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Abstract

For architectural structures, structural health monitoring is crucial. It can be used to
observe the damage to structures after a disaster in order to assess the reinforcement
methods. It is also used for evaluating the lifespan of old buildings. Proper structural
health monitoring and reinforcement can extend the lifecycle of a building and even
prevent loss of life and property. Currently, structural health monitoring can be
categorized as destructive and non-destructive testing. Non-destructive testing is usually
the preferred method for conducting extensive building health assessments, such as
evaluating the extent of damage after a disaster or conducting regular assessments of old
houses. Non-destructive testing primarily examines the appearance of the building to
assess the level of damage, with a focus on observing crack patterns. This includes

measuring the length, width, and direction of cracks.

In the past, inspection methods required technicians to physically visit the site,
visually observe and mark the damage on a deterioration assessment form. However, the
manual observation and recording process was time-consuming, labor-intensive, and not
precise. Therefore, in recent years, there has been a shift towards computer-assisted crack
identification to save time and effort. The advantages of automated interpretation are
utilized to establish unified criteria for crack assessment.

This study proposes a process-oriented automated crack identification approach that
utilizes deep learning as the primary method for crack recognition. It aims to improve
upon the limitations of previous deep learning crack recognition methods. The proposed
approach simplifies the crack labeling process during training and enhances the

generalizability of the trained model to various types of cracks. It introduces a new
iv
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identification process that calculates the probability of crack occurrence and utilizes this

probability to determine the crack direction.

The crack recognition method proposed in this study consists of three main parts.
The first part involves training deep learning models. VGG19 and ResNet50, commonly
used deep learning models for image classification, are employed as the crack recognition
models for block images. To compare the generalizability of different training models,
the original dataset is transformed into grayscale images during training and prediction.
Additionally, contrast-limited adaptive histogram equalization (CLAHE) is applied to
correct the grayscale distribution of images. Data augmentation techniques are also
employed during the training process to increase the diversity of training photos.
The second part introduces the crack recognition process. This method involves
segmenting the original crack images into block images and adjusting the overlap rate of
these blocks. The block images are then fed into the deep learning models for prediction,
enabling pixel-level crack recognition results through image classification. Furthermore,
the probability distribution of the crack recognition results is utilized to calculate the

approximate position and direction of the cracks.

The third part is the validation of the crack recognition process, using crack images
captured in a parking lot to assess the feasibility of the proposed model. As there may be
differences in shooting conditions and crack patterns between the self-captured images
and the original training crack photo dataset, the generalizability of the crack recognition
method proposed in this study can be evaluated simultaneously. During the validation
process, it was found that using ResNet50 with the original training crack dataset

achieved the best recognition accuracy. The crack probability distribution calculated

v
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using a stride of 14 for adjacent block images effectively displayed the crack positions.
Finally, the crack positions and trends predicted by the Zhang-Suen skeletonization
algorithm were compared to the crack annotations in the original images. The results
showed that the proposed method effectively predicted the crack positions and trends,

with only a small portion of the crack areas remaining undetected.

vi
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. Full
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Block1 Block2 Block3 Block4 Block5 Classifier
2.10 VGGI6 H-3) % #
2.5.2 ResNet50

ResNet50 #-74] F= # 91 p ImageNet # %0 ILSVRC m% ) JE® 2015 & ehm A

[35] » ResNet50 & p »* ResNet 3% ¢ — B > H s

= 17
-3

¢ 3 ResNetl8 »

ResNet34 ~ ResNet50 ~ ResNet101 %2 ResNet152> 5 fa#-3] 1 & e £ & 430 5 ff
k HH el d#icd B 4o®B 2.11 #75% o 12 ResNet50 &2 ResNetl01 & &) 0 = —‘F'f aR

SBANr BEFRE SR RHIAGEEA YL 6 K2 23 K - AELE

ResNet50 F]1#H % & L ¢ ResNet 7254 > ¥ ¢ & F i > Python # ¢ Keras £ ¢

layer name | output size 18-layer [ 34-layer | 50-layer 101-layer 152-layer
convl 112112 Tx7, 64, stride 2
33 max pool, stride 2
[ 1x1,64 ] [ 1x1,64 ] 1x1,64 ]
conv2_x 5656 ' ' '
[;zggi] 2 [;iiz}ﬁ 3x3,64 | x3 3x3,64 | x3 3x3,64 |x3
' " | 1x1,256 | | 1x1,256 | | 1x1,256 |
- . - . [ 1x1,128 ] [ 1x1,128 [ 1x1,128
conv3x | 28x28 ;i; :;: %2 gi; iig wd | | 3%3,128 | x4 3x3, 128 | x4 33,128 | %8
- : - L : : | 1x1,512 | | 1x1,512 | | 1x1,512 |
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convdx | 14x14 ;xi’igg %2 gx;’;gz x6 | | 3x3,256 |x6 || 3x3,256 |x23 || 3x3.256 |x36
L 2X5 20 [ L3S 20 | 1x1,1024 | | 11,1024 | | 1x1,1024 |
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conv5_x 7x7 ;i;g:; %2 gi;;:; %3 || 3x3.512 [x3 3%3,512 | %3 3%3,512 | %3
L ’ : L : : 1x1,2048 1x1,2048 1x1,2048
1x1 average pool, l()U(}-cI fc, softmax
FLOPs L8x107 | 3.6x10° | 3.8x10° | 7.6x10° | 11.3x10°
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Leg = — Z yo,clog (po,c) (2-6)
c=1

Ho Lepd i 8 dienff s M3 Qs aiicd 2y, 5 W23 08 1 2 Bl #
LR Mo 0 U cPF o § R e FE g B pF Vo,c2- B4 1> n’vpo,cﬂ'l 2
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i AQRDN A A
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=x A2 3 #rie * 2. Loss Function e

Lcg = —(ylog(p) + (1 — y)log (1 — p)) 2.7

A ST

Beyz 5 08 1Rl ph) 532803 1%

2.6.1 ResNet50

ResNet5 fi-3] 2 3 S #ic7| >t 4 2.3 » 2 ? Learning Rate erE # 5 ¥ #8178
EHATIRAER BDGE RS2 E R 4B REEY > S REIATHALE ]
B TR A S MU R B TR 2.18 1 221 - R 2.18(a) ~ 2.19(a) ~ 2.20(a)
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ABE > X0 T A A - BRI O R AR R B E R Pl PR
PRFAEEHETAE DR % R BE] 7 ¢ 3 8 & # & (Over Fitting) e
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% 23 ResNet50 ;2 & 8 ¥ 21 %8k

Obtimizer Learning Loss Training Input Total
ptimize Rate Function Epochs Size Parameters
Cross- 224
Adam 0.0001 Entropy 50 % 294 23,850,242
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