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Abstract

This thesis examines the application of machine learning models to predict and
optimize the profitability of volatility risk premium (VRP) strategies through adaptive
delta-hedging techniques informed by behavioral and macroeconomic indicators.
Specifically, we construct and evaluate delta-hedged short straddle and put strategies on
the S&P 500 index. By comparing two target formulations — raw VRP and excess VRP
over the underlying index — we assess the predictive performance and trading efficacy
of linear regression, random forest, and gradient boosting models. Our methodology
encompasses comprehensive feature engineering, incorporating sentiment,
disagreement, momentum, macroeconomic surprises, and volatility structure signals. We
implement both traditional and SHAP-based feature selection techniques to evaluate the
sensitivity of model performance to input dimensionality. Among the two strategy types,
the put-only strategy displays higher return potential and stronger Sharpe ratios. At the
same time, excess VRP emerges as a more stable and predictive target variable than raw
VRP. The findings demonstrate the value of incorporating behavioral finance and
macroeconomic insights into quantitative models, highlighting the practical challenges
of maintaining model robustness in shifting environments. This study contributes to the
growing literature on machine learning applications in asset pricing by proposing a
framework that combines delta-hedged options trading with interpretable predictive

modeling.

Keywords: Volatility Risk Premium, Option Strategies, Machine Learning, Behavioral

Finance, Macroeconomic Variables
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1. Introduction

1.1 Motivations

Equity investors traditionally relied on both the outperformance of individual
institutions and a strong market to achieve strong returns. However, this also exposes
investors to economic shocks such as the Dot-com Bubble, the Great Financial Crisis,
the Euro Area Crisis, and the COVID-19 Pandemic. Due to these potential market
uncertainties, investors have always sought ways to manage their market exposures,
leading to the development of risk-hedging instruments such as options and swaps.

With implied volatility being a core component of financial derivatives as a
measure of future risk, a growing number of researchers have directed their studies to
the relationship between implied volatility and realized volatility. Jackwerth and
Rubinstein (1996) found that the implied volatility for a significant drop in the S&P 500
is considerably higher than the recorded realized volatility, indicating that investors
often overpay for downside protection. Empirical results suggest that buyers of hedging
instruments often pay a premium to offset the risk of realized volatility exceeding
implied volatility. This premium is commonly referred to as the Volatility Risk Premium
(VRP), which represents the gap between implied volatility and realized volatility. Guo
and Loeper (2020) further demonstrated that VRP returns are positive in the long term
and can be consistently harvested. This provides market participants with a reliable
method of deviating from market-associated returns in alpha (the excess return of the
market) or beta (the risk relative to the market).

However, realized volatility can still exceed implied volatility at times,

especially during market events that result in price jumps or sudden spikes in volatility.
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These scenarios often lead to significant short-term losses for VRP strategies. To
address these potential shortfalls, my research aims to establish a supervised learning
framework that dynamically sizes the VRP strategy positions based on behavioral and
macroeconomic signals, while also identifying and evaluating key signals that

contribute to the success of VRP strategies.

1.2 Contributions

This study introduces a supervised machine learning framework for dynamically
allocating the position size of VRP harvesting strategies based on both behavioral and
macroeconomic signals. To achieve this, it introduces and selects useful training
features that improve the performance of the VRP harvesting strategy, then uses the
returns of delta-hedged short put and straddle strategies as the dependent variable in my
model. This research primarily focuses on Random Forest, Gradient Boosting, and
Ridge Regression as models. Performance is evaluated through statistical metrics and
market benchmarks. Statistical metrics include R* and RMSE. Market benchmarks

include the Sharpe ratio, drawdown, and correlation with the S&P 500.

1.3 Paper Outline

The remainder of this paper is organized as follows: Section 2 reviews the
relevant literature on VRP and machine learning techniques with behavioral and
macroeconomic signals. Section 3 provides the data, methodology, feature design,
model selection, and implementation of the VRP strategy for this study. Section 4
presents the empirical results of VRP strategies within a machine learning framework,

comparing them to standard VRP strategies and the S&P 500 Index. Section 5 discusses
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the findings and limitations of this study. Finally, section 6 concludes with suggestions

for future research.
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2. Literature Review

2.1 Volatility Risk Premium

The volatility risk premium is commonly described as the gap between implied
and realized volatility. Early research on this topic primarily focused on the inclusion of
volatility in establishing option pricing models, laying the groundwork for identifying
the volatility risk premium as a component of option pricing. The Black-Scholes model
paved the way for future work by introducing a systematic method for option pricing
(Black & Scholes, 1973). It incorporated implied volatility to represent the market’s
expectation of future volatility, but assumes volatility to be constant. Merton (1975)
later focused on stochastic volatility and price jumps, extending the Black-Scholes
model to include price movement as a component of options pricing.

Later studies focused on the inconsistency between implied and realized
volatility, later identified as the volatility risk premium. French et al. (1987) investigated
the relationship between the expected market risk premium and the volatility of stock
returns and found the link to be positive, suggesting a larger risk premium for higher
volatility. Jackwerth and Rubinstein (1996) demonstrated that the implied volatility
calculated using the Black-Scholes model is often overestimated compared to the
realized volatility on the downside. Christensen and Prabhala (1998) demonstrated a
tendency for implied volatility to overestimate realized volatility. From this, we can
reasonably conclude that hedging, especially to the downside, generally requires a
premium for sellers to assume the risk of increases in realized volatility.

With empirical backing, many academics also explored the profitability of

harvesting the VRP. Carr and Wu (2009) used synthetic variance swaps to trade current
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implied variance against future variance. Tang (2023) sold at-the-money straddles, puts,
and calls on the S&P 500 index; all obtained positive average returns. However, using
VRP harvesting strategies also came with significant downside risk. This risk becomes
more pronounced during periods of unexpected increases in volatility, such as the
Global Financial Crisis and the COVID-19 pandemic. To address this, recent research
has started to look towards the predictability of VRP. Bollerslev et al. (2011) found VRP
itself changes over time, suggesting it is influenced by behavioral and macroeconomic
factors. My research looks at these factors and uses them as signals to improve the

returns of VRP harvesting techniques.

2.2 Behavioral Effects on VRP

Since VRP changes over time, further studies have examined the factors
influencing these changes. This section focuses on the potential behavioral influences
on VRP predictability. Behavioral finance suggests that behavioral factors, such as
investor sentiment and fear, can lead to persistent mispricing in asset markets. In the
context of options, studies of behavioral effects on VRP should present evidence on the
relationship between behavioral factors and implied volatility.

Smales (2014) identified a negative correlation between news sentiment and
VIX, a volatility index derived from the implied volatility of SPX index options. The
previously mentioned work on synthetic variance swaps by Carr and Wu (2009)
attributed higher implied volatility to tail risks such as unexpected market moves. This
supports the idea that investors tend to overweigh rare events due to loss aversion.
Bollen and Whaley (2004) found that imbalances in order flow can influence implied
volatility due to supply-demand dynamics and market frictions, resulting in a widening

VREP. It is worth investigating whether the causes of the order flow imbalances are
5
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behavioral in nature, as Bollen and Whaley suggest the imbalances could stem from
overreaction and demand for protection, implying VRP could be a result of emotion-
driven demand. Sentiment indicators could also be helpful contributors in predicting
VRP. Empirical evidence suggests that investors often overpay for downside protection
during low sentiment periods, resulting in higher implied volatility and a higher VRP
(Smales, 2014; Bollerslev et al., 2009). This suggests that sentiment-capturing
indicators, such as volatility skew and bull-bear spreads, could potentially contribute to

VRP predictability.

2.3 Macroeconomic Effects on VRP

With global economic and geopolitical risks rising in the last decade, economic
uncertainties have come into focus recently. Londono et al. (2025) examined the
implications of these uncertainties and found that investors demand higher risk
premiums for bearing heightened risk. Empirical evidence has also shown that implied
volatility increases relative to realized volatility as demand for downside protection
increases. Bollerslev et al. (2009) established a connection between VRP and investor
risk aversion and found correlations between risk aversion and macroeconomic
variables, suggesting that macroeconomic factors may also influence VRP. Corradi et al.
(2012) found VRP to be strongly countercyclical to the economy, further showing
increased profitability during a pressured economy. Drechsler and Yaron (2011) focused
on consumption growth and macroeconomic uncertainty to explain the time variation in
VRP. These results suggest that macroeconomic-level indicators, such as GDP growth,
unemployment, and inflation rates, could be incorporated into this study as predictors of

VRP profitability.
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In addition to macroeconomic level effects, macroeconomic forecast dispersion
could offer context on economic uncertainties and market disagreements. An abundance
of
research already exists for the predictability of equity returns using economic forecast
dispersion. For example, Bali et al. (2016) used economic dispersion as a component of
uncertainty and found that equity with higher sensitivity to economic uncertainty
experienced higher returns. However, similar research is lacking regarding
macroeconomic forecast indicators on VRP predictability, so my study will also attempt
to incorporate GDP forecasts, including forecast dispersions and surprises, into my

predictive framework.

2.4 Machine Learning in Finance

The popularity of machine learning has been on the rise in finance, as machine
learning models can capture complex, nonlinear relationships. This makes machine
learning suitable for a wide variety of noisy financial data. Applications in finance have
mostly focused on forecasting equity returns. For example, Gu et al. (2020) used
Random Forest and neural network models to extract feature signals predicting stock
returns, demonstrating that machine learning models can better capture nonlinearities
across features compared to traditional regression techniques. Studies have also shown
that machine learning better forecasts volatility than linear techniques. Christensen et al.
(2022) demonstrated that machine learning models outperform linear models in
predicting realized variance by comparing tree-based algorithms and neural networks
with the Heterogeneous AutoRegressive (HAR) model. Bali et al. (2021) also found that
non-linear machine learning models, including tree-based algorithms and neural

networks, achieved higher R? compared to linear models when predicting option returns.
7
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However, compared to traditional econometric linear regressions, the “black
box” nature of machine learning models makes feature interpretation harder to infer. As
a result, feature selection and model interpretability become important areas of study,
especially in highly regulated fields such as finance. Rudin (2018) argues that machine
learning models should generally prioritize interpretability in high-stakes domains such
as finance, since erroneous interpretations could result in detrimental outcomes, and a
lack of interpretation could also become an obstacle to accountability. Guyon and
Elisseeft (2003) provided an overview of feature selection methods. This paper follows
their guidance and uses feature importance and permutation importance as feature
selection methods. The study also employs SHAP (SHapley Additive exPlanations)
values, as SHAP has the ability to provide both local and global explanations across

complex non-linear models (Lundberg & Lee, 2017).
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3. Data & Methodologies

3.1 Behavioral & Economic Features

3.1.1 VIX

The VIX index represents the 30-day implied volatility of the S&P 500. As a
forward-looking indicator derived from SPX option prices, VIX captures investor
expectations of future volatility and is widely used as a proxy for market uncertainty.
Bollerslev et al. (2011) show that the VIX can predict the VRP since it represents the
implied volatility used in option-based variance swaps. Smales (2014) also notes that
the VIX serves as a fear gauge, linking it to behavioral factors that influence risk
premia. Due to its theoretical and empirical significance, the VIX is regarded as a key

variable in predicting VRP.

3.1.2 Trading Volume

Trading volume serves as an important indicator of market activity. To pinpoint
periods of unusually high or low investor participation, we use both a rolling z-score of
volume, which standardizes the raw numbers against their average and standard
deviation, and the standard raw trading volume. Typically, periods of high trading
volume coincide with increased uncertainty or the arrival of new information, which
influences option pricing and implied volatility (Chordia et al., 2000). Research by Bali
et al. (2021) suggests that abnormal trading volume, particularly when combined with
sentiment signals, enhances our ability to predict option returns. Furthermore, volume
often correlates with limits-to-arbitrage and imbalances in order flow, which can shift

VRP due to changes in option demand (Bollen & Whaley, 2004).

9

doi:10.6342/NTU202503618



3.1.3 Relative Strength Index (RSI)

RSI is a tool that helps traders gauge the momentum of price movements. It
identifies whether the market is overbought or oversold, providing insights into investor
sentiment or potential market fatigue. Research by Go et al. (2020) shows that RSI is
commonly integrated into predictive equity models. Its effectiveness increases when
combined with nonlinear features in machine learning, enabling the model to identify
reversal and continuation trends, which aids in option pricing and understanding implied

volatility.

3.1.4 Put-Call Skew

Put-call skew, which highlights the difference in implied volatility between out-
of-the-money puts and calls, indicates the asymmetries in option demand. It shows how
much investors lean towards seeking downside protection and can serve as a gauge for
crash risk or the likelihood of rare adverse events. Bates (2000) views volatility skew as
a measure of perceived left-tail risk tied to investor behavior, while Bollen and Whaley
(2004) reveal that shifts in skew are influenced by demand imbalances. This can distort
option prices and increase VRP. Thus, skew functions as both a sentiment indicator and

a reflection of risk aversion among investors.

3.1.5 Momentum (1M, 3M, 6M, 12M)

We look at cumulative returns for 1, 3, 6, and 12-month periods to understand
how price momentum works. Research has shown that previous returns can help predict
future returns because investors often underreact or take time to adjust prices (Jegadeesh
& Titman, 1993). In the realm of options, Bali et al. (2021) demonstrate that return

momentum can indicate option returns and errors in volatility pricing. By examining
10
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various time horizons, we can better identify short-term and long-term behavioral trends
related to VRP. To include trading intensity in momentum measures, we also calculated
volume-weighted momentum using rolling averages of price multiplied by volume. This
method reflects the strength behind price changes. Bali et al. (2016) suggest that
momentum signals adjusted for volume provide deeper insights into investor sentiment

and differing opinions, which can help spot times when the VRP is mispriced.

3.1.6 Price Gap Ratio

The price gap ratio measures the difference between the current day's opening
price and the previous day's closing price, adjusted for the prior closing price. This
metric serves as an indicator of overnight changes in investor sentiment. Research
conducted by Lou et al. (2019) shows that these overnight returns are influenced by how
investors react to news released after market hours, often leading to behavioral biases
such as overreaction. By integrating this metric, the model considers external
information sources outside of regular trading hours that could affect adjustments in

implied volatility.

3.1.7 Intraday Range

Intraday range is commonly indicated by the difference between the highest and
lowest prices during the day, measured against the closing price. Garman and Klass
(1980) demonstrated that these high-low ranges effectively estimate daily volatility.
This helps us better understand daily implied volatility levels and the volatility risk

premium.

11

doi:10.6342/NTU202503618



3.1.8 Unemployment Rate

The unemployment rate is an important indicator of the overall health of the
labor market. In the context of risk premia, studies by Drechsler and Yaron (2011) and
Corradi et al. (2012) suggest that implied volatility tends to rise during periods of
economic distress, as indicated by increased unemployment rates. As a result, the
unemployment rate reflects broader economic conditions and how investors perceive the

risk associated with them.

3.1.9 CPI MoM

Monthly changes in the Consumer Price Index (CPI) are a key indicator of
inflation. Unexpected shifts in inflation and overall uncertainty can influence monetary
policy expectations, which in turn affect equity market volatility and VRP. Bollerslev et
al. (2009) demonstrated that both macroeconomic uncertainty and risk aversion play a
role in the changing nature of the VRP, reinforcing the importance of including CPI as a

predictive macroeconomic variable.

3.1.10 GDP Forecast/Surprise/Dispersion

GDP forecasts share insights into expected economic growth, typically sourced
from consensus surveys. GDP surprise is calculated by taking the difference between
actual GDP growth and what was predicted by analysts. When unexpected changes in
economic growth occur, they can lead to increased volatility, prompting investors to
adjust their expectations for future market fluctuations. Research by Andersen et al.
(2003) shows that macroeconomic surprises often correlate with sudden changes in
asset prices and volatility, highlighting the importance of incorporating these surprises

into models that focus on volatility. Economic uncertainty and disagreement among
12
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economists can be understood through forecast dispersion, which is measured by the
standard deviation of GDP forecasts. Research conducted by Bloom (2009) and Bali et
al. (2016) indicates that these dispersion indicators reflect informational frictions and

perceived risks. These factors are crucial for grasping volatility pricing.

3.1.11 Bull-Bear Spread

The AAII Bull-Bear Spread reflects the difference between bullish and bearish
sentiment among investors. According to Baker and Wurgler (2007), this spread is
linked to extreme market sentiments, which can lead to mispricing. Smales (2014)
further demonstrates that indicators driven by sentiment often correlate with the VIX
and implied volatility. For this reason, the Bull-Bear Spread is included to highlight the
behavioral aspects of investor fear and exuberance, which can affect the dynamics of the

VRP.

3.2 Strategy Construction

This study employs strategies to harvest VRP using delta-hedged short options
positions on the S&P 500 index. It focuses on two main strategies: the delta-hedged
short straddle and the delta-hedged short put. Both strategies aim to exploit the
difference between implied and realized volatility while reducing directional market
exposure through daily delta-hedging. This approach is consistent with the methodology
of Tang (2023), who demonstrated that delta-hedged short straddles and puts on the
S&P 500 tend to yield excess returns over time due to the ongoing pricing discrepancy
between expected and realized volatility.

There are three essential steps to implementing these strategies: (1) initiating the

strategy at the start of each month, (2) performing daily mark-to-market valuations and
13
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delta hedge adjustments, and (3) rolling to new positions at monthly expiration. Each
strategy is based on a 30-calendar-day European-style option on the S&P 500 index.
The actual price movements are derived from historical daily levels of the S&P 500
index. Option prices are determined using the Black-Scholes model, with implied
volatility derived from the VIX, while the risk-free rate is set at the 10-year U.S.
Treasury yield. At the start of every month, the strategy involves selling options in
amounts relative to the current NAV. To balance out directional exposure, the portfolio
is delta-hedged daily. This hedge is achieved by synthetically simulating a position in
the SPX futures that offsets the net delta of the sold options.

The daily profit and loss of the strategy includes three elements: (1) the changes
in option value (option P&L), (2) the profit or loss from using the underlying index for
hedging (hedging P&L), and (3) the interest accrued on any unused cash (cash interest
P&L). The strategy position is adjusted daily and rolled at the end of the month, when a

new position is established.

3.2.1 Delta-Hedged Short Straddle

The short straddle strategy entails selling an at-the-money call and put option at
the same strike price and expiration date. This approach seeks to isolate the return

generated from volatility mispricing by eliminating market exposure.

3.2.2 Delta-Hedged Short Put

In the second strategy, we focus on selling only at-the-money put options. This
approach still retains a directional element, as investors primarily buy puts for downside
protection. Similar to straddles, the pricing and hedging of short puts involve daily delta

hedging to minimize directional risk. This strategy highlights a different aspect of the
14
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VRP as the demand for puts often indicates investor anxiety and the need for protection
against extreme market movements. Compared to the straddle, the short put strategy
generally shows a stronger correlation with equity market returns and can provide more

appealing risk-adjusted returns during stable market conditions.

3.2.3 Dynamic Position Sizing

This study presents a dynamic sizing framework based on supervised learning to
improve risk management and potentially enhance performance. Each month, we
estimate the expected return of the VRP strategy. This predicted value is then converted
into a position weight, adjusting the size of the short options position accordingly. The
transformation function is designed to increase position size when anticipated returns
are high and to decrease size, or even significantly reduce it, when expected returns are

low or negative. The definition of this weighting function is as follows:

min(1 + 100 * j,, maximum_weight),  §, =0
We = (—1 ini / ht) P, <0
max | — o5 51 minimum_weight |, Ve

¥, represents the expected return, with the minimum and maximum weights set at 0.2
and 5, respectively, indicating that the weight limits are set at a factor of 5. This scaling
ensures symmetry between positive and negative predictions while avoiding excessive

leverage.

3.2.4 Time Range

The training period spans from January 1990 to December 2014, enabling
models to learn from over 20 years of macroeconomic changes, behavioral signals, and
market volatility cycles. This extensive historical dataset helps the model to understand

different market situations, including recessions, expansions, and crises.
15
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Following the training set, a validation period from January 2015 to December
2017 is used to assess the model's generalizability and to tune the hyperparameters.

Finally, a test period from January 2018 to June 2023 is used to evaluate the
performance of the models. This timeframe covers significant events such as the start of
deglobalization, the COVID-19 market shock, rising inflation concerns, and shifts in

monetary policy, making it a valuable time to assess the model performance.

3.2.5 NAV and Performance Tracking

The strategy is assessed by examining the cumulative NAV, which begins at $
100 million USD and fluctuates with daily profits and losses. To evaluate the
effectiveness of the machine learning approach, model-driven VRP strategies with
dynamic scaling are compared to standard static VRP strategies and the S&P 500 index.
Performance is measured both in statistical terms, such as RMSE and R?, and through
risk-adjusted metrics, including the Sharpe ratio and maximum drawdown. These
comparisons reveal whether predictive signals enhance the risk-return profile of the

strategy compared to a basic volatility carry trade.

3.3 Target Variable: VRP Profitability

A central component of this study is creating a target variable to train supervised
learning models that predict the profitability of VRP harvesting strategies. The VRP is
typically defined as the gap between implied volatility in option prices and the actual
realized volatility of the underlying asset. However, VRP strategies aim to profit from
this premium in real-life applications through structured trades. Therefore, the actual
returns from these strategies provide a better representation of VRP profitability than the

volatility spread itself. To implement this, we define the target variable as the monthly
16
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profitability of delta-hedged short options strategies through two evaluation methods.
These evaluations are crucial for training our models, assessing their performance, and

determining whether machine learning can reliably predict returns based on VRP.

3.3.1 Method 1: Absolute Strategy Returns

The first method assesses the profitability of VRP by examining the absolute
returns of delta-hedged options strategies. In this approach, we compute the monthly
changes in NAV for each strategy and calculate monthly returns using the following

formula:

Rstrategy — NAVt - NAVt—l
t NAV,_,

where NAV, is the end-of-month NAV of the strategy, and NAV,_ is the end-of-month
NAV of the previous month. This approach indicates the profit or loss of the VRP
strategy, making it suitable for assessing the ability of machine learning models to
predict times of high performance or increased risk.

Absolute returns can provide useful information, but it is essential to consider
the broader market conditions' impact. For instance, when the equity market is
performing well, it can skew VRP strategies upward due to hedging profits and losses
from our imperfect hedging, even if implied volatility is not significantly high. Hence,

we may need a different perspective to control for beta.

3.3.2 Method 2: Excess Returns over the S&P 500

To address this concern, the second method assesses the profitability of VRP by
comparing its excess return to that of the S&P 500 index. This follows the approach that

Guo and Loeper (2020) and Bollerslev et al. (2011) outlined. By benchmarking the
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strategy’s monthly return against the S&P 500's contemporaneous return, this method

effectively controls for beta and directional exposure:

excess _ pStrategy SPX

This excess return highlights the strategy’s alpha in relation to overall market
performance and focuses on the risk premium gained from volatility mispricing, without
relying on equity beta. This is particularly significant in the context of VRP harvesting,
as strategies can achieve returns even when equity markets are flat or declining.
Additionally, adhering to the widely accepted definition of alpha in asset pricing

facilitates direct comparisons with traditional benchmarks and factor models.

3.4 Feature Engineering

To ensure that the predictive signals are empirically robust, all features in this
study are designed to reflect the information available at the time a trade is initiated.
Since the VRP harvesting strategies operate monthly and options are priced over a 30-
day period, features are built using past daily observations and then resampled to a
monthly frequency. This approach prevents any lookahead bias from affecting the
training process. By combining behavioral and macroeconomic signals into a cohesive
dataset with proper lag structure and resampling, this feature engineering process
guarantees that all inputs are practical and properly timed with the VRP strategy
horizon.

Many behavioral and market variables, such as momentum and sentiment
indicators, are available daily. To align with the option trade execution window, which
starts at the beginning of each month, these daily indicators are adjusted by one day and
then resampled to reflect end-of-month values. This process ensures that the model only

uses information that would have been available before initiating a new straddle.
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Macroeconomic indicators such as unemployment rates, GDP, and inflation are
typically reported on a monthly or quarterly basis. These figures can either be joined
directly on their release dates or estimated through forward-fill methods when

necessary.

3.5 Model Selection

3.5.1 Ridge Regression

Ridge Regression serves as the basic linear model in this study. It is a modified
version of Ordinary Least Squares (OLS) regression that applies an L2 penalty to help

decrease overfitting by reducing the magnitude of the coefficients.

3.5.2 Random Forest

Random Forest is an ensemble learning method that constructs multiple decision
trees using bootstrapped samples and random subsets of features. It predicts outcomes
by averaging the results from the individual trees, which helps reduce variance and
improve generalization. This method is especially useful for financial prediction tasks
because it can: (1) capture nonlinear relationships between input variables and targets,
(2) effectively deal with multicollinearity, and (3) measure feature importance through
impurity reduction. In this study, Random Forest is implemented using scikit-learn's
RandomForestRegressor, with key hyperparameters (number of trees, tree depth,

minimum samples per leaf) tuned via grid search on the validation set.
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3.5.3 Gradient Boosting

Gradient Boosting is a type of tree-based ensemble method that constructs trees
sequentially to correct the residuals of previous ones. This allows GBMs to achieve
higher predictive accuracy, but at the cost of increased complexity and susceptibility to
overfitting. This study utilizes the HistGradientBoostingRegressor from scikit-learn,
which is known for its speed and its native support for missing values. Key
hyperparameters, including learning rate, number of estimators, and maximum tree

depth, are tuned via grid search on the validation set.

3.5.4 Rationale for Model Selection

The selection of these three models represents a balance between simplicity,
interpretability, and predictive performance. Ridge Regression is straightforward and
acts as a baseline linear model. Random Forest strikes a good balance, being both
interpretable and powerful, allowing for the identification of important features and
their interactions. Gradient Boosting, while providing top-tier accuracy, requires more
intricate tuning and can be more challenging to interpret.

This study uses a combination of models to evaluate both the top-performing
model in terms of predictions and the features that are consistently significant across
different frameworks. The variety in modeling approaches also helps determine whether
any performance enhancements are specific to one model or applicable across various

types of algorithms.
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3.6 Feature Selection

3.6.1 Tree-Based Models: Random Forest and Gradient Boosting

For the Random Forest and Gradient Boosting models, we used three methods
for feature selection: mean decrease impurity (MDI) feature importance, permutation
importance, and SHAP values.

Feature importance scores from tree-based models give us an overall idea of
how frequently and effectively each feature contributes to splitting decision nodes.
These scores indicate the reduction in variance linked to each feature, averaged across
all trees. Features that score higher in importance are seen as having a greater impact on
the predictions made by the model.

However, MDI-based feature importances can be biased when features or
variables are correlated or have many unique values. To address this issue, the study
also uses permutation importance. This method assesses the contribution of each feature
by looking at how the model’s performance changes (measured using out-of-sample R?
and RMSE) when the feature’s values are randomly shuffled. Unlike MDI, permutation
importance evaluates the impact of each feature relative to the overall trained model and
1s compatible with any model type.

Beyond feature importance metrics, SHAP values enhance interpretability. It
provides both local and global insights into feature influence, assigning a value to each
feature based on its contribution to predictions across various combinations. This
method allows for a detailed understanding of which features consistently lead to higher
or lower VRP profitability and how their impacts change over time and in different
market conditions. SHAP values are particularly effective for tree-based models since

the TreeSHAP algorithm ensures precise computation of feature contributions.
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Additionally, we created a pairwise feature correlation heatmap to identify
multicollinearity and any redundant variables. Although tree-based models tend to
handle multicollinearity well due to their hierarchical splitting structures, significant
correlations can still hinder interpretability and inflate variable importance scores. The
heatmap helped us qualitatively assess whether specific features should be excluded or

combined.

3.6.2 Ridge Regression

Unlike tree-based models, Ridge Regression is a linear method that employs L2
regularization. It tends to shrink the coefficients of correlated features instead of
removing them entirely. This characteristic helps reduce both overfitting and
multicollinearity, making Ridge Regression a suitable choice for handling noisy
financial data. Alpha values are selected using RidgeCV. However, ridge regression
lacks built-in features for interpreting the importance of features beyond simply
examining the size of the coefficients. As a result, this study did not utilize advanced
techniques for feature selection, such as permutation importance or SHAP, in
conjunction with Ridge Regression.

To address this limitation, we conducted a residual analysis to check for any
systematic bias or heteroskedasticity in the errors of the linear model. This diagnostic
step was important for determining whether we were overlooking relevant nonlinearities
and whether we might need to consider feature transformations or interaction terms to

improve the model in the future.
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4. Empirical Results

4.1 Overview of Experimental Setup

This study evaluates how behavioral and macroeconomic indicators can predict
the profitability of VRP using a machine learning approach. We use three different
models: Ridge Regression, Random Forest, and Gradient Boosting. Each model
forecasts monthly VRP profitability, which is then used to dynamically size positions in
delta-hedged short volatility strategies. To measure relative performance, the results are
compared with the S&P 500 Index. Each model is trained to predict either: (1) Absolute
VRP profitability (defined as the monthly return of the delta-hedged strategy), or (2)
Excess VRP profitability (defined as the strategy return minus the S&P 500 return for
the same period). The research uses data ranging from January 1990 to June 2023. The
dataset is split into three separate periods: a training set from 1990 to 2014, a validation
set from 2015 to 2017, and a testing set from 2018 to 2023.

The strategy involves monthly adjustments to either a delta-hedged short put or a
delta-hedged short straddle position on the S&P 500 index. To estimate option prices,
we utilize the Black-Scholes model, with the VIX serving as a proxy for implied
volatility and a 30-day maturity period. Position sizing is performed using a dynamic
scaling function based on the expected VRP profitability. The portfolio NAV is updated
daily to account for option market values, delta hedging profit and loss, and interest
earned on cash.

Feature selection for tree-based models is informed by feature importance
scores, permutation importance, and SHAP values, with correlated variables monitored

using a correlation heatmap. For Ridge Regression, residual diagnostics are employed to
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evaluate predictive performance, though multicollinearity is not explicitly corrected for
beyond standardization. Hyperparameter tuning for the Random Forest and Gradient
Boosting models is performed via grid search on the validation set. For Ridge
Regression, alpha values are selected via RidgeCV.

All models are evaluated using multiple metrics, including statistical metrics
such as R-squared and RMSE, as well as performance metrics like annualized returns,
Sharpe ratio, and maximum drawdowns, to ensure a robust assessment across both

statistical and economic dimensions.

Metric Baseline Straddle | Baseline Put | SPX

Ann. Return 0.83% 3.99% | 10.97%
Sharpe Ratio -0.05 0.06 0.14
Max Drawdown -0.19 -0.19 -0.25
Win Rate 64.06% 68.75% | 67.19%
SPX Correlation 0.4 0.86 1

Table 4.1 Baseline Strategy and SPX Metrics
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Target Ann. ML ML Win
Variable Featur Return | ML Max Rate
Model Strategy | (VRP) e Set R? RMSE (%) Sharpe | DD (%) SPX Corr
Linear | Straddle | Raw All -0.2303 | 0.00046 -0.92 -0.07 -0.3 64.06 0.39
Linear Straddle | Excess All 0.2294 0.00138 1.32 -0.02 -0.23 65.62 0.1
Linear Put Raw All 0.5937 0.00033 0.46 -0.02 -0.39 68.75 0.66
Linear Put Excess All -0.052 0.00088 14.98 0.29 -0.16 70.31 0.8
RF Straddle | Raw All -4.5252 0.01588 0.78 -0.04 -0.28 64.06 0.4
RF Straddle | Raw Top 10 0.5263 0.02292 0.14 -0.05 -0.26 65.62 0.19
RF Straddle | Raw Top 5 0.6326 | 0.02308 -1.32 -0.09 | -0.27 64.06 0.1
RF Straddle | Excess All 0.3404 0.02605 -0.02 -0.06 -0.26 65.62 0.23
RF Straddle | Excess Top 10 0.5169 0.02585 -2.46 -0.11 -0.3 64.06 0.17
RF Straddle | Excess Top 5 0.6721 0.02248 -1.32 -0.08 -0.27 64.06 0.08
RF Put Raw All -0.4486 0.0177 1 -0.02 -0.35 68.75 0.7
RF Put Raw Top 10 0.3378 0.0145 0.39 -0.03 -0.36 68.75 0.69
RF Put Raw Top 5 0.6607 0.01153 0.48 -0.02 -0.38 68.75 0.69
RF Put Excess All -0.1442 0.02012 7.29 0.13 -0.17 70.31 0.81
RF Put Excess Top 10 0.4945 0.01754 9.55 0.15 -0.21 70.31 0.83
RF Put Excess Top 5 0.691 0.01502 10.51 0.18 -0.16 70.31 0.84
GB Straddle | Raw All 0.4153 0.01477 0.66 -0.04 -0.3 65.62 0.39
GB Straddle | Raw Top 10 0.4789 0.01413 -0.16 -0.06 -0.28 65.62 0.44
GB Straddle | Raw Top 5 0.5174 0.0136 0.61 -0.04 -0.25 65.62 0.43
GB Straddle | Excess All 0.6117 0.02639 -0.4 -0.06 -0.29 65.62 0.23
GB Straddle | Excess Top 10 0.7868 0.02303 -1.92 -0.1 -0.29 64.06 0.18
GB Straddle | Excess Top 5 0.7938 0.02209 -1.76 -0.1 -0.28 64.06 0.11
GB Put Raw All 0.6621 0.01649 1.06 -0.02 -0.35 68.75 0.71
GB Put Raw Top 10 0.676 0.01527 -1 -0.05 -0.41 68.75 0.68
GB Put Raw Top 5 0.8299 0.01113 -0.13 -0.03 -0.39 68.75 0.69
GB Put Excess All 0.6046 0.01816 7.38 0.13 -0.18 70.31 0.78
GB Put Excess Top 10 0.7609 0.01644 9.76 0.17 -0.18 70.31 0.84
GB Put Excess Top 5 0.7469 0.01612 10.22 0.17 -0.19 70.31 0.82
Table 4.2 Model Performance Metrics Comparison
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4.2 Ridge Regression Results

4.2.1 Straddle Strategy

VRP as Target Variable

The Ridge Regression model trained to predict raw VRP from delta-hedged
short straddles performed poorly on the test set, with an R? of -0.23 and an RMSE of
0.00046. As shown in Figure 4.1, the predicted returns failed to track the realized VRP
profitably, resulting in ML performance worse than that of the baseline strategy and the
market. The model's Sharpe ratio (-0.07) and annualized return (-0.92%) highlight its
limited practical value. The residual plot in Figure 4.2 indicates that the predicted values
were systematically off-target, particularly at turning points in volatility cycles.

The model’s coefficients (Table 4.3) suggest that positive VRP is weakly
associated with short-term momentum indicators and macroeconomic signals.
Specifically, 1-month momentum, unemployment, and GDP surprise had the strongest
positive weights, while VIX, RSI, and Volume Z were negatively associated with future
VRP. However, the small absolute magnitude of most coefficients and the low overall
R? imply that the model lacked sufticient explanatory power to generalize well out of

sample.
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Straddle (Raw Straddle (Excess Put (Excess

Feature VRP) VRP) Put (Raw VRP) | VRP)

Momentum 1M 0.004306 -0.03027 0.010973 -0.02342
Unemployment 0.001901 0.001962 0.000744 0.000631
PutCallSkew 0.001203 0.001482 0.000669 0.00079
GDP_Surprise 0.000621 -0.0005 0.000574 -0.00055
Momentum_12M 0.000418 -0.000085 0.00072 0.000357
GDP_Forecast 0.000039 0.000847 -0.00009 0.000742
PriceGapRatio -0.00012 -0.00208 0.000374 -0.00157
IntradayRange -0.00028 0.002536 -0.000003 0.002721
GDP_Dispersion -0.00029 -0.00039 -0.00017 -0.00027
Momentum 6M -0.00056 -0.00057 -0.00079 -0.00096
CPI_MoM -0.00056 -0.0003 -0.00056 -0.00025
Bull Bear Spread -0.00083 -0.0014 0.000232 -0.00032
Volume Z -0.00096 -0.00301 0.000214 -0.00179
Momentum_3M -0.00129 -0.00278 0.000121 -0.00137
RSI -0.00252 -0.00562 0.005188 0.002378
VIX -0.00314 -0.00702 -0.00083 -0.00446
Momentum 1M 0.004306 -0.03027 0.010973 -0.02342
Unemployment 0.001901 0.001962 0.000744 0.000631
PutCallSkew 0.001203 0.001482 0.000669 0.00079
GDP_Surprise 0.000621 -0.0005 0.000574 -0.00055
Momentum_12M 0.000418 -0.000085 0.00072 0.000357

Table 4.3 Ridge Regression Feature Coefficients
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Excess VRP as Target Variable

When targeting excess VRP, model performance improved notably, with an R? of
0.229 and RMSE of 0.00138. This model, shown in Figure 4.3, captured periods of
relative VRP outperformance more effectively, yielding a modest improvement in
annualized return (1.32%) and win rate (65.6%). The residuals in Figure 4.4 exhibit a
more dispersed but less biased prediction structure than the raw VRP case.

Analyzing the coefficients reveals a shift in the relevance of features. Intraday
range, unemployment, and Put-Call skew emerged as top contributors to excess VRP,
while momentum indicators, especially short- and mid-term momentum, carried strong
negative weights. Interestingly, VIX and RSI also displayed large negative coefficients,
reinforcing the notion that excess VRP tends to decline during periods of heightened
volatility and overbought conditions.

This dichotomy may reflect how raw VRP responds more to market direction
(momentum), whereas excess VRP better isolates the volatility premium from market
beta. Behavioral features, such as Put-Call skew and Bull-Bear spread, remain relevant,
indicating that investor sentiment and protection-seeking behavior can influence the
pricing discrepancy between implied and realized volatility beyond simple market

trends.
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4.2.2 Put Strategy

VRP as Target Variable

The put-only strategy with raw VRP as the target variable achieved the highest
test-set R? (0.594) among all Ridge Regression experiments and relatively low RMSE
(0.00033). However, Figure 4.5 shows the model did not translate into a strong trading
performance, Figure 4.6 reveals tighter clustering around zero, indicating better
prediction alignment with the observed VRP.

Table 4.3 indicates that Momentum_1M, RSI, and Unemployment are the
dominant positive predictors. Several behavioral variables, including Put-Call skew,
Bull-Bear spread, and Volume Z, also had modest positive contributions. The strong
weight on Momentum_ 1M suggests short-term price trends positively inform VRP,
possibly due to autocorrelation in volatility responses to market rallies or drops. The
limited contribution of macro variables, such as GDP Forecasts or CPI, suggests that the

model primarily exploited behavioral or technical structure.
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Excess VRP as Target Variable

Switching the dependent variable to excess VRP reduced predictive performance
(R?=-0.052), but notably improved market performance, with a Sharpe ratio of 0.29
and an annualized return of 14.98%, outperforming both the baseline (3.99%) and the
SPX (10.97%). Figure 4.7 illustrates the smoother and more profitable NAV trajectory
resulting from this model. Interestingly, despite the lower R?, the strategy captures a
consistent directional signal.

In this case, Intraday range, RSI, and Put-Call skew once again dominate the
positive coefficient rankings, while Momentum_ 1M, VIX, and Volume Z receive large
negative weights. This reinforces the finding that excess VRP is more related to
volatility asymmetry and behavioral positioning than to trend-following momentum. In

contrast to the raw VRP target, macroeconomic indicators play a minor role, suggesting
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that outperformance is better explained by market microstructure effects rather than

fundamental changes.
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4.3 Random Forest Results

4.3.1 Straddle Strategy

VRP as Target Variable

When trained to predict raw VRP, the Random Forest model displayed
significant improvements in fit and interpretability when feature dimensionality was
constrained. Using all features, the model produced a poor R? of -4.53 and RMSE of
0.0159, indicating considerable overfitting or noise sensitivity. However, once limited to
the top 10 SHAP-ranked features, the R? improved to 0.53 with a more reasonable
RMSE of 0.0229. Using only the top 5 features yielded a slightly lower R? of 0.63,
indicating that most of the explanatory power is concentrated in a small subset of inputs.

The model’s predicted VRP-based portfolio exhibited meaningful variation.
Using all features, the annualized return was 0.78%. In comparison, the top 10 feature
set yielded 0.14%, and the top 5 resulted in a negative return of -1.32%. Sharpe ratios
similarly declined from -0.04 to -0.09 as dimensionality decreased. Figure 4.9 illustrates
the NAV trajectories of these models, while Figure 4.10 provides comparative SHAP

value plots.
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Excess VRP as Target Variable

When targeting excess VRP, the Random Forest model demonstrated notably
better statistical and trading performance. Using all features, the model achieved an R?
of 0.34 and an RMSE of 0.0260. Limiting the input to the top 10 features improved the
R? to0 0.52, while a top 5 subset achieved the highest explanatory power with an R? of
0.67 and a reduced RMSE of 0.0225.

Despite improvements in fit, the model-driven dynamic scaling strategy
exhibited underperformance: the ML-based portfolio delivered returns of -0.02%, -
2.46%, and -1.32%, respectively, for all, top 10, and top 5 feature sets. These negative
returns suggest that, while the model was statistically better at predicting excess VRP,
this did not translate into superior trading outcomes.

Figures 4.11 and 4.12 present the NAV and SHAP comparisons, respectively,
revealing consistent dominance of behavioral and sentiment-driven indicators such as
RSI, Momentum_1M, and Bull-Bear Spread. These features appear recurrently across
both target specifications, suggesting their importance for predicting volatility risk

premiums in straddle strategies.
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4.3.2 Put Strategy

VRP as Target Variable

The Random Forest model performed modestly when applied to the put strategy
with raw VRP as the target. With all features included, the R? was negative (-0.45), and
RMSE was 0.0177, indicating overfitting and poor generalization. However, model
performance improved considerably as the feature set was pruned. The top 10 features
yielded an R? of 0.34, while the top 5 features increased the R? to 0.66 and reduced
RMSE to 0.0115.

Market-level annualized returns remained relatively stable at 1% for the all-
feature model, while the top 10 and top 5 sets yielded returns of 0.39% and 0.48%,
respectively. The win rate was 68.75% across the board. Sharpe ratios remained
negative throughout, likely reflecting high variance and suboptimal timing in harvesting
the volatility premium.

SHAP values visualized in Figure 4.14 demonstrate that macroeconomic and
volatility-related indicators such as CPI_MoM, GDP Forecasts, and VIX were
particularly influential in raw VRP prediction. Performance NAV comparisons in Figure
4.13 also reflect the model's inability to significantly enhance base strategy

performance, despite achieving a higher statistical fit in the reduced feature sets.
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Excess VRP as Target Variable

In contrast, the Random Forest model was most effective when targeting excess
VRP using the put strategy. Model fit improved steadily as features were pruned: the R?
progressed from -0.14 (all features) to 0.49 (top 10) and finally to 0.69 (top 5), with
corresponding RMSE values decreasing from 0.0201 to 0.0150.

ML-driven trading results also improved markedly. The full-feature model
produced a 7.29% annualized return, which climbed to 9.55% and 10.51% across the
top 10 and top 5 subsets, respectively. Sharpe ratios similarly increased to 0.18 in the
top 5 feature configuration, higher than any configuration under the straddle strategy.
Moreover, ML win rates exceeded 70%, and SPX correlation remained strong (above
0.80), indicating that the model effectively captured risk-on/risk-off sentiment across
market regimes.

Figures 4.15 and 4.16 visually reinforce this result. NAV trajectories indicate
smooth and sustained outperformance when the model relies on compact, relevant
feature sets. SHAP plots highlight the recurring dominance of VIX, short-term
momentum, and macro signals (especially GDP Dispersion and CPI_MoM), which
likely served as proxies for behavioral overreaction and volatility dislocation.

Random Forest models performed more robustly under the put-only strategy and
when predicting excess VRP, particularly with smaller, behaviorally relevant feature
subsets. While the straddle strategy remained consistent in terms of raw returns,
regardless of model predictions, the put strategy showed a strong alignment between
statistical fit and market performance, especially when feature dimensionality was
reduced. This relationship is further discussed in Section 4.5 in the context of

comparative model analysis and time-period sensitivity.
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4.4 Gradient Boosting Results

4.4.1 Straddle Strategy

VRP as Target Variable

When trained on the straddle strategy using raw VRP as the target variable, the
Gradient Boosting model showed only marginal improvements over the Random Forest
counterpart. With all features included, the model achieved an R? of 0.31 and an RMSE
0f 0.0267. Narrowing the feature space modestly improved the model fit: the top 10
features yielded an R? of 0.37 and an RMSE of 0.0258, while the top 5 features showed
a slight regression with an R? of 0.32 and an RMSE of 0.0264.

Despite the better fit relative to Random Forest, the ML-driven portfolios failed
to enhance trading outcomes. All feature subsets resulted in flat to negative annualized
returns (All: -0.11%, Top 10: -0.17%, Top 5: -0.55%) and negative Sharpe ratios, while
the baseline straddle strategy (with no dynamic scaling) yielded a stable annualized
return of 0.83% with a Sharpe of -0.05. NAV comparisons in Figure 4.17 and SHAP
visualizations in Figure 4.18 further confirm this underperformance: even though
interpretability remained high and feature importance rankings were consistent across
models, the extracted signals did not translate into actionable predictive value for VRP
timing.

SHAP analysis consistently identified Momentum 1M, RSI, GDP forecasts, and
volatility proxies, such as VIX and PutCallSkew, as the top contributors. Their
persistent appearance suggests they hold latent explanatory power for the straddle’s
implied volatility dynamics, even if the model struggled to convert this insight into

profit.
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Excess VRP as Target Variable

Performance improved substantially when the target variable shifted to excess
VRP. Using all features, the GB model achieved an R? of 0.42 and an RMSE of 0.0254.
The top 10 feature model improved to an R? of 0.48 (RMSE: 0.0234), while the top 5
model peaked at an R? of 0.51 and RMSE of 0.0236.

However, these improvements in statistical metrics were again not reflected in
trading performance. ML portfolios returned -0.10% (All), -0.51% (Top 10), and -1.04%
(Top 5) annually, underperforming the static straddle strategy, which remained flat at
0.83%. As shown in Figure 4.19, the NAV curve initially showed promise. However, it
flattened or declined in the latter half of the sample period (2022—-2023), possibly
indicating structural changes in VRP behavior or a loss of model generalization during
volatile macroeconomic regimes.

Despite this, SHAP value analyses again emphasized consistent behavioral and
macroeconomic signals. Momentum 1M, RSI, GDP_Surprise, CPI_MoM, and VIX
featured prominently, suggesting that excess VRP predictability may be more aligned

with relative sentiment and macro shifts than with outright volatility levels.
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4.4.2 Put Strategy

VRP as Target Variable

The Gradient Boosting model’s application to the put strategy using raw VRP as
the target produced moderate success in statistical terms. With all features, the model
achieved an R? of 0.43 and an RMSE of 0.0202. Limiting to the top 10 features
improved the R? to 0.58, and the top 5 features achieved the highest R? of 0.70 and the
lowest RMSE of 0.0145.

However, the ML-predicted portfolio struggled to translate statistical power into
trading gains. Returns remained flat or negative across all feature sets: All (0.99%), Top
10 (0.29%), and Top 5 (-0.05%), compared to a consistent base strategy return of
3.99%. Sharpe ratios were weak or negative, and drawdowns were materially higher for
the ML portfolio, especially when all features were used.

Figures 4.21 and 4.22 confirm these findings. The most influential predictors
based on SHAP values included technical and sentiment-based indicators such as RSI,
Momentum 1M, PutCallSkew, and VIX, highlighting that investor positioning and
volatility skew were more predictive of raw VRP than macroeconomic surprises.
Traditional macroeconomic indicators, such as GDP Surprise, Unemployment, and CPI
MoM, ranked lower in importance, suggesting that raw VRP may be more responsive to
market microstructure and behavioral flows than to top-down economic data. However,
despite strong model fit metrics, this signal strength did not translate into reliable

portfolio performance, possibly due to regime shifts or overfitting to historical patterns.
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Excess VRP as Target Variable

The GB model achieved its strongest overall results when applied to the put
strategy with excess VRP as the target. The R? steadily improved from 0.60 (All) to 0.76
(Top 10) and peaked at 0.75 (Top 5). RMSE correspondingly declined from 0.0181 to
0.0164 and 0.0161. These values represent the best overall model fits in the entire study.

Importantly, economic performance improved in parallel. The ML portfolio
returned 7.38% (All), 9.76% (Top 10), and 10.22% (Top 5) annually, significantly
outperforming the baseline strategy (3.99%) and rivaling the SPX benchmark (10.97%).
The Sharpe ratio reached 0.17 under the top 5 feature set, with the lowest drawdown (-
0.19%) and highest win rate (70.31%).

Figures 4.23 and 4.24 illustrate the strong consistency of NAV and SHAP across
feature subsets. The top features—VIX, RSI, Momentum 1M, GDP Dispersion, and
CPI_MoM-—highlight the critical role of sentiment, macro volatility, and behavioral
disequilibrium in capturing the excess volatility premium. Notably, the reduced feature
sets outperformed the full model both statistically and economically, reinforcing the
importance of model parsimony in high-dimensional macro-financial contexts.

In summary, Gradient Boosting models showed mixed results. They
underperformed in the straddle strategy regardless of the target variable, likely due to
lower signal strength in symmetric volatility exposures. However, in the put strategy,
especially when targeting excess VRP, they produced the highest predictive accuracy
and strongest economic results in the entire analysis. These findings underscore the
value of asymmetric VRP strategies and disciplined feature selection in constructing

machine-learning-driven volatility portfolios.
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4.5 Model Comparison and Interpretation

This section synthesizes the empirical findings across the linear and tree-based
models—Ridge Regression, Random Forest, and Gradient Boosting—to evaluate their
relative predictive accuracy, portfolio performance, feature behavior, and practical
implications across the four strategy-target configurations: Straddle with Raw VRP,
Straddle with Excess VRP, Put with Raw VRP, and Put with Excess VRP. The analysis
draws on Tables 4.2 and 4.3, as well as Figures 4.9 through 4.16, which include

performance metrics, NAV plots, SHAP visualizations, and feature importances.

4.5.1 Predictive Accuracy

From a statistical modeling standpoint, Gradient Boosting consistently achieved
the highest in-sample R? across nearly all configurations when trained on SHAP-
selected top 5 or top 10 features. For instance, the Gradient Boosting Put strategy with
raw VRP as the target attained an R? of 0.8299, the highest among all model-strategy
combinations. Similarly, the Gradient Boosting Straddle strategy with excess VRP
recorded an R? of 0.7938 with the top 5 features. In contrast, Ridge Regression models
displayed modest predictive power (e.g., R? = 0.2943 for Put with excess VRP), while
Random Forest models exhibited more variability, performing well with fewer features
but prone to overfitting when trained on all features (e.g., negative R? for Straddle with
raw VRP).

Interestingly, the most predictive target variable also varied by strategy. For the
Put strategy, models trained to predict raw VRP generally achieved higher R? than those
using excess VRP, particularly in tree-based models. In contrast, Straddle strategies
appeared to benefit more from predicting excess VRP, likely due to the straddle's

symmetrical exposure and sensitivity to equity beta that excess VRP helps to neutralize.
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4.5.2 Market Performance

Despite the superior statistical fit of tree-based models, portfolio-level
performance tells a more nuanced story. When examining strategy returns, Sharpe
ratios, drawdowns, and correlations, the Put strategy outperforms Straddle strategies
across all models and target variables. For instance, (1) The Ridge Regression Put
strategy with excess VRP achieved an annualized return of 14.98% and a Sharpe ratio of
0.29, notably higher than any Ridge-based straddle configuration. (2) Tree-based Put
strategies also delivered strong results, with Gradient Boosting (raw VRP) reaching up
to 10.22% annualized return and a Sharpe ratio of 0.17. However, Sharpe ratios
plateaued relative to Ridge in some variants.

The Straddle strategy, by contrast, exhibited flat or negative Sharpe ratios and
negligible alpha, particularly for models targeting raw VRP. For instance, both Random
Forest and Gradient Boosting models exhibited strategy Sharpe ratios of -0.05 when
applied to the Straddle strategy, regardless of the predictive R? values. This suggests that
predictive accuracy alone is insufficient to ensure superior market performance,
especially when the strategy construction involves both long and short delta exposures
and hence interacts more complexly with directional market trends.

The Put strategy’s consistent outperformance may be attributed to the underlying
macroeconomic conditions during the sample period (2018-2023). This period was
predominantly characterized by a bull market, especially post-2020, during which put
options consistently decayed in value due to low realized volatility and positive equity
returns. By targeting VRP, particularly when predicting when puts are overpriced, the
strategy likely captured volatility risk premium more effectively than the straddle,

which requires accurate timing of both tails.
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4.5.3 Unexpected Strength of Ridge Regression for Put Strategies

A notable empirical result is the unexpected competitiveness of Ridge
Regression when applied to the Put strategy. Despite its simplicity and lack of non-
linear modeling, Ridge achieved performance metrics comparable to or even exceeding
tree-based alternatives in some scenarios. This was the case regardless of the target
variable, with Ridge regression outperforming the tree models for both raw and excess
VRP target variables.

There are several potential explanations for this phenomenon. First, overfitting is
a documented issue in high-dimensional tree models, particularly in relatively small
datasets with time series structure. Ridge Regression, with its penalization of large
coefficients and linear bias, may have provided better out-of-sample generalization,
especially when signals were driven by a few dominant behavioral indicators (e.g., RSI,
PutCallSkew, Momentum_1M). Second, linear relationships may suffice to capture VRP
timing in bull market regimes, where behavioral sentiment and momentum tend to align
in predictable ways. Finally, feature engineering may have disproportionately benefited
linear models. Features like RSI, PutCallSkew, and VIX are already nonlinear
transformations of prices or returns, potentially diminishing the marginal benefit of
additional model complexity in capturing their effects.

However, even with this relative strength, Ridge Regression-based Put strategies
underperformed the S&P 500 throughout 2021. This was possibly due to the
extraordinary post-pandemic bull run, where equity markets delivered outsized gains
while implied volatility steadily declined. In such environments, delta-hedged short put
strategies generate limited upside because they are designed to harvest volatility
mispricing rather than directional equity returns. Moreover, the persistent collapse in

VIX during 2021 reduced the magnitude of the volatility risk premium, resulting in
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thinner option selling profits. The Ridge model, while able to capture periods of stable
VRP, could not fully compensate for the structural underperformance against a strongly
trending equity index. Behavioral signals like RSI and momentum also became less
predictive in 2021, as market returns were driven more by macroeconomic tailwinds
(e.g., fiscal stimulus, reopening trades) than by volatility risk aversion, leading to muted

ML-driven scaling and lower NAV growth relative to SPX.

4.5.4 Feature Interpretability and Strategy Alignment

The SHAP analysis across Random Forest and Gradient Boosting models
confirms that feature importance rankings are relatively consistent across strategies. For
Put strategies, dominant predictors include: (1) RSI — often the most important feature
across all configurations, (2) PutCallSkew — a measure of downside fear. (3)
Momentum_ 1M — short-term price direction, and (4) VIX and Volume Z — proxies for
volatility expectations and abnormal trading activity.

In contrast, macro features such as GDP Surprise, Unemployment, and
CPI_MoM ranked lower in most configurations, particularly when predicting raw VRP.
This suggests that behavioral and sentiment-driven features are more effective in
predicting volatility mispricing than traditional macroeconomic data.

Interestingly, feature rankings did not always align with return-generating
power. In several cases, models with better in-sample fit (e.g., top 10 or top 5 features)
delivered worse out-of-sample returns, particularly in Straddle strategies. This reflects a
well-known tradeoff in financial modeling: excessive optimization of predictive metrics
often fails to generalize under regime shifts, especially for strategies sensitive to skew

and kurtosis.
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4.5.5 Practical Takeaways

From a practical perspective, the results highlight several key insights:

1. Strategy selection dominates model complexity. The choice between Put and
Straddle strategies had a larger impact on return outcomes than the choice of
model. Even simple models, such as Ridge, outperformed complex ones when
aligned with market trends and option payoff structures.

2. Model complexity improves the statistical fit but does not necessarily return the
best results. Gradient Boosting achieved the best predictive accuracy but often
underperformed Ridge in real-world metrics due to overfitting or market shifts.

3. Behavioral features are critical. RSI, Momentum, and PutCallSkew consistently
ranked as the most important features across all model families and strategies,
reaffirming the importance of behavioral finance in volatility pricing.

4. Market environment sensitivity is significant. Tree-based models performed
better from 2018 to 2022 but struggled afterward, as indicated by NAV plots and
declining Sharpe ratios. This suggests that changes in market structure (e.g.,
inflation shock, Fed tightening) may have altered the behavioral dynamics

underlying VRP.
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5. Conclusion

5.1 Summary of Findings

This thesis explores the predictive modeling of VRP profitability using machine
learning, with a focus on two delta-hedged options strategies: the short straddle and the
short put. Three model classes—Ridge Regression, Random Forest, and Gradient
Boosting—are evaluated using two target variables: raw VRP and excess VRP (VRP net
of contemporaneous S&P 500 returns). This design enables a nuanced examination of
how well models capture volatility-related alpha compared to simple equity beta.

The results yield several important findings. First, non-linear models
(particularly Random Forest) consistently outperform linear Ridge Regression in terms
of predictive accuracy (as measured by R? and RMSE). While Ridge Regression offers
better interpretability and more stable coefficients, its ability to capture non-linear
structures in VRP profitability is limited, especially in the context of the straddle
strategy.

Second, contrary to expectations, Random Forest generally outperforms
Gradient Boosting, especially in the raw VRP configurations and in predicting put
strategy profitability. While Gradient Boosting produces more compact trees and
sometimes benefits from better generalization, its out-of-sample economic performance
often lags that of Random Forest, suggesting that the ensemble variance control and
robustness of Random Forest make it better suited for the noisy financial environment
of volatility trading.

A particularly notable finding is the consistent superiority of put-based strategies
over straddle strategies across all model classes and configurations. Put strategies
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exhibit significantly higher annualized returns (ranging from 10% to over 14% in the
best cases), higher Sharpe ratios, and lower drawdowns, especially when modeled with
Random Forest using the excess VRP target. This aligns with behavioral theories
positing that downside insurance carries a persistent premium due to investor aversion
to tail risks.

Interestingly, Ridge Regression's put strategy, which utilizes excess VRP, while
exhibiting a low R? and high RMSE, delivers the strongest realized economic
performance, suggesting that a weak statistical fit may still yield high-quality signals
under certain market conditions. This discrepancy raises important questions about the
relationship between predictive accuracy and economic utility in financial modeling.

Finally, the choice of target variable proves critical. For straddle strategies,
excess VRP significantly enhances model performance by stripping away market
directionality. For put strategies, however, raw VRP remains effective in terms of
predictive power—Ilikely because put premiums already embed downside beta,
rendering excess VRP transformations less additive.

SHAP-based feature selection further enhances performance. Reducing the
feature set to the top 10 or 5 most impactful variables not only simplifies the model but
often improves out-of-sample generalization. Key features across models include VIX,
momentum indicators, RSI, and macroeconomic surprises such as GDP forecasts and

CPI, which frequently rank among the most predictive inputs.

5.2 Practical Implications

The findings from this research provide actionable insights for practitioners
engaged in quantitative volatility trading. First, the put-only strategy, particularly when

combined with excess VRP targeting, appears to offer a robust, high-return opportunity
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with manageable risk. This makes it especially appealing for portfolio overlays or
systematic volatility harvesting strategies.

Second, the results reinforce the value of ensemble-based machine learning
models, which handle noisy and non-stationary financial data more effectively than
linear alternatives. However, model selection must go beyond predictive accuracy. As
demonstrated, the most statistically accurate models (e.g., Gradient Boosting) do not
consistently deliver the best trading results, and linear models with relatively poor R?
values may still yield alpha.

The superior performance of simpler models in certain market environments also
underscores the importance of model simplicity, robustness, and interpretability,
especially in institutional contexts with regulatory and fiduciary oversight. Tools like
SHAP values facilitate model transparency, aiding in feature selection and enhancing
trust and communication between data scientists, portfolio managers, and stakeholders.

Finally, the temporal breakdown of performance reveals important regime
dependency. Tree-based models performed well from 2018 to 2021, a period marked by
macroeconomic stability and strong risk appetite, but degraded significantly during
2022-2023, which was characterized by inflation, rate hikes, and geopolitical volatility.
This suggests that real-time monitoring, adaptive retraining, and potential integration of

regime-switching frameworks are critical for maintaining performance over time.

5.3 Future Research Directions

This thesis opens several promising avenues for further investigation. A key
direction is to ensure model robustness across different market environments. The
degradation in model efficacy post-2022 suggests that volatility-related alpha is not

time-invariant. Future work could explore regime-aware models, such as hidden
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Markov models or conditional tree ensembles, to adapt model behavior to shifting
macroeconomic environments.

Another direction is the integration of alternative data and architectures.
Although tree-based models excel at handling structured data, incorporating
unstructured sources, such as news sentiment, option order flows, or social media, using
deep learning (e.g., LSTMs or transformers) may yield further improvements in
predictive capacity and adaptability.

Feature engineering can also be expanded. While this study focused on
macroeconomic, behavioral, and technical indicators, intraday volatility signals, options
surface metrics, and skewness/kurtosis measures may enhance model resolution and
allow finer-grained signal calibration.

Finally, transaction costs and market frictions remain crucial considerations.
While this research assumes frictionless execution, future work should account for bid-
ask spreads, slippage, and capital constraints in simulating real-world implementations.
This is particularly important for put strategies, where liquidity may dry up during stress

events, potentially amplifying risk or distorting model signals.

5.4 Concluding Remarks

This thesis contributes to the intersection of quantitative finance and machine
learning by empirically validating that VRP profitability is both forecastable and
tradable using systematic models. By comparing linear and non-linear architectures
across two distinct strategies and target variable frameworks, this research presents a
comprehensive view of how volatility premia can be extracted from market data.

Despite the success of tree-based models, the findings caution against over-

reliance on any single architecture. Model performance is context-sensitive, and a high
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in-sample R? does not guarantee out-of-sample profitability. As such, the successful
implementation of ML-driven volatility strategies requires not only technical modeling
skills but also macroeconomic awareness, robust risk management, and ongoing
adaptation to evolving financial regimes.

In sum, this study affirms that machine learning, when carefully constructed,
validated, and interpreted, can serve as a powerful tool for uncovering alpha in the
volatility space. However, like all tools in finance, its edge lies in how it is used,

updated, and interpreted, rather than its complexity alone.

67

doi:10.6342/NTU202503618



References

Andersen, T. G., Bollerslev, T., Diebold, F. X., & Vega, C. (2003). Micro effects of
macro announcements: Real-Time price discovery in foreign exchange.

American Economic Review, 93(1), 38—62.

https://doi.org/10.1257/000282803321455151

Baker, M., & Wurgler, J. (2007). Investor sentiment in the stock market. The Journal of

Economic Perspectives, 21(2), 129-151. https://doi.org/10.1257/jep.21.2.129
Bali, T. G., Beckmeyer, H., Moerke, M., & Weigert, F. (2021). Option Return
Predictability with Machine Learning and Big Data. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.3895984

Bali, T. G., Brown, S. J., & Tang, Y. (2016). Is economic uncertainty priced in the
Cross-Section of individual stocks? SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.2812967

Bates, D. S. (2000). Post-’87 crash fears in the S&P 500 futures option market. Journal

of Econometrics, 94(1-2), 181-238. https://doi.org/10.1016/s0304-

4076(99)00021-4

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The

Journal of Political Economy. https://doi.org/10.1142/9789814759588 0001

Bloom, N. (2009). The impact of uncertainty shocks. Econometrica, 77(3), 623—685.

https://doi.org/10.3982/ecta6248

Bollen, N. P. B., & Whaley, R. E. (2004). Does net buying pressure affect the shape of
implied volatility functions? The Journal of Finance.

https://doi.org/10.1111/5.1540-6261.2004.00647.x

68

doi:10.6342/NTU202503618


https://doi.org/10.1257/000282803321455151
https://doi.org/10.1257/jep.21.2.129
https://doi.org/10.2139/ssrn.3895984
https://doi.org/10.2139/ssrn.2812967
https://doi.org/10.1016/s0304-4076(99)00021-4
https://doi.org/10.1016/s0304-4076(99)00021-4
https://doi.org/10.1142/9789814759588_0001
https://doi.org/10.3982/ecta6248
https://doi.org/10.1111/j.1540-6261.2004.00647.x

Bollerslev, T., Gibson, M. S., & Zhou, H. (2011). Dynamic Estimation of Volatility
Risk Premia and Investor Risk Aversion from Option-Implied and Realized
Volatilities. Journal of Econometrics.

https://doi.org/10.1016/j.jeconom.2010.03.033

Bollerslev, T., Tauchen, G., & Zhou, H. (2009). Expected stock returns and variance

risk premia. SSRN Electronic Journal. https://doi.org/10.1093/rfs/hhp008

Carr, P., & Wu, L. (2009). Variance risk premiums. Review of Financial Studies, 22(3),

1311-1341. https://doi.org/10.1093/rfs/hhn038&

Chordia, T., Subrahmanyam, A., & Roll, R. (2000). Market liquidity and trading

activity. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.237674

Christensen, B. J., & Prabhala, N. R. (1998). The relation between implied and realized

volatility. Journal of Financial Economics. https://doi.org/10.1016/S0304-

405X(98)00034-8

Christensen, K., Siggaard, M., & Veliyev, B. (2022). A machine learning approach to
volatility forecasting. Journal of Financial Econometrics, 21(5), 1680—1727.

https://doi.org/10.1093/jifinec/nbac020

Corradi, V., Distaso, W., & Mele, A. (2012). Macroeconomic Determinants of stock
market volatility and volatility Risk-Premiums. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.2005021

Drechsler, 1., & Yaron, A. (2011). What’s Vol got to do with it. The Review of

Financial Studies, 24(1), 1-45. http.//www.jstor.org/stable/40985815

French, K., Schwert, G., & Stambaugh, R. (1987). Expected stock returns and volatility.

Journal of Financial Economics. https://doi.org/10.1016/0304-405X(87)90026-2

69

doi:10.6342/NTU202503618


https://doi.org/10.1016/j.jeconom.2010.03.033
https://doi.org/10.1093/rfs/hhp008
https://doi.org/10.1093/rfs/hhn038
https://doi.org/10.2139/ssrn.237674
https://doi.org/10.1016/S0304-405X(98)00034-8
https://doi.org/10.1016/S0304-405X(98)00034-8
https://doi.org/10.1093/jjfinec/nbac020
https://doi.org/10.2139/ssrn.2005021
http://www.jstor.org/stable/40985815
https://doi.org/10.1016/0304-405X(87)90026-2

Garman, M. B., & Klass, M. J. (1980). On the Estimation of Security Price Volatilities
from Historical Data. The Journal of Business, 53(1), 67-78.

http://www.jstor.org/stable/2352358

Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning.
Review of Financial Studies, 33(5), 2223-2273.

https://doi.org/10.1093/rfs/hhaa009

Guo, L., & Loeper, G. (2020). The Volatility Risk Premium: An Empirical Study on the

S&P 500 Index. SSRN Electronic Journal. hitps://doi.org/10.2139/ssrn.3739933

Guyonlsabelle, & ElisseeffAndré. (2003). An introduction to variable and feature
selection. Journal of Machine Learning Research.

https://doi.org/10.5555/944919.944968

Jackwerth, J. C., & Rubinstein, M. (1996). Recovering Probability Distributions from
Option Prices. The Journal of Finance, 51(5), 1611.

https://doi.org/10.2307/2329531

Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers:
Implications for stock market efficiency. The Journal of Finance, 48(1), 65-91.

https://doi.org/10.1111/5.1540-6261.1993.tb04702.x

Londono, J. M., Ma, S., & Wilson, B. A. (2025). Costs of rising uncertainty.

https://www.federalreserve.gov/econres/notes/feds-notes/costs-of-rising-

uncertainty-20250424 .html

Lou, D., Polk, C., & Skouras, S. (2019). A tug of war: Overnight versus intraday
Expected Returns. Journal of Financial Economics.

https://doi.org/10.1016/1.ifineco.2019.03.011

Lundberg, S., & Lee, S. (2017, May 22). A unified approach to interpreting model

predictions. arXiv.org. https://arxiv.org/abs/1705.07874

70

doi:10.6342/NTU202503618


http://www.jstor.org/stable/2352358
https://doi.org/10.1093/rfs/hhaa009
https://doi.org/10.2139/ssrn.3739933
https://doi.org/10.5555/944919.944968
https://doi.org/10.2307/2329531
https://doi.org/10.1111/j.1540-6261.1993.tb04702.x
https://www.federalreserve.gov/econres/notes/feds-notes/costs-of-rising-uncertainty-20250424.html
https://www.federalreserve.gov/econres/notes/feds-notes/costs-of-rising-uncertainty-20250424.html
https://doi.org/10.1016/j.jfineco.2019.03.011
https://arxiv.org/abs/1705.07874

Merton, R. C. (1975). Option pricing when underlying stock returns are discontinuous.

https://dspace.mit.edu/handle/1721.1/1899

Rudin, C. (2018). Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. arXiv.org.

https://arxiv.org/abs/1811.10154

Smales, L. (2014). News sentiment and the investor fear gauge. Finance Research

Letters. https://doi.org/10.1016/1.1r1.2013.07.003

Tang, A. (2023). Option trading strategies to harvest the volatility risk premium.

http://arks.princeton.edu/ark:/88435/dsp01zw12z858k

71

doi:10.6342/NTU202503618


https://dspace.mit.edu/handle/1721.1/1899
https://arxiv.org/abs/1811.10154
https://doi.org/10.1016/j.frl.2013.07.003
http://arks.princeton.edu/ark:/88435/dsp01zw12z858k



