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摘要

故障引起的錯誤會嚴重影響噪聲中等規模量子（NISQ）電路的正確性。在這

項工作中，我們提出了一種診斷 NISQ電路中相干和非相干故障的技術。所提出

的技術包括三個階段：粗略診斷、精細診斷和去極化診斷。粗略診斷通過在布洛

赫球上進行網格搜索來定位相干故障的大致範圍。然後，精細診斷根據縮小的搜

索空間精確定位相干故障。最後，去極化診斷測量極化故障的大小。我們使用

Qiskit模擬器進行了技術演示，其中包括無噪聲和有噪聲的後端。我們診斷了具

有 27個單量子位元、6個雙量子位元相干故障和 7個注入的去極化故障的量子

電路。診斷出的故障量子閘與注入的故障量子閘之間的平均量子閘保真度超過

99.95％，優於相同條件下的傳統量子過程層析。還在 IBM Q設備上進行了實驗，

結果顯示，超過 99.83％的平均量子閘保真度表明我們的技術仍然在實際量子電路

設備上保持良好的分辨率。

關鍵字：雜訊中等規模量子、量子電路、錯誤診斷
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Abstract

Errors caused by faults would strongly affect the correctness of noisy intermediate-

scale quantum (NISQ) circuits. In this work, we propose a technique for diagnosing co-

herent and incoherent faults for NISQ circuits. The proposed technique contains three

phases: rough diagnosis, fine diagnosis, and depolarizing diagnosis. Rough diagnosis grid

searches the Bloch sphere to locate an approximate range of a coherent fault. Fine diagno-

sis then precisely locates the coherent fault size based on the narrowed-down search space.

At last, depolarizing diagnosis measures the depolarizing fault size. We demonstrate our

technique using the Qiskit simulator with noise-free and noisy backends. The diagnosis

accuracy between the diagnosed faulty gates and the injected faulty gates is over 99.95%,

which is better than traditional quantum process tomography under the same conditions.

Our results show that the diagnosis error of coherent faults does not affect the diagno-

sis accuracy of depolarizing faults. Experiments on the IBM Q devices have also been

performed, and results of over 99.83% diagnosis accuracy show that our technique still

preserves good resolution on real quantum circuit devices.

Keywords: noisy intermediate-scale quantum, quantum circuit, fault diagnosis
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Chapter 1 Introduction

1.1 Motivation

Quantum circuits are one of the most anticipated technologies in recent years. Ap-

plications of quantum circuits have been studied in various fields, including chemistry,

machine learning, and cryptography. Many companies have built numerous quantum pro-

cessors, including Google’s 70-qubit processor (Sycamore [1] ), IonQ’s 32-qubit proces-

sor (Forte [8]), and IBM’s 133-qubit processor (Heron [9]). IBM also announced that

their 127-qubit quantum processor had beaten supercomputers when performing a classi-

cal brute-force computation [10]. Figure 1.1 is the quantum processor developed by the

Google Quantum AI team.

While the size of quantum processors kept increasing, the reason quantum proces-

sors are not commercialized is that they are vulnerable to errors in the noisy intermediate-

scale quantum (NISQ) era [11]. Figure 1.2 shows the correlation between the number of

qubits and the limiting error rate. We have to both increase the number of qubits and keep

the limiting error rate low enough to achieve a useful error corrected QC. There are two

1
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Figure 1.1: Google’s quantum processor Sycamore [1]

sources of errors. Noises are randomly induced by the environment, and we cannot predict

the error effects from noises, such as dephasing noises. Faults, however, are induced by

defects of the quantum processor hardware. Unlike noises, the effects of faults remain

time-independent, meaning the same fault-induced errors occur every time we execute a

quantum circuit. Hence, fault diagnosis is crucial for the success of quantum processors.

Our research aims to diagnose the faults in quantum processors. For manufacturers, diag-

nosis can help to re-calibrate their quantum processors or repair the root cause of faults.

For users, diagnosis can help error mitigation or error suppression on their circuits to ob-

tain more accurate results than the original circuits. Fig.1.4 is the future roadmap of

quantum computing released by IBM [12]. We can see that they focus on increasing the

number of qubits and canceling errors caused by noise.

2
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Figure 1.2: Characters of quantum processor technology

Figure 1.3: Our proposed diagnosis flow

Figure 1.4: Roadmap of IBM quantum computing

3
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1.2 Proposed Techniques

In this paper, our technique diagnoses the faulty qubit, faulty gate type and fault size

with high accuracy. The faulty qubit and gate type represent which qubit and gate type a

fault acts on. The fault size represents how large the fault effect is. We can diagnose both

coherent faults and depolarizing faults. Coherent faults maintain phase and coherence but

may alter the amplitude or orientation of quantum states. Depolarizing faults cause a loss

of coherence and shrink the quantum states towards the center of a Bloch sphere. Our

overall flow is shown in Fig. 1.3. Our proposed technique contains three stages: rough

diagnosis, fine diagnosis, and depolarizing diagnosis. We take the processor under di-

agnosis(PUD) as input. Rough diagnosis locates the approximate range of the coherent

fault’s size by grid search and reports the faulty qubit and faulty gate type. Fine diag-

nosis generates QC to distinguish the diagnosed coherent fault from others and reports

the coherent fault size. Finally, depolarizing diagnosis uses curve fitting to diagnose the

diagnosed depolarizing fault and report the depolarizing fault size. At the end of our qFD

flow, we report the faulty qubit, faulty gate type, coherent fault size, and depolarizing fault

size.

Plenty of past research has been conducted on the diagnosis of quantum circuits (QCs)

[13], [3], and [4]. These works aimed to diagnose quantum circuits. They are given a

quantum circuit and find faulty qubits and faulty gates. Our work, on the other hand, aims

to diagnose the quantum processor. We generate diagnosis quantum circuits to find faulty

4
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qubits, faulty gate types, and fault sizes. Quantum Process Tomography (QPT) is a method

to characterize errors in QPs by reconstructing the faulty gate. Although QPT provides

detailed information about a QP, the number of shots needed to get high-accuracy results

is too high. Randomized benchmarking (RB) is another method to characterize errors in

QPs by inserting random gates into an empty QC [5]. Although RB can calculate error

per gate, it cannot diagnose the fault size, making it difficult to mitigate the effect of an

error.

The advantages of our proposed diagnosis technique are as follows: First, we can di-

agnose both coherent and depolarizing faults, which cause severe errors in today’s NISQ

processors. Second, our qFD flow can achieve 16 times lower diagnosis error (defined

later) compared with quantum process tomography within the same number of shots.

Third, users can specify their confidence level (CL) and our diagnosis tool can find a

coherent fault within a minimum number of shots. Last, we found an important fact, that

the diagnosis error of coherent fault has little impact on the diagnosis accuracy of depo-

larizing fault.

1.3 Contributions

Our work has five main contributions.

1. We propose a fault diagnosis flow for quantum processors. All steps in the flow

are automatic. The flow can diagnose noisy quantum processors in the presence of

5
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faults, which causes quantum processors to malfunction.

2. We propose three diagnosis stages that achieve good diagnosis accuracy and low

diagnosis error. The proposed technique contains three stages. Rough diagnosis

searches the Bloch sphere and reports the faulty qubit and faulty gate type. Fine

diagnosis reports the coherent fault size. Depolarizing diagnosis reports the depo-

larizing fault size.

3. We can diagnose both coherent and incoherent (depolarizing) faults. Both faults

cause severe errors inmodern quantum processors. We report the faulty qubit, faulty

gate type, and fault size of both coherent and incoherent (depolarizing) faults.

4. Our diagnosis flow is compared with traditional error characterize method: quan-

tum process tomography. We can achieve better diagnosis accuracy with the same

number of shots. We require less shots than quantum process tomography to achieve

the same diagnosis accuracy.

5. The proposed technique is applicable on real quantum processors. We perform our

diagnosis flow on a real IBM quantum processor. The results also achieve good

diagnosis accuracy, indicating that our flow is feasible on real quantum processors.

Our work focuses on diagnosing faults whose fault sizes are large.

6
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1.4 Organization

The rest of this paper is organized as follows. Chapter 2 provides information about

quantum circuit concepts, past research for quantum circuit diagnosis, the methodology

that inspired our work, and fault modeling of quantum processors. Chapter 3 explains the

details of our qFD flow. Chapter 4 shows the experimental results on a classical simulator

and an IBM quantum processor. Chapter 6 concludes this paper.

7
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Chapter 2 Background

2.1 Quantum Circuit Concepts

We introduce some basic concepts of QCs and the metrics used in this paper. The

quantum state |ψ⟩ of an n-qubit QC is expressed as [14]:

|ψ⟩ =
2n−1∑
i=0

ai |i⟩

, where ai represents the amplitude of the ith basis state |i⟩. Measurement in QCs would

collapse the quantum state into one of the 2n states. The probability of observing |i⟩ after

measurement is |ai|2, while the summation of |ai|2 for all i equals 1. Measurement results

are generated by Monte Carlo method and represented as an output probability distribu-

tion (OPD). The number of repetitions used in theMonte Carlo method is defined as shots.

We then introduce a quantum circuit (QC). A quantum circuit is analogous to a classical

circuit in classical computing. It consists of a sequence of quantum gates applied to qubits,

the fundamental units of quantum information. Each gate manipulates the quantum state

of the qubits in a specific way, such as flipping the state, entangling qubits, or performing

8
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Figure 2.1: Example of a quantum circuit

rotations in the Bloch sphere. Quantum circuits are designed to perform specific quan-

tum computations or algorithms. The execution of a quantum circuit involves initializing

qubits in a certain state, applying the sequence of gates according to the circuit design,

and measuring the final state of the qubits to obtain the desired output.

Figure 2.1 is an example of a quantum circuit. In this figure, a horizontal line repre-

sents a qubit in a quantum circuit, and every element on the line before the vertical dotted

line represents a quantum gate. The two elements after the vertical dotted line are mea-

surement operations. They perform measurement and transport the classical bits to the bit

lines that are marked meas. We then introduce all quantum gates used in Fig.2.1. A X

gate is a single-qubit rotation through π radians around the x-axis, which is expressed as

follows:

X =

0 1

1 0


A
√
X gate performs the rotation about the X-axis by π/2 radians, which is expressed as

follows:

√
X =

1

2

1 + i 1− i

1− i 1 + i


An I gate is a single-qubit operation that leaves the basis state unchanged, which is ex-

9

http://dx.doi.org/10.6342/NTU202400956


doi:10.6342/NTU202400956

pressed as follows:

ID =

1 0

0 1


A RZ gate is a single-qubit rotation through angle θ (radians) around the z-axis, which is

expressed as follows:

RZ(θ) =

e
−iθ/2 0

0 eiθ/2


A CNOT gate is expressed as follows:

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


A CNOT gate leaves the control qubit unchanged and performs a Pauli-X gate on the

target qubit when the control qubit is in state |1⟩. When the control qubit is in state |0⟩,

the CNOT gate leaves the target qubit unchanged.

2.2 Fault Modeling and Diagnosis Metrics of QP

Before we diagnose the PUD, we must define our fault model. In [13] and [3], they

apply the missing gate fault model. However, QCs have a much more complicated and

unpredictable behavior than conventional circuits, so it is unrealistic to apply a missing

gate fault model. As a result, in both [6] and [4], they applied three kinds of behavior

10
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fault models, which are ratio, bias and truncation. Ratio fault degrades the parameters

of a gate by a fixed ratio. Bias fault adds or minuses a fixed number of gate parameters.

Truncation fault truncates gate parameters to a fixed value. However, since they choose

U3(θ, ϕ, λ) as their only basis gate, their fault behavior is limited. Also, they focus on

diagnosing QCs but not QPs, while we aim to diagnose the faulty effect that appears on

hardware such as qubits and resonators in QPs.

There are two important fault models: coherent fault and incoherent fault. In thesis,

we are able to diagnose rotation fault and depolarizing fault. Figure 2.2 is an example of

the effect of a coherent fault. The green quantum state is the original fault-free state. The

coherent fault causes the fault-free state state to rotate to the faulty state (red). The faulty

state differs from the fault-free state by an angle of pi/4. The state fidelity decreases

from 1 to 0.85. Figure 2.3 is an example of the effect of a depolarizing fault [2]. A

depolarizing fault causes the quantum state to shrink towards the center of the Bloch sphere

uniformly. The smaller red sphere inside the Bloch sphere is the quantum state affected

by a depolarizing fault.

All fault models apply qATG’s [6] assumption that a fault will affect the same gate

on a qubit. We define a faulty gate for coherent faults, rf(θ, ϕ), which is expressed as:

rf(θ, ϕ) = RZ(
ϕ

2
+
π

2
) ·RX(

θ

2
) ·RZ(ϕ

2
− π

2
) (2.1)

θ ∈ [0, 2π], ϕ ∈ [0, 2π)

11
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We define θ and ϕ as the fault size for a coherent fault. A rf(θ, ϕ) applies an arbitrary

rotation after the fault-free gate, causing the quantum state on the Bloch sphere to rotate to

another position. The rotation consists of RZ, RX, and RZ gates sequentially, also known

as ZXZ decomposition [15].

Figure 2.2: Demonstration of a coherent fault

Figure 2.3: Demonstration of a depolarizing fault [2]

Here we demonstrate how we implement ZXZ decomposition in Fig.2.4. Assume we

12
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Figure 2.4: Demonstration of rf(1, 3)

have a rf(1, 3). Note that the red-colored state represents the state before rotation, while

the blue-colored state represents the state after rotation. In Fig.2.4(a), the initial state is

rotated by the RZ(1/2 + π/2) gate. Next in Fig.2.4(b), the state is then rotated by the

RX(3) gate. Finally in Fig.2.4(c), the state is rotated by the RZ(1/2− π/2) gate.

As for coherent faults in a two-qubit gate, we modify the fault model from [6]. A

rf(θ, ϕ) and its conjugate are applied before and after a CNOT gate, respectively. There

are three kinds of fault models, which are control, target, and both. The name of the

fault model represents which qubit the fault injects into. When a fault is injected into a

control qubit of a CNOT gate, it reflects an imperfect control capability, whereas injecting

a fault into the target qubit of a CNOT gate represents the imperfect influence of the control

qubit. Finally, both scenarios may happen simultaneously, so the fault may exist in both

the control and target qubits. A demonstration is shown in Fig. 2.5. In the figure, U1 and

U2 are different rf(θ, ϕ), while U1 and U1† represent the control fault model. U2 and

U2† represent the target fault model. At last, both fault model consists of U1, U1†, U2,

and U2†.
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Figure 2.5: Demonstration of two-qubit fault model

To evaluate the effectiveness of our diagnosis, we introduce two key metrics: diag-

nosis accuracy and diagnosis error. Diagnosis accuracy is measured by the average gate

fidelity between the diagnosed faulty gate and the actual faulty gate in a QP. Ranging from

0 to 1, a diagnosis accuracy of 1 denotes an exact match between the diagnosed and actual

faulty gate. The equation of diagnosis accuracy is shown below:

DA(E , U) = dFpro(E , U) + 1

d+ 1
(2.2)

In the equation, Fpro(E , U) is the process fidelity between the diagnosed faulty gate

E and the actual faulty gate U . d is the dimension of the channel. For example, the actual

faulty gate is rf(1, 0), and the diagnosed coherent fault is rf(1.1, 0). We first calculate the

process fidelity of rf(1, 0) and rf(1.1, 0). Since both rf(1, 0) and rf(1.1, 0) are unitary

matrices, the process fidelity can be expressed as:

Fpro(E , U) =
Tr[S†

USE ]

d2
(2.3)

Note that the Tr is the trace operator, S†
U is the conjugate transpose of the actual

faulty gate superoperator matrix, and SE is the diagnosed coherent fault superoperator

matrix. We calculate the conjugate transpose matrix of rf(1.1, 0), which is:

14
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

0.73 0.45j −0.45j 0.27

0.45j 0.73 0.27 −0.45j

−0.45j 0.27 0.73 0.45j

0.27 −0.45j 0.45j 0.73


Then wemultiply the conjugate transpose superoperator matrix of rf(1.1, 0)with rf(1, 0)

superoperator matrix and calculate the trace.

Fpro(rf(1.1, 0), rf(1, 0)) =
3.99

22
= 0.9975

Finally, we calculate the diagnosis accuracy equals to 99.83% :

DA(rf(1.1, 0), rf(1, 0)) =
2 ∗ 0.9975 + 1

2 + 1
= 99.83%

Diagnosis error represents the inaccuracy between the diagnosed faulty gate and the

actual faulty gate. We define diagnosis error as 1 minus the diagnosis accuracy.

DE(E , U) = 1−DA(E , U) (2.4)

The diagnosis error of the example is 1− 99.83% = 0.17%.

Unlike average gate fidelity, state fidelitymeasures the similarity between two quan-
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tum states. The equation of state fidelity is shown as follows:

F = |⟨ψ|ϕ⟩|2 (2.5)

Note that ψ and ϕ are the two quantum states being compared.

For the depolarizing fault model, we define a parameter λ as the fault size. λ is the

ratio at which a state shrinks towards the center of the sphere. It ranges from 0 to 1, where

0 represents the fault-free state, and 1 represents the maximally mixed state. The equation

of depolarizing fault is:

E(ρ) = (1− λ)ρ+ λTr[ρ]
I

2n
(2.6)

Note that Tr is the trace operator, E(ρ) is a function that takes fault-free state (ρ) as

input and outputs the quantum state injected with depolarizing fault, and n is the number

of qubits. We then define the diagnosis error of depolarizing faults as follows:

DE(E , U) = ∥λE − λU∥ (2.7)

The λE and λU are the fault sizes of diagnosed faulty gate and actual faulty gate. For

example, the fault size of the actual faulty gate is 0.90, and the fault size of the diagnosed

coherent fault is 0.88. Then the diagnosis error would be ∥0.90− 0.88∥ = 0.02.
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2.3 Past Research for QC Diagnosis

We analyze the pros and cons of past research for diagnosing quantum circuits. In

[13], they proposed a binary tomographic testmethod to diagnose faults on phase gates. A

binary tomographic test consists of the number of shots, the quantum circuit, and the input

vectors. They slice the quantum circuit and keep the part they aim to diagnose. Then they

apply gates before and after their target sliced quantum circuit. The gates applied before

the target sliced quantum circuit represent manipulated input vectors. The gates applied

after the target sliced quantum circuit represent measurement operators. After measuring

the target sliced quantum circuit, they can diagnose phase gate faults in the QC.

In [3], they apply a similar binary tomographic test method. Different from [13],

they calculate the optimal input vectors according to the quantum state before and after

the target sliced quantum circuit. They conclude their paper by applying their strategy to

benchmark circuits like the one in Fig.2.6. They can diagnose all six faults in Fig.2.6 same

as [13]. Moreover, their method reports all six faults as their only suspect fault. While

in [13], they report two suspect faults in five of the six faults.

However, these two methods cannot operate in noisy environments. As a result, [4]

proposed a diagnosis method to locate a fault’s location and behavior in noisy environ-

ments. They executed QCs that were injected with different faults separately. Then, they

can report the fault whose OPD is the most similar to the OPD of the circuit under diag-

nosis. An example can be seen in Fig.2.7 [4]. The figure demonstrates an example of the
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Figure 2.6: Benchmark circuit for diagnosis (figure taken from [3])

Figure 2.7: Distance between OPD of the circuit under diagnosis and OPD of fault f3
proposed in [4]

distance between OPD of the circuit under diagnosis and OPD of fault f3. The smaller the

distance between two OPDs, the higher their similarity.

In summary, [13], [3], and [4]’s work diagnoses whether there is a faulty gate in a

QC. However, QCs are configurable software in superconducting quantum processors.

Suppose there is a hardware defect in the quantum processor, then the hardware-induced

fault location might not be the same in different QCs. [13], [3], and [4] are not enough to

identify the hardware defect. On the other hand, our work diagnoses quantum processors.

We only need to diagnose the QP once to find the hardware-induced fault location. We do

not have to diagnose many different QC.
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2.4 Past Research for QP Diagnosis

A well-known method to characterize errors in QPs is QPT [16]. QPT involves sys-

tematically preparing a set of input states, applying the target quantum operation to each

input state, and then performing measurements to determine the resulting output states.

By collecting and analyzing the measurement data, they can reconstruct the complete de-

scription of the quantum process, represented by a Choi matrix [17]. Although QPT is

the most accurate method to characterize error in QPs, it often requires too many shots to

achieve high diagnosis accuracy results. For example, QPT requires more than 107 shots

to achieve 99.95% diagnosis accuracy.

Another common technique to characterize errors in QPs is RB [5]. RB involves

repetitively inserting random quantum gates into a QC while ensuring the final output

state remains |0⟩. RB measures the error rate by creating a curve correlating the QC’s

depth with the probability of measuring the state |1⟩. From the curve, RB can report the

error per gate. Fig. 2.8 shows the probability of measuring |0⟩ as a function of the number

of steps for each randomized gate [5]. The state fidelity is plotted on a logarithmic scale.

By measuring the slope of the line we can get the size of the error per gate. RB is much

faster compared with QPT. However, RB cannot report the fault size of a faulty quantum

gate, preventing direct error mitigation techniques.
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Figure 2.8: Demonstration of Randomized Benchmarking [5]

2.4.1 qATG

We now introduce the method upon which our work is based: Automatic Test Gen-

eration for Quantum Circuits (qATG) [6]. The main goal of qATG is creating test config-

urations to test if a QC is faulty or not. The flow of qATG is shown in Fig.2.9. Given a

fault, they recursively insert gates into an empty QC test template to maximize the state

fidelity between the faulty and fault-free states. While the faulty effect might not accumu-

late if they kept stacking up the faulty gate, they added an activation gate before a faulty

gate. A faulty gate and an activation gate combined is called a test element. They opti-

mize the parameters of an activation gate using gradient descent. In our work, we apply a

similar methodology in our rough diagnosis phase to create a QC that maximizes the state

fidelity between the faulty and fault-free states. The usage of the QC created in the rough

diagnosis stage and test configuration in qATG is different. In qATG, they apply statistics

methods (non-central chi-square distribution) to test if the QP is faulty. In our work qFD,
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Figure 2.9: Flow of qATG

we aim to diagnose faults in the QP.

Figure 2.10 demonstrates an example test configuration (QC) on a 5-qubit quantum

processor. In the figure, there are five test templates, each of which tests a qubit. Each test

template has four test elements, each of which activates and propagates the fault effects

so that we can easily observe them at outputs.

Figure 2.10: Example QC generated by qATG [6]
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Chapter 3 Proposed Technique

Figure 3.1 is our overall flow. Given a PUD and a user-defined search space of coher-

ent fault model, our diagnosis flow can report two diagnosed fault size for each qubit and

each gate type of the PUD. The main stage of our diagnosis flow contains three phases:

rough diagnosis, fine diagnosis, and depolarizing diagnosis. Rough diagnosis first gener-

ates the corresponding rough diagnosis QC for each coherent fault. Then rough diagnosis

performs fault simulation and dropped non-suspect faults, then locates an approximate

range of the suspect coherent fault’s size. Since we diagnose each qubit and gate type sep-

arately, if the suspect coherent fault size is not zero, we report the faulty qubit and faulty

gate type. Then, if the resolution of the grid search is larger than the minimum resolution

we defined, we restrict the search space and generate new rough diagnosis QCs again. We

then run fine diagnosis to search for the fault size of the coherent fault. After we finish

diagnosing the coherent fault, we run depolarizing diagnosis and report the depolarizing

fault size. The outcomes are the faulty qubit, faulty gate type, coherent fault size, and de-

polarizing fault size. We then repeat the main stage of our diagnosis flow until all qubits

and gate types are diagnosed.
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Figure 3.1: Overall Flow

3.1 Rough Diagnosis

In rough diagnosis, we conduct fault simulation and filter faults whose OPD differs

significantly from the PUD’s OPD. Before diagnosis, we are given a search space for our

diagnosed coherent fault. We then divide the range of coherent fault sizes into uniform

grids, where each corner of a grid is a fault with its distinct pair of (θ, ϕ). The grid size is

defined as our resolution and is decided by the total number of faults. To achieve the best

results with good resolution and a short time, we construct a fault list of around 100 faults.

A demonstration of the search space can be seen in Fig.3.2. A part of the Bloch sphere
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Figure 3.2: Demonstration of search space

is shown in the figure. Each intersection of the grid lines on the Bloch sphere’s surface

represents a coherent fault of different fault sizes.

We first generate rough diagnosis QCs using qATG [6] for every fault. A rough

diagnosis QC can maximize the difference between the fault-free and faulty state, which

is identical to the test configuration in qATG [6]. We then execute every rough diagnosis

QC on the PUD. To gain more information, we measure the OPD on three axes rather than

the Z-axis only. We denote the result OPD of the PUD as OPDPUD. Next, we perform

fault simulation for each coherent fault. Starting from a rough diagnosis QC, we inject

every fault into it and measure the OPD on three axes as well. To distinguish if the OPD

of an injected fault f OPDf is close enough compared with theOPDPUD, we introduce the

Hellinger Distance [18] as our metric. The Hellinger distance is defined as follows. P and

Q are two discrete probability distributions where P = (p1, ..., pn) and Q = (q1, ..., qn).
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The Hellinger distance HD(P,Q) between P and Q is shown as equation (3.1).

HD(P,Q) =
1√
2

√√√√ n∑
i=1

(
√
pi −

√
qi)2 (3.1)

State Fidelity F (P,Q) of its corresponding Hellinger distance is shown as equation (3.2).

F (P,Q) = (1−HD2(P,Q))2 (3.2)

We define a threshold THR so that a rough diagnosis QC’s Hellinger Distance be-

tween its faulty and fault-free state must exceed THR. Since we divide the search space

into uniform grids, we can set a fixed threshold thresR based on the resolution. We then

calculate the Hellinger distance between OPDPUD and OPDf . If the difference between

them is larger than thresR, the fault f is dropped from the fault list. The rough diagnosis

QC generated by fault f is also removed. We then repeatedly perform fault simulation

on the remaining rough diagnosis QCs. After we finish fault simulation on every rough

diagnosis QC, we determine if the resolution is smaller than our predefined threshold.

Otherwise, we restrict the search space by setting the new range based on the minimum

and maximum angles from the last step of fault simulation and fault dropping. Then, we

set the resolution smaller and generate a fault list with the new search space again. During

the process of fault dropping, if all faults are dropped, we increase THR until the fault list

is not empty. At the end of rough diagnosis, we report multiple faults whose fault sizes are

within the smaller search space. Also, if the fault size is not 0 (not fault-free), we report

the faulty qubit and faulty gate type.
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Figure 3.3: Fine diagnosis flow

3.2 Fine Diagnosis

In fine diagnosis, we want to report the diagnosed coherent fault whose OPD is most

similar to the PUD’sOPD. Fig. 3.3 shows the details of our fine diagnosis flow. The output

of rough diagnosis is a fault list with n faults. Fine diagnosis aims to distinguish the only

diagnosed coherent fault from the others. We first generate pairs from the fault list, with

a total of
(
n
2

)
exhaustive pairs. We generate a fine diagnosis QC for each pair of faults.

Similar to qATG [6], we apply activation gates to maximize the faulty effect between two

faults. The qATG process is iterated until the state fidelity between two faulty states is

lower than our defined threshold THF .

We then conduct fault simulation on all fine diagnosis QCs and locate the diagnosed

coherent fault. We first execute all the fine diagnosis QCs on the PUD. Next, we per-

form fault simulation of a fine diagnosis QC. Different from rough diagnosis, we compare

HD(OPDPUD, OPDf1) and HD(OPDPUD, OPDf2), where (f1, f2) is the pair of faults

that generates the fine diagnosis QC. The fault with a larger Hellinger distance indicates

that it is less likely to be the suspect than the other fault. We conduct fault simulations on

all fine diagnosis QCs. We identify one fault (fsuspect) whose OPD is closest to the PUD’s

OPD than the other n− 1 fault. Finally, we report fsuspect as the diagnosed coherent fault.
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Fig.3.4 shows an example that illustrates how an activation gate in a fine diagnosis

QC can distinguish two faults. Suppose the original fault-free gate RO is aRX(π/2) gate.

Fault f1 consists of a RO plus aRZ(π/4) gate (Rf1), which is colored red in Fig. 3.4. Fault

f2 consists of a RO plus a RZ(−π/4) gate (Rf2), which is colored green in Fig. 3.4. Both

faulty states initially start in |0⟩, shown in Fig. 3.4(a). We apply the two faulty operations

to the two states separately. The resulting two states then have a π/2 difference shown in

Fig. 3.4(b). However, after we apply the faulty operations to the two states again in Fig.

3.4(c), the difference between the two states becomes smaller than in Fig. 3.4(b).

To improve the method above, we added an activation gate before the two faulty

gates to extend the differences between the two faulty effects. The activation gate Rad

between Fig. 3.4(d) and Fig. 3.4(e) is an identity gate with no effects. The activation gate

Rae between Fig. 3.4(e) and Fig. 3.4(f) is a RX(3π/2) gate, which can maximize the

difference between the two states in Fig. 3.4(e). The final states in Fig. 3.4(f) are thus

rotated to orthogonal. The example demonstrates activation gates in our fine diagnosis

QC can maximize the faulty effect difference between two faults.

To achieve a user-specified diagnosis confidencelevel (CL), we need to find the

minimum number of shots needed. Suppose f1 is our suspect fault, and we generate a fine

diagnosis QC with f1 and another fault f2. For a single shot, ifHD(OPDPUD, OPDf1) <

HD(OPDPUD, OPDf2), we denote this as a successful shot. We consider a diagnosis

successful when the number of successful shots (x+1) is more than half of the number of

total shots (2x + 1)/2. The probability of a successful diagnosis when we perform fault
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Figure 3.4: Distinguish two faults with activation gate

simulation on a fine diagnosis QC is
∑2x+1

k=x+1

(
2x+1
k

)
(THF )

2x+1-k(1−THF )
k. For the total

success probability to be above CL, the formula is as follows:

CL ≤

(
2x+1∑
k=x+1

(
2x+ 1

k

)
(THF )

2x+1−k(1− THF )
k

)n−1

(3.3)

In this paper, we set our CL = 99%. According to equation (5), we can obtain the number

of shots 2x+ 1 = 17, as long as n < 200.

3.3 Depolarizing Diagnosis

Depolarizing diagnosis aims to measure the depolarizing fault size α of the target

gate. The target gate is the faulty gate diagnosed by the fine diagnosis. Fig. 3.5 shows the

details of our depolarizing diagnosis flow. We generate a quantum circuit c by an iterative

process. I) Initially, c is an empty circuit. II) We insert a target gate, followed by a gate
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Figure 3.5: Depolarizing diagnosis flow
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modeling the inverse diagnosed coherent fault. The purpose of the inverse coherent fault

is to cancel the faulty effect of the target gate. For example, suppose we diagnose an X

gate with a rf(0.5, 0) after fine diagnosis. The target gate is the X gate. We will insert an

X gate into c, followed by an inverse coherent fault (modeled by a rf(−0.5, 0)). We then

insert aRZ gate into c. We define the target gate, inverse coherent fault modeled gate, and

the RZ gate together as a macro gate. III) On the simulator, we perform gradient descent

on the parameters of the RZ gates. The goal of the RZ gates is to rotate the final state

back to the basis state |0⟩. IV) We repeatedly insert a constant number of macro gates into

c until the state fidelity between the QC’s final state and basis state |0⟩ is above a very

high threshold, which is 0.99 in our experiment.

We move on to the outer loop step in Fig.3.5. V) We then execute the QC on the

PUD and measure the OPD. VI) We plot a data point on the depolarizing diagnosis plot,

where the x-axis represents the number of gates, and the y-axis represents the probability

of measuring |0⟩. VII) We return to step II until the count of data points reaches the

user-specified number count in the depolarizing diagnosis plot. In our experiment, we set

count as 100. VIII)We can fit a curve: y = a·αx+b that describes the correlation between

the numbers of a fault-injected gate (x) and the probability of measuring |1⟩ (y). Note that

the a, b, and α are the variables we search to fit the curve, while α is the decay rate of

measuring |0⟩, both a and b are coefficients whose values are around 0.5. The decay rate

α is the fault size of the diagnosed depolarizing fault, which is the goal of our depolarizing

diagnosis. IX) Finally, we report a depolarizing fault from depolarizing diagnosis.
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Figure 3.6 shows an exponential decay curve of our depolarizing diagnosis plot. In

this figure, we inject a depolarizing fault whose fault size is 0.004. As we add more gates

into c, the probability of measuring |0⟩ keeps decreasing because of the depolarizing fault.

We can observe that the y value of the curve converges to 0.5 when we add more than 700

gates into c. This is because the quantum state reaches the maximally mixed state.

Figure 3.6: Fidelity decay curve of the depolarizing diagnosis
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Chapter 4 Experimental Results

4.1 Experiment Setup

We now show the experiment settings. The number of shots to execute the PUD

and to perform fault simulation on classical simulators are 1,024 and 4,096, respectively.

For rough diagnosis, the first iteration’s resolution is 0.5 radius, and the second iteration’s

resolution is 0.05 radius. We only have two iterations because an angle difference of 0.05

radius is equivalent to 99.99% diagnosis accuracy, which is about the noise size of current

NISQ processors. Although we can diagnose larger resolutions, noises mask the effect of

a fault. We can diagnose smaller resolutions, but it’s important to note that the diagnosis

error may increase. However, the overhead, measured in terms of the number of shots

and gates required, will decrease. We generate rough diagnosis QC until the state fidelity

between fault-free and faulty states (THR) is below 0.3. We generate fine diagnosis QC

until the state fidelity between two faulty states (THF ) is below 0.1.

For the gate types we aim to diagnose, we choose X , SX , ID for single-qubit and

CX for two-qubit. For most IBM quantum processors, their basis gates are X , SX , ID,
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RZ, and CX . IBM QPs implementRZ gates by adding a virtual phase rather than insert-

ing the actual gate into the QC, so there should be no faults on RZ gates. Our diagnosis

experiment covers all basis gates most IBM QPs use.

There are four backends on which we run our experiments. The first three backends

are run on classical simulators, and the fourth backend is run on a real IBM quantum

processor. The first three backends are noise-free, artificial noise model, and IBM noise

model [19]. We select Aer simulator in Qiskit [20] as the classical simulator. Table 4.1

lists the version for Qiskit.

qiskit-terra 0.21.2
qiskit-aer 0.11.0
qiskit-ignis 0.7.1
qiskit-ibmq-provider 0.19.2
qiskit-ibm-provider 0.7.0
qiskit 0.38.0
Table 4.1: Qiskit version

For the artificial noise model backend, we use the depolarizing error as the noise

model of gate error. The error rates of single-qubit and two-qubit gates are 0.1% and

1%, respectively. The readout error rate is 1.5%, representing the probability that output

is inverted. For the IBM noise model backend, we select the ibm_hanoi as the noise

model. For the real IBM quantum processor backend, we choose the ibm_hanoi in our

experiment. Figure 4.1 is the topology of ibm_hanoi. The color on the qubit indicates the

error rate of it. The lighter the color, the larger the error rate. Note that the Fig.4.1 here

is not the condition when we perform out experiment. For the IBM noise model backend,

we choose physical qubits 11 and 12 as the PUD to perform our flow, since the noise is
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Figure 4.1: Topology of real IBM quantum processor ibm_hanoi (figure taken from [7])

smallest on the qubits. For the real IBM quantum processor, we choose qubits 22 and 25

as the PUD to perform our flow, since the noise is smallest on the qubits.

4.2 Coherent Fault Diagnosis

In this simulation, we inject coherent faults that have been observed in real QPs:

phase drifting faults [21] and over-rotation faults [22]. Phase drifting faults are faults

with arbitrary ϕ and θ = 0. Phase drifting faults in quantum processors refer to the grad-

ual change or fluctuation in the relative phase of qubits during quantum operations. It

arises due to various factors such as environmental interference, imperfections in control

mechanisms, and interactions with neighboring qubits or external fields. Tables 4.2, 4.3

and 4.4 are the diagnosis results of injecting phase drifting faults whose gate type are all

ID gates.

Over-rotation faults are faults with arbitrary θ and ϕ = 0. When an over-rotation

error occurs, the rotation angle applied to the qubit exceeds the intended value, leading
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Table 4.2: Diagnosis results of phase drifting faults on noise-free backend

Injected(ϕ) Sus.(θ,ϕ) DA(%) Shots Gates
0.00 (0.00, 0.00) 100.00 448,529 9,258
0.05 (0.04, 0.03) 99.92 492,765 9,535
0.10 (0.00, 0.10) 100.00 522,257 9,720
0.20 (0.00, 0.20) 100.00 1,075,217 14,730
0.40 (0.00, 0.40) 100.00 522,257 9,972
0.79 (0.00, 0.80) 100.00 559,134 6,975
1.57 (0.07, 1.51) 99.78 589,895 8,604
3.14 (0.00, 3.15) 100.00 691,302 10,148
4.71 (0.00, 4.70) 100.00 1,603,713 16,678

Average N/A 99.97 722,785 10,624

Table 4.3: Diagnosis results of phase drifting faults on artificial noise model backend

Injected(ϕ) Sus.(θ,ϕ) DA(%) Shots Gates
0.00 (0.00, 0.00) 100.00 448,529 9,258
0.05 (0.10, 0.00) 99.79 448,529 9,258
0.10 (0.00, 0.10) 100.00 522,257 9,720
0.20 (0.00, 0.20) 100.00 522,257 9,972
0.40 (0.00, 0.40) 100.00 522,257 9,972
0.79 (0.00, 0.80) 100.00 595,998 7,315
1.57 (0.00, 1.55) 99.99 731,333 15,030
3.14 (0.00, 3.15) 100.00 927,869 12,610
4.71 (0.00, 4.70) 100.00 2,042,971 18,529

Average N/A 99.98 751,333 11,296

to deviations from the desired quantum operation. These errors can arise due to various

factors, including imperfections in the hardware and environmental noise. Tables 4.5, 4.6

and 4.7 are the diagnosis results of injecting over-rotation faults whose gate type are allX

gates. We perform five diagnoses for each fault and show the average result. We explain

the results of the experiments from the tables. Column 1 shows the diagnosed suspect size

we reported; column 2 shows the diagnosis accuracy; columns 3 and 4 show the number

of shots and basis gates used, respectively. The results show that our method achieves a

very high diagnosis accuracy of over 99.97% in this simulation. We also discover that

the number of shots is proportion to the number of gates used. This is because when we

execute a rough diagnosis QCs (total number of gates increase), the number of shots used

35

http://dx.doi.org/10.6342/NTU202400956


doi:10.6342/NTU202400956

Table 4.4: Diagnosis results of phase drifting faults on IBM noise model backend

Injected(ϕ) Sus.(θ,ϕ) DA(%) Shots Gates
0.00 (0.00, 0.00) 100.00 448,529 9,366
0.05 (0.03, 0.04) 99.95 503,859 4,955
0.10 (0.00, 0.10) 100.00 522,257 9,720
0.20 (0.00, 0.20) 100.00 522,257 9,972
0.40 (0.00, 0.40) 100.00 522,257 9,972
0.79 (0.00, 0.80) 100.00 559,175 8,836
1.57 (0.02, 1.54) 99.93 626,841 12,096
3.14 (0.00, 3.15) 100.00 995,436 12,248
4.71 (0.00, 4.70) 100.00 1,569,934 17,041

Average N/A 99.98 693,856 10,966

is also increased.

Table 4.5: Diagnosis results of over-rotation faults on noise-free backend

Injected(θ) Sus.(θ,ϕ) DA(%) Shots Gates
0.00 (0.00, 0.00) 100.00 448,532 9,553
0.05 (0.05, 0.00) 100.00 463,281 9,537
0.10 (0.10, 0.00) 100.00 507,518 9,912
0.20 (0.20, 0.00) 100.00 691,217 13,590
0.40 (0.40, 0.00) 100.00 691,217 12,210
0.79 (0.80, 0.00) 100.00 711,179 13,408
1.57 (1.56, 0.01) 99.99 691,322 11,191
2.35 (2.35, 0.00) 100.00 826,643 16,434
3.09 (3.10, 0.00) 100.00 405,653 13,068

Average N/A 100.00 604,062 12,100

Next, we inject faults with random θ and ϕ to show our flow can work successfully

in our simulation. We inject 9 single-qubit faults and run our flow on the three backends.

For single qubit faults, we show the results in Tables 4.8, 4.9 and 4.10. In Tables 4.8, 4.9

and 4.10, the header column is the gate type we inject a fault into. Columns 1 and 2 are the

injected fault sizes θ and ϕ. The rest of the table follows the same format as Tables 4.2.

The diagnosis accuracies of the 9 single-qubit results are 99.95%, with the 6 two-qubit

results being 99.98%.

Then we inject 6 two-qubit faults and run our flow on the three backends. For two
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Table 4.6: Diagnosis results of over-rotation faults on artificial noise model backend

Injected(θ) Sus.(θ,ϕ) DA(%) Shots Gates
0.00 (0.00, 0.00) 100.00 448,529 9,366
0.05 (0.05, 0.00) 100.00 478,020 9,345
0.10 (0.10, 0.00) 100.00 890,897 13,038
0.20 (0.20, 0.00) 100.00 1,271,825 17,181
0.40 (0.40, 0.00) 100.00 691,217 12,210
0.79 (0.80, 0.00) 100.00 585,825 11,165
1.57 (1.55, 0.00) 99.99 691,315 10,730
2.35 (2.35, 0.00) 100.00 691,519 17,384
3.09 (3.10, 0.00) 100.00 405,776 29,332

Average N/A 100.00 683,880 14,417

Table 4.7: Diagnosis results of over-rotation faults on IBM noise model backend

Injected(θ) Sus.(θ,ϕ) DA(%) Shots Gates
0.00 (0.00, 0.00) 100.00 448,532 9,661
0.05 (0.05, 0.00) 100.00 478,027 9,727
0.10 (0.10, 0.00) 100.00 890,897 13,038
0.20 (0.20, 0.00) 100.00 1,367,057 18,150
0.40 (0.40, 0.00) 100.00 691,217 12,210
0.79 (0.80, 0.00) 100.00 1,084,443 13,508
1.57 (1.56, 0.00) 99.99 691,353 11,608
2.35 (2.35, 0.00) 100.00 894,173 15,458
3.09 (3.10, 0.00) 100.00 405,762 17,733

Average N/A 100.00 772,385 13,455

qubit faults, we show the results in Tables 4.11, 4.12,and 4.13. In Tables 4.11, 4.12,and

4.13, the header column is the gate type. Note that [0,1] indicates the control qubit is 0,

and the target qubit is 1. Relatively, [1,0] indicates the control qubit is 1, and the target

qubit is 0. Column 1 is the qubits into which we inject a fault. Columns 2 and 3 are the

injected fault sizes. The rest of the table follows the same format as Table 4.2. The average

gate fidelities between the injected and diagnosed suspect faults of the 6 two-qubit results

are 99.98%. As a result, our method is still feasible with the whole Bloch sphere as our

search space.
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Table 4.8: Results of random single-qubit faults on noise-free backend

Fault injected Diagnosis results
Gate type θ ϕ Sus.(θ,ϕ) DA(%) Shots Gates

X 2.41 4.86 (2.40, 4.85) 100.00 1,708,672 158,965
X 1.57 2.11 (1.54, 2.10) 99.98 894,523 30,679
X 0.94 3.28 (0.95, 3.26) 99.99 691,818 27,986
I 0.78 4.54 (0.79, 4.55) 99.99 1,029,283 16,180
I 0.45 5.41 (0.45, 5.40) 100.00 691,380 13,219
I 2.23 3.13 (2.21, 3.14) 99.99 962,586 62,323
SX 2.81 5.88 (2.80, 5.86) 100.00 1,029,579 94,719
SX 1.11 1.49 (1.11, 1.49) 99.99 691,591 193,797
SX 0.92 4.62 (1.03, 4.70) 99.71 691,336 54,460

Average N/A 99.96 932,308 72,481

Table 4.9: Results of random single-qubit faults on artificial noise model backend

Fault injected Diagnosis results
Gate type θ ϕ Sus.(θ,ϕ) DA(%) Shots Gates

X 2.41 4.86 (2.40, 4.85) 100.00 1,709,196 174,430
X 1.57 2.11 (1.57, 2.04) 99.93 1,748,127 20,347
X 0.94 3.28 (0.95, 3.28) 99.99 691,703 24,490
I 0.78 4.54 (0.78, 4.55) 99.99 961,661 14,200
I 0.45 5.41 (0.45, 5.40) 100.00 691,285 9,969
I 2.23 3.13 (2.23, 3.13) 99.99 759,763 61,099
SX 2.81 5.88 (2.84, 5.90) 99.88 929,238 69,453
SX 1.11 1.49 (1.10, 1.50) 100.00 691,563 162,596
SX 0.92 4.62 (1.05, 4.71) 99.61 691,308 59,961

Average N/A 99.93 985,983 66,283

4.3 Depolarizing Fault Diagnosis

We demonstrate in this section that our flow can diagnose different sizes of depolar-

izing faults. We inject 7 depolarizing faults whose sizes are no larger than 0.032. This is

a reasonable number because typical depolarizing noise in real QPs is smaller than 0.01.

The error caused by depolarizing faults would not affect the rough and fine diagnosis re-

sults. Since we need the coherent fault information before diagnosing depolarizing faults,

we injected 6 coherent faults from Section 4.2. The results are shown in Fig. 4.2. The
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Table 4.10: Results of random single-qubit faults on IBM noise model backend

Fault injected Diagnosis results
Gate type θ ϕ Sus.(θ,ϕ) DA(%) Shots Gates

X 2.41 4.86 (2.40, 4.85) 100.00 1,167,504 140,421
X 1.57 2.11 (1.57, 2.10) 99.99 759,589 39,304
X 0.94 3.28 (0.95, 3.29) 99.99 691,587 20,340
I 0.78 4.54 (0.78, 4.54) 99.98 691,376 14,056
I 0.45 5.41 (0.45, 5.40) 100.00 691,298 10,405
I 2.23 3.13 (2.23, 3.15) 99.99 692,138 56,725
SX 2.81 5.88 (2.80, 5.85) 100.00 1,029,640 115,242
SX 1.11 1.49 (1.10, 1.50) 100.00 691,618 212,591
SX 0.92 4.62 (1.03, 4.70) 99.71 691,380 85,454

Average N/A 99.96 789,570 77,171

Table 4.11: Diagnosis results of two-qubit gate faults on noise-free backend

Fault injected Noise-free
Gate type Qubit θ ϕ Sus.(θ,ϕ) DA(%) Shots Gates
CX[0,1] 0 1.84 2.45 (1.85, 2.45) 100.00 7,980,067 320,068
CX[0,1] 1 0.37 1.19 (0.35, 1.21) 99.95 2,761,819 95,025
CX[0,1] 0&1 2.02 5.59 (2.01, 5.58) 99.97 2,289,146 97,101
CX[1,0] 0 2.70 0.64 (2.70, 0.52) 99.95 2,491,823 109,785
CX[1,0] 1 1.29 0.70 (1.30, 0.71) 99.98 2,491,548 91,328
CX[1,0] 0&1 0.11 2.02 (0.10, 2.00) 99.98 2,322,513 79,362

Average N/A 99.97 3,389,486 132,112

x-axis is the depolarizing fault size we injected. The y-axis is the diagnosis error between

the depolarizing fault size we reported and the depolarizing fault size we injected. Every

line represents the same coherent fault of different depolarizing fault sizes. The parame-

ters in the legend of each line are the gate type of injected fault and the coherent fault size.

The two fault sizes are (0.4, 0) and (0, 1.57), which represent cases of the highest coherent

diagnosis accuracy (100%) and the lowest coherent diagnosis accuracy (99.78%), respec-

tively. The coherent fault diagnosis results are shown in subsection 4.2. We can see that

the diagnosis error is less than 0.1% when the fault size is smaller than 0.04.

From the above experiments, we found an important fact, that the diagnosis error of

coherent fault has little impact on the diagnosis accuracy of depolarizing fault. In Fig.4.2,
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Table 4.12: Diagnosis results of two-qubit gate faults on artificial noise model backend

Fault injected artificial noise model
Gate type Qubit θ ϕ Sus.(θ,ϕ) DA(%) Shots Gates
CX[0,1] 0 1.84 2.45 (1.85, 2.45) 100.00 7,036,268 313,423
CX[0,1] 1 0.37 1.19 (0.35, 1.20) 99.95 2,761,819 95,025
CX[0,1] 0&1 2.02 5.59 (2.01, 5.61) 99.97 2,185,434 91,661
CX[1,0] 0 2.70 0.64 (2.71, 0.53) 99.95 2,352,344 109,785
CX[1,0] 1 1.29 0.70 (1.30, 0.70) 100.00 2,452,054 89,971
CX[1,0] 0&1 0.11 2.02 (0.09, 2.01) 99.98 2,345,795 79,362

Average N/A 99.98 3,188,952 129,871

Table 4.13: Diagnosis results of two-qubit gate faults on IBM noise model backend

Fault injected IBM noise model
Gate type Qubit θ ϕ Sus.(θ,ϕ) DA(%) Shots Gates
CX[0,1] 0 1.84 2.45 (1.85, 2.45) 99.74 4,394,120 429,348
CX[0,1] 1 0.37 1.19 (0.35, 1.37) 99.95 2,491,715 111,643
CX[0,1] 0&1 2.02 5.59 (2.01, 5.60) 99.98 2,289,024 91,661
CX[1,0] 0 2.70 0.64 (2.70, 0.57) 99.97 2,424,069 98,249
CX[1,0] 1 1.29 0.70 (1.30, 0.70) 100.00 2,423,957 89,971
CX[1,0] 0&1 0.11 2.02 (0.10, 2.02) 99.97 2,390,090 79,817

Average N/A 99.98 3,098,541 130,174

for the two lines (brown and green) with the lowest coherent diagnosis accuracy, we can

also diagnose the depolarizing fault size accurately. This demonstrates that the diagnosis

error of coherent faults does not affect the diagnosis accuracy of depolarizing faults. This

is because the effect of the depolarizing fault masks the effect caused by the diagnosis er-

ror of coherent faults [23]. We demonstrate the results in Fig.4.3. In this figure, the x-axis

is the diagnosis error of coherent faults. The y-axis is the diagnosis error of depolarizing

faults. We fix the depolarizing fault size to 0.4%. As predicted, the diagnosis error of co-

herent faults increases as the diagnosis error of depolarizing faults increases. We discover

that even though the diagnosis error of coherent fault reaches 15%, the diagnosis error of

depolarizing fault is only 0.15%.

Likewise, a depolarizing fault does not affect the diagnosis accuracy of rough and
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Figure 4.2: Results of depolarizing diagnosis

Figure 4.3: Effect of diagnosis error of coherent faults
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fine diagnosis. In Tables 4.9,4.3, and 4.6, we can see that the diagnosis accuracies of

the noisy backends are about the same compared with the diagnosis accuracy of the noise-

free backend. This is because the depolarizing noise in the noisy backends only causes the

quantum state to shrink towards the Bloch sphere, but not rotate the quantum state. Thus,

the depolarizing noise does not affect the diagnosis accuracy while we perform rough and

fine diagnosis.

4.4 Compare qFD with Quantum Process Tomography

Next, to demonstrate our method is better than past research, we compare our flow

with QPT [16]. Two features for comparison are diagnosis accuracy and the number of

shots required. We don’t compare the number of gates because it only affects the noise size.

In previous tables, we demonstrated that our method can still work in noisy environments.

We first perform QPT with all the single-qubit faults from Tables 4.2 and 4.5. Note that

we perform QPT using the noise-free backend. QPT calculates the average gate fidelity

between the reconstructed and injected faulty gates, which is defined as diagnosis accuracy

in our paper. Then, we perform our method on two search spaces: one is the whole Bloch

sphere, and the other is a quarter Bloch sphere. We selected a quarter of the Bloch sphere

because the sizes of coherent faults are not that large in real QPs. A smaller search space

is more realistic than a larger search space.

We plot the results in Fig.4.4. The x-axis is the number of shots. The y-axis is the

diagnosis accuracy. Note that in this experiment, we only compare our results of coherent
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fault with those of QPT. From the plot, we can see that our method with the whole Bloch

sphere as search space can achieve 99.97% diagnosis accuracy, indicating that the diag-

nosis error is 16 times smaller than QPT with the same number of shots. Moreover, our

method achieves the same diagnosis accuracy with just around 230,000 shots when the

search space is limited to a quarter of the Bloch sphere, which indicates that the diagnosis

error is 32 times smaller than QPT.

Next, we demonstrate how many shots QPT needs to achieve the results of qFD. The

results are plotted in Fig.4.5. The format of the figure is identical to that of Fig.4.4. We

discover that to achieve the same diagnosis accuracy of qFD, QPT requires more than

10,000,000 shots, which is 14 times more than qFD. As a result, our qFD flow performs

better than QPT.

We then compare the results of two-qubit faults with QPT’s result. We first perform

QPTwith all the faults from Table 4.11. Then we plot the results of our flow and the results

from QPT in Fig.4.6. Similar to the results in Fig. 4.4, our method still our-performs QPT.

4.5 Experiments on Real IBM Quantum Processors

Finally, we demonstrate our method is feasible on real IBM QPs. Based on IBMQ’s

data, we chose the least noisy qubits to run our flow. We injected both single and two-

qubit coherent faults into the QP. The results are shown in Tables 4.14, Table 4.15, and
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Figure 4.4: Compare the diagnosis accuracy of qFD and QPT

Figure 4.5: Compare shots required of qFD and QPT
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Figure 4.6: Compare qFD and QPT injected with two-qubit faults

Table 4.16. For single-qubit results, the diagnosis accuracy is 99.99%, which is within

0.01% inaccuracy from the injected faults. For two-qubit results, the diagnosis accuracy of

99.83% is only 0.17% from the injected faults. We can discover that there is only a small

inaccuracy in diagnosis accuracy, while the number of shots is small. This experiment

demonstrates that if a coherent fault exists on real QPs, our method can diagnose its precise

behavior within a feasible number of shots.
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Table 4.14: Diagnosis results of phase drifting faults on real IBM QP

Injected(ϕ) Sus.(θ,ϕ) DA(%) Shots Gates
0.00 (0.00, 0.00) 100.00 448,563 4,407
0.05 (0.03, 0.04) 99.95 503,859 4,955
0.10 (0.00, 0.10) 100.00 522,291 5,130
0.20 (0.00, 0.20) 100.00 1,075,251 10,530
0.40 (0.00, 0.40) 100.00 691,217 12,210
0.79 (0.00, 0.80) 100.00 798,860 7,883
1.57 (0.00, 1.56) 99.99 699,581 7,238
3.14 (0.00, 3.15) 100.00 691,544 6,953
4.71 (0.00, 4.73) 99.99 1,874,379 18,570

Average N/A 99.99 792,958 7,866

Table 4.15: Diagnosis results of over-rotation faults on real IBM QP

Injected(θ) Sus.(θ,ϕ) DA(%) Shots Gates
0.00 (0.00, 0.00) 100.00 448,563 4,407
0.05 (0.05, 0.00) 100.00 448,600 4,440
0.10 (0.10, 0.00) 100.00 503,859 4,950
0.20 (0.20, 0.00) 100.00 691,251 6,780
0.40 (0.40, 0.00) 100.00 860,211 8,430
0.79 (0.80, 0.00) 100.00 691,251 6,780
1.57 (1.58, 0.00) 99.99 691,557 6,960
2.35 (2.35, 0.00) 100.00 699,920 11,468
3.09 (3.14, 0.00) 99.98 406,397 4,485

Average N/A 99.99 604,623 6,522

Table 4.16: Diagnosis results of two-qubit gate faults on real IBM QP

Fault injected Real IBM QP
Gate type Qubit θ ϕ Sus.(θ,ϕ) DA(%) Shots Gates
CX[0,1] 0 1.84 2.45 (1.91, 2.44) 99.74 4,394,120 429,348
CX[0,1] 1 0.37 1.19 (0.35, 1.25) 99.70 2,374,127 316,540
CX[0,1] 0&1 2.02 5.59 (1.98, 5.50) 99.83 2,289,137 284,318
CX[1,0] 0 2.70 0.64 (2.65, 0.59) 99.87 2,352,344 109,785
CX[1,0] 1 1.29 0.70 (1.28, 0.68) 99.93 2,452,054 89,971
CX[1,0] 0&1 0.11 2.02 (0.14, 2.01) 99.93 2,345,795 79,362

Average N/A 99.83 2,759,479 336,849
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Chapter 5 Discussion

In this chapter, we discuss some features which can be improved. The first part is the

scope of our two-qubit fault model. Unlike the one-qubit fault model, the two-qubit fault

model is not universal. However, if we inject our rf(θ, ϕ) before and after into the two

qubits to simulate a universal two-qubit fault, the search complexity might be too high. A

smaller search space such as a quarter of a Bloch sphere might be the solution.

The second part is about measuring a QC on three axes. The purpose of measuring

a QC on three axes is that we want more information on the quantum state. Then we can

remove the suspect faults whose Hellinger Distance between the suspect fault and the PUD

is larger than the threshold THR on either axis. However, at the last step when generating

a rough diagnosis QC, we maximize the distance between the fault-free and faulty state on

the z-axis. As a result, measuring on the x and y axis would be redundant, and the number

of shots required would also decrease by one-third.

The third part is a comparison with gate set tomography(GST) [24]. In our work, we

only compare qFD with quantum process tomography. However, GST is more applica-

ble in the real world. GST and quantum process tomography are both techniques used in
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quantum information processing to characterize and understand the behavior of quantum

systems, particularly quantum gates. Gate set tomography focuses on fully characterizing

a set of quantum gates used in quantum computing, such as single-qubit and two-qubit

gates. It aims to determine the properties and behavior of these gates, including their

fidelity and error rates, providing insight into how accurately they perform desired oper-

ations. Quantum process tomography aims to characterize the overall quantum evolution

or transformation of a quantum system, considering the combined effect of all the gates

and operations applied to it. It involves reconstructing the quantum process performed on

a quantum state, capturing the entire sequence of operations from input to output. The

main reason our qFD cannot compare with GST is that we do not perform calibration of

state preparation and measurement. For future work, we can apply techniques to diagnose

faults that exist in the state preparation and measurement stage.
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Chapter 6 Conclusion

In this work, we proposed a diagnosis flow for QPs in the NISQ era. Our flow con-

tains rough diagnosis, fine diagnosis, and depolarizing diagnosis. Rough diagnosis grid

searches the Bloch sphere and locates an approximate range of the coherent fault＇s size.

Fine diagnosis distinguishes the diagnosed coherent fault from others. At last, depolariz-

ing diagnosis identifies the size of the depolarizing fault. To demonstrate our diagnosis

flow, we injected 27 single-qubit, 6 two-qubit coherent faults, and 7 depolarizing faults.

For coherent faults, the diagnosis accuracy of single-qubit and two-qubit are over 99.95%

and 99.98%, respectively. For depolarizing faults, the diagnosis error between our diag-

nosed fault size and the actual fault size is smaller than 0.1%. Compared with QPT, our

qFD flow can achieve 16 times lower diagnosis error with the same number of shots. At

last, we show our flow can be conducted on IBM quantum processors with nearly 0%

and 0.17% diagnosis errors for single and two-qubit faults, respectively. Our results show

that the diagnosis error of coherent faults has a small impact on the diagnosis accuracy of

depolarizing faults.
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