Programming Method’s 

reliance on multi-core processor performance, this study was conducted using high-

performance CPUs: the AMD Ryzen 9 7950X and the Intel i7-12650H. In each 

optimization scenario, the model contains approximately 600,000 constraints and around 

320,000 variables. A single optimization run takes approximately 10 minutes, while 

sensitive analysis can require more than one week of continuous computation. 

2.4.4 Design the V2G model with MILP Optimization Approaches 

To complement the insights illustrated in the Figure 12, we introduce a pseudocode 

that outlines the optimization goal and relevant parameters as shown in Figure 13. 

 

Figure 13 V2G optimization model Pseudocode  
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2.5 Baseline Parameter Settings 

In the V2G operation setup, this study assumes the use of the Foxtron Model T 

electric bus, with a standard battery capacity of 300 kWh. The initial state of charge (SOC) 

is set at 50%. According to historical interview data from the Institute of Transportation, 

Ministry of Transportation and Communications, the average operating speed of electric 

city buses in Taiwan is 20 km/h, and the average energy consumption is 0.9 kWh per 

kilometer. Under the baseline setting, fast charging is defined with a maximum power of 

135 kW, and slow charging with a maximum power of 7 kW. The optimization model 

determines the best allocation of resources using mixed-integer programming. For grid 

electricity pricing, the model adopts the time-of-use charging rates announced by 

Taipower in November 2024 for electric vehicle charging stations [45]. Peak-time 

electricity is priced at NT$9.34 per kWh, and off-peak at NT$2.29 per kWh. Peak periods 

are defined as weekdays from 16:00 to 22:00, all other hours are considered off-peak. 

Regarding the baseline solar feed-in tariff, we follow Taipower’s solar energy buy-back 

rate of NT$3 per kWh. For the pricing gap between fast and slow charging, the model 

adopts a baseline price multiplier of 2.41, based on comparisons with domestic and 

international EV charging tariffs [46-48]. Additionally, for the sale of electricity back to 

the grid, this study follows the three steps time-of-use pricing scheme announced by 

Taipower in November 2024. The electricity rates are defined as follows: NT$6.92 per 

kWh during peak periods (weekdays 16:00–22:00), NT$4.54 per kWh during mid-peak 

periods (weekdays 9:00–16:00), and NT$1.96 per kWh during off-peak hours (all other 

times). The baseline battery degradation cost is set at NT$0.45 per kWh, based on the 

typical cost of lithium titanate (LTO) batteries used in electric buses. Further details and 

equations related to battery degradation will be explained in the battery sensitive analysis 

section. 



doi:10.6342/NTU202502274

 

36 

 

Figure 14 The Road Map of operation model’s parameter 

The following initialization constraints are derived from the physical limitations of 

the electric bus systems and must be considered in the simulation. To account for battery 

health and realistic operation, we set both upper and lower bounds on the battery state of 

charge (SOC). According to battery-related literature, such as [32], the typical operating 

range for battery charge should be constraint. Our research definition is between 20% and 

80% of total capacity, as shown in Equation 2. In addition, we acknowledge limitations 

imposed by basic charging infrastructure particularly for V2G discharge rates. To reflect 

the capabilities of real-world systems, the maximum discharging power for slow charging 

is set at 7 kW, as shown in Equation 3. The maximum fast charging power is set at 135 

kW, as shown in Equation 4. This ensures that the simulation remains within feasible 

hardware boundaries.  

Battery Boundary Constraint: 

20% ≤  SOCi,t  ≤ 80% 

(2) 
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Charging Pile Discharging Constraint: 

Ci, t ≤ 135kW 

(3) 

Charging Pile charging Constraint: 

Di, t ≤ 7kw  

(4) 

2.6 Model Constraints 

2.6.1 Binary Constraints for Bus Operational States 

In formulating the mathematical model for electric bus operation strategies, it is 

essential to ensure that each bus performs only one activity at any given time. This 

exclusivity of operation is enforced through a set of binary variables: 𝛼, 𝛽, 𝛾, and 𝜂 each 

representing a distinct operational mode: in-service operation, fast charging, slow 

charging, and discharging, respectively. 

 

∀period ∈ nperiods, ∀unit ∈ units, α + β + γ + η ≤  1 

(5) 

2.6.2 Constraints on Solar-Powered Charging Availability 

This constraint ensures that, at any given time, the total energy used by the solar 

charging system does not exceed the available surplus energy generated by the solar 

panels. Specifically, the sum of solar-powered fast charging and slow charging must 

remain within the solar surplus capacity at that time. Mathematically, this is enforced by 

limiting the combined solar slow charging amounts SSCi,t and solar fast charging 
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amountsSFCi,t based on the available surplus energy. The binary variables β and γ indicate 

whether fast charging or slow charging is activated, respectively. 

∑ 𝑆𝐹𝐶𝑖, 𝑡 ∗ 𝛽 + 𝑆𝑆𝐶𝑖, 𝑡 ∗  𝛾 ≤  Building Solar Energy Surplus

𝒖𝒏𝒊𝒕𝒔

𝒖𝒏𝒊𝒕=𝟏

 

(6) 

2.6.3 Constraints on Electric Buses Dispatch Requirements 

To ensure that the bus system maintains its transport efficiency while operating 

under a V2G framework, it is necessary to guarantee that a sufficient number of buses 

remain in service during scheduled operation hours. The following describes how 

operating time periods across a one-week schedule are defined and how the corresponding 

dispatch of buses is managed. Let P represent the set of time periods, with d = 24 periods 

per day. The variable αunit,period denotes the operational status of a specific bus unit at a 

given time period whether it is in active service. 

The operation-level constraint is defined as follows: 

∀period ∈ nperiods, ∑ αunit,period ≥  Dispatch Demand

units

unit=1

 

(7) 

In practice, most bus dispatches typically last longer than one hour. However, 

implementing detailed dispatch duration constraints can significantly increase the 

computational load of the optimization model. To address this, a sub study is conducted 

to compare two scenarios: one with a minimum dispatch duration constraint of three hours 

and one without such a restriction. The goal is to observe whether this real dispatch 

situation constraint has a significant impact on the optimized operational cost or not. 
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. This study modifies Equation 7 by adding a constraint that enforces a minimum 

dispatch duration of three hours like Equation 8. To avoid logical conflicts in the model, 

the original time-based dispatch restriction is adjusted. When a dispatch is initiated 

identified by the condition (period − period−1) = 1, the sum of dispatch indicators over 

the current and following two periods (period, period + 1, period + 2) must exceed 3. This 

ensures that once a vehicle begins service, it remains in operation for at least three coming 

hours, aligning the model close to world scheduling behavior. 

∀period ∈ nperiods − 2, ∑ αunit,period ≥ Dispatch Demand

units

unit=1

 

(8) 

αunit,period + αunit,period+1 + αunit,period+2  ≥ 3 ∗  αunit,period − αunit,period−1   

(9) 

 

Figure 15 3-hour Dispatch Model 
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When this constraint was added, the optimized operating cost was NT$433,070, 

which is within the margin of error compared to NT$422,615 without the constraint. 

However, the computation time increased by more than 10 to 20 times. Therefore, in the 

subsequent setup, this study simplified the operating time constraint. 

2.6.4 Battery Scheduling and State-of-Charge Constraints 

To initialize the system, this study defines the state of charge (SOC) at time period 

zero for each bus SOCi as 50%. Based on the assumption that the battery's full capacity is 

300 kWh, each electric buses start with an initial energy level of 150 kWh for calculation 

and optimization purposes. 

SOCunit,0 = 50% ∗  Battery Capacity 

(10) 

To prevent the electric bus operation systems from being excessively affected by 

the V2G discharging process, this study imposes a condition that every three days, the 

state of charge (SOC) must be reset to its initial level. 

SOCunit,n = SOCunit,n−3 = SOCunit,0 

(11) 

To define the system’s behavior and ensure continuity between time periods, this 

study forms the battery state of charge (SOC) dynamics based on Equation 12. The SOC 

at time period n is determined by the SOC at time period n−1, plus the Battery Increment 

variable and minus the Battery Decrement variable.  SOCunit,n  represents the state of 

charge of the electric bus at time period n, ISOCunit,n denotes the battery charge increment, 

and DSOCunit,n denotes the battery discharge amount during time period n. 
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SOCunit,n = SOCunit,n−1 + ISOCunit,n + DSOCunit,n 

(12) 

The battery charge increment ISOCunit,n define the sum of all charging activities for 

electric bus unit i at time period t, including slow charging from the grid SCi,t  , fast 

charging from the grid FCi,t , slow charging from solar power SSCi,t, and fast charging 

from solar power SFCi,t  at the corresponding depot charging system. This formula 

captures the total charging behavior during each time period. The binary variables β and 

γ indicate whether fast charging or slow charging is activated. 

ISOCt = SCi,t ∗  β + FCi,t ∗  γ + SSCi,t ∗  β + SFCi,t ∗  γ 

(13) 

The battery discharge amount DSOCt  is defined as the sum of all discharging 

activities for electric bus unit i at time period t, which includes both energy consumed 

during bus operations and energy discharged back to the grid through V2G services. 

Consumpi,t  represents the energy consumption caused by dispatch operations for bus 

unit i at time period t, and η is the binary variable indicating whether the bus is discharging 

during operation. Di,t represents the amount of energy discharged to the grid  by bus unit 

i at time period t, and α is the binary variable indicating whether activate the V2G 

discharging system. 

DSOCt = Consumptioni,t ∗ α + Di,t ∗ η 

(14) 

The incremental battery degradation cost defined the product of the additional 

battery degradation by V2G discharging and the battery degradation cost per unit of 

energy. BDt  represents the total amount of battery degradation at time period t, Di,t  
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represents the amount of V2G discharge by electric bus unit i at time t, and α is the binary 

variable indicating or not. 

BDt = BC ∗  ∑ DI,t ∗  α

units

unit=1

 

(15) 

According to some of the previous studies, battery degradation models are 

nonlinear. However, in this research, the battery degradation cost is modeled linearly to 

simplify computation. This linear assumption is necessary to ensure computational 

efficiency, given the scale of the model and the need to simultaneously account for 

multiple interacting variables. [33, 49]  

This study refers to the works of Borge-Diez, Manzolli, and Choudhary to compare 

and integrate different approaches to battery degradation modeling. Based on these 

references, we define the linear degradation formula adopted in this study as Equation 16. 

[31, 35, 50] In this formula, when battery degradation reaches a point where it no longer 

meets operational requirements, battery replacement cost is BATCost; The total number of 

charge-discharge cycles before requiring replacement is DoDCycle; DoD represents the 

usage cycle depth for the electric bus battery. 

BC =  
BATCost 

DODCycle ∗ DOD
 

(16) 

2.7 Objective Function Definition 

To define the optimization objective, this study sets the objective function as a 

minimization problem, targeting the minimization of the total operational cost of the 

electric bus system. The total cost is calculated by summing all relevant components 
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across the selected depots, including city power slow charging costs, city power fast 

charging costs, solar energy fast charging costs, solar energy slow charging costs, and 

battery degradation costs, as shown in Equation 17. Specifically, SSP represents the total 

cost of solar-powered slow charging, SFP represents the total cost of solar-powered fast 

charging, DP represents the total revenue from V2G discharging, and BDP represents the 

total cost of battery degradation. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑆𝑃 +  𝐹𝑃 + 𝑆𝑆𝑃 + 𝑆𝐹𝑃 − 𝐷𝑃 + 𝐵𝐷𝑃 

𝑓𝑖𝑒𝑙𝑑𝑠

𝑓𝑖𝑒𝑙𝑑

 

(17) 

Among the various cost components, this study first defines the calculation for the 

total cost of grid-based slow charging. This cost is obtained by multiplying the slow 

charging amount for each electric bus unit i at each time period t by the corresponding 

time-of-use electricity price. This cost is obtained by multiplying the slow charging 

amount for each electric bus unit i at each time period t by the corresponding time-of-use 

price EVCPt, and then summing across all buses and time periods, as shown in Equation 

18. Here, SP represents the total cost of slow charging, EVCPt  are the time-of-use price 

for EV grid charging at time t, γ is the binary variable indicate slow charging is activated 

or not, and SCi,t is the slow charging amount for unit i at time t. 

SP =  ∑ ∑ EVCPt

units

unit

∗ SCi,t ∗  γ

nperiods

period

 

(18) 

To define the cost of city power fast charging, this study calculates it by multiplying 

the fast charging amount of each electric bus unit i at each time period t by the 

corresponding time-of-use electricity price EVCPt , and then summing across all buses 
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and time periods, as shown in Equation 19. The price difference between fast and slow 

charging is reflected by a multiplier SFC, set at 2.41. This adjustment accounts for the 

higher infrastructure requirements for fast charging since it need transfer from city 

power’s alternating current to direct current for EVs. 

FP =  SFC ∗ ∑ ∑ EVCPt

units

unit

∗ FCi,t ∗  β

nperiods

period

 

(19) 

To define the cost of building-based solar slow charging, this study calculates it by 

multiplying the solar slow charging amount of each electric bus unit i at each time period 

t by the corresponding building solar electricity selling price BSoP, and summing across 

all buses and time periods, as shown in Equation 20. Here, SSP represents the total cost 

of solar-powered slow charging, BSoP is the price at which surplus building-generated 

solar energy could otherwise be sold back to the grid, with a baseline rate of NT$3 per 

kWh as previously mentioned. 

SSP =  ∑ ∑ 𝐵𝑆𝑜𝑃

units

unit

∗ SCi,t ∗  γ

nperiods

period

 

(20) 

To define the revenue generated from V2G discharging by electric buses, this study 

calculates it by multiplying the V2G discharge amount of each electric bus unit i at each 

time period t by the corresponding time-of-use electricity price TPt, and then summing 

across all buses and time periods, as shown in Equation 21. Here, DP represents the total 

revenue from V2G discharging, TPt is the three-tier time-of-use electricity price at time t, 

Di,t is the V2G discharge amount for unit i at time t, and η is the binary variable indicating 

whether discharging is activated. 
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DP =  ∑ ∑ 𝑇𝑃𝑡

units

unit

∗ Di,t ∗  η

nperiods

period

 

(21) 

To define the cost caused by battery degradation, this study calculates it as the sum 

of battery degradation costs over all time periods. Specifically, BDP represents the total 

battery degradation cost across all periods, and BDt represents the battery degradation 

cost at time period t. 

BDP =  ∑ BDt

nperiods

period

 

(22) 

2.8 Capital Cost and Infrastructure Allocation 

To allocate the number of capital equipment, this study incorporates constraints 

based on three depots into the model to modify the optimization results, as shown in 

Equation 23. This study does not consider the actual limitations of depot space on the 

number of charging systems; instead, it focuses solely on analyzing the investment cost 

of the systems and the profits generated through the V2G system.  

∑ β + ∑ γ

units

unit

units

unit

+ ∑ η

units

unit

 ≤ Charging System Amount 

(23) 

Equation 23 incorporates the binary variables β, γ, and η, which represent fast 

charging, slow charging, and V2G discharging activities. The sum of these three binary 

variables at any given time should not exceed the number of available charging stations 
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at the depot which give us an opportunity to study the changing of amount on charging 

systems with the ultimate payback years of the V2G system. When we changing the 

system constraint the behavior will be like what we can see in Figure 16 as the heat map.   

 

Figure 16 Heat Map Example of Charging Pile Constraint for Buses Behavior 

2.9 Parameter Sampling Strategy 

After obtaining the optimal solution through the Gurobi optimization model based 

on the model settings, this study aims to plan future urban power grids by adjusting the 

model parameters. There are three sampling methods available for sensitive analysis: 

Monte Carlo Sampling, Latin Hypercube Sampling, and Quasi-Monte Carlo Sampling, 

the example of distribution of three different sampling method as shown in Figure 17. 

Then we try to used the sampling method with optimization model to conduct sensitive 

analysis. 

To be more specific, Monte Carlo methods rely on random sampling within a 

defined range, where each sample is randomly distributed based on its probability 
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distribution. The Monte Carlo sampling method randomly places samples within the 

defined range and reconstructs the input distribution by repeated sampling after 

completing the specified number of iterations. However, due to the randomness and 

slower convergence, this method is less efficient for our study. In contrast, Latin 

Hypercube Sampling cut the input distribution into equal intervals, ensuring uniform 

sampling across each dimension. This approach requires fewer iterations and reduces 

computational costs when combined with Gurobi optimization. Quasi-Monte Carlo 

methods, such as Sobol sequences, fill the space with low-discrepancy sequences, making 

them ideal for high-dimensional sensitive analysis and numerical integration. Therefore, 

in this study, we adopt Latin Hypercube Sampling for one-dimensional analysis to cover 

a broader range of parameters while minimizing redundant optimization computations 

and utilize Quasi-Monte Carlo Sampling for higher-order indices. 

To sum up, the reason we do not choose Monte Carlo as our sampling method is 

that it is random-based, which can significantly increase computational pressure. In 

contrast, Latin Hypercube Sampling and Quasi-Monte Carlo Sampling are more efficient, 

as they divide the interval into segments and place each sample at equal intervals, 

ensuring better coverage of the required range showed in Figure 17.  

 

Figure 17 Sampling Method of Parameters 
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2.10 Global Sensitive Analysis Method 

To analyze the influence of multiple parameters on optimization outcomes, this 

study first extends the Latin Hypercube Sampling (LHS) method used in one-dimensional 

analysis to two-dimensional cases. However, when more than two parameters interact, 

the combined effect on the objective function is often nonlinear and cannot be captured 

accurately by local sensitive approaches. LHS, as a form of local sensitive analysis, 

exhibits monotonicity and threshold limitations, and its results are highly dependent on 

the initial sampling points. As reported in prior studies, such limitations may lead to 

biased interpretations of parameter influence, underestimation of system capacity, or 

overly optimistic economic forecasts, thereby compromising the system's robustness and 

flexibility under uncertainty [51, 52]. 

To address this, the study incorporates a global sensitive analysis approach using 

the Sobol method, a variance-based sensitive analysis (VBSA) technique. Sobol analysis 

leverages low-discrepancy sequences for uniform sampling across the entire input space, 

enhancing the coverage and reliability of sensitive results. This method constructs two 

independent sample matrices, each with n samples and d variables as shown in Figure 18, 

to evaluate both first-order and total-order sensitive indices. Unlike LHS, the Sobol 

method is capable of identifying nonlinear relationships and high-order interactions 

between parameters, offering a more comprehensive understanding of how combinations 

of uncertain variables jointly affect system performance. This enables more conservative 

and resilient system design, particularly in energy-related applications with high 

parametric uncertainty. 
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Figure 18 Sobol Computaional Matrix [53] 

Next, a mixed matrix is created by sequentially swapping rows [53]. For instance, 

the “i" row of matrix N is swapped with the “i" row of matrix M to form a new mixed 

matrix. This process results in an n × (d + 2) dimensional sample matrix where n is the 

number of samples and d is the number of variables, which serves as the sample space for 

sensitive index estimation. This method allows for the evaluation of multi-variable 

interaction effects, as discussed by several studies. [54-56] 

This swapping method effectively avoids the traditional method of fixing one 

parameter and performing sampling integration on another, which would require N × N 

evaluations. With the Sobol method, the number of samples becomes N + N + N × d, or 

N × (d + 2). [54] 

Here are some examples of the outcome with the sobol analysis, due to its’ variance 

based we introduce the meaning of indices from these analysis with following equations. 

In the results analysis, we will use first-order sensitive matrices, second-order sensitive 
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matrices, and global sensitive indices to analyze the outcomes of the relevant parameters. 

Equation 24 defines the first-order Sobol sensitive indices, which measures the 

contribution of a single input variable to the variance of the output variable. Here, V 

represents variance, E represents expectation, Y represents the output variable, and Xᵢ 

represents the i input variable. The numerator represents the variance in the model output 

Y when Xᵢ changes, which reflects the main effect strength of a single variable Xᵢ on the 

global model output. The denominator represents the total variance contributed by all 

variables in the model. 

𝐒𝟏 =  
𝐕|𝐄 𝐘|𝐗𝐢 |

𝐕 𝐘 
 

(24) 

Equation 25 defines the second-order Sobol sensitive index, which measures the 

contribution of two input variables to the variance of the output variable. Here, Xᵢ and Xⱼ 

represent two different input variables. The second-order Sobol index S2 quantifies the 

interaction effect between Xᵢ and Xⱼ on the variance of the model output. After removing 

the main effects of both variables from the total variance, the remaining portion represents 

the interaction effect. If S2 approaches 0, it indicates that the two variables have minimal 

interaction. 

𝐒𝟐 =  
𝐕|𝐄 𝐘|𝐗𝐢, 𝐗𝐣 |  −  𝐕|𝐄 𝐘|𝐗𝐢 |  −  𝐕|𝐄 𝐘|𝐗𝐣 |

𝐕 𝐘 
 

(25) 

Equation 26 defines the total Sobol sensitive index, which helps us understand the 

overall effect of a coefficient, including its interaction effects. In practice, this is 

calculated by fixing other variables and then performing a reverse calculation to observe 
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the total impact of Xᵢ. If the total effect of a coefficient, defined as ST - S₁, is large, it 

indicates significant interaction effects for that variable in the model. 

𝐒𝐓 =  𝟏 − 
𝐕|𝐄 𝐘|𝐗~𝐢 | 

𝐕 𝐘 
 

(26) 

In the original definition of the total index, if there are no interaction effects in the 

model, it is referred to as an additive model, where the sum of all first-order sensitive 

indices equals 1. 

𝐒𝐓 =  𝐒𝟏 +  𝐒𝟐 + ⋯ 

(27) 
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3 Results and Discussion  

3.1 Baseline Optimization Outcomes 

Based on the baseline parameter settings used in Section 2.5, we obtained the 

baseline optimal solution for the V2G system at three electric bus stations, which is 

$422,615. In the optimization process, using the June 1st, 24-hour schedule of the 

Songshan High School station as an example as Figure 19, each line is determined by 

balancing both the bus dispatch demand and the charging/discharging optimization model 

to decide how the battery behavior should change. Through the analysis of this result, we 

can also ensure that this optimization model system adheres to the bus dispatch constraints. 

 

Figure 19 State of Charge for each vehicle in SongShan Vocational School Station 

The input weather data in the model is presented in a graphical format as shown in 

Figure 20. From this, we can observe that at the beginning of June, the blue-marked area 

shows a significant drop in temperature due to the influence of frontal systems, which 

also brought some rainfall. In such climatic conditions, the solar power generation of the 
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buildings used by the electric buses is significantly low as indicated by the yellow line. 

However, when the Pacific high pressure strengthens, as shown in the yellow-marked 

area, the environmental temperature rapidly rises. During this period, the solar power 

generation of the buildings used by the electric buses increases significantly. Meanwhile, 

the city power fast charging system was activated during the frontal weather in early June, 

as shown in the blue-highlighted area. Meanwhile, towards the end of June, with the 

strengthening of the Pacific higher pressure, as shown in the yellow area, more solar 

power was generated, leading to a lower operation of the city power fast charging system 

in this period as shown in Table 3. 

 

Figure 20 Taipei’s June Weather 

Table 3 demonstrates that the model can effectively adjust the solar power 

generation from buildings based on weather patterns. The discharging behavior is 

strongly positively correlated with the three-stage TOU peak pricing for the V2G system, 

we can see that during weekends, the model does not discharge because the TOU peak 

price settings define these periods as off-peak. On the other hand, during weekdays, 

discharging occurs due to the peak-off-peak differences, which aligns with the original 

expectations, proving the model's effectiveness. 

Warm Sunny Cold Rain 
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This study also analyzes the daily energy usage, taking June 3rd for a station energy 

schedule as an example, as shown in Figure 21. Based on the time-of-use electricity 

pricing, the day is divided into three time periods: off-peak, semi-peak, and peak hours. 

First, from 11:00 PM to 9:00 AM, this period is off-peak and designated for discharging. 

During this time, the electricity grid also operates in off-peak hours, so the discharging 

system remains inactive. Simultaneously, the grid's slow charging system operates at a 

low power level, often referred to as trickle charging. Next, from 9:00 AM to 4:00 PM, 

this is the semi-peak period. During this time, it is also the key charging period for 

building solar systems. Some electric buses charge using the building's solar power, while 

others discharge to the grid, responding to the higher semi-peak time-of-use rates. Finally, 

from 4:00 PM to 11:00 PM, this is the peak period, when the discharging system is most 

active due to the higher time-of-use rates. Simultaneously, the building's solar power 

charging and the grid's charging systems are typically turned off to align with the high 

electricity demand during the evening peak period. Meanwhile, we can observe that the 

daily results vary on other days. As shown in Figure 22, when solar energy is insufficient, 

the daytime charging schedule shifts to the city power fast-charging system, represented 

by the red line. This behavior differs from that of solar fast charging, as the power level 

does not reach the same peak when solar energy is unavailable. This is because, in the 

optimization model, the system shifts to using cheaper nighttime electricity instead of 

relying on higher-priced daytime city power. 
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Table 3 Charging Status for EVs 
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Figure 21 Typical Daily Charging Schedule of V2G system  

 

Figure 22 Rainy Daily Charging Schedule of V2G system 

In addition to the weather changing has influence on the daily result, shows that the 

weekday/ weekend’s electricity policy changing cause different result. In weekend’s 

scenario, daily result tends to utilize slow charging to deal with the transportation 

operation need instead of discharging. 
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Figure 23 Weekend Daily Charging Schedule of V2G system 

In the discussion of the baseline optimization results, this study also analyzes the 

total cost through graphical representation, as shown in Figure 24. The original model is 

compared with a scenario where the V2G system is not involved, referred to as V1G (No 

discharging). The chart displays the individual costs for V1G and V2G. From the chart, 

it is evident that when the discharging system is inactive, V1G primarily relies on trickle 

charging to meet the operational needs, as it only needs to satisfy the bus scheduling 

requirements. Therefore, the charging demand is relatively low. According to the current 

operation of electric buses, charging typically occurs during nighttime trickle charging 

and in small time slots during daytime scheduling intervals. Additionally, the building's 

solar charging costs are slightly higher than the nighttime trickle charging costs due to 

the electricity sales price, so during low charging demand, only a small portion of the 

charging time utilizes the solar charging system. Furthermore, as seen in Figure 24, the 

number of cost categories increases rapidly, and this can be attributed to the addition of 

the discharging system. As a result, the charging demand rises, requiring more extensive 

and varied charging during the appropriate time slots. With the integration of the Vehicle-

to-Grid (V2G) system, the building's solar power system generates energy during the day, 



doi:10.6342/NTU202502274

 

59 

while the grid charges during the night, with excess energy sold back to the grid based on 

the grid's demand. 

 

Figure 24 Monthly for V2G Revenue 

The baseline optimization result obtained from the V2G system shows a monthly 

value of NT$422,615. The payback periods is calculated as shown in Figure 24. 

Comparing V1G and V2G, the total operating cost across the three bus stations has 

decreased by NT$224,383 per month. This result demonstrates that via V2G system can 

increase the utilization of solar energy generation which meet our goal in the initial 

mindset. What’s more, in the baseline V2G optimization our estimation of the battery 

degradation cost is about 4% which imply that the policy-related parameter may took the 

important role in the V2G development. 

In the initial construction phase, the cost of the V2G system is estimated per unit. 

The construction of the V2G system includes a power control system, inverter, converter, 

and package engineering (EPC), with each system priced at NT$435,000 per system. The 

charging pile costs NT$135,000 refer to per system [57], bringing the total to 

approximately NT$570,000 per system. Similar cost estimates from First Student Inc. 
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which is a school buses operator in North America, their estimate for electric buses used 

as school buses range from NT$300,000 to NT$900,000 per system [58]. Therefore, our 

total initial V2G capital cost with 110 systems will be NT$47,850,000 and charging pile 

in total will be NT$14,850,000. For the operation and maintenance cost, we refer to 

Razmjoo and estimated it will be 1% of total initial cost [59].  

In the Equation 28, the capital cost payback periods is calculated, by dividing the 

total cost of implementing the V2G system by the monthly reduction in total operating 

costs achieved after transitioning to V2G operations. Specifically, UCap refers to the 

capital cost for infrastructure setup, CharCap is the capital cost for installing bidirectional 

V2G charging piles, UO&M represents the monthly operation and maintenance (O&M) 

cost of the infrastructure system, CharO&M is the monthly O&M cost of the bidirectional 

V2G charging piles, and Rev denotes the monthly cost savings like profit from V2G-

enabled system operations. The payback periods is thus defined as the number of months 

required for the cumulative cost savings (Rev) to recover the combined capital and 

ongoing O&M expenditures of the V2G system. 

Payback periods =
Ucap + CharCap

Rev −  UO&M −  CharO&M
 

(28) 

According to the chart, the calculated payback periods is 432 months in Table 4, 

meaning it would take 36 years to break even. However, based on the study by Razmjoo  

the typical service life of relevant infrastructure is approximately under 20 years [59]. 

Therefore, we set up our payback periods should be under 10 years which is 120 months 

since our weather data background is based on June. 
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Table 4 Payback periods Calculation of V2G system in Baseline Scenario 

 

3.2 Battery Parameter Sensitive Analysis 

In the baseline optimization results, battery degradation cost emerges as an 

optimizable parameter. In the previous study, battery degradation cost shows its dominant 

influence to total cost. Therefore, this study analyzes trends in electric vehicle (EV) 

battery applications over the past decade. While solid-state batteries possess the highest 

energy density and stability, they are not yet commercially viable and are thus excluded 

from this study. Instead, the analysis focuses on three commercially available battery 

types: Lithium Iron Phosphate (LFP), Nickel Manganese Cobalt oxide commonly known 

as ternary lithium batteries (NMC), and Lithium Titanate (LTO). This study aims to assess 

whether these different battery chemistries, under varying material properties and 

contextual conditions, can effectively reduce the costs associated with V2G system 

integration. Compared to the baseline battery type LTO both LFP and NMC batteries 

exhibit higher energy density measured in Wh/kg, as shown in Table 5. Consequently, 

major EV manufacturers such as Tesla, Volkswagen, and Kia Motors have increasingly 

adopted NMC batteries in their passenger vehicles. Meanwhile, the Chinese EV giant 

BYD has continued to expand its market share by leveraging its proprietary blade type 

LFP battery technology. 

 

V2G SAVING

V1G Scenario Cost NT$646,998

V2G Scenario Cost NT$412,615

Total per month saving with V2G NT$234,383

V2G Capital Cost

V2G Installed Capital Cost NT$47,850,000

V2G Charging Pile Capital Cost NT$14,850,000

V2G Installed O&M Cost NT$39,875

V2G Charging Pile O&M Cost NT$12,375

V2G ROI (months) 344.25
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Table 5 2024 Energy Density Data  

  Energy Density(Wh/Kg) 

LTO 50–110 Wh/kg 

LFP  140–200 Wh/kg 

NMC 200–350 Wh/kg 

 

3.2.1 Electric Buses Battery Degradation Prices Impact 

Following the comparative analysis of different electric bus battery types, this study 

references financial reports on the EV battery market to obtain by year projected prices 

per kilowatt-hour (NT$/kWh) for each battery type, as illustrated in Figure 25. 

 

Figure 25 Battery Degradation Price (NT$/kWh) 

Among the three, lithium-titanate (LTO) batteries show significantly higher unit 

capacity costs due to their lower energy density. Specifically, because LTO batteries store 
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less energy per unit of weight, more material is required to achieve the same energy 

capacity, driving up the cost per kWh [60]. Furthermore, LTO battery prices exhibit wider 

fluctuations; the baseline optimization in this study uses the lowest observed price for 

LTO. Nickel Manganese Cobalt (NMC) batteries, on the other hand, have slightly higher 

prices due to the volatility in nickel (Ni) supply a critical rare-earth element in their 

composition resulting in less stable pricing. In contrast, Lithium Iron Phosphate (LFP) 

batteries benefit from broader adoption and extensive research and development, leading 

to more stable and generally lower per-kWh costs compared to the other two types [61, 

62]. Based on the annual price trends of electric vehicle (EV) batteries per unit capacity 

(NT$/kWh) obtained in earlier sections, and using the cost formulation defined in 

Equation 16 which links the cost per unit of discharged energy to the battery’s unit 

capacity cost this study calculates the degradation cost of different battery types under 

the V2G scenario. A critical parameter in this calculation is the battery's lifecycle, 

measured in terms of the number of charge-discharge cycles it can endure. To estimate 

this, we refer to the experimental data from Ager-Wick Ellingsen, in which various EV 

batteries were subjected to repeated destructive charge-discharge testing: discharging 

from a State of Charge (SOC) of 90% to 10%, followed by charging back to 90%. This 

full 90%-10%-90% sequence is defined as one complete cycle. The process continued 

until the battery's capacity dropped to 80% of its original manufacturing capacity. Using 

the average cycle life of each battery type (LFP, NMC, LTO) as reported in that study, 

summarized in Table 6, we integrate these values with year-specific battery prices to 

estimate the battery degradation cost per unit of discharged energy for each type. This 

provides the basis for the sensitive analysis on alternative battery materials in the V2G 

system [32].  
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Table 6 Discharge of Depth Table 

  
Depth of Discharge Cycle 

LTO  20000 times 

LFP  6000 times 

NMC  4000 times 

 

By incorporating the battery life cycle (number of charge-discharge cycles) and the 

unit manufacturing cost of batteries ($NT/kWh) into Equation 16, and applying the 90%-

to-10% State of Charge (SOC) cycling definition from Ager-Wick Ellingsen’s work, we 

derive Table 7. This table presents the calculated cost per kilowatt-hour of energy 

discharged for three different battery types (LFP, NMC, LTO) across the years 2025, 

2027, and 2030. Among the results, the Nickel Manganese Cobalt (NMC) battery exhibits 

the highest cost under the worst-case scenario, reaching 1.266 $NT/kWh. Conversely, 

under the most favorable scenario, the Lithium Iron Phosphate (LFP) battery achieves the 

lowest cost, as low as 0.258 $NT/kWh. 
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Table 7 Battery Degradation Scenario 

Discharge Degradation 

$NT/kWh 

LTO LFP NMC 

2025 0.642 0.625 1.266 

2027 0.542 0.478 0.938 

2030 0.457 0.258 0.543 

 

 

Figure 26 Battery Degradation Prices Sensitive Analysis 

Using the data from Table 7 and the Latin Hypercube Sampling (LHS) method 

described in Section 2.9, a monotonic sensitive analysis was conducted, resulting in 

Figure 26 reveals that within the global parameter space, reducing battery degradation 

cost could lower the total operational cost by up to 24%. Compared to the 38% reduction 

reported in the study by Manzolli, this highlights the regional differences in the impact of 

battery degradation costs [35]. In our assumption, today’s battery degradation is about 
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NT0.45/kWh which means it is limited to improve by 2030 meanwhile it is significant 

right now for monopoly test. 

For the year 2025, the discharge cost per kilowatt-hour for Lithium Iron Phosphate 

(LFP) and Lithium Titanate (LTO) batteries does not differ significantly, whereas Nickel 

Manganese Cobalt (NMC) batteries exhibit a notably higher cost. Referring to Figure 26, 

when using NMC batteries at NT$1.266/kWh, the total optimized operational cost 

reaches approximately NT$490,000. In contrast, for LTO and LFP batteries, the 

optimized operational cost is around NT$420,000. In the baseline scenario used in this 

study, the degradation cost aligns with that of LTO batteries projected for 2030, estimated 

at NT$0.45/kWh. If the material were switched to the most favorable case, LFP batteries 

with a cost of NT$0.26/kWh the optimized total operational cost could drop to 

approximately NT$390,000. This would further reduce the payback periods by roughly 

291 months, bringing the payback period down to 24 years. 

3.2.2 Electric Buses Battery Capacity Impact 

Beyond battery degradation cost, the total energy capacity of the battery also 

significantly influences the operational benefits of electric buses, as it determines the 

maximum storable energy. In this study, the baseline battery capacity for electric buses is 

set at 300 kWh. Based on data from previous literature, we investigate the feasible 

capacity ranges for Lithium Titanate (LTO), Lithium Iron Phosphate (LFP), and Nickel 

Manganese Cobalt (NMC) batteries, with the corresponding minimum and maximum 

capacities summarized in Table 8. These variations in battery capacity are considered 

under the assumption of technological advancements that improve energy density 

(Wh/kg), rather than simply increasing battery mass. As shown in Table 8, the minimum 

capacity for LTO batteries is approximately 50 kWh, while the maximum capacity 

reaches nearly 300 kWh, consistent with this study’s baseline and it can recalled to 
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Behnia’s paper mentioned under 300 kWh already worked for V2G structure [2]. 

Sensitive analysis based on these values is illustrated in Figure 27. 

Table 8 Estimated Battery Capacity Table 

  

Estimated Minimize 

Capacity(kWh) 

Estimated Maximize 

Capacity(kWh) 

LTO 50 330 

LFP  170 600 

NMC  200 1050 

 

Starting from the baseline battery capacity of 300 kWh, the corresponding 

optimized total operating cost is approximately NT$410,000. When using Nickel 

Manganese Cobalt (NMC) batteries with a maximum capacity of up to 1000 kWh, the 

optimized cost can be reduced to around NT$310,000 representing a cost reduction of 

NT$100,000 so as approximately 23.4% of the total operating cost. This study further 

reveals that in the monotonic optimization analysis, the most rapid decline in operating 

cost occurs within the range of 300 ~ 600 kWh. Beyond 600 kWh, the rate of cost 

reduction begins to plateau, forming a quadratic-like decline curve. This phenomenon is 

likely attributed to limitations in the total renewable energy available and the maximum 

allowable charging power. 
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Figure 27 Battery Capacity Sensitive Analysis 

3.3 Solar Energy Parameter Sensitive Analysis 

In the model design, the original intent of this study was to store surplus solar 

energy generated by buildings during midday via the V2G system, enabling effective 

energy dispatch. However, in the baseline optimization results, a portion of the charging 

behavior still relies on grid-based slow charging to meet demand. This outcome diverges 

somewhat from the initial design goal of daytime charging and nighttime discharging. 

Therefore, this study further conducts a sensitive analysis on various solar-related 

parameters associated with the buildings.  

3.3.1 Conversion Transfer Rate Impact 

To analyze the impact of building-integrated solar energy, this study first 

investigates the parameter of photovoltaic (PV) conversion efficiency. By examining 

variations in this conversion rate, we aim to understand how different levels of solar 

generation influence the reduction in total operating costs. Based on the literature [63], 

the current range of solar PV conversion efficiencies spans from 15% to 30%, as 
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summarized in Table 9, covering five commonly used photovoltaic materials. The lowest 

conversion efficiency, at 15%, is found in Organic PV, which has gained popularity due 

to its flexibility, making it suitable for curved glass surfaces. Some startups have applied 

this material to the roofs of electric vehicles. Next is Perovskite PV, which offers partial 

transparency and is often integrated into curtain walls of high-rise buildings, enabling 

vertical solar power generation without compromising indoor daylight autonomy. Silicon 

PV, the most widely used in building rooftop installations, is known for its high reliability 

and widespread deployment. Finally, the highest conversion efficiencies are achieved by 

III-V compound PVs, particularly Gallium Arsenide (GaAs) cells, which are commonly 

used in power systems for space stations due to their higher power output per unit area. 

In the 30% conversion rate field, we also found out that with Silicon PV and Perovskite 

PV to absorb lower/longer wave length can meet this conversion rate as shown in Figure 

28 which λ means wavelength of sunlight. 

 

Figure 28 Solar PV Combination of Increasing Conversion Rate  

This study conducts a sensitive analysis based on the aforementioned solar 

conversion efficiencies. Under the assumption that the baseline feed-in tariff for building-

generated solar power remains constant regardless of the photovoltaic (PV) material used, 

we aim to evaluate how variations in solar energy conversion efficiency attributed to 

different PV technologies affect the total operating cost of the system. 

Furthermore, if space-grade materials such as gallium arsenide solar cells are 

adopted as the building-integrated photovoltaic system in this study, and their production 

costs are significantly reduced due to technological advancements allowing building 
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owners to sell the generated electricity to the V2G system at a rate of NT$3 per kilowatt-

hour the total operating cost could be further reduced to NT$385,000. This scenario 

corresponds to a 7.8% reduction in total operating cost in the monotonic sensitive analysis 

as shown in Figure 29. 

Table 9 Commercial Solar Transfer Rate Technology 

 
A B C D E 

Solar energy 

transfer rate 

15% 18% 20% 25% 30% 

Material Organic 

PV 

Perovskite 

PV 

Silicon 

PV 

III–V 

cells PV 

GaAs (thin film 

cell)  

*III–V cells PV* 

Pros and Cons Lower 

cost  

Flexible  

(ex. 

Curve) 

Fit for 3D 

architectur

e design 

Traditio

n 

Reliable 

 
Higher cost, 

Extreme 

Environment  

(ex. Space) 
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Figure 29 Building Solar Energy Transfer Rate Sensitive Analysis 

3.3.2 Building Solar Energy Seasonal Variability 

Similar to the seasonal V2G system analysis conducted by Z. He [16], this study 

also performs a seasonal solar energy assessment for the Taipei region. Specifically, the 

solar generation and building electricity consumption data for December are compiled to 

evaluate whether seasonal variations in solar output and building demand significantly 

affect the total operating cost. The analysis reveals that the total surplus solar generation 

in June reaches 261,824 kWh, while in December, it drops to 176,237 kWh which 

represent a decrease of approximately 100,000 kWh which is similar to energy transfer 

rate effect from 18% to 16%. However, in the June optimization model, the total energy 

demand for electric bus charging is 149,545 kWh, of which only 51,000 kWh is supplied 

through the building’s solar system. This indicates that the current model is not utilize 

daytime solar resources, resulting in insufficient reliance on building-integrated 

photovoltaics. To sum up, this study further discusses possible improvements to better 

align with the original objective of “charging during the day, discharging at night.” 
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3.3.3 Building Solar Energy Surface Area Coverage Impact 

After understanding the impact of building-integrated solar systems, this study 

further considers the application of perovskite solar cells as mentioned in Table 9 for 

building façades and curtain wall designs. Specifically, we examine the effect of 

expanding the solar coverage area on a cube-like building structure, assuming a fixed 

solar conversion efficiency of 18%. The analysis ranges from solar panels installed on a 

single surface to a maximum of five surfaces of the cube. In the context of façade-

integrated solar system design, there are several research, in higher latitude like Adelaide 

in Australia, Zhao estimated that about 9.8% of façade/rooftop solar potential in the 

integrated solar system [64]. However, Yu estimated that the potential solar energy 

generated from curtain wall glass can reach approximately 68.2% of the rooftop solar 

capacity [65]. Based on this estimation, the total realistic solar energy generation potential 

of a building can be approximated at 168.2%. As shown in Figure 30, when the effective 

solar panel area reaches 1.5 to 2 times the rooftop area, the total operating cost of the V2G 

system achieves its lowest value in the monotonic sensitive analysis. This further 

demonstrates that under the current parameter settings, promoting façade-integrated 

photovoltaic design in buildings can result in a win-win outcome for both architectural 

energy efficiency and electric bus V2G operations. Specifically, when the solar-enabled 

area reaches 1.6 times that of the rooftop, the total operating cost of the V2G system can 

be reduced by approximately 2.3%. 
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Figure 30 Building Solar Energy Surface Area Sensitive Analysis 

3.4 Infrastructure and Fleet Configuration 

In addition to battery types and building-integrated solar parameters, the 

configuration of physical infrastructure at bus depots may also significantly influence the 

total operating cost of a V2G system. Therefore, this chapter defines and adjusts key 

hardware related parameters such as the number of charging piles and the size of the bus 

fleet and conducts sensitive analyses to evaluate their impact on system performance and 

cost. The findings provide valuable insights for infrastructure planning and investment 

decision-making in future V2G deployments. 

3.4.1 Maximum Charging Power Impact 

In the previous sensitive analysis on battery capacity, this study observed that 

beyond a certain threshold, increases in battery size result in diminishing returns in terms 

of reducing total operational costs. Meanwhile, many electric vehicle manufacturers have 

recently developed so called Megawatt Charging Systems (MCS), aiming to significantly 

reduce charging time by increasing power output. In light of this trend, this study also 
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investigates the potential impact of increasing the maximum power capacity of charging 

piles on the optimization results of electric bus operations and the V2G system. A 

corresponding sensitive analysis is conducted to assess the effects of enhanced charging 

power infrastructure. According to Figure 31, the monotonic sensitive analysis reveals 

that under the current parameter settings, increasing the maximum charging power yields 

minimal impact on the total operational cost. This suggests that, within the context of this 

study, high charging power capacity is not a critical factor in achieving V2G profitability. 

Instead, operational effectiveness relies more heavily on optimizing charging scheduling 

and managing the rate of energy transfer. 

 

Figure 31 Maximum Charging Power Sensitive Analysis 

3.4.2 Electric Buses Fleet Scale Impact 

In terms of depot configuration, this study also examines the impact of electric bus 

fleet size on total operational costs. For a single depot, the energy supply capacity is 

positively correlated with the fleet size, which is itself constrained by available space and 

closely related to the operational strategies of depot and bus operators. Through sensitive 
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analysis, this study aims to explore how variations in fleet size affect operational 

efficiency, with a particular focus on identifying the threshold at which meaningful 

operations become feasible and analyzing the associated cost-saving or profit-generating 

potential.  

As illustrated in Figure 32, the model begins to generate valid operational cost 

results when the fleet size reaches 75% of the baseline setting. This situation is likely due 

to the minimum dispatch requirement for buses which means below this level, the 

optimization model cannot meet operational constraints and therefore fails to converge. 

 

Figure 32 Fleet Scale Sensitive Analysis 

Further analysis reveals that doubling the baseline fleet size can lead to a total 

operational cost reduction of up to 161.6%, highlighting the potential benefits of larger 

fleets in supporting grid participation and energy management. While this finding offers 

valuable insight for bus operators when considering fleet expansion or depot development, 

the actual number of buses deployed must still account for factors such as depot space 
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limitations, route density, and passenger demand. As such, the results of this analysis 

should be interpreted as a reference for exploring potential operational improvements. 

3.5 Policy-Oriented Parameters 

This chapter focuses on adjusting policy-related parameters governing the charging 

and discharging operations of electric buses. Unlike the previous chapters, which 

emphasize technological improvements, this section concentrates on parameters 

influenced by government interventions, such as subsidies and pricing mechanisms. By 

conducting sensitive analyses on various policy-related factors, this study aims to identify 

which adjustments can most effectively reduce the total operating cost of the system, 

thereby providing insights into the most impactful policy measures. 

3.5.1 Building Solar Electricity Selling Price Impact 

In previous sections, this study found that setting the building-integrated solar 

electricity selling price at NT$3 per kWh may cause the V2G system from adopting the 

intended charging pattern of "charging during the day and discharging at night." This 

pricing strategy limits the effective utilization of solar power. For instance, under the 

baseline optimization result, the building sold 51,288 kWh of solar energy to the bus 

operator. However, this electricity could alternatively be sold to Taiwan Power Company. 

Taipower currently faces a severe financial deficit, with cumulative losses exceeding 

NT$420 billion. Continuing to purchase solar energy at a price higher than its resale price 

would exacerbate its financial challenges. As a result, Taipower has gradually reduced its 

feed-in tariff (FIT) for solar electricity, from NT$11.75/kWh in 2010 to as low as 

NT$3.5/kWh in 2023 [66].  

Solarprice per kwh  =
 Installation Price

ηPV  ∗  Iday  ∗   kWp per m2
 

(29) 
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This trend is consistent with global cost reductions. According to Lazard , the 

levelized cost of solar energy ranges from NT$0.72/kWh to NT$3.51/kWh depending on 

system type and scale [67]. There also has a report for Taiwan’s Bureau of Energy, also 

projected that the cost of solar electricity would fall below NT$2/kWh by 2026 [68]. In 

Taipei, local solar generation potential is estimated at 3.25 kWh/m²/day. Using this 

irradiance level with an 18% panel conversion efficiency, 80% system efficiency, a 25-

year lifetime, and a rooftop area requirement of 6.7 m² per kWp with Equation 29, the 

annual output is estimated at 28,616 kWh per kWp. According to PRO360 , installation 

costs per kWp range between NT$40,000 and NT$70,000 [69]. From this, the levelized 

cost of electricity (LCOE) for rooftop solar in Taipei is approximately NT$1.39 to 

NT$2.45/kWh. 

Based on these findings, this study recommends setting the building solar electricity 

selling price from buildings to V2G bus operators within a reasonable range of NT$1 to 

NT$3/kWh, balancing optimization performance with financial feasibility. 

Based on the above assumptions, this study sets NT$3 per kWh as the baseline 

building solar electricity selling price for building integrated solar power and conducts a 

sensitive analysis within a range from NT$1 to NT$3 per kWh. It is further assumed that 

future advancements in solar technology will enable solar power generation costs to drop 

below those of most other energy sources. The analysis reveals that when the price is 

reduced to NT$2/kWh, the optimized total operating cost rapidly decreases to 

NT$200,000. If the price drops to NT$1/kWh, the total operating cost even becomes 

negative and reach NT$25,000, indicating a surplus. This demonstrates that the building 

solar electricity selling price is an extremely sensitive policy parameter, influencing up to 

125.1% of the total operating cost across the global interval. 
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Figure 33 Building Solar Electricity Selling Price Sensitive Analysis 

3.5.2 TOU Peak Price and Duration on V2G Operations Impact 

Beyond adjusting the charging price, one of the most intuitive strategies to realize 

the “charging during the day, discharging at night” model is to increase the peak time 

discharging electricity price, thereby creating more room for V2G system profitability. 

Therefore, this study conducts a sensitive analysis on the discharging price of the V2G 

system. 

In the baseline optimization scenario, the peak-time electricity price is set at 

NT$6.92 per kilowatt-hour (kWh), based on the 2024 time-of-use pricing scheme from 

Taipower’s report. To define a reasonable analysis range, this study considers two distinct 

scenarios. First, based on electricity pricing data from 2025, countries such as the U.S. 

(both Texas and other states), British, Germany, report peak-time electricity prices 

averaging around NT$10/kWh according to each countries’ electricity market and policy. 

Second, during previous energy crises such as natural gas shortages and extreme weather 

events the peak prices in several countries surged above NT$30/kWh. Anticipating future 
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instability driven by geopolitical and climate-related factors, this study sets the upper limit 

of discharging prices at NT$30/kWh as shown in Figure 34. 

When the TOU peak-time price is increased to NT$10/kWh, the optimized total 

operating cost in this study decreases from approximately NT$400,000 to NT$200,000, 

achieving a significant cost reduction of NT$200,000 which can reduce 42.7% of 

operation cost. This finding can be compared with the study by Moradipari, which 

analyzed a V1G electric bus fleet in California, showing a total operating cost reduction 

of 62.5% under optimized charging strategies [25].  

 Under extreme scenarios as high as NT$270/kWh due to supply shortages and 

privatized market dynamics. To simulate such critical conditions, this study analyzes the 

V2G system under a peak-time electricity price of NT$30/kWh. The results reveal that 

under this scenario, the optimized total operating cost drops to NT$910,000 which give 

us about 320.2% of operational cost reduction and indicating not only full cost recovery 

but also a substantial profit margin. 

In addition to TOU peak price, peak price period is also what we concerned about. We 

started with 6 hours of peak time step, and increase it into 9 hours of peak time step as 

shown in  Figure 35 which give us 17.2% of total operational cost reduction.  
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Figure 34 Time-Of-Use Peak Price Sensitive Analysis 

 

Figure 35 Time-Of-Use Peak Time Step Sensitive Analysis 
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3.6 Comparative Results of Monopoly Sensitive Analysis   

To sum up the V2G monopoly test with Latin Hyper Cube Sampling, we found out 

that there are several things we can analysis as shown as Figure 36. First, we can find out 

that policy-related parameter like TOU peak price and building solar electricity selling 

price are the most dominant parameter.  Science-Oriented parameters shows it influence 

but not that effective. This table can give us a primal understanding about each parameter 

relation with V2G system. 

 

Figure 36 Total Operation Cost Impact of LHS Sampling Sensitive Analysis 

3.7 Capital Investment Impact 

In addition to previously discussed factors such as battery type, building solar 

energy generation, and TOU peak electricity pricing, one of the most direct ways to 

influence the return on investment is by reducing the system’s initial capital expenditures. 

Lowering upfront costs has a significant impact on shortening the payback year and 

enhancing overall financial feasibility. First, we consider system sizing and deployment 

configuration.  
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In this study, we adjusted the number of installed charging systems to assess its 

impact on the payback periods. First, we reconfigured the number of V2G charging 

systems at each site to 10 units at Songzhi Station, 5 units at Jiuzhuang Station, and 5 

units at Wuxing Station. Compared to the original setup 44 systems at Songzhi, 39 at 

Jiuzhuang, and 27 at Wuxing, the reduced configuration significantly increased the total 

operating cost of the V2G system. Specifically, the optimized operating cost rose by 

NT$440,000, from the baseline NT$412,615 to approximately NT$855,597. 

Consequently, the net profit margin dropped from NT$234,383 in the baseline scenario 

to NT$56,604, resulting in a decrease of approximately NT$180,000. While reducing the 

number of charging systems effectively lowers capital expenditures, it also leads to a 

substantial reduction in potential operating savings from V2G participation. Based on the 

payback periods calculation shown in Table 10, the payback period under the reduced 

system configuration extends to 281 payback months (about 23 years), significantly 

longer than the baseline scenario. 

Table 10 Capital Investment Sensitive Analysis Scenario 1  

 

As shown in Table 11, the system configuration was set to 15 units at Songzhi 

Station, 8 units at Jiuzhuang Station, and 8 units at Wuxing Station. Under this 

configuration, the total optimized operating cost of the V2G system increased to 

V2G SAVING

V1G Scenario Cost NT$912,301

V2G Scenario Cost NT$855,697

Total per month saving with V2G NT$56,604

V2G Capital Cost

V2G Installed Capital Cost NT$10,875,000

V2G Charging Pile Capital Cost NT$3,375,000

V2G Installed O&M Cost NT$4,531

V2G Charging Pile O&M Cost NT$1,406

V2G ROI (months) 281.25
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approximately NT$670,000 which gave an increase of NT$260,000 compared to the 

baseline. The profit margin was consequently reduced from NT$234,383 (baseline) to 

NT$85,165, resulting in a loss of approximately NT$150,000 in profit. However, 

compared to the more conservative setup of 10, 5, and 5 systems at the respective stations, 

this configuration improved profitability by about NT$30,000. Despite the improved 

operating margin, the increased capital expenditure associated with installing more 

systems led to a slightly longer payback periods. As shown in Table 11, the payback 

period rose from 281 months to 254 months. 

Table 11  Capital Investment Sensitive Analysis Scenario 2 

 

In Table 12, we examine another configuration by increasing the number of V2G 

charging systems to 20 units at Songzhi Station, 10 units at Jiuzhuang Station, and 10 

units at Wuxing Station, to evaluate its impact on the payback periods. Under this 

configuration, the baseline total operating cost of the V2G system increases by 

approximately NT$180,000, reaching NT$590,000. Despite the higher system cost, the 

profit margin improves significantly compared to the previous case (15, 8, and 8 systems), 

increasing from NT$85,165 to NT$201,061. This value approaches the baseline 

optimization result as NT$234,383, indicating that this configuration recovers much of 

V2G SAVING

V1G Scenario Cost NT$756,999

V2G Scenario Cost NT$671,834

Total per month saving with V2G NT$85,165

V2G Capital Cost

V2G Installed Capital Cost NT$16,530,000

V2G Charging Pile Capital Cost NT$5,130,000

V2G Installed O&M Cost NT$13,775

V2G Charging Pile O&M Cost NT$4,275

V2G ROI (months) 254.54
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the economic benefit while keeping the system investment relatively close to the original. 

As a result, the payback periods is reduced to 160.73 months, or approximately 13 years. 

Table 12 Capital Investment Sensitive Analysis Scenario 3 

 

Continuing the adjustment of the number of V2G charging systems, this scenario 

sets the configuration to 25 units at Songzhi Station, 25 units at Jiuzhuang Station, and 

13 units at Wuxing Station to examine the resulting changes in Return on Investment. 

The analysis shows that the profit margin does not increase under this configuration. 

However, due to the continued rise in capital expenditures, the payback periods gradually 

declines, reaching 218 months equivalent to 18 payback years as shown in Table 13. 

Table 13 Capital Investment Sensitive Analysis Scenario 4 

 

 

V2G SAVING

V1G Scenario Cost NT$793,084

V2G Scenario Cost NT$592,023

Total per month saving with V2G NT$201,061

V2G Capital Cost

V2G Installed Capital Cost NT$21,750,000

V2G Charging Pile Capital Cost NT$6,750,000

V2G Installed O&M Cost NT$18,125

V2G Charging Pile O&M Cost NT$5,625

V2G ROI (months) 160.73

V2G SAVING

V1G Scenario Cost NT$697,741

V2G Scenario Cost NT$502,845

Total per month saving with V2G NT$194,896

V2G Capital Cost

V2G Installed Capital Cost NT$27,405,000

V2G Charging Pile Capital Cost NT$8,505,000

V2G Installed O&M Cost NT$22,838

V2G Charging Pile O&M Cost NT$7,088

V2G ROI (months) 217.67
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Based on the comparison of charging system quantities and their corresponding 

payback years, summarized in the Figure 37, this study finds that payback periods 

follows a quadratic trend as the total number of charging systems increases suggesting 

the existence of an optimal number of charging units. This outcome can be attributed to 

the limited number of electric buses in operation. When the number of charging stations 

exceeds a certain threshold, the utilization rate of charging piles decreases, diminishing 

their overall value. Conversely, when the number of systems is too low, the V2G system 

cannot fully leverage electricity price fluctuations to discharge and resell energy, thus 

missing out on potential revenue. This study estimates that the optimal number of 

charging systems is approximately 36% of the total electric bus fleet, where the capital 

investment and the economic return from V2G operations are most effectively balanced. 

 

Figure 37 Payback Years considered with Installation Capital Investment 
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3.8 Multi-Parameter Sensitive Analysis of Interacting V2G Factors 

This chapter will explore the trends and related conclusions from the one-

dimensional sensitive analysis using a multi-parameter approach, aiming to provide 

further constructive recommendations for the electric bus system. Based on the one-

dimensional LHS sensitive analyses, the time-of-use electricity pricing parameter 

emerged as the most sensitive. Therefore, this study will first focus on the time-of-use 

pricing parameter and pair it with other sensitive parameters to explore the global impact 

of time-of-use pricing. 

Next, a multi-parameter sensitive analysis will be conducted using parameters other 

than the time-of-use pricing to discuss the sensitive levels of various parameters in a 

global context. By using methods like iteration, the study will define the degree of 

influence of each parameter, providing valuable insights for future electric bus V2G 

system planning. 

3.8.1 Interaction Analysis between TOU Peak Pricing and Battery Parameters 

In this second-order sensitive analysis, regardless of whether the peak time-of-use 

electricity price is set at NT$30/kWh or NT$10/kWh, the interaction effects between the 

peak pricing parameter and the battery degradation cost, as well as between the peak 

pricing and battery capacity, remain minimal, as shown in Figure 38 and Figure 39. In 

contrast, a slight interaction is observed between the battery degradation cost and battery 

capacity in the second-order Sobol indices under the three-parameter setting when the 

maximum of time-of-use price is NT$30/kWh. 
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Figure 38 Time-of-use price max in NT$30/kWh with Battery Related Parameter 

Second-order Heatmap  

 

 

 

Figure 39 Time-of-use price max in NT$10/kWh with Battery Related Parameter 

Second-order Heatmap 

 

 



doi:10.6342/NTU202502274

 

88 

By summing the first-order and second-order sensitive results, we obtain the total 

sensitive indices. The analysis reveals that the time-of-use peak pricing parameter exerts 

the most influence on the model, followed by the battery degradation cost and then the 

battery capacity showed as Figure 40 and Figure 41. Due to the insignificance of the 

second-order effects, this parameter combination exhibits characteristics of an “additive 

model”, where the time-of-use pricing parameter serves as the dominant driver. This 

phenomenon, commonly referred to as the “showing effect” in sensitive analysis, 

indicates that the model output variance is primarily governed by a single input parameter, 

with minimal contribution from interactions. We can also see this dominant situation if 

we put battery degradation parameter and TOU peak price into LHS sampling with two 

dimension to give us a 3D graphing in Figure 42. 

 

Figure 40 Time-of-use price max in NT$30/kWh with Battery Related Parameter 

Total Sensitive Analysis Bar chart 
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Figure 41 Time-of-use price max in NT$10/kWh with Battery Related Parameter 

Total Sensitive Analysis Bar chart 

 

 

Figure 42 3D LHS Sampling Sensitive Analysis in Battery Degradation Prices and 

TOU peak prices 
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3.8.2 Interaction Analysis between TOU Peak Pricing and Solar Energy 

Parameters 

Similar to previous sections, in the three-parameter sensitive analysis involving 

time-of-use pricing and battery-related parameters, the peak electricity price coefficient 

remains the dominant factor when set at its maximum value of NT$30/kWh. Under this 

setting, the building solar electricity selling price coefficient shows greater global 

sensitive than the solar conversion rate, indicating its more critical role in the system’s 

response as shown in Figure 45. In the second-order Sobol sensitive analysis, the 

interaction effect (S2) between the time-of-use peak price and the building solar 

electricity selling price is 0.0114, suggesting a weak relationship. Meanwhile, the S2 

value between the building solar electricity selling price and the solar conversion rate is 

0.0324, which is the most prominent interaction in this analysis, indicating relatively 

higher joint sensitive as shown in Figure 43.  

When the peak electricity price is reduced to NT$10/kWh, its influence on the 

system decreases. As a result, the building solar electricity selling price coefficient 

accounts for a larger share in the total sensitive index (ST), and its interaction with the 

solar conversion rate becomes more significant like Figure 44. This reflects the increased 

explanatory power of this parameter pair under such conditions. Considering the total 

Sobol indices (ST), the building solar electricity selling price shows a higher total 

sensitive than the peak electricity price, making it the second most influential factor as 

shown in Figure 46. Notably, both parameters are policy-adjustable, suggesting that 

future policy interventions aiming to improve system performance should prioritize 

adjustments to building solar electricity selling prices and peak electricity pricing. 
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Figure 43 Time-of-use price max in NT$30/kWh with Solar Energy Related 

Parameter Second-order Heatmap 

 

 

 

Figure 44 Time-of-use price max in NT10/kWh with Solar Energy Related 

Parameter Second-order Heatmap 
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Figure 45 Time-of-use price max in NT$30/kWh with Solar Energy Related 

Parameter Total Sensitive Analysis Bar chart 

 

 

 

Figure 46 Time-of-use price max in NT$10/kWh with Solar Energy Related 

Parameter Total Sensitive Analysis Bar chart 
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3.8.3 Interaction Analysis between Battery and Solar Energy Parameter  

In this section, we’ve eliminated TOU peak price parameter, and found out that 

the Building Selling Solar Price Coefficient emerged as a new dominant coefficient 

according to the SoBoL analysis as shown in Figure 47.  

 

Figure 47 Battery and Solar Energy Related Parameter  

Total Sensitive Analysis Bar Chart 

Additionally, in the second-order SoBoL sensitive index, after removing the 

influence of the TOU peak price parameter, the Battery Degradation Coefficient exhibited 

interaction effects with other parameters. The relationship between the Building Solar 

Price Coefficient and the Solar Conversion Efficiency also maintained a certain level of 

interaction, consistent with the previous analysis. The Battery Degradation Coefficient is 

the most likely to cause second-order effects on other parameters as shown in Figure 48. 



doi:10.6342/NTU202502274

 

94 

 

Figure 48  Time-of-use price max in NT$30/kWh with Solar Energy Related 

Parameter Second-order Heatmap 

In order to compared the dominant parameter and its influence on the operational 

cost, we’ve tried to utilize the energy and solar related parameter to found out the 

sequence of the dominant total sensitive indices. What we did is we eliminate the 

dominant parameter step by step, to gradually give the result. And we found out the 

dominant sequence from Figure 49 and Figure 50 that the parameters are ranked as 

follows: TOU peak price > Building Selling Solar Price Coefficient > Solar Conversion 

Efficiency = Battery Degradation > Battery Capacity by different combination . Among 

this sequence, the solar efficiency coefficient and Battery Degradation efficiency showed 

it complex result with the background data in the SoBoL analysis. 
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Figure 49 Battery and Solar Energy Related Parameter Total Sensitive Analysis 

Bar Chart Eliminate Building Solar Electricity Selling Price Coef. 

 

 

 

Figure 50 Battery and Solar Energy Related Parameter Total Sensitive Analysis 

Bar Chart Eliminate Building Solar Electricity Selling Price  

and Solar Efficiency Coef. 
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3.8.4 Interaction Analysis of Battery, Solar, and Fleet Scale and Charging Power 

Parameters 

Aside from battery and solar energy-related parameters, this study also incorporates 

utility-related parameters into the Sobol sensitive analysis, expanding the scope to five 

parameters as shown in Figure 51. The heatmap reveals that the battery degradation price 

coefficient and solar efficiency coefficient exhibit dominant second-order interactions 

with other parameters. This aligns with observations made in the earlier Latin Hypercube 

Sampling (LHS) sensitive analysis, where battery capacity was found to interact with 

maximum charging power. However, the influence of this interaction remains relatively 

limited and does not significantly alter the global sensitive ranking of the maximum 

charging power parameter. From Figure 52, it is evident that the charging maximum 

power consistently holds the lowest sensitive index among all parameters in the global 

sensitive analysis. Additionally, the ranking of battery and solar energy-related 

parameters remains unchanged, confirming their dominant influence in the system across 

different configurations. 
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Figure 51  Battery, Solar Energy and Utility Related Parameter Second-order 

Heatmap 

 

 

 

Figure 52 Battery, Solar Energy and Utility Related Parameter Bar Chart 
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3.8.5 Interaction Analysis of Battery, Solar Energy and Fleet Scale Parameters 

From the Figure 53, we observe that when the fleet scale parameter is included in 

the Sobol analysis, several sensitive indices decrease in significance. However, the 

interaction between the fleet scale coefficient and the building solar electricity selling 

price coefficient becomes prominent, suggesting that as the fleet size expands, the 

building solar electricity selling price emerges as the most influential second-order factor. 

We also did a total sensitive analysis with this coefficient in Figure 54, fleet scale 

coefficient shows it dominant within this combination.  We also try to compared it with 

following experiment with time-of-use prices. 

 

Figure 53 Battery, Solar Energy and Fleet Scale Related Parameter Second-order 

Heatmap 
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Figure 54 Battery, Solar Energy and Fleet Scale Related Parameter Bar Chart 

 Proceed with the previous knowledge, we conduct the Sobol analysis with TOU 

peak price, Fleet Scale and Building Selling Solar Price Coefficient in the following 

research. First, in second-order interaction fleet scale continued its interaction with fleet 

scale shown as Figure 55. 

 

 

Figure 55 Policy-Orientated and Fleet Scale Related Parameter Second-order 

Heatmap 
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This total sensitive analysis demonstrated the previous understanding, in this 

combination it is in the order of fleet scale, building solar electricity selling price and 

TOU peak price coefficient. 

Based on our earlier study, we set the highest TOU peak price at NT$30/kWh. We 

saw a clear rise in the second-order effect between fleet size and TOU peak price, which 

supports the past finding that policy-related factors interact strongly with fleet size as 

shown in Figure 57. In this case, the building solar electricity selling price of electricity 

only went down a little.  

In Figure 58 we found out that the result has changed from Figure 56, when the 

TOU prices goes to NT$30/kWh as maximum then the sequence of each parameter has 

change which means the define of TOU peak price can lead to different background for 

V2G urban operation.  

 

 

Figure 56 Policy-Orientated and Fleet Scale Related Parameter Bar Chart 
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Figure 57 Policy-Orientated and Fleet Scale Related Parameter Second-order 

Heatmap when TOU peak prices set in NT$30/kWh 

 

Figure 58 Policy-Orientated and Fleet Scale Related Parameter Bar Chart when 

TOU peak prices set in NT$30/kWh 

3.9 Depot Design Discussion 

In this research we survey 3 different depots with its’ associate school rooftop as its 

renewable resource. In order to V2G discharging revenue. We found that in general when 

redundance goes up it will lead to higher V2G amount as Table 14. However, the actual 

solar charging amount associate to bus depot behavior, if most of bus are occupy when 

solar energy has redundance will lead to lower utilization of building redundance energy.  
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Table 14 Depot Design Comparison 

 

Moreover, a higher operational demand for bus routes increases the need for solar 

energy, even when the battery discharging capacity is nearly saturated. Based on this 

understanding, we estimate the optimal integration of rooftop solar resources and bus 

depot operations under various scenarios. For instance, in locations such as JiuZhuang 

Station, where available rooftop solar energy is relatively limited, the system tends to rely 

more heavily on city power to support V2G operations. Conversely, in areas with greater 

solar potential, the focus shifts toward optimizing charging and discharging behavior to 

effectively manage the surplus energy.  

To expand this concept across other bus depots in Taipei City, the availability of 

nearby surplus solar energy plays a critical role in the effectiveness of a V2G system. 

While some depots benefit from adjacent public school’s rooftops, others lack such 

opportunity. For instance, the Xinxin Bus Zhongxing Depot, located in a suburban area 

of Taipei, serves as a major bus charging facility. As shown in Figure 59, it is situated 

next to abandoned Taipei steel plant with large rooftop areas. Although these rooftops 

offer solar potential, they involve more complicated coordination due to private 

ownership and the diversity of stakeholders which is different from the relatively 

straightforward use of publicly owned school buildings. In contrast, urban depots 

surrounded by dense residential neighborhoods often lack accessible public rooftops 

altogether. In such cases, the absence of public building infrastructure such as schools or 

government facilities means that solar energy must be sourced from privately-owned 

residential buildings. This leads to even higher fragmented ownership and makes revenue 

Building Solar Energy 

Amount (kWh/bus)

Solar Charging

Amount (kWh/bus)

V2G Discharging

Amount (kWh/bus)

Songzhi Depot 5,951 1,178 955

Jiuzhuang Depot 1,315 751 781

Wuxing Depot 3,982 1,603 1,052
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sharing and infrastructure coordination more complex, posing a significant barrier to V2G 

deployment in these urban contexts. 

 

Figure 59 Charging Allocation with Electric Buses in Xinxin Bus Zhongxing Depot 

3.10 Discussion Summary 

These findings not only validate the effectiveness of the proposed model but also 

offer actionable insights for policymakers and transit operators. First, policy-related 

parameters emerge as the most influential factors in both primary and advanced sensitive 

analyses.  Unlike previous studies in the literature review, our analysis identifies the solar 

conversion efficiency as a critical physical parameter with long-term influence. While it 

may not be the most dominant factor initially, its impact becomes increasingly significant 

under varying parameter conditions, ultimately exerting a strong influence on the system's 

outcomes.  
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We conduct second-order interaction with sobol analysis. Battery degradation 

prices parameter shows notable second-order interactions in the Sobol sensitive analysis. 

Meanwhile, solar conversion efficiency interacts significantly with building solar 

electricity selling price, underscoring the need to co-optimize both policy and technical 

variables to maximize system-level benefits. The building electricity selling price and 

TOU peak price shows its significant second interaction with fleet scale as well. Fleet-

scaled parameters also exhibit strong second-order interactions with policy-related 

variables, such as TOU peak pricing and feed-in tariffs. Importantly, our analysis reveals 

that V2G deployment becomes economically feasible when at least 75% of the current 

fleet is electrified. Additionally, our findings highlight that optimizing the charger bus 

ratio be 1:2.22 can significantly reduce payback periods by 15 years.  

It is also important to acknowledge the model-included parameters such as fleet 

size, available rooftop area, and maximum charging power, which are primarily 

determined by fleet operators or building owners and are not directly modifiable by public 

policy. Furthermore, our analysis indicates that the influence of charging power on 

payback periods is relatively limited. Taken together, these findings highlight the 

importance of prioritizing pricing mechanisms especially feed-in tariffs and TOU peak 

price rate design in energy policy to guide market behavior and promote efficient resource 

allocation. 

3.11 Limitation 

 This study faces several limitations related to model simplifications, data 

availability, and real-world deployment considerations. First, the optimization framework 

incorporates certain mathematical assumptions and simplifications, which combined with 

limited access to real-world operational data, constrain the model’s ability to fully capture 

actual system behavior. Additionally, the analysis is conducted using a one-month time 
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horizon, rather than a full-year scope, which may limit the generalizability of the results 

across seasonal variations. In terms of bus operations, the dispatch schedule is randomly 

generated without incorporating realistic constraints such as a minimum dispatch interval, 

and the absence of real-time floating dispatch data hinders accurate simulation of 

operational dynamics. For renewable energy modeling, the system does not fully capture 

the nonlinear characteristics of solar generation, nor does it consider efficiency losses 

caused by dust urban form factors such as building-induced shading. Similarly, Battery 

degradation is modeled as a linear cost, without considering nonlinear factors such as 

temperature variation. On the policy side, the model only includes a single electricity 

pricing mechanism, omitting important market structures such as contracted capacity, 

demand response strategies, and frequency-based ancillary services. The physical design 

of charging infrastructure is also simplified, without accounting for actual station layout, 

equipment deployment, or spatial constraints. Moreover, the model does not distinguish 

between alternating current (AC) and direct current (DC) configurations, which may 

introduce additional complexity in practical V2G depot designs due to conversion 

equipment requirements. From an economic perspective, inflation, depreciation, and 

long-term financial risks are not considered, and capital and operational expenditures are 

treated independently rather than through an integrated financial framework. Additionally, 

the study excludes the participation of private electric vehicles (PEVs) in the V2G system. 

While PEVs may offer additional grid flexibility, their involvement depends heavily on 

user willingness, introducing uncertainty and potential complications in system control. 

Lastly, the study focuses solely on urban electric buses within metropolitan areas and 

does not extend to other types of electric vehicles or regional contexts, potentially limiting 

the generalizability of the finding. 
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In addition to these modeling limitations, the practical implementation of V2G 

systems in Taiwan faces systemic and regulatory barriers. According to interviews with 

transportation research institutions, public bus operators continue to adopt diesel-based 

operational logic, which impedes the strategic transition toward V2G-enabled fleet 

management. Moreover, in the discussions with local industry stakeholders revealed that 

Taiwan’s V2G ecosystem is still under development. For instance, only the CHAdeMO 

charging standard currently supports bidirectional charging, while other protocols 

commonly used in electric bus systems remain incompatible. Communication 

mismatches between charging stations and control systems further complicate integration. 

Equipment vendors in Taiwan have yet to commercialize certified V2G products, and 

regulatory frameworks such as fire safety codes and energy dispatch laws remain rigid. 

These standards often fail to address issues like cable thermal fatigue under high-

frequency charging and discharging, which are critical for safe and scalable V2G 

deployment. Together, these institutional and infrastructural gaps highlight the need for 

comprehensive policy updates and industry coordination to enable real-world 

implementation of the proposed optimization framework. 
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4. Conclusion 

This study developed a MILP model focused on evaluating the economic feasibility 

of integrating rooftop solar energy and V2G systems in urban electric bus operations. The 

model incorporates real-world operational constraints, including dispatch scheduling, 

solar resource availability, battery degradation costs, and TOU electricity peak pricing. 

Through both first-order and second-order sensitive analyses, the research identifies the 

key drivers influencing operational costs and payback periods. 

Under current conditions, V2G deployment can reduce monthly operational costs 

by approximately NT$ 220,000 in our case. However, the estimated payback periods may 

exceed 30 years, indicating limited economic incentive. When adopting the recommended 

scenario proposed in this study, put policy-related parameter into building solar electricity 

selling price of NT$2/kWh, TOU peak price of $10/kWh if science-oriented parameters 

battery degradation cost of $0.258/kWh, and a solar transfer rate of 30% and battery 

capacity of 500 kWh, this can lead to the payback periods payback period be shortened 

to within 12 years. This combination shown as Table 15. 

Table 15 Combination of V2G economic feasible solution 

 

Further optimization of capital installation with a charger-to-bus ratio of 1:2.22 can 

reduces payback periods by an additional 15 years, and when combined with operational 

scheduling optimization, the payback periods can be reduced to just 6 years. We found 

out this scenario also contributes to a monthly emission of -4.5 tCO₂-eq, while the 

conventional one-way V1G system by 13.4 tCO₂-eq, aligning with Taiwan’s 2030 net-

zero carbon targets. 
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This study confirms that both policy-related variables like TOU pricing and 

building solar electricity selling price and science-oriented factors like battery 

degradation and solar efficiency rate play complementary roles in influencing system 

performance and economic outcomes. It is important to note that parameters such as fleet 

size, available rooftop area, and maximum charging power while included in the model 

are largely determined by fleet operators or building owners and are not directly 

modifiable by public policy. Furthermore, the impact of charging power on payback 

periods is relatively limited. Therefore, this study emphasizes that government policies 

should focus on pricing mechanisms such as building solar selling price which usually is 

FIT and TOU rate design to effectively guide market behavior and promote resource 

allocation. 

In the future work we think it can be multi stakeholder dimensions analysis, include 

external and resilience benefits to see the robust optimized solutions. As demonstrated in 

the Nissan project in Ishikawa, Japan, V2G systems have shown their potential to support 

black-start capabilities during disaster-induced grid failures. Such resilience applications 

highlight the importance of expanding V2G evaluation frameworks beyond pure 

economic measurement[70]. In addition, future research should incorporate real-time 

robust optimization frameworks that can adapt dynamically to fluctuating inputs such as 

energy demand, renewable generation, and electricity pricing. By integrating real-time 

data and uncertainty modeling, the system will be able to generate recommendations that 

are both resilient and context-aware, improving decision-making accuracy under diverse 

operational scenarios.  

To sum up, despite our contributions, the model simplifies certain technical and 

financial aspects, which should be addressed in future research to enhance applicability 

and robustness. 
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Appendix 

Table A1  Daily Environmental Cost of Northern Taiwan 
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Table A2 Carbon Dioxide Daily Environmental Cost of Northern Taiwan 

 

 

 

 

 

 

 

 

Hour

(hr)

Total Carbon Emission

(kg)

Carbon Emission Amount

(kg/kWh)

Carbon Environmental Cost

($/kWh)

1 4073131 0.41 1.63

2 4044805 0.40 1.62

3 4009403 0.40 1.60

4 4003905 0.40 1.60

5 3937911 0.39 1.58

6 3917550 0.39 1.57

7 3851536 0.39 1.54

8 3825610 0.38 1.53

9 3992928 0.40 1.60

10 3927892 0.39 1.57

11 4036258 0.40 1.61

12 4085162 0.41 1.63

13 4011740 0.40 1.60

14 4111681 0.41 1.64

15 4161117 0.42 1.66

16 4184804 0.42 1.67

17 4314065 0.43 1.73

18 4336769 0.43 1.73

19 4376953 0.44 1.75

20 4381879 0.44 1.75

21 4395104 0.44 1.76

22 4366733 0.44 1.75

23 4332154 0.43 1.73

24 4158299 0.42 1.66
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Table A3 NOx Daily Environmental Cost of Northern Taiwan 

 

 

 

 

 

 

 

 

Hour

(hr)

Total NOx Emission

(kg)

NOx Emission Amount

(kg/kWh)

NOx Environmental Cost

($/kWh)

1 1158.24 0.00012 0.01

2 1159.84 0.00012 0.01

3 1157.20 0.00012 0.01

4 1158.30 0.00012 0.01

5 1149.56 0.00012 0.01

6 1142.68 0.00011 0.01

7 1129.01 0.00011 0.01

8 1118.52 0.00011 0.01

9 1136.63 0.00011 0.01

10 1104.60 0.00011 0.01

11 1140.05 0.00011 0.01

12 1150.22 0.00012 0.01

13 1119.92 0.00011 0.01

14 1135.68 0.00011 0.01

15 1144.52 0.00011 0.01

16 1136.32 0.00012 0.01

17 1166.59 0.00012 0.01

18 1169.61 0.00012 0.01

19 1176.08 0.00012 0.01

20 1178.75 0.00012 0.01

21 1180.40 0.00012 0.01

22 1178.14 0.00012 0.01

23 1174.66 0.00012 0.01

24 1156.81 0.00012 0.01
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Table A4 Sox Daily Environmental Cost of Northern Taiwan  

 

 

 

 

 

 

 

 

Hour

(hr)

Total SOx Emission

(kg)

SOx Emission Amount

(kg/kWh)

SOx Environmental Cost

($/kWh)

1 2306.32 0.00023 0.015

2 2311.03 0.00023 0.015

3 2307.13 0.00023 0.015

4 2309.81 0.00023 0.015

5 2294.40 0.00023 0.015

6 2280.70 0.00023 0.015

7 2254.58 0.00023 0.015

8 2233.31 0.00022 0.015

9 2264.22 0.00023 0.015

10 2198.17 0.00022 0.015

11 2269.62 0.00023 0.015

12 2289.06 0.00023 0.015

13 2227.23 0.00022 0.015

14 2256.45 0.00023 0.015

15 2273.06 0.00023 0.015

16 2254.07 0.00023 0.015

17 2313.06 0.00023 0.015

18 2318.40 0.00023 0.016

19 2330.18 0.00023 0.016

20 2335.63 0.00023 0.016

21 2338.50 0.00023 0.016

22 2334.96 0.00023 0.016

23 2329.15 0.00023 0.016

24 2299.04 0.00023 0.015
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Table A5 PM10 Environmental Cost of Northern Taiwan 

 

Hour

(hr)

Total PM10 Emission

(kg)

PM10 Emission Amount

(kg/kWh)

PM10 Environmental Cost

($/kWh)

1 179.31 1.80E-05 0.00256

2 180.49 1.80E-05 0.00258

3 179.19 1.80E-05 0.00256

4 179.11 1.80E-05 0.00256

5 175.54 1.80E-05 0.00251

6 173.01 1.70E-05 0.00247

7 169.19 1.70E-05 0.00242

8 166.45 1.70E-05 0.00238

9 170.43 1.70E-05 0.00244

10 165.41 1.70E-05 0.00237

11 170.18 1.70E-05 0.00243

12 173.13 1.70E-05 0.00248

13 167.82 1.70E-05 0.00240

14 170.47 1.70E-05 0.00244

15 172.61 1.70E-05 0.00247

16 172.39 1.70E-05 0.00247

17 178.40 1.80E-05 0.00255

18 179.56 1.80E-05 0.00257

19 182.53 1.80E-05 0.00261

20 183.76 1.80E-05 0.00263

21 184.37 1.80E-05 0.00264

22 184.18 1.80E-05 0.00263

23 183.29 1.80E-05 0.00262

24 179.91 1.80E-05 0.00257


