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摘要 

 

本研究旨在探討機器學習技術於波動風險溢酬（Volatility Risk Premium, 

VRP）交易策略中的應用，透過結合行為金融與總體經濟變數，以提升策略獲利

表現與穩定性。本研究應用了兩種選擇權策略：Delta-hedged short straddle與

Delta-hedged short put 策略，並分別以「Raw VRP」與「Excess VRP」（扣除標普

500 報酬後之 VRP）為預測目標，評估多種機器學習模型之預測效能與交易表

現，包括 Linear Regression、Random Forest 與 Gradient Boost模型。本研究納入市

場情緒、意見分歧、動能因子、總體經濟指標與波動率等多元變數，並透過傳統

Feature Selection方法及 SHAP（SHapley Additive exPlanations）解釋性方法，分

析模型在不同維度下之穩健性與敏感度。實證結果顯示，於兩類策略中，Delta-

hedged short put策略相對具有較高之報酬潛力與風險調整後績效；而以 Excess 

VRP為目標變數之模型，整體而言具備更高之穩定性與預測能力。研究結果顯

示，行為與總體經濟變數可有效強化 VRP策略之預測性，並提供實務上進行動態

部位調整之依據；同時，本研究亦揭示在市場環境變遷下維持模型穩健性所面臨

之挑戰。綜上所述，本論文提出一套結合可解釋性機器學習方法與 Delta-hedged

選擇權策略之整合性架構，對於風險溢酬策略之研究與實務應用具一定貢獻。 

 

關鍵字：波動風險溢酬、選擇權策略、機器學習、行為金融、總體經濟變數 
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Abstract 

 

This thesis examines the application of machine learning models to predict and 

optimize the profitability of volatility risk premium (VRP) strategies through adaptive 

delta-hedging techniques informed by behavioral and macroeconomic indicators. 

Specifically, we construct and evaluate delta-hedged short straddle and put strategies on 

the S&P 500 index. By comparing two target formulations — raw VRP and excess VRP 

over the underlying index — we assess the predictive performance and trading efficacy 

of linear regression, random forest, and gradient boosting models. Our methodology 

encompasses comprehensive feature engineering, incorporating sentiment, 

disagreement, momentum, macroeconomic surprises, and volatility structure signals. We 

implement both traditional and SHAP-based feature selection techniques to evaluate the 

sensitivity of model performance to input dimensionality. Among the two strategy types, 

the put-only strategy displays higher return potential and stronger Sharpe ratios. At the 

same time, excess VRP emerges as a more stable and predictive target variable than raw 

VRP. The findings demonstrate the value of incorporating behavioral finance and 

macroeconomic insights into quantitative models, highlighting the practical challenges 

of maintaining model robustness in shifting environments. This study contributes to the 

growing literature on machine learning applications in asset pricing by proposing a 

framework that combines delta-hedged options trading with interpretable predictive 

modeling. 

 

Keywords: Volatility Risk Premium, Option Strategies,  Machine Learning, Behavioral 

Finance, Macroeconomic Variables
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1. Introduction  

 

1.1 Motivations 

Equity investors traditionally relied on both the outperformance of individual 

institutions and a strong market to achieve strong returns. However, this also exposes 

investors to economic shocks such as the Dot-com Bubble, the Great Financial Crisis, 

the Euro Area Crisis, and the COVID-19 Pandemic. Due to these potential market 

uncertainties, investors have always sought ways to manage their market exposures, 

leading to the development of risk-hedging instruments such as options and swaps. 

With implied volatility being a core component of financial derivatives as a 

measure of future risk, a growing number of researchers have directed their studies to 

the relationship between implied volatility and realized volatility. Jackwerth and 

Rubinstein (1996) found that the implied volatility for a significant drop in the S&P 500 

is considerably higher than the recorded realized volatility, indicating that investors 

often overpay for downside protection. Empirical results suggest that buyers of hedging 

instruments often pay a premium to offset the risk of realized volatility exceeding 

implied volatility. This premium is commonly referred to as the Volatility Risk Premium 

(VRP), which represents the gap between implied volatility and realized volatility. Guo 

and Loeper (2020) further demonstrated that VRP returns are positive in the long term 

and can be consistently harvested. This provides market participants with a reliable 

method of deviating from market-associated returns in alpha (the excess return of the 

market) or beta (the risk relative to the market). 

However, realized volatility can still exceed implied volatility at times, 

especially during market events that result in price jumps or sudden spikes in volatility. 
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These scenarios often lead to significant short-term losses for VRP strategies. To 

address these potential shortfalls, my research aims to establish a supervised learning 

framework that dynamically sizes the VRP strategy positions based on behavioral and 

macroeconomic signals, while also identifying and evaluating key signals that 

contribute to the success of VRP strategies. 

 

1.2 Contributions 

This study introduces a supervised machine learning framework for dynamically 

allocating the position size of VRP harvesting strategies based on both behavioral and 

macroeconomic signals. To achieve this, it introduces and selects useful training 

features that improve the performance of the VRP harvesting strategy, then uses the 

returns of delta-hedged short put and straddle strategies as the dependent variable in my 

model. This research primarily focuses on Random Forest, Gradient Boosting, and 

Ridge Regression as models. Performance is evaluated through statistical metrics and 

market benchmarks. Statistical metrics include R² and RMSE. Market benchmarks 

include the Sharpe ratio, drawdown, and correlation with the S&P 500. 

 

1.3 Paper Outline 

The remainder of this paper is organized as follows: Section 2 reviews the 

relevant literature on VRP and machine learning techniques with behavioral and 

macroeconomic signals. Section 3 provides the data, methodology, feature design, 

model selection, and implementation of the VRP strategy for this study. Section 4 

presents the empirical results of VRP strategies within a machine learning framework, 

comparing them to standard VRP strategies and the S&P 500 Index. Section 5 discusses 
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the findings and limitations of this study. Finally, section 6 concludes with suggestions 

for future research. 
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2. Literature Review 

 

2.1 Volatility Risk Premium 

The volatility risk premium is commonly described as the gap between implied 

and realized volatility. Early research on this topic primarily focused on the inclusion of 

volatility in establishing option pricing models, laying the groundwork for identifying 

the volatility risk premium as a component of option pricing. The Black-Scholes model 

paved the way for future work by introducing a systematic method for option pricing 

(Black & Scholes, 1973). It incorporated implied volatility to represent the market’s 

expectation of future volatility, but assumes volatility to be constant. Merton (1975) 

later focused on stochastic volatility and price jumps, extending the Black-Scholes 

model to include price movement as a component of options pricing. 

Later studies focused on the inconsistency between implied and realized 

volatility, later identified as the volatility risk premium. French et al. (1987) investigated 

the relationship between the expected market risk premium and the volatility of stock 

returns and found the link to be positive, suggesting a larger risk premium for higher 

volatility. Jackwerth and Rubinstein (1996) demonstrated that the implied volatility 

calculated using the Black-Scholes model is often overestimated compared to the 

realized volatility on the downside. Christensen and Prabhala (1998) demonstrated a 

tendency for implied volatility to overestimate realized volatility. From this, we can 

reasonably conclude that hedging, especially to the downside, generally requires a 

premium for sellers to assume the risk of increases in realized volatility.  

With empirical backing, many academics also explored the profitability of 

harvesting the VRP. Carr and Wu (2009) used synthetic variance swaps to trade current 



doi:10.6342/NTU202503618

5 
 

implied variance against future variance. Tang (2023) sold at-the-money straddles, puts, 

and calls on the S&P 500 index; all obtained positive average returns. However, using 

VRP harvesting strategies also came with significant downside risk. This risk becomes 

more pronounced during periods of unexpected increases in volatility, such as the 

Global Financial Crisis and the COVID-19 pandemic. To address this, recent research 

has started to look towards the predictability of VRP. Bollerslev et al. (2011) found VRP 

itself changes over time, suggesting it is influenced by behavioral and macroeconomic 

factors. My research looks at these factors and uses them as signals to improve the 

returns of VRP harvesting techniques.  

 

2.2 Behavioral Effects on VRP 

 Since VRP changes over time, further studies have examined the factors 

influencing these changes. This section focuses on the potential behavioral influences 

on VRP predictability. Behavioral finance suggests that behavioral factors, such as 

investor sentiment and fear, can lead to persistent mispricing in asset markets. In the 

context of options, studies of behavioral effects on VRP should present evidence on the 

relationship between behavioral factors and implied volatility. 

Smales (2014) identified a negative correlation between news sentiment and 

VIX, a volatility index derived from the implied volatility of SPX index options. The 

previously mentioned work on synthetic variance swaps by Carr and Wu (2009) 

attributed higher implied volatility to tail risks such as unexpected market moves. This 

supports the idea that investors tend to overweigh rare events due to loss aversion. 

Bollen and Whaley (2004) found that imbalances in order flow can influence implied 

volatility due to supply-demand dynamics and market frictions, resulting in a widening 

VRP. It is worth investigating whether the causes of the order flow imbalances are 
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behavioral in nature, as Bollen and Whaley suggest the imbalances could stem from 

overreaction and demand for protection, implying VRP could be a result of emotion-

driven demand. Sentiment indicators could also be helpful contributors in predicting 

VRP. Empirical evidence suggests that investors often overpay for downside protection 

during low sentiment periods, resulting in higher implied volatility and a higher VRP 

(Smales, 2014; Bollerslev et al., 2009). This suggests that sentiment-capturing 

indicators, such as volatility skew and bull-bear spreads, could potentially contribute to 

VRP predictability. 

 

2.3 Macroeconomic Effects on VRP 

With global economic and geopolitical risks rising in the last decade, economic 

uncertainties have come into focus recently. Londono et al. (2025) examined the 

implications of these uncertainties and found that investors demand higher risk 

premiums for bearing heightened risk. Empirical evidence has also shown that implied 

volatility increases relative to realized volatility as demand for downside protection 

increases. Bollerslev et al. (2009) established a connection between VRP and investor 

risk aversion and found correlations between risk aversion and macroeconomic 

variables, suggesting that macroeconomic factors may also influence VRP. Corradi et al. 

(2012) found VRP to be strongly countercyclical to the economy, further showing 

increased profitability during a pressured economy. Drechsler and Yaron (2011) focused 

on consumption growth and macroeconomic uncertainty to explain the time variation in 

VRP. These results suggest that macroeconomic-level indicators, such as GDP growth, 

unemployment, and inflation rates, could be incorporated into this study as predictors of 

VRP profitability. 
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In addition to macroeconomic level effects, macroeconomic forecast dispersion 

could offer context on economic uncertainties and market disagreements. An abundance 

of 

research already exists for the predictability of equity returns using economic forecast 

dispersion. For example, Bali et al. (2016) used economic dispersion as a component of 

uncertainty and found that equity with higher sensitivity to economic uncertainty 

experienced higher returns. However, similar research is lacking regarding 

macroeconomic forecast indicators on VRP predictability, so my study will also attempt 

to incorporate GDP forecasts, including forecast dispersions and surprises, into my 

predictive framework. 

 

2.4 Machine Learning in Finance 

The popularity of machine learning has been on the rise in finance, as machine 

learning models can capture complex, nonlinear relationships. This makes machine 

learning suitable for a wide variety of noisy financial data. Applications in finance have 

mostly focused on forecasting equity returns. For example, Gu et al. (2020) used 

Random Forest and neural network models to extract feature signals predicting stock 

returns, demonstrating that machine learning models can better capture nonlinearities 

across features compared to traditional regression techniques. Studies have also shown 

that machine learning better forecasts volatility than linear techniques. Christensen et al. 

(2022) demonstrated that machine learning models outperform linear models in 

predicting realized variance by comparing tree-based algorithms and neural networks 

with the Heterogeneous AutoRegressive (HAR) model. Bali et al. (2021) also found that 

non-linear machine learning models, including tree-based algorithms and neural 

networks, achieved higher R² compared to linear models when predicting option returns. 
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 However, compared to traditional econometric linear regressions, the “black 

box” nature of machine learning models makes feature interpretation harder to infer. As 

a result, feature selection and model interpretability become important areas of study, 

especially in highly regulated fields such as finance. Rudin (2018) argues that machine 

learning models should generally prioritize interpretability in high-stakes domains such 

as finance, since erroneous interpretations could result in detrimental outcomes, and a 

lack of interpretation could also become an obstacle to accountability. Guyon and 

Elisseeff (2003) provided an overview of feature selection methods. This paper follows 

their guidance and uses feature importance and permutation importance as feature 

selection methods. The study also employs SHAP (SHapley Additive exPlanations) 

values, as SHAP has the ability to provide both local and global explanations across 

complex non-linear models (Lundberg & Lee, 2017). 
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3. Data & Methodologies 

 

3.1 Behavioral & Economic Features 

3.1.1 VIX 

The VIX index represents the 30-day implied volatility of the S&P 500. As a 

forward-looking indicator derived from SPX option prices, VIX captures investor 

expectations of future volatility and is widely used as a proxy for market uncertainty. 

Bollerslev et al. (2011) show that the VIX can predict the VRP since it represents the 

implied volatility used in option-based variance swaps. Smales (2014) also notes that 

the VIX serves as a fear gauge, linking it to behavioral factors that influence risk 

premia. Due to its theoretical and empirical significance, the VIX is regarded as a key 

variable in predicting VRP. 

 

3.1.2 Trading Volume 

Trading volume serves as an important indicator of market activity. To pinpoint 

periods of unusually high or low investor participation, we use both a rolling z-score of 

volume, which standardizes the raw numbers against their average and standard 

deviation, and the standard raw trading volume. Typically, periods of high trading 

volume coincide with increased uncertainty or the arrival of new information, which 

influences option pricing and implied volatility (Chordia et al., 2000). Research by Bali 

et al. (2021) suggests that abnormal trading volume, particularly when combined with 

sentiment signals, enhances our ability to predict option returns. Furthermore, volume 

often correlates with limits-to-arbitrage and imbalances in order flow, which can shift 

VRP due to changes in option demand (Bollen & Whaley, 2004). 
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3.1.3 Relative Strength Index (RSI) 

RSI is a tool that helps traders gauge the momentum of price movements. It 

identifies whether the market is overbought or oversold, providing insights into investor 

sentiment or potential market fatigue. Research by Go et al. (2020) shows that RSI is 

commonly integrated into predictive equity models. Its effectiveness increases when 

combined with nonlinear features in machine learning, enabling the model to identify 

reversal and continuation trends, which aids in option pricing and understanding implied 

volatility. 

 

3.1.4 Put-Call Skew 

Put-call skew, which highlights the difference in implied volatility between out-

of-the-money puts and calls, indicates the asymmetries in option demand. It shows how 

much investors lean towards seeking downside protection and can serve as a gauge for 

crash risk or the likelihood of rare adverse events. Bates (2000) views volatility skew as 

a measure of perceived left-tail risk tied to investor behavior, while Bollen and Whaley 

(2004) reveal that shifts in skew are influenced by demand imbalances. This can distort 

option prices and increase VRP. Thus, skew functions as both a sentiment indicator and 

a reflection of risk aversion among investors. 

 

3.1.5 Momentum (1M, 3M, 6M, 12M) 

We look at cumulative returns for 1, 3, 6, and 12-month periods to understand 

how price momentum works. Research has shown that previous returns can help predict 

future returns because investors often underreact or take time to adjust prices (Jegadeesh 

& Titman, 1993). In the realm of options, Bali et al. (2021) demonstrate that return 

momentum can indicate option returns and errors in volatility pricing. By examining 
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various time horizons, we can better identify short-term and long-term behavioral trends 

related to VRP. To include trading intensity in momentum measures, we also calculated 

volume-weighted momentum using rolling averages of price multiplied by volume. This 

method reflects the strength behind price changes. Bali et al. (2016) suggest that 

momentum signals adjusted for volume provide deeper insights into investor sentiment 

and differing opinions, which can help spot times when the VRP is mispriced. 

 

3.1.6 Price Gap Ratio 

The price gap ratio measures the difference between the current day's opening 

price and the previous day's closing price, adjusted for the prior closing price. This 

metric serves as an indicator of overnight changes in investor sentiment. Research 

conducted by Lou et al. (2019) shows that these overnight returns are influenced by how 

investors react to news released after market hours, often leading to behavioral biases 

such as overreaction. By integrating this metric, the model considers external 

information sources outside of regular trading hours that could affect adjustments in 

implied volatility. 

 

3.1.7 Intraday Range 

Intraday range is commonly indicated by the difference between the highest and 

lowest prices during the day, measured against the closing price. Garman and Klass 

(1980) demonstrated that these high-low ranges effectively estimate daily volatility. 

This helps us better understand daily implied volatility levels and the volatility risk 

premium. 
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3.1.8 Unemployment Rate 

The unemployment rate is an important indicator of the overall health of the 

labor market. In the context of risk premia, studies by Drechsler and Yaron (2011) and 

Corradi et al. (2012) suggest that implied volatility tends to rise during periods of 

economic distress, as indicated by increased unemployment rates. As a result, the 

unemployment rate reflects broader economic conditions and how investors perceive the 

risk associated with them. 

 

3.1.9 CPI MoM 

Monthly changes in the Consumer Price Index (CPI) are a key indicator of 

inflation. Unexpected shifts in inflation and overall uncertainty can influence monetary 

policy expectations, which in turn affect equity market volatility and VRP. Bollerslev et 

al. (2009) demonstrated that both macroeconomic uncertainty and risk aversion play a 

role in the changing nature of the VRP, reinforcing the importance of including CPI as a 

predictive macroeconomic variable. 

 

3.1.10 GDP Forecast/Surprise/Dispersion 

GDP forecasts share insights into expected economic growth, typically sourced 

from consensus surveys. GDP surprise is calculated by taking the difference between 

actual GDP growth and what was predicted by analysts. When unexpected changes in 

economic growth occur, they can lead to increased volatility, prompting investors to 

adjust their expectations for future market fluctuations. Research by Andersen et al. 

(2003) shows that macroeconomic surprises often correlate with sudden changes in 

asset prices and volatility, highlighting the importance of incorporating these surprises 

into models that focus on volatility. Economic uncertainty and disagreement among 
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economists can be understood through forecast dispersion, which is measured by the 

standard deviation of GDP forecasts. Research conducted by Bloom (2009) and Bali et 

al. (2016) indicates that these dispersion indicators reflect informational frictions and 

perceived risks. These factors are crucial for grasping volatility pricing. 

 

3.1.11 Bull-Bear Spread 

The AAII Bull-Bear Spread reflects the difference between bullish and bearish 

sentiment among investors. According to Baker and Wurgler (2007), this spread is 

linked to extreme market sentiments, which can lead to mispricing. Smales (2014) 

further demonstrates that indicators driven by sentiment often correlate with the VIX 

and implied volatility. For this reason, the Bull-Bear Spread is included to highlight the 

behavioral aspects of investor fear and exuberance, which can affect the dynamics of the 

VRP. 

 

3.2 Strategy Construction 

This study employs strategies to harvest VRP using delta-hedged short options 

positions on the S&P 500 index. It focuses on two main strategies: the delta-hedged 

short straddle and the delta-hedged short put. Both strategies aim to exploit the 

difference between implied and realized volatility while reducing directional market 

exposure through daily delta-hedging. This approach is consistent with the methodology 

of Tang (2023), who demonstrated that delta-hedged short straddles and puts on the 

S&P 500 tend to yield excess returns over time due to the ongoing pricing discrepancy 

between expected and realized volatility. 

There are three essential steps to implementing these strategies: (1) initiating the 

strategy at the start of each month, (2) performing daily mark-to-market valuations and 
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delta hedge adjustments, and (3) rolling to new positions at monthly expiration. Each 

strategy is based on a 30-calendar-day European-style option on the S&P 500 index. 

The actual price movements are derived from historical daily levels of the S&P 500 

index. Option prices are determined using the Black-Scholes model, with implied 

volatility derived from the VIX, while the risk-free rate is set at the 10-year U.S. 

Treasury yield. At the start of every month, the strategy involves selling options in 

amounts relative to the current NAV. To balance out directional exposure, the portfolio 

is delta-hedged daily. This hedge is achieved by synthetically simulating a position in 

the SPX futures that offsets the net delta of the sold options. 

The daily profit and loss of the strategy includes three elements: (1) the changes 

in option value (option P&L), (2) the profit or loss from using the underlying index for 

hedging (hedging P&L), and (3) the interest accrued on any unused cash (cash interest 

P&L). The strategy position is adjusted daily and rolled at the end of the month, when a 

new position is established. 

 

3.2.1 Delta-Hedged Short Straddle 

The short straddle strategy entails selling an at-the-money call and put option at 

the same strike price and expiration date. This approach seeks to isolate the return 

generated from volatility mispricing by eliminating market exposure. 

 

3.2.2 Delta-Hedged Short Put 

In the second strategy, we focus on selling only at-the-money put options. This 

approach still retains a directional element, as investors primarily buy puts for downside 

protection. Similar to straddles, the pricing and hedging of short puts involve daily delta 

hedging to minimize directional risk. This strategy highlights a different aspect of the 
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VRP as the demand for puts often indicates investor anxiety and the need for protection 

against extreme market movements. Compared to the straddle, the short put strategy 

generally shows a stronger correlation with equity market returns and can provide more 

appealing risk-adjusted returns during stable market conditions. 

 

3.2.3 Dynamic Position Sizing 

This study presents a dynamic sizing framework based on supervised learning to 

improve risk management and potentially enhance performance. Each month, we 

estimate the expected return of the VRP strategy. This predicted value is then converted 

into a position weight, adjusting the size of the short options position accordingly. The 

transformation function is designed to increase position size when anticipated returns 

are high and to decrease size, or even significantly reduce it, when expected returns are 

low or negative. The definition of this weighting function is as follows: 

𝑤𝑡 =  {

min(1 + 100 ∗ 𝑦̂𝑡, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑤𝑒𝑖𝑔ℎ𝑡) , 𝑦̂𝑡 ≥ 0 

max (
1

−100 ∗ 𝑦̂𝑡 + 1
, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑤𝑒𝑖𝑔ℎ𝑡) , 𝑦̂𝑡 < 0

 

𝑦̂𝑡 represents the expected return, with the minimum and maximum weights set at 0.2 

and 5, respectively, indicating that the weight limits are set at a factor of 5. This scaling 

ensures symmetry between positive and negative predictions while avoiding excessive 

leverage. 

 

3.2.4 Time Range 

The training period spans from January 1990 to December 2014, enabling 

models to learn from over 20 years of macroeconomic changes, behavioral signals, and 

market volatility cycles. This extensive historical dataset helps the model to understand 

different market situations, including recessions, expansions, and crises. 
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Following the training set, a validation period from January 2015 to December 

2017 is used to assess the model's generalizability and to tune the hyperparameters.  

Finally, a test period from January 2018 to June 2023 is used to evaluate the 

performance of the models. This timeframe covers significant events such as the start of 

deglobalization, the COVID-19 market shock, rising inflation concerns, and shifts in 

monetary policy, making it a valuable time to assess the model performance. 

 

3.2.5 NAV and Performance Tracking 

The strategy is assessed by examining the cumulative NAV, which begins at $ 

100 million USD and fluctuates with daily profits and losses. To evaluate the 

effectiveness of the machine learning approach, model-driven VRP strategies with 

dynamic scaling are compared to standard static VRP strategies and the S&P 500 index. 

Performance is measured both in statistical terms, such as RMSE and R², and through 

risk-adjusted metrics, including the Sharpe ratio and maximum drawdown. These 

comparisons reveal whether predictive signals enhance the risk-return profile of the 

strategy compared to a basic volatility carry trade. 

 

3.3 Target Variable: VRP Profitability 

A central component of this study is creating a target variable to train supervised 

learning models that predict the profitability of VRP harvesting strategies. The VRP is 

typically defined as the gap between implied volatility in option prices and the actual 

realized volatility of the underlying asset. However, VRP strategies aim to profit from 

this premium in real-life applications through structured trades. Therefore, the actual 

returns from these strategies provide a better representation of VRP profitability than the 

volatility spread itself. To implement this, we define the target variable as the monthly 
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profitability of delta-hedged short options strategies through two evaluation methods. 

These evaluations are crucial for training our models, assessing their performance, and 

determining whether machine learning can reliably predict returns based on VRP. 

 

3.3.1 Method 1: Absolute Strategy Returns 

The first method assesses the profitability of VRP by examining the absolute 

returns of delta-hedged options strategies. In this approach, we compute the monthly 

changes in NAV for each strategy and calculate monthly returns using the following 

formula: 

𝑅𝑡
𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦

=
𝑁𝐴𝑉𝑡 − 𝑁𝐴𝑉𝑡−1

𝑁𝐴𝑉𝑡−1
 

where 𝑁𝐴𝑉𝑡 is the end-of-month NAV of the strategy, and 𝑁𝐴𝑉𝑡−1 is the end-of-month 

NAV of the previous month. This approach indicates the profit or loss of the VRP 

strategy, making it suitable for assessing the ability of machine learning models to 

predict times of high performance or increased risk. 

Absolute returns can provide useful information, but it is essential to consider 

the broader market conditions' impact. For instance, when the equity market is 

performing well, it can skew VRP strategies upward due to hedging profits and losses 

from our imperfect hedging, even if implied volatility is not significantly high. Hence, 

we may need a different perspective to control for beta. 

 

3.3.2 Method 2: Excess Returns over the S&P 500 

To address this concern, the second method assesses the profitability of VRP by 

comparing its excess return to that of the S&P 500 index. This follows the approach that 

Guo and Loeper (2020) and Bollerslev et al. (2011) outlined. By benchmarking the 
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strategy’s monthly return against the S&P 500's contemporaneous return, this method 

effectively controls for beta and directional exposure: 

𝑅𝑡
𝑒𝑥𝑐𝑒𝑠𝑠 = 𝑅𝑡

𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦
− 𝑅𝑡

𝑆𝑃𝑋 

This excess return highlights the strategy’s alpha in relation to overall market 

performance and focuses on the risk premium gained from volatility mispricing, without 

relying on equity beta. This is particularly significant in the context of VRP harvesting, 

as strategies can achieve returns even when equity markets are flat or declining. 

Additionally, adhering to the widely accepted definition of alpha in asset pricing 

facilitates direct comparisons with traditional benchmarks and factor models. 

 

3.4 Feature Engineering 

To ensure that the predictive signals are empirically robust, all features in this 

study are designed to reflect the information available at the time a trade is initiated. 

Since the VRP harvesting strategies operate monthly and options are priced over a 30-

day period, features are built using past daily observations and then resampled to a 

monthly frequency. This approach prevents any lookahead bias from affecting the 

training process. By combining behavioral and macroeconomic signals into a cohesive 

dataset with proper lag structure and resampling, this feature engineering process 

guarantees that all inputs are practical and properly timed with the VRP strategy 

horizon. 

Many behavioral and market variables, such as momentum and sentiment 

indicators, are available daily. To align with the option trade execution window, which 

starts at the beginning of each month, these daily indicators are adjusted by one day and 

then resampled to reflect end-of-month values. This process ensures that the model only 

uses information that would have been available before initiating a new straddle. 
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Macroeconomic indicators such as unemployment rates, GDP, and inflation are 

typically reported on a monthly or quarterly basis. These figures can either be joined 

directly on their release dates or estimated through forward-fill methods when 

necessary. 

 

3.5 Model Selection 

3.5.1 Ridge Regression 

Ridge Regression serves as the basic linear model in this study. It is a modified 

version of Ordinary Least Squares (OLS) regression that applies an L2 penalty to help 

decrease overfitting by reducing the magnitude of the coefficients.  

 

3.5.2 Random Forest 

Random Forest is an ensemble learning method that constructs multiple decision 

trees using bootstrapped samples and random subsets of features. It predicts outcomes 

by averaging the results from the individual trees, which helps reduce variance and 

improve generalization. This method is especially useful for financial prediction tasks 

because it can: (1) capture nonlinear relationships between input variables and targets, 

(2) effectively deal with multicollinearity, and (3) measure feature importance through 

impurity reduction. In this study, Random Forest is implemented using scikit-learn's 

RandomForestRegressor, with key hyperparameters (number of trees, tree depth, 

minimum samples per leaf) tuned via grid search on the validation set. 
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3.5.3 Gradient Boosting 

Gradient Boosting is a type of tree-based ensemble method that constructs trees 

sequentially to correct the residuals of previous ones. This allows GBMs to achieve 

higher predictive accuracy, but at the cost of increased complexity and susceptibility to 

overfitting. This study utilizes the HistGradientBoostingRegressor from scikit-learn, 

which is known for its speed and its native support for missing values. Key 

hyperparameters, including learning rate, number of estimators, and maximum tree 

depth, are tuned via grid search on the validation set. 

 

3.5.4 Rationale for Model Selection 

The selection of these three models represents a balance between simplicity, 

interpretability, and predictive performance. Ridge Regression is straightforward and 

acts as a baseline linear model. Random Forest strikes a good balance, being both 

interpretable and powerful, allowing for the identification of important features and 

their interactions. Gradient Boosting, while providing top-tier accuracy, requires more 

intricate tuning and can be more challenging to interpret. 

This study uses a combination of models to evaluate both the top-performing 

model in terms of predictions and the features that are consistently significant across 

different frameworks. The variety in modeling approaches also helps determine whether 

any performance enhancements are specific to one model or applicable across various 

types of algorithms. 
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3.6 Feature Selection 

3.6.1 Tree-Based Models: Random Forest and Gradient Boosting 

For the Random Forest and Gradient Boosting models, we used three methods 

for feature selection: mean decrease impurity (MDI) feature importance, permutation 

importance, and SHAP values. 

Feature importance scores from tree-based models give us an overall idea of 

how frequently and effectively each feature contributes to splitting decision nodes. 

These scores indicate the reduction in variance linked to each feature, averaged across 

all trees. Features that score higher in importance are seen as having a greater impact on 

the predictions made by the model. 

However, MDI-based feature importances can be biased when features or 

variables are correlated or have many unique values. To address this issue, the study 

also uses permutation importance. This method assesses the contribution of each feature 

by looking at how the model’s performance changes (measured using out-of-sample R² 

and RMSE) when the feature’s values are randomly shuffled. Unlike MDI, permutation 

importance evaluates the impact of each feature relative to the overall trained model and 

is compatible with any model type. 

Beyond feature importance metrics, SHAP values enhance interpretability. It 

provides both local and global insights into feature influence, assigning a value to each 

feature based on its contribution to predictions across various combinations. This 

method allows for a detailed understanding of which features consistently lead to higher 

or lower VRP profitability and how their impacts change over time and in different 

market conditions. SHAP values are particularly effective for tree-based models since 

the TreeSHAP algorithm ensures precise computation of feature contributions. 
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Additionally, we created a pairwise feature correlation heatmap to identify 

multicollinearity and any redundant variables. Although tree-based models tend to 

handle multicollinearity well due to their hierarchical splitting structures, significant 

correlations can still hinder interpretability and inflate variable importance scores. The 

heatmap helped us qualitatively assess whether specific features should be excluded or 

combined. 

 

3.6.2 Ridge Regression 

Unlike tree-based models, Ridge Regression is a linear method that employs L2 

regularization. It tends to shrink the coefficients of correlated features instead of 

removing them entirely. This characteristic helps reduce both overfitting and 

multicollinearity, making Ridge Regression a suitable choice for handling noisy 

financial data. Alpha values are selected using RidgeCV. However, ridge regression 

lacks built-in features for interpreting the importance of features beyond simply 

examining the size of the coefficients. As a result, this study did not utilize advanced 

techniques for feature selection, such as permutation importance or SHAP, in 

conjunction with Ridge Regression. 

To address this limitation, we conducted a residual analysis to check for any 

systematic bias or heteroskedasticity in the errors of the linear model. This diagnostic 

step was important for determining whether we were overlooking relevant nonlinearities 

and whether we might need to consider feature transformations or interaction terms to 

improve the model in the future. 
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4. Empirical Results 

 

4.1 Overview of Experimental Setup 

This study evaluates how behavioral and macroeconomic indicators can predict 

the profitability of VRP using a machine learning approach. We use three different 

models: Ridge Regression, Random Forest, and Gradient Boosting. Each model 

forecasts monthly VRP profitability, which is then used to dynamically size positions in 

delta-hedged short volatility strategies. To measure relative performance, the results are 

compared with the S&P 500 Index. Each model is trained to predict either: (1) Absolute 

VRP profitability (defined as the monthly return of the delta-hedged strategy), or (2) 

Excess VRP profitability (defined as the strategy return minus the S&P 500 return for 

the same period). The research uses data ranging from January 1990 to June 2023. The 

dataset is split into three separate periods: a training set from 1990 to 2014, a validation 

set from 2015 to 2017, and a testing set from 2018 to 2023. 

The strategy involves monthly adjustments to either a delta-hedged short put or a 

delta-hedged short straddle position on the S&P 500 index. To estimate option prices, 

we utilize the Black-Scholes model, with the VIX serving as a proxy for implied 

volatility and a 30-day maturity period. Position sizing is performed using a dynamic 

scaling function based on the expected VRP profitability. The portfolio NAV is updated 

daily to account for option market values, delta hedging profit and loss, and interest 

earned on cash. 

Feature selection for tree-based models is informed by feature importance 

scores, permutation importance, and SHAP values, with correlated variables monitored 

using a correlation heatmap. For Ridge Regression, residual diagnostics are employed to 
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evaluate predictive performance, though multicollinearity is not explicitly corrected for 

beyond standardization. Hyperparameter tuning for the Random Forest and Gradient 

Boosting models is performed via grid search on the validation set. For Ridge 

Regression, alpha values are selected via RidgeCV. 

All models are evaluated using multiple metrics, including statistical metrics 

such as R-squared and RMSE, as well as performance metrics like annualized returns, 

Sharpe ratio, and maximum drawdowns, to ensure a robust assessment across both 

statistical and economic dimensions. 

 

Metric Baseline Straddle  Baseline Put SPX 

Ann. Return 0.83% 3.99% 10.97% 

Sharpe Ratio -0.05 0.06 0.14 

Max Drawdown -0.19 -0.19 -0.25 

Win Rate 64.06% 68.75% 67.19% 

SPX Correlation 0.4 0.86 1 

 

Table 4.1 Baseline Strategy and SPX Metrics 
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Model Strategy 

Target 

Variable 

(VRP) 

Featur

e Set R² RMSE 

Ann. 

Return 

(%) 

ML 

Sharpe 

ML 

Max 

DD 

ML Win 

Rate 

(%) SPX Corr 

Linear Straddle Raw  All -0.2303 0.00046 -0.92 -0.07 -0.3 64.06 0.39 

Linear Straddle Excess  All 0.2294 0.00138 1.32 -0.02 -0.23 65.62 0.1 

Linear Put Raw  All 0.5937 0.00033 0.46 -0.02 -0.39 68.75 0.66 

Linear Put Excess  All -0.052 0.00088 14.98 0.29 -0.16 70.31 0.8 

RF Straddle Raw  All -4.5252 0.01588 0.78 -0.04 -0.28 64.06 0.4 

RF Straddle Raw  Top 10 0.5263 0.02292 0.14 -0.05 -0.26 65.62 0.19 

RF Straddle Raw  Top 5 0.6326 0.02308 -1.32 -0.09 -0.27 64.06 0.1 

RF Straddle Excess  All 0.3404 0.02605 -0.02 -0.06 -0.26 65.62 0.23 

RF Straddle Excess  Top 10 0.5169 0.02585 -2.46 -0.11 -0.3 64.06 0.17 

RF Straddle Excess  Top 5 0.6721 0.02248 -1.32 -0.08 -0.27 64.06 0.08 

RF Put Raw  All -0.4486 0.0177 1 -0.02 -0.35 68.75 0.7 

RF Put Raw  Top 10 0.3378 0.0145 0.39 -0.03 -0.36 68.75 0.69 

RF Put Raw  Top 5 0.6607 0.01153 0.48 -0.02 -0.38 68.75 0.69 

RF Put Excess  All -0.1442 0.02012 7.29 0.13 -0.17 70.31 0.81 

RF Put Excess  Top 10 0.4945 0.01754 9.55 0.15 -0.21 70.31 0.83 

RF Put Excess  Top 5 0.691 0.01502 10.51 0.18 -0.16 70.31 0.84 

GB Straddle Raw  All 0.4153 0.01477 0.66 -0.04 -0.3 65.62 0.39 

GB Straddle Raw  Top 10 0.4789 0.01413 -0.16 -0.06 -0.28 65.62 0.44 

GB Straddle Raw  Top 5 0.5174 0.0136 0.61 -0.04 -0.25 65.62 0.43 

GB Straddle Excess  All 0.6117 0.02639 -0.4 -0.06 -0.29 65.62 0.23 

GB Straddle Excess  Top 10 0.7868 0.02303 -1.92 -0.1 -0.29 64.06 0.18 

GB Straddle Excess  Top 5 0.7938 0.02209 -1.76 -0.1 -0.28 64.06 0.11 

GB Put Raw  All 0.6621 0.01649 1.06 -0.02 -0.35 68.75 0.71 

GB Put Raw  Top 10 0.676 0.01527 -1 -0.05 -0.41 68.75 0.68 

GB Put Raw  Top 5 0.8299 0.01113 -0.13 -0.03 -0.39 68.75 0.69 

GB Put Excess  All 0.6046 0.01816 7.38 0.13 -0.18 70.31 0.78 

GB Put Excess  Top 10 0.7609 0.01644 9.76 0.17 -0.18 70.31 0.84 

GB Put Excess  Top 5 0.7469 0.01612 10.22 0.17 -0.19 70.31 0.82 

 

Table 4.2 Model Performance Metrics Comparison 
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4.2 Ridge Regression Results 

4.2.1 Straddle Strategy 

VRP as Target Variable 

The Ridge Regression model trained to predict raw VRP from delta-hedged 

short straddles performed poorly on the test set, with an R² of -0.23 and an RMSE of 

0.00046. As shown in Figure 4.1, the predicted returns failed to track the realized VRP 

profitably, resulting in ML performance worse than that of the baseline strategy and the 

market. The model's Sharpe ratio (-0.07) and annualized return (-0.92%) highlight its 

limited practical value. The residual plot in Figure 4.2 indicates that the predicted values 

were systematically off-target, particularly at turning points in volatility cycles. 

The model’s coefficients (Table 4.3) suggest that positive VRP is weakly 

associated with short-term momentum indicators and macroeconomic signals. 

Specifically, 1-month momentum, unemployment, and GDP surprise had the strongest 

positive weights, while VIX, RSI, and Volume_Z were negatively associated with future 

VRP. However, the small absolute magnitude of most coefficients and the low overall 

R² imply that the model lacked sufficient explanatory power to generalize well out of 

sample. 
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Fig. 4.1 Performance (NAV) comparison for Ridge Regression using straddle 

strategy and VRP as the target 

 

   

Fig. 4.2 Residuals for Ridge Regression using straddle strategy and VRP as the 

target 
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Feature 

Straddle (Raw 

VRP) 

Straddle (Excess 

VRP) Put (Raw VRP) 

Put (Excess 

VRP) 

Momentum_1M 0.004306 -0.03027 0.010973 -0.02342 

Unemployment 0.001901 0.001962 0.000744 0.000631 

PutCallSkew 0.001203 0.001482 0.000669 0.00079 

GDP_Surprise 0.000621 -0.0005 0.000574 -0.00055 

Momentum_12M 0.000418 -0.000085 0.00072 0.000357 

GDP_Forecast 0.000039 0.000847 -0.00009 0.000742 

PriceGapRatio -0.00012 -0.00208 0.000374 -0.00157 

IntradayRange -0.00028 0.002536 -0.000003 0.002721 

GDP_Dispersion -0.00029 -0.00039 -0.00017 -0.00027 

Momentum_6M -0.00056 -0.00057 -0.00079 -0.00096 

CPI_MoM -0.00056 -0.0003 -0.00056 -0.00025 

Bull_Bear_Spread -0.00083 -0.0014 0.000232 -0.00032 

Volume_Z -0.00096 -0.00301 0.000214 -0.00179 

Momentum_3M -0.00129 -0.00278 0.000121 -0.00137 

RSI -0.00252 -0.00562 0.005188 0.002378 

VIX -0.00314 -0.00702 -0.00083 -0.00446 

Momentum_1M 0.004306 -0.03027 0.010973 -0.02342 

Unemployment 0.001901 0.001962 0.000744 0.000631 

PutCallSkew 0.001203 0.001482 0.000669 0.00079 

GDP_Surprise 0.000621 -0.0005 0.000574 -0.00055 

Momentum_12M 0.000418 -0.000085 0.00072 0.000357 

 

Table 4.3 Ridge Regression Feature Coefficients 
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Excess VRP as Target Variable 

When targeting excess VRP, model performance improved notably, with an R² of 

0.229 and RMSE of 0.00138. This model, shown in Figure 4.3, captured periods of 

relative VRP outperformance more effectively, yielding a modest improvement in 

annualized return (1.32%) and win rate (65.6%). The residuals in Figure 4.4 exhibit a 

more dispersed but less biased prediction structure than the raw VRP case. 

Analyzing the coefficients reveals a shift in the relevance of features. Intraday 

range, unemployment, and Put-Call skew emerged as top contributors to excess VRP, 

while momentum indicators, especially short- and mid-term momentum, carried strong 

negative weights. Interestingly, VIX and RSI also displayed large negative coefficients, 

reinforcing the notion that excess VRP tends to decline during periods of heightened 

volatility and overbought conditions. 

This dichotomy may reflect how raw VRP responds more to market direction 

(momentum), whereas excess VRP better isolates the volatility premium from market 

beta. Behavioral features, such as Put-Call skew and Bull-Bear spread, remain relevant, 

indicating that investor sentiment and protection-seeking behavior can influence the 

pricing discrepancy between implied and realized volatility beyond simple market 

trends. 
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Fig. 4.3 Performance (NAV) comparison for Ridge Regression using straddle 

strategy and excess VRP as the target 

 

   

Fig. 4.4 Residuals for Ridge Regression using straddle strategy and excess VRP 

as the target 
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4.2.2 Put Strategy 

VRP as Target Variable 

The put-only strategy with raw VRP as the target variable achieved the highest 

test-set R² (0.594) among all Ridge Regression experiments and relatively low RMSE 

(0.00033). However, Figure 4.5 shows the model did not translate into a strong trading 

performance, Figure 4.6 reveals tighter clustering around zero, indicating better 

prediction alignment with the observed VRP. 

Table 4.3 indicates that Momentum_1M, RSI, and Unemployment are the 

dominant positive predictors. Several behavioral variables, including Put-Call skew, 

Bull-Bear spread, and Volume_Z, also had modest positive contributions. The strong 

weight on Momentum_1M suggests short-term price trends positively inform VRP, 

possibly due to autocorrelation in volatility responses to market rallies or drops. The 

limited contribution of macro variables, such as GDP Forecasts or CPI, suggests that the 

model primarily exploited behavioral or technical structure. 

 

   

Fig. 4.5 Performance (NAV) comparison for Ridge Regression using put strategy 

and raw VRP as the target   
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Fig. 4.6 Residuals for Ridge Regression using the put strategy and raw VRP as 

the target 

 

Excess VRP as Target Variable 

Switching the dependent variable to excess VRP reduced predictive performance 

(R² = -0.052), but notably improved market performance, with a Sharpe ratio of 0.29 

and an annualized return of 14.98%, outperforming both the baseline (3.99%) and the 

SPX (10.97%). Figure 4.7 illustrates the smoother and more profitable NAV trajectory 

resulting from this model. Interestingly, despite the lower R², the strategy captures a 

consistent directional signal. 

In this case, Intraday range, RSI, and Put-Call skew once again dominate the 

positive coefficient rankings, while Momentum_1M, VIX, and Volume_Z receive large 

negative weights. This reinforces the finding that excess VRP is more related to 

volatility asymmetry and behavioral positioning than to trend-following momentum. In 

contrast to the raw VRP target, macroeconomic indicators play a minor role, suggesting 
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that outperformance is better explained by market microstructure effects rather than 

fundamental changes. 

 

   

Fig. 4.7 Performance (NAV) comparison for Ridge Regression using put strategy 

and excess VRP as the target 

   

 

Fig. 4.8 Residuals for Ridge Regression using the put strategy and raw VRP as 

the target 
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4.3 Random Forest Results 

4.3.1 Straddle Strategy 

VRP as Target Variable 

When trained to predict raw VRP, the Random Forest model displayed 

significant improvements in fit and interpretability when feature dimensionality was 

constrained. Using all features, the model produced a poor R² of -4.53 and RMSE of 

0.0159, indicating considerable overfitting or noise sensitivity. However, once limited to 

the top 10 SHAP-ranked features, the R² improved to 0.53 with a more reasonable 

RMSE of 0.0229. Using only the top 5 features yielded a slightly lower R² of 0.63, 

indicating that most of the explanatory power is concentrated in a small subset of inputs. 

The model’s predicted VRP-based portfolio exhibited meaningful variation. 

Using all features, the annualized return was 0.78%. In comparison, the top 10 feature 

set yielded 0.14%, and the top 5 resulted in a negative return of -1.32%. Sharpe ratios 

similarly declined from -0.04 to -0.09 as dimensionality decreased. Figure 4.9 illustrates 

the NAV trajectories of these models, while Figure 4.10 provides comparative SHAP 

value plots. 
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Fig. 4.9 Performance (NAV) comparison for Random Forest using straddle 

strategy and raw VRP as the target with all features (top), top 10 features (middle), top 5 

features (bottom) 
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Fig. 4.10 SHAP value comparison for Random Forest using straddle strategy and 

raw VRP as the target with all features (top), top 10 features (middle), top 5 features 

(bottom) 
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Excess VRP as Target Variable 

When targeting excess VRP, the Random Forest model demonstrated notably 

better statistical and trading performance. Using all features, the model achieved an R² 

of 0.34 and an RMSE of 0.0260. Limiting the input to the top 10 features improved the 

R² to 0.52, while a top 5 subset achieved the highest explanatory power with an R² of 

0.67 and a reduced RMSE of 0.0225. 

Despite improvements in fit, the model-driven dynamic scaling strategy 

exhibited underperformance: the ML-based portfolio delivered returns of -0.02%, -

2.46%, and -1.32%, respectively, for all, top 10, and top 5 feature sets. These negative 

returns suggest that, while the model was statistically better at predicting excess VRP, 

this did not translate into superior trading outcomes. 

Figures 4.11 and 4.12 present the NAV and SHAP comparisons, respectively, 

revealing consistent dominance of behavioral and sentiment-driven indicators such as 

RSI, Momentum_1M, and Bull-Bear Spread. These features appear recurrently across 

both target specifications, suggesting their importance for predicting volatility risk 

premiums in straddle strategies. 



doi:10.6342/NTU202503618

38 
 

   

Fig. 4.11 Performance (NAV) comparison for Random Forest using straddle 

strategy and excess VRP as the target with all features (top), top 10 features (middle), 

top 5 features (bottom) 
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Fig. 4.12 SHAP value comparison for Random Forest using straddle strategy and 

excess VRP as the target with all features (top), top 10 features (middle), top 5 features 

(bottom) 
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4.3.2 Put Strategy 

VRP as Target Variable 

The Random Forest model performed modestly when applied to the put strategy 

with raw VRP as the target. With all features included, the R² was negative (-0.45), and 

RMSE was 0.0177, indicating overfitting and poor generalization. However, model 

performance improved considerably as the feature set was pruned. The top 10 features 

yielded an R² of 0.34, while the top 5 features increased the R² to 0.66 and reduced 

RMSE to 0.0115. 

Market-level annualized returns remained relatively stable at 1% for the all-

feature model, while the top 10 and top 5 sets yielded returns of 0.39% and 0.48%, 

respectively. The win rate was 68.75% across the board. Sharpe ratios remained 

negative throughout, likely reflecting high variance and suboptimal timing in harvesting 

the volatility premium. 

SHAP values visualized in Figure 4.14 demonstrate that macroeconomic and 

volatility-related indicators such as CPI_MoM, GDP Forecasts, and VIX were 

particularly influential in raw VRP prediction. Performance NAV comparisons in Figure 

4.13 also reflect the model's inability to significantly enhance base strategy 

performance, despite achieving a higher statistical fit in the reduced feature sets. 
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Fig. 4.13 Performance (NAV) comparison for Random Forest using put strategy 

and raw VRP as the target with all features (top), top 10 features (middle), top 5 features 

(bottom) 
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Fig. 4.14 SHAP value comparison for Random Forest using put strategy and raw 

VRP as the target with all features (top), top 10 features (middle), top 5 features 

(bottom) 
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Excess VRP as Target Variable 

In contrast, the Random Forest model was most effective when targeting excess 

VRP using the put strategy. Model fit improved steadily as features were pruned: the R² 

progressed from -0.14 (all features) to 0.49 (top 10) and finally to 0.69 (top 5), with 

corresponding RMSE values decreasing from 0.0201 to 0.0150. 

ML-driven trading results also improved markedly. The full-feature model 

produced a 7.29% annualized return, which climbed to 9.55% and 10.51% across the 

top 10 and top 5 subsets, respectively. Sharpe ratios similarly increased to 0.18 in the 

top 5 feature configuration, higher than any configuration under the straddle strategy. 

Moreover, ML win rates exceeded 70%, and SPX correlation remained strong (above 

0.80), indicating that the model effectively captured risk-on/risk-off sentiment across 

market regimes. 

Figures 4.15 and 4.16 visually reinforce this result. NAV trajectories indicate 

smooth and sustained outperformance when the model relies on compact, relevant 

feature sets. SHAP plots highlight the recurring dominance of VIX, short-term 

momentum, and macro signals (especially GDP Dispersion and CPI_MoM), which 

likely served as proxies for behavioral overreaction and volatility dislocation. 

Random Forest models performed more robustly under the put-only strategy and 

when predicting excess VRP, particularly with smaller, behaviorally relevant feature 

subsets. While the straddle strategy remained consistent in terms of raw returns, 

regardless of model predictions, the put strategy showed a strong alignment between 

statistical fit and market performance, especially when feature dimensionality was 

reduced. This relationship is further discussed in Section 4.5 in the context of 

comparative model analysis and time-period sensitivity. 
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Fig. 4.15 Performance (NAV) comparison for Random Forest using put strategy 

and excess VRP as the target with all features (top), top 10 features (middle), top 5 

features (bottom) 
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Fig. 4.16 SHAP value comparison for Random Forest using put strategy and 

excess VRP as the target with all features (top), top 10 features (middle), top 5 features 

(bottom) 
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4.4 Gradient Boosting Results 

4.4.1 Straddle Strategy 

VRP as Target Variable 

When trained on the straddle strategy using raw VRP as the target variable, the 

Gradient Boosting model showed only marginal improvements over the Random Forest 

counterpart. With all features included, the model achieved an R² of 0.31 and an RMSE 

of 0.0267. Narrowing the feature space modestly improved the model fit: the top 10 

features yielded an R² of 0.37 and an RMSE of 0.0258, while the top 5 features showed 

a slight regression with an R² of 0.32 and an RMSE of 0.0264. 

Despite the better fit relative to Random Forest, the ML-driven portfolios failed 

to enhance trading outcomes. All feature subsets resulted in flat to negative annualized 

returns (All: -0.11%, Top 10: -0.17%, Top 5: -0.55%) and negative Sharpe ratios, while 

the baseline straddle strategy (with no dynamic scaling) yielded a stable annualized 

return of 0.83% with a Sharpe of -0.05. NAV comparisons in Figure 4.17 and SHAP 

visualizations in Figure 4.18 further confirm this underperformance: even though 

interpretability remained high and feature importance rankings were consistent across 

models, the extracted signals did not translate into actionable predictive value for VRP 

timing. 

SHAP analysis consistently identified Momentum_1M, RSI, GDP forecasts, and 

volatility proxies, such as VIX and PutCallSkew, as the top contributors. Their 

persistent appearance suggests they hold latent explanatory power for the straddle’s 

implied volatility dynamics, even if the model struggled to convert this insight into 

profit. 
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Fig. 4.17 Performance (NAV) comparison for Gradient Boosting using straddle 

strategy and raw VRP as the target with all features (top), top 10 features (middle), top 5 

features (bottom) 
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Fig. 4.18 SHAP value comparison for Gradient Boosting using straddle strategy 

and raw VRP as the target with all features (top), top 10 features (middle), top 5 features 

(bottom) 
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Excess VRP as Target Variable 

Performance improved substantially when the target variable shifted to excess 

VRP. Using all features, the GB model achieved an R² of 0.42 and an RMSE of 0.0254. 

The top 10 feature model improved to an R² of 0.48 (RMSE: 0.0234), while the top 5 

model peaked at an R² of 0.51 and RMSE of 0.0236. 

However, these improvements in statistical metrics were again not reflected in 

trading performance. ML portfolios returned -0.10% (All), -0.51% (Top 10), and -1.04% 

(Top 5) annually, underperforming the static straddle strategy, which remained flat at 

0.83%. As shown in Figure 4.19, the NAV curve initially showed promise. However, it 

flattened or declined in the latter half of the sample period (2022–2023), possibly 

indicating structural changes in VRP behavior or a loss of model generalization during 

volatile macroeconomic regimes. 

Despite this, SHAP value analyses again emphasized consistent behavioral and 

macroeconomic signals. Momentum_1M, RSI, GDP_Surprise, CPI_MoM, and VIX 

featured prominently, suggesting that excess VRP predictability may be more aligned 

with relative sentiment and macro shifts than with outright volatility levels. 
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Fig. 4.19 Performance (NAV) comparison for Gradient Boosting using straddle 

strategy and excess VRP as the target with all features (top), top 10 features (middle), 

top 5 features (bottom) 
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Fig. 4.20 SHAP value comparison for Gradient Boosting using straddle strategy 

and excess VRP as the target with all features (top), top 10 features (middle), top 5 

features (bottom) 
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4.4.2 Put Strategy 

VRP as Target Variable 

The Gradient Boosting model’s application to the put strategy using raw VRP as 

the target produced moderate success in statistical terms. With all features, the model 

achieved an R² of 0.43 and an RMSE of 0.0202. Limiting to the top 10 features 

improved the R² to 0.58, and the top 5 features achieved the highest R² of 0.70 and the 

lowest RMSE of 0.0145. 

However, the ML-predicted portfolio struggled to translate statistical power into 

trading gains. Returns remained flat or negative across all feature sets: All (0.99%), Top 

10 (0.29%), and Top 5 (-0.05%), compared to a consistent base strategy return of 

3.99%. Sharpe ratios were weak or negative, and drawdowns were materially higher for 

the ML portfolio, especially when all features were used. 

Figures 4.21 and 4.22 confirm these findings. The most influential predictors 

based on SHAP values included technical and sentiment-based indicators such as RSI, 

Momentum_1M, PutCallSkew, and VIX, highlighting that investor positioning and 

volatility skew were more predictive of raw VRP than macroeconomic surprises. 

Traditional macroeconomic indicators, such as GDP Surprise, Unemployment, and CPI 

MoM, ranked lower in importance, suggesting that raw VRP may be more responsive to 

market microstructure and behavioral flows than to top-down economic data. However, 

despite strong model fit metrics, this signal strength did not translate into reliable 

portfolio performance, possibly due to regime shifts or overfitting to historical patterns. 
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Fig. 4.21 Performance (NAV) comparison for Gradient Boosting using put strategy 

and raw VRP as the target with all features (top), top 10 features (middle), top 5 features 

(bottom) 
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Fig. 4.22 SHAP value comparison for Gradient Boosting using put strategy and 

raw VRP as the target with all features (top), top 10 features (middle), top 5 features 

(bottom) 
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Excess VRP as Target Variable 

The GB model achieved its strongest overall results when applied to the put 

strategy with excess VRP as the target. The R² steadily improved from 0.60 (All) to 0.76 

(Top 10) and peaked at 0.75 (Top 5). RMSE correspondingly declined from 0.0181 to 

0.0164 and 0.0161. These values represent the best overall model fits in the entire study. 

Importantly, economic performance improved in parallel. The ML portfolio 

returned 7.38% (All), 9.76% (Top 10), and 10.22% (Top 5) annually, significantly 

outperforming the baseline strategy (3.99%) and rivaling the SPX benchmark (10.97%). 

The Sharpe ratio reached 0.17 under the top 5 feature set, with the lowest drawdown (-

0.19%) and highest win rate (70.31%). 

Figures 4.23 and 4.24 illustrate the strong consistency of NAV and SHAP across 

feature subsets. The top features—VIX, RSI, Momentum_1M, GDP Dispersion, and 

CPI_MoM—highlight the critical role of sentiment, macro volatility, and behavioral 

disequilibrium in capturing the excess volatility premium. Notably, the reduced feature 

sets outperformed the full model both statistically and economically, reinforcing the 

importance of model parsimony in high-dimensional macro-financial contexts. 

In summary, Gradient Boosting models showed mixed results. They 

underperformed in the straddle strategy regardless of the target variable, likely due to 

lower signal strength in symmetric volatility exposures. However, in the put strategy, 

especially when targeting excess VRP, they produced the highest predictive accuracy 

and strongest economic results in the entire analysis. These findings underscore the 

value of asymmetric VRP strategies and disciplined feature selection in constructing 

machine-learning-driven volatility portfolios. 
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Fig. 4.23 Performance (NAV) comparison for Gradient Boosting using put strategy 

and excess VRP as the target with all features (top), top 10 features (middle), top 5 

features (bottom) 
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Fig. 4.24 SHAP value comparison for Gradient Boosting using put strategy and 

excess VRP as the target with all features (top), top 10 features (middle), top 5 features 

(bottom) 
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4.5 Model Comparison and Interpretation 

This section synthesizes the empirical findings across the linear and tree-based 

models—Ridge Regression, Random Forest, and Gradient Boosting—to evaluate their 

relative predictive accuracy, portfolio performance, feature behavior, and practical 

implications across the four strategy-target configurations: Straddle with Raw VRP, 

Straddle with Excess VRP, Put with Raw VRP, and Put with Excess VRP. The analysis 

draws on Tables 4.2 and 4.3, as well as Figures 4.9 through 4.16, which include 

performance metrics, NAV plots, SHAP visualizations, and feature importances.  

 

4.5.1 Predictive Accuracy 

From a statistical modeling standpoint, Gradient Boosting consistently achieved 

the highest in-sample R² across nearly all configurations when trained on SHAP-

selected top 5 or top 10 features. For instance, the Gradient Boosting Put strategy with 

raw VRP as the target attained an R² of 0.8299, the highest among all model-strategy 

combinations. Similarly, the Gradient Boosting Straddle strategy with excess VRP 

recorded an R² of 0.7938 with the top 5 features. In contrast, Ridge Regression models 

displayed modest predictive power (e.g., R² = 0.2943 for Put with excess VRP), while 

Random Forest models exhibited more variability, performing well with fewer features 

but prone to overfitting when trained on all features (e.g., negative R² for Straddle with 

raw VRP). 

Interestingly, the most predictive target variable also varied by strategy. For the 

Put strategy, models trained to predict raw VRP generally achieved higher R² than those 

using excess VRP, particularly in tree-based models. In contrast, Straddle strategies 

appeared to benefit more from predicting excess VRP, likely due to the straddle's 

symmetrical exposure and sensitivity to equity beta that excess VRP helps to neutralize. 
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4.5.2 Market Performance 

 Despite the superior statistical fit of tree-based models, portfolio-level 

performance tells a more nuanced story. When examining strategy returns, Sharpe 

ratios, drawdowns, and correlations, the Put strategy outperforms Straddle strategies 

across all models and target variables. For instance, (1) The Ridge Regression Put 

strategy with excess VRP achieved an annualized return of 14.98% and a Sharpe ratio of 

0.29, notably higher than any Ridge-based straddle configuration. (2) Tree-based Put 

strategies also delivered strong results, with Gradient Boosting (raw VRP) reaching up 

to 10.22% annualized return and a Sharpe ratio of 0.17. However, Sharpe ratios 

plateaued relative to Ridge in some variants. 

The Straddle strategy, by contrast, exhibited flat or negative Sharpe ratios and 

negligible alpha, particularly for models targeting raw VRP. For instance, both Random 

Forest and Gradient Boosting models exhibited strategy Sharpe ratios of -0.05 when 

applied to the Straddle strategy, regardless of the predictive R² values. This suggests that 

predictive accuracy alone is insufficient to ensure superior market performance, 

especially when the strategy construction involves both long and short delta exposures 

and hence interacts more complexly with directional market trends. 

The Put strategy’s consistent outperformance may be attributed to the underlying 

macroeconomic conditions during the sample period (2018–2023). This period was 

predominantly characterized by a bull market, especially post-2020, during which put 

options consistently decayed in value due to low realized volatility and positive equity 

returns. By targeting VRP, particularly when predicting when puts are overpriced, the 

strategy likely captured volatility risk premium more effectively than the straddle, 

which requires accurate timing of both tails. 
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4.5.3 Unexpected Strength of Ridge Regression for Put Strategies 

A notable empirical result is the unexpected competitiveness of Ridge 

Regression when applied to the Put strategy. Despite its simplicity and lack of non-

linear modeling, Ridge achieved performance metrics comparable to or even exceeding 

tree-based alternatives in some scenarios. This was the case regardless of the target 

variable, with Ridge regression outperforming the tree models for both raw and excess 

VRP target variables. 

There are several potential explanations for this phenomenon. First, overfitting is 

a documented issue in high-dimensional tree models, particularly in relatively small 

datasets with time series structure. Ridge Regression, with its penalization of large 

coefficients and linear bias, may have provided better out-of-sample generalization, 

especially when signals were driven by a few dominant behavioral indicators (e.g., RSI, 

PutCallSkew, Momentum_1M). Second, linear relationships may suffice to capture VRP 

timing in bull market regimes, where behavioral sentiment and momentum tend to align 

in predictable ways. Finally, feature engineering may have disproportionately benefited 

linear models. Features like RSI, PutCallSkew, and VIX are already nonlinear 

transformations of prices or returns, potentially diminishing the marginal benefit of 

additional model complexity in capturing their effects.  

However, even with this relative strength, Ridge Regression-based Put strategies 

underperformed the S&P 500 throughout 2021. This was possibly due to the 

extraordinary post-pandemic bull run, where equity markets delivered outsized gains 

while implied volatility steadily declined. In such environments, delta-hedged short put 

strategies generate limited upside because they are designed to harvest volatility 

mispricing rather than directional equity returns. Moreover, the persistent collapse in 

VIX during 2021 reduced the magnitude of the volatility risk premium, resulting in 
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thinner option selling profits. The Ridge model, while able to capture periods of stable 

VRP, could not fully compensate for the structural underperformance against a strongly 

trending equity index. Behavioral signals like RSI and momentum also became less 

predictive in 2021, as market returns were driven more by macroeconomic tailwinds 

(e.g., fiscal stimulus, reopening trades) than by volatility risk aversion, leading to muted 

ML-driven scaling and lower NAV growth relative to SPX. 

 

4.5.4 Feature Interpretability and Strategy Alignment 

The SHAP analysis across Random Forest and Gradient Boosting models 

confirms that feature importance rankings are relatively consistent across strategies. For 

Put strategies, dominant predictors include: (1) RSI – often the most important feature 

across all configurations, (2) PutCallSkew – a measure of downside fear. (3) 

Momentum_1M – short-term price direction, and (4) VIX and Volume_Z – proxies for 

volatility expectations and abnormal trading activity. 

In contrast, macro features such as GDP Surprise, Unemployment, and 

CPI_MoM ranked lower in most configurations, particularly when predicting raw VRP. 

This suggests that behavioral and sentiment-driven features are more effective in 

predicting volatility mispricing than traditional macroeconomic data. 

Interestingly, feature rankings did not always align with return-generating 

power. In several cases, models with better in-sample fit (e.g., top 10 or top 5 features) 

delivered worse out-of-sample returns, particularly in Straddle strategies. This reflects a 

well-known tradeoff in financial modeling: excessive optimization of predictive metrics 

often fails to generalize under regime shifts, especially for strategies sensitive to skew 

and kurtosis. 
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4.5.5 Practical Takeaways 

From a practical perspective, the results highlight several key insights: 

1. Strategy selection dominates model complexity. The choice between Put and 

Straddle strategies had a larger impact on return outcomes than the choice of 

model. Even simple models, such as Ridge, outperformed complex ones when 

aligned with market trends and option payoff structures. 

2. Model complexity improves the statistical fit but does not necessarily return the 

best results. Gradient Boosting achieved the best predictive accuracy but often 

underperformed Ridge in real-world metrics due to overfitting or market shifts. 

3. Behavioral features are critical. RSI, Momentum, and PutCallSkew consistently 

ranked as the most important features across all model families and strategies, 

reaffirming the importance of behavioral finance in volatility pricing. 

4. Market environment sensitivity is significant. Tree-based models performed 

better from 2018 to 2022 but struggled afterward, as indicated by NAV plots and 

declining Sharpe ratios. This suggests that changes in market structure (e.g., 

inflation shock, Fed tightening) may have altered the behavioral dynamics 

underlying VRP. 
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5. Conclusion 

 

5.1 Summary of Findings 

This thesis explores the predictive modeling of VRP profitability using machine 

learning, with a focus on two delta-hedged options strategies: the short straddle and the 

short put. Three model classes—Ridge Regression, Random Forest, and Gradient 

Boosting—are evaluated using two target variables: raw VRP and excess VRP (VRP net 

of contemporaneous S&P 500 returns). This design enables a nuanced examination of 

how well models capture volatility-related alpha compared to simple equity beta. 

The results yield several important findings. First, non-linear models 

(particularly Random Forest) consistently outperform linear Ridge Regression in terms 

of predictive accuracy (as measured by R² and RMSE). While Ridge Regression offers 

better interpretability and more stable coefficients, its ability to capture non-linear 

structures in VRP profitability is limited, especially in the context of the straddle 

strategy. 

Second, contrary to expectations, Random Forest generally outperforms 

Gradient Boosting, especially in the raw VRP configurations and in predicting put 

strategy profitability. While Gradient Boosting produces more compact trees and 

sometimes benefits from better generalization, its out-of-sample economic performance 

often lags that of Random Forest, suggesting that the ensemble variance control and 

robustness of Random Forest make it better suited for the noisy financial environment 

of volatility trading. 

A particularly notable finding is the consistent superiority of put-based strategies 

over straddle strategies across all model classes and configurations. Put strategies 
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exhibit significantly higher annualized returns (ranging from 10% to over 14% in the 

best cases), higher Sharpe ratios, and lower drawdowns, especially when modeled with 

Random Forest using the excess VRP target. This aligns with behavioral theories 

positing that downside insurance carries a persistent premium due to investor aversion 

to tail risks. 

Interestingly, Ridge Regression's put strategy, which utilizes excess VRP, while 

exhibiting a low R² and high RMSE, delivers the strongest realized economic 

performance, suggesting that a weak statistical fit may still yield high-quality signals 

under certain market conditions. This discrepancy raises important questions about the 

relationship between predictive accuracy and economic utility in financial modeling. 

Finally, the choice of target variable proves critical. For straddle strategies, 

excess VRP significantly enhances model performance by stripping away market 

directionality. For put strategies, however, raw VRP remains effective in terms of 

predictive power—likely because put premiums already embed downside beta, 

rendering excess VRP transformations less additive. 

SHAP-based feature selection further enhances performance. Reducing the 

feature set to the top 10 or 5 most impactful variables not only simplifies the model but 

often improves out-of-sample generalization. Key features across models include VIX, 

momentum indicators, RSI, and macroeconomic surprises such as GDP forecasts and 

CPI, which frequently rank among the most predictive inputs. 

 

5.2 Practical Implications 

The findings from this research provide actionable insights for practitioners 

engaged in quantitative volatility trading. First, the put-only strategy, particularly when 

combined with excess VRP targeting, appears to offer a robust, high-return opportunity 
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with manageable risk. This makes it especially appealing for portfolio overlays or 

systematic volatility harvesting strategies. 

Second, the results reinforce the value of ensemble-based machine learning 

models, which handle noisy and non-stationary financial data more effectively than 

linear alternatives. However, model selection must go beyond predictive accuracy. As 

demonstrated, the most statistically accurate models (e.g., Gradient Boosting) do not 

consistently deliver the best trading results, and linear models with relatively poor R² 

values may still yield alpha. 

The superior performance of simpler models in certain market environments also 

underscores the importance of model simplicity, robustness, and interpretability, 

especially in institutional contexts with regulatory and fiduciary oversight. Tools like 

SHAP values facilitate model transparency, aiding in feature selection and enhancing 

trust and communication between data scientists, portfolio managers, and stakeholders. 

Finally, the temporal breakdown of performance reveals important regime 

dependency. Tree-based models performed well from 2018 to 2021, a period marked by 

macroeconomic stability and strong risk appetite, but degraded significantly during 

2022–2023, which was characterized by inflation, rate hikes, and geopolitical volatility. 

This suggests that real-time monitoring, adaptive retraining, and potential integration of 

regime-switching frameworks are critical for maintaining performance over time. 

 

5.3 Future Research Directions 

This thesis opens several promising avenues for further investigation. A key 

direction is to ensure model robustness across different market environments. The 

degradation in model efficacy post-2022 suggests that volatility-related alpha is not 

time-invariant. Future work could explore regime-aware models, such as hidden 
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Markov models or conditional tree ensembles, to adapt model behavior to shifting 

macroeconomic environments. 

Another direction is the integration of alternative data and architectures. 

Although tree-based models excel at handling structured data, incorporating 

unstructured sources, such as news sentiment, option order flows, or social media, using 

deep learning (e.g., LSTMs or transformers) may yield further improvements in 

predictive capacity and adaptability. 

Feature engineering can also be expanded. While this study focused on 

macroeconomic, behavioral, and technical indicators, intraday volatility signals, options 

surface metrics, and skewness/kurtosis measures may enhance model resolution and 

allow finer-grained signal calibration. 

Finally, transaction costs and market frictions remain crucial considerations. 

While this research assumes frictionless execution, future work should account for bid-

ask spreads, slippage, and capital constraints in simulating real-world implementations. 

This is particularly important for put strategies, where liquidity may dry up during stress 

events, potentially amplifying risk or distorting model signals. 

 

5.4 Concluding Remarks 

This thesis contributes to the intersection of quantitative finance and machine 

learning by empirically validating that VRP profitability is both forecastable and 

tradable using systematic models. By comparing linear and non-linear architectures 

across two distinct strategies and target variable frameworks, this research presents a 

comprehensive view of how volatility premia can be extracted from market data. 

Despite the success of tree-based models, the findings caution against over-

reliance on any single architecture. Model performance is context-sensitive, and a high 
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in-sample R² does not guarantee out-of-sample profitability. As such, the successful 

implementation of ML-driven volatility strategies requires not only technical modeling 

skills but also macroeconomic awareness, robust risk management, and ongoing 

adaptation to evolving financial regimes. 

In sum, this study affirms that machine learning, when carefully constructed, 

validated, and interpreted, can serve as a powerful tool for uncovering alpha in the 

volatility space. However, like all tools in finance, its edge lies in how it is used, 

updated, and interpreted, rather than its complexity alone. 
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