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摘要

大型語言模型近年來被視為簡化臨床工作流程的有力工具。然而，在高度敏感

的醫療領域中應用模型面臨諸多挑戰，例如隱私保護，以及缺乏公開且高品質的

臨床對話資料集。本研究聚焦於使用開源大型語言模型，在完全本地環境下，從

實際的門診對話中產生臨床紀錄，以確保病患隱私不外洩。我們設計了一套完整

的資料前處理流程，包含對實際醫療對話的摘要與翻譯，並重新標註對應的臨床

紀錄內容。本文探討三種臨床紀錄生成方式：單階段端到端生成、兩階段檢索增

強生成、以及單階段生成搭配合成對話擴充。我們的實驗顯示監督式微調在效能

上表現優異，且小型模型在準確檢索關鍵證據方面亦展現潛力。儘管大型語言模

型可在一定程度上協助摘要臨床紀錄，但要維持完全在地部署兼顧效能仍是一大

挑戰。本論文突顯了當前大型語言模型應用於醫療資料的潛力與限制，特別是在

隱私要求高、需本地部署的場景下。

關鍵詞: 臨床紀錄生成、大型語言模型、醫療對話、隱私保護、本地部署
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Abstract

Large language models (LLMs) have emerged as a promising tool to streamline clinical

workflows. However, the application of LLMs in the highly sensitive domain of health-

care faces major challenges, such as strict privacy regulations and the scarcity of publicly

available, high-quality clinical dialogue datasets. This work focuses on clinical note gen-

eration from real-world outpatient conversations using open-source LLMs in a fully local

environment to preserve patient privacy. We developed a comprehensive data prepro-

cessing pipeline involving summarization and translation of real-life medical dialogues,

along with meticulous re-annotation of the corresponding clinical notes. Three approaches

to note generation are explored: One-stage End-to-end Generation, Two-stage Retrieval-

Augmented Generation and One-stage Generation with Synthetic Dialogue Augmentation.

Our experiments demonstrated the effectiveness of supervised fine-tuning methods and the

the potential of smaller models in accurately retrieving evidence. While LLM applications

can assist in summarizing clinical notes to a certain extent, maintaining fully local models

for privacy remains a significant challenge. This work highlights both the potential and

the limitations of current LLM-based approaches in this specialized domain, particularly

under local deployment constraints.

Keywords: Clinical Note Generation, Large Language Models, Medical Dialogue, Pri-

vacy, Local Deployment
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Chapter 1. Introduction

Physician–patient conversations are central to the clinical workflow, serving not only

as a means for diagnosis and treatment but also as the foundation for generating critical

medical documentation. In outpatient settings, doctors collect patient information, such

as symptoms, family history, and lifestyle habits, through dialogue, and then summarize

the key points into structured clinical notes for future reference. One widely adopted

format for this documentation is the SOAP note, which includes four sections: Subjective,

Objective, Assessment, and Plan.

Despite the importance of clinical documentation, it is time-consuming and requires a

significant amount of manual effort, placing a heavy burden on clinicians. The documen-

tation workload is widely recognized as a contributing factor to physician burnout [7, 8].

To alleviate this burden, automatic clinical note generation has emerged as a promising

solution. Recent advances in large language models (LLMs) have demonstrated their

ability to understand and generate human-like language, offering new opportunities to

streamline clinical workflows. However, the application of LLMs in the highly sensitive

domain of healthcare faces major challenges, such as strict privacy regulations and the

scarcity of publicly available, high-quality clinical dialogue datasets.

Additionally, automating clinical note generation from real-world outpatient conver-

sations introduces further complexity. Unlike curated online consultations, outpatient

interactions are spontaneous, unstructured, and often noisy due to speech disfluencies,

overlapping dialogue, and environmental interference, which introduce variability and

transcription errors. Meanwhile, the target notes are often incomplete, filled with domain-

specific abbreviations, or grammatically incorrect, further complicating modeling.

1
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Moreover, collecting and annotating real-world data is non-trivial. Ethical constraints,

privacy concerns, and the need for informed consent restrict access to patient conversations.

High-quality annotation requires medical expertise, increasing both cost and time, and

limiting the scalability of dataset creation. As a result, most prior work in medical dialogue

summarization relies on synthetic or publicly available online consultation datasets [3, 4],

which lack the complexity and realism of real-world clinical interactions.

Motivated by these gaps, this thesis focuses on generating structured clinical notes

from real-world outpatient conversations in a local-only environment to ensure privacy

preservation.

Our contributions are summarized as follows:

1. We develop a robust data preprocessing pipeline, including summarization and

translation of real-world medical dialogues, along with meticulous re-annotation of

the corresponding clinical notes.

2. We investigate three paradigms for clinical note generation:

(a) One-stage End-to-end Generation: Leveraging LLMs to directly generate

clinical notes.

(b) Two-stage Retrieval-Augmented Generation: Utilizing the retrieval capa-

bilities of small LLMs to locate relevant information from lengthy contexts.

(c) One-stage Generation with Synthetic Dialogue Augmentation: Expanding

training datasets with generated dialogues to improve robustness.

3. We provide qualitative case studies to analyze the generation quality of different

approaches.

2

http://dx.doi.org/10.6342/NTU202504251


doi:10.6342/NTU202504251

4. We demonstrate the feasibility of running the full pipeline(from preprocessing to

generation) using only open-source LLMs in a local environment.

This work highlights both the potential and the limitations of current LLM-based

approaches in this specialized domain, particularly under local deployment constraints.

Our findings emphasize the need for expert evaluation and further development to enable

reliable clinical applications.

3
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Chapter 2. Related Work

2.1 Clinical Note Generation

Automated clinical note generation has gained increasing attention as a means to reduce

physicians’ documentation burden and improve the efficiency of electronic health record

(EHR) systems. Most studies focus on transforming doctor–patient conversations into

structured notes, typically in the SOAP (Subjective, Objective, Assessment, Plan) format.

The Wang Lab [10] participated in the MEDIQA-Chat 2023 shared task and reported

results for two approaches: the first fine-tuned a pre-trained language model (PLM)

on the shared task data, and the second used few-shot in-context learning (ICL) with

a large language model (LLM). They achieved the highest score in the shared tasks

with similar-dialogue’s notes as few-shot to perform an ICL-based approach using GPT-

4. LLM fine-tuning methods were further investigated by Leong et al. [15]. They

explored parameter-efficient fine-tuning methods for LLMs and demonstrated that even

lightweight adaptations (e.g., LoRA) can achieve competitive performance while reducing

computational cost. Their findings are particularly relevant for local deployment, where

resource constraints are critical.

Chen et al. [12] propose two frameworks to support automatic medical consultation:

doctor-patient dialogue understanding and task-oriented interaction. Key tasks include

named entity recognition, dialogue act classification, symptom label inference, medical

report generation, and diagnosis-oriented dialogue policy. They create IMCS-21, a large-

scale annotated medical dialogue corpus, as a benchmark for medical dialogue modeling.

4
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Dialogue uncoverage issues are also mentioned, such as a considerable percentage of past

medical history being empty because this part is less involved in the dialogue.

Microsoft Health AI [13] introduces the MTS-Dialog dataset, derived from simulated

doctor-patient conversations based on publicly available clinical notes. This dataset is

used to train transformer-based models (e.g., BART and PEGASUS) and variantss, which

are pre-finetuned on relevant corpora to summarize conversations into clinical notes. Data

augmentation via back-translation is employed to enhance model robustness. Section

headers from the clinical notes serve as prefix signals to guide the summarization process.

Pre-finetuning and signal guidance improve factual performance and summary fluency,

while reducing critical fact omissions. Nonetheless, the best-performing model still

exhibited a hallucination rate of 3% and failed to capture 33% of the medical facts.

2.2 Medical Dialogue Datasets

Several works focus on constructing medical dialogue datasets. The ACI-Bench

dataset [2] comprises various types of doctor-patient interactions. Some dialogues involve

physicians interacting with a virtual assistant using fixed commands, while others include

physicians collaborating with human or virtual scribes to compose clinical notes. The

remaining data are generated through role-playing between a certified physician and a

layperson volunteer, based on symptom prompts.

In addition, several large-scale datasets have been created from online medical consul-

tation platforms in China. These datasets are particularly useful for improving performance

on medical dialogue generation tasks, especially with smaller models.

ReMeDi [4] is built by crawling raw medical dialogues and medical knowledge bases

from online websites. The dialogues are cleaned using a set of rigorous rules, and

5
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annotated following well-defined guidelines to produce detailed Intent-Slot-Value labels.

The final dataset includes 1,557 out of 96,965 conversations between doctors and patients

with fine-grained annotations. MedDialog [3] is another massive dataset containing 3.4

million doctor-patient conversations in Chinese and 0.26 million in English. Models

trained on MedDialog have been shown to generate clinically correct and human-like

medical dialogues.

2.3 Synthetic Data Generation

Numerous studies have explored general synthetic data generation. Long et al. [14]

review recent work in this area, organizing it into three main components: generation,

curation, and evaluation. They propose a general workflow for LLM-driven synthetic data

generation based on these components.

In the medical domain, NoteChat [5] introduces a novel cooperative multi-agent frame-

work that utilizes Large Language Models (LLMs) to generate patient-physician dialogues.

The framework consists of three modules: Planning, Roleplay, and Polish. It follows the

principle that an ensemble of role-specific LLMs can more effectively fulfill their respec-

tive roles through structured role-play and strategic prompting.

6
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Dataset # Dialogue Avg. tokens per dialogue Avg. utterances per dialogue
MedDialog-CN[3] 3,407,494.00 193.74 3.30
ReMeDi-large[4] 95,408.00 302.29 18.38

FamilyMed-Dialogue-Note [1] 94.00 5,779.84 284.78
ACI-Bench[2] 207.00 1,302.00 55.00

Table 3.1: Statistics comparison between datasets used and other related medical dialogue
datasets.

Figure 3.1: Distribution of Word Counts in Traditional Chinese FamilyMed-Dialogue-
Note Dialogues

Chapter 3. Datasets

We adopt the FamilyMed-Dialogue-Note Dataset [1] and the ACI-Bench Dataset [2]

for our experiments. Both contain outpatient doctor-patient conversations paired with

corresponding clinical notes structured in the SOAP format (Subjective, Objective, As-

sessment, and Plan). Given our focus on real-world, privacy-sensitive applications in a

local healthcare setting, we primarily emphasize the FamilyMed-Dialogue-Note Dataset,

which was collected from National Taiwan University Hospital and better reflects the

constraints and characteristics of our target use case.

7
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Figure 3.2: Part of an example of the FamilyMed-Dialogue-Note Dataset

3.1 FamilyMed-Dialogue-Note Dataset

The FamilyMed-Dialogue-Note dataset was collected by [1] in collaboration with

teaching clinics of the Family Medicine Department at National Taiwan University Hospi-

tal (FamilyMed-Dialogue-Note). Each case includes a transcript of a real outpatient visit

and an associated clinical note written in the SOAP format (Subjective, Objective, Assess-

ment, and Plan). Figure 3.2 shows an example. The original dialogues are in Traditional

Chinese, while the clinical notes are primarily written in English. Since other real-world

data are not available, and publicly available synthetic medical dialogue datasets that are

similar to our setting are mostly in English, we translate the FamilyMed-Dialogue-Note

transcripts into English.

Unlike public medical dialogues collected from online platforms, the FamilyMed-

Dialogue-Note dataset contains longer, more colloquial conversations that reflect actual

outpatient visits in teaching clinics of the Family Medicine Department. Individual

utterances are typically short, with meaningful information often spread across multiple

turns. Figure 3.1 shows the #token distribution. However, a major challenge is the

limited scale of the FamilyMed-Dialogue-Note dataset, which reflects the constraints

of working with privacy-sensitive hospital data in a local setting. Table 3.1 presents

comparative statistics between FamilyMed-Dialogue-Note, ACI-Bench, and other public

8
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medical dialogue datasets.

Another notable characteristic of real-world clinical notes is that they may contain

information not explicitly mentioned in the dialogue, since physicians also rely on prior

medical records, test results, or observations outside the conversation. Therefore, we

re-annotated the dataset to identify and label information not covered in the dialogues.

Moreover, the Objective part in the dataset is measurable data, such as vital signs, physical

exam findings, and test results, which are rarely verbalized in dialogues. As a result, we

only do experiments on the Subjective, Assessment, and Plan components, especially

the Subjective section, which directly reflects the patient’s spoken narrative. There are 14

structured columns from the clinical notes: Chief complaint, History of present illness,

Past medical history, Current medications, Allergy history, Family history, History of betel

nut, History of drinking, Smoking history, Regular exercise, Profession, Diet, Assessment,

and Plan. Details regarding the translation, summarization, and re-annotation processes

are described in Chapter 4.

3.2 ACI-Bench Dataset

The ACI-Bench dataset [2] was utilized in ACL ClinicalNLP MEDIQA-Chat 2023. It

consists of three subsets, each representing a common mode of clinical note generation

from doctor-patient conversations:

• Virtual Assistant: The doctor issues explicit commands to interact with a virtual

assistant (e.g., “Hey Dragon, show me the diabetes labs”) during the outpaient

visit. This subset is created by a team of 5+ medical experts.

• Virtual Scribe: The doctor speaks naturally, possibly giving free-form instructions

to a human or virtual scribe to assist in composing the clinical note.

9
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• Ambient Clinical Intelligence (ACI): A natural conversation takes place between

a physician and a patient, without explicit commands to a virtual assistant or instruc-

tions directed at a scribe. This subset was created through role-playing between a

certified physician and a layperson volunteer, based on a list of symptom prompts.

Clinical notes were initially generated by an automated note-generation system and sub-

sequently reviewed and revised by domain experts. As shown in Table 3.1, among public

medical dialogue datasets, ACI-Bench contains relatively longer conversations, making

it more comparable to the FamilyMed-Dialogue-Note dataset. Additionally, the clinical

notes are written in the SOAP format as well. Thus, we selected ACI-Bench to evaluate

whether the experimental results are consistent with those obtained from the FamilyMed-

Dialogue-Note dataset.

Chapter 4. Methodology

In this chapter, as shown in Figure 4.1 we introduce the data preprocessing steps

for the FamilyMed-Dialogue-Note dataset and methods used for our main task, that is

summarizing clinical notes from outpatient conversations. To ensure compatibility with

privacy-sensitive hospital data in a fully local setting, all approaches are designed to work

exclusively with open-source large language models (LLMs) that can be run on local

machines. Moreover, evaluation metrics used are mentioned at the end of the section.

• FamilyMed-Dialogue-Note Data preprocessing: Includes details of dialogue

translation, summarization and clinical notes’ re-annotation.

• Clinical Note Generation: Includes One-stage End-to-end Generation, Two-stage

10
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Figure 4.1: Overall workflow of the proposed methodology, from data preprocessing to
the clinical note generation task.

Data Min Q1 Q2 Q3 Max Mean
Orginal Chinese Dialogue 338.00 3250.50 5128.50 7301.75 20932.00 5779.84

Generated English Summary 96.00 608.50 994.50 1453.75 3911.00 1134.78
Translated English Dialogue 232.00 2110.25 3320.50 4551.50 13756.00 3747.33

Table 4.1: Token Count Statistics

Retrieval-Augmented Generation and One-stage Generation with Synthetic Dia-

logue Augmentation.

4.1 FamilyMed-Dialogue-Note Data Preprocessing

Initially, data cleaning was performed on both the conversation transcripts and the

clinical notes. Time stamps were removed from the transcripts, and the unstructured

notes were converted into structured data in JSON format. Subsequently, translation,

summarization, and re-annotation were carried out as part of the data preparation process.

11
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Figure 4.2: Absolute difference in dialogue turn counts between original and translated
conversations, with and without segmentation. (Obvious outliers have been omitted.)

4.1.1 Translation

The original Chinese doctor-patient dialogues were translated into English using

LLaMA-3.3-70B-Instruct. First, we input the entire conversation into the model for

direct translation. However, as shown in Table 4.1, the dataset has an average of 5,779.84

tokens per dialogue, with 12 entries exceeding 10,000 Chinese characters. This led to the

well-known“lost in the middle” issue, where the model struggles to maintain context

in long sequences. For further investigation, we analyzed the number of utterances in each

conversation before and after translation. The average difference in utterance count was

136.88, showing a substantial loss or hallucination of content. Orange dots in Figure 4.2

indicate that the difference is positively related to the conversation length.

To mitigate these issues, we then segmented the dialogues into chunks based on

complete speaker turns, with each segment limited to approximately 2,500 characters.

Also, A sliding window of five sentences was applied to maintain contextual continuity

between segments. The translated segments were then concatenated to reconstruct the

full English dialogue. Although the ”lost in the middle” problem was not completely

12
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Figure 4.3: Workflow of the re-annotation process.

eliminated, the average difference in utterance count was significantly reduced to 19.97.

Figure 4.2 clearly illustrates the improvement achieved through this segmentation strategy.

4.1.2 Summarization

We generate the English summaries directly from the original Chinese doctor-patient

dialogues. Following the segmentation strategy described in Section 4.1.1, each dia-

logue was divided into segments of 1,000 characters with overlapping sliding windows

to preserve context. Summaries generated by LLaMA-3.3-70B-Instruct and LLaMA-

3.1-8B-Instruct exhibited a high similarity of 0.8970. The experiment results did not

show big differences. In line with our low-resource, fully local setup, we selected the

summaries generated by LLaMA-3.1-8B-Instruct for use in subsequent experiments. The

data statistics are reported in Table 4.1.

13
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Figure 4.4: Number of entries with source information before and after evidence retrieval

4.1.3 Re-annotation

(a) Summary Evidence Retrieval (b) Dialogue Evidence Retrieval

Figure 4.5: Percentage composition of annotations.

W/ Source: The note label’s presence in original contexts is validated. W/O Source: The
note label isn’t found in original contexts. NA: The original label is ’na’ and also no
information found by retrieval.

As mentioned in 3.1, clinical notes in real-world outpatient settings often contain

information that is not fully verbalized during the patient-doctor interaction. Therefore,

we performed re-annotation to identify which parts of the clinical note were actually

grounded in the dialogue and which were not. Re-annotation steps are shown in Figure

4.3. This process helps improve evaluation fairness and enables models to be trained or

evaluated only on content that is truly present in the conversation.

14
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We used LLaMA-3.3-70B-Instruct to retrieve the specific segments that served as

the evidence source for each labeled field in the clinical notes. Evidence retrieval was

performed on both translation-based and summary-based datasets. This step allows us to

trace the origin of note content.

As described in Section 4.1.1, segmentation was initially applied. To validate the

presence of model-identified source sentences within their original contexts, we em-

ployed longest common subsequence matching, computing similarity scores via Sequence-

Matcher. The string matching similarity was found to be 0.4439 for the translation-based

dataset and 0.8665 for summary-based datasets. The diminished score in the translation-

based dataset did not indicate hallucinated content, but instead reflected challenges in

string-level matching due to paraphrasing, punctuation alterations, or LLM-driven re-

wording. Manual verification confirmed the trustworthiness of these retrieved evidences,

despite lexical variations. This process served to identify clearly absent sources.

Figure 4.4 illustrates the comparison of the number of data points with identified

sources before and after the evidence retrieval process. The columns with the most

consistently annotated sources are Chief Complaint, History of Present Illness, and Plan,

while a substantial portion of entries for Allergy History, History of Betel Nut, History of

Drinking, Smoking History, and Profession lacked identifiable label sources. To further

improve annotation reliability, we compared evidence retrieval results between translated

dialogues and their corresponding summaries, as shown in Figure 5a and Figure 5b. In

cases where the model identified inconsistent sources between the two, we conducted

manual re-annotation to confirm the correct label. This cross-validation step helped

ensure high-quality annotations for downstream training and evaluation. Additionally,

those columns lacked source references were also re-annotated by manual check.

15
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Figure 4.6: Overview of the Two-stage Retrieval-Augmented Generation

4.2 Clinical Note Generation

4.2.1 One-stage End-to-end Generation

For both the FamilyMed-Dialogue-Note and ACI-Bench datasets, we evaluated large

language models (LLMs) under various configurations, including different model sizes,

few-shot prompting, supervised fine-tuning, and supervised fine-tuning combined with

few-shot prompting. To enable efficient fine-tuning with limited computational resources,

we adopted Low-Rank Adaptation (LoRA). These experiments aimed to compare LLM

performance across key prompting strategies and assess the impact of fine-tuning and

instruction-following capabilities.

4.2.2 Two-stage Retrieval-Augmented Generation

This experiment was designed primarily to investigate whether supervised fine-tuning

(SFT) enables LLMs to effectively capture and localize relevant information from doctor-

patient conversations. While previous experiments focused on direct generation of clinical

notes, the RAG framework provides a more interpretable two-stage pipeline that explicitly

separates evidence retrieval from content generation. This design aims to prove whether

16
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fine-tuned models can reliably retrieve source spans that align with the clinical labels,

based on the ground-truth established through re-annotation.

As in Figure 4.6, we constructed a two-stage Two-stage Retrieval-Augmented Genera-

tion framework using LLaMA-3.1-8B-Instruct. Both models in the pipeline were trained

using supervision derived from the re-annotated FamilyMed-Dialogue-Note dataset.

Stage 1: Evidence Retrieval The first model in the RAG pipeline is trained to retrieve

relevant evidence spans from the input dialogue or summary. Each training instance

consists of a dialogue (or its summary) as input, and the corresponding evidence span(s)

identified in the re-annotation stage as output. This model simulates a retrieval step by

learning to locate the specific segments in the conversation that support each clinical note

field.

Stage 2: Information Extraction The second model takes the retrieved evidence spans

(i.e., the outputs of the first stage) as input and generates the final content for each structured

field in the clinical note. During training, the input to this model is the retrieved evidence

text, and the target output is the corresponding column value (e.g., ’Chief complaint’,

’Family history’, etc.) from the ground truth clinical note. This setup allows us to evaluate

whether the model can extract accurate labels given only the relevant context.

By separating retrieval from generation, the RAG approach enhances both transparency

and interpretability. Moreover, it functions as a diagnostic framework for assessing whether

supervised fine-tuning (SFT) effectively enables the model to ground its outputs in the

retrieved source context.

17
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4.2.3 One-stage Generation with Synthetic Dialogue Augmentation

To overcome the limited scale of real-world outpatient conversations in the FamilyMed-

Dialogue-Note dataset, we explored synthetic dialogue generation from clinical notes to

improve the diversity of training data. In particular, to address the imbalance caused by the

high proportion of ’na’ labels, we restricted generation to entries with ”non-na” column

labels.

We designed four generation strategies using LLaMA-3.3-70B-Instruct for better

diversity:

1. Same Note (1-shot) Given a target clinical note and its corresponding dialogue, the

goal is for the model to generate a synthetic dialogue that mimics the original’s writing

style.

2. Random Note-Dialogue (1-shot) To encourage diversity, we randomly sample a

dialogue-note pair from the training set as an in-context example, regardless of its similarity

to the target note. This approach introduces variation in prompting patterns and tests the

model’s generalization capability under mismatched examples.

3. Complex Guidance-Based Generation We designed a detailed set of instructions to

guide the generation of highly realistic and nuanced conversations referring to the NoteChat

framework [5]. The model is prompted with the clinical note and a comprehensive

guideline that ensures the conversation follows natural clinical interaction flow. The

guidance includes the following key elements:

• Start with a greeting from the doctor and maintain a turn-by-turn exchange.
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• Make the conversation colloquial, especially for the patient, while keeping the

doctor’s language more professional.

• Target 50–250 dialogue turns per conversation, often spreading a single piece of

information over multiple turns.

• Ensure patient-reported symptoms align closely with the clinical note, and exclude

information marked as ”na”.

• Ensure logical and progressive questioning by the doctor.

• Include small talk and realistic interjections to enhance authenticity.

• Conclude with a summary and plan from the doctor.

This method aims to generate richly detailed dialogues that more accurately reflect the

complexity of real-world consultations.

4. Roleplaying-Based Generation To simulate natural and comprehensive doctor-

patient interactions, the model is instructed to take on the roles of both doctor and patient.

The generation prompt is initialized with role definitions and a clinical note, and the model

then alternates between generating turns for each participant. Inspired by the NoteChat

framework [5], we designed a mechanism to guide the conversation based on structured

coverage. Specifically, we first convert the clinical note into a structured checklist of

fields (e.g., chief complaint, family history). Initially, we attempted to enforce a fixed-

format response to identify covered items by exact string comparison. However, this rigid

strategy proved unreliable, as the model’s responses often paraphrased or combined items,

making it difficult to accurately detect coverage and causing conversations to either stall

or continue indefinitely. As an alternative, at each turn, we apply a Coverage Checking
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Prompt to identify which items in the checklist have not yet been discussed. The output

of the Coverage Checking Prompt was fed directly into the doctor and patient prompts as

context. This allowed the model to organically incorporate the remaining topics into the

ongoing conversation and to end more fluently and naturally.

4.3 Evaluation Metrics

To evaluate the quality and clinical relevance of the generated notes, we employed

a combination of automatic evaluation metrics and LLM-based semantic analysis. Our

primary evaluation follows the guidelines and metrics used in the MEDIQA-Chat 2023

shared task [6].

Standard Generation Metrics. We adopted three widely used automatic metrics for

evaluating text generation quality:

• ROUGE-1: Measures unigram (word-level) overlap between the generated note and

the reference. It captures lexical similarity and is commonly used in summarization

tasks.

• BERTScore-F1: Computes semantic similarity using contextual embeddings from

a pre-trained BERT model. It better reflects meaning preservation, especially in

medically rephrased content.

• BLEURT: A learned metric that combines fluency, grammar, and semantic accu-

racy, fine-tuned on human judgment data for sentence-level evaluation.

To provide an overall score, we also report the average of ROUGE-1, BERTScore-F1,

and BLEURT, to balance lexical overlap, semantic similarity, fluency and correlation with

human judgment.
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Medical Coverage and Observations. In addition to standard metrics, we assessed

how well the generated notes covered the clinically relevant information. We employed

LLaMA3-OpenBioLLM-70B, an advancing open-source LLM in medical domain, to

provide structured explanations and identify:

• Whether source contexts are correctly preserved.

• Whether hallucinated or unsupported statements are present.
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Chapter 5. Experiments

5.1 Experimental Setup

In this thesis, we evaluate and compare the performance of these large language

models (LLMs) of varying sizes and architectures: LLaMA-3.1-8B-Instruct, Mistral-

Small-Instruct-2409, Gemma-2-27b-it and LLaMA-3.3-70B-Instruct. For clarity, we refer

to these models as LLaMA-8B, Mistral-22B, Gemma-27B, and LLaMA-70B, respectively.

We conduct experiments on two datasets: the FamilyMed-Dialogue-Note dataset and

the ACI-Bench dataset (see Section 3 for details). For the FamilyMed-Dialogue-Note

dataset, we use 75 samples for training (with 10% held out for validation) and 19 samples

for testing. The ACI-Bench dataset is split into 67 training samples, 20 validation samples,

and 40 test samples.

To evaluate model performance, we adopt standard text generation metrics: ROUGE-

1, BERTScore-F1, and BLEURT, and also report the average of these three scores ,

as described in Section 4.3. Further evaluation of clinical faithfulness and information

grounding is conducted using LLaMA3-OpenBioLLM-70B explanations, which are dis-

cussed in Section 6.

All experiments are performed with at most 2 48G NVIDIA RTX A6000 GPUs,

depending on model size and memory requirements. Under limited GPU memory con-

straints, supervised fine-tuning is performed on LLaMA-8B using Low-Rank Adaptation

(LoRA), which enables efficient parameter-efficient training.

We organize our experiments around three clinical note generation strategies described
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LLM ROUGE-1 BERTScore-F1 BLEURT Average
LLaMA-8B 0.4855 0.7022 0.3750 0.5209
Mistral-22B 0.5197 0.7195 0.4039 0.5477
Gemma-27B 0.5059 0.7065 0.3460 0.5195
LLaMA-70B 0.4840 0.7013 0.3787 0.5213

Table 5.1: Evaluation of LLMs of different sizes (7B to 70B) on clinical dialogue genera-
tion (FamilyMed-Dialogue-Note).

LLM ROUGE-1 BERTScore-F1 BLEURT Average
LLaMA-8B 0.2188 0.5235 0.4937 0.4120
Mistral-22B 0.2815 0.5553 0.4027 0.4132
Gemma-27B 0.3723 0.6210 0.4390 0.4774
LLaMA-70B 0.3810 0.6132 0.4572 0.4838

Table 5.2: Evaluation of LLMs of different sizes (7B to 70B) on clinical dialogue genera-
tion (ACI-Bench).

in Section 4.2:

• One-stage End-to-end Generation: Leveraging LLMs to compare zero-shot in-

ference across different model sizes, few-shot prompting strategies, and supervised

fine-tuning applied to both summaries and dialogues.

• Two-stage Retrieval-Augmented Generation: Utilizing retrieved relevant seg-

ments from the dialogue / summary to generate specific clinical note fields.

• One-stage Generation with Synthetic Dialogue Augmentation: Generating arti-

ficial patient-doctor conversations from clinical notes to augment training data.
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5.2 One-stage End-to-end Generation

5.2.1 Impact of Model Size

We first examine the impact of model size on the clinical note generation task. Ta-

ble 5.1 presents the performance of four LLMs of varying sizes, ranging from 8B to

70B parameters, on the FamilyMed-Dialogue-Note dataset. Among the evaluated models,

Mistral-22B achieves the highest performance across all metrics, with an average score

of 0.5477, indicating strong alignment with reference clinical notes in both lexical over-

lap and semantic similarity. Interestingly, LLaMA-70B, despite being the largest model,

does not outperform its smaller counterparts, suggesting that model size alone does not

guarantee better generation quality in this low-resource, domain-specific setting.

In contrast, results on the ACI-Bench dataset, shown in Table 5.2, reveal a clearer ben-

efit from larger model sizes. LLaMA-70B attains the highest overall average score, driven

by strong ROUGE-1 and BLEURT performance, while Gemma-27B achieves the highest

BERTScore-F1, reflecting strong semantic similarity to the reference notes. Smaller mod-

els like LLaMA-8B and Mistral-22B trail behind, with particularly low ROUGE-1 scores,

suggesting reduced ability to capture surface-level content overlap.

These findings highlight that model size alone is not the sole determinant of perfor-

mance. In low-resource scenarios, moderately sized models like Mistral-22B can strike a

favorable balance between performance and computational cost, while larger models may

offer additional benefits for datasets with richer or more diverse clinical content.
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Method ROUGE-1 BERTScore-F1 BLEURT Average
0-shot 0.5197 0.7195 0.4039 0.5477
3-shot 0.4691 0.6824 0.3916 0.5144

Table 5.3: Performance comparison of Mistral-22B under 0-shot and 3-shot settings
(FamilyMed-Dialogue-Note).

Method ROUGE-1 BERTScore-F1 BLEURT Average
0-shot 0.3810 0.6132 0.4572 0.4838
2-shot 0.3920 0.6382 0.4777 0.5026

Table 5.4: Performance comparison of LLaMA-70B under 0-shot and 2-shot settings
(ACI-Bench).

5.2.2 Effect of Few-Shot Prompting

To evaluate the adaptability of LLMs in few-shot scenarios, we conducted additional

experiments with providing a small number of in-context examples during inference.

These experiments were conducted on the best-performing models from the model size

comparison: Mistral-22B on the FamilyMed-Dialogue-Note dataset and LLaMA-70B on

the ACI-Bench dataset.

As shown in Table 5.3, Mistral-22B performed best in the 0-shot setting, achieving

an average score of 0.5477, outperforming the 3-shot setup, which reaches 0.5144. This

unexpected performance drop may be attributed to the increased input length and con-

textual noise introduced by additional examples, which could confuse the model in a

low-resource domain with constrained lexical patterns. In contrast, Table 5.4 demon-

strates that LLaMA-70B benefits from few-shot prompting on the ACI-Bench dataset.

The 2-shot configuration yields an improved average score of 0.5026, compared to 0.4838

in the 0-shot setting. Notably, the largest gains appear in BERTScore-F1 and BLEURT,

indicating that additional examples help the model better capture semantic alignment and
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Method ROUGE-1 BERTScore-F1 BLEURT Average
0-shot 0.4855 0.7022 0.3750 0.5209
SFT 0.6128 0.7626 0.3892 0.5882

Mistral-22B 0-shot 0.5197 0.7195 0.4036 0.5476

Table 5.5: Performance comparison highlighting the effect of supervised fine-tuning (SFT)
on LLaMA-8B (FamilyMed-Dialogue-Note).

Method ROUGE-1 BERTScore-F1 BLEURT Average
0-shot 0.2188 0.5235 0.4937 0.4120
SFT 0.5674 0.7514 0.5484 0.6224

LLaMA-70B 2-shot 0.3920 0.6382 0.4777 0.5026

Table 5.6: Performance comparison highlighting the effect of supervised fine-tuning (SFT)
on LLaMA-8B (ACI-Bench).

naturalness in note generation.

Overall, the effectiveness of few-shot prompting appears to be highly dependent on

both the dataset and the model. While few-shot examples can enhance performance in

some contexts, they may also hinder generation in others, especially when the model is

already well-aligned with the task in zero-shot settings or when the dataset’s structure is

sensitive to input length and format.

5.2.3 Supervised Fine-tuning (SFT)

To further evaluate the effectiveness of supervised fine-tuning (SFT) for clinical note

generation, we fine-tuned LLaMA-8B using Low-Rank Adaptation (LoRA) on both the

FamilyMed-Dialogue-Note and ACI-Bench datasets.

According to Table 5.5, for the FamilyMed-Dialogue-Note dataset, LLaMA-8B with

SFT achieved the best overall performance among all settings, outperforming both its

0-shot baseline and the best 0-shot result from Mistral-22B. Specifically, SFT improved

ROUGE-1 from 0.4855 to 0.6128, BERTScore-F1 from 0.7022 to 0.7626, and the average
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Input Set ROUGE-1 BERTScore-F1 BLEURT Average
Summary 0.6128 0.7626 0.3892 0.5882
Dialogue 0.6064 0.7459 0.3590 0.5704

Table 5.7: Performance comparison of LLaMA-8B models trained on summary vs. dia-
logue inputs (FamilyMed-Dialogue-Note).

score from 0.5209 to 0.5882. While Mistral-22B in 0-shot setting achieved a higher

BLEURT score, the overall gain in the other metrics clearly highlights the benefit of

task-specific fine-tuning.

The improvements are even more pronounced on the ACI-Bench dataset (Table 5.6),

where SFT boosted the average score from 0.4120 (0-shot) to 0.6224. LLaMA-8B with

SFT also surpassed the best few-shot result from LLaMA-70B, which achieved an average

score of 0.5026. These results demonstrate that supervised fine-tuning with LoRA can

enable smaller models to outperform larger ones under prompting-only settings. All results

highlights the strong highlighting the effectiveness of SFT on the clinical note generation

task.

Overall, the results underscore the effectiveness of SFT in enhancing model per-

formance and domain adaptation, even when applied to relatively compact models like

LLaMA-8B.

5.2.4 Input Format Comparison

All results presented above are derived from the summary input set. To further assess

the impact of input format, we evaluated the SFT performance using both summary

and dialogue input sets. Table 5.7 illustrates that the model trained on summary inputs

consistently outperforms the model trained on dialogue inputs across all evaluation metrics.

These findings suggest that concise and structured input offers more effective supervision
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Method ROUGE-1 BERTScore-F1 BLEURT Average
SFT 0.6128 0.7626 0.3892 0.5882

SFT w/ 3-shot 0.5949 0.7458 0.3651 0.5686

Table 5.8: Performance comparison of LLaMA-8B models fine-tuned with or without
few-shot prompting (FamilyMed-Dialogue-Note).

Method ROUGE-1 BERTScore-F1 BLEURT Average
SFT 0.5674 0.7514 0.5484 0.6224

SFT w/ 3-shot 0.5262 0.7327 0.5175 0.5921

Table 5.9: Performance comparison of LLaMA-8B models fine-tuned with or without
few-shot prompting (ACI-Bench).

for clinical note generation.

5.2.5 Combining SFT with Few-Shot Prompts

Moreover, we explored the effect of few-shot prompting in the SFT setting using

in-context examples. However, few-shot prompting did not provide additional benefit

over direct SFT, and in fact resulted in slightly degraded performance (see Table 5.8 and

Table 5.9). These results suggest that incorporating few-shot examples during fine-tuning

may introduce unnecessary complexity or noise, potentially leading to marginal reductions

in performance.

Information Source rouge1 BERTScore-F1 BLEURT Average
FamilyMed-Dialogue-Note 0.7676 0.8490 0.7929 0.7577

ACI-Bench 0.4926 0.6605 0.5120 0.5550

Table 5.10: Evidence retrieval model (SFT-LLaMA-8B) performance
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Figure 5.1: Example of a ”Chief Complaint” retrieved evidence span.

Source Set Stage-2 Information Extraction Method ROUGE-1 BERTScore-F1 BLEURT Average

Summary

Full-3-shot 70B 0.5220 0.7137 0.4051 0.5469
Note-3-shot 70B 0.4956 0.6942 0.4065 0.5321

SFT 0.4701 0.6795 0.3345 0.4947
SFT(note-3-shot) 0.3852 0.6300 0.2777 0.4309

Dialogue
SFT 0.4239 0.6551 0.3104 0.4631

SFT(note-3-shot) 0.5100 0.6979 0.3175 0.5085

Table 5.11: Performance comparison of Stage-2 extraction methods with summary and
dialogue inputs (FamilyMed-Dialogue-Note).

5.3 Two-stage Retrieval-Augmented Generation

The RAG pipeline employed in this study consists of two stages: (1) an evidence

retrieval stage, followed by (2) an information extraction stage. A shared retriever model

is used across all RAG methods, and its retrieval quality is summarized in Table 5.10.

An illustrative example of the retrieved evidence spans is provided in Figure 5.1. In the

information extraction stage, we evaluate inference using LLaMA-70B with full few-shot

(dialogue-note pairs) or note-only few-shot, as well as fine-tuning LLaMA-8B with or

without additional few-shot prompts.

On the FamilyMed-Dialogue-Note dataset (Table 5.11), the best average performance

(0.5469) is achieved by LLaMA-70B using full few-shot prompting with summary-based

inputs. This method also leading in ROUGE-1 (0.5220) and BERTScore-F1 (0.7137), in-

dicating strong lexical and semantic alignment. Overall, summary source sets outperform
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Method ROUGE-1 BERTScore-F1 BLEURT Average
SFT(Evidence Retrieval) + Full-3-shot 70B 0.5220 0.7137 0.4051 0.5469

One-Stage SFT 0.6128 0.7626 0.3892 0.5882

Table 5.12: Comparison of the best RAG-based method and the best one-stage SFT model
(FamilyMed-Dialogue-Note).

Stage-2 Information Extraction Method ROUGE-1 BERTScore-F1 BLEURT Average
Full-3-shot 70B 0.3719 0.6289 0.4460 0.4823
Note-3-shot 70B 0.3728 0.6283 0.4548 0.4853

SFT 0.4026 0.6710 0.4600 0.5112
SFT(note-3-shot) 0.4034 0.6816 0.4678 0.5176

Table 5.13: Performance comparison of Stage-2 extraction methods (ACI-Bench).

dialogue-based ones. However, the SFT-LLaMA-8B model with note-3-shot prompt-

ing performs well on dialogue-based generation, achieving competitive ROUGE-1 and

BERTScore-F1 compared to top summary-based methods.

When comparing RAG with the best one-stage SFT method (Table 5.12), we observe

that the best two-stage RAG method (SFT(Evidence Retrieval) + full-few-shot with LLMA-

70B) performs slightly worse overall. While RAG leads in BLEURT (0.4051 vs. 0.3892),

indicating stronger semantic fluency, SFT consistently achieves higher ROUGE-1 and

BERTScore-F1, suggesting better lexical and structural alignment.

For the ACI-Bench dataset, the best performance across all metrics is achieved by the

SFT-LLaMA-8B model using note-3-shot prompting, unlike the FamilyMed-Dialogue-

Note dataset where full-few-shot prompting with 70B performed best. Details are pre-

sented in Table 5.13.

On the whole, although the best two-stage RAG approach performs slightly worse

than the one-stage SFT model, the results demonstrate the capability of smaller fine-tuned

LLMs to retrieve and utilize evidence effectively. This suggests that when a model performs

well in a one-stage setting, introducing a two-stage pipeline may lead to additional error
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Method Self-BLEU(↓) Factuality
Same Note (1-shot) 0.7034 0.5352

Random Note-Dialogue (1-shot) 0.7273 0.8847
Complex Guidance-Based Generation 0.7344 0.6580

Roleplaying-Based Generation 0.7510 0.4349

Table 5.14: Evaluation of generated dialogues (FamilyMed-Dialogue-Note).

propagation that offsets potential gains.

5.4 One-stage Generation with Synthetic Dialogue Augmentation

To enhance training data, we generated synthetic dialogues and filtered high-quality

examples using Self-BLEU (for diversity) and factuality scores provided by LLaMA3-

OpenBioLLM-70B. The average evaluation results of four generation methods are pre-

sented in Table 5.14. It is challenging to reflect the complexities of real-world conversa-

tions by synthetic dialogues from local LLMs:

• Same Note-Dialogue (1-shot), Random Note-Dialogue (1-shot): Generated sen-

tences often lack diversity in structure and phrasing.

• Complex Guidance-Based Generation: Produces more complex outputs but does

not follow all the guidelines.

• Roleplaying-Based Generation: Struggles to end conversations naturally.

Random Note-Dialogue (1-shot) and Complex Guidance-Based Generation had

better balance in the scores, and samples have less hallucination explained by LLaMA3-

OpenBioLLM-70B, so we selected the generated data by these 2 methods for augmentation.

Additionally, summaries corresponding to the selected synthetic dialogues were gen-

erated and included in training. As shown in Table 5.15, SFT(Original + Complex
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Generation Method ROUGE-1 BERTScore-F1 BLEURT Average
SFT(Original + Random Shot Generation) 0.5511 0.7179 0.3548 0.5413

SFT(Original + Complex Guidance Generation) 0.5840 0.7472 0.3843 0.5718
SFT(Original + All Generation) 0.3750 0.6309 0.3082 0.4381

SFT(Original) 0.6128 0.7626 0.3892 0.5882

Table 5.15: Performance of SFT models trained with synthetic data generated by different
augmentation methods, compared to the baseline using original data only (FamilyMed-
Dialogue-Note).

Guidance Generation) achieved the best performance among all augmentation strate-

gies. However, overall metric scores did not improve compared to fine-tuning solely

on original data. Furthermore, we observed a significant performance drop in columns

with a high proportion of ’na’ labels. This finding suggests that while the model’s ten-

dency to overgenerate ’na’ labels for these columns may have changed, its ability to judge

information coverage diminished.
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Chapter 6. Discussion

6.1 Case Study

To further interpret and evaluate the quality of generated clinical note fields, we

conducted a case study based on outputs from our primary approaches. These analyses

leveraged LLaMA3-OpenBioLLM-70B to provide explanations and comparative insights.

Representative examples are presented in Table 6.1. Methods like LLaMA-8B - SFT

(M1), Mistral-22B - inference (M2), LLaMA-70B - inference (M4), and the RAG method

successfully captured essential information details. For instance, in the Chief Complaint

example, they correctly identified ”1 month” duration, and in the Family History example,

they accurately reported family members with corresponding conditions. The answers

generated by LLaMA-8B - SFT exhibit the highest stylistic similarity to the corresponding

column labels. The RAG method, in particular, demonstrated its efficacy by retrieving

the correct evidence spans. In contrast, the SFT model with data augmentation (AUG)

introduced inaccuracies, such as ”3 day” instead of ”1 month” in the Chief Complaint and

incorrect family members with hallucinated histories in the Family History example. Note

that while the ”niece” detail in the Family History for some models (M3, M4, RAG) is not

in the label, it is present in the original dialogue, indicating faithful extraction rather than

hallucination.

6.2 Column-Wise Analysis

As detailed in Table 6.2, a column-wise analysis of the three leading methods reveals

distinct performance strengths and weaknesses across different parts of the clinical note.

The results indicate that no single method is universally superior, and the best-performing
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Column Method Genetated Answer

Chief complaint

M1 abdominal pain and diarrhea for 1 month
M2 Abdominal pain and diarrhea for over a month
M3 Abdominal discomfort and constipation
M4 Abdominal pain and diarrhea for over a month

RAG
Abdominal pain and diarrhea for over a month,
with increased severity and watery stools,
accompanied by bloating and abdominal discomfort.

AUG Abdominal pain and constipation for 3 day

Label
Refer from clinic for further evaluation of chronic diarrhea for 1+ months.
watery diarrhea for 1 month (since May.2020)

Family history

M1 grandfather: liver cancer, grandmother: DM, stroke

M2
Grandfather had liver cancer, grandmother had diabetes, a stroke,
niece diagnosed with a neurological disorder at a young age

M3 na

M4
Grandfather had liver cancer, grandmother had diabetes, a stroke,
and niece was diagnosed with a neurological disorder

RAG
Neurological disorder (niece), liver cancer (grandfather),
diabetes (grandmother), stroke (grandmother)

AUG
grandfather: colon cancer, grandfather: stroke, grandmother: DM,
father: HTN, mother: HTN

Label grandfather: liver cancer, grandmother: DM, died of stroke

Table 6.1: Case study of generated answers from main approaches.

M1: LLaMA-8B - SFT, M2: Mistral-22B - inference, M3: Gemma-27B - inference,
M4: LLaMA-70B - inference, RAG: SFT(Evidence Retrieval) + Full-3-shot 70B, AUG:
SFT(Original + Complex Guidance Generation).
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Column Method ROUGE-1 BERTScore-F1 BLEURT Column Average

Chief complaint
One-stage SFT 0.2177 0.5381 0.2548 0.3369

Evidence Retrieval + Full-3-shot 70B Extraction 0.1786 0.5223 0.3036 0.3348
SFT(Original + Complex Guidance Generation) 0.2592 0.5729 0.3274 0.3865

History of present illness
One-stage SFT 0.1425 0.4839 0.2495 0.2920

Evidence Retrieval + Full-3-shot 70B Extraction 0.1566 0.5198 0.3563 0.3442
SFT(Original + Complex Guidance Generation) 0.1746 0.5228 0.2995 0.3323

Past medical history
One-stage SFT 0.3741 0.6320 0.2507 0.4189

Evidence Retrieval + Full-3-shot 70B Extraction 0.4078 0.6703 0.3194 0.4658
SFT(Original + Complex Guidance Generation) 0.4211 0.6285 0.2415 0.4304

Current medications
One-stage SFT 0.5789 0.7236 0.3430 0.5485

Evidence Retrieval + Full-3-shot 70B Extraction 0.2632 0.5371 0.2142 0.3382
SFT(Original + Complex Guidance Generation) 0.5789 0.7218 0.3450 0.5486

Allergy history
One-stage SFT 0.8571 0.9000 0.4752 0.7441

Evidence Retrieval + Full-3-shot 70B Extraction 0.7694 0.8305 0.4983 0.6994
SFT(Original + Complex Guidance Generation) 0.8632 0.9053 0.4796 0.7494

Family history
One-stage SFT 0.7368 0.8065 0.4626 0.6686

Evidence Retrieval + Full-3-shot 70B Extraction 0.7871 0.8596 0.5234 0.7234
SFT(Original + Complex Guidance Generation) 0.6564 0.7705 0.3739 0.6003

History of
betel nut, drinking

and smoking

One-stage SFT 0.9474 0.9642 0.5206 0.8107
Evidence Retrieval + Full-3-shot 70B Extraction 0.8969 0.9395 0.5233 0.7866
SFT(Original + Complex Guidance Generation) 0.8618 0.9212 0.4961 0.7597

Regular exercise
One-stage SFT 0.6488 0.7847 0.3822 0.6052

Evidence Retrieval + Full-3-shot 70B Extraction 0.6269 0.7734 0.4377 0.6127
SFT(Original + Complex Guidance Generation) 0.6182 0.7713 0.3983 0.5959

Profession
One-stage SFT 0.7424 0.8367 0.4529 0.6773

Evidence Retrieval + Full-3-shot 70B Extraction 0.7382 0.8449 0.4493 0.6775
SFT(Original + Complex Guidance Generation) 0.7579 0.8384 0.4577 0.6847

Diet
One-stage SFT 0.6842 0.7970 0.4016 0.6276

Evidence Retrieval + Full-3-shot 70B Extraction 0.5569 0.7280 0.4148 0.5666
SFT(Original + Complex Guidance Generation) 0.5711 0.7432 0.3888 0.5677

Assessment
One-stage SFT 0.5789 0.7243 0.3326 0.5453

Evidence Retrieval + Full-3-shot 70B Extraction 0.0327 0.3793 0.2790 0.2303
SFT(Original + Complex Guidance Generation) 0.5263 0.6868 0.3085 0.5072

Plan
One-stage SFT 0.1752 0.5571 0.2820 0.3381

Evidence Retrieval + Full-3-shot 70B Extraction 0.0993 0.5078 0.3046 0.3039
SFT(Original + Complex Guidance Generation) 0.1641 0.5361 0.2713 0.3238

Table 6.2: Comparison of the best-performing methods from each of the three approaches
(One-stage End-to-end Generation, Two-stage Retrieval-Augmented Generation , and One-
stage Generation with Synthetic Dialogue Augmentation) across all clinical note columns.

35

http://dx.doi.org/10.6342/NTU202504251


doi:10.6342/NTU202504251

approach often depends on the specific type of information being generated. A key

finding is the overall stability of the One-stage SFT method, which provides a consistent

performance baseline across all columns.

6.2.1 Chief Complaint

For the Chief Complaint column, the SFT(Original + Complex Guidance Gener-

ation) method achieved the highest scores across all metrics, likely benefiting from the

diverse phrasings introduced during the augmentation process.

6.2.2 Patient History and Lifestyle

In the various patient history columns, performance was more distributed. The Evi-

dence Retrieval + Full-3-shot 70B Extraction method was the strongest for generating

the History of present illness, Past medical history and Family history particularly

excelling on BERTScore-F1 and BLEURT. This indicates that grounding the model with

retrieved evidence is highly effective for synthesizing factual, context-dependent infor-

mation. Conversely, for more straightforward and list-based lifestyle-related clinical note

entries, the simpler One-stage SFT approach demonstrated the highest performance. This

suggests that for columns such as History of betel nut, drinking and smoking, Regu-

lar exercise and Diet, a direct fine-tuning approach without augmentation or retrieval is

often sufficient and less prone to introducing errors. The simplicity of these labels likely

contributed to the particularly high scores achieved on these columns.

6.2.3 Assessment and Plan

The most significant performance differences were observed in the Assessment and

Plan columns, which require a high degree of clinical judgment and synthesis. The
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One-stage SFT method performed exceptionally well, achieving the highest scores for

both Assessment (Average: 0.5453) and Plan (Average: 0.3381). Notably, the Evidence

Retrieval + Full-3-shot 70B Extraction method performed very poorly on both columns.

This highlights a critical limitation of the two-stage RAG approach, where error propaga-

tion from the initial retrieval phase may negatively impact the final output, particularly for

tasks that require complex inference rather than straightforward information extraction.
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Chapter 7. Conclusion

This work focused on the local application of Large Language Models for clinical note

generation. Our methodology involved a robust data preprocessing pipeline, including

summarization, translation, and re-annotation. We further investigated three distinct note

generation paradigms: One-stage End-to-end Generation, Two-stage Retrieval-Augmented

Generation (RAG), and One-stage Generation with One-stage Generation with Synthetic

Dialogue Augmentation.

Our experiments demonstrated the effectiveness of supervised fine-tuning (SFT) meth-

ods and the capability of smaller LLMs in retrieving accurate evidence spans. Notably, the

one-stage SFT approach offers a strong balance between performance and compu-

tational efficiency, achieving stable results while requiring significantly lower inference

cost compared to multi-stage or large-model few-shot pipelines.

On the other hand, synthetic data proved unstable in faithfully reflecting the complexi-

ties of real-world conversations. The complexity and length of real-world clinical contexts

also contributed to performance limitations across all methods.

Overall, our findings highlight that cost-effective, locally deployable LLMs, especially

when well fine-tuned, can effectively assist in summarizing clinical notes from conver-

sations. However, challenges remain, including long-context handling, data imbalance,

evaluation limitations, and the constraints of fully local deployment. Future work should

focus on scaling datasets, enhancing faithfulness evaluation, and involving domain experts

to strengthen clinical applicability.
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