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中文摘要  

 

 揭開人體中複雜的神經網絡是理解大腦功能的重要一步。在神經活動的全面

記錄中，同時取得大範圍神經群體，並擁有高時空解析度的體積成像技術至關重

要，有助於理解神經訊號的傳遞與細胞之間的溝通。在神經科學領域中，雙光子

高速鈣離子成像技術，以其亞微米空間解析度在捕捉神經活動中扮演重要角色。

然而，由於取像速度與圖像質量之間的平衡，受限於有限的光子訊號流量，總導

致低信噪比和對比度差的問題。 

 為了提升高速體積影像的品質，我們開發了一套深度學習降噪算法

(TAG-lens-based SPAtial redundancy-driven noise Reduction Kernel, TAG-SPARK），

並將其與具有視頻速率的雙光子體積成像系統整合。利用可調式聲波梯度折射率

透鏡（TAG lens）實現高速連續焦點變化，取得垂直（axial）空間冗餘資訊，進行

自監督模型訓練的開發。結合此降噪深度學習演算法的影像處理方法，該技術實

現了超過 300%的峰值信噪比（PSNR）和超過 700%的信噪比 （SNR）增強，同

時保持神經活動的訊號變化特徵。 

 為了展示此技術的能力，我們以觀察活體小鼠的 Purkinje cells 個體與群體反

應為例。Purkinje cell在小鼠運動時的樹突神經訊號表現被視為其關鍵特徵。樹突

細胞的鈣離子變化與 complex spike之間存在顯著相關性。儘管相關的研究已經證

實神經訊號由樹突到細胞本體的傳遞概念具有基礎性意義，但僅限於二維的平面

影像研究，仍需要高速體積成像進行完整的驗證。 

 因此，我們的研究旨在探索神經訊號如何在獨立神經細胞中從樹突到細胞本

體的傳遞，以及群體細胞之間的相互溝通。技術不僅以高品質影像捕捉神經活動，

還有助於我們更深入地理解三維神經結構中神經訊號的傳遞途徑。 

 

關鍵字: 多光子顯微鏡、可調式聲波梯度折射率透鏡 、高速體積成像、 深度學習

降噪演算法、空間冗餘資訊、神經網絡、Purkinje cell 
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ABSTRACT 

 

 Comprehensive recording of neural activities across large neuronal populations 

with high spatiotemporal resolution and volumetric imaging is crucial for understanding 

neural circuit signal transduction, information processing, and behavior generation. 

Two-photon high-speed fluorescence calcium imaging stands as a leading technique in 

neuroscience for capturing neural activities with sub-micrometer spatial resolution. 

However, challenges arise from the inherent trade-off between acquisition speed and 

image quality, resulting in a low signal-to-noise ratio (SNR) due to limited signal 

photon flux. 

 To enhance the quality of high-speed volumetric imaging, we developed a 

deep-learning denoising algorithm, TAG-SPARK (TAG-lens-based SPAtial 

redundancy-driven noise Reduction Kernel). We propose a home-built two-photon 

volumetric imaging system with video-rate capabilities, integrating image processing 

methods using a noise reduction deep learning algorithm. Leveraging the high-speed 

dense z-sampling at sub-micrometer-scale intervals of a TAG lens, we developed a 

self-supervised denoising algorithm that exploits the spatial redundancy of z-slices. This 

approach achieves >300% peak signal-to-noise ratio (PSNR) and >700% SNR 

enhancement while preserving the fast-spiking functional profiles of neuronal activities. 

 We demonstrated this technology's application by observing individual neurons 

and populations of Purkinje cells (PCs) in awake mice. PC activities, which induce 

dendritic calcium spikes, have been identified as a key feature of motor initiation. The 

correlation between dendritic and somatic complex spikes is significant. While the 

foundational importance of the concept of neuronal signal transmission from dendrites 
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to soma is acknowledged, validating this requires high-speed volumetric calcium 

imaging. 

 Therefore, our study aims to explore how neural signals propagate from dendrites 

to cell bodies within individual neurons, as well as communication among neuronal 

populations. This tailored technique enables capturing neuronal activities with high 

SNR, advancing our understanding of neuronal signal transduction pathways within 3D 

neuronal architecture. 

 

Keywords: Multi-photon microscopy, Tunable acoustic gradient index lens, 

High-speed volumetric imaging, Deep-learning noise reduction, Spatial 

redundancy, Neural networks, Purkinje cells 
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Chapter 1 Introduction 

 

 Regulating animals' behavioral functions, such as body movement coordination, 

maintenance of homeostasis, and control of the biological clock, the brain stands as one 

of the most crucial organs in animals. In 2005, Science published the top 125 questions 

worldwide, among them neuroscience and how the brain controls these functions 

garnered scientific attention. Despite continuous exploration by researchers, as 

evidenced by the updated 125 questions in 2021, the working principle of the brain and 

neural signaling remain among the unresolved issues (1, 2). This is primarily due to the 

absence of proper techniques that can simultaneously provide sub-cellular resolution 

and high-speed volumetric observation for in vivo brain studies. In this chapter, we will 

introduce the features of the brain along with the challenges associated with observing it 

in a living state. Subsequently, we introduce the observation techniques proposed in this 

thesis aimed at overcoming these obstacles. Additionally, we discuss how we integrate 

the tool with post-processing techniques to further enhance the breakthroughs achieved 

with this technique. 

 

1.1 Introduction of brain, neuron, and neural signals 

 The human brain, an essential organ, oversees numerous functions, from basic 

survival to complex thought processes. Its complex architecture, encompassing a 

network of billions of neurons, facilitates a wide array of physiological processes and 

cognitive functions (3, 4). This centrality to human life has driven scientists to delve 

into its working principles.  

 A neuron consists of a nucleus-containing cell body (soma), signal-sending axon, 
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and message-receiving dendrites. Neurons can vary in size and structure, with spherical 

cell soma ranging from 2 to 20 μm in diameter, axons that extend from a few 

micrometers to over a meter, and tree-like dendrites covering the region from 

sub-millimeter square to millimeters square.(5) The size variations in neurons enable the 

brain to send or receive neural signals throughout the body to perform different 

functions efficiently. For example, in Figure 1-1, sensory neurons typically have long 

dendrites to receive sensory signals from the external environment and transmit them 

through relatively short axons to the next neuron. In contrast, motor neurons have short 

dendrites while their axons are long enough to transmit signals over extended distances 

quickly (6).  

 

Figure 1-1 Different types of neurons. 

(This illustration is a redraw based on the work of Prof. 羅竹芳, CH.8 大腦迷思-大腦與神經.) 

 

 

 Neural signals are electrical and chemical impulses (called action potentials) that 

traverse the brain's neural circuits, enabling the transfer of information among neurons. 

This dynamic interplay of signals forms the basis of neural communication, facilitating 



doi:10.6342/NTU202402518

 3 

the integration of diverse stimuli and the generation of appropriate responses. To 

understand the complexities of the brain's communication system, it is necessary to 

recognize the pivotal role of neural signals in mediating sensory perception, motor 

control, learning, rest, and various higher-order cognitive functions. (7) 

 

1.2 Common techniques for functional brain study and 

limitations 

 Upon stimulation, the brain sends neural signals, predominantly through action 

potentials, which are driven by changes in ion concentrations across the neuron's 

membrane. These action potentials are generated as ions move in and out of the neuron 

via voltage-gated sodium and potassium channels, which open in response to shifts in 

the neuron's electrical charge. As the electrical signal advances to the neuron's end, 

voltage-gated calcium channels permit the influx of calcium ions, facilitating the release 

of neurotransmitters and the propagation of the signal to downstream neurons (Figure 

1-2). This precise coordination of ion flow and channel activity enables swift and 

efficient communication throughout the nervous system. Consequently, various 

methodologies are employed to record these action potentials and decipher their 

functional implications. 
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Figure 1-2, Neural ion channels and action potential. 

 

The electrical potential changes induced by action potentials have allowed us to capture 

neural signals through electroencephalography (EEG) and electrophysiology (EP). EEG 

excels in capturing real-time brain electrical activity, at 1-30 Hz, enabling high temporal 

resolution. Although EEG is capable of recording brain-wide activity at large scales in 

centimeters, it is unable to distinguish signals coming from individual neurons. (8) On 

the other hand, EP allows for the direct and precise sampling of electrical signals from 

single neurons or even axons by inserting electrodes. Nevertheless, this invasive 

approach is limited to finite spacing and difficulty of identifying the origin of blindly 

targeted neuronal signals. In order to enhance the sampling density, EPs employ 

microarrays equipped with ten to hundreds of electrodes.(9-12) Recent advances, such 

as the Neuralink ASIC,(13) are capable of recording from thousands of electrodes. 

However, even with technologies like silicon probe technology that allow for the 

insertion of multiple probes to expand the brain's sampling range, they still suffer from 

similar invasiveness limitations as single-neuron electrode recordings. 

For non-invasive techniques, medical imaging technologies such as magnetic resonance 



doi:10.6342/NTU202402518

 5 

imaging (MRI) and positron emission tomography (PET) offer alternatives. Compared 

to EEG and EP, these imaging methods provide higher spatial resolution for observing 

3D whole-brain images. Both MRI and PET provide functional imaging through 

indirect detection, such as measuring changes in hemodynamic responses and 

neurochemical molecular signals, to obtain information on brain neural activity. They 

lack the spatial and temporal resolution necessary to track individual neuronal activity 

and neither of them directly observe the flow of information among neurons to capture 

action potentials or ion concentrations.(14) 

 In summary, while MRI is adept at observing the complete signal flow of the entire 

brain with high SNR images, it struggles to capture signals at the level of neurons. EEG 

and EP, on the other hand, excel in capturing precise signals from individual neurons 

but cannot monitor the activity and spatial location of a large population of active 

neurons simultaneously. Thus, each traditional technology has inherent limitations that 

hinder the comprehensive study of individual neural activity across the brain. 

 

1.3 Optical microscopy for brain study 

Compared to medical imaging mentioned above, optical techniques offer 

sub-cellular resolution (in the micrometer range) and a wide range of temporal 

resolutions (1-30Hz) for individual neurons. Additionally, optical imaging covers large 

populations for multi-ROI (>1000), unlike EEG and EP with limited ROI density. This 

level of detail is crucial for conducting thorough analyses of neural networks, allowing us 

to understand the connectivity among neural signals.  

The employment of optical imaging, coupled with the use of genetically encoded 

probes, such as voltage-sensitive dyes (VSD) and calcium indicators, targeted to specific 
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cell types, allows for the precise capture of voltage or ion signals, offering a deeper 

understanding of how neurons interact. 

 Using VSD or genetically encoded voltage indicator (GEVI) enables the recording 

of action potential events directly within intact tissues. This technique is especially 

valuable for targeted imaging of population activity, due to their favorable voltage 

sensitivity, as well as sub-micrometer and sub-millisecond temporal resolution.(15) 

However, challenges remain, such as poor targeting of the plasma membrane,(9) leading 

to increased background noise, and low brightness, resulting in diminished photon 

detection.  

 Action potential firing frequently leads to alterations in the concentration of 

intracellular calcium. This provides a means to observe neural activity by monitoring 

fluctuations in intracellular calcium concentrations ([Ca2+]) with fluorescent calcium 

indicators. Typically, calcium imaging provides better brightness and SNR than VSD.  

Optical calcium imaging encompasses a range of methods that hold promise for 

brain functional studies, particularly in the simultaneous capturing of hundreds of 

neurons with subcellular spatial resolution (16-19). However, to apply these techniques to 

in vivo brain imaging, two critical challenges need to be addressed: poor penetration 

depth and slow acquisition speed. In single-photon microscopy, the imaging depth is 

generally limited to tens of micrometers due to strong background scattering signals. The 

frame rate of conventional raster-scanning two-photon fluorescence microscopy is 

limited to tens of fps by galvanometric mirrors (20, 21). 

To overcome the depth limitation, long wavelength excitation is often employed 

to minimize scattering and absorption in biological tissues, thereby enabling 

millimeter-level penetration into the living brain. However, the wavelength selection is 

also limited by fluorescence, where the excitation wavelength must be shorter than the 
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emission. A breakthrough in 1990 was the invention of two-photon fluorescence laser 

scanning microscopy (22). Two-photon microscopy (2PM) has become a well-known and 

widely applied technique in the field of live brain imaging, thanks to its exceptional depth 

penetration around millimeters (23-25). The two-photon excitation process doubles the 

wavelength of excitation, thus giving better penetration. Furthermore, because of the 

higher efficiency of nonlinear multiphoton absorption at the focus of a laser beam, optical 

sectioning capability is significantly improved (26). This localized excitation ensures the 

acquisition of detailed three-dimensional structures of specimens. With its high spatial 

resolution and penetration depth, which allows for whole-brain recording in small 

animals such as flies. For relatively larger small animals like mice, when combined with 

other optical elements such as GRIN lenses (27-30), it is possible to acquire detailed 

neural signals in arbitrary ROIs across the entire brain. Therefore 2PM is the most 

suitable tool for imaging multiscale functional connectome. (31-34). 

The development of 2PM has revolutionized the ability to measure the activity of 

deep neuronal populations. Regarding imaging speed, recent advancements at 2PM have 

notably enhanced lateral imaging speeds and achieved frame rates up to kHz, but the 

observations are restricted to a 2D lateral plane (35, 36). To thoroughly visualize the 

complex three-dimensional architecture of neurons and their dynamic signal 

transmissions, it is essential to extend this rapid control to include the z-axis through the 

development of high-speed volumetric scanning techniques. 

 

1.4 High-speed volumetric imaging for brain study 

Although typical scanning microscopy is able to achieve volumetric images, the 

scanning rate is not fast enough to capture the neuron transmission in milliseconds (37). 
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To comprehensively explore and understand the intricate three-dimensional architecture 

of neuronal networks, several high-speed volumetric 2PM schemes have been developed 

(38, 39), including multi-plane imaging (40-43), stereoscopic illumination with extended 

depth-of-field (44), and fast z-focus modulation mechanisms (45).  

Multi-plane imaging techniques have emerged as a valuable tool in the arsenal of 

neuroscientists. The multiplexed scanning approach creates multiple beamlets that scan 

the sample in different depths simultaneously, enabling the direct acquisition of 

volumetric images. However, these strategies tend to be confined by their ability to image 

a relatively low number of layers (N < 30) and large axial interval (>15 μm), which 

restricts their utility in generating comprehensive volumetric data sets (42). On the other 

hand, stereoscopic illumination techniques broaden the depth of field through a Bessel 

beam, ensuring a robust focus when scanning the sample.(46) This not only increases 

information throughput but reduces the number of scans in the axial direction. However, 

this approach faces the challenge of losing precision in determining the exact z-position 

of structures within brain tissue, which is critical for accurate 3D reconstruction and 

analysis. 

In response to these limitations, fast focus control techniques such as deformable 

mirrors(47), and tunable acoustic gradient (TAG) lenses (48-54) are able to acquire the 

full 3D information in detail. Both methods offer a degree of freedom in focusing 

modulation, yet TAG lenses perform even more promisingly by achieving the same task 

as deformable mirrors, but at a speed three orders faster (37). Using a TAG lens, it only 

requires five microseconds to sample hundreds of layers during volumetric imaging 

within a single transverse scan. By integrating TAG lens with 2PM, we not only achieve 

high vertical spatial resolution and penetration depth requirements but significantly 

improve temporal resolution and capture 3D spatial information (55). Furthermore, our 
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prior research demonstrates that incorporating dual GRIN lens two-photon endoscopy 

with TAG lens enables in vivo imaging of neural circuits located 6.0 mm beneath the 

surface of the brain with high-contrast and 4Hz volume rate (27).   

However, deep tissue observation and high-speed scanning sacrifice the contrast 

of images. This problem is exacerbated if a GRIN lens is used to reach into deeper tissues. 

We previously combined an adaptive optics (AO) module into a homebuilt 2PM that 

enhances image contrast by nearly two-fold in deep brain regions via correcting both 

systematic and sample aberrations while achieving 1 Hz volume rate (56-59). 

Nevertheless, this scanning rate is not fast enough to catch the neuronal signals, and if the 

volume rate is further increased, AO’s capability diminishes.  

In this study, we attempt to use post-image processing methods to enhance the 

image contrast. Compared to AO, image processing does not impose strict requirements 

on the original image quality. Additionally, there is greater flexibility for processing 

through various algorithms. Therefore, it is a practical approach toward high-speed, 

high-contrast volumetric imaging of deep brain tissues. 

 

1.5 Image processing and deep-learning techniques for 

image contrast enhancement 

Image contrast refers to the difference in brightness between different regions of 

an image, which is important for visualizing various cell structures.  To enhance the 

quality of images, image processing plays a crucial role in allowing accurate analysis of 

data. Traditional image processing methods often rely on handcrafted algorithms and 

involve a series of predefined steps to process images, such as histogram equalization, 

image projection (average), smoothing filter, and deconvolution. Nevertheless, these 
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approaches might prove ineffective when dealing with low signal-to-noise ratios (SNR), 

potentially leading to artifacts in functional images despite their effectiveness in 

enhancing image quality.  

Deep learning, a subset of machine learning, employs multiple layers of neural 

networks to process large datasets. Inspired by the human brain, it has revolutionized 

image-processing tasks such as noise reduction, segmentation, recognition, and 

categorization. The adoption of deep learning in image processing entered the 

mainstream in the late 1990s with convolutional neural networks (CNNs), continuously 

evolved since then (60-63). Supervised, unsupervised, and self-supervised learning are 

three of the most important concepts in deep learning. A supervised learning model learns 

from labeled reference data provided by humans, enabling it to make accurate predictions. 

Conversely, unsupervised learning finds answers in the dataset without prior labels 

provided. Compared to supervised and unsupervised learning, self-supervised learning 

generates its own supervisory signal from the hidden structures within the data itself.  

In the context of image-denoising algorithms, these methods typically utilize 

redundancy in the spatial or temporal domain and the similarity among input images for 

model training (64-66). Considering the live animal imaging, due to the rapid dynamic in 

neural signals, obtaining high-quality reference images (ground truth) is difficult, posing 

obstacles for conventional supervised learning. Since unsupervised learning relies on 

unlabeled data, it may impact the reliability of neural signals. To overcome these issues, 

self-supervised learning allows for the effective use of signal information and reduces 

artifacts from human factors. For example, DeepCAD-RT (67, 68) is a well-known 

self-supervised learning model. It focuses on the noise reduction of calcium imaging. 

This model capitalizes on the temporal redundancy of consecutive image frames as the 

training dataset. By doing so, it significantly enhances the contrast and clarity of the 
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images.  

To demonstrate the effectiveness of this customized TAG-SPARK model, we 

showcase in vivo volumetric calcium observations of the mouse brain. In the following, 

we introduce Purkinje cells in the cerebellum due to their unique neural structural 

arrangement and high-speed signal spiking, which are ideal for this demonstration. Our 

goal is to incorporate noise reduction processing to uncover the uniqueness of neural 

signal performance. 

 

1.6 Complex mouse brain study - Purkinje cells for 

example 

By harnessing the power of deep learning on image processing, we offer a 

solution to the issues of low SNR images caused by high-speed volumetric scanning and 

deep tissue scattering. PC is a kind of neuron cell, which is suitable for this imaging 

system. Because PCs exhibit widely spread dendrites, forming a tree-like structure in 2D 

space. These complicated dendrites are arranged in parallel and extend vertically so that 

they require volumetric imaging to cover the whole individual neurons. We aim to utilize 

volumetric imaging to simultaneously record PC activity and its population recruitment. 

Additionally, we analyze the comprehensive signal transmission from dendrites to soma 

and discover significant variations among adjacent Purkinje cells. 

PCs are located around 80-100 μm under the surface of the cerebellar cortex 

(Figure 1-3), which causes background noise to interfere with the image contrast when 

doing in vivo optical imaging. In vivo PCs exhibit high-frequency action potentials, with 

simple spikes occurring at around 50 Hz, and accompanied by complex spikes by 

oscillations at a lower frequency range of 1-10Hz, which intermittently disrupt the regular 
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spike activity. Therefore, high-speed volumetric scanning is important to capture neural 

signals in real-time.  

 PCs are intricately linked to motor control in the cerebellum. (69-72) Recent studies 

show that the cerebellum plays a role in a variety of brain functions, including learning, 

decision-making, social interactions, and memory. The working hypothesis is that the 

cerebellum acts as a deep learning and optimization engine within the brain. (71) The 

layer structure of PCs may be the reason why it can function as a convolution work, and 

the cerebellum is like a Graphical Processing Unit (GPU) (Schematic like Figure 2-6).  

 The theoretical expectation is that calcium influx in PC dendrites converges into 

the cell body, elevating the somatic calcium concentration necessary for the generation 

of complex spikes in PCs.(73-77) While the concept of dendritic-to-somatic calcium 

flow has been accepted as a foundation to justify the calcium imaging method for 

detecting PC complex spikes, However, the validation required high-speed volumetric 

calcium imaging, is yet to be achieved. Therefore, in this master thesis, we utilized the 

PC as our subject of application for the study of neurons with complex structures and 

functions. We believe this research provides a new option for understanding the 

computational mechanism of cerebellar neurons. 

 

 

Figure 1-3, Structure of cerebellar cortex and Purkinje cells. 
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(This illustration is a redraw based on the Atlas Catalog 2016: Central Nervous System. Veterinary 

NeuroHistology.*)  

 

1.7 Aim and structure of this thesis 

This thesis aims not only to do a comprehensive observation of a large population 

of neuronal activities but enhance the image quality of high-speed volumetric images 

achieved from our home-built 2P-TAG system.  

For this, we develop a self-supervised deep-learning algorithm that utilizes TAG 

lens to provide spatial redundancy of adjacent layers in the z-direction as training data to 

address the challenge of low image contrast. This algorithm is then integrated with a 

high-speed two-photon volumetric imaging system to capture clear neural signal 

transmission and retrieve in vivo neural network behavior within large cell populations in 

the mouse brain.  

To examine the capability of our optical system and the noise-reduction algorithm, 

we observe the neuron signals transmitted through the PCs during various states of mouse 

movement. If our system works as intended, we expect to find the relationship between 

the neuron signals and the movement of the mouse. Additionally, we establish a 

comprehensive pipeline for image processing and analysis to meet the requirements of in 

vivo mouse brain studies. In Chapter 2, the physical principles of each essential 

component of this research are introduced. Chapter 3 mentions the details of the system 

design and expected performance, along with experimental results for evidence, and 

sample preparation for experiments are discussed. In Chapter 4, we will discuss image 

processing and analysis methods, including how to apply these methods to complete a 

                                                                                                 

* Website: http://vanat.cvm.umn.edu/neurHistAtls/cataPages/cataCNS.html. 
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side project on the identification of individual synapses in the Drosophila antennal lobe 

by machine learning-based super-resolution image analysis. Chapter 5 will present the 

results of image quality enhancement with noise reduction based on our developed 

deep-learning model. Furthermore, denoising unveils the intriguing discovery of dynamic 

neuron signal transmission in in vivo PCs. Finally, the conclusion summarizes our current 

progress and proposes future outlooks in Chapter 6. 
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Chapter 2 Principle of the integration of two-photon 

TAG imaging system and deep-learning 

denoise method, TAG-SPARK 

  

 In this chapter, we introduce the general principles of three primary techniques. We 

begin with an overview of two-photon laser scanning microscopy, followed by an 

examination of TAG lens. Lastly, we discuss the concept of deep learning models and 

introduce our self-developed model, TAG-SPARK, which is used to enhance the image 

contrast. 

 

2.1 Two-photon laser scanning microscopy 

In contrast to classical single-photon wide-field fluorescence microscopy, 2PM 

presents distinctive advantages, including optical sectioning and penetration capabilities. 

The method is grounded in the principle of nonlinear excitation, where fluorophores are 

stimulated by the simultaneous absorption of two lower-energy photons and the 

excitation of a single photon with a longer wavelength (Figure 2-1). Two-photon 

absorption cross-section typically ranges from 1 to 300 GM 

, which requires specific conditions and high-intensity 

laser sources due to the rarity of simultaneous photon-molecule interactions. To enhance 

two-photon absorption, pulse lasers with high peak energy at short pulse widths of ~100 

fs are preferred. Such laser sources provide enough energy and are temporally 

concentrated, increasing the possibility of two-photon absorption occurring.  
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Highly localized excitation of 2PM promotes intrinsic optical sectioning ability 

and allows high spatial resolution for the precise visualization of specific focal planes 

within biological specimens. This ensures clarity and reduces unwanted background 

signals, enabling detailed investigations at the cellular levels. Its longer wavelength 

enhances depth penetration capabilities, allowing for imaging deep into tissues without 

compromising resolution. Furthermore, since its focal plane is narrow, the risk of 

photodamage and phototoxicity in out-of-focus regions is minimized, thus prolonging 

sample viability, particularly during long-term imaging sessions. 

 

Figure 2-1, Diagram of single- and two-photon excitation and emission.  

Through the absorption of a single photon or two lower-energy photons, fluorophores are excited from the 

ground state to the first excited state. In single-photon excitation, fluorescence is emitted along the focused 

light cone. In contrast, two-photon excitation exhibits a reduced out-of-focus signal due to its quadratic 

dependence on excitation intensity, thereby enabling optical sectioning. 

(This illustration is a redraw based on the work of Helmchen, F. et al., Nat Methods 2005. (24)) 

 

In two-photon laser scanning microscopy, a pair of galvo mirrors are commonly 

utilized to achieve continuous raster scanning, allowing for sequential excitation of each 

position on the focal plane. Fluorescence signals emitted from each point are detected 
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using a photomultiplier tube (PMT), and the signal is subsequently read by the computer. 

A 2D image is then reconstructed based on the intensity values assigned to the 2D matrix 

corresponding to the location of the laser focus (Figure 2-2A). By adjusting the focal 

plane in the axial direction within the sample cooperating with lateral scanning, 3D 

images composed of stacked layers of 2D images are achieved (Figure 2-2B).  

 

Figure 2-2, Laser raster scanning.  

(A) Lateral point scanning and (B) volumetric scanning with translation stage in the z-direction. 

 

Since the successful demonstration of the first 2PM in 1990 (22, 78), there has 

been remarkable progress in multiphoton microscopy (MPM) technology. The 

advancements include expansion of the field of view (FOV) (79, 80), implementation of 

multibeam optical designs (81), and integration of high-speed laser scanning techniques 

(82). Additionally, spatiotemporal multiplexing approaches have further enhanced the 

capabilities of 2PM. Miniaturized, head-mounted versions of 2PM were also developed 

and have reemerged (83, 84). 

In summary, the principles of 2PM establish it as a powerful and versatile imaging 

method, offering unparalleled insights into the intricate structures and functions of 

biological specimens with minimal invasiveness and optimal precision. 
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2.2 Tunable Acoustic Gradient Lens (TAG lens) 

 TAG lens is a fluid-filled (silicone oil) cylindrical cavity formed by a hollow 

piezoelectric tube with two flat glass windows on either side for optical access (Figure 

2-3). The piezoelectric transducer used to drive the TAG lens undergoes radial excitation 

with acoustic energy, inducing a periodic standing wave modulation in the fluid, thus 

altering the index of refraction and continuously varying its focal length. The specific 

focal lengths are selected with sub-microsecond temporal resolution.  

 

Figure 2-3, Expanded view of a circular TAG lens 

(This illustration is a redraw based on the work of McLeod and Arnold, Journal of Applied Physics 2007. 

(85)) 

 

The mechanics of TAG lenses involve the dynamic interplay between the 

fluid-filled cylindrical cavity and the acoustic excitation generated by the piezoelectric 

transducer. The electrodes are placed on the inner and outer circumferences of the 

cylinder. The voltage signal is applied on the piezoelectric transducer, the vibration 

velocity of inner electrode contact is proportional to the driving voltage amplitude (85), 

 
 Eq. 2-1 

where  is the driving frequency of the TAG lens. 

The vibrations-induced standing wave patterns form distinct rings in the radial 
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direction (86). The distribution of these rings follows the Bessel function and depends on 

the modulation of driving conditions. The rings are determined by the refractive index 

within the TAG lens, which takes the form of 

  
 Eq. 2-2 

assuming TAG lens with linearized fluid mechanics, where  is the static refractive 

index of the filling fluid, depends on the modulation parameters,  is the driving 

frequency of TAG lens,  is the acoustic speed, and  is the radial coordinate in the lens 

plane.  

At the lens plane, the transverse coordinates are given that . The 

phase of the light passing through the lens is given by (86, 87), 

     
 Eq. 2-3 

where  the constant for free-space propagation,   is the thickness of a 

TAG lens. (Here, the thin lens approximation is valid for the system, i.e. a light ray exits 

the lens at the same transverse location where it entered. Because the deflection of a ray 

traveling through the lens (<50 μm) is much smaller than the acoustic wavelength within 

the lens.) 

 Assuming the beam wave completes the entire TAG lens to arrive , then moves 

forward or backward by z (Figure 2-4). For a wavefront within the TAG lens, where the 

phase shift on this wavefront is a constant C, the shape of such wavefront is calculated by 

the following equation, 
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 Eq. 2-4 

where z<0 is the distance from the exit window to the wavefront. 

 

Figure 2-4, Schematic of the beam passing through the TAG lens. 

(A) Schematic of beam and TAG lens. (B) Coordination of lens plane and image planes, which refers to 

the paper by McLeod and Arnold, Applied Optics 2008.(86) 

 

 With Eq. 2-4, we can calculate the angle of deflection  at the exit of TAG lens 

(before exiting), by assuming |z| << , 

 

 

  
Eq. 2-5 

 To get the angle of a light ray after exiting the lens, Snell’s law is applied to the 
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fluid–air interface, 

 
 Eq. 2-6 

where is the angle of light after leaving the lens. Assume n /  =  n  and apply 

Eq. 2-5 and Eq. 2-6 with small angle approximation, we yield, 

 and  

     Eq. 2-7 

Figure 2-5A shows an approximation of a linear slope (red and green dash line in 

Figure 2-5A) about the inflection point of the central peak. Based on these relations, by 

modulating the voltage signal periodically, the refractive index will change from 

maximum to minimum periodically. The angle of light after leaving the lens also changes 

periodically, with respect to the gradient of the refractive index.  

 With Eq. 2-2, we know the major rings occur near the extrema of , as 

illustrated in the gray area of Figure 2-5A. Increasing the driving frequency compresses 

the radial of the major rings (85), and the first major ring,  is relative to the effective 

numerical aperture (NA) of the TAG lens (55), which is approximately given by, 

 

 

Eq. 2-8 

where 3.832 is the radial coordinate of the first minimum of J0 (ρ). 
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Figure 2-5, Schematic of TAG lens operation in three representative states.  

(A) (From top to bottom) The refractive index profile in the radial direction shows the convex and concave 

lens effects, respectively. The black and blue lines represent wavefronts with different optical powers, while 

the red and green dashed lines indicate the gradient of the profile. The gray area represents the major ring of 

the wavefront, with its width corresponding to the effective NA. (B) The convergent and divergent states of 

the beam corresponding to a convex and concave lens effect. (Red and blue lines represent different optical 

powers of the lens). (C) (From left to right) TAG lens combined with an objective for axial scanning, where 

TAG lens acts as a window, convex lens, and concave lens. The focus shifts △z.  

(The illustration of (A) is a redraw based on the work of McLeod and Arnold, Applied Optics 2008.(86)) 

 

With Eq. 2-1 and Eq. 2-2, during a single oscillation period, three representative 

states occur in the TAG lens, which corresponds to zero, positive, and negative  . 

It results in convex and concave equivalent effects (88), 
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at , the refractive index remains uniform, preserving the incident beam's 

wavefront. When , resulting in a local maximum, the TAG lens acts as a 

convex lens, converging the beam. Conversely, when , it experiences a 

local minimum with low curvature, making the TAG lens equivalent to a concave lens, 

diverging the beam (Figure 2-5C). 

 Based on the theoretical analysis above, we know that the greater the applied 

voltage amplitude, the greater the degree of angular deformation. In practical 

implementation, the calculation of the depth of field often relies on the optical power of 

the TAG lens (47). Additionally, the relationship between the optical power of the TAG 

lens and the applied voltage varies among different TAG lens modulation frequencies. We 

use a TAG lens from "TAG Lens LLC," and the voltage-focal length relationship is 

documented in this reference. [spec1]. 

 The TAG lens should be placed onto the conjugate plane of the objective lens, which 

varies the axial position of the focus. Different refractive power results in different depth 

of field captured, i.e. the largest axial moving range of the focus will be changed. The 

depth of field is calculated by (37, 89), 

 
 

Eq. 2-9 

 

where  is the refractive index of the sample,  is the focal length of the objective 

length,  is the optical power of the TAG lens which is equal to the reciprocal of the 



doi:10.6342/NTU202402518

 24 

focal length of the TAG lens,  and  is the focal length of the relay lens between TAG 

lens and objective lens, and they are related to the reciprocal of the magnification factor 

of the beam. The DOF will be increased by increasing the focal length of the objective 

lens or decreasing the magnification factor caused by the relay lens. 

It is noteworthy that a higher driving frequency extends the DOF by increasing 

optical power (88), the related equation is written as, 

 
 Eq. 2-10 

where  is the driving frequency,  is the acoustic speed in the medium. The DOF of a 

TAG lens demonstrates a quadratic dependency on the driving frequency. However, the 

driving frequency in a TAG lens is inversely proportional to the size of effective NA and 

results in a smaller beam size. As a result, increasing the driving frequency to enhance 

optical power diminishes the effective NA and lateral resolution. Therefore, a trade-off 

exists between DOF extension and spatial resolution, determined by the choice of driving 

frequency within the resonant capabilities of the TAG lens. 

TAG lenses offer numerous advantages over traditional technologies. First, its 

response time is limited only by acoustic resonance frequency within the lens material, 

enabling rapid adjustments in focal length. Second, TAG lenses have higher damage 

thresholds compared to delicate liquid crystals, enhancing their durability and longevity 

in practical applications. Additionally, its analog nature ensures it is free of pixelation, 

resulting in smooth and continuous focal length transitions, which is our most 

advantageous characteristic. In the next section, we will describe how this advantage will 

be applied to address our problems (48-50, 90). 
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2.3 Introduction of deep-learning model 

 In 2P-TAG lens high-speed volumetric microscopy systems, we encounter 

issues with poor image contrast. The issue of insufficient SNR mainly results from the 

reduction in voxel dwelling time of the scanner to capture high-frequency biological 

signals, which limits the number of photons and results in shot noise that further affects 

the accuracy of data analysis. To enhance SNR, traditional image processing methods are 

employed. For example, using Gaussian filters to retain the main features of the image 

(detailed in Chapter 4.1.2) to eliminate shot noise. However, these methods may lead to 

further blurring and loss of information regarding the original intensity of the neuron 

signal.  

In recent years, CNNs have provided a new solution for improving image quality. 

Through iterative learning and updating parameters of multiple convolutional layers, 

neural networks are able to capture complex features and details in images, preserving 

signals and reducing noise to enhance SNR. 

In this research, we were inspired by DeepCAD-RT proposed by Xinyang et al 

(67, 68) for real-time image denoising. Our modified version, TAG-SPARK, uses 

self-supervised deep-learning, following the Noise2Noise algorithm (91) and U-Net 

architecture (92), performs spatial denoising based on TAG lens dense z-sampling. In the 

following sections, I will first introduce the concept of deep-learning models, then 

self-supervised learning, and finally U-Net architecture. 

 

2.3.1 The concept of creating deep-learning models 

The root concept of deep learning is creating an appropriate function into which 

we input data and expect it to produce the desired results. For example, a dog recognition 
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function that distinguishes different kinds of dogs.  

A model is created by combining multiple functions, to achieve a larger set of 

objectives. Using an animal recognition system as an example, we combine different 

functions to recognize cats, dogs, and other animals, ultimately creating a model capable 

of identifying a variety of animal species. In deep learning, the ultimate goal is to find a 

suitable model that extracts complex features from simple input data and performs 

complicated tasks. This process is what we call training.  

Deep learning models typically consist of layers of network structures called 

neural networks (NN). In deep learning neural structures, we also have an analogous 

system: the input data, through weight calculation and signal integration, transforms into 

an output that continues to the next layer (Figure 2-6). We often use GPUs to accelerate 

the training process of this big calculation.  

Interestingly, the structure of these NN layers is similar to the structure of PCs, 

where synapses, dendrites, soma, and axons are in charge of input, weight calculation, 

signal integration, and output. This neural signal transmission allows neurons to 

communicate with each other. Moreover, the biological structure of the parallel 

arrangement of PCs in the cerebellum resembles the architecture of GPU used in deep 

learning. This is precisely why in Chapter 1, we described the PCs as the GPU in the 

cerebellum (Chapter 1.6).  
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Figure 2-6, Diagram of neuron network in biology and deep-learning.  

(A) A PC consists of a tree-like dendrite, circular soma, and a long axon to transmit the signal. (B) A 

deep-learning neuron network is composed of input dataset, calculation, and output data. (C) The parallel 

arrangement of PCs creates a complex neuron network to work in the cerebellum. (D) GPU is used to 

perform the parallel calculation which deals with big data at the same time. 

 

After training the model, we need a standard to evaluate the effectiveness of the 

training. Loss function is a crucial component that quantifies the difference between the 

predicted outputs of an algorithm and the target values. The loss value obtained from the 

model indicates its predictive accuracy. Algorithms like backpropagation utilize the loss 

function's gradient concerning the model's parameters to minimize the loss, thereby 

enhancing the model's performance on the dataset. 

In machine learning, one of the most commonly used loss functions for regression 

is the Mean Square Error (MSE), which calculates the average of the squared differences 

between predicted and target values. 
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where  is the input value,  is the calculated output, and n means the number of data. 

 Due to the square, the outliers heavily affect loss values. Therefore, Mean Absolute 

Error (MAE) provides a more moderate measure of the difference between predicted and 

target values. 

 

In this study, we implemented the average of MSE and MAE as our loss function 

to try to enhance the effectiveness of the model training.  

As the loss value converges to a minimum, the training of the model is completed. 

However, sometimes the model may overlearn the training data, i.e. misjudging its 

complexity and progressing in the wrong direction, which is overfitting. To prevent 

overfitting, we limit the epochs of the training or employ the regularization methods to 

make the model resistant to noise.  

 

2.3.2 Supervised learning and self-supervised learning 

Supervised learning is a machine learning approach that has a clearly defined 

ground truth. The resulting algorithm minimizes the loss function between ground truth 

and predicted outcome through gradient descent. 

In a common supervised learning setup for image processing, we would have k 

pairs of clear images  alongside noisy images . The neural network's learning 

objective would be to, 
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During training, multiple input-target pairs affected by different noises are provided. 

Therefore, in each epoch, the network model  encountered different sets of noisy 

input-target pairs to estimate the optimal parameters , which will be fine-tuned to 

achieve convergence. It is done under the loss function , which measures the 

dissimilarity between output and clean target ). 

Supervised deep learning applications span image recognition, natural language 

processing, and more, which drive innovation in artificial intelligence. However, in 

dynamic calcium imaging, it is challenging to obtain the images with high image contrast 

due to high-speed scanning in deep tissue. 

Unlike traditional supervised deep-learning, self-supervised deep-learning 

discovers hidden patterns in data without ground truth. The basic assumption of 

self-supervised learning is that the data itself contains the necessary answers. The model's 

task is to focus on the invariant features amid the difference, using them to discern the 

answers.  

Noise2Noise is a well-known example. The concept of Noise2Noise was 

introduced by Jaakko et al. in 2018. It directly uses observed images containing random 

noise, allowing the model to learn and remove noises. It is advantageous in situations 

where obtaining high-quality target images is challenging. The neural network's learning 

objective would be,  
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where,  and  are two independent noisy images obtained from the same scene but 

affected by independent instances of noise.  

 Noise2Noise efficacy hinges on strict prerequisites: the input and target images must 

exhibit substantial similarity. The noise should be uncorrelated with an average of zero. 

This ensures that the model only handles noise and does not interfere with the signal. 

Independence between input and target noise prevents erroneous parameter learning, 

while noise unrelated to input features maintains robustness. These conditions guarantee 

that Noise2Noise effectively learns and removes noise from images (93, 94). 

 

2.3.3 Introduction of U-net 

U-Net, a CNN architecture introduced by Ronneberger et al. in 2015 (92, 95), has 

emerged as a pivotal framework in the field of computer vision. It was initially invented 

and first used for biomedical image segmentation. The distinctive U-shaped design of 

U-Net encompasses the encoder, decoder, and the shortcut connections between them. 

The encoder, or analysis path, extracts features and reduces dimensions through pooling, 

thereby preserving the foundational features of the image. (Figure 2-7A) The decoder, or 

synthesis path, involves up-sampling and uses additional convolutional layers to 

reconstruct spatial details lost during the encoding process. (Figure 2-7B) Noteworthy 

features include a bottleneck layer that retains high-level semantic information and 

shortcut connections traverse the entire network, linking corresponding layers of the 

encoder and decoder, facilitating the retention of detailed information and effectively 

addressing the issue of gradient vanishing.  
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Figure 2-7, Down-sampling and up-sampling. 

The goal of CNN is to transform the input and try to find the feature patterns from the previous layer by 

down-sampling and up-sampling. A down-sampling convolutional neural attempts to compress the input, 

while an up-sampling tries to expand the input, conversely. For example, (A) Down-sampling is when a 3x3 

kernel slides over a 5x5 input to give a 3x3 output. (B) Up-sampling is a kind of transposed convolution, 

which uses strides 3x3 to increase the output dimension to 5x5. 

 

The U-Net architecture utilized in TAG-SPARK consists of specific steps. In 

Figure 2-8, downward arrows denote down-sampling achieved through max pooling, 

with the resulting features highlighted in orange. Conversely, upward arrows indicate 

up-sampling, followed by interpolation with features from shortcut connections, where 

previous step images are directly incorporated, and the resulting features are marked in 

yellow. Throughout this process, convolution with Rectified Linear Unit (ReLU) is 

applied to generate feature maps, with the values displayed on the colored box indicating 

the number of feature maps. The final output amalgamates these actions, effectively 

distinguishing the core characteristics of the input image from unwanted noise. In simpler 

terms, it conducts down-sampling to identify features, followed by up-sampling to 

reintegrate features into output layers. 
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Figure 2-8, 3D U-Net model architecture.  

The operation of max pooling and ReLU for convolution. 

 

This architecture has proven to be particularly effective in medical image 

segmentation tasks, demonstrating its versatility and widespread adoption in diverse 

applications due to its ability to capture both global context and local details in images. 

 

2.3.4 TAG-lens-based SPAtial redundancy-driven noise Reduction 

Kernel (TAG-SPARK) 

In accordance with the Noise2Noise concept (see Chapter 2.3.2 for details), our 

proposed denoising process, TAG-SPARK, was designed to exploit the spatial 

redundancy inherent in TAG-based image slices for effective noise reduction. 

TAG-SPARK focuses on utilizing spatial redundancy facilitated by TAG lens volumetric 

imaging. This leverages dense z-sampling capabilities inherent to TAG lens technology.  

To avoid the discontinuity of structure, we utilize oversampling in the axial 

direction, i.e. spatial redundancy. The raw data of high-speed scanning images achieves 

265 layers in z, which spans across extended DOF. Therefore, the gap between each 

frame is much less than the point spread function in the axial direction (see Chapter 3.3.1 
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for details of system resolution). This capability effectively utilizes adjacent z-layer 

images that demonstrate similar and continuous structures, with independent noise 

characteristics that enhance TAG-SPARK. 

To utilize the higher-dimensional information (e.g., correlations across frames) 

inherent in the 3D data stacks for noise reduction, we replaced the original 2D U-Net with 

a 3D U-Net (Figure 2-8). As Figure 2-9 illustrates, instead of feeding frame pairs 

individually, we stacked two separate frame stacks (red and yellow frames) as the input 

and target stacks to the model. Therefore, each set of adjacent z-direction image slices 

was treated as independent samples that represent the same scene. These pairs served as 

input-target pairs in the training of a 3D U-Net model.  

Due to the 3D nature of these frame stacks, we utilize a 3D U-Net for their 

processing, which allows us to exploit the information across different frames with, for 

example, the 3x3x3 convolution kernels. Compared to the original Noise2Noise 2D 

U-Net model which takes 34 layers, the 3D U-Net model we used has fewer layers (25). 

Additionally, the sequence and the number of different types of layers vary between the 

two models. Furthermore, the loss function we used is the average of the L1 (MSE) and 

L2 (MAE) norms to retain the advantages of both. (see Chapter 2.3.1 for details) The L1 

norm enhances resilience to outliers, while the L2 norm promotes convergence during 

training. In contrast, Noise2Noise employs the L2 norm solely. 
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Figure 2-9, Schematic of 3D U-Net model in TAG-SPARK denoising algorithms. 

TAG-SPARK utilized a 3D U-net model. Multiple raw volumetric images at various time points are used 

for model training, where even layers (indicated by a yellow frame) and odd layers (indicated by a red 

frame) of each sub-stack are extracted to create two 3D tiles: one for input and the other for target volumes, 

which are used for training the network. The loss function is defined by comparing the output sub-stack 

(highlighted by a blue frame) with the target. 

 

 In Chapter 4.3, we will discuss how to set the parameters for training the dataset 

acquired from the 2P-TAG system. Although TAG-SPARK relies on optimizing the 

structure using spatially adjacent layers, it also significantly improves image quality (see 

Chapter 5 for details). 
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Chapter 3 Optical system design and sample 

preparation 

  

 This chapter will cover elements related to experiments, including optical setup, 

system performance, calculation and simulation of theoretical and practical values, as 

well as relevant methods for sample preparation. We highly recommend thoroughly 

understanding this chapter's theory before beginning experiments, as it will assist in 

experiment designs and anticipated results. 

 

3.1 Optical setup 

 The home-built high-speed two-photon volumetric imaging system (Figure 3-1, 

Table 3-1) is driven by a tunable Ti: Sapphire oscillator (Chameleon Ultra II, Coherent). 

The excitation wavelength was tuned to 940 nm for two-photon excited fluorescence of 

green fluorescent protein GCaMP6f. With a variable beam expander (#87-564, Edmund), 

the laser beam size was adjusted to match the effective aperture of the tunable acoustic 

gradient lens (TAG lens 2.5β, TAG Optics), which is 4 mm. The laser beam was guided 

through a lens pair (AC254-060-B-ML & LA1422-B, Thorlabs), and then was relayed to 

a pair of galvanometric mirrors (6215H, Cambridge Technology) for 2D raster scanning. 

Through a telecentric scan lens and tube lens pair (SL50-2P2 & TL200-2P2, Thorlabs), 

the scanning pattern was reflected by a dichroic beam splitter (FF749-SDi01-25x36×3.0, 

Semrock) and directed onto the back aperture of a 25x objective (XLPLN25XWMP2, 

Olympus). The emitted two-photon fluorescence was  

epi-collected by the same objective, passing through the dichroic beam splitter, and then 
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focused by an imaging lens (LA4306-A, Thorlabs) onto a photomultiplier tube (PMT) 

module (H14119-40, Hamamatsu). Two bandpass filters (FF01-520/15-25, Semrock) 

were placed in front of the PMT to filter out the reflected excitation laser and undesired 

background signals.  

Instrument Manufacturer Model number 

Ti: Sapphire Laser  Coherent  Chameleon Ultra II  

Half-wave plate  Thorlabs  AHWP05M-980  

Polarizing beam 

splitter  

Thorlabs  CM1-PBS252  

Variable beam 

expander  

Edmund  #87-564, Broadband NIR 1X-3X 

Research-Grade Variable Beam Expander  

TAG lens  TAG Optics  TAG lens 2.5β  

4f system, lens 1  Thorlabs  AC254-60-B  

4f system, lens 2  Thorlabs  LA1422-B  

Galvanometric 

mirrors  

Cambridge 

Technology  

6215HM40B  

Scan lens  Thorlabs  SL50-2P2  

Tube lens  Thorlabs  TL200-2P2  

Dichroic  Semrock  FF749-SDi01-25×36×3.0  

Objective lens  Olympus  XLPLN25XWMP2 

Image lens  Thorlabs  LA4306-A 

Bandpass filter  Semrock  FF01-520/15-25  
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Table 3-1, List of each instrument with manufacturer and model number. 

 

Figure 3-1, Schematic of home-built high-speed two-photon volumetric imaging 

system. 

HWP: half-wave plate; PBS: polarization beam splitter; TAG: tunable acoustic gradient; L: lens; DM: 

dichroic mirror; SPF: short-pass filter; PMT: photomultiplier tube. 

 

PMT  Hamamatsu  H14119-40 

Mouse tilting stage  NARISHIGE  MAG-2  

X/Y stage  OptoSigma  TSD-601S  

Z stage  Thorlabs  MGZ30, self-modified  

Clinical Microscope Olympus BX51 

HBO Mercury 

Microscope Lamp 

Olympus U-LH100HG 

Microscope HBO 

Light Controller 

Olympus BH2-RFL-T2 
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3.2 Sample preparation 

 In this section, we will introduce the preparation of samples used in the study, 

which are relevant to the selection of components in the next section and research. 

 

3.2.1 Standard sample preparation - fluorescent microspheres 

 To characterize the performance of our system, fluorescent microspheres are used to 

be standard test samples. Measurement of both spatial resolution and DOF under the 

objective lens is performed with 200 nm diameter yellow-green fluorescent microspheres 

(F8811, Thermo Fisher Scientific). On the other hand, 10 μm diameter yellow-green 

fluorescent microspheres (F8836, Thermo Fisher Scientific), with comparable size to 

mouse neurons, are chosen to characterize volumetric images.  

2D sample 

200 nm diameter fluorescent microspheres are diluted by deionized (DD) water 

with a 100-dilution factor. Drip it onto the slide and cover it with a coverslip, then wait for 

it to dry. Nail polish is applied around the edges of the coverslip to seal it. (Figure 3-2)  

 

Figure 3-2, Experimental procedure diagram for 2D FLB sample preparation. 

 

3D Sample 

 To characterize the extended DOF for characterizing volumetric images, a stock of 
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10 μm diameter fluorescent microspheres is mixed into 0.7% agarose hydrogel with a 

ratio of 1:3 to mimic mouse neurons. The agarose solution (LE Agarose, refractive index 

= 1.3329) is heated and stirred until reaching 80℃ and achieving transparency, then 

cooled to ~ 45℃ to become a jelly-like sample. The diluted fluorescent microspheres are 

mixed into the agarose hydrogel and placed in the refrigerator for solidification (Figure 

3-3).  

 

Figure 3-3, Experimental procedure diagram for 3D FLB sample preparation. 

 

3.2.2 Mouse preparation 

 All surgical and experimental procedures are conducted according to the guidelines 

for the care and use of laboratory animals approved by the Institutional Animal Care and 

Use Committees of National Taiwan University (approval number NTU110-EL-00023). 

The adult male Pcp2-GCaMP6f mice, produced by crossing Pcp2-cre (Jackson Lab. #: 

004146) with tTA2-GCamP6 (Jackson Lab. #: 030328) will be employed for the 

experiment. The mice are housed in standard conditions with a 12-hour light/12-hour 

dark cycle and provided ad libitum food and water. A surgical procedure is conducted to 

implant a cranial window on the cerebellar surface. Initially, a 4×4 mm piece of the skull 

is removed from the midline, 6 mm posterior from bregma. Subsequently, a 5×5 mm 

cover glass is placed on the cerebellar surface and affixed with glue to the skull. After the 

glue has healed, dental cement (Super-Bond, Japan) is applied to the skull and the cranial 
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window's edge. Finally, a head plate (Neurotar, US) is secured atop the cranial window 

using dental cement. The mouse undergoes a one-week recovery period before engaging 

in in vivo optical imaging experiments (Figure 3-4). 

 

Figure 3-4, Recorded photo of mouse experiment under IR camera2.  

 

3.3 Theoretical and experimental performance 

 In this section, the performance of the system is evaluated and discussed from 

multiple aspects, which can be broadly categorized into optical parameters and 

acquisition rate. Besides theoretical value, we employed relatively simple samples such 

as fluorescent beads and in vitro mouse brain slices to assess the system's experimental 

performance  

 

3.3.1 Spatial resolution 

 2PM employs nonlinear excitation to induce highly localized fluorescence within 

the sample, usually confined to a thin plane, facilitating high-resolution imaging. The 

lateral and axial resolution of the imaging system is determined by the illumination point 

spread function (PSF), IPSF(x,y,z). Unlike confocal microscopy, 2PM requires distinct 
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formulations for the definition of the focal volume. (26) 

 The theoretical spatial resolution in 2PM can be calculated by 

 

 

 

where  and  are the full width at half maximum of the PSF in the 

lateral and axial direction,  is the excitation wavelength, NA is the numerical aperture 

of the final imaging lens, and n is the refractive index inside the sample. By substituting in 

the parameters of our system, which are 940 nm for , 1.33 for  of the refractive index 

of the sample (water), and 1.05 for NA of the objective lens (Olympus, 

XLPLN25XWMP2),   

 

 

 However, in practical implementation, as the beam size didn’t fill the whole aperture 

(96), the NA of the objective part will be influenced by the effective aperture size of the 

laser beam. (Figure 3-5) For this, we measure the laser beam size with a CMOS camera at 

the back aperture of the objective lens, the FWHM of the Gaussian profile shows 6.3 mm, 

and the corresponding to the effective NA will become,  
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Figure 3-5, Effect of laser beam size with NA. 

When the objective lens is filled to meet the full aperture requirement, the effective NA of the objective lens 

increases, resulting in higher image resolution. 

 

 According to the calculated effective NA of the objective part is , we get: 

 

 

 To evaluate the performance of the two-photon system, we choose fluorescent 

microspheres as our sample. Due to the convolution of the PSF with the object, the size 
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of fluorescent microspheres should be smaller than three times the theoretical PSF, 

then the observed spot size will be roughly the same as the theoretical PSF (Figure 3-6, 

see Chapter 4.1.2 for details). 

 

Figure 3-6, The image acquisition results from the convolution of objects with the 

PSF. 

 

 Therefore, 200 nm FLB was selected for analysis, and the results are shown in 

Figure 3-7. We average a total of 85 measurements for lateral and axial profiles, and the 

resulting resolution is 673.9 ± 0.52 nm and 4.96 ± 0.28 µm respectively. The error 

compared to the theoretical value is 1.12% and 6.6% for lateral and axial measurement. 

This result indicates that both the lateral and axial resolution in our system is sufficient to 

resolve single neurons (~10 μm) in the mice brain. 
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Figure 3-7, Optical resolution of images of standard 200 nm beads.  

(A) A two-dimensional (2D) image of 200-nm beads. (B1) The XY image shows the red square region 

zoomed in from (A), with a single bead indicated by a red arrowhead. (B2) The YZ image of the same bead. 

(C1) The signal intensity profile shows that the lateral size of the bead is 672 nm. (C2) The signal profile 

demonstrates the axial size is 5.6 µm. (D) Average of 85 beads for FWHM values of lateral and axial 

profiles, indicating that the resolution is 673.9 ± 0.52 nm and 4.96 ± 0.28 µm, respectively. 

 

3.3.2 Field of view (FOV) 

 The FOV of a microscope determines the size of the imaged area, which depends on 

the magnification and the field number (F.N.) of the objective lens. F.N. is referred to as 

the diaphragm size of an objective lens in mm unit which defines the maximum range of 

observable area. (Figure 3-8A) If the observed sample area is larger than the objective 

FOV, considerable vignetting would appear at the corners of the image. To calculate the 

maximum practical FOV, FN should be divided by the objective magnification, 
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Figure 3-8, Theoretical FOV of the system. 

(A) FN of the objective lens, practical FOV. (B) FOV is determined by Galvo angle within the system. 

 

 In practical implementation, the FOV of images also depends on the angle of Galvo 

scanners (Figure 3-8B), scan lens, tube lens, and the focal length of the objective (97). 

The initial deflection angle range of the beam, denoted as , is reduced by the lens 

system before the objective. This reduction in angle effectively controls the beam's spread 

across the FOV. The size of FOV is proportional to the ratio of the focal length of the scan 

lens ( ) to that of the tube lens ( ), expressed as,  

 

For our system, scanning range setting for Galvo mirrors at total range = 

6.5 degrees ( ) (Figure 3-9), considering the effect of the lens system and 

objective (Olympus XLPLN25XWMP2), the corresponding FOV is, 
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Figure 3-9, Control panel of “JadeMAT3.1”, low-speed scanning software. 

  

 In the practical implementation (Figure 3-10), we used a micrometric ruler to 

measure the FOV through the reflection of visible light. The obtained result was 419.8 

µm with an error of 2.8%. 

 

Figure 3-10 FOV measurement with a micrometric ruler. 

Glass slide with a micrometric ruler. The total is 1 mm divided into 100 units, that is 10 µm per division. 

Scale bar: 100 µm 
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 While the FOV size depends on the ratio , the beam diameter at the back aperture 

of the objective depends on . This results in a trade-off between high NA (resolution) 

or a large FOV. 

 

3.3.3 Extension depth of field (DOF) 

 In imaging systems, the DOF determines the distance between the closest and 

furthest point capable of generating an image. For laser scanning microscopy, the focus is 

typically adjusted by moving the sample stage. Although DOF isn’t limited, imaging 

speed is limited by the speed of the stage. In our system, we increase imaging speed with 

the use of a TAG lens (see Chapter 2.2 for details), which poses additional limitations on 

the DOF of the system. 

 

Expected DOF 

 As mentioned in Chapter 2.2, the DOF of TAG lens can be calculated by, 

 
 

Eq. 2-9 

 

 Additionally, we can use the ABCD matrix to simulate the theoretical DOF 

(Simulation code in GitHub3). In optics, the complex beam parameter, often represented 

by the symbol , is a complex number that defines the characteristics of a Gaussian beam 

at a specific position z along the beam's axis. The determination of the length of the 

extended DOF is commonly employed in ray transfer matrix analysis, a method used to 
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compute the properties of the beam at various points as it undergoes propagation through 

an optical system. 

 For the Gaussian beam, the complex beam parameter 𝑞 is defined as, 

 
 Eq. 3-1 

where  is the curvature radius of the wavefront, 𝜆 is the wavelength, n is the index of 

refraction,  is the beam radius (defined at  intensity). Given the initial beam 

parameter, , one can use the ray transfer matrix of an optical system, , to find 

the resulting beam parameter, , after the beam has traversed the system, 

 

 

 

 
 

Eq. 3-2 

, where  and  are the magnification and inverse magnification, respectively. 

 and  are related to the focal length of the lens or the distance of free space 

propagation. For free space propagation over a distance d, the matrix is, . For a 

thin lens with focal length f, the matrix is, . For a TAG lens with optical power 𝛿, 

the matrix is, . For light passing through media with different refractive 
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indices, from  to , the matrix is, . 

 To calculate the propagation of a light ray through multiple optical elements then 

enter the sample, we multiply the matrices for each element in the order of their 

occurrence. As illustrated, the total ray transfer matrix  (𝑀= ) can be 

described as, 

 

 

Eq. 3-3 

where   is the tube lens which designed to pair with the objective 

lens,  is the magnification of the objective lens. 

      

where is refractive index transfer matrix,  is free space transfer matrices, and 

 are respectively the transfer matrices of the objective 

lens, tube lens, scan lens, relay lens 1, relay lens 2 and TAG lens, each approximated in 

the thin lens transfer matrix form. The matrix form of each element is presented below, 

with each parameter inside listed in Table 3-2. 

 

, , ,  



doi:10.6342/NTU202402518

 50 

 

 

With the assumption that the incident beam enters from the back aperture of the 

TAG lens, the focus condition of this system is that the beam parameter (q) must be purely 

imaginary (i.e. ). As the optical power of the TAG lens (𝛿) changes, the 

corresponding focal position z also changes. Thus, by inserting the possible optical 

powers that the TAG lens has, we obtain a range of focal position z which represent the 

DOF of the system. By substituting all the parameters into the equations above (Eq. 2-9), 

and the simulation with ABCD matrix (combining Eq. 3-2 & Eq. 3-3) (Figure 3-11), both 

results show the expected DOF of our system, with optical power at 10 D, is 97 μm 

(Assume the refractive index of the sample is 1.33). 

 

 

Figure 3-11, Simulation of different optical power and corresponding scanning 

range. 
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The focal intensity calculates the FWHM of z about its focal intensity. As shown 

in Figure 3-12, the axial intensity is shaped like a dumbbell due to the resonant sinusoidal 

trend of the TAG lens. The focal point stays longer at the endpoints of the focus extension, 

and the intensity at those positions is greater than that of the center. Additionally, Figure 

3-12A considers the effect of the system's axial resolution, which influences the DOF 

result from 97 µm to 100.9 µm. Let’s further consider the impact of the convolution of the 

beam with the object, as shown in Figure 3-12B. It simulates the result of the DOF for the 

system after convolution with a 10 µm FLB (representing the size of the cell body), and 

the DOF becomes 103.1 µm. In the following comparison, we assume the theoretical 

DOF is 103.1 µm. 

 

Figure 3-12, Simulation of the intensity distribution of Gaussian beam passes 

through different axial positions. 

(A) FWHM of the Gaussian beam matches the FWHM of the axial resolution. (see Chapter 3.3.1 for 

details) (B) FWHM of the Gaussian beam matches the result after convolution with the 10 µm FLB. 

 

Parameter Description Value 

λ Excitation wavelength 940 nm 

𝜔 Incident beam radius 6.3 mm 
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𝑅 Radius of curvature of incident wave front ∞ 

𝑑5 Distance between TAG and relay lens 2 60 mm 

𝑑4 Distance between relay lens 2 and relay lens 1 100 mm 

𝑑3 Distance between relay lens 1 and scan lens 90 mm 

𝑑2 Distance between scan lens and tube lens 250 mm 

𝑑1 Distance between tube lens and objective 200 mm 

𝛿 Optical power of TAG lens −5 ~ +5 m−1 (D) 

 
Focal length of relay lens 2 60 mm 

 
Focal length of relay lens 1 40 mm 

 
Focal length of scan lens 50 mm 

 
Focal length of tube lens 200 mm 

 
Focal length of objective 7.2 mm 

 
Focal length of tube lens paired to objective 180 mm 

Table 3-2, Parameters for DOF calculation. 

 

Practical DOF 

To verify the practical DOF of the system, we conducted three different 

experiments. Different samples and methods are used to correctly access the multiple 

errors that may occur when calculating the DOF.  

The first experiment is scanning 10 μm FLB with low-speed scanning and 

calculating the DOF via the extension of the image in z-direction. The second experiment 
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compares low-speed scanning and high-speed scanning results of the same FLB sample 

and measures the extension of the TAG lens with correlation map analysis. The third 

experiment is the same correlation map analysis with a mouse brain slice sample. 

 We set the resonance frequency of the TAG lens at 188k Hz and its voltage 

amplitude at 40% which corresponds to the optical power of . The scan frame rate is 

1 Hz for the first experiment, and the volume rate is 11 Hz for the second and third 

experiment. We use Olympus XLPLN25XWMP2 immersion objective lens which 

corresponds to a theoretical FOV of . 

10 µm FLB with low-speed scanning 

 We experimented with 10 µm FLB to measure the intensity profile along the axial 

direction. In the experiment, we turn on the TAG lens collect a stack image with 

low-speed scanning, and change the focus plane with the translation stage. Then, we 

calculate the DOF with the intensity profile and average a total of 10 measurements for 

the axial profile, the resulting DOF is 6.23 . (Figure 3-13) The error compared 

to the theoretical value (103.1 µm) is about 32% for the axial measurement.  

 

Figure 3-13, Experimental extended DOF. 
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(A) 3D 10 μm FLB sample with z-projection of a volume with a depth of about 137 μm. Scale bar: 100 μm 

(B) Collect the z-projection images with the translation stage. The intensity profile along the z direction. 

 

Since the TAG lens operates on a sinusoidal track mechanism, we observe that it 

exhibits a profile resembling that of a dumbbell, like the simulated appearance (Figure 

3-12). 

 Another interesting finding is that the dumbbell-like PSF is not uniform. The TAG 

lens creates convex and concave effects, which change the spot size at the objective lens 

aperture and consequently affect the intensity of the focal points. When it acts as a 

concave lens (red beam light in Figure 3-14), the light spot size entering the objective is 

divergent, making the light spot at the objective lens aperture larger, leading to an 

increase in the effective NA, and thus, the light is focused with higher intensity in deep 

position (red side, z2). Conversely, with a convex lens, the convergent beam results in 

lower intensity (blue side, z1).  

In our experiment, we obtain complete three-dimensional images by moving the 

stage of the sample in the z-direction to cover the whole structure. Therefore, when we 

move the FLB from z1 to z2, we achieve a complete image. As a result, the energy is 

relatively focused, leading to a slight increase in image intensity. 
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Figure 3-14, Diagram of the intensity of PSF in different axial positions. 

TAG lens generates convex and concave effects, which make the beam converge (blue beam) and diverge 

(red beam). While the focus shifts at different depths in the sample, corresponding to the position z1 to z2 

(from blue to red plane), the spot size at the back aperture of the objective will change which consequently 

affects the NA of the objective, i.e. the intensity of the profile. The deeper it goes, the higher the intensity. 

 

Correlation map analysis 

 In this study, we will collect low-speed scanning images as structural images, and 

high-speed scanning images as functional images. To ensure the extended DOF, we will 

use correlation analysis (see Chapter 4.2.2 for detailed correlation analysis and code in 

GitHub4) to find the most corresponding region. 

 We first obtain a volume stack with an accurate z range by scanning with stage. Then, 

we use the TAG lens to obtain another volume stack in a similar region.  Assuming the 

stage scanned stack has an accurate range, we can obtain the experimental DOF by 

comparing these two volume stacks with correlation map analysis. This analysis method 

is precise for volumetric image reconstruction. Before confirming the corresponding 

physical DOF, we will first reconstruct the high-speed volumetric images with a total of 

265 voxels in z-direction. Then, we perform correlation analysis to compare the 

corresponding range of slow-scan images. We use the contour map to illustrate the 
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correlation coefficient values, yellow indicates higher values, while blue indicates values 

close to 0. (The color bar shows the corresponding coefficient values.) Throughout this 

process, to enhance the precision of the correlation calculation, we utilized a 10-second 

temporal projection to enhance the contrast of fast-scan images. 

 The following shows the results of two kinds of the samples, fluorescent bead, and 

mouse brain slice, under the measurement and analysis. 

10 µm FLB  

 Figure 3-15A reveals that the first and last layers of the fast scan images correspond 

most closely to specific layers of the slow scan images, respectively. Figure 3-15B 

demonstrates the center layer of the fast scan image (purple) overlaps significantly with 

the most closely corresponding layer from the slow scan (green), and the correlation 

coefficient value is up to 0.83. Figure 3-15C demonstrates corresponding layers between 

slow scan images and the 10-second time-projected fast scan images exhibit a sinusoidal 

trend (white dash line), consistent with the principle of TAG lens following a temporally 

sinusoidal trend as described in Chapter 2.2.  

 Therefore, it determined that the first and last layers of the fast scan images within 

the physical DOF span 116 µm. Compared with the theoretical value of 103.1 µm, it 

exhibits an error of approximately 12.5%.  
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Figure 3-15, Correlation analysis for DOF with 10 μm FLB. 

(A) Slow scan image and corresponding 10s projection of fast scan image of FLB. (B) Two images overlap 

to check the correlation coefficient value. (C) Correlation contour map of the fast scan image and slow scan 

image.  

 

However, to further confirm the effective DOF of the TAG lens, we propose 

repeating the same experiment with mouse brain slices. Because of the structure of FLB, 

even out of the focal plane, the circular fluorescent beads still form a blurred circle shape, 

which may lead to inaccuracies in comparing high- and low-speed scan images. For 

example (Figure 3-15C), in the fast scan, layers 140-170 correspond to the depth of 

100-120 in the slow scan, both showing significantly high correlation coefficient values.  

Cleared mouse brain slice 

 In order to simulate the in vivo mouse experiment, we used cleared mouse brain 

slices to do the experiment and the correlation analysis to confirm the extended DOF. In 

Figure 3-16, we repeat the analysis step and the result presents the sine wave trend as well. 

From the result, we know the extended range of the mouse brain slice is 116 µm, which 

compared with the theoretical value (103.1 µm) has an error of around 12.5%. The 

findings align with those of the 10 µm FLB examination, and Figure 3-16C vividly 
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depicts a sinusoidal trend in the correlation map. 

 

Figure 3-16, Correlation analysis for DOF with in vitro mouse brain slice. 

(A) Slow scan image and corresponding 10s projection of fast scan image of in vitro mouse brain slice. (B) 

Two images overlap to check the correlation coefficient value. (C) Correlation contour map of the fast scan 

image and slow scan image.   

 

 Based on the analysis of brain slice experiments, a clear sinusoidal trend in the 

correlation map between high- and low-speed scans, is consistent with the operation 

method of the TAG lens. The structural differences in brain slices across different layers 

make the comparison between the two scanning modes easier, thereby reducing the 

probability of repeated matches. Therefore, before simulating live experiments, brain 

slices should be used to estimate the DOF. 

 

Discussion  

 The interesting thing is that the measured DOF varies in different driving amplitudes 

as Chapter 2.2 mentioned the mechanism of TAG lens. Figure 3-17 shows evidence of a 
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linear dependence on the driving amplitude (or optical power, Table 3-3) and DOF.  

 

Figure 3-17, DOF with respect to different driving amplitude. 

 

 

Table 3-3, DOF with respect to different optical power. 

 

 While the three analytical methods mentioned above are generally reliable, hidden 
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issues should be taken into consideration. For example, the DOF analysis from the slow 

scan on FLB may encounter issues due to the convolution of the PSF and the FLB sample, 

which could potentially affect the DOF calculations. For the correlation map analysis, 

although the FLB and mouse brain slice examination come with similar results, as 

mentioned earlier, there is concern about identifying corresponding layers because the 

structure of the FLB does not change much within layers. Therefore, the DOF measured 

using fast scan images from cleared mouse brain slices serves as the optimal template for 

our future experiments on in vivo mouse brain imaging. 

 However, the measured DOF is approximately 20% larger than the theoretical value. 

We suspect that this discrepancy may result from the convolution effect of the beam, as 

illustrated in Figure 3-12, which simulates the Gaussian beam passing through the DOF.  

 

Optical 

power 

Theoretical 

value 

(convolved) 

3D 10um FLB 

Mouse brain Low-speed scan / 

axial intensity  

High-speed scan / 

correlation analysis 

Experiment  Error Experiment Error Experiment Error 

10 D 103.1 µm 136 µm 32% 116 µm 12.5% 116 µm 12.5% 

Table 3-4, Different DOFs result from different experiments. 

 

 In summary, with correlation analysis, the extended DOF of the TAG lens 

corresponds to low-speed scanning images. The low-speed scanning image plays a 

crucial role in providing structural information for comparison with corresponding 

regions in the high-speed scan images. Figure 3-18 shows the 3D structure of the mouse 

brain slice. The slow-scanning process was achieved with a size of 400x400×300  
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and a voxel dwelling time of 5 µs (Figure 3-18A). Since it was sequentially acquired, 

several minutes were needed to obtain the whole volume. The same volume was obtained 

by our high-speed volumetric scanning process (Figure 3-18B), which utilized a TAG 

lens for rapid z-modulation at a resonant frequency of 188 kHz. The resulting volume 

dimensions were 400 x 400 x 116  with a voxel dwelling time of 0.02 µs, and to 

enhance the contrast we performed a 10-second time average of images. Compared with 

these two scanning modes, it possesses the same neuronal structure, verifying our 

system’s capability of acquiring and reconstructing correct 3D volumetric images. 

 

Figure 3-18, Reconstructed volumetric images of mouse brain sample. 

The volumetric images were captured by: (A) Low-speed scanning image as the structural image (voxel 

dwelling time of 5 µs). (B) High-speed volumetric image with a 10-second average. (voxel dwelling time of 

0.02 µs). Scale bar:100μm. 

 

 However, when we applied this technique to in vivo mouse experiments, the tradeoff 

of the TAG lens should be considered. For the TAG-lens-based high-speed volumetric 

system, the axial scanning speed and DOF are primarily limited by the TAG lens 

parameters, such as resonance frequency and optical power. As Chapter 2.3 mentioned, 
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due to the principle of the TAG lens, the higher driving frequency offers longer DOF 

extension but reduces the effective NA, resulting in lower spatial contrast.(54) In the 

experiment, we should carefully consider this trade-off to meet critical requirements, 

including the need for adequate temporal resolution to capture neuronal spikes, spatial 

contrast for resolving sub-cellular structures, and sufficient DOF to encompass the 

three-dimensional neuronal architecture. 

 

3.3.4 Imaging volume rate 

 To complete an axial scan under each voxel, the TAG lens oscillation frequency was 

set to twice the resonant frequency at . The number of voxels in the 

z-direction is limited by the acquisition rate of DAQ cards. In our system, the acquisition 

rate of DAQ card is set to 100 MHz, which is the maximum speed of DAQ card, 

 

 Therefore, the number of voxels in the z direction must be less than 265 pixels. 

Consequently, we will achieve axial scanning rate and voxel dwelling time, 

 

 

 

 On the other hand, the number of voxels in the y direction is limited by galvo 

response time [Cambridge Technology Inc., “62XXH Series Galvanometer Scanners”] 
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and TAG lens resonant frequency. Since the TAG lens is continuously scanning, there 

must be enough pixels in the y direction so that the TAG lens completes a scanning cycle 

within a single pixel. In terms of specifications of galvo mirrors, the response time for 

scanning angles from full angle to minimum angle is 850 microseconds for 20 degrees 

and 270 microseconds for 0.1 degrees. With a linear approach, the response frequency 

corresponding to 6.5 degrees is 2190 Hz. The lower limit of the number of voxels is, 

 pixels 

 There is no limitation on the number of voxels in the x direction. We can calculate 

the imaging volume rate by selecting an appropriate pixel number that satisfies the 

limitations listed above. For example, an image with  voxels in three 

dimensions will have a volume rate of  
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Chapter 4 Image processing and analysis 

  

 This chapter is separated into two main parts: image processing and image analysis. 

For image processing, a diverse range of methodologies is devoted to various tasks such 

as denoising, enhancement, segmentation, feature extraction, and classification. For 

image analysis, we will discuss methods such as clustering, quantifying image quality, 

and statistical analysis. These methodologies are crucial in research concerning the 

variation in group responses and the enhancement of image quality.  

 

4.1 Image processing 

In this section, some useful image processing methods will be introduced, 

including how to reconstruct high-speed volumetric images from 2D files, basic refining 

techniques to resolve the blur and motion artifact problems due to the system, and 

automatic segmentation to speed up the labeling and quantification analysis.    

 

4.1.1 High-speed volumetric image reconstruction 

 In our high-speed scanning system, the output file type is TDMS. To recover 

the 3D images, converting the image type is necessary. After converting TDMS files into 

multiple yz-sectioned TIFF images, the reconstruction of the 3D images will be processed 

with MATLAB (Reconstruction code in GitHub5). Depending on the data acquisition and 

galvo scanning setting, not only does the sorting sequence of images need to be arranged, 

but different types of scanning artifacts also need to be accounted for. The scanning 

artifacts include calibration of lateral (XY plane) images due to galvo scanning, 

configuring the interval of physical z dimension, and time correction between pixels. 
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Sorting images to 3D volume 

In this setup, we capture yz images at different x positions with TAG lens, then 

recombine them into xyz volume. During the scanning process, the number of pixels in 

the y direction is 128, and 265 in the z direction, which corresponds to a resonant 

frequency of 188kHz.  

Suppose our reconstruction volume size is 128x128x265 voxels, the scanning 

direction is depicted in Figure 4-1.  In actuality, our system collects one yz image per 

period of the galvo mirror, meaning that each image is a combination of two mirror 

images, mirroring each other and differing in the x direction by 1 pixel. When 

reconstructing the volume, we divide these images into two sets, flip the images, and 

insert them in the correct position. We repeat this process until all 2D TIFF images are 

reconstructed, resulting in the complete xyzt 4D data. 

 

Figure 4-1, Reconstruction of high-speed volumetric images from 2D images. 

 

Reconstruct one frame 
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After reconstruction, we encounter a discontinuity issue between columns on each 

xy plane (Figure 4-2), which arises because of the galvo scanner’s acceleration. In the 

lateral dimensions of the image, the galvo sequentially scans the sample at each sampling 

point to acquire fluorescence data. As the galvo approaches the boundary of the region of 

interest, it needs to decelerate to switch to the next column. Therefore, at the edges of the 

fast axis, the galvo scanner undergoes acceleration and deceleration processes (Figure 

4-2). This results in non-uniform scanning intervals, leading to nonlinear stretching 

distortion of the actual image along the fast axis edges, i.e. the boundary of the y-axis. 

Additionally, if there is a horizontal displacement between the y-axis, it causes aliasing 

artifacts resembling jagged edges in the image. 

Therefore, we need to calibrate for distortions on the xy-plane to reconstruct 

images unaffected by edge deformations. To address this, we can adjust parameters in 

MATLAB to fine-tune the degree of distortion in odd and even columns, as well as the 

starting position of the alignment, enabling effective correction. Once these coefficients 

are obtained, they are applied to the interpolation process of the original images to 

eliminate the aliasing artifacts generated by the system. We correlate the processed 

images with low-speed scanning images, to ensure the artifact is removed.  

 

Figure 4-2, y-axis calibration of high-speed volumetric image reconstruction. 

(A) Before calibration, there are aliasing artifacts with adjacent columns in the image. (B) After removing 
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the stretching distortion, there are jagged edges in the boundary of the image. Scale bar: 100  

 

Configuring the interval of z  

Due to the rapid focusing capabilities of the TAG lens, the spacing between 

sampling points along the z-direction varies in the sinusoidal wave track. As a result, in 

the acquired high-speed volumetric images, the physical spacing between each z-layer 

image is unequal (Figure 4-3). This results in the top and bottom parts being more densely 

packed, while the middle region is sparser. When reconstituting physical spacing, the top 

and bottom would have a greater number of images available for interpolation to do the 

z-direction resampling. Therefore, the top and bottom of the images have higher SNR 

than the middle region. 

 The interval of z-direction sampling also affects the SNR of the reconstructed image. 

The larger the sampling spacing, the more images are included in the interpolation 

process, and the consequential SNR becomes higher. With this in mind, it is important 

when defining the DOF to follow the method mentioned in Chapter 3.3.3 to not 

overextend, so there are ample images to provide high SNR images after image 

reconfiguration.  

 

Figure 4-3, Schematic of the sampling strategy. 
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The trajectory of the focus transmission from top to bottom and back to top (blue to red and red to green).  

 

Following the results of Chapter 3.2.3, we reconstruct the volume images with 

interpolation based on the physical unit. Here we set the z voxel size 2  to enhance the 

image SNR and repeat the correlation map analysis. In Figure 4-4, the trend of the 

correlation contour map becomes a linear shape after interpolation. The resulting DOF is 

116 , which is the same as the previous result (Figure 3-16).   

 

Figure 4-4, Correlation analysis for DOF with micrometers unit. 

 

Time correction 

When processing functional volumetric images, we assume that all voxels are 

accurately acquired at the beginning of the acquisition time for the respective volumetric 

image. However, due to the finite scanning speed, each voxel in a volumetric image is 

sampled at slightly different time points (Figure 4-5). To account for these delays 

between voxels, we use linear interpolation to assign a time  for each voxel in the 

volumetric image, 



doi:10.6342/NTU202402518

 69 

 

where  is the sequence of volume, there are total N volumes in the image.  is the 

sequence of xy sampling voxels, .  means the original 

intensity of  voxel at time series , and  is corrected intensity. 

Our goal is to correct the voxels from acquired time points  into the 

reference time points .  

 

 

where  represents the acquisition time of each functional volume,  

represents the voxel dwelling time. For example, the resonance frequency at 188 kHz, 

would take  per voxel. 

After utilizing linear interpolation to achieve time correction, each voxel in the 

volume is back to its reference time point. Nevertheless, if the sampling rate is much 

faster than cellular reactions, such as the experiments for SCN observation, the evaluation 

of computer performance and biological information may proceed without this 

calibration function. 
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Figure 4-5, Voxel-dependent time correction for high-speed scanning images. 

 

4.1.2 Image processing: Brightness adjustment, deconvolution, and 

motion correction 

Brightness adjustment- Gaussian filter 

When there's a significant disparity in intensity distribution across the image, it 

becomes challenging to observe details in both bright and dark regions simultaneously. 

Hence, we employ a normalization technique on the image to redistribute intensity values. 

In image processing, normalization refers to adjusting the range of pixel intensity values, 

which is also known as contrast stretching or histogram. Here, we'll introduce one useful 

method of brightness adjustment, which involves applying a Gaussian filter to the image. 

We directly utilize the Gaussian blur filter available in ImageJ and apply it to the original 

images. Then, divide the original image with the filtered image to achieve the results. 
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(Figure 4-6) 

 

Because Gaussian filters remove high-frequency components, thereby reducing 

the overall contrast of the image. The result,  often yields a smoother brightness 

distribution, leading to more uniform contrast across the image. (Figure 4-6) For the 

Gaussian filter,  represents the standard deviation of the Gaussian distribution, which 

determines the blur level of the filter. A larger  value results in a more blurred effect, 

while a smaller one produces a sharper effect. (Figure 4-6C)  

 

Figure 4-6, The effect of Gaussian filter with different sigma values. 

(A) Original and normalized image after applying a Gaussian filter. (B) Histograms of images before (light 

gray) and after (dark gray) normalization. (C) Different effects were observed with varying sigma (σ). 

 

Deconvolution 

In microscopy, light passing through the sample's optical path causes spreading or 

diffraction, resulting in blur due to the microscope's finite point spread function (PSF) 

and optical aberrations. PSF represents the system's response to light, affecting how a 
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point in the specimen is imaged. (Figure 4-7) Convolution impacts image quality, 

especially resolution, critical for studying small biological structures.  

 

Figure 4-7, Diagram of objective convolved and deconvolved with PSF.  

The black arrow indicates the convolution process, while the pink arrow indicates the deconvolution 

process. The red line represents the intensity profile at the side. 

 

Deconvolution algorithms reverse image distortions, aiming to estimate the 

original sample appearance by removing blur and aberrations. This is crucial for 

high-resolution and high-contrast microscopy. To achieve deconvolution, it is necessary 

to figure out the point spread function of the optical system. We can estimate the 

theoretical PSF based on a mathematical model or use algorithms to derive the optimal 

PSF solution. However, the actual PSF of the system may be different due to system 

aberration, shot noise, and other practical errors. Therefore, it is generally advised to 

experimentally measure the PSF, which involves capturing images of fluorescent beads 

that are one-third smaller than the theoretical value. (see Chapter 3.2.1 for details). 

Crucially, the PSF lacks perfect uniformity since it fluctuates based on imaging location, 

depth, and even over time. Conventional deconvolution methods typically assume a 

consistent PSF across the entire image and fail to obtain satisfactory results. Ongoing 
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research is dedicated to developing methods for more precise estimation and 

accommodation of PSF variations (98-100). 

Deconvolution algorithms in microscopy are categorized into inverse filters and 

iterative methods. (Table 4-1) Inverse filters rapidly produce clear images by reversing 

blurring using the PSF, but they are noise-sensitive and prone to artifacts. Iterative 

algorithms, like the Richardson-Lucy algorithm, repeatedly estimate the original image 

by comparing it with the blurred image, updating the estimate through iterations. They 

outperform inverse filters in deblurring but are computationally intensive.  

Inverse Filters Iterative Algorithms 

Wiener Deconvolution Richard-Lucy 

Naïve Inverse Filtering Jansson-Van Cittert 

Linear Least Squares Landweber 

Tikhonov Filtering Nonlinear Tikhonov-Miller 

Table 4-1, Two types of deconvolution algorithms. 

 

Richardson-Lucy algorithm 

The Richardson-Lucy algorithm, a type of iterative deconvolution, refines the 

initial estimate of the true image iteratively by estimating the blur kernel and minimizing 

the difference between the observed and estimated images through convolution and 

adjustment. This process continues until convergence is achieved or for a set number of 

iterations.  

ImageJ provides the Richard-Lucy deconvolution with the “Deconvolutionlab2” 

plugin.(101) First, a simulated PSF is generated by the “PSF generator”. (Detail in 

GitHub6) This simulated 3D PSF is then configured within the deconvolution. After the 

deconvolution process, the optimized result is obtained. In Figure 4-8C, the profile 
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analysis (blue and orange curves present before and after deconvolved respectively) 

reveals that the neuronal cells have become clearer, achieving a higher contrast. 

 

Figure 4-8, Deconvolution with ImageJ. 

(A) The panel setting of “PSF Generator” in the ImageJ plugin. (B) The image before and after 

deconvolution. (C) Intensity profile from the red line plot in (B). 

 

Motion correction  

During in vivo measurement, tissue movement would introduce unwanted 

fluctuations in recorded fluorescence signals, resulting in misinterpretation of calcium 

traces. To address lateral image position variations occurring at each time point due to 

tissue movement, lateral motion correction was applied to the denoised functional images. 

Assuming that head movement did not induce shear or scale transformation, a rigid body 

transformation using an affine transformation was employed. The transformation is 

expressed as follows: 
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where  and are the space coordinates of the 

functional images and the reference images, respectively.  is the transformation 

matrix 

           

where  and  specify the displacement along the - and the -axis. The parameters 

in  were determined through an iterative optimization method: 

 

where  denotes the similarity metric to be optimized during motion correction, which is 

the Mattes mutual information metric.  and  are the first functional 

and any one of the remaining functional scans, respectively. 

 

4.1.3 Automated image segmentation and labeling 

 Image segmentation, a fundamental task in computer vision, involves the 

partitioning of an image into distinct regions, each representing a specific ROI. This 

process aids in simplifying the complex visual data of an image and is crucial for object 

recognition, scene understanding, and image analysis. Semantic segmentation is a 

pixel-wise classification of a given image. Instance segmentation takes this a step further 

by not only categorizing pixels but also distinguishing between individual instances of 
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objects. Various techniques, including color-based segmentation, edge detection, 

clustering algorithms, and deep learning approaches like the U-net model (see Chapter 

2.3.2 for details), contribute to achieving accurate and efficient segmentation. This 

capability finds applications across diverse fields, from medical imaging to autonomous 

vehicles, where extracting meaningful information from images is essential for analysis. 

Here, two useful software for automatic segmentation will be introduced, one is for 

circular shape objects, Cellpose (102-104), and the other one is for irregular shape objects, 

ilastik (105). 

 

Cellpose7  

Cellpose is a versatile machine learning-based algorithm designed for segmenting 

cellular structures, such as cells, nuclei, and other similar objects, in biological images. 

One of its key innovations lies in its approach to segmenting objects by treating them as 

sources of diffusion, rather than directly fitting their outlines. This unique strategy allows 

Cellpose to effectively process images and predict gradient vector fields, facilitating the 

extraction of object shapes with remarkable precision. 

Cellpose is based on U-net architecture but deviates from the conventional U-net 

design in several aspects. These modifications include (1) additional convolutional layers, 

novel activation functions, and (2) the integration of residual blocks to address challenges 

like class imbalance and vanishing gradients. It captures the global context and fine 

details through (3) carefully crafted skip connections, ensuring accurate segmentation of 

cellular structures in diverse imaging conditions. Figure 4-9 demonstrates the operation 

of Cellpose with FLB image. The UI system offers various display modes (Figure 4-9A) 

for users to confirm whether the trained masks meet expectations. Additionally, it 

provides over 10 pre-trained models stored in the model zoo (Figure 4-9C) for direct 
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application. However, in specific cases where users need to retrain models, the system 

also offers a convenient drawing tool (Figure 4-9B) for segmenting ROIs to train 

customized models (Figure 4-9D). Integrated with Python to automate big data 

processing, including segmentation, labeling, spatial distribution analysis, and 

quantification, without limitations on 2D images. 

 

Figure 4-9, The software panel of Cellpose. 

 

Ilastik8  

Another powerful segmentation tool is Ilastik, which features predefined 

workflows for image segmentation, object classification, counting, and tracking. Users 

customize workflows by providing sparse training annotations. It handles data in up to 

five dimensions (3D, time, channels), with on-demand computational operations for 

interactive predictions on large datasets. Different from Cellpose mentioned above, 
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Ilastik is suitable for irregular shapes of bio-image analysis, because it accomplishes 

semantic segmentation rather than instance segmentation.  

Ilastik's pixel classification workflow categorizes pixels by assigning 

user-defined labels (Figure 4-10, red arrows) into semantic classes (e.g., foreground 

versus background) rather than individual objects. To identify individual objects, 

connected components analysis is applied to the pixel classification results. Classification 

of pixels utilizes image filter outputs as features, with Random Forest as the classifier. 

Random Forest over other nonlinear classifiers due to its minimal parameterization and 

robustness to parameter choices (Figure 4-10A). Additionally, its generalization 

performance makes it particularly suitable for training by non-experts. In Figure 4-10B, 

the line-shape dendrite image as an example, the result shows that the structure and 

background are separated with little labeling. 

 

Figure 4-10, The software panel of Ilastik. 
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4.1.4 Appendix: Identification of individual synapses in Drosophila 

antennal lobe by machine learning-based super-resolution image 

analysis 

In this section, we will introduce how to utilize the powerful tool, Cellpose, for 

the quantitative analysis of big data and what information was achieved from the analysis. 

This research collaboration was conducted with Dr. Bi-Chang Chen from Academia 

Sinica. 

Understanding how the nervous system releases neurotransmitters and how 

organisms respond to different stimuli has emerged as a critical inquiry. The development 

of super-resolution optical microscopy techniques enables the visualization of detailed 

synaptic distributions within large-scale neural structures at nanometer-level spatial 

resolution. However, the massive number of synapses within biological organisms poses 

a challenging task when combining biological structures with big data for quantitative 

analysis. Quantitative analysis serves as a fundamental tool in deciphering the intricate 

workings and functions of the nervous system. This research focuses on revealing the 

number of neural circuits responsible for Drosophila's antennal lobe using Expansion 

Light-Sheet Microscopy (ExLSM) (106-108). This offers detailed insights into the 

olfactory neural system of Drosophila, with a specific emphasis on examining the 

quantity and distribution of synapses within the antennal lobe (AL). 

Drosophila melanogaster serves as a prominent model organism in neuroscience 

research, especially the olfactory system. The AL is a pivotal center for olfactory 

information processing in Drosophila, which is pivotal in enabling insects to seek food, 

evade predators, and locate mating partners. Among numerous neurons, which typically 
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create tightly packed synaptic connections within the glomeruli. Each glomerulus 

functions as an independent unit in the processing of olfactory information and encodes 

specific odors. From the previous research (109-114), it was discovered the AL comprises 

56 glomeruli, which receive and share signals with other receptors. Therefore, how to 

form the connection and to link any behavioral activity, has so far been assumed by 

complete quantitative mapping of the neuron network. 

To investigate whether ExM is amenable to the whole AL, we applied the tissue 

with X10 expansion microscopy protocol. The representative of the segmented image of 

the expanded AL of the fruit fly is shown. Figure 4-11 shows the whole AL of the fruit fly 

stained with antibodies against the postsynaptic PSD 95 homolog, disc large (DLG), and 

the post-synaptic active zone protein, Brp to identify the active zone at neuronal synapses. 

With ExM, enhanced image resolution through physical expansion is 10 times larger, 

which allowed us to magnify synapses originally ~200 nm in size to nearly 2 . 

 Consequently, we achieved super-resolution with a voxel size of 0.325 . Then, 

we used Cellpose to perform a quantitative analysis of synapses (Figure 4-11B) and 

Amira for manual segmentation of glomeruli. After post-processing and calculation, in 

our preliminary results, we classified a total of 56 glomeruli of one of the antennal lobes 

and compared left- and right-side distributional differences. (Figure 4-11C) This 

approach ensures the complete protocol to analyze patterns. Glomerular volume may 

influence synapse density. Therefore, we assess the volume of each glomerulus on both 

sides, providing a crucial context for interpreting synapse count data, and further, we 

calculate the synapse density for each glomerulus. (Figure 4-11D) To delve deeper, we 

embark on a comprehensive investigation, aiming to definitively map and quantify these 
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differences across the entire AL. 

After creating this complete analysis pipeline, we perform the experiments with 

different parameters set of fruit flies, such as sexual difference, and food sources, and to 

observe the neuron distribution. In addition, to ensure statistical robustness, we not only 

raise the number of fruit fly examinations but also employ appropriate statistical tests to 

compare synapse counts and densities between different flies. This approach solidifies the 

scientific foundation of the findings. 

 

Figure 4-11, Quantitative analysis of synapse in the Drosophila antennal lobes. 

(A)Whole brain of Drosophila, which was stained with DL and Brp to identify the structure and the active 

zone at neuronal synapses. (B)Utilize Cellpose to do automatic segmentation of individual post-synapses. 

(C)56 glomeruli in the AL. (D)Quantitative analysis of the number of synapses, the volume of a single 

glomerulus, and the density of synapses. 
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Compared to traditional microscopy techniques which prevent images from 

resolving details at the level of individual synapses in Drosophila due to the diffraction 

limit. 3D reconstruction of serial EM sections offers the best solution for measuring 

active synapses in the brain. However, this technique is time-consuming, labor-intensive, 

and requires specialized expertise (115). ExM provides an elegant solution to this 

challenge. This method physically expands the specimen within a swellable polymer 

hydrogel, effectively increasing its resolution and allowing for clear visualization of 

individual synapses using standard microscopes. We will use our new ExM strategies to 

evaluate the feasibility of using expansion microscopy in the antennal lobe of fruit flies. 

Integrating with machine-learning-based software, Cellpose, and our analysis pipeline, 

which allowed for quantification in mere hours. This method overcomes constraints 

posed by regional samples and potential errors in manual calculations. Moreover, its low 

time cost enables us to conduct statistical experiments and analyses. 

 

4.2 Image analysis 

 Images contain rich structural information beyond visual observation. Effective 

image analysis extracts this information for various applications in fields like medicine, 

biology, astronomy, and engineering, aiding tasks such as object detection, and quality 

control. Here, we'll introduce analysis methods including clustering, quantification, and 

statistics, each with unique advantages and applications tailored to different aspects. 

 

4.2.1 Clustering analysis: PCA, k-means 

Cluster analysis uncovers patterns in data, aiding segmentation, feature detection, 

and data understanding. In this section, two useful clustering methods will be introduced, 
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each based on different criteria. 

 

Principal Component Analysis (PCA) (Analysis code in GitHub9) 

PCA is a dimensionality reduction technique widely used in statistics, machine 

learning, and data analysis. PCA transforms the original data into a new coordinate 

system, finding a new set of orthogonal axes (principal components) along which the data 

varies the most. (Figure 4-12, red axes) To capture the most important features in the data 

while discarding less important information. The first principal component accounts for 

the largest variance in the data, the second principal component (which is orthogonal to 

the first) captures the second largest variance, and so on. 

 

Figure 4-12, Schematic of PCA analysis. 

 

To ensure that all features contribute equally to PCA, the required data is 

standardized to have a mean of zero and a standard deviation of one across each feature 

dimension. First, we compute the covariance matrix to obtain information about the 

relationships between different features and their variances. 

 

where  is a  matrix of standardized data,  is  column of average ,  
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is the number of observations,  is the number of features. 

Second, decompose the covariance matrix into its eigenvectors,  and 

eigenvalues, . They represent principal components and the amount of variance 

respectively. 

 

 Then, based on their corresponding eigenvalues in descending order to sort the 

eigenvectors. Finally, PCA projects the original data onto the selected principal 

components' subspace.  

 

where  means the first  principal components,  is projected data. 

This transformation reduces the data's dimensionality while preserving the maximum 

amount of variance possible. It is widely used for various purposes, such as noise 

reduction, feature extraction, and data preprocessing (41). 

 

K-means cluster analysis 

K-means cluster analysis (also known as c-means clustering) is another popular 

clustering algorithm used in machine learning and data analysis. "Birds of a feather flock 

together", is the key concept of k-means clustering. The goal of k-means is to partition a 

dataset into  clusters, where each data point belongs to the cluster with the nearest 

mean. (Figure 4-13) It is an unsupervised learning algorithm since it doesn't require 

labeled data for training.  
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The algorithm works as follows: 

1. Initialization: Choose K initial cluster centroids randomly from the feature space in 

the dataset. These centroids represent the initial cluster centers. 

 

2. Assignment: Each data point calculates the Euclidean distance to all K centroids. 

Assign each data point to the cluster whose centroid is the closest and creates K 

clusters. Here, the distance can be replaced with other distance formulas, but 

typically Euclidean distance is the primary choice.  

 

3. Update Centroids: Recalculate the centroids of each cluster by taking the mean of all 

data points assigned to that cluster. 

 

4. Repeat Steps 2 and 3: Repeat the assignment and centroid update steps until 

convergence, i.e., until the centroids no longer change significantly, or a predefined 

number of iterations is reached. 
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Figure 4-13, Schematic of k-means clustering. 

 

4.2.2 Quantify image enhancement: SNR, PSNR, PCC  

After applying image processing, a suitable quantification approach for the 

improvement of image quality and information is important. Quantitative analysis of 

image enhancement involves comparing specific image characteristics, such as pixel 

intensity distributions or feature detection results. Metrics like SNR, PSNR, Pearson 

correlation coefficient (PCC), and root mean square error (RMSE) are commonly used to 

quantify the effectiveness of image enhancement algorithms. In this section, we will 

introduce SNR and PSNR for analyzing intensity quantification and PCC for structural 

feature quantification. Both methods help to objectively evaluate the performance of 

image enhancement and its impact on image quality. 

 SNR and PSNR are two metrics commonly used to assess the quality of images. 

SNR focuses on the ratio of signal to noise, while PSNR focuses on the amount of 

distortion in the image. They are often expressed in decibels (dB), which facilitates easy 

comparison across different imaging systems. Although both metrics evaluate the 

relationship between the signal and noise, they differ in their calculations and 

applications. 
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Signal to Noise Ratio (SNR) 

SNR (116) measures the ratio of the measured signal strength to the overall 

measured noise intensity at each pixel. It provides a general indication of how much the 

signal stands out from the noise, reflecting the clarity of the signal relative to the 

background noise level. 

 

where  is the average intensity of the signal in the image,  represents the average 

intensity of the region without signal, i.e. background region, and  is the standard 

deviation of background intensity. dB scale uses a logarithmic representation. 

 

Peak Signal to Noise Ratio (PSNR)10 

On the other hand, PSNR is specifically used to evaluate how much the quality of 

the signal is affected by distortion. It calculates the ratio between the maximum intensity 

of the image and the power of the noise affecting the image. Therefore, it needs a 

noise-free image as ground truth (or reference) to calculate the MSE, which quantifies the 

average squared difference between two images. Smaller MSE suggests less disparity 

between the images, indicating lower noise. Higher PSNR values correspond to lower 

levels of noise or distortion in the image, indicating higher image quality or fidelity. 

 

where MAX represents the maximum intensity of the image. 
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Pearson Correlation Coefficient (PCC)  

The PCC is used to assess the linear relationship between two variables. It is 

denoted by the symbol r and ranges from -1 to 1, which provides valuable insights into the 

degree of association between two sets of data. 

The formula to calculate the PCC (r) between two variables of X and Y with n 

data points, 

 

are the average of variables  respectively. 

 As r = 1 indicates a perfect positive linear relationship, meaning that as one variable 

increases, the other variable increases proportionally. As r = -1 indicates a perfect 

negative linear relationship, meaning that as one variable increases, the other variable 

decreases proportionally. As r = 0 indicates no linear relationship between the variables. 

(Figure 4-14) 

 

Figure 4-14, Schematic of Pearson correlation coefficient. 

 

Applying to images, PCC quantifies how similar the intensity values are in two 

images, i.e. the features of two images. When a value close to 1 indicates a strong 
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similarity between the two images, a value close to -1 indicates a strong negative 

correlation. A value near 0 suggests no linear relationship between the pixel intensities of 

the two images.  

We may utilize the PCC for various image comparison tasks, for example, in 

image registration, PCC is used as a similarity metric to measure the alignment accuracy 

between two images. Higher values indicate better alignment between the structure of 

images. As mentioned in Chapter 3.3.3, analyzing the correlation contour maps of low- 

and high-speed scanning images is convenient for determining the DOF of the TAG lens. 

 

4.2.3 Statistics analysis: Z-test, T-test and ANOVA analysis 

Statistical significance implies that observed data are not random but attributable 

to a specific cause, lending credibility to experimental results. It underscores the critical 

role of statistical analysis in identifying meaningful patterns, aiding researchers in 

drawing informed interpretations and dependable conclusions. In this section, we will 

introduce three essential statistical analysis methods: Z-test, T-test, and ANOVA 

analysis11. 

 

Z-test 

A Z-score quantifies the number of standard deviations a data point is from the 

mean, indicating its position above or below the mean in a normal distribution. 

Essentially, it represents how far a raw score is from the mean in terms of standard 

deviations. Z-score is the number representing the result from the Z-test, which is situated 

on a normal distribution curve calculated with the formula, 
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 observed mean of the sample 

 mean 

 standard deviation 

If a z-score is 0, it indicates that the data point's score is identical to the mean 

score. A z-score of 1.0 would indicate a value that is one standard deviation from the 

mean. Z-scores may be positive or negative, with a positive value indicating the score is 

above the mean and a negative score indicating it is below the mean. 

 

T-test  

The t-test is a statistical method commonly used to compare the means of two 

groups and determine if there is a significant difference between them. It is particularly 

useful when dealing with small sample sizes (less than 30), unknown population standard 

deviation, and normally distributed data. The test examines if the observed differences 

between groups result from actual variations or could be mere random chance.  

T-tests come in two main variants: independent samples t-test, and paired samples 

t-test, each serving a crucial role in different contexts. Here, we'll focus on the 

independent samples t-test for comparing two independent groups. 

 

Independent samples t-test  

The independent samples t-test is used to compare the means of two independent 

groups of continuous variables to determine if there is a significant difference. In the 

context of the independent samples t-test, the null hypothesis plays a crucial role by 

providing a benchmark against comparing the two groups. A null hypothesis ( ) is a 
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claim that the researcher hopes to “reject”. To determine how significant the difference in 

returns is, the t-score is always represented by the letter p (probability).  

The p-value serves as an alternative to rejection points to provide the smallest 

level of significance at which the null hypothesis would be rejected. The lower the 

p-value, the stronger the evidence that the null hypothesis is false, and we use asterisks 

(*) to denote significance levels: For example, P values less than 0.05 indicate statistical 

significance (*p < 0.05; **p < 0.01; ***p < 0.005; and ****p < 0.001). 

T-test can be applied to one sample, the formula is: 

 

 observed mean of the sample 

 assumed mean 

 standard deviation 

 sample size 

Additionally, it can be applied to two samples, the formula is: 

 

 observed mean of the sample 1 and sample 2 

 standard deviation of the sample 1 and sample 2 

 size of sample 1 and sample 2 
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Comparing the test statistic by transforming it into a p-value. Confirming the 

rejection of the null hypothesis. This indicates that statistically, there is a significant 

difference in the means of these two independent samples. 

 After the t-score, the overall degrees of freedom is the sum of the individual degrees 

of freedom ( ) for the two samples: 

 

Independent samples t-test is separated into one-tailed test and two-tailed test.  

One-tailed test shows that the sample mean would be higher or lower than the population 

mean, but not both. (Figure 4-15A) In other words, the critical area of a distribution is one 

side, which is run to determine whether a claim is true or false. 

 When using a one-tailed test, the analyst tests for the possibility of the relationship in 

one direction of interest and completely disregards the possibility of a relationship in 

another direction. For example, in the image quality examination, a one-tailed test 

appropriately shows whether the PSNR (or PCC) of denoised and original images is 

increased or not. For the null hypothesis, we assume the mean value of PSNR (or PCC) of 

denoised images is less than the original images. 

 On the other hand, a two-tailed test is performed to determine whether the 

population parameter of the sample is greater than or less than a specific range of values. 

(Figure 4-15B) Therefore, there are two rejection regions, one in either direction, left and 

right, towards each curve tail. It is used to compare two entirely different and mutually 

independent groups.  
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Figure 4-15, Schematic of t-test. 

(A) One-tail test. The orange area is for the left tail test, blue area is for the right tail test. (B) Two-tail test. 

The green area shows the two rejection regions on both sides.  

 

ANOVA analysis 

Analysis of variances (ANOVA), also called the Fisher analysis of variance, is a 

statistical technique used to test for differences between independent variables on a 

dependent variable. It is the extension of the t- and z-tests.  

 The basic assumptions of ANOVA are that the samples within each group are 

independently and identically distributed from a normal distribution and that the 

variances of the groups are equal. In other words, ANOVA can only determine if there are 

differences between groups. If you need to compare the means of more than two groups, 

ANOVA is a better choice than a t-test for statistical analysis. 

ANOVA analysis typically involves the following steps:  

ANOVA decomposes the variance into different components, including between-group 

variance and within-group variance. Between-Groups Sum of Squares (BSS) indicates 

the difference between the expected values of all observations and those within each 

group. BSS = 0, which suggests no difference in average values between groups:  
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where  represents the i-th average value 

Within-Groups Sum of Squares (WSS) measures the variation within each group. WSS = 

0 implies no difference between observations within each group: 

 

Comparing BSS and WSS helps assess differences in expected values between groups. 

However, adjustments for degrees of freedom are crucial, calculated using mean square 

values to compare within-group and between-group variance. 

 

 

For the F-value of ANOVA: 

 

Then, we can conduct hypothesis testing based on the F-value and degrees of freedom to 

determine if the between-group differences are significant. ANOVA results typically 

include an F-value and its corresponding p-value. If the p-value is below the significance 

threshold (usually 0.05), we reject the null hypothesis, indicating a significant difference 

between groups. Conversely, if the p-value exceeds the threshold, we fail to reject the null 

hypothesis, suggesting no significant difference between groups. 

 

4.3 Parameter setting for deep-learning denoise model: 
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TAG-SPARK 

In Chapter 2.3.4, we mentioned the structure and concept of TAG-SPARK12. 

Here we will discuss how to set the parameters for training and testing this denoise model. 

To set the parameters in the script for training, we need to check the path of the folder 

containing training datasets, the number of iterations (or epochs) for training, and the 

GPU used for computation. For example, following the experiment of mouse brain slice 

(Figure 4-4), there are 1145 volumetric images generated by high-speed scanning within 

90 seconds at a volume rate of 11.5 Hz (practical volume rate may achieve, # of 

volumetric images/ experiment time = 12.7 Hz). The FOV of images 

is . After reconstructing to micrometer interval, each volumetric 

image had dimensions of  voxels, with the voxel size of 

. Due to the small digital resolution, each functional volumetric 

image was used to train the model without additional segmentation, and all data in the 

datasets folder was used for direct training. In our specific scenario, we typically limited 

the total number of training epochs to prevent overfitting. To confirm whether the training 

results had converged, the recoding of the loss function across epochs was saved in the 

same folder as the models. Therefore, the parameters set for training the model are as 

follows: 

n_epochs = 10 

GPU = '0' 

show_loss_record = True 

 

The model was trained using PyTorch on a GPU computing platform equipped 



doi:10.6342/NTU202402518

 96 

with a GeForce RTX 2080 Ti and 128 GB of DRAM. CUDA 11.1 was employed to 

harness the GPU’s computational capabilities during training. 

 After successful training, we proceed to the testing step. During this step, we input 

the path to the folder containing the test datasets and the trained model folder. The 

TAG-SPARK model demonstrates specificity, as its performance on the test dataset 

heavily depends on its similarity to the training data, influenced by the characteristics of 

the training dataset. Therefore, the test dataset must be the same as the training dataset. 

 Figure 4-16A shows that after TAG-SPARK processing, the SNR of high-speed 

scanning image at a single depth increases by 4.4 dB, i.e. the effective noise reduction is 

about 275%. In addition, compared with the 30-times photon average image, the violin 

plot in Figure 4-16B illustrates the PCC value enhanced from 0.64 to 0.85. The 

increased positive PCC value evidences that TAG-SPARK has effectively maintained 

the neuronal structures and features. 

  

Figure 4-16, Image quality enhancement before and after TAG-SPARK processing.  

(A) Average SNR of volumetric image before and after TAG-SPARK processing, increase from 7.1±2.5 dB 

to 11.5±0.9 dB. (B) Pearson correlation violin plot of the raw and TAG-SPARK denoised images to the 30x 

photons average.  

 

Because of the trade-off between TAG lens optical power and image contrast, the 
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quality of the image affects whether our TAG-SPARK model can be effectively trained. 

Therefore, before conducting in vivo experiments, we need to plan carefully to ensure that 

the premise of not causing damage to mice. We should test the image quality under 

different optical powers and examine whether TAG-SPARK can enhance image quality 

under that SNR of images. 
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Chapter 5 Results and analysis 

 According to Chapter 3, we have established knowledge of optical system setup. To 

understand the evidence of the system's performance (see Chapter 3.3 for details). In this 

chapter, we focus on applying our techniques to investigate the activity of PCs in the 

cerebellar cortex, serving as an experimental model. Our goal is to observe how neural 

signals are vertically transmitted under different response conditions and examine the 

impact on the population of cells. We recorded the behavior of the mouse during rest and 

movement states. When the neurons are sensory-evoked, we expect a change in the 

fluorescence intensity. Through these experiments13, we seek a comprehensive insight 

into the understanding of the dynamic nature of neural networks and the impact of 

technological improvements on studying brain function and neurotransmission.  

 

5.1 High-speed volumetric image related to in vivo mouse 

behavior recording 

In this section, we will elaborate on the significance of the brain region and neural 

cells observed in the experiment. Additionally, we will present the structural and 

functional images achieved through the utilization of low- and high-speed scanning 

techniques respectively. Preliminary analyses were conducted on the obtained images, 

revealing valuable insights into the distribution of neural signals within the observed in 

vivo mouse brain.  

To understand the intricate dynamics of living brains, we constructed a high-speed 

volumetric 2PM system, which combines low-speed and high-speed axial scanning using 

a linear translation stage and TAG lens. Low-speed scanning provides detailed structural 

mapping with a high SNR and optimizes localization as analysis. High-speed scanning 
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captures not only architecture information but also rapid neuronal dynamics in real time. 

 

Structural image of PC in the mice 

To study the dynamic neuronal signals of PCs in mice, we fixed the mouse's head 

onto a rotating disk, allowing for free movement during the experiment. In the low-speed 

scanning mode, the linear translation stage (MGZ30, Thorlabs) was employed to achieve 

axial translation with a spacing of 1 µm. Laser power after the objective lens is set around 

100 mW. Each frame was acquired with a pixel dwelling time of 5 µs, three times 

averaging (frame rate takes 3 s), and a volume size of 400 x 400 x 152 ( ), featuring 

512 x 512 pixels per 2D image and 152 frames in the stack (Figure 5-1). 

 

Figure 5-1, Low-speed Structural image of PCs in in vivo mouse. 

 (A) Volumetric image with z-projection. (B) 2D images in different depths. From top to bottom: dendritic 

layer to somatic layer. (C) Schematic of PCs from the dendritic layer to the somatic layer. In the xy sagittal 

planes, the dendrite branches exhibit parallel line structures, while the cell bodies display circular images. 

 

Mouse behavior experiment 

To ensure the accuracy of neural signals and the monitoring of mouse movement 
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during high-speed scanning experiments, we implemented a rigorous approach. To 

precisely capture the three-axis velocity of the mouse tail movement over time, a tail 

accelerometer 14  was incorporated (Figure 5-2). Furthermore, a high-speed infrared 

camera was employed to record the entire experimental process2, enabling the 

observation of the mouse's movement states and tracking behavior with DeepLabCut15 

(117, 118).  

 

Figure 5-2, Photograph of the mouse head-fixation and rotating disc system. 

(A) The red square highlights the miniaturized three-axis accelerometer installed at the base of the mouse's 

tail. Purple, orange, and pink points were detected from DeepLabCut software. We performed the tracking 

analysis for the foot, hint position, and tail position as tracking points to record the mouse's locomotion. (B) 

Signal analysis revealed that during the middle 20 seconds, the mice maintained a movement state. From 

top to bottom, the signal is recorded from the rotation disk, accelerometer, and tracking analysis. 

 

For behavioral experiments, distinct states were designed for the mouse, 

encompassing periods of complete rest and active movement. During a 65-second 

experiment in a state of complete rest, without external intervention, mice may exhibit 

spontaneous movements. Subsequently, for the movement state, external recording was 

initiated by activating the LED light 5 seconds after the start of recording. After an initial 

20-second period of inactivity, the rotation disk was then shaken for 20 seconds to induce 
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movement in the mouse. Following this, the disk remained stationary for another 20 

seconds before the LED light was activated again 5 seconds before the end of the 

recording, serving as an external intervention marker (Figure 5-3). 

 

Figure 5-3, Experimental design for PCs. 

The yellow bar presents the moment when the LED light. The black region presents the movement state of 

the mouse. During the middle 20 seconds, we will shake the disk to force the mice to run. 

 

In high-speed scanning mode, we utilized a TAG lens to rapidly modulate 

z-positions at a resonant frequency of 188 kHz, with a voxel dwelling time of 0.02 µs. 

The volume rate varied based on differences in lateral pixel counts, resulting in a diverse 

dataset capturing neural structures and behavioral responses across different scanning 

speeds. In our experimental conditions, we set the TAG lens driving amplitude at 15%, 

corresponding to an optical power of approximately 3.75 D. This adjustment extended the 

DOF to encompass the neuronal architecture of PCs within a physical dimension of 62 

μm. With this driving amplitude, both dendritic and somatic architecture are captured, 

and z resolution achieves sub-micrometer resulting in notably homogeneous 

representation between adjacent layers.  

Figure 5-4A shows the structural images, at a depth of 110 µm, parallel line 

structures revealed dendrite branches in distinct planes. As the depth reaches 130 µm, 

dendrite branches converge into circular soma, consistent with the typical spacing 

between dendrite and soma in PCs. At the bottom layer (150 µm), the soma exhibited 

flask-like shapes. Figure 5-4B left side shows the functional image at a single time point. 



doi:10.6342/NTU202402518

 102 

However, the SNR of images is too low to directly compare with structural images. A 

3-second temporal projection was applied to the images to enhance the image quality 

(Figure 5-4B right side). The resulting high-speed scanning images undergo visual 

co-registration and low-speed scanning images. Accordingly established in Chapter 

4.1.2 that both low- and high-speed scanning corresponds to specific FOV, and the 

structure of neurons is clear.  Additionally, Figure 5-4B demonstrated high-speed 

imaging examples at three distinct depths with adjacent pairs (109 µm & 110 µm; 129 µm 

& 130 µm; 149 µm & 150 µm), presenting the similarity in each pair. These image 

properties establish a spatial redundancy for the application of the TAG-SPARK model. 

 

Figure 5-4, Adjacent layers of image of in vivo PCs at different depths.  

(A) Low-speed scanning structural images. (B) Left: High-speed scanning of images at a single time point. 

Right: 3-second time projection images. 

 

Preliminary dynamic neuronal signal analysis 

To identify individual neuron behaviors, we combined information from 

structural images, which were treated as ROI masks, and functional images, providing 

time-lapse data for dynamic analysis (Figure 5-5A). For normalized signal, we set the 
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average of intensity during the rest state as baseline, 

 

where F is the mean of intensity at a single time point,  is the baseline of intensity. 

Our preliminary analysis focused on the distinct cells located at the deep somatic 

layer (z=130, 140, 150 um), revealing diverse responses across different cells. 

Additionally, the response is related to mouse behavior, as indicated by the orange area 

in Figure 5-5B. 

 

Figure 5-5, Preliminary analysis of PCs functional image. 

(A) The process of ROI mask segmentation and applied to functional images for analysis. (B) (Left) Images 

of the mouse cortex of three individual PCs in different observation depths from 130 µm to 150 µm. The 

locations of three individual PCs are marked as ROI 1 (Red), ROI 2 (Blue), and ROI 3 (Green). Scale bar: 

50 µm. (Right) Corresponding calcium traces at various depths with raw data analysis. 
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5.2 Evaluation of functional images: comparing before and 

after  

In this section, we will compare the original and denoised images through 

quantitative analysis of image quality using the methods mentioned in Chapter 4.2. To 

evaluate the improvement in image quality after applying TAG-SPARK, a comparison is 

made between the images before and after denoising and a high-quality reference image.  

 

5.2.1 Pre-image processing for analysis 

 Figure 5-6 shows the pipeline of pre-image processing for functional analysis after 

denoising images. After TAG-SPARK processing, the enhancement of high-speed 

scanning image quality allows the distinguishable structures. Therefore, applied it with 

motion correction at different time points to ensure that the structures are aligned at the 

same position. (see Chapter 4.2.1 for details) Then, low-speed scanning images as 

structural images underwent a series of steps for co-registration. Initially, a 3-second 

time projection was applied to the high-speed scanning images. Subsequently, a rough 

manual alignment was performed through visual inspection to ensure both the 

high-speed and low-speed images were within the same field of view. For further 

refinement, the “Register Images” feature in the Amira software was utilized. A “Rigid” 

transformation with disabled rotation was selected. These procedures ensure consistent 

alignment between the high-speed scanning and low-speed scanning images, enhancing 

overall reliability in data analysis and interpretation. At last, we segmented the 

individual cells as ROI masks and applied them to the functional imaging for time-lapse 

analysis.  
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Figure 5-6, Schematic of cell segmentation and co-registration of calcium imaging 

via low-speed structural and high-speed functional scanning modalities. 

(A) Low-speed scan images serve as the structural image. (B) High-speed functional images after 

TAG-SPARK processing. (C) Motion correction on functional images at different time points to ensure that 

the structures are aligned at the same position. (D) Co-registration of low-speed structural and high-speed 

functional images using lateral correlation analysis and 3D non-rigid registration to identify the best 

correspondence. (E) Segmentation of individual neurons using the structural images as ROI masks. (F) 

Applying the ROI masks to time-lapsed functional images and analyzing signal changes at different time 

points to capture calcium dynamic responses on a 3D basis. 

 

5.2.2 Evaluation of denoising method: TAG-SPARK for structural 

similarity and SNR optimization 

In Figure 5-7, we analyzed differences between raw data and the images after 

TAG-SPARK processing. The results (the blue and orange lines present raw and denoised 

data respectively) show that TAG-SPARK effectively reduced noise intensity while 

preserving the peak values and trends of the signals.  
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Figure 5-7, TAG-SPARK denoising performance on calcium imaging of PCs. 

 (A) In vivo calcium imaging of PCs at different depths of high-speed and denoised high-speed scanning 

mode, employing the TAG-SPARK model, respectively. Scale bars: 100 μm. (B) From top to bottom: 

Calcium imaging of PCs in the dendritic and somatic layers, respectively. Corresponding calcium traces of 

a selected dendrite and soma within a 65-second observation time window. 

 

The results of the effectiveness of the denoising methods, TAG-SPARK are 

quantitatively assessed to measure the extent of improvement in image quality. We utilize 

the PCC to analyze structural similarity and the PSNR to optimize the PSNR of temporal 

signals. To validate if the quality of the denoised images is significantly greater than the 

original images, a one-tailed paired t-test is employed (see Chapter 4.1.2 for details). 

Before initiating the quantitative analysis, it is imperative to establish a reference point 

for comparing the original and denoised images. Relying solely on static structural 

images for comparison is not advisable, given the dynamic information in high-speed 

scanning images.  

To account for the variability in neural signals, the assessment involves both PCC 

and PSNR for denoised images concerning the moving average of N photon images. The 
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denoised image exhibits comparable quality to the 60-times averaged image, or the 60x 

photons image, as indicated by significantly elevated PCC and PSNR values. (Figure 5-8) 

 

Figure 5-8, Denoise and moving average comparison. 

(A)Pearson’s correlation coefficient (PCC) and (B) peak signal-to-noise ratio (PSNR) of denoised images 

to the moving average of N times photons image. The 60-times averaged image, i.e. 60x photons image, 

has approached reasonably high PCC and PSNR versus the denoised image (gray dash line). That is, the 

quality of the denoised image is similar to that of the 60x average. (C) From left to right show the images 

with raw data, TAG-SPARK processed, and 60x photon average image. The top and bottom demonstrate 

the different depths, with dendritic and somatic layers respectively. 

 

In Figure 5-9 A and B, we compared the volumetric images of raw data, after 

TAG-SPARK processed, and images overlaid with a moving average of 60x photons. The 

violin plots illustrate that denoised images displayed a significantly higher PCC 

distribution, with a median of 0.81, in contrast to the raw data with a PCC of 0.48. The 

increased positive PCC value suggests that the denoising process has effectively 

maintained the integrity of neuronal structures and features. In addition, to present the 
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improvement of image quality and noise reduction, we calculate the distribution of the 

PSNR before and after denoising. PSNR value increases by around 5.6 dB, i.e. the 

effective noise reduction is about 360%. Both PCC and PSNR demonstrated statistically 

significant improvement, as evidenced by the results of the one-tailed paired t-test 

(p-value < 0.001). These observations emphasize the effectiveness of our method in 

suppressing fluctuating noise across spatial and temporal domains, while accurately 

preserving the rapid neural activities evident in the calcium traces.  

To further confirm the effectiveness of noise reduction at various depths, we 

analyze the quality of 2D images at every 8 μm, as depicted in Figure 5-9 C and D. The 

distribution of PCC shows that at the edges of volumetric images (90 μm and 150 μm), 

higher correlation coefficients are due to TAG lenses with various focusing points along 

the z-direction, varying in a sinusoidal wave track. On the other hand, the distribution of 

PSNR increases with depth. This is because PSNR depends on the maximum intensity of 

the images, and the dendritic layer typically has lower intensity compared to the somatic 

layer. Figure 5-9B shows a violin plot of 3D PSNR like the result of the depth-dependent 

PSNR at 150 μm, incorporating both dendritic and somatic regions where the intensity of 

the soma influences the peak signal value for calculation. 

 

Figure 5-9, TAG-SPARK denoising performance on calcium imaging of PCs. 

Calcium imaging of PCs in the dendritic and somatic layers, with pursued blue and red color respectively. 
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(A) Pearson correlation violin plot of the raw and TAG-SPARK denoised images to the 60x photons 

average. (B) Distribution of PSNR before and after TAG-SPARK processing. (C) Pearson correlation and 

the corresponding histogram distribution at different depths before and after TAG-SPARK processing to the 

60x photons average. The PCCs of raw data range between 0.4-0.7, while those of TAG-SPARK are 0.8-0.9. 

(D) Distribution of PSNR and the corresponding histogram distribution at different depths before and after 

TAG-SPARK processing. The PSNRs of raw data range between 14-24 dB, while those of TAG-SPARK 

are 17-30 dB. The maximal enhancement is 475%. 

 

 As introduced in Chapter 4.2.2, SNR and PSNR play distinct roles in evaluating 

image quality. SNR compares the signal and noise within the image itself, while PSNR 

compares the maximum intensity and MSE between the ground truth (or noise-free image) 

and the processed image. To further confirm the effectiveness of noise reduction at 

various depths, we analyze the depth-dependent SNR variation at every 8 μm. Figure 

5-10 shows a significant improvement in SNR, before TAG-SPARK processing, the SNR 

of the layered original image ranged between 1-5 dB (average 2.3 dB, blue color 

histograms). After denoising, the SNR values improved to 9-12 dB (average 10.4 dB, 

orange color histograms). The red double arrows and numbers indicate the ratio of SNR 

improvement of TAG-SPARK, ranging from 7.2 dB (527%) to 8.9 dB (771%). On 

average, the overall SNR enhancement is 8.1 dB, corresponding to about 645% 

improvement in image quality. 
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Figure 5-10, Comparison of raw and TAG-SPARK images with depth-dependent 

SNR analysis. 

Distribution of SNR across 2D layers at various depths before and after TAG-SPARK processing. SNR 

enhancement of TAG-SPARK among different depths of 2D layers, the best approaching 800%. 

 

5.3 Individual neural signal transmission and population 

neural behavior 

In this section, we apply TAG-SPARK to functional imaging and uncover 

intriguing results. We not only analyze four-dimension (xyz-t) neural signal variations 

within individual neurons but also examine changes in large cell populations, revealing 

insights into both individual neural dynamics and collective behavior. 

 

5.3.1 Signals transmission through individual neurons 

The theoretical expectation is that calcium influx in PC dendrites converges into 

the cell body, elevating the somatic calcium concentration necessary for the generation of 

complex spikes in PCs. To observe the variations in neural signals over time and depth, 

manual segmentation was performed, and three individual neural cells were selected. 
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(Figure 5-11) We utilized the “Volume Edit” function in the Amira software to track 

individual cells in 3D imaging.  

 

Figure 5-11, Three-dimensional image reconstruction of three individual neurons. 

 

In this study, we extracted the x-axis acceleration variations from the three-axis 

accelerometer (Figure 5-12A) to compare with the neural dynamic signals captured by 

functional images. In Figure 5-12B, we observed that as the mice initiated movement, 

there were corresponding alterations in neural signals. Furthermore, these changes 

differed with depth. In superficial dendritic layers, the response manifested as peaks 

within one second, while in deeper somatic layers, peaks lasted over ten seconds. 

Notably, the three individual neural cells exhibited distinct expression patterns, 

particularly evident during the mouse movement state, where positive, flat, and negative 

responses were observed in the 10-second last peaks, i.e. slow signal response. These 

states were also identifiable in the analysis of raw images as Figure 5-5B, yet the intensity 

variations corresponding to short-duration spontaneous movements became obvious after 

denoising, i.e. fast signal response. Additionally, the contour maps (Figure 5-12C) were 

employed to visually represent continuous changes, highlighting the differences in 

intensity with red and blue colors, i.e. positive and negative values, in the responses of the 

three neural cells in deeper layers (4D dynamic neural signal16). 
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Figure 5-12, Dendrite-to-soma signal tracing along three individual neurons.  

(A) Schematic of a mouse placed on the rotating disc and the intensity profile of the leg movements. (B) 

(Left) Images of the mouse cortex of three individual PCs in different observation depths from 100 µm to 

150 µm. The locations of three individual PCs are marked as ROI 1 (Red), ROI 2 (Blue), and ROI 3 (Green). 

Scale bar: 50 µm. (Right) Corresponding calcium traces at various depths. (C) Corresponding 

depth-dependent calcium response of three individual neurons. 

 

In a summary of the image analysis conducted, we confirm that TAG-SPARK, 
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even after denoising, effectively preserves the inherent trends and intensity variations in 

the signals. We successfully preserve the peaks in neural signals of individual neurons 

concerning both depth and temporal information. This elucidation allows us to establish 

the relationship between neural signals and behavior. 

 

5.3.2 Relation between large cell populations and depth of brain 

To further explore dendritic-to-somatic calcium evolution within PC populations, 

as a proof-of-concept experiment, the 27 cells extracted in the dendritic and somatic 

layers (Figure 5-13), and all time-lapse signals depicted in Figure 5-13C-F. We perform 

the clustering analysis on both dendrite and soma responses based on the threshold value 

ΔF/F = 0.2 of the signals during the phase of the movement (the period colored with gray 

shadow). The non-intuitive convolution result is classified into three types, including 

green: ΔF/F > 0.2, purple: -0.2 < ΔF/F < 0.2, and blue: ΔF/F < 0.2. For a complete 

visualization of the overall calcium dynamics, Figure 5-13G and H depict the distribution 

of calcium traces for all 27 cells. These traces are presented as colored shadows in the 

dendritic and somatic layers, respectively, while the average calcium traces are 

represented by solid curves. All dendritic responses were averaged together due to their 

consistent behaviors. Thus, in Figure 5-13A and B, corresponding ROI markers are 

labeled with colors corresponding to their respective functional groups. It's noteworthy 

that even neighboring cells within the somatic layer exhibited varying behavioral 

patterns. 

In line with previous research (70, 119-121), PCs show similar dendritic calcium 

spikes during prolonged movement, as indicated by the gray area (Figure 5-13C). 

However, there was a divergence in calcium dynamics within the PCs at the somatic layer 

(Figure 5-13D-F). While some adhered to the conventional signal convolution theory, 



doi:10.6342/NTU202402518

 114 

differing only in signal strength, others exhibited negative responses, as highlighted by 

the red arrowhead (Figure 5-13J). This suggests a decrease in calcium concentration, 

contradicting the common belief of additive convolution from dendrites to soma. 

 

Figure 5-13, Calcium dynamics of PC populations at different depths. 

Low-speed scanning images in dendritic and somatic layers, respectively. Corresponding calcium traces of 

27 cells, marked in (A) and (B). (C)-(F) 27 cells with different time-lapse analyses were marked in the 

red/green, blue, and purple shadows in the dendritic/somatic layers. (G-H) Collective calcium response in 

the dendritic/somatic layers. Three distinct behaviors are distinguished based on the threshold value of 

ΔF/F = 0.2 during the phase of the movement stimulation phase, represented by three different colors: green 

(ΔF/F < 0.2), purple (-0.2 < ΔF/F < 0.2), and blue (ΔF/F > 0.2). In (D), ROI markers are labeled with colors 

corresponding to their respective groups. (I-J) Corresponding calcium traces of 27 cells, marked in (C-F). 

 

For the functional disparity analysis, we performed pairwise correlation 

comparisons of calcium traces among the 27 cells in each layer with 5-µm depth intervals 

from the dendritic to somatic layers. In Figure 5-14 the map shows the averaged 

correlation coefficients decline from 0.7 to 0.1, and the histogram distribution illustrates 
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the overall differences in each layer, particularly revealing more distinct variations in the 

deeper layers. At depths ranging from 95 to 115 μm, the correlation coefficient 

distributions were consistently positive, indicating similar calcium dynamics in the 

dendritic layers. However, beyond 120 μm depth, the distribution of the correlation 

coefficient ranged from positive to negative regions, suggesting the existence of at least 

three kinds of behaviors in the PC populations in the somatic layers, i.e., positive, zero, 

and negative values of the correlation coefficients. The volumetric imaging results 

provided direct evidence that a significant portion of somatic PC responses do not follow 

their dendritic calcium activities.  

 

Figure 5-14, Depth-dependent correlation analysis. 

Correlation calculation at different depths over a 65-second observation time window and the 

corresponding histogram distribution. 

 

While imaging calcium activities of PC dendrites has been a standard approach 

to representing somatic complex spike activities of PCs, this discovery leads to a strong 

biological impact, and the dendritic-to-somatic interactions require revisiting. This 

phenomenon could only be accurately discerned through the simultaneous detection of 

dendritic calcium spikes and somatic calcium fluctuations facilitated by our volumetric 

imaging technique along with the contrast-enhanced TAG-SPARK algorithm.  
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In summary, this analysis confirms the critical role of volumetric imaging in 

analyzing neural signals. The responses observed in a single layer of cells do not 

necessarily reflect similar reactions in cells located in different layers. Moreover, as the 

PC exemplifies, the differences in neural signal changes become more disparity with 

increasing depth. 
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Chapter 6 Discussion 

 

 In this study, we integrate a TAG lens 2P high-speed volumetric system with a 

deep-learning denoising algorithm, TAG-SPARK, to demonstrate calcium functional 

imaging across a large population of PCs in awake mice. Our high-speed volumetric 

system acquires hundreds (265) of axial layers per volume, facilitating effective training 

of the TAG-SPARK model in the spatial domain. We present the applicability to 

neuroscience by examining calcium dynamics of PCs in the mouse cerebellar cortex, 

exploring signal transmission from dendrites to soma at various depths, and revealing 

variations among individual neurons. This ensures the preservation of temporal 

information in calcium dynamics and achieves around 400% (5.6 dB) PSNR and over 

700% (10.4 dB) SNR enhancement. 

 

Photobleaching 

 For in vivo mouse experiments, we control the laser power after an objective lens 

of around 100 mW to protect the mice from damage and photobleaching. The utilization 

of TAG-SPARK for image quality improvement eliminates the need for high-power 

illumination, addressing concerns about photobleaching (Figure 6-1).  
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Figure 6-1, Photobleaching examination within 8 minutes. 

(A) Raw calcium images of one optical section in the eight continuous high-speed volumetric imaging trials. 

(B) Average fluorescence intensity of the three ROIs across the eight trials, featuring that no significant 

photobleaching is observed. 

 

Increasing the laser power further improves contrast but may lead to sample 

bleaching or even damage. In Figure 6-2A and B, we applied different laser powers to in 

vitro mouse brain slices. It clearly shows that with a two-fold increase in laser power, the 

SNR of the image increases by approximately 3.1 dB, corresponding to a 204% 

enhancement in image quality. However, we scanned the same FOV of the sample over 1 

minute, capturing an image every 2 seconds, and analyzed the intensity-time dependence. 

The results (Figure 6-2C) indicate that high laser intensity causes a gradual decrease in 

overall image intensity within one minute, whereas low-intensity laser settings maintain 

relatively stable image intensity. 



doi:10.6342/NTU202402518

 119 

 

Figure 6-2, Photobleaching results from different laser power. 

Low-speed scanning image of in vitro mouse brain slice (A) with 20mW laser power. SNR of the image is 2 

dB. (B) with 50mW laser power. SNR of the image increases to about 5 dB. (C) Time-dependent intensity 

difference observed over 1 minute. 

 

 We discussed two pivotal technologies in our study: the TAG lens, which facilitates 

high-speed volumetric scanning, and TAG-SPARK, a key player in enhancing image 

quality.  

 

TAG lens: DOF and digital resolution 

 Starting with the TAG lens, which has been widely utilized in volumetric 2PM 

systems.  The advancement of TAG lenses necessitates consideration of two important 

parameters: DOF and digital resolution, which correspond to the strength of its optical 

power (diopters) (see Chapter 2.2 for details), and data acquisition rate (see Chapter 

4.1.1 for details). TAG lens has been widely utilized in volumetric 2PM systems. TAG 

lens has been widely utilized in volumetric 2PM systems. One early milestone paper 

was in 2015,(122) reporting 130 µm extension and 40 voxels in the z-direction. Over 

the past decade, advancements in the application of 2PM with TAG lenses have 

substantially improved DOF extension and axial digital resolution. In 2018, Piazza et al. 
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reported a DOF of 120 µm and axial digital resolution of 80 voxels,(48) and Har-Gil et 

al., achieved an impressive volume rate of 73.4 Hz, with each volume capturing a DOF 

of 330 µm using 150 voxels.(123) In 2019, our group obtained functional imaging of 

fruit flies with a depth of 100 µm and 70 axial voxels.(54) In 2021, the number became 

200 µm DOF extension and 73 axial voxels, when we incorporated a GRIN lens 

endoscopy for volumetric functional inspection at 6 mm below the skull.(27) In 2022, 

we integrated plug-and-play AO to address aberrations during high-speed volumetric 

scanning.(56) However, these previous reports did not demonstrate sub-micrometer 

axial layer gaps, which is necessary to implement the TAG-SPARK idea. In 2023, Hsu 

et al. introduced a resonant galvo together with the TAG lens, pushing the numbers 

toward an axial resolution of 256 voxels, with a DOF of only 30 µm (124). Although the 

spatial redundancy should be adequate, their double-resonant design resulted in 

Lissajous sampling, which might be problematic when combined with the Noise2Noise 

model. In this work, we demonstrated more than 200 axial layers with 60 µm in DOF 

extension, tailor-made to realize the idea of deep-learning denoise of TAG-SPARK. 

 Except for the TAG lens, there are many other approaches for volumetric 2PM, 

but in general, the axial layer density is much less than the TAG lens approaches. For 

example, reverberation 2PM achieves video-rate (30Hz) observation across a DOF 

spanning 500 µm, but with a gap as large as 90 µm between each plane.(43) Light bead 

microscopy (LBM), creates axially distinct foci at different depths simultaneously, 

enabling the direct acquisition of large volumetric images on a millimeter scale,(15, 41, 

42) but the layers are separated by at least 10 µm. Another recent multi-plane imaging 

technique is dual-objective 2PM, which offers a clear view of 380 µm thick brain slices 

with 50 axial layers; nevertheless, it is restricted to in vitro experiments due to the 

geometrical design.(125) We envision that our TAG-SPARK algorithm applies to other 



doi:10.6342/NTU202402518

 121 

volumetric imaging systems as long as the density in the axial direction is adequate to 

fulfill the spatial redundancy requirement. 

 

Trade-off in the application of TAG lens  

For TAG lens application, its axial scanning speed, i.e. the resonance frequency, is 

primarily constrained by readily available parameters as well. Functioning as a resonant 

component, the TAG lens operates at multiple harmonic frequencies, where a higher 

driving frequency extends the DOF but compromises the effective NA, leading to a lower 

spatial resolution (55). This trade-off is carefully navigated in our experiments to meet 

essential criteria such as (1) adequate temporal resolution for capturing dendritic spikes, 

(2) sufficient spatial resolution for identifying sub-cellular structures, (3) enough DOF to 

cover the 3D architecture of neurons, and (4) a dense z-sampling dataset for training the 

TAG-SPARK model. 

 

Figure 6-3, Four parameters of TAG lens.  

When approaching 'Depth,' one moves away from 'Contrast' because photons are spread over a larger depth 

of field. Similarly, when near 'Speed,' 'Resolution' becomes distant due to effective NA decreased. 

Increasing 'Speed' also increases 'Depth' since optical power correlates with resonance frequency. However, 

augmenting 'Speed' diminishes 'Contrast' because high-speed scanning reduces photon flux at each voxel. 
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 While it's feasible to further extend the DOF by amplifying the TAG lens's optical 

power with driving voltage, this adjustment decreases the excitation photons per voxel, 

diminishing the SNR and potentially hindering model training. If larger volumes are 

required, beyond the capabilities of the deep-learning denoising algorithm, incorporating 

hardware solutions like adaptive optics can be advantageous. Adaptive optics addresses 

optical elements and deep-tissue aberrations, potentially improving the image contrast at 

2PM without compromising the efficiency of photon usage (56, 57). 

 

TAG-SPARK versus temporal redundancy training model 

 We integrate our TAG-lens-based high-speed volumetric system with a 

deep-learning denoising algorithm, TAG-SPARK, a spatial redundancy-based algorithm, 

effectively tackles the challenge of artifacts in denoised output from neighboring time 

points. In contrast to temporal redundancy-based algorithms such as DeepCAD-RT17 

(Figure 6-4).  

 

Figure 6-4, General principle of DeepCAD-RT. 

The self-supervised training strategy involves using input-target pairs based on temporal redundancy. 

Consecutive frames in the temporal domain of the original stack are divided into two sub-stacks (red and 

yellow frames). These sub-stacks serve as the input and target volumes for training the deep neural network. 
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During subsequent acquisitions, a 3D (x–y–t) window traverses the entire stack to generate the output stack. 

The loss function is defined by comparing the output sub-stack (blue frame) with the target and trains the 

model until it converges. 

 

 Here, we present a comparative analysis of the same set of cerebellar images to 

evaluate the denoising capabilities of both methods for structural and functional analysis. 

In Figure 6-5A, both TAG-SPARK and DeepCAD-RT demonstrate their effectiveness in 

enhancing image quality, with structural details becoming significantly clearer.  

 Further, for the functional dynamic analysis, we divide our exploration into two 

aspects: the signal (ROI1) and the noise (ROI2). The ROI1 depicts cellular responses 

captured at a single time point. The ROI2 depicts that noise interference enhances the 

background intensity at a single time point. From Figure 6-5 B and C, it can be observed 

that the denoised images by TAG-SPARK faithfully capture the cellular response activity 

and minimize noise interference at other time points. However, in the case of 

DeepCAD-RT, which dilutes a sharp signal peak, and spreads shot noise contamination to 

other frames. This is due to the utilization of x, y, and t inputs during the training of the 

DeepCAD-RT model, enabling the model parameters to learn data from different time 

points simultaneously. As a result, the output images mix information from neighboring 

time points, especially when tracing neuronal dynamics under high-speed, low-contrast 

acquisition, which introduces artifacts. 
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Figure 6-5, Functional analysis with different denoised algorithms. 

(A) In vivo calcium imaging of PCs: (Left) high-speed scanning image (raw data); (Middle) high-speed 

scanning image denoised with DeepCAD-RT algorithm, based on temporal redundancy self-supervised 

learning; (Right) high-speed scanning image denoised with TAG-SPARK. Both DeepCAD-RT and 

TAG-SPARK satisfactorily improve the SNR. (B) A calcium spike in ROI1 encircles a bright neuron. 

Although the DeepCAD-RT (green curve) seems to remove noise more efficiently, it smears the spike. On 

the other hand, TAG-SPARK preserves the spike dynamics nicely. (C) Temporal response of ROI2, which 

is a region with pure noise. There is a particularly strong noise peak at ~ 2 second recording time, possibly 

due to cosmic ray irradiation, but DeepCAD-RT spread the noise distribution into other time points. 

 

 Therefore, TAG-SPARK emerges as the preferred solution when capturing transient 

responses, such as rapid spiking in PC dendrites, which is crucial due to its ability to 

preserve the fidelity of fast-changing events. On the other hand, for relatively slow 

dynamics, such as the convolutional result in PC soma, DeepCAD-RT offers higher noise 
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reduction. These two approaches coexist, with neither fully substituting the other. Thus, 

the mixture of temporal and spatial redundancies, as well as the corresponding 

deep-learning denoising tools for different compartments of neurons, may generate 

optimal results with the best SNR for high-speed 3D mapping. For example, in situations 

where images show spatial continuity without rapid temporal changes. In such cases, a 

new model combining the strengths of both approaches could potentially achieve better 

SNR. One straightforward approach is to first apply spatial denoising to the images, 

followed by temporal denoising for further SNR improvement. Another approach 

involves developing a new data stacking scheme to create x-y-z-t image stacks as input 

and target stacks for a network model, such as a 4D U-Net, to learn noise reduction. 

Therefore, further refinement of TAG-SPARK is possible by integrating advanced 

network architectures, such as an attention mechanism. 

 

TAG-SPARK versus spatial redundancy supervised training model 

In addition to the comparison with the temporal training model DeepCAD-RT, 

we compare TAG-SPRAK with other "supervised" deep-learning models that utilize 

spatial information for training, i.e. content-aware image restoration (CARE18).(126) 

Since CARE needs ground truth structural images as the training data source to improve 

the SNR, not a Noise2Noise model, we expect that CARE is superior in denoise 

performance. In Figure 6-6, we compare the SNR performance (see Chapter 4.2.2 for 

SNR analysis) as well as the functional responses of raw data, TAG-SPARK, 

DeepCAD-RT, and CARE, respectively. CARE offers the best SNR. Nevertheless, 

because the training focuses on structural information retrieval, CARE completely loses 

functional information, both fast and slow responses. Therefore, CARE is not suitable 

for reducing noise in dynamic neural signal imaging. Regarding DeepCAD-RT, if the 
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functional response is not fast, it gives SNR improvement comparable to CARE, while 

keeping the functional observation. However, if fast spiking behavior is the target of 

interest, such as the red area and the inset in Figure 6-6, DeepCAD-RT might create 

artifacts, and TAG-SPARK gives the best balance between SNR and functional 

preservation. 

 

Figure 6-6, Evaluation of different denoise deep-learning models on 2D calcium 

imaging of PCs. 

(A) In vivo calcium imaging of PCs: (Left to right) high-speed scanning image of raw data; denoised with 

DeepCAD-RT algorithm, based on temporal redundancy self-supervised learning; denoised with CARE, 

based on spatial redundancy supervised learning; denoised with TAG-SPARK. Scale bar: 100 µm. (B) 

Corresponding SNR analysis shows that DeepCAD-RT and CARE provide comparable enhancement that 

is better than TAG-SPARK. (C) A calcium spike in ROI encircles a bright neuron in (A). Although both 

DeepCAD-RT (green curve) and CARE (orange curve) seems to remove noise more efficiently, 

DeepCAD-RT smears the spike and CARE completely loses the functional information. On the other hand, 

TAG-SPARK preserves the spike dynamics, especially the spike at ~ 66 seconds of recording time. 
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 In summary, our volumetric system enhanced by the TAG-SPARK algorithm offers 

significant value beyond technical advancements in biomedical imaging. Besides the 

example of PCs, most principal neurons and interneurons form complex microcircuits in 

three dimensions. Two-dimensional imaging techniques struggle to fully capture these 

microcircuit interactions, limiting our understanding of crucial biological functions, such 

as the day-night cycle calculated by neurons in the suprachiasmatic nucleus (127, 128), or 

the reward-processing by the interaction between cholinergic interneurons and the 

medium spiny neurons in the striatum (129). High-speed volumetric microscopy 

integrated with deep-learning noise reduction algorithms provides a deeper insight into 

the interactions between large neuronal populations and the intricate dynamics of 

subcellular calcium at the millimeter scale and millisecond level. 

 

Data analysis strategies  

 Currently, our analysis method involves selecting multiple ROIs and examining the 

average intensity within each region as it changes with depth and time. However, we 

determine whether the denoised signal represents noise or a functional signal based 

solely on behavioral records. This determination assumes that behavioral performance 

correlates with sensory evocation. To enhance our analysis, we could incorporate 

additional domain knowledge. For instance, in observing neural responses, a single 

neuron typically spans multiple pixels. If adjacent pixels display the same neural signal 

changes, we consider it a true signal. Conversely, if pixel-dependent analysis of adjacent 

pixels reveals differing response peaks, we should classify it as noise. Therefore, we 

may achieve effective signal analysis. 
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FOOTNOTE† 

 

1 TAG lens manuals (TAG lens LLC): https://reurl.cc/0v7bW9 

(Mitutoyo TAG lens: https://reurl.cc/9v2Akx) 

2 Behavior recording-IR camera: https://reurl.cc/6vrWQM 

3 ABCD matrix for DOF simulation: 

https://github.com/AllyHsieh/SWChulab/tree/main/SimulationDOF 

4 Correlation analysis: https://github.com/AllyHsieh/SWChulab/tree/main/Correlation 

5 Reconstruction of high-speed volumetric images: 

https://github.com/AllyHsieh/SWChulab/tree/main/reconstruction_fastscan_v9 

6 ImageJ-Deconvolutionlab2: 

https://github.com/AllyHsieh/SWChulab/blob/main/Deconvolution.md 

7 Cellpose: https://github.com/MouseLand/cellpose 

8 Ilastik: https://www.ilastik.org/ 

9 PCA: https://github.com/AllyHsieh/SWChulab/tree/main/PCA 

10 PSNR and PCC: 

https://github.com/AllyHsieh/SWChulab/tree/main/Moving%20average%20analysis%2

0for%20PSNR 

11 T-Test and ANOVA analysis: https://www.graphpad.com/quickcalcs/contMenu/ 

12 TAG-SAPRK: https://github.com/AllyHsieh/SWChulab/tree/main/DeepCAD-Z 

13 29-4 mouse experiment data: https://reurl.cc/lQG8W6 

14 Behavior recording- Accelerometer (OpenEphys): https://reurl.cc/DjGaj6 

15 DeepLabCut: https://github.com/DeepLabCut/DeepLabCut 

                                                                                                 

† Please log in to the lab account to ensure access to the data save in Google cloud. 

https://reurl.cc/0v7bW9
https://reurl.cc/9v2Akx
https://reurl.cc/6vrWQM
https://github.com/AllyHsieh/SWChulab/tree/main/SimulationDOF
https://github.com/AllyHsieh/SWChulab/tree/main/Correlation
https://github.com/AllyHsieh/SWChulab/tree/main/reconstruction_fastscan_v9
https://github.com/AllyHsieh/SWChulab/blob/main/Deconvolution.md
https://github.com/MouseLand/cellpose
https://www.ilastik.org/
https://github.com/AllyHsieh/SWChulab/tree/main/PCA
https://github.com/AllyHsieh/SWChulab/tree/main/Moving%20average%20analysis%20for%20PSNR
https://github.com/AllyHsieh/SWChulab/tree/main/Moving%20average%20analysis%20for%20PSNR
https://www.graphpad.com/quickcalcs/contMenu/
https://github.com/AllyHsieh/SWChulab/tree/main/DeepCAD-Z
https://reurl.cc/lQG8W6
https://reurl.cc/DjGaj6
https://github.com/DeepLabCut/DeepLabCut
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16 4D high-speed scanning image movie: https://reurl.cc/LWRY54 

17 DeepCAD-RT: https://github.com/cabooster/DeepCAD-RT 

(Drive: https://reurl.cc/z1xGj6) 

18 CARE (Drive): https://reurl.cc/yLzbbO 

https://reurl.cc/LWRY54
https://github.com/cabooster/DeepCAD-RT
https://reurl.cc/z1xGj6
https://reurl.cc/yLzbbO

