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中文摘要	

量子電路優化在提高量子計算系統的效率和性能方面起著關鍵作用。本論文

以整合量子邏輯閘分解層次調整和動態減縮算法為核心，對量子電路進行了全面

的優化研究。為了方便實現和分析這些演算法，我們開發了一個名為Qsyn的C++

工具。Qsyn提供了一個靈活的框架，可以高效地執行和探索各種優化策略。我們

通過對各種測試案例的應用，展示了我們方法的有效性。實驗結果顯示，與現有

方法相比，我們的方法在總量子邏輯閘數、2量子位邏輯閘數、量子電路深度等

方面平均上分別達到11.5％、10.5％、14.8％的減少。取得了顯著的改善。此外，

我們將Qsyn的性能與廣泛使用的PyZX工具進行了比較，觀察到執行時間大幅減

少，特別是對於大規模電路。這些結果突顯了Qsyn的優越性，以及它在質量和計

算效率方面優化量子電路的適用性。總體來說，本論文通過提供一個強大的工具

和一個優化的工作流程，為量子電路優化領域做出了貢獻，使得電路優化更加有

效和可擴展。	

關鍵字：量子電路優化、ZX-calculus、量子邏輯閘分解層次調整、動態減縮算

法、Qsyn	
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ABSTRACT 

Quantum circuit optimization plays a crucial role in improving the efficiency and 

performance of quantum computing systems. In this thesis, we present a comprehensive 

study on optimizing quantum circuits by integrating decomposition level adjustment 

and dynamic reduction algorithms. To facilitate the implementation and analysis of 

these algorithms, we have developed a novel quantum circuit optimization framework 

called Qsyn in C++. Qsyn is very efficient in terms of the execution time and provides 

the flexibilities in  exploring various optimization strategies. We demonstrate the 

effectiveness of our approach by applying it to a diverse set of test cases. Our 

experimental results show that our algorithm can lead to significant improvements in 

quantum circuit gate count,  2-qubit-gate count, and circuit depth. The reduction rate are 

11.5%, 10.5%, and 14.8%, respectively, when compared to the existing approaches. 

Furthermore, Qsyn is much faster than the widely used quantum circuit optimization 

tool, PyZX, particularly for large-scale circuits. The results highlight the superiority of 

Qsyn and its suitability for optimizing quantum circuits in both quality and 

computational efficiency. Overall, this thesis contributes to the field of quantum circuit 

optimization by providing a powerful tool and an optimized workflow that enable more 

effective and scalable quantum circuit optimization. 

Keywords: Quantum Circuit Optimization, ZX-calculus, Decomposition Level 

Adjustment, Dynamic Reduction Algorithm, Qsyn 
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Chapter 1    Introduction 

This opening chapter provides a comprehensive introduction to the quantum circuit 

optimization. It outlines the importance of optimizing quantum circuits to enhance the 

efficiency and performance of quantum computing systems. A review of previous works 

in the field of quantum circuit optimization is presented, highlighting key techniques 

and approaches that have been investigated. The chapter then introduces the 

contributions of the thesis, with a particular emphasis on the development of Qsyn, a 

novel optimization tool. Furthermore, the integration of decomposition level adjustment 

and dynamic reduction algorithms for circuit optimization is discussed. Finally, an 

overview of the organization of the entire thesis is provided, outlining the subsequent 

chapters and their specific focuses. 

1.1    Quantum Circuit Optimization 

Quantum circuit optimization refers to the process of improving the 

implementation of the quantum circuits by reducing their complexities, resource 

requirements, and overall computational costs. It involves applying various techniques, 

algorithms, and heuristics [1-4] to minimize the key parameters of the circuits, such as 

circuit depth, total gate count, and T-count (the number of T-gates or non-Clifford 

gates). 

The optimization of quantum circuits is essential for several reasons. First, it helps 

mitigate the noise and decoherence, which are the key adverse factors in harming the 

reliability and accuracy of quantum computations. By reducing the number of gates and 
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circuit depths, the vulnerability to errors and the impact of noise can be minimized, 

leading to more reliable and robust quantum computations. 

Second, quantum circuit optimization is crucial for practical realization on existing 

and near-future quantum devices. Quantum processors have limitations in terms of qubit 

connectivity, gate set availability, and gate operation durations. Optimizing the circuit 

structure and gate arrangement to match the hardware constraints can improve the 

feasibility of executing quantum algorithms on specific architectures. 

1.2    Previous Works 

In the field of quantum circuit optimization, research efforts have been dedicated to 

enhancing the efficiency and performance of quantum computing systems. A key focus 

has been on optimizing factors such as gate count, T-count, and circuit depth, which 

have significant implications for the quality of the quantum circuit design. The 

reduction of T-count is particularly important as it reduces computational complexity 

and improves overall circuit performance. On the other hand, optimizing circuit depth is 

critical for achieving faster execution times and mitigating potential errors resulted from 

gate interactions and noise. 

To address these optimization challenges, several techniques and algorithms have 

been proposed. The approach in [4] divides the optimization problem into simple 

subproblems by breaking down complex circuits into simpler ones. However, while this 

method offers advantages in some scenarios, it might result in increased overall circuit 

depth in certain cases. Additionally, previous works [1, 5-7] introduced optimization 

algorithms aimed at minimizing gate count and circuit depth. Nevertheless, these 

methods may not fully address the interplay between gate count reduction and circuit 
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depth optimization, potentially leading to suboptimal results. Furthermore, strategies 

based on gate merging, cancellation, and reordering have been explored to further 

optimize quantum circuits [4]. Despite their potential, these strategies could 

occasionally introduce additional gate operations that counteract the expected 

optimizations. These prior contributions have laid the foundation for the development of 

advanced techniques and algorithms in the field of quantum circuit optimization, while 

also highlighting the need for more comprehensive and integrated approaches. 

1.3    Contribution of the Thesis 

The thesis makes several contributions to the field of quantum circuit optimization. 

Firstly, it introduces the novel Qsyn framework, developed in C++, which provides a 

flexible and efficient playground for implementing various optimization algorithms. 

Qsyn significantly outperforms existing tools like PyZX in terms of execution speed, 

particularly for large-scale circuits. Secondly, the thesis proposes an integrated 

workflow of decomposition level adjustment and dynamic reduction algorithm, 

resulting in reductions of total gate count, 2-qubit gate count, and circuit depth. The 

experimental results demonstrate the effectiveness of this approach across a wide range 

of test cases. Overall, the thesis contributes to the advancement of quantum circuit 

optimization by providing a powerful tool and an optimized workflow for achieving 

superior results in terms of circuit quality and computational efficiency. 

1.4    Organization of the Thesis 

The thesis is organized as follows: Chapter 2 provides a background in quantum 

circuit synthesis. In Chapter 3, the concepts of ZX-calculus and PyZX, a Python library, 
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are introduced. Chapter 4 defines the decomposition level and presents our dynamic 

reduction algorithm for quantum circuit optimization. Implementation details, including 

Qsyn, and the execution of the dynamic reduction algorithm, are discussed in Chapter 5. 

Chapter 6 presents experimental results showcasing the reduction achieved in gate 

count, 2-qubit gate count, and circuit depth using our approach. The concluding chapter 

summarizes the thesis and suggests future research directions. Supplementary materials 

are provided in the Appendix. 

4 doi:10.6342/NTU202303169



Chapter 2    Preliminaries 

This chapter introduces the essential concepts for understanding quantum circuit 

optimization. It covers the definition of quantum circuits,  and the single-qubit and 

multi-qubit gates. We also discuss  operations, and the importance of these quantum 

gates in quantum circuit design. Additionally, this chapter briefly describes the quantum 

circuit synthesis flow. It establishes the foundational knowledge needed to comprehend 

the advanced techniques and algorithms presented in the subsequent chapters, enabling 

readers to delve into the field of quantum circuit optimization.  

2.1    Quantum Circuits 

A quantum circuit is a fundamental concept in the field of quantum computing. It is 

a model used to represent and manipulate quantum information, which is stored in 

quantum bits or qubits. Similar to classical circuits used in traditional computing, 

quantum circuits are composed of a series of quantum gates that perform operations on 

the qubits. 

Quantum gates in a quantum circuit are analogous to logic gates in the classical 

circuit. They can be single-qubit gates that operate on individual qubits or multi-qubit 

gates that act on multiple qubits simultaneously. These gates enable various types of 

operations, such as rotations, superpositions, entanglement, and measurements, which 

are essential for performing quantum computations. 

Quantum circuits follow the principles of quantum mechanics, allowing qubits to 

exist in a superposition of states and undergo quantum entanglement. This unique 
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characteristic of quantum circuits gives them the potential to solve certain problems 

computationally more efficient than the classical computers. 

To execute a quantum circuit, a sequence of gates are applied to the initial state of 

the qubits. The gates can manipulate the quantum state, by changing the probabilities of 

the superpositions in order to achieve specific computations. At the end of the circuit, 

we usually perform measurements to extract information from the qubits. An example 

of a quantum circuit is shown in Fig. 2-1. 

Fig. 2-1      An example of a quantum circuit diagram 

Quantum circuits enable applications in various fields, such as cryptography, 

optimization, and simulation. They are designed to harness the power of quantum 

mechanics and exploit its computational advantages. However, quantum circuits also 

face challenges in signal decoherence and error correction. Researchers are actively 

working on to improve the stability and reliability of quantum computations. 

2.2    Single-Qubit Gates  

Single-qubit gates are fundamental building blocks in quantum computing that 

realize the manipulations of individual qubits. In quantum computing, qubits are the 

quantum counterpart of the classical bits and can exist in a superposition of states, 

representing multiple possibilities simultaneously. Single-qubit gates enable the 
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transformation of qubits, altering their quantum states and facilitating the execution of 

quantum algorithms. 

These gates operate on a single qubit at a time and can perform various operations, 

including rotations, phase shifts, and logical operations. They are represented by  

matrices that describe the transformation applied to the quantum state of the qubit. 

Common types of single-qubit gates [8, 9] include the Pauli gates ( , , and ), 

Hadamard gate ( ), phase gate ( ), and  gate ( ).  

• The Pauli Gates 

The Pauli gates are fundamental gates that perform rotations around the X, Y, 

and Z axes of the Bloch sphere. The X gate, also known as the NOT gate, flips the 

qubit's state from  to  or vice versa. The matrix form of the Pauli-X gate is 

shown below: 

 

The Y and Z gates induce rotations around the Y and Z axes, respectively, 

altering the qubit's phase and superposition. The matrix forms of them are shown 

below: 

 

• The Hadamard Gate 

The Hadamard gate is a widely used single-qubit gate that creates 

superposition by rotating the qubit's state from the computational basis (  and 

2 × 2

X Y Z

H S
π
8 T

|0⟩ |1⟩

X = [0 1
1 0] = |0⟩⟨1| + |1⟩⟨0|

Y = [0 −i
i 0 ] = − i|0⟩⟨1| + i|1⟩⟨0| Z = [1 0

0 −1] = − |0⟩⟨0| − |1⟩⟨1|

|0⟩
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) to the superposition basis ( and ). It plays a vital role in generating 

entangled states and is used in various quantum algorithms, such as the famous 

quantum algorithm for the Deutsch problem. It has the matrix: 

 

• The S Gate and T Gate 

The S gate, also known as the phase gate, introduces a phase shift of  to the 

qubit's state. It modifies the phase of the  state, leaving the  state unchanged. 

This gate is essential for constructing other gates and quantum algorithms, 

including Quantum Fourier Transforms. 

The T gate, represented as the  gate, introduces a phase shift of  to the 

qubit's state. It is particularly useful in implementing certain quantum algorithms, 

such as Shor's algorithm [10-12] for integer factorization, and is closely related to 

other gates like the S gate. 

 

Single-qubit gates play a critical role in quantum computation, allowing the 

manipulation and control of individual qubits. They enable the creation of 

superposition, entanglement, and complex quantum states necessary for quantum 

algorithms' execution. By combining single-qubit gates with multi-qubit gates, quantum 

computations can be performed on larger quantum systems, paving the way for solving 

problems that are beyond the reach of classical computers. 

|1⟩ | + ⟩ | − ⟩

H = 1
2 [1 1

1 −1]

π
2

|1⟩ |0⟩

π
8

π
4

S = [1 0
0 ei π

2 ] T = [1 0
0 ei π

4 ]

8 doi:10.6342/NTU202303169



2.3    Multi-Qubit Gates 

Multi-qubit gates are fundamental operations in quantum computing that act on 

multiple qubits simultaneously. They are essential for performing operations such as 

quantum entanglement, quantum teleportation, and quantum error correction. While 

single-qubit gates manipulate individual qubits, multi-qubit gates allow the 

entanglement and interaction between multiple qubits, enabling more complex quantum 

computations. The two most important types of multi-qubit gates [8, 9] are the CNOT 

gate [13] and the Toffoli gate. We will explain them in details in the rest of the 

subsections. 

• The CNOT gate 

The CNOT gate is a conditional gate that flips the state of the target qubit if 

the control qubit is in the state . On the other hand, it leaves the target qubit 

unchanged if the control qubit is in the state . The CNOT gate is fundamental in 

quantum circuits, used in many quantum algorithms and protocols. The diagram of 

a CNOT gate is represented in Fig. 2-2. 

Fig. 2-2      A diagram of the CNOT-gate 

Depending on which qubit is the target and which is the control, the CNOT 

gate has one of the two matrices: 

|1⟩

|0⟩
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• The Toffoli Gate 

The Toffoli gate, also known as the Controlled-Controlled-NOT (CCNOT) 

gate, is a multi-qubit gate in quantum computing that operates on three qubits. It is 

named after its inventor Tommaso Toffoli and is an essential component in many 

quantum algorithms and quantum error correction codes. 

The Toffoli gate performs a controlled NOT operation on the target qubit (the 

third qubit) if and only if both control qubits (the first and second qubits) are in the 

state . In other words, it flips the state of the target qubit if both control qubits 

are in the  state, otherwise, it leaves the target qubit unchanged. The diagram of 

a Toffoli gate is indicated in Fig. 2-3. 

Fig. 2-3      A diagram of the Toffoli gate 

2.4    Quantum Circuit Synthesis Flow 

Quantum circuit synthesis flow refers to the process of designing and optimizing 

quantum circuits to efficiently execute a specific quantum algorithm or computation. It 

involves a series of steps aimed at converting a high-level quantum algorithm into a 

CNOT =
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

CNOT =
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|1⟩

|1⟩
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physical implementation using a specific set of quantum gates [14]. Fig. 2-4 presents the 

quantum circuit synthesis flow. 

Fig. 2-4      Quantum circuit synthesis flow [15] 

The first step is to design the quantum algorithm or computation that solves the 

desired problem. This involves identifying the problem, designing the logic and 

structure of the quantum algorithm, and determining the required number of qubits and 

gates. High-level quantum circuit construction [16] and gate set mapping [17] are 

implemented to construct a logical quantum circuit in the process of synthesis. The step 

of synthesis involves various methods that can lead to different outcomes. In other 

words, different forms of logical quantum circuits may indicate the same quantum 

operation.  

During the status of the logical circuit, the synthesized quantum circuit is 

optimized to improve its efficiency. This includes applying techniques such as gate 

cancellation [18], gate merging, and circuit depth reduction [19] to minimize the 

number of gates. Some transformation strategies have also been defined to map a 

logical quantum circuit to a more flexible structure for optimization. ZX-calculus [20] is 

one of the classical examples and will be introduced in Chapter 3. The main purpose of 

all approaches in quantum circuit optimization is to reduce quantum resource 

requirements and optimize the overall circuit performance. 
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The optimized quantum circuits need to adhere to the constraints and limitations of 

the specific quantum hardware being used. This step, which is called “mapping” [21], 

involves considering factors such as gate fidelities, connectivity between qubits, and 

noise characteristics of the hardware when optimizing the circuit.  

By following the quantum circuit synthesis flow, quantum algorithm designers can 

transform high-level quantum algorithms into optimized quantum circuits that are 

compatible with specific quantum hardware. This process maximizes the efficiency and 

performance of quantum computations, paving the way for advancements in quantum 

computing applications. 
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Chapter 3    Quantum Circuit Modeling by  

ZX-calculus 

This chapter focuses on the utilization of ZX-calculus for quantum circuit 

modeling. It begins with an introduction of ZX-calculus, explaining its principles and 

applications in quantum circuit optimization. The chapter also provides a brief 

introduction to PyZX, a Python library that implements ZX-calculus for circuit analysis 

and manipulation. By exploring the foundations of ZX-calculus and its integration with 

PyZX, readers will gain a deeper understanding of the modeling techniques employed in 

quantum circuit optimization. 

3.1    Introduction to ZX-calculus 

ZX-calculus is a powerful graphical language and formalism introduced by Coecke 

and Duncan [22, 23] in 2008. It was proposed for reasoning about quantum information 

and quantum computations. It provides a visual representation and a set of algebraic 

rules for manipulating quantum logic operations, making it an intuitive and efficient 

tool for studying quantum circuit transformation. It was used increasingly in related 

areas such as quantum circuit optimization, quantum error correction code, and 

measurement-based quantum computation [24]. 

• ZX-diagram 

ZX-calculus is based on the ZX-diagram notation, which is a graphical 

representation of a standard quantum circuit after the transformation of the ZX-

calculus. Unlike quantum circuits, ZX-diagrams do not have a strict temporal 

ordering. Instead, they focus on capturing the relationships between qubits and the 
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interactions between quantum gates, emphasizing the concept of quantum 

interference. In other words, only connectivity matters in a ZX-diagram. See Fig. 

3-1 as an example, the following ZX-diagrams all represent the same matrix. 

Fig. 3-1      The three ZX-diagrams represent the same matrix 

• Spiders and Wires 

Quantum gates are represented as nodes, and wires connecting these nodes 

represent qubits. The nodes in the diagram, which are also called “spiders”, are of 

two types: Z-spiders and X-spiders. The Z-spiders are represented as green dots 

while the X-spiders are represented as red ones. The phase  carried by the spider 

is labeled in the dot and  is typically ranged between  and . As a 

supplementary explanation, if  is equal to 0, the phase can be omitted and left 

unlabeled. The linear map interpretations of both Z-spiders and X-spiders are 

shown in Fig. 3-2.

Fig. 3-2      Z-spider and X-spider interpretation as a linear map 

Wires are used to connect spiders and two types of wires are defined. The 

black solid lines are called simple edges while the blue dashed lines are called 

α

α 0 2π

α
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Hadamard edges. As Fig. 3-3 shows below, we can transform a Hadamard gate, 

symboled as a yellow box on the left-hand side into a Hadamard edge as the 

preprocessing of the simplification of a ZX- diagram. 

Fig. 3-3      Hadamard edge and Hadamard box illustration 

According to the definition of spiders and quantum gates mentioned in 

Chapters 2.2 and 2.3, the common quantum gates and their representation in the 

ZX-calculus are listed in Table 3-1. The first column specifies the common name 

for the quantum gate.

Table 3-1    ZX and Matrix Form of Common Quantum Gates [24] 

Name ZX-diagram Form Matrix

Identity

Pauli-X gate

Pauli-Y gate

Pauli-Z gate

Hadamard gate

S gate

T gate

CNOT gate

[1 0
0 ei π

2 ]

[0 −i
i 0 ]

[1 0
0 ei π

4 ]
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

[0 1
1 0]

[1 0
0 −1]

[1 0
0 1]

1
2 [1 1

1 −1]
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• Usage of ZX-calculus 

To make great use of the ZX-calculus, we usually transform the standard 

quantum circuit into a graphlike [20] ZX-diagram. After the transformation, we 

will use different strategies based on the theories in the ZX-calculus to simplify the 

ZX-diagram. The simplification strategies are defined distinctively based on 

simplification targets. For example, T-gates are costly in a quantum circuit so the 

effective method for T-count minimization [25] has been studied for many years.  

Take Fig. 3-4 as an example of the procedure for ZX- diagram transformation. 

Fig. 3-4 (a) is an original quantum circuit. After the transformation of the ZX-

calculus, the ZX-diagram is shown in Fig. 3-4 (b). After the simplification 

strategies of ZX-calculus, we can finally get the result in Fig. 3-4 (c) and (d). 

Fig. 3-4      Transformation between a standard quantum circuit and ZX- diagrams

• ZX-rules

ZX-rules, also known as the rewriting rules of ZX-calculus, are a set of 

algebraic rules that govern the manipulation and transformation of ZX-diagrams. 

These rules enable the simplification, composition, and decomposition of ZX-

CZ gate

Name ZX-diagram Form Matrix
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1
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diagrams, allowing for the analysis and optimization of quantum circuits and 

quantum information processes. 

There are several ZX-rules, each specifying a specific transformation that can 

be applied to ZX-diagrams. Some of the commonly used ZX-rules include: 

- Spider Fusion Rule

This rule allows the merging of two spiders of the same color into a single 

spider. It represents the combination of quantum states and the interaction 

between qubits. See Fig. 3-5 for diagrammatic interpretation.

Fig. 3-5      A diagrammatic interpretation for spider fusion rule 

- Identity Removal Rule

The rule removes the identity spiders from ZX-diagrams. The identity 

spider is a special type of spider that represents an identity gate, which does not 

affect the quantum state of the qubits. Different types of identity gates are 

presented in Fig. 3-6.

Fig. 3-6      A diagrammatic interpretation of identity removal rule 

- Hadamard Rule

The rule means conjugating the Pauli-Z gates with Hadamard gates to get 

Pauli-X gates, which can be interpreted as . In the ZX form, when an 

X-spider needs to be transformed into a Z-spider, all Hadamard edges connected 

HZ H = X
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to the X-spider will be converted into simple edges, and all simple edges 

connected to the X-spider will be converted into Hadamard edges, and vice 

versa. This transformation is also called as “Color Change Rule”. The 

diagrammatic interpretation is shown in Fig. 3-7.

Fig. 3-7      A diagrammatic interpretation of Hadamard rule 

- Local Complementation Rule

If a spider (denoted by  on the left-hand side in Fig. 3-8) with a  phase 

exists within a graphlike diagram, which is internally connected to other spiders 

and not linked to inputs or outputs, it can be eliminated from the diagram by 

complementing the connectivity within its neighborhood and adjusting certain 

phases accordingly.

Fig. 3-8      A diagrammatic interpretation for local complementation rule 

- Pivot Rule

This rule involves the deletion of Pauli spiders pairs, which are spiders 

with phases that are multiples of . As shown in Fig. 3-9, when we have a pair 

of connected Pauli spiders, denoted as  and , we can split the neighborhood of 

* ± π
2

π

u v

18 doi:10.6342/NTU202303169



 into three distinct parts: , which consists of spiders only connected to , 

, which consists of spiders only connected to , and , which consists of 

spiders connected to both  and . Then, delete the pair of spiders  and , under 

the condition that we introduce complete bipartite graphs on , , 

and .

Fig. 3-9      A diagrammatic interpretation of the pivot rule 

- Pivot Gadget Rule

This rule is similar to the pivot rule but with a specific distinction. While 

the pivot rule focuses on pairings of Pauli spiders, the pivot gadget rule looks 

for a different pairing. Specifically, it seeks a pair consisting of an interior Pauli 

spider and an interior non-Clifford spider within a ZX-diagram. Once this 

pairing is identified, the pivot gadget rule enables the transformation of the non-

Clifford spider into a gadgetized form. See Fig. 3-10 for a diagrammatic 

representation. This process involves replacing the non-Clifford spider with a 

specific arrangement of spiders, edges, or other elements that represent the 

behavior of the original non-Clifford spider.

Fig. 3-10    A diagrammatic interpretation for pivot gadget rule 

{u, v} U u

V v W

u v u v

(U, W ) (V, W )

(U, V )
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- Phase Gadget Rule

A phase gadget refers to a configuration that involves an arity-1 spider with 

an angle . This arity-1 spider is connected to another spider, which has no 

angle, through a Hadamard edge. This rule is to merge the phases of two phase 

gadgets,  and , which are connected to the same set of spiders. See Fig. 3-11 

for details.

Fig. 3-11    A diagrammatic interpretation for phase gadget rule 

α

α β
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3.2    PyZX: Automated Diagrammatic Python Tool for 

Quantum Circuit using ZX-calculus 

PyZX [26] is a Python library (https://github.com/Quantomatic/pyzx) and software 

package that is specifically designed for working with the ZX-calculus, a graphical 

calculus for quantum computing. It provides a wide range of functionalities and tools 

for ZX-diagram manipulation, circuit optimization, and quantum circuit analysis. It 

allows users to create, modify, and visualize ZX-diagrams using Python programming 

language. It provides a convenient interface to construct ZX-diagrams, add and remove 

spiders and edges, apply transformation rules, and perform various operations on the 

diagrams. Fig. 3-12 shows the overall functionalities of PyZX. 

Fig. 3-12    An overview of the functionality of PyZX [26] 

One of the key features of PyZX is its ability to perform circuit optimization using 

ZX-calculus techniques. It offers functions to simplify ZX-diagrams, identify and 

eliminate redundant elements, exploit symmetries, and optimize quantum circuits for 

better efficiency and performance. Table 3-2 lists some of the common ZX-rules and the 
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corresponding functions defined in PyZX. Each simplification function continuously 

searches for candidates in the ZX-diagram that match its specific rule and updates the 

ZX-diagram accordingly. This process continues until there are no more candidates, at 

which point the simplification function stops. Each function outputs the number of 

iterations for the update of the ZX-diagram. 

Table 3-2    ZX-rules and their corresponding functions implied in PyZX [26] 

By utilizing these simplification rules, quantum circuits can be optimized to 

varying degrees. The effectiveness of circuit optimization can be enhanced by 

employing specific sequences of these rules. Here are a few examples of functions 

implemented in the PyZX package that demonstrate this approach for efficient quantum 

circuit optimization: 

• Interior Clifford Simplification 

The primary objective of this simplification strategy is to eliminate as many 

interior Clifford spiders as possible [25]. These spiders are characterized by having 

phases that are multiples of . This strategy simplifies the circuit by iteratively 

ZX-rule Function Name

Spider Fusion Rule spider_simp

Identity Removal Rule id_simp

Hadamard Rule to_gh

Local Complementation Rule lcomp_simp

Pivot Rule pivot_simp

Pivot Gadget Rule pivot_gadget_simp
pivot_boundary_simp

Phase Gadget Rule gadget_simp

π
2
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applying the identity removal rule, spider fusion rule, pivot rule, and local 

complementation rule that have been mentioned in Chapter 3.1 until none of them 

can be applied anymore. In PyZX, it is implemented in the function called 

interior_clifford_simp and Algorithm 3-1 presents its pseudocode. 

Algorithm 3-1    Pseudocode of interior Clifford simplification

Function   interior_clifford_simp(g)

Input: The ZX-diagram that should be simplified (g) 
Output: The number of iterations of the while loop (i)

1 spider_simp(g)

2 Make g a graph-like ZX-diagram

3

4

5 while matches = true do

6

7

8

9

10

11

12      else

13

14      end if

15 end while

16

     lcomp_simp(g)i4 ←

     spider_simp(g)i2 ←

     pivot_simp(g)i3 ←

          i ← i + 1

i ← 0

          matches  false←

     id_simp(g)i1 ←

     if  theni1 + i2 + i3 + i4 = 0

return i

matches  true←
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• Clifford Simplification 

Clifford simplification is implemented in the function clifford_simp which 

contained interior Clifford simplification and pivot boundary rule. The algorithm is to 

remove as many Clifford spiders as possible. In particular, no specific actions are taken 

to eliminate non-Clifford spiders during this process. See Algorithm 3-2 for the 

pseudocode. 

In general, PyZX converts quantum circuits to ZX-diagrams using ZX-calculus and 

applies a series of simplification strategies to optimize the circuits. Finally, through 

extraction, the ZX-diagram is transformed back into the form of a quantum circuit, 

achieving the circuit optimization. The entire process is illustrated in Figure 3-13. 

 

Algorithm 3-2    Pseudocode of Clifford simplification

Function   clifford_simp(g)

Input: The ZX-diagram that should be simplified (g) 
Output: The number of iterations of the while loop (i)

1

2

3 while matches = true do

4

5

6

7

8      end if

9 end while

10 return i

     if  theni2 = 0

      + interior_clifford_simp(g)i ← i

matches  true←

     pivot_boundary_simp(g)i2 ←

          matches  false←

i ← 0
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Fig. 3-13    The overall flow for full reduction implementation 
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Chapter 4    Optimization by Dynamic Reduction 

Algorithm 

This chapter delves into the application of the dynamic reduction algorithm for 

quantum circuit optimization. It begins with an overview of the previous work utilizing 

PyZX, a Python library, for circuit optimization. A case study focusing on a 3-Toffoli 

quantum circuit is presented to illustrate the challenges faced in circuit optimization. 

The chapter further explores the concept of decomposition level adjustment and its 

impact on circuit optimization. Finally, the dynamic reduction algorithm is introduced 

as a powerful technique for reducing gate count, 2-qubit gate count, and circuit depth,  

and thus improves circuit efficiency and achieved optimized results. By examining these 

aspects, readers will gain insights into the practical implementation and effectiveness of 

the dynamic reduction algorithm in quantum circuit optimization. 

4.1    Previous Work 

The ZX-calculus framework has emerged as a powerful tool for optimizing 

quantum circuits, and various techniques have been proposed to enhance its 

effectiveness [20, 25, 27]. One of the general simplification algorithms for reducing T-

count, called full_reduce, was proposed by Aleks Kissinger et al. in [25]. It uses a 

combination of Clifford simplification (interior_clifford_simp and clifford_simp) and 

the gadgetization strategies such as the pivot gadget rule (pivot_gadget_simp) and phase 

gadget rule (gadget_simp) as mentioned. The algorithm of full_reduce is shown in 

Algorithm 3-3. 

26 doi:10.6342/NTU202303169



4.2    Case Study:  3-Toffoli Quantum Circuit 

Take a circuit with 3 Toffoli gates as an example. The original circuit is shown in 

Fig. 4-1. Since the decomposition of a Toffoli gate contains 7 T gates [7], the original T-

count of this circuit is 21. 

Fig. 4-1      A original circuit with 3 Toffoli gates 

Algorithm 3-3    Pseudocode of full reduction

Function   full_reduce(g)

Input: The ZX-diagram that should be simplified (g) 
Output: None

1

2 interior_clifford_simp(g)

3 while matches = true do

4      clifford_simp(g)

5

6      interior_clifford_simp(g)

7

8

9

10      end if

11 end while

     if  theni + j = 0
          matches  false←

     gadget_simp(g)i ←

     pivot_gadget_simp(g)j ←

matches  true←

27 doi:10.6342/NTU202303169



By using PyZX to reduce the T-count of the quantum circuit, we first expand the 

circuit to a ZX-diagram with 21 T gates which is shown in Fig. 4-2. 

Fig. 4-2      The original ZX-diagram with 21 T gates 

 After applying full_reduce, the simplified ZX-diagram is formed as in Fig. 4-3 

with 10 phase gadget spiders. 

Fig. 4-3      The simplified ZX-diagram after full reduction 

Finally, Fig. 4-4 illustrates the process of removing gadgets from Fig. 4-3, 

representing the resulting diagram in terms of basic gates. From the figure, we can 

observe a noticeable reduction in the T-count, indicating a significant improvement in 

the efficiency of the circuit. 

Fig. 4-4      The simplified ZX-diagram with 15 T gates 
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After optimization, the T-count of the circuit decreased significantly from 21 to 15. 

However, as observed from Table 4-1, the gate count ( ), 2-qubit gate count ( ), and 

circuit depth ( ) increased. This phenomenon becomes more prominent as the circuit 

size grows. Therefore, it is an important research direction to control the increase in gate 

count, 2-qubit gate count, and circuit depth while maintaining the reduction in T-count 

has become an important research direction. 

Table 4-1    The circuit information for the original one and the optimized one 

4.3    Decomposition Level Adjustment 

According to Fig. 3-13, it can be observed that when converting from the original 

quantum circuit to the original ZX-diagram, a process of decomposition is required. 

This step primarily involves transforming each quantum gate into its corresponding ZX 

form, as shown in Table 3-1, and then connecting them in the correct order. However, 

for some more complex quantum gates, such as the Toffoli gate, Controlled-CZ gate, 

and Controlled-RZ gate, there are different ZX representations. Take the Toffoli gate as 

an example, to implement a Toffoli gate by basic quantum gates [7], it can be 

represented as Fig. 4-5. 

 

Σ 2Q

D

Circuit

Original (Fig. 4-2) 45 18 21 31

Optimized (Fig. 4-4) 55 31 15 34

T D2QΣ
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Fig. 4-5      Circuit implementing a Toffoli gate 

After transforming each quantum gate to the corresponding ZX form, a Toffoli gate 

can be interpreted as the ZX-diagram shown in Fig. 4-6. 

Fig. 4-6      ZX-diagram implementing a Toffoli gate 

However, Fig. 4-6 is just one of the representations of a Toffoli gate. Through 

different types of simplification strategies, we have categorized the decomposition 

levels of a Toffoli gate into three levels, ranging from the most complex to the simplest, 

as shown in Table 4-2. For level 1, we apply the Hadamard rule (to_gh) to Fig. 4-6. 

Further employing the spider fusion rule (spider_simp) and identity removal rule 

(id_simp) on the ZX-diagram from level 1, we get the ZX-diagram for level 2. For level 

3, we obtain the phase gadget for the ZX-diagram by using pivot_gadget_simp. 
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Table 4-2    Decomposition Level for a Toffoli gate 

Consider the case of Fig. 4-1, which illustrates a configuration involving 3 Toffoli 

gates. We explore the implications of varying decomposition levels on quantum circuit 

optimization. For a decomposition level of 1, the initial construction of the ZX-diagram 

yields a ZX-diagram comprising exclusively Z spiders and Hadamard edges. Elevating 

the decomposition level to 2 facilitates the exclusion of visually redundant spiders 

during the initial ZX-diagram construction. Meanwhile, a decomposition level of 3 

permits the preliminary selection of potential gadget candidates within the circuit. This 

proactive selection process holds the potential to exert substantial influence over the 

subsequent sequence and progression of optimization steps in the ZX-diagram. 

Decomposition Level ZX Form Representation

1

2

3
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4.4    Dynamic Reduction Algorithm 

During the simplification process, full_reduce aims to minimize the T-count by 

applying various optimization techniques. However, there are instances where the T-

count cannot be further reduced. In such cases, full_reduce continues to optimize the 

ZX-diagram by simplifying spiders and edges. While this approach often results in a 

reduction of the number of spiders and edges, it can also lead to difficulties when 

converting the highly optimized ZX-diagram back into a quantum circuit. This 

conversion process may introduce redundant quantum gates into the optimized quantum 

circuit.  

To address this issue and prevent excessive optimization of the ZX-diagram, we 

propose a dynamic reduction algorithm. This algorithm effectively balances the goal of 

minimizing the T-count while avoiding the generation of excessive redundant quantum 

gates during the extraction process. By dynamically controlling the level of reduction, 

we ensure that the resulting quantum circuit remains optimized while minimizing the 

introduction of unnecessary gates. 

First, we introduce a self-defined observational metric, which we refer to as 

"density". Through observations of numerous test data, we have identified a common 

occurrence in over-optimized circuits, characterized by spiders connected to a large 

number of edges. Consequently, we define density as the average of the squared sum of 

the number of edges connected to each spider. The formula is as follows: 

. density =
∑

spider
(#neighbor)

2

#spider
, spider ∈ ZX-graph
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The most balanced ZX-graph would have each spider connected to exactly two 

neighbors, resulting in the minimum density. In this case, the minimum density can be 

approximated as , where  represents the number of edges and  represents the 

number of vertices in the ZX-graph. As the ZX-graph is further simplified, the density 

gradually increases. Therefore, the objective of the algorithm is to find a ZX-graph with 

the minimum density when the T-count is minimized. 

After each execution of a simplification rule, the density is calculated and 

recorded, and the current ZX-graph is also saved. At the same time, the T-count is 

monitored. When the T-count no longer decreases, the ZX-graph with the minimum 

density is selected from the set of ZX-graphs with the minimum T-count. This ZX-graph 

with the minimum density is considered the result of the algorithm. 

Similarly to the previous section, we exemplify our methodology using Fig. 4-1. 

Employing the original optimization technique, the full reduction algorithm 

(full_reduce), on the illustrated ZX-diagram in Fig. 4-2, yields an optimized ZX-

diagram shown in Fig. 4-3 with the density of 14.0476. Subsequent extraction results in 

a noticeable increase in most metrics, except the T-count. In contrast, the application of 

the dynamic reduction algorithm (dynamic_reduce) for optimization maintains a ZX-

graph density of 9.5676, which is shown in Fig. 4-7. The quantum circuit derived from 

this optimized ZX-graph not only preserves a minimized T-count but also exhibits a 

reduction in other pertinent metrics. The comparison table is shown in Table 4-3. It is 

evident that the dynamically optimized quantum circuit exhibits lower total gate count 

and 2-qubit gate count values compared to those obtained through full reduction. The 

outcomes of dynamic reduction do not exhibit an enhancement in the depth metric for 

( 2e
v )

2
e v
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the specific modest-sized circuit under consideration. This phenomenon can be 

attributed to the circuit's limited scale, rendering the influence on the depth parameter 

inconspicuous. However, in the subsequent sections, it becomes evident that dynamic 

reduction substantially ameliorates depth for numerous larger-scale circuits. 

Fig. 4-7      Optimized ZX-diagram after dynamic reduction algorithm with the density of 9.5676 

Table 4-3    The circuit information for the original one and the optimized ones by full reduction and 
dynamic reduction 

Circuit

Original (Fig. 4-2) 45 18 21 31

Optimized (full reduction) 55 31 15 34

Optimized (dynamic reduction) 44 23 15 34

2QΣ T D
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Chapter 5    Implementation 

The chapter begins with an introduction to Qsyn, providing an overview of its 

design, structure, and key functionalities. It highlights the capabilities of Qsyn as a 

powerful software system for quantum circuit synthesis, optimization, and verification. 

The chapter then delves into the execution of the dynamic reduction algorithm within 

the Qsyn framework, showcasing the integration of this algorithm and its impact on 

circuit optimization. The implementation details and methodologies employed are 

discussed, providing insights into the practical aspects of applying the dynamic 

reduction algorithm in the context of Qsyn. 

5.1    Qsyn: Quantum Circuit Synthesis Framework 

 With the rapid growth of quantum computing, there is a pressing need for efficient 

techniques to analyze and enhance the performance of complex quantum circuits. In 

response to this demand, we have designed and implemented Qsyn as a comprehensive 

solution.  

Qsyn is a powerful and versatile software system designed to synthesize, optimize, 

and verify quantum circuits used in quantum computers. Developed as a C++-based 

framework, Qsyn offers a comprehensive set of tools and algorithms to address the 

challenges associated in the quantum circuit synthesis flow. One of the key features of 

Qsyn is its ability to perform scalable quantum circuit optimization by leveraging the 

ZX-Calculus and technology mapping techniques. By combining these approaches, 

Qsyn enables users to effectively optimize quantum circuits, reducing their complexity 

and improving their performance. Qsyn provides an experimental implementation of 
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various optimization algorithms, allowing users to explore different strategies and 

techniques for circuit optimization. Moreover, it offers a programming environment that 

facilitates simulation and the development of similar applications in the field of 

quantum computing. 

Looking towards the future, Qsyn aims to enhance its existing algorithms and 

further refine its optimization capabilities. Additionally, the team behind Qsyn is 

dedicated to improving the visualization of ZX-graphs, providing users with a clearer 

and more intuitive representation of the optimized circuits. 

• Main-branch Structure 

Fig. 5-1      The structure for Qsyn 

Qsyn is mainly organized around four key structures: the quantum circuit 

(QCir), ZX-graph (ZXGraph), tensor matrix (Tensor), and device (Device). Fig. 

5-1 illustrates the overall design architecture of Qsyn. A brief introduction for each 

structure is provided below: 
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- Quantum Circuit (QCir)

The quantum circuit structure is implemented using the class QCir, which 

encompasses all the essential characteristics of a quantum circuit. To construct a 

quantum circuit, different types of quantum gates are defined as subclasses of 

QCirGate.

- ZX-graph (ZXGraph)

The ZX-graph structure is represented by the class ZXGraph, which allows 

the construction of a ZX-diagram. Within the ZX-diagram, individual spiders 

are manipulated using the class ZXVertex, representing various types of spiders 

such as the Hadamard gate (referred to as H-box in Qsyn).

- Tensor Matrix (Tensor)

Both the quantum circuit and ZX-diagram can be represented as tensor 

matrices. To ensure the correctness of our implementation, the class  Tensor 

serves as a checker, validating the tensor matrix representation of the quantum 

circuit and ZX-diagram.

- Device (Device)

The class Device in Qsyn is specifically designed to emulate the execution 

of a quantum circuit on a physical quantum device. It provides a platform for 

emulating the behavior and limitations of real-world quantum hardware. 

On top of the four main classes described above, to facilitate the simultaneous 

existence and computation of multiple circuits within Qsyn, we further introduce a 

manager layer is introduced to manage the access and isolation of different circuits. 
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The manager layers for the four structures are defined as classes QCirMgr, 

ZXGraphMgr, TensorMgr, and DeviceMgr, respectively. 

• Common Commands List 

- System Information

To ensure the smooth execution of the system and the ability to monitor 

and manipulate system parameters over time, several common commands are 

available as described in the following Table 5-1:

Table 5-1    Some commands and their descriptions for system information 

- QCir

In order to construct a quantum circuit, we provide the functionality to read 

and write QASM (Quantum Assembly Language) [28]. We also offer various 

commands for editing the circuit. Additionally, since the circuit may require 

optimization or verification, there are commands related to transforming from 

QCir to ZXGraph or Tensor as well. Some common commands are listed in 

Table 5-2.

Command Description

usage Report the runtime and/or memory usage

qquit Quit Qsyn

help Show helping messages of commands
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Table 5-2    Some commands and their descriptions for QCir 

- ZXGraph

To implement the ZX-calculus and apply it to quantum circuit 

optimization, we provide several commands for editing ZX-graphs. 

Additionally, we offer a variety of simplification methods to achieve the goal of 

simplifying ZX-graphs. Here is a list of some commonly used commands in 

Table 5-3:

Table 5-3    Some commands and their descriptions for ZXGraph 

To facilitate broader usage, we have introduced a file format called "ZX" 

specifically designed to represent the structure of a ZX-diagram. This file format 

provides a convenient way to describe and store ZX-graphs for further analysis 

and manipulation within Qsyn. For detailed information on the syntax and usage 

of the ZX file format, please refer to Appendix A.1.

Command Description

qc2ts Convert QCir to Tensor

qc2zx Convert QCir to ZXGraph

qccread Read a circuit and construct the corresponding setlist

qccwrite Write QCir to a QASM file

qccprint Print information of QCir

Command Description

zxgdraw Draw ZXGraph into a pdf file

zxgwrite Write a ZXGraph to a file (.tik / .zx)

zxgread Read a zx file and construct the corresponding ZXGraph

zxgsimp Perform simplification strategies for ZXGraph
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- Tensor

The class Tensor serves as a tool for circuit verification in Qsyn. It enables 

precise verification of the correctness of circuit simplification processes. By 

representing a circuit as a tensor, Qsyn can accurately compare the tensors 

before and after applying simplification rules to ensure that the circuit 

simplification process is performed correctly. Some commonly used commands 

are described in Table 5-4.

Table 5-4    Some commands and their descriptions for Tensor 

Please refer to Appendix A.2 for a comprehensive list of additional commands 

that are available in Qsyn. This appendix provides a detailed description of each 

command, including its syntax and functionality. It covers a wide range of 

commands related to quantum circuit editing, ZX-graph manipulation, 

simplification strategies, and other operations relevant to circuit optimization and 

verification. The appendix serves as a valuable resource for users to explore and 

utilize the full capabilities of Qsyn in their quantum circuit optimization 

workflows. 

Command Description

tsadjoint Adjoint the specified Tensor

tsequiv Check the equivalency of two stored Tensors

tsprint Print information of TensorMgr
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5.2    Execution of Dynamic Reduction Algorithm  

After successful installation and compilation of Qsyn, we can call the command-

line interface of Qsyn where users can execute commands implemented into Qsyn. To 

execute Qsyn, we should enter the command ./qsyn, the result is shown in Fig. 5-2. 

 

Fig. 5-2      The command line interface after executing Qsyn 

First, we need to read a QASM file that describes the quantum circuit. The 

command for reading the quantum circuit is qccread. The usage is as follows: 

The <file_name> parameter specifies the name of the file to be read. Take the instance 

mentioned in Chapter 4.2 as an example, The execution and response of the command 

line are as shown in Fig. 5-3 below. 

Fig. 5-3      The command line interface after reading a QASM file 

As shown in the response in the figure, the quantum circuit is stored in QCirMgr with 

an index 0.  
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qccread <file_name>
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In the subsequent step, the quantum circuit is transformed into a ZX-graph 

structure. As described in Chapter 4.3, the decomposition level can be specified during 

this conversion process by including the optional [level_parameter] integer. The 

[level_parameter] ranges from 1 to 3 and is added after the transformation command 

qc2zx. If the [level_parameter] is not provided, the default value is set to 1. The syntax 

for specifying the decomposition level is as follows: 

Take level 3 as an example, the response of the command line is as shown in Fig. 

5-4 below. 

Fig. 5-4      The command line interface after converting QCir to ZXGraph in level 3 

The ZX-diagram converted by the quantum circuit is stored in ZXGraphMgr with an 

index 0.  

To apply simplification on the ZX-diagram, we can use the command zxgsimp 

followed by the desired [simplification_strategy]. The usage is as follows: 

For a detailed list of available simplification strategies, please refer to Appendix 

A.3. For executing the dynamic reduction algorithm, the required simplification strategy 
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zxgsimp [simplification_strategy]

qc2zx [level_parameter]
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is called -dreduce. During this step, the command line prints out all the executed 

simplification rules, and the result is displayed as shown in Figure 5-5. 

Fig. 5-5      The command line interface after dynamic reduction 

The simplified graph is stored and updated in ZXGraphMgr with the same index 0.  

Lastly, we output the optimized ZX-graph as a zx file for further extraction and 

analysis using PyZX. The command to write the zx file is zxgwrite, and its usage is as 

follows: 

In this case, the result for this command is shown in Fig. 5-6. 

Fig. 5-6      The command line interface after writing the ZX-graph into a zx file 

If no error message appears, it indicates that all processes have been executed 

successfully. 
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If we want to verify the equivalence of the optimized circuit and the original 

circuit, we can use Tensor for confirmation. First, we convert the quantum circuit into a 

tensor matrix by qc2ts and then convert the ZX-diagram into another tensor matrix by 

zx2ts. For TensorMgr, the indices for them are 0 and 1, respectively. Finally, we use 

the command tsequiv to confirm the equivalence of the two tensor matrices. The usage 

is shown as follows: 

The result for this case is shown in Fig. 5-7. We can see that the original circuit and 

the optimized ZX-graph are equivalent. 

Fig. 5-7      The command line interface after equivalence checking 
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Chapter 6    Experimental Results 

The chapter begins with the discussion of the experimental setup, including the 

selection of test cases and the configuration of the experimental environment. 

Subsequently, a thorough comparison is made between the performance of PyZX and 

Qsyn, highlighting the advantages of the latter in terms of the execution time and 

scalability. The chapter then presents the results of implementing the decomposition 

level adjustment technique and dynamic reduction algorithm, showcasing the 

improvements achieved in terms of gate count, 2-qubit count, and circuit depth. 

6.1    Experiment Setup 

The experiments are conducted on a machine with Intel(R) Xeon(R) CPU E5-2630 

v4 @ 2.20GHz, 131 GB total memory.  

According to sections 4.3 and 4.4, our experiments adhere to the workflow 

illustrated above the dashed line in Fig. 6-1. Within this workflow, our proposed 

methods alter the decomposition and simplification steps, both of which are carried out 

using Qsyn, the software developed as detailed in Chapter 5. 

Fig. 6-1      The workflow for the experimental group and the control group  
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The experimental group utilizes Qsyn to read QASM files and construct a quantum 

circuit. The quantum circuit is then transformed into a ZX-diagram using the algorithms 

with different decomposition levels provided by Qsyn, followed by the execution of the 

dynamic reduction algorithm. It then outputs the optimized ZX-diagram in the ZX 

format defined in Appendix A.1, which allows for the storage of the ZX-diagram in a .zx 

file. Finally, the ZX file is fed into PyZX, as described in Chapter 3.2, for extraction, 

resulting in the final optimized quantum circuit. The complete process for the 

experimental group is illustrated in Fig. 6-1 below the dashed line by the blue flow. In 

contrast, the control group employs the full simplification method proposed in [25] and 

utilize PyZX for execution, ultimately obtaining the final optimized quantum circuit. 

The workflow for the control group is shown in Fig. 6-1 below the dashed line by the 

red flow.  

Our optimization techniques are applied to various types of quantum circuits, 

including key components of quantum algorithms used in factoring and computing 

discrete logarithms [29]. These benchmark circuits encompass essential elements such 

as the quantum Fourier transform, integer adders, and Galois field multipliers. By 

applying our techniques to these circuits, we can evaluate the effectiveness of our 

optimizations in improving the performance and efficiency of these important quantum 

algorithms. The circuit list and the information are provided in Table 6-1 [30, 31]. 
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Table 6-1    Circuit information for our benchmark 

Circuit
Circuit Information

Mod 54 79 28 28 59

VEB-Adder3 190 70 70 97

CSLA-MUX3 210 80 70 80

CSUM-MUX9 532 168 196 72

QCLA-Com7 559 186 203 102

QCLA-Mod7 1120 382 413 249

QCLA-Adder10 657 233 238 91

Adder8 1128 409 399 282

RC-Adder6 244 93 77 129

Mod-Red21 346 105 119 196

Mod-Mult55 147 48 49 60

Toff-Barenco3 76 24 28 51

Toff-NC3 57 18 21 38

Toff-Barenco4 146 48 56 99

Toff-NC4 95 30 35 62

Toff-Barenco5 218 72 84 147

Toff-NC5 133 42 49 86

Toff-Barenco10 578 192 224 387

Toff-NC10 323 102 119 206

GF(24)-Mult 289 99 112 133

GF(25)-Mult 447 154 175 168

GF(26)-Mult 639 221 252 217

GF(27)-Mult 865 300 343 259

GF(28)-Mult 1139 405 448 307

GF(29)-Mult 1419 494 567 336

GF(210)-Mult 1747 609 700 378

GF(216)-Mult 4459 1581 1792 643

GF(232)-Mult 17658 6268 7168 1315

GF(264)-Mult 70075 24765 28672 2659

GF(2128)-Mult 279419 98685 114688 5345

Σ 2Q DT
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6.2    Comparison of PyZX and Qsyn  

To increase the flexibility and efficiency of quantum circuit synthesis, we 

developed Qsyn using C++ as the implementation platform for our research algorithms. 

Table 6-2 presents a comparison of the execution times between Qsyn and PyZX for all 

test cases. The execution time is calculated as the total time taken by Qsyn and PyZX to 

read each circuit, convert it into a ZX-diagram, and perform the full reduction 

algorithm.  

The table records the total gate count ( ), 2-qubit count ( ), T count ( ), and 

circuit depth ( ) for each circuit after the full reduction algorithm, along with the 

execution times of PyZX and Qsyn. In Table 6-2, the performance of Qsyn compared to 

PyZX is indicated by green text for improving and red text for inferior results. We 

observed slight differences in the outcomes of the full reduction algorithm between 

PyZX and Qsyn. These deviations are attributed to the distinct data structures employed 

by Qsyn and are considered within the normal range of variation. Additionally, it is 

observed that the execution time of Qsyn is significantly shorter than that of PyZX, 

particularly for larger circuits. Indeed, it is well-known that C++ execution time is 

generally faster than Python. However, the table shows that the average execution time 

of PyZX is approximately 49 times longer than that of Qsyn. This significant difference 

in execution time indicates that the built-in structures and algorithms of Qsyn 

outperform PyZX. Consequently, the reduced execution time of Qsyn can be attributed 

to its optimized algorithmic implementation and efficient utilization of system 

resources. As a result, Qsyn demonstrates improved performance and scalability, 

making it more suitable for handling large-scale quantum circuits. 

Σ 2Q T

D
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Table 6-2    Runtime comparison for PyZX and Qsyn 

Circuit
PyZX Qsyn

Runtime 
(s)

Runtime 
(s)

Mod 54 33 23 8 27 0.04 37 27 8 27 0.01

VEB-Adder3 127 74 24 75 0.38 129 79 24 74 0.03

CSLA-MUX3 255 161 62 115 0.05 217 137 62 106 0.01

CSUM-MUX9 474 296 84 116 0.04 481 313 84 113 0

QCLA-Com7 417 222 95 113 0.02 394 221 95 119 0.01

QCLA-Mod7 1146 674 237 416 0.12 1160 706 237 387 0

QCLA-Adder10 631 366 162 222 0.06 647 381 162 191 0.01

Adder8 689 366 173 286 0.16 731 405 173 278 0.02

RC-Adder6 214 115 47 136 0.02 220 119 47 128 0

Mod-Red21 301 149 73 181 0.02 266 128 73 167 0

Mod-Mult55 138 88 35 83 0.11 139 87 35 77 0

Toff-Barenco3 46 21 16 38 0.05 59 37 16 46 0

Toff-NC3 46 25 15 36 0.02 56 32 15 40 0

Toff-Barenco4 102 56 28 82 0.36 92 48 28 76 0.03

Toff-NC4 83 42 23 52 0.1 83 44 23 55 0

Toff-Barenco5 139 71 40 108 0.07 156 85 40 115 0

Toff-NC5 108 54 31 73 0.14 112 54 31 72 0.02

Toff-Barenco10 373 199 100 265 0.1 370 208 100 253 0.01

Toff-NC10 275 133 71 155 0.01 278 148 71 185 0.01

GF(24)-Mult 420 304 68 200 0.01 410 287 68 192 0

GF(25)-Mult 569 432 115 235 0.01 612 472 115 242 0

GF(26)-Mult 1067 811 150 430 0.04 1083 811 150 398 0

GF(27)-Mult 1551 1195 217 564 0.08 1501 1157 217 562 0.01

GF(28)-Mult 2133 1691 264 824 0.36 2129 1666 264 769 0.01

GF(29)-Mult 2546 1977 351 865 0.29 2575 2018 351 919 0.03

GF(210)-Mult 3514 2790 410 1276 0.39 3432 2717 410 1096 0.03

GF(216)-Mult 9624 7898 1040 2803 2.81 9928 8257 1040 2916 0.1

GF(232)-Mult 37014 32676 4128 9505 34.7 49810 43157 4128 13850 0.65

GF(264)-Mult 226794 201158 16448 54525 206.1 253557 227274 16448 66990 4.07

Sum - 246.66 - 5.06

Runtime Rate 48.75

2Q TΣ Σ 2Q T DD
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6.3    Decomposition Level Adjustment Comparison 

In Chapter 4.3, we mentioned the decomposition level for multiple forms of the 

CCNOT (Toffoli) gate in the ZX-diagram. This allows us to transform the original 

quantum circuit into different ZX-diagram representations that have the same logical 

meaning. Since our benchmark circuits heavily feature the CCNOT gate, we adjusted 

the decomposition level to investigate the impact of different decomposition levels on 

the optimization of ZX-diagrams. As depicted in Fig. 6-2, we alter the parameters 1, 2, 

and 3 during the qc2zx step, representing different decomposition levels. Subsequently, 

after undergoing full reduction, the optimized ZX-diagrams are input into PyZX for 

extraction, resulting in the optimized circuits. The results of this extraction process are 

presented in Table 6-3. 

Fig. 6-2      The experiment workflow for the comparison of different decomposition level 

For each circuit, we compare the total gate count, the 2-qubit gate count, and the 

circuit depth. The columns show circuit names, metrics of the existing optimization 

algorithm by PyZX (the control group), and the metrics of different decomposition 

levels (experimental group) by Qsyn. In the Qsyn columns, better performance 

compared to PyZX is indicated with green text, while poorer performance is represented 

in red. Additionally, cells with a green background represent the best performance 

achieved within each circuit. 
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Table 6-3    Circuit metrics for the control group and optimized metrics for different decomposition levels 

Circuit

PyZX 
full_reduce

Qsyn-D1 

full_reduce
Qsyn-D2 

full_reduce
Qsyn-D3 

full_reduce

Mod 54 33 23 27 37 27 27 37 27 27 36 26 23

VEB-Adder3 127 74 75 127 77 71 125 75 68 112 68 72

CSLA-MUX3 255 161 115 217 137 106 211 129 106 222 133 101

CSUM-MUX9 474 296 116 481 313 113 507 337 140 410 266 108

QCLA-Com7 417 222 113 419 250 112 411 225 127 423 241 113

QCLA-Mod7 1146 674 416 1091 632 356 1131 668 446 1065 656 379

QCLA-Adder10 631 366 222 647 381 191 671 411 208 648 390 167

Adder8 689 366 286 731 405 278 752 406 310 700 375 235

RC-Adder6 214 115 136 220 119 128 230 120 132 217 123 118

Mod-Red21 301 149 181 284 144 189 281 137 176 292 153 188

Mod-Mult55 138 88 83 139 87 77 167 99 101 139 86 79

Toff-Barenco3 46 21 38 59 37 46 57 32 44 53 31 43

Toff-NC3 46 25 36 56 32 40 54 30 38 44 23 34

Toff-Barenco4 102 56 82 92 48 76 89 45 69 102 52 88

Toff-NC4 83 42 52 83 44 55 80 40 56 83 44 60

Toff-Barenco5 139 71 108 156 85 115 145 73 114 132 67 101

Toff-NC5 108 54 73 112 54 72 111 53 72 114 58 77

Toff-Barenco10 373 199 265 370 208 253 342 165 264 375 202 267

Toff-NC10 275 133 155 278 148 185 280 145 177 275 142 172

GF(24)-Mult 420 304 200 410 287 192 474 342 237 406 273 177

GF(25)-Mult 569 432 235 612 472 242 634 496 269 557 421 243

GF(26)-Mult 1067 811 430 1083 811 398 1103 843 414 782 601 293

GF(27)-Mult 1551 1195 564 1501 1157 562 1476 1124 521 1294 964 517

GF(28)-Mult 2133 1691 824 2129 1666 769 2353 1888 847 1784 1338 622

GF(29)-Mult 2546 1977 865 2575 2018 919 2693 2137 992 1942 1557 614

GF(210)-Mult 3514 2790 1276 3432 2717 1096 3625 2923 1249 2507 2046 795

GF(216)-Mult 9624 7898 2803 9928 8257 2916 11046 9275 3754 5725 4633 1571

GF(232)-Mult 37014 32676 9505 49810 43157 13850 46375 42089 13252 32966 28723 7740

GF(264)-Mult 226794 201158 54525 253557227274 66990 235681218913 65850 138071121394 26335

Avg. reduction 
(%) - -3.8 -7.3 -1.5 -5.1 -6.6 -7.0 7.8 6.0 10.9

2QΣD ΣΣ D 2Q DD2Q 2QΣ
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From the last column in the “Qsyn-D3” section of Table 6-3, it can be observed 

that approximately 70% of the circuits achieve better optimization results when the 

decomposition level is set to 3, as compared to the original PyZX workflow. On 

average, these circuits achieve a 7.8% reduction in gate count, a 6.8% decrease in 2-

qubit gate count, and a 10.9% reduction in circuit depth. Furthermore, we also observed 

from the table that for some smaller circuits, decomposition level 2 tends to outperform 

level 3, while level 1 shows little improvement compared to PyZX due to the similar 

underlying structure of CCNOT gates used in both Qsyn and PyZX. Moreover, it has 

been observed that around 30% of the circuits continue to exhibit better performance 

under PyZX's original workflow compared to the outcomes achieved through the 

implementation of the decomposition adjustment. Consequently, a strategic decision 

was made to introduce the dynamic reduction algorithm as an experimental measure 

aimed at further enhancing the optimization process. 
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6.4    Dynamic Reduction Algorithm 

In the preceding experiment, it was observed that a subset of ZX-diagrams did not 

undergo optimal optimization. Building upon this finding, we implemented the dynamic 

reduction algorithm to prevent over-optimization during full reduction. The aim was to 

maintain a high T-count reduction rate while obtaining a ZX-diagram with minimal 

density for subsequent extraction processes. The experimental procedure is illustrated in 

Fig. 6-3. In this experiment, we select the decomposition level that performs the best as 

the representative for comparison, denoted by , which ranges from 1 to 3. 

Fig. 6-3      The experiment workflow for the comparison of dynamic reduction algorithm and full 

simplification using PyZX 

The results are summarized in Table 6-4, which includes the circuit name and the 

metrics for both the control group by PyZX and the dynamic reduction algorithm. The 

last column, "Reduction Rate," calculate the reduction rates of the gate count, 2-qubit 

count, and circuit depth for each circuit. The final row in the table represents the 

average reduction rate across the 29 test cases. We designate a green background color 

for the data with reduction rates greater than 0. 

n
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Table 6-4    Circuit metrics for the control group and our dynamic reduction algorithm 

Circuit

PyZX 
full_reduce

Qsyn-Dn 

dynamic_reduce
Reduction Rate

Mod 54 33 23 27 36 26 23 -9.1% -13.0% 14.8%

VEB-Adder3 127 74 75 112 68 72 11.8% 8.1% 4.0%

CSLA-MUX3 255 161 115 211 129 106 17.3% 19.9% 7.8%

CSUM-MUX3 474 296 116 410 266 108 13.5% 10.1% 6.9%

QCLA-Com7 417 222 113 411 225 127 1.4% -1.4% -12.4%

QCLA-Mod7 1146 674 416 1016 590 344 11.3% 12.5% 17.3%

QCLA-Adder10 631 366 222 648 390 167 -2.7% -6.6% 24.8%

Adder8 689 366 286 700 375 235 -1.6% -2.5% 17.8%

RC-Adder6 214 115 136 215 121 115 -0.5% -5.2% 15.4%

Mod-Red21 301 149 181 251 125 161 16.6% 16.1% 11.0%

Mod-Mult55 138 88 83 139 86 79 -0.7% 2.3% 4.8%

Toff-Barenco3 46 21 38 53 31 43 -15.2% -47.6% -13.2%

Toff-NC3 46 25 36 44 23 34 4.3% 8.0% 5.6%

Toff-Barenco4 102 56 82 89 45 69 12.7% 19.6% 15.9%

Toff-NC4 83 42 52 80 40 56 3.6% 4.8% -7.7%

Toff-Barenco5 139 71 108 132 67 101 5.0% 5.6% 6.5%

Toff-NC5 108 54 73 111 53 72 -2.8% 1.9% 1.4%

Toff-Barenco10 373 199 265 342 165 264 8.3% 17.1% 0.4%

Toff-NC10 275 133 155 275 142 172 0.0% -6.8% -11.0%

GF(24)-Mult 420 304 200 335 239 151 20.2% 21.4% 24.5%

GF(25)-Mult 569 432 235 550 410 206 3.3% 5.1% 12.3%

GF(26)-Mult 1067 811 430 782 601 293 26.7% 25.9% 31.9%

GF(27)-Mult 1551 1195 564 1046 806 388 32.6% 32.6% 31.2%

GF(28)-Mult 2133 1691 824 1376 1083 502 35.5% 36.0% 39.1%

GF(29)-Mult 2546 1977 865 1942 1557 614 23.7% 21.2% 29.0%

GF(210)-Mult 3514 2790 1276 2507 2046 795 28.7% 26.7% 37.7%

GF(216)-Mult 9624 7898 2803 5725 4633 1571 40.5% 41.3% 44.0%

GF(232)-Mult 37014 32676 9505 32966 28723 7740 10.9% 12.1% 18.6%

GF(264)-Mult 226794 201158 54525 138071 121394 26335 39.1% 39.7% 51.7%

Avg. reduction (%) 11.5% 10.5% 14.8%

DΣ ΣΣ 2QD D2Q 2Q
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When combining the decomposition level adjustment with the dynamic reduction 

algorithm, the degree of optimization is significantly improved, as shown in Table 6-4. 

On average, the optimizations are 11.5% for gate count reduction, 10.5% for 2-qubit 

gate count reduction, and 14.8% for circuit depth reduction. Some individual circuits, 

such as Galois field multipliers (GF(2k)-Mult), demonstrate even more significant 

improvements, with a reduction of 40.5% in gate count, 41.3% in 2-qubit gate count 

(GF(216)-Mult), and a remarkable 51.7% reduction in circuit depth (GF(264)-Mult). 

These findings highlight the effectiveness of combining the decomposition level and 

dynamic reduction algorithm in achieving substantial optimization gains for various 

circuits, particularly in the case of larger circuits. 
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Chapter 7    Conclusion and Future Work 

In conclusion, we have developed the Qsyn tool as a flexible and efficient 

implementation platform for quantum circuit synthesis. By integrating decomposition 

level adjustment and dynamic reduction algorithm for ZX-diagram, Qsyn has 

demonstrated remarkable improvements in terms of the gate count, 2-qubit gate count, 

and circuit depth reductions compared to the PyZX framework. The experimental 

results also indicate that Qsyn exhibits significantly faster execution times, especially 

for larger circuits. 

Our findings demonstrate that by customizing the decomposition level and 

applying dynamic reduction algorithms, we can effectively optimize quantum circuits. 

The ability to fine-tune the decomposition level based on circuit characteristics allows 

for better optimization outcomes. Additionally, the utilization of dynamic reduction 

algorithms further enhances the reductions of gate count, 2-qubit gate count, and circuit 

depth. 

The development and utilization of Qsyn have demonstrated significant potential 

in advancing the field of quantum circuit optimization. Qsyn offers a versatile and 

customizable framework that can be extended to explore further optimization strategies 

and techniques. Its notable advantage over PyZX lies in its superior execution speed, 

rendering it highly suitable for analyzing and optimizing large-scale quantum circuits. 

The built-in structures and algorithms of Qsyn contribute to its exceptional performance 

and scalability, enabling efficient and effective circuit optimization. 

Future work can involve investigating new decomposition methods, refining the 

dynamic reduction algorithms, and integrating more efficient simplification strategies 
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with the algorithms of circuit extraction. Also, continuing to enhance and expand the 

functionalities and capabilities of Qsyn, including improvement of user interface and 

visualization, as well as integration with other quantum software libraries would enable 

researchers to advance in the field and contribute to the development of efficient and 

practical quantum computing technologies. 
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APPENDIX 

A.1   ZX File Format 

The names of files are supposed to have a “.zx” extension. Each line in the file 

represents individual vertex information in the format as follows: 

The positional information consists of a vertex type which is either "H", "I", "O", "X" 

or "Z" on the first character position, followed by a vertex ID, which is not separated by 

a space. After a space character, optional information may contain qubit number, 

column index, neighbors' information, and carried phase. The information mentioned 

above should provide sequentially in the following format: type, ID, qubit number, 

column index, neighbors information, and phase. 

• Mandatory Information 

Since vertex type and vertex ID are positional information, they should be 

provided without space between them and always provided at the beginning of a 

line. 

We use a single character to represent different vertex types, "H", "I", "O", 

"X" or “Z". We accept both uppercase and lowercase characters. The interpretation 

of the characters is as follows: 
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< H | I | O | X | Z ><ID> <optional_information>

H = H-box (H_BOX Type)
I = Input (BOUNDARY Type)
O = Output (BOUNDARY Type)
X = X-spider (X Type)
Z = Z-spider (Z Type)
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The graphical representation of different vertex types in the ZX-diagram is 

shown in Fig. A-1. The "BOUNDARY" corresponds to the left top black dot while the 

"H_BOX" corresponds to the right top yellow square in the figure. The left bottom 

green dot is called "Z" and the right bottom red dot is called "X". 

Fig. A-1     Vertex type in ZX-diagram form 

After a single-character representation of the vertex type, a non-negative 

integer as the vertex ID should be provided. Note that vertex ID should be unique 

in a file, so duplicated vertex ID is not allowed. 

Fig. A-2     ZX-diagram implementing a Toffoli gate with labels 

Take Fig. A-2, which is the labeled Toffoli ZX-diagram as in Fig. 4-6, as an 

example, the leftmost black dots will be represented as I0, I1, and I2 respectively. 

Similarly, the rightmost black dots will be stated as O24, O25, and O26 from the top 

to the bottom. The green vertex connected to I2 should be noted as Z3 and the red 

vertex connected to Z3 is supposed to be X4. 
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• Optional Information 

The optional information of a vertex is composed of three parts, which are 

separated by spaces. The first part provides the qubit number and the column index 

which are separated by a comma, ",", and enclosed in parentheses. The qubit 

number should be an integer and the column index is supposed to be a non-

negative integer. The main purpose of providing the qubit number and the column 

index is to draw the ZX-diagram accurately. Thus, such information is not 

necessary without visualization. Since the qubit number and the column index are 

optional, they should be left as "-" if no information is given. This part can be left 

out if both the qubit number and the column index are "-". For example, in Fig. 

A-2, the qubit number and column index of I0 can be stated as (0,0) and those of 

Z8 can be expressed as (0,4). If the information is not provided, it can be stated as 

(-,-) or omitted entirely. 

The second part records the information of all the neighbors connected to the 

vertex. Each neighbor's information should be in the format as follows: 

That is a single character of either "S" or "H" followed by the ID of the 

neighbor without a space between them. Add "S" before the ID of the neighbor 

represents the vertex connects with the neighbor by a "Simple Edge" which is 

usually visualized as the black solid line. Similarly, if the vertex and the neighbor 

are connected by a "Hadamard Edge", an "H" should be added in the front of the 

ID of the neighbor. If the vertex is connected to many neighbors, all the neighbor 

information may be listed in any order and each one should be separated by a space 

64

< S | H ><ID>
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" ". As an added note, the two endpoints of an edge do not need to record each 

other as its neighbor at the same time. For example, if vertex  is recorded as a 

neighbor of vertex , while  is not recorded as a neighbor of ,  and  are 

treated as connected. In Fig. A-2, since Z9, Z11, and Z12 are all neighbors of X10, 

the neighbor information of X10 can be stated as "S9 S11 S12”. 

The last part marks the phase carried by the vertex. It is recommended to 

provide the phase in the range of 0 to . If the phase carried by the vertex is 0, it 

can be omitted. The format of the phase should follow the form of "a*pi/b" that 

"a" must be an integer and "b" should be a non-zero integer. If "a" is equal to 1, 

“a*" can be omitted. Also, if "b" is equal to 1, "b" can be left out. For instance, 

the phase of Z12 in Fig. A-2 should be noted as 7*pi/4. 

• An example 

Below is a zx file describing the ZX-diagram in Fig. A-3. 

B

A A B A B

2π
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IO (0,0) S8
I1 (1,0) S5
I2 (2,0) H3
Z3 (2,1) S4
X4 (2,2) S5 S6
Z5 (1,2) S12
Z6 (2,3) S7 7*pi/4
X7 (2,4) S8 S9
Z8 (0,4) S11
Z9 (2,5) S13 pi
O11 (0,6)
O12 (1,6)
O13 (2,6)
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Fig. A-3     A basic example of a ZX-diagram 

If the file is not intended to be visualized as a ZX-diagram, it may be 

simplified as follows: 

It is important to emphasize that the qubit number of inputs and outputs are 

necessary and all the qubit numbers of inputs and outputs should be unique 

respectively. 
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IO (0,-) S8
I1 (1,-) S5
I2 (2,-) H3
Z3 S4
X4 S5 S6
Z5 S12
Z6 S7 7*pi/4
X7 S8 S9
Z8 S11
Z9 S13 pi
O11 (0,-)
O12 (1,-)
O13 (2,-)
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A.2   Command List for Qsyn 

Table A-1 provides a comprehensive overview of the commands available in Qsyn 

and their corresponding descriptions. Qsyn is a powerful software system designed for 

the synthesis, optimization, and verification of quantum circuits used in quantum 

computers. The table lists the various commands that users can utilize within the Qsyn 

framework to perform specific tasks. Each command is accompanied by a description 

that highlights its functionality and purpose. This table serves as a handy reference for 

users, allowing them to easily access and understand the different commands provided 

by Qsyn. With this information, users can effectively navigate the software and leverage 

its capabilities to perform various quantum circuit operations and optimizations. 

Table A-1    All commands provided in Qsyn and their description 

Command Description

color Toggle Colored printing

dofile Execute the commands in the dofile

dtcheckout Checkout to Device <id> in DeviceMgr

dtdelete Remove a Device from DeviceMgr

dtgprint Print information of Device topology

dtgread Read a Device topology

dtprint Print information of DeviceMgr

dtreset Reset DeviceMgr

duoprint Print Duostra parameters

duoset Set Duostra parameters(s)

duostra Map logical circuit to physical circuit

extprint Print information of extracting ZX-graph

extract Perform step(s) in extraction

extset Set extractor parameters
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help Show helping messages of commands

history Print command history

mpequiv Check equivalence of the physical and the local circuits

optimze Optimize QCir

qc2ts Convert QCir to Tensor

qc2zx Convert QCir to ZXGraph

qcbadd Add qubit(s) to QCir

qcbdelete Delete qubit to QCir

qccheckout Checkout to QCir <id> in QCirMgr

qccompose Compose a QCir

qccopy Copy a QCir to QCirMgr

qccprint Print information of QCir

qccread Read a circuit and construct the corresponding setlist

qccwrite Write QCir to a QASM file

qcdelete Remove a QCir from QCirMgr

qcgadd Add quantum gate to QCir

qcgdelete Delete quantum gate in QCir

qcgprint Print gate information in QCir 

qcnew Create a new QCir to QCirMgr

qcprint Print information of QCirMgr or settings

qcreset Reset QCirMgr

qcset Set QCir parameters

qctensor Tensor a QCir 

qquit Quit Qsyn

seed Set the random seed

tsadjoint Adjoint the specified Tensor

tsequiv Check the equivalency of two stored Tensors

tsprint Print information of TensorMgr

tsreset Reset TensorMgr

Command Description
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usage Report the runtime and/or memory usage

verbose Set verbose level to 0-9 (default: 3)

zx2qc Extract QCir from ZXGraph

zx2ts Convert ZXGraph to Tensor

zxcheckout Checkout to ZXGraph <id> in ZXGraphMgr

zxcompose Compose a ZXGraph 

zxcopy Copy a ZXGraph into ZXGraphMgr

zxdelete Remove a ZXGraph from ZXGraphMgr

zxgadjoint Adjoint ZXGraph 

zxgassign Assign quantum states to input/output ZXVertex

zxgdraw Draw ZXGraph into a pdf file

zxgedit Edit ZXGraph 

zxggflow Calculate the generalized flow of current ZXGraph 

zxgprint Print information of ZXGraph 

zxgread Read a zx file and construct the corresponding ZXGraph

zxgsimp Perform simplification strategies for ZXGraph

zxgtest Test ZXGraph  structures and functions

zxgtraverse Traverse ZXGraph and update topological order of all ZXVertices

zxgwrite Write a ZXGraph to a file

zxnew Create a new ZXGraph to ZXGraphMgr

zxopt Dynamic optimization for ZXGraph 

zxoptprint Print parameter of optimizer for ZXGraph 

zxoptr2r Set r2r parameter of optimizer for ZXGraph 

zxopts2s Set s2s parameter of optimizer for ZXGraph 

zxprint Print information of ZXGraphMgr

zxreset Reset ZXGraphMgr

zxtensor Tensor a ZXGraph 

Command Description
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A.3   Optional Arguments for ZXGSimp

Table A-2 provides a list of optional arguments for the command ZXGSimp in Qsyn. 

These arguments allow users to customize the simplification process of the ZX-diagram, 

enabling fine-grained control over the optimization procedure. Users can tailor the 

simplification algorithm to their specific requirements and achieve desired optimization 

outcomes by specifying these optional arguments. 

Table A-2    Optional arguments list for ZXGSimp
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Flag Description

-dreduce Perform dynamic reduction

-freduce Perform full reduction

-sreduce Perform symbolic reduction

-interclifford Perform interior clifford simplification

-clifford Perform clifford simplification

-bialgebra Apply bialgebra rule

-gadgetfusion Fuse phase gadgets connected to the same set of vertices

-hfusion Remove adjacent H-boxes or H-edges

-hrule Convert H-boxes to H-edges

-idremoval Remove Z/X-spiders with no phases

-lcomp

-pivotrule

-pivotboundary Apply pivot rule to vertex pairs connected to the boundary

-pivotgadget Unfuse the phase and apply pivot rules to form gadgets

-spiderfusion Fuse spiders of the same color

-stcopy Apply state copy rule

-tograph Convert to green (Z) graph

-torgraph Convert to red (X) graph

Apply pivot rule to vertex pairs with phase of 0 or π

Apply local complementation to vertices with phase of ± π
2
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