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摘要

隨著語音科技的進步，強大的語音基石模型已經被廣泛應用於各種語音任

務中。基於這些語音模型所得到的語音表徵，透過分群演算法等離散化程序，

大量資料與模型已經讓接近於文字的各式離散表徵問世，甚至出現了「不用文

字卻可以近似於文字」的「無文字（Textless）自然語言處理（Natural Language

Processing，NLP）」架構。

然而，這些語音的離散表徵與人類對語音或文字的理解究竟有多接近，依

然是一個未解之謎。為了解答這個問題，本論文結合語音學的知識，以人類感

知得到的、最接近文字且與語音訊號密切相關的「音位（Phoneme）」為基準，

分析兩種類型的語音離散表徵—第一種是透過分群演算法得到的「離散單元

（Discrete Unit）」，第二種則是將離散單元經過分詞演算法重新組合成的「聲學片

段（Acoustic Piece）」。本論文比較了音位與這些離散表徵之間的相關性，探討這

些離散表徵是否能夠有效地辨識出與人類認知相近的發音類型（Pattern）。

通過對離散單元的研究，我們發現 HuBERT是最適合用於獲取離散表徵的模

型，並且增加分群數有助於捕捉更細微的語音特徵。隨後透過對聲學片段的研究

發現，聲學片段可以作為分群演算法之外，另一種有效的語音表徵離散化方法。

此外，從音位類別的角度分析，我們還觀察到塞音和塞擦音音位較難被語音離散

表徵準確歸類，而擦音、雙元音與近音的特徵則相對容易被離散表徵辨識出來。

關鍵字：語音基石模型、離散單元、語音表徵、語音學、相關性
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Abstract

With recent advancement of speech technology, powerful speech foundation models

have been widely applied to various speech tasks. Based on the speech representations

obtained from these speech models, through clustering algorithms and other discretization

processes, a large amount of data and models have made various discrete representations

that are close to text available, and even a framework called “Textless Natural Language

Processing” which can approximate texts without using real texts has emerged.

However, how correlated these discrete representations of speech are to human under-

standing of speech or text remains a mystery. To answer the question, the thesis combines

knowledge of phonology and uses the most text-like and closely related to speech signals

that humans perceive, “Phoneme,” as a reference. We analyze two types of discrete speech

representations — the first is “Discrete Unit” obtained through clustering algorithms, and

the second is “Acoustic Piece” recombined through tokenization algorithms. This the-

sis compares the correlation between phonemes and these discrete representations, and

investigates whether these discrete representations can effectively identify pronunciation

patterns that are close to human cognition.

Through the study of discrete units, we found that HuBERT is themost suitablemodel

for obtaining discrete representations, while increasing the number of clusters helps cap-

ture more subtle speech features. Subsequently, through the study of acoustic pieces,

we found that acoustic pieces can be used as another effective method of discretizing

speech representations aside from clustering algorithms. In addition, from the perspec-

tive of phoneme types, we also observed that plosives and affricates are difficult to be

accurately classified by speech discrete representations, while fricatives, diphthongs, and
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approximants are relatively easy to be figured out by discrete representations.

Keywords: Speech Foundation Model, Discrete Unit, Speech Representation, Phonol-

ogy, Correlation
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第一章 導論

1.1 研究動機

　　語言是人與人彼此交流最主要的橋樑，而人們互相溝通最自然的方式便是透

過說話的語音（Speech）達成。人類往往是自幼就牙牙學語開始說話，直到已屆

學齡左右才開始學習認字與書寫。雖然在這個資訊爆炸的時代，人們已經習慣以

文字呈現的語言作為獲取資訊的主要媒介，但不論如何，任何書寫系統所承載的

語言必定有對應的語音形式。更何況世界上現存大約七千多種 [1]語言中，絕大

多數不見得存在成熟且普及的文字系統，卻無礙於這些語言被人們所熟悉和使

用。因此，「語音」作為語言不可或缺的存在方式，了解它和研究它的價值和重要

性不言而喻。

然而，相對於穩定、易於處理和保存的文字文本，語音訊號不但是變化萬千，

而且蘊藏了大量從語者風格、表達內容到抑揚頓挫（韻律，Prosody）等不同層次

的訊息，使得對它的處理、研究相比之下，其複雜度與難度高得多。由於語音的

這種特性，過往對於語言最有興趣的語言學家們，即便明白語音作為多數語言主

體的事實，也不得不藉文字符號為依託來進行探索。進入資訊化時代後，藉助電

腦硬體等計算設備的幫助，從語料庫、計算語言學到自然語言處理等透過科技的

力量發展語言處理技術的領域，頗長一段時間也是專注於文字的處理與分析。而

嘗試結合訊號處理發展的語音技術領域，當時則是透過語言學家對語言的領域知

識，例如從音位（Phoneme）、構詞（Morphology）、語法（Syntax）等等用以刻劃

人類語音和語言特性的概念，將之結合機器學習建立模型，開發技術以方便人們

能以語音這種更靈活的媒介，讓電腦、手機等科技工具可以更接近「直接溝通」

的使用方式，便利人們的日常生活。

1
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近年來，由於圖形處理器（Graphics Processing Unit，GPU）等硬體平行運算

技術的進步，深層學習（Deep Learning）快速崛起成為人工智慧的主流，有了此

項機器學習的技術，模型的彈性能夠更好的萃取資料、更貼近的尋找資料背後的

機制並進行預測，使得人們不再非得依賴大量費時費工的人類標註過程，進而使

得利用大量語料庫發展語言技術，進一步推進語言科技發展成為可能。尤其在自

監督學習（Self-supervised Learning）技術出現之後，深層學習模型可以依照人們

給定的方向，更細緻的從大量未標註、較易取得的語音或文字的語料中，找出其

中的語音、語法及語義等等結構，形成可以達成對人類語言作到前所未見的效能

的基石模型（Foundation Model），是這個領域的一大里程碑。尤其在以處理文字

為主體的自然語言處理領域，甚至出現了幾乎使人類真偽難辨的生成式模型，改

變了人們生活的方方面面。

借鏡文字方面的成功經驗，語音處理領域的研究者們也開始嘗試將語言模型

（Language Model）的概念套用於變化莫測的語音訊號之上，原先人們藉助訊號處

理知識一直使用的各種語音訊號特徵（Feature）也在自監督學習的架構之下，出

現了許多模型從大量語音資料中得到的「語音表徵（Speech Representation）」，作

為精煉語音資訊的另外一種新選擇，並開始廣泛被採用。然而，相比於文字符

號的穩定與單純，語音訊號的複雜性使得它處理起來會需要更大量的資料和運

算資源來擷取其中不同層次的細節。儘管如此，考慮到語音所承載的字母、單

詞或概念等內容，往往可以被人們以離散的文字符號所描述，向量量化（Vector

Quantization）的技巧因而經常被使用在語音 [2, 3, 4]乃至影像 [5]的領域中。透過

編碼簿（Code Book）的協助，模型學習到的表徵不但可以更加接近人們對聲音與

影像分門別類的習慣，還可以簡化語音和影像訊號複雜的處理流程，使得將文字

語言模型的演算法直接套用於這些模態成為可能。

2
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爾後，基於模仿人類學習語言的過程，拉氏（Lakhotia）等 [6]研究者藉助諸

如 CPC [7]、HuBERT [8]、Wav2vec 2.0 [9]等自監督學習模型的幫助，引入向量量

化的技術，提出了「無文字（Textless）自然語言處理」的學習架構，轉而以語音

表徵量化後的「離散單元（Discrete Unit）」作為操作對象，企圖單純以大量的語

音資料，訓練出完全不依賴文字標註的語言模型。如此一來，相比於此前使用連

續表徵的語音處理慣例，此種學習架構利用了離散表徵容易儲存、處理與傳輸且

相容於文字語言模型的優勢，長久以來只能在自然語言處理（Natural Language

Processing，NLP）領域使用的各種技巧便得以套用於語音之上，期望可以使模型

從大量的未標註語音資料中，訓練出「語音版本」的語言模型，並在各式語音任

務上獲得更好的效果。例如應用於英語和閩南語之間的語音到語音翻譯 [10]等等

使用「離散單元」進行任務訓練的研究，一定程度的印證了這些離散單元捕捉語

音內容的成效。

儘管離散單元在編碼語音之上固然有不錯的效果，並有相關研究 [11, 12]發

現離散單元與文字具有一定程度上的相似性。然而這些離散單元終究與人類書寫

出來的文字仍有所不同，這些差異點促使了人們嘗試重新從語言學（Linguistics）

汲取靈感，借鑑領域知識對這些表徵從語音學（Phonetics）或音韻學（Phonology）

的理論進行解釋和分析。本論文以此為契機，期望以 HuBERT [8]論文中的分析

方法，結合語音學知識為音位（Phoneme）特性的分類，對離散表徵如何與音位

相互關聯進行更為深入的探討與比較。

1.2 研究方向

　　早在機器學習出現以前，人類為了記錄語言，已經先行發展了如音素

（Phone）、音位（Phoneme）、字符（Character）、詞根（即「詞素（Morpheme）」）

3
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與單詞（Word）等符號系統。這些符號所構成的離散序列使得人們在使用語言溝

通時有了更方便處理與保存的選項，而不必僅僅依賴口耳相傳的語音。

隨著現代科技的發展，機器學習使得人們得以藉由模型的幫助，從連續的語

音訊號中獲取離散的表徵，其中最經典的代表作為 HuBERT [13]的「離散單元」。

其後，任氏（Ren）等 [11, 14, 15]學者基於語音訊號中存在的相似類型（Pattern），

並考量序列長度的差異，於是借鑑文字處理的分詞演算法（Tokenization）提出

「聲學片段（Acoustic Piece）」。

本論文以這兩類語音離散表徵為主要探討對象，基於它們與文字在操作形式

上的相似之處，使我們展開離散表徵與文字相關程度的探索。然而，由於書寫歷

史的發展，文字往往與實際說出來的語音訊號間存在不小的差距。因此，本研究

選定與語音關係更加密切的「音位」作為衡量標的，分析它和離散表徵之間的相

關性，以探討離散表徵是否具備尋找語音中語言結構的潛能，並透過語音學對音

位的分類，期待從對發音知識的角度，更深入的觀察這些離散表徵，給出進一步

的見解。

1.3 主要貢獻

　　本論文藉由分析離散單元和聲學片段兩類語音離散表徵與音位間的關係，比

較不同語音離散表徵之間在捕捉發音特徵的表現差異，並結合語音學的知識，進

一步刻劃不同音位本質差異為何，並如何對模型抽取離散表徵造成影響。期望這

些觀察，得以為往後研究語音語言模型（Spoken Language Model）中「對語音編

碼」的過程提供先期參考。

4



doi:10.6342/NTU202500258

1.4 章節安排

本論文將以如下的方式進行章節安排：

• 第二章：介紹後面章節所需要的與深層學習、表徵學習與自監督學習相關的

基礎背景知識。

• 第三章：從介紹離散單元本身提出後，「無文字自然語言處理」的相關前作

文獻開始，帶出對該系列作品用到的各種自監督學習模型所抽取之離散單

元本身的純度（Purity）和相互資訊（Mutual Information，MI）等統計數據，

進行比較與分析。

• 第四章：探討為何單一離散單元本身不是以發掘出類似音位的單位，並進而

對應到文字，以及近年人們嘗試以離散單元為基礎，透過分詞演算法發展之

「聲學片段（Acoustic Piece）[11]」的進展，接著我們在將單元進行分詞法重

新編碼處理前後，觀察數據上與第三章結果間的差異，以討論對離散單元進

行分詞是否可以找出更接近音位的單位，以及「離散單元可否被文字化」或

「離散單元學到的是否為更精細的語音訊號規律或結構」等疑問。

• 第五章：總結前面的觀察結果，並進一步探討本研究還可以如何延伸，並怎

麼幫助語音語言模型的發展。

5
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第二章 背景知識

2.1 深層類神經網路

2.1.1 簡介

　　深層類神經網路（Deep Neural Network，DNN）是由神經科學家麥氏

（McCulloch）與皮氏（Pitts）於 1943年提出 [16]的計算模型，靈感取自連結主義

（Connectionism）的核心主張—以模仿生物神經網路的連結方式模擬複雜的心智

活動。

為模擬神經細胞處理訊號的過程，深層類神經網路最基本的單位稱為

「神經元（Neuron）」，其本質為線性分類器。每個神經元接收的輸入數值

x = (x1, x2, · · · · · · , xN) 是一個 N 維向量，每一維會被賦予一個權重（Weight）

w = (w1, w2, · · · · · · , wN)，加權後總和再加上偏差值（Bias）b，得到線性輸出值。

為了模擬神經細胞的觸發過程，該分類器常被加上非線性的激發函數（Activation

Function）σ的轉換，才得到最終輸出值 y。如圖 2.1所示，神經元的運算規則以下

列數學式描述：

y = σ(wTx+ b) (2.1)

常見的激發函數包含線性整流單元（Rectified Linear Unit，ReLU）、S函數

（Sigmoid Function）或雙曲正切函數（Hyperbolic Tangent Function，tanh）等等。

結合數個神經元的運算，羅氏（Rosenblatt）[17] 於 1958 年提出感知器

（Perceptron）模型。根據通用近似定理（Universal Approximation Theorem）[18]，

感知器理論上可逼近任意函數。然而，後續研究發現單層的感知器具有如「線性

6
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圖 2.1: 神經元示意圖

不可分」1等先天限制，使其曾經一度不被看好。

為了突破該缺陷，人們嘗試在輸入與輸出層之間增加「隱藏層（Hidden

Layer）」，成為「多層感知器（Multilayer Perceptron，MLP）」，如圖 2.2所示。藉

助隱藏層的幫助，多層感知器可對輸入進行多次非線性轉換，大大拓展了模型的

適用範圍。此模型是透過「加深隱藏層」得來，現今為人們熟知的「深層類神經

網路」即由此得名。

藉助深層類神經網路的彈性，我們可以透過大量訓練資料來訓練模型，藉此

逼近應用任務中欲近似的函數 f，該函數蘊藏在資料集 D = {(xi, yi)}Ni=1中，其中

每個資料點 (xi, yi)為輸入與輸出間的配對，即對於 N 個資料點都有

yi = f(xi) ∀i ∈ {1, · · · · · · , N} (2.2)

之關係。為了使這個函數更加逼近目標函數 f，類神經網路會構建一個逼近

中的函數 fθt(·)。透過不停的迭代，模型對資料集 D 的每一筆資料 x給出預測

1例如無法貼合異或（Exclusive OR，XOR）運算等函數

7
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圖 2.2: 多層感知器／深層類神經網路示意圖

fθt(x)。透過某個減損函數（Loss Function）L計算出誤差（Error），此誤差對參

數 θt求出梯度（Gradient）後將指示模型更新的方向，以此乘上學習率（Learning

Rate）η 後從參數 θt 減去，便能對整個模型進行更新，使之更有機會接近目標

函數 f。由於此過程是依照梯度使得函數 L逐步降低，以此獲名「梯度下降法

（Gradient Descent）」，其公式如下：

θt+1 ← θt − η∇θL(D, fθt(·)) (2.3)

其中，t為當前的迭代數，θt為當前模型參數，θt+1為更新後的模型參數。

在此模型更新的過程中，減損函數承擔著指引模型逼近的角色，因此根據應

用的任務不同，常見的減損函數包括

• 均方誤差（Mean Squared Error，MSE）：一般用於迴歸（Regression）問題，

直接計算兩數值之間的差距的平方和

8
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LMSE(yi, ŷi) =
1

N

N∑
i=1

(yi − ŷi)
2 (2.4)

式 (2.4)中的 ŷi是模型預測的輸出值，理想上希望愈接近資料標註 yi愈好。

• 交叉熵（Cross-entropy，CE）：一般用於分類（Classification）問題，著重計

算兩個機率分佈之間的差異

LCE(yi, ŷi) = −
N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (2.5)

式中的 ŷi與 yi所代表的意義和式 (2.4)相同，分別表示模型預測值與資料標

註，只是計算兩者差距的方式有異。

透過上述的訓練方式可以得知，類神經網路的訓練需要相當龐大且複雜的運

算過程，因此剛提出時仍舊難以應用於現實應用中。

為了提高函數貼合的效率，魯氏（Rumelhart）[19]與辛氏（Hinton）[20]等人

提出了反向傳播（Back-propagation）演算法，旨在將上述的更新過程，藉助鏈鎖

率（Chain Rule）的幫助，由隱藏層逐層反向傳播至輸入層，對整個類神經網路進

行修正。

反向傳播演算法的設計，正好能配合圖形處理器（Graphics Processing Unit，

GPU）等硬體裝置的優勢，以平行運算能力加速函數貼合（Fit）的效率。由此開

始，這種透過深層類神經網路，從大量資料集中發掘函數關係的機器學習演算

法，被稱為「深層學習（Deep Learning）」。類神經網路在各個領域的泛化能力

（Generalizability）已經得到前所未有的效能，包含電腦視覺、語音處理和自然語

言處理，因此深層學習在近年成為人工智慧發展的主流。

9
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圖 2.3: 卷積式類神經網路示意圖，取自李宏毅教授的課程投影片

然而，根據資料特性的不同，並不是所有的資料都適用簡單的「輸入與輸出

配對」的模式。研究者根據任務需求，發展出了不同架構的類神經網路以適應資

料特性。前述最基本的深層類神經網路，由於資料是直接由輸入層，通過逐層的

矩陣運算得到輸出，因此被稱之為「前饋式類神經網路（Feed-forward Network，

FFN）」。

藉由調整各神經元之間的連接關係，發展出卷積式（Convolutional）、遞迴式

（Recurrent）與轉換器（Transformer）類神經網路等架構變體，以適應如影像、語

音和文字等不同型態的資料。這些架構在語音與文字處理被普遍使用，接下來將

逐一分別介紹：

2.1.2 卷積式類神經網路

　　卷積式類神經網路（Convolutional Neural Network，CNN）為 1998年由楊氏

（LeCun）[21]提出，旨在以訊號處理的卷積（Convolution）運算，模擬生物的視

覺皮質感知 [22]。

如圖 2.3所示，卷積式類神經網路透過核心（Kernel），對輸入的資料—如圖

中的二維矩陣—進行卷積運算，獲得該輸入的特徵圖（Feature Map）。核心帶來
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的移動不變性（Shift-invariance）非常適用於捕捉二維影像中的局部特徵，以作為

類神經網路分辨資料的依據。

有別於影像處理中，資料多以二維矩陣表示像素（Pixel）三原色的亮度數值，

因此以二維的卷積運算為主；由於語音時常處理時間軸之上的訊號，包含聲波波

形（Waveform）、時頻譜（Spectrogram）或聲學特徵，因此一維的卷積式模型也

時常出現，以模仿人耳聽覺對時變訊號的窗框（Window）的效應，進而觀察到語

音中在不同解析度（Resolution）的資訊。

2.1.3 遞迴式類神經網路與序列至序列模型

遞迴式類神經網路

　　遞迴式類神經網路（Recurrent Neural Network，RNN）常用於處理隨時間變化

的序列資料，特別是語音與文字等等，順序資訊相當關鍵的各種語言任務。為了

處理需要記憶和狀態的資料類型，遞迴式類神經網路的輸出會重新接回輸入層，

使得前一個時間點（Timestep）的資料與內部狀態會繼續影響後續的時間點。常

用的遞迴式類神經網路類型有長短期記憶（Long Short-term Memory，LSTM）[23]

和閘門循環單元（Gated Recurrent Unit，GRU）[24]等。

遞迴式類神經網路通常用在處理序列至序列的應用，例如語音辨識、語音合

成或機器翻譯等和語言密切相關的任務中。

序列至序列模型

　　由於許多語言資料通常以兩個序列互相配對的形式呈現，因此專門處理這類

資料的模型被稱為「序列至序列模型（Sequence-to-sequence，Seq2seq）」[25]。此

類模型的典型架構由編碼器（Encoder）和解碼器（Decoder）組成，旨在模擬輸入

11
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與輸出序列之間的變化與相依關係（Dependency）。

序列到序列模型一般有兩種模式：其一是每個時間點都生成一個輸出的向

量，適用於輸入與輸出序列等長的任務，這種模式被稱為「符記分類（Token

Classification）」；但更常見的情況是，輸入與輸出序列的長度並不相同。處理後者

的典型作法是讓編碼器將輸入序列依據時間，一步一步輸入編碼器，將序列編碼

為內部表徵（Latent Representation）。完成編碼後，編碼器將最後一個時間點的表

徵用以代表整個序列，稱為「語境向量（Context Vector）」。該向量接著被傳遞給

解碼器，依序生成輸出序列。

2.1.4 專注機制與轉換器類神經網路

專注機制（Attention Mechanism）

　　由於遞迴式類神經網路需要處理整個序列的編碼和解碼資訊，對時間點距離

較遠的輸入容易被遺忘，亦即難以處理長期相依性（Long-term Dependency）問

題。為了解決這種困境，巴氏（Bahdanau）等人 [26]提出了「專注機制」。該機制

讓解碼器將輸入序列的每個訊號都視作「部分的」語境向量，由對不同時間點的

向量加權合計獲得，使得在生成輸出序列時能依據當時的需求從輸入序列中提取

所需的訊息。專注機制的引入，使得序列至序列模型在處理如語音辨識、機器翻

譯等任務時效能大大改善。

轉換器類神經網路

　　儘管遞迴式類神經網路善於處理時序資料，但其難以平行化的架構限制了其

在訓練和推理（Inference）時的效率。2017年，瓦氏（Vaswani）等人 [27]提出了

完全由專注機制構成、不依賴遞迴運算的序列至序列模型，並稱之為「轉換器

12



doi:10.6342/NTU202500258

（Transformer）」，以解決機器翻譯等任務。

轉換器類神經網路一般包含編碼器和解碼器兩部分，均為多層架構。圖 2.4

展示完整的轉換器架構圖，以下分別介紹其主要元件：

位置編碼（Positional Encoding）

　　對於編碼器或解碼器的輸入序列，模型先對序列中不同位置的時間點進行編

碼，取代遞迴式類神經網路逐步運算的過程，使其能在平行計算的同時考慮不同

時間點的影響。編碼的函數可依照需求變換，如原始的轉換器採用三角函數進行

位置編碼，而在語音模型中，有時也會採用卷積式網路以捕捉輸入的細微資訊。

經過位置編碼後，向量會通過每一個轉換器層（Transformer Layer），進行以

「多頭專注」為主的一連串運算：

多頭專注（Multi-head Attention）

　　轉換器層中的專注機制涉及三個輸入向量：詢向量（Query）Q、鑰向量

（Key）K 和值向量（Value）V。專注機制運算如下：

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (2.6)

其中 softmax為正規化指數函數，dk 為鑰向量 K 的維度。這一運算首先通過鑰向

量和詢向量的內積計算專注權重，而後為避免受維度過大影響而縮小為
√
dk 分之

一，最後通過正規化指數函數使得權重總和為 1，以此分配給值向量進行加權。

為應對多樣的輸入訊號，每個轉換器層具備多個獨立的專注機制，對三組輸

入向量先進行各自不同的WQ、WK、W V 線性轉換，稱為「多頭專注」。對於第 i

個專注頭（Head）有

headi = Attention(QWQ
i , KWK

i , V W V
i ) (2.7)

13
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也就是每個專注頭分別透過前述式 (2.6)的 Attention(·, ·, ·)運算，使模型針對不同

輸入訊號可以入進行不一樣的運算處理。最後，若有 h個專注頭，多頭專注模組

會將多個頭的結果進行串接（Concatenate，即式 (2.8)描述之 Concat），經過線性

轉換WO 作為模組輸出，運算式表示為

MultiHead(Q,K, V ) = Concat(head1, · · · · · · , headh)WO (2.8)

最終將MultiHead(Q,K, V )作為整個多頭專注模組的輸出值。

其他層內運算

　　每層轉換器層在經過多頭專注運算後，會依序進行以下三個步驟：

1. 與輸入向量透過殘差連接（Residual Connection）相加，隨後進行層正規化

（Layer Normalization）以穩定訓練。

2. 將此結果通過一個簡單的前饋式類神經網路對向量做線性轉換。

3. 再將前饋網路的輸入與輸出再次計算殘差總和後，進行層正規化輸出。

以上為轉換器被提出時的最原始模型，其後對殘差連接、層正規化的安排也

存在各類變體。

跨專注機制（Cross-atttention）

　　為了輸出結果，解碼器需要編碼器提供輸入序列的資訊。因此，原本在編碼

器層中的自專注機制，在解碼器中會再經過一次跨專注機制的運算，使用編碼器

提供的詢向量和鑰向量對解碼器的值向量進行專注運算。由於轉換器不需要對每

個時間點逐一運算，使此過程能被高度平行化，類神經網路得以透過專注機制同

時進行序列資料的大量訓練。這種可擴展性（Scalability）使其在自然語言和語音
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圖 2.4: 轉換器架構圖
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處理上取得了巨大的進展，幾乎取代了原先遞迴式類神經網路的應用場景，近年

來甚至被應用在圖像類的資料上 [28]，展現了此種模型架構的彈性與泛用性，成

為目前最前沿的人工智慧主流架構。

除了模型架構，機器學習中不可或缺的另一大部分是對資料的編碼過程。如

何更有效率的讓機器理解、處理和輸出資料，是機器學習乃至深層學習的一大課

題。面對捉摸不定、抽象且變化萬千的人類語言，語音和文字處理中的表徵學習

尤為重要。

2.2 表徵與自監督式學習

2.2.1 特徵抽取與表徵學習

　　不論採用何種模型，為了讓機器可以處理並捕捉輸入資料中的訊號與規

律，包括如何對資料編碼和運算的步驟，在機器學習中稱之為特徵抽取（Feature

Extraction）或表徵學習（Representation Learning），這是模型建構中不可或缺的重

要步驟。

對於抽象的語言概念，早期工程領域根據對語音和文字的理解，分別進

行了不同的處理。對於離散且可計數的文字，人們使用詞頻統計衍生出如 n

連詞（n-gram）、TF-IDF（詞頻-倒數文件頻率，Term-frequency Inverse Document

Frequency）等特徵作為模型學習的前處理步驟；而對於連續且複雜的語音，工程

師則透過聲學原理與訊號處理的知識，使用如濾波器組（Filter Bank）、梅爾倒頻

譜係數（Mel-frequency Cepstrum Coefficient，MFCC）等特徵，類比人耳捕捉語音

訊號的過程。

在深層學習逐漸發展的過程中，自然語言處理領域的一大里程碑是米氏
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（Mikolov）提出的「Word2vec」模型 [29]，該模型以連續的向量表徵（Vector

Representation）取代稀疏（Sparse）的統計數據，對離散的文字單詞進行「詞

嵌入（Word Embedding）」編碼。通過大量文本運算，將各單詞之間的共現

（Collocation）以跳躍詞（Skip-gram，SG）、連續詞袋（Continuous Bag-of-word，

CBOW）等演算法轉換成高維向量空間中的點，找出每個單詞最適合的語義表徵。

爾後，為了更細緻地捕捉同一單詞在不同句子中的脈絡變化，ELMo（來自語言

模型的詞嵌入，Embeddings From Language Model）[30]提出了「含上下文詞嵌入

（Contextualized Embedding）」的概念，使得各單詞在運算表徵的過程中可以根據

上下文進行些微調整。

2.2.2 自監督學習

　　隨著轉換器模型的提出，BERT（來自轉換器的雙向編碼器表徵，Bidirectional

Encoder Representations From Transformers）[31]被提出。通過自專注機制，工程

師們無需依賴人工標記，透過預先設定任務（Pretext Task）引導模型從大量文本

中自行找出更細緻且考量前後文的語義關係，並在許多文字任務上獲得了優異的

成績。

自此，楊氏（LeCun）將這種以特定任務作為引導、藉助資料本身的結構替

代標註，從大量未標註資料中學習資料規律的訓練方式，稱之為「自監督學習

（Self-supervised Learning，SSL）」。BERT的成功使自監督學習得以大行其道，並

出現了許多由巨量資料進行預訓練（Pre-train）的基石模型（Foundation Model），

有效解決了語言處理領域中的標註資料稀缺的問題。人們在解決語言相關任務時，

不需從頭蒐集資料與進行耗時耗能的訓練過程，而是可以利用基石模型優良的泛

化（Generalization）能力，解決各種應用任務的需求。相比於預訓練的任務，這
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些更貼近日常現實的任務被稱為「下游任務（Downstream Task）」，能應對廣泛的

下游任務種類，這是基石模型最大的優勢。

有鑑於文字處理方面的成功，語音領域的研究者嘗試將相似模式應用於語

音，眾多語音基石模型隨之出現。大量的語音資料庫幫助模型萃取出有助於下游

任務的語音表徵（Speech Representation），在各種任務上獲得了優於傳統聲學特徵

的表現。語音表徵具備的無窮潛力，逐漸成為聲學特徵之外的新選擇。

依照這些語音自監督模型的預訓練學習模式，可大致分為重建式、預測式與

對比式模型。以下分別介紹這三類模式：

重建式學習（Reconstruction Learning）

　　此類模型通過對輸入訊號進行擾動（Perturb）後，期望模型將被更動的輸入

重新預測回原始資料，通常減損函數表示為：

Lrecon = Ex[|fθ(x̃)− x|] (2.9)

其中 x̃為擾動後的資料，fθ(·)為模型函數。擾動方式通常以遮蔽為主，在文字處

理中以 BERT為代表，稱為「遮蔽語言模型（Masked Language Model，MLM）」。

在語音中，採用此方式學習的有Mockingjay [32]、TERA [33]等模型。

預測式學習（Predictive Learning）

　　此類模型通過預訂一些學習目標函數，製造類似輸入與輸出的配對資料，讓

模型預測該函數的結果來學習資料中的特定結構。其訓練減損函數可表示為：

Lpred = Ex[eval(fθ(x), f̂(x))] (2.10)

其中 f̂ 是期望模型學習的目標函數，fθ(·)為模型函數，eval是用來評估預測好壞

的標準。
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目標函數的典型代表是自迴歸（Autoregressive），期望模型預測未來時間

點的輸入表徵。文字方面以「GPT（生成式預訓練轉換器，Generative Pretrained

Transformer）」系列 [34, 35]為代表，語音上的「自迴歸預測編碼（Autoregressive

Predictive Coding，APC）」[36]也是採用此種模式。此外，語音基石模型還可以

使用其他訓練目標，如 PASE+ [37] 預測其他模型的表徵，而本文著重探究的

「HuBERT（隱藏單元 BERT，Hidden-unit BERT）」[8, 13]則以預測分群（Cluster）

後的輸入表徵為目標，這些預測目標又被視為虛擬標註（Pseudo-label），後文將

著重探討。

對比式學習（Contrastive Learning）

　　此學習方式的訓練目標是要求模型區分正樣本（Positive Sample）與負樣本

（Negative Sample）的差異，減損函數通常定義為：

Lcontr = −Ex

[
log

(∑
x̃∈xpos

exp(sim(x, x̃))∑
x̃∈X exp(sim(x, x̃))

)]
(2.11)

其中 x為輸入，xpos 為正樣本，X 為包含正負樣本的資料集，sim(·, ·)是評

估兩個樣本相似程度的函數，常用的相似度函數為內積運算得出的餘弦相似

度（Cosine Similarity）。語音上最早使用對比式學習的模型為「對比預測編碼

（Contrastive Predictive Coding，CPC）」[38]，之後如Wav2vec [39]、Modified CPC

[40]、Wav2vec 2.0 [41]等模型亦是以對比正負樣本的模式訓練，但訓練時正負樣

本的定義有所差異，如Wav2vec僅以時間維度上相同的向量為正樣本，其餘則將

固定時間內的向量皆視為正樣本。

對比式學習通過正負樣本的定義，將預訓練任務形塑為分類問題，因此減損

函數本質上為交叉熵，使模型能夠判斷訓練資料中的結構差異。
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2.2.3 向量量化與離散單元

　　語音訊號雖然記錄語言資訊，卻與影像資料一樣都是連續數值資料，不像離

散的文字較易處理，因此發展出了許多應用廣泛的模型。為了使語音模型訓練可

以套用自然語言處理領域的演算法，從連續語音中找出離散表徵逐漸成為研究趨

勢，這類研究被稱為「聲學單元發掘（Acoustic Unit Discovery，AUD）」。

由於語言概念本質上是離散符號，向量量化技術常用於涉及語言標註的

情境，如電腦視覺經典的量化向量變分自編碼器（Vector-quantized Variational

Autoencoder，VQ-VAE）[5]，利用影像標註的離散語言單詞特性，使模型學習的

表徵向量被約束在編碼簿（Code Book）的幾個向量中。

在語音領域，基於Wav2vec之上的 Vq-wav2vec [42]和Wav2vec 2.0將連續的

語音特徵量化加入訓練目標中，在語音辨識等任務上取得了顯著進步。

HuBERT [13]則先對連續的MFCC特徵進行 K-平均（K-means）演算法分群，

以所得的群心（Centroid）或碼字（Code Word）編號作為訓練目標，實施類似

BERT的遮蔽語言模型訓練，並改以此次訓練得到的語音表徵為目標，再次分群

後實施第二次訓練。這些經過兩輪訓練後，從模型表徵分群得到的群心，被視為

「隱藏單元（Hidden Unit）」，呈現了語音訊號中的代表性聲學特徵。透過找出隱藏

單元的過程，HuBERT在低資源情況下達到與Wav2vec 2.0相近的語音辨識成績。

2.2.4 無文字（Textless）自然語言處理架構

　　奠基於 HuBERT等語音基石模型的成功，利用隱藏單元的概念，將大量語音

資料表徵進行 K-平均演算法，作為這些語音訊號的虛擬標註。如此得到的大量

離散隱藏單元形成了「虛擬文字（Pseudo-text）」的語料庫，基於這些離散單元訓

練的語言模型，稱為「生成式口語語言模型（Generative Spoken Language Model，
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GSLM）」[6]。配合反向語音合成訓練基於離散單元的語音生成模型，整體架構完

全不依賴文字標註，訓練出純語音語言模型，稱為「無文字（Textless）自然語言

處理」架構 [43]。

無文字自然語言處理的模式在語音問答（Spoken Question Answering）[44]和

語音到語音翻譯（Speech-to-speech Translation）[10]中取得了前所未有的進展。這

些「離散單元（Discrete Unit）」被視為類似文字卻不依賴人類文字標記的語音表

徵，具有儲存位元率低和可套用文字語言模型訓練模式的優勢，受到語音社群的

廣泛借鑑，後續也帶出了許多如 [45]等將語音以離散表徵編碼的研究。

雖然在系統與應用任務上取得了成功，但這些離散單元本身與文字的差異，

及其對語音語言模型訓練的幫助，仍是領域內探討的焦點。有鑑於此，本論文基

於語言知識，從最接近文字且與語音訊號最相關的「音位（Phoneme）」開始探討，

期望了解離散單元能帶來的特徵及其對後續應用的幫助。

2.3 本章總結

　　本章節首先介紹了深層學習模型的核心部件—類神經網路的基本原理，隨後

對本論文研究的核心—「語音表徵」與「離散單元」的發展與歷史進行了梳理。

接下來的章節將緊扣這些基石模型得到的離散特徵，對其與「音位」這類語音學

標記之間的統計關係進行更深入分析。
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第三章 單一語音離散表徵與音位的關係

　　 HuBERT [8, 13]和Wav2vec 2.0 [41]等語音基石模型的成功，不僅在語音任

務上達到了前所未有的表現，還促進了語音表徵離散化的發展。由此產生的「無

文字（Textless）自然語言處理」架構 [43, 46, 6]，讓人們在處理語音訊號時，有了

連續表徵以外的新選擇。離散形式的表徵可以直接應用於文字領域發展的技術上，

如機器翻譯、生成式模型等，為語音技術帶來新的突破。另一方面，基於離散

「符記（Token）」的共同形式，離散語音表徵可以更方便地整合文字資料，促成多

模態領域的發展。跨模態離散表徵的成功，甚至驅使影像領域也開始發展離散表

徵，如探討唇語的 AV-HuBERT [47]等等，展現了離散表徵在資料處理上的優勢。

此外，除了技術的角度切入，這樣的技術也有機會探討離散語音表徵成功背

後的可能因素，以及它們與語言學對人類語音理解之間的差異，甚至是進一步利

用這些技術協助更細緻的探討人類的語音現象。因此，原先在連續語音表徵上的

語音學分析，也開始關注離散表徵在多大程度上能描述語音現象，將其列入考

量，成為除了連續語音特徵和時頻譜之外的另一個選擇。

3.1 相關研究

3.1.1 無文字自然語言處理與離散語音表徵

　　自 HuBERT 帶起的研究之後，出現了愈來愈多離散表徵相關的研究

[48, 49, 50, 51, 45, 52]。它們在提出自己的離散表徵時，也會採取 HuBERT的衡量

方式，來驗證這些離散單元與語音中的內容及人類對語音的詮釋之間，具有一定

程度的相關性，並從資訊理論（Information Theory）的角度，證明這些離散單元
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確實具備區分不同語音資訊的能力。

3.1.2 語音學分析

　　由於語音處理本身最終是針對人類語音，因此有一群研究者通過對人類語音

的理解，將這些知識應用在分析模型如何對語音訊號建構表徵之上 [53, 12, 48, 49]

。基於這些作品對語音離散表徵的興趣和探討，本論文也先透過過往幾個常用來

分析語音表徵的方式，特別是 HuBERT [13]提出的標準進行初步的分析。

3.2 衡量指標

　　本次研究主要探討純度（Purity）、熵（Entropy）和相互資訊（Mutual

Information，MI）等指標，這些指標在 HuBERT的研究中被採用 [8, 13]，用以比

對機器學習過程中得到的虛擬標註與人類標註之間的相關性（Correlation），接下

來將詳細解釋這些指標的定義。

包含聲學特徵與語音基石模型，不論採用何種方式獲得語音表徵，語音訊號

皆是以音框（Frame）為基本單位進行處理。具體而言，給予一段聲音訊號，語音

處理系統會將這段訊號按照固定時間切割成多個片段分別處理，這些片段的長度

被稱之為時間解析度（Time Resolution）。因此，對於任意一段語句（Utterance），

系統會將訊號轉換成一連串的向量 v = [v1, · · · · · · , vT ]作為語音表徵，其中 T 是

該段語句的音框總數，與該語句的時長成比例。其中，第 t個向量 vt 表示第 t個

音框的語音訊號內容。在離散表徵的研究中，每個語音表徵向量 vt 透過向量量

化（Vector Quantization）程序，對應到編碼簿（Code Book）中的某個碼字（Code

Word）ejt。因此，該段語句將被表示為 j = [j1, · · · · · · , jT ]的離散單元序列。

與此對應，藉由強迫對齊器（Forced-aligner）或人工標註，可以獲得該段
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語句的音素標註（Phonetic Label）。然而，通常音素標註是以每個音位的起始

至終止的時間點配上此時間段的音位類別呈現。因此，為了配合語音表徵對語

句的處理方式，這段音素標註會被依照時間點對應的範圍在音框上對齊，成為

y = [y1, · · · · · · , yT ]的形式以便分析與後續處理。

為方便具體說明，我們從語音常用的 LibriSpeech [54]公開資料集中取一段音

檔1，放上波形與音框的對照在圖 3.1呈現。該段語句內容為 “... what means could

it...”，上方兩個橫列為單詞標註、音位標註 2。接下來四個橫列中，可以看見第三

與第五個橫列將語句切割成以 20毫秒為單位的片段，此即前面所述之音框。第三

列為 HuBERT模型分群數 100所得之離散單元序列，而第五列則是由第二列的音

位標註片段按照所對應的時間段，分別對齊到音框上的音位標註。由於音位的長

度通常長於一個音框，因此在離散單元和音框音位標註在呈現上習慣將標註類別

相同的音框合在一起成為長短不一但更接近發音時間的時間段，分別標在第四與

第六列之上。

此時若將整個待分析資料集的語音訊號全部蒐集起來，一共有 T ′ 個音框 3，

如此可分別獲得一個離散單元序列 j = {jt}T
′

t=1 與音位標註序列 y = {yt}T
′

t=1 進行

統計分析。我們可以根據離散單元與標註之間配對的出現次數，寫為一個雙變數

的共同分佈（Joint Distribution）

PY J(y, j) =

∑T ′

t=1[yt = y ∧ jt = j]

T ′ (3.1)

其中 y 是第 y 個音位，而 j 指編號為 j 的離散單元。兩個變數的邊際機率

1取自 train-clean-100訓練子集，編號 89-218-0056，即編號 89語者在章節編號 218中第 56句。
2ARPABet表示法，是以純字母表示的音位表示法。介紹音位分類的章節會對此詳細描述。音

位中的數字表示重音。
3T ′ 表示整個資料集的音框數總和，以與前文用以表示單一語句音框數的代號 T 作出區別。
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圖 3.1: 以音框對齊的離散單元與音位標註範例

（Marginal Probability）分別為

PJ(j) =
∑
y

PY J(y, j) (3.2)

PY (y) =
∑
j

PY J(y, j) (3.3)

因此，對於每一個音位 y而言，這個音位最可能的對應離散單元為

J∗(y) = argmax
j

PY J(y, j)

PY (y)
= argmax

j
PJ |Y (j|y) (3.4)

與之相對應的，對於每一個離散單元的類別 j 則可以找到機率最高的音位

Y ∗(j) = argmax
y

PY J(y, j)

PJ(j)
= argmax

y
PY |J(y|j) (3.5)

透過這些定義，以下分節介紹將要用來分析的指標。
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3.2.1 純度

　　本指標考慮音位和離散單元兩個序列之間對應的最高機率，因此從音位與離

散單元的角度出發，可以得到以下兩項數據：

音位純度（Phoneme Purity）

　　考慮每個離散單元對應的音位中，最高機率音位的機率，表示為

EPJ (j)

[
PY |J(Y

∗(j)|j)
]

(3.6)

此指標表示該單元是否對其對應的音位有足夠的代表性。

分群純度（Cluster Purity）

　　與音位純度相對，改以每個音位的角度，考慮對應單元類別的機率

EPY (y)

[
PJ |Y (J

∗(y)|y)
]

(3.7)

由於離散表徵進行分群演算法時的類別數是一項超參數（Hyperparameter），

且通常離散單元的分群數量會比音位多，因此該統計數據本身不直接具有語音學

的解釋意義，而且在分群數量很多時其數值會顯著下降。然而該指標在考量音位

純度時必須一併考慮，因為當分群數非常多時，分群純度過低暗示離散單元做不

到歸納音位類別的效果，使得音位純度失去其意義。一個極端的情形是每一個音

框都給予不同的離散單元編號，如此音位純度可以達到 100%。
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3.2.2 熵和相互資訊

　　除了純度提供「最高機率」的對應關係，根據 HuBERT論文 [13]中的分析方

式，我們也可以從資訊理論的角度，觀察兩個序列的熵和相互資訊。

熵（Entropy）

　　熵的定義按照資訊理論，衡量兩個序列中標籤類別出現機率的不確定性

（Uncertainty），公式寫作：

H(Y ) = −
∑
y

PY (y) logPY (y) (3.8)

H(J) = −
∑
j

PJ(j) logPJ(j) (3.9)

其中 H(Y )和 H(J)分別為音位和離散單元的熵，數值愈高分別表示各種音

位和離散單元出現的機率愈平均。

以音位標準化之相互資訊（Phoneme-normalized Mutual Information，PNMI）

　　本數據以「觀察到某一個離散單元，能降低多少音位標註的不確定性」，定義

該離散單元的出現背後提供了多少音位的資訊。公式寫為：

I(Y ; J)

H(Y )
=

∑
y

∑
j PY J(y, j) log

PY J(y, j)

PY (y)PJ(j)

−
∑

y PY (y) logPY (y)
(3.10)

=
H(Y )−H(Y |J)

H(Y )
(3.11)

= 1− H(Y |J)
H(Y )

(3.12)
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該項數據愈高，表示離散單元的分群愈能提供語音音位的資訊，是一個品質

更好的分群結果。由於離散單元是否能夠正確對應到音位才是人們所關心的問題，

因此與純度不同，只以音位的角度出發，而不考慮以離散單元分群的角度。

3.3 語音學的音位分類（Phoneme Type）

　　除了單一音位本身的特性以外，由於音位之間存在相似的特徵，在語音學上

可以分成幾個組別。這裡依照希氏（Sicherman）[48]、阿氏（Abdullah）[49]等前

作的分組方式，對英語的音位進行分類。如此一來，除了單純把音位標註以約 40

類完全獨立的標籤看待，還能夠觀察這些離散單元是否有擷取到相似的發聲特

徵。首先，按照發音過程氣流是否受到阻礙，因此可否形成獨立的音節，音位可

以分為輔音與元音兩大類，而後再根據發音的細部特性共分成七組。

輔音（Consonant）

　　輔音是指透過阻擋氣流發聲的音位，因此通常不單獨構成音節，按照發音方

式可分為以下五個類別：

• 塞音（Plosive）：以完全阻塞氣流的方式發音的音位，包含 /p/、/b/、/t/、

/d/、/k/、/g/六種。

• 擦音（Fricative）：藉由在口腔中形成的縫隙，使氣流通過時摩擦形成的發

音，包含 /f/、/v/、/s/、/z/、/S/ (sh)、/Z/（如「garage」的「-ge」）、/θ/ (無聲

的 th)、/ð/ (有聲的 th)、/h/九種。

• 塞擦音（Affricate）：由塞音和同部位的擦音同時發出的輔音，英語中只有

/tS/和 /dZ/兩種，即 ch和 j的發音。
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• 鼻音（Nasal）：使氣流通過鼻腔形成的聲音，有 /m/、/n/、/ŋ/ (ng)三種。

• 近音（Approximant）：又稱半元音，為介於元音和輔音之間的聲音，有 /j/

(為 y作為輔音時的發音)、/r/、/l/、/w/四種。

元音（Vowel）

　　與之相對，元音則是不阻礙氣流通過，因此可自成音節的音位。其中又

可分為發音位置固定的單元音（Monophthong）和會移動發音位置的的雙元音

（Diphthong）兩類。通常基於 a、e、i、o、u字母產生的聲音皆屬於此類別。

透過將音位分成以上七組後，並重新分析統計指標，可以觀察這些分組的規

律如何在離散單元的出現機率上呈現，進而顯示離散單元是否與語音的發音方式

具有一定的關聯性。

另外，為了方便統計與作圖，這些音位在圖中並非以語言學慣用之國際

音標（International Phonetic Alphabet，IPA）[55]，而是參考語音處理領域常用的

「卡內基梅隆大學發音辭典（Carnegie Mellon University Pronouncing Dictionary，

CMUDict）[56]」，取用其中的 ARPABet表示法 [57]，以避免字母以外的符號在處

理上的困難。表 3.1中列有更詳細的音位資訊4。

3.4 實驗集與分析模型

　　本研究的分析對象參考無文字自然語言處理架構 [43, 46, 6]的研究，採用論

文中提及的四種語音表徵，簡述如下：

• HuBERT [13]：卷積式編碼器 +轉換器預測器，以預測式學習訓練，其訓練

目標為 K-平均分群演算法的結果，透過遮蔽語言模型的方式訓練。表徵來
4範例單詞取自 CMUDict官網（http://www.speech.cs.cmu.edu/cgi-bin/cmudict）說明。
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音位 ARPABet表示法 音位分類 範例單詞 範例單詞的音位

/A/ AA 單元音 odd AA D

/æ/ AE 單元音 at AE T

/2/ AH 單元音 hut HH AH T

/O/ AO 單元音 ought AO T

/aU/ AW 雙元音 cow K AW

/aI/ AY 雙元音 hide HH AY D

/b/ B 塞音 be B IY

/tS/ CH 塞擦音 cheese CH IY Z

/d/ D 塞音 dee D IY

/D/ DH 擦音 thee DH IY

/E/ EH 單元音 Ed EH D

/Ç/ ER 單元音 hurt HH ER T

/EI/ EY 雙元音 ate EY T

/f/ F 擦音 fee F IY

/g/ G 塞音 green G R IY N

/h/ HH 擦音 he HH IY

/I/ IH 單元音 it IH T

/i/ IY 單元音 eat IY T

/dZ/ JH 塞擦音 gee JH IY

/k/ K 塞音 key K IY

表 3.1: 英語音位的 ARPABet表示法和音位分類資訊

30



doi:10.6342/NTU202500258

音位 ARPABet表示法 音位分類 範例單詞 範例單詞的音位

/l/ L 近音 lee L IY

/m/ M 鼻音 me M IY

/n/ N 鼻音 knee N IY

/N/ NG 鼻音 ping P IH NG

/@U/ OW 雙元音 oat OW T

/OI/ OY 雙元音 toy T OY

/p/ P 塞音 pee P IY

/r/ R 近音 read R IY D

/s/ S 擦音 sea S IY

/S/ SH 擦音 she SH IY

/t/ T 塞音 tea T IY

/T/ TH 擦音 theta TH EY T AH

/U/ UH 單元音 hood HH UH D

/u/ UW 單元音 two T UW

/v/ V 擦音 vee V IY

/w/ W 近音 we W IY

/j/ Y 近音 yield Y IY L D

/z/ Z 擦音 zee Z IY

/Z/ ZH 擦音 seizure S IY ZH ER

表 3.1: 英語音位的 ARPABet表示法和音位分類資訊（續）
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自轉換器第 6層，每 20毫秒作為一個音框。

• CPC [40]：卷積式編碼器 +遞迴式預測器，以對比式學習訓練。表徵來自預

測器的中間層，每 10毫秒提取一個向量表徵作為音框。

• Wav2vec 2.0 [41]：卷積式編碼器 +轉換器預測器，以對比式學習訓練。表

徵來自轉換器第 14層，每 20毫秒作為一個音框。

• LogMel：為 80維對數梅爾時頻譜的聲學特徵，在此作為比較基線（Base-

line）。音框寬度為 10毫秒。

我們跟隨拉氏等人所提出的無文字自然語言處理架構 [6]，使用該篇論文

中釋出之預訓練模型與 K-平均量化模型，預訓練模型的設定細節於原論文有更

詳細的描述，而量化模型則是拉氏等人透過公開的 LibriSpeech資料集 [54]中之

train-clean-100訓練子集，獲取語音表徵後執行 K-平均分群演算法所得，並釋出

分群數為 50、100和 200的三個版本。

本論文以 LibriSpeech之 train-clean-100訓練子集作為分析對象，將語音語料

庫的語音資料經過四個模型得到連續表徵後，再經過量化模型得到完全由離散單

元組成的「虛擬文字」語料。至於音位標註的取得，則是透過強迫對齊器5的英語

預訓練模型，將語料庫的文字轉寫轉換為帶有對應時間範圍的音位標註資料，並

依據各自語音表徵的時間解析度，生成以音框對齊的音位標註語料，隨後進行相

關性的分析。

5https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner

32



doi:10.6342/NTU202500258

圖 3.2: HuBERT模型、分群數為 50之離散單元與音位標註的共同機率分佈圖

3.5 分析方式

　　在前述章節中，我們為了討論離散單元和音位標註之間的關係，介紹了相關

的研究、衡量指標與語音學的分類方式。接下來，我們將詳細描述分析相關性的

具體方法，並以圖表展示分析結果，希望可以藉此對離散表徵獲得更深刻的理

解。為了更直觀解釋這些指標的意義並看清這些數字背後所代表的現象與細部特

徵，我們使用熱圖（Heatmap）來呈現音位與離散單元的共同機率分佈 pyz。這樣

的可視化（Visualization）方式有助於深入探討這些指標的意義。

首先，圖 3.2以 HuBERT為基石模型，離散單元分群數為 50的統計數據為

例，說明我們如何分析語音離散表徵與音位標註的關係。

圖中的縱軸表示各個音位，橫軸表示各個離散單元。在這張圖中，縱軸的音

位是按照其邊際機率 PY (y)由高至低排序；橫軸的離散單元則是依據其對應的最

高機率音位 Y ∗(j)的縱軸排序位置進行排列。6這樣可以在熱圖上顯示由左上至右

6如果兩個離散單元 j1 和 j2 對應到相同的音位 Y ∗ = Y ∗(j1) = Y ∗(j2)，則依照機率值

PY J (Y
∗, j1)和 PY J (Y

∗, j2)由高到低進行排序，對於多個離散單元的情況以此類推。
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下的對應關係。

藉由熱圖的幫助，我們不僅可以更加完整清晰的觀察離散單元與音位標註之

間的關係，對於純度大小的意義也可以從此圖上有更具體的了解：

1. 將每個直行（Column）取最大值相加後的總和即為音位純度。如果每個離

散單元與音位都相對集中，則可以得到較高的音位純度。且如同指標說明的

小節所述，當分群數量增加時，音位純度能夠在每個直行上取到更多的機率

值總和。最極致的情況是，當分群數量與音框數量相同，音位純度可以達到

100%。這些性質透過熱圖的可視化呈現，可以被更直觀的說明。

2. 將每個橫列（Row）取最大值相加後的總和則是分群純度。如果每個音位都

恰好可以很集中的對應到少數幾個離散單元，則此數值將較高，每個橫列最

高可以貢獻的值為該音位出現的機率 PY (y)。同樣的，當分群數量增加時，

隨著直行數目的增多，單看每一個音位對應的橫列，會發現每個格子的機

率值隨之被稀釋。受到音位標註類別數的限制，分群純度最高只能取 41個

PY J 值的總和，使得單位純度因而明顯降低。

此外，比起只有音位與分群純度兩個數字，機率熱圖不但可以呈現純度指標

的綜觀解釋性意義，我們還可以分門別類對個別的音位與離散單元進行細部探

討。畢竟，模型的虛擬標註與實際人類給予的標註資料並不能總是完美而集中的

互相對應。我們想知道的細部觀察可分為兩個層面：

1. 從離散單元的角度出發，每個單元 j 所對應的音位是如何的集中，因而多能

夠代表這個單元中最高機率的音位 Y ∗(j)？如果恰巧該單元對應的音位條件

機率分佈 PY |J(y|j)較為分散，那與這個單元最相關的幾個音位，也就是條

件機率前幾高的音位之間，又是否呈現特定關係？
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2. 反之從音位標註考慮，對於每個音位 i，觀察它所對應的離散單元集中程

度，也就是離散單元條件機率分佈 PJ |Y (j|y)得出的熵值 H(J |Y )，可否觀

察到特定一些音位較難或較易被離散單元集中歸類，進而推論模型是否善於

辨認該音位的發音特性。

接下來，我們將從綜觀的角度比較來自不同語音表徵與分群數的離散單元的

純度和相互資訊數據，並輔以對應的機率熱圖佐證，觀察離散表徵在捕捉發音資

訊方面的能力強弱。此後，分別從離散單元和音位兩個面向，藉助音位分類知識

的幫助，進行細部觀察。最後將細部觀察的結論，重新對應回機率熱圖上的深淺

規律，以對這些觀察的進行驗證。

3.6 分析結果

3.6.1 綜觀分析

　　表 3.2提供了不同語音表徵與分群數的純度和相互資訊的指標數據。

首先，我們先比較同樣是分群數為 50時，四種語音表徵的共同機率分佈熱

圖，呈現在圖 3.3中。從圖中可以明顯觀察到，HuBERT和 CPC在熱圖上具備

較多較深且清晰的方塊，這表示音位與離散單元之間的對應相對Wav2vec 2.0與

LogMel更為明確。這反映出 HuBERT和 CPC的離散表徵更擅長捕捉並區分音位

之間的關係。此觀察也對應到這兩個模型較高的音位純度與相互資訊數值。

接著考慮分群數的效應，我們進一步觀察分群表現最好的模型 HuBERT在分

群數為 50、100和 200的共同機率分佈熱圖。圖 3.4是三者的比較結果，從圖中

可以發現，在分群數愈多時，熱圖較深的區域愈是可以集中連成一條線，落在線

外的色塊變得更少，但每個格子的機率值也隨之迅速降低。這個趨勢可以解釋為
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什麼表 3.2中上升的音位純度與下降的分群純度，不過從表格中可以發現，其實

相互資訊的數值仍是隨著分群數上升而提高的，也就是分群數多時，可以幫助提

升離散單元與音位標註之間的相關性。

以上是不同離散表徵系統的離散單元對語音訊號給予虛擬標註時，對應音位

標註是否明確的觀察。我們發現 HuBERT是四種語音表徵之中效果最佳的，而分

群數則是愈多愈好。

3.6.2 以離散單元角度切入

　　探討完綜觀機率分佈的比較，接著我們從離散單元的角度出發，基於離散單

元進行統計觀察。首先，我們可以如同綜觀分析的探討方式，分別從模型與分群

數量兩個變量切入，並對每個離散單元計算對應的條件音位熵 H(Y |J)並畫出直

方圖進行比較。

圖 3.5可以觀察到四種模型在分群數都是 50時的條件音位熵直方圖，從圖

中可以發現 HuBERT和 CPC的音位熵相較於Wav2vec 2.0和 LogMel偏低，也就

是 HuBERT和 CPC每個離散單元對應的音位相較集中，與綜觀探討得到的觀察

相符。

圖 3.6則是比較 HuBERT模型在分群數為 50、100和 200時的條件音位熵。

需注意的是，由於此時離散單元數量不同，因此直方圖的縱軸改以比例數值呈

現，亦即將數量分別除以 50、100和 200以進行公平的比較。從圖中可以觀察到，

分群數愈多確實使整體條件音位熵降低，也與綜觀探討得到的小結一致。

接著，由於本小節基於離散單元的角度，我們仿照前作如 SpeechTokenizer

[45]、DinoSR [51]的作法，將熱圖改以 PY |J(y|j)呈現，即對每個直行進行標準化

得到條件機率，以顯示每個單位對應到哪個音位，探討這種對應分佈是如何的集
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音位純度 分群純度 音位熵 離散單元熵 相互資訊

HuBERT 0.5256 0.3382 3.3152 3.8681 0.4993

CPC 0.5188 0.3812 3.3146 3.7918 0.4992

Wav2vec 2.0 0.4006 0.2676 3.3152 3.8215 0.3706

LogMel 0.3253 0.1473 3.3158 3.8630 0.2647

(a)分群數 = 50

音位純度 分群純度 音位熵 離散單元熵 相互資訊

HuBERT 0.6097 0.2553 3.3152 4.5704 0.5786

CPC 0.5895 0.2674 3.3146 4.5034 0.5557

Wav2vec 2.0 0.4877 0.2118 3.3152 4.5284 0.4596

LogMel 0.3348 0.0931 3.3158 4.5591 0.2789

(b)分群數 = 100

音位純度 分群純度 音位熵 離散單元熵 相互資訊

HuBERT 0.6474 0.1644 3.3152 5.2681 0.6289

CPC 0.6098 0.1789 3.3146 5.1885 0.5882

Wav2vec 2.0 0.5427 0.1467 3.3152 5.2173 0.5188

LogMel 0.3474 0.0569 3.3158 5.2322 0.2955

(c)分群數 = 200

表 3.2: 四種語音表徵在不同分群數的純度與相互資訊數據
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(a) HuBERT

(b) CPC

圖 3.3: 不同語音表徵在分群數為 50的共同機率分佈熱圖

38



doi:10.6342/NTU202500258

(c) Wav2vec 2.0

(d) LogMel

圖 3.3: 不同語音表徵在分群數為 50的共同機率分佈熱圖（續）
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(a)分群數 = 50

(b)分群數 = 100

(c)分群數 = 200

圖 3.4: HuBERT模型在不同分群數的共同機率分佈熱圖
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(a) HuBERT

(b) CPC

(c) Wav2vec 2.0

(d) LogMel

圖 3.5: 不同語音表徵在分群數為 50的條件音位熵直方圖

41



doi:10.6342/NTU202500258

(a)分群數 = 50

(b)分群數 = 100

(c)分群數 = 200

圖 3.6: HuBERT模型在不同分群數的條件音位熵直方圖
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圖 3.7: HuBERT模型、分群數為 50之 PY |J(y|j)條件機率分佈圖

中或分散。

觀察圖 3.7中由左上而右下角對應的連線區域，首先我們會在左上方觀察到

一條明顯較深的區域，也就是模型會安排一定數量的離散單元用以對應實際上並

非音位的音位標註 sil。此外，我們還可以在連線區域之外觀察到一些零星的色

塊，在此指示存在不少離散單元，它們對應的音位是相比較為分散的，也因此使

得音位純度無法到達 100%。

不過，如果我們嘗試觀察這些將離散單元對應機率分散出去的音位，藉助語

音學的知識可以觀察到一些有趣的發現：這些音位彼此之間在發音上具有很強的

關聯性，幾乎與語音學提供的分類是對應的。

為了方便說明，我們將熱圖上各個離散單元排名前五高的對應音位另外列表

呈現在表 3.3中，並用顏色標明各音位所屬的音位分類。從表中大致可以看出前

幾高機率的音位所屬的類別確實是相近的。而且即便不是同一個音位分類，這些

音位在語音學中，仍有其他層面—如發音部位和清濁音—的相似性，還是可以

將各離散單元的前幾高音位中找出共通點。

43



doi:10.6342/NTU202500258

表 3.3: HuBERT模型、分群數為 50之部分離散單元所對應的前五高機率音位

（音位分類以顏色標示區分）

表 3.4: 國際音標表的輔音表格

說明離散單元對語音聲學特徵的捕捉並不僅限單一面向
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圖 3.8: HuBERT模型、分群數為 50之離散單元與音位標註的條件機率分佈圖

依照韋氏（Wells）[12]論文與音位分類排序

事實上，為了作圖與統計方便，語音處理相關研究 [48, 49]對音位的歸類是

相對簡化的。根據語音學的知識，音位之間的分組方式並不只一種，而本研究著

重的分類方式僅是以「發音方式」為主。例如 05號單元對應的前兩名 /t/和 /s/雖

然並不屬於同一個發聲方式，因而被分成兩個類別，但如果參考表 3.4的國際音

標表 7，會發現它們都屬於「齒音」，亦即它們的「發音部位」是相同的。換言之

這些離散單元捕捉到的語音特性是多個面向的，並不僅限於單一的分類方式，而

是可以對應到國際音標表上至少兩個維度以上的類型。

透過以上的觀察，因此我們有足夠的理由重新對熱圖的縱軸重新排列，並按

照語音學分類進行分組，來觀察這些離散單元是如何指示出音位之間的相似性，

區分出同個音位、同類發音，或者如何被混淆為其他類別。

圖 3.8的分組順序是依照韋氏（Wells）[12]論文中的出現順序排列，而組別

內則是清音在上、濁音在下，而同樣清濁音則是以發音位置由前往後排列。除了

7表中的每個橫列約等於本論文與相關研究 [48, 49]使用的「發音方式」分類法，而每個用直線

隔開的直行則是指「發音部位」相同，同一個格子的左右則是呈現一對清濁音音位。
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縱軸上按照音位本身特性分組，依循純度中使用的「代表音位」i∗ 概念，我們同

樣也對每個離散單元的代表音位排序，並且也依照這些代表音位進行分組觀察。

最後，對於每個離散單元 j 與對應的最高機率音位 Y ∗(j)，為了統計該單元 j

除了 Y ∗(j)以外，是否也給予與 Y ∗(j)同音位分類 K∗(j)的其他音位較高的機率

值，我們藉由調整純度的計算式，但將音位標註改為音位分類並重新統計，以方

便我們比較離散單元「對音位分類歸類能力」的強弱。計算方式為：

如果 Y ∗(j) ∈ K∗(j)，K∗(j) = {Y ∗(j), Y ′, Y ′′, · · · · · · }是所有與 Y ∗(j)同音位

分類的音位，則將這些音位的標註改為 K∗(j)，統計音位分類純度

EPJ (j)

[
PK|J(K

∗(j)|j)
]

(3.13)

與音位分類的分群純度

EPK(κ∗)

[
PJ |K(J

∗(κ∗)|κ∗)
]

(3.14)

以此刻劃離散表徵是否能歸類語音學上相似的發音特徵。

表 3.5是不同離散表徵在音位分類純度與對應的分群純度結果。由表中可以

再次確認，HuBERT的離散單元不但能夠很好的區分出音位，即便某些離散單元

沒有集中分到特定音位之上，也可以很不錯的給予同類別的音位較高的機率值，

以得到較高的音位分類純度數值。

3.6.3 以音位角度切入

　　接著，我們改從音位的角度切入，觀察每個音位所對應的離散單元條件熵

H(J |Y )，以探討不同音位之間是否有特定音位較容易或較難以被離散表徵歸類。
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表 3.5: 以音位分類為標註計算，四種語音表徵在不同分群數的純度數據

表 3.6分別呈現了不同模型在分群數為 50和 100時，離散單元熵最高與最低的幾

個音位。雖然沒有特別明顯的趨勢，但可以大致看到以下幾點：

• 熵值較低的音位有 AA、EY、F、ZH、SH、S等，其中 F、ZH、SH、S皆

屬於擦音。

• 熵值較高的音位有 spn、AH、IH、T、D等，其中 T、D屬於塞音。

整體而言，擦音的離散單元相對較為集中，而塞音則相對較為分散。至於其

他如 AH、IH等高熵值的元音音位，推測其原因可能是它們本身在不同發音情境

下音色的變化相對於 AA、EY等較大，因而較難集中於某幾個離散單元。這個趨

勢在不同的語音表徵和分群數下約略存在，但以 HuBERT和 CPC較為明顯。

為了進一步驗證不同音位類別之間的差異，我們再度引用純度與相互資訊的

計算公式，但將統計範圍限定為不同音位類別，分別計算針對每個音位類別的純

度與相互資訊。換言之，我們共同機率分佈圖 pyz 按照圖 3.9的紅色水平線分成八

塊後，重新標準化並各自計算純度與相互資訊，相當於將原本的語音音框按照音
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(a)分群數 = 50

(b)分群數 = 100

表 3.6: 不同語音表徵在分群數為 50和 100時，離散單元條件熵最高與最低的音位
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圖 3.9: 對共同機率分佈按照音位類別分別計算純度作法示意圖

（以塞音舉例，同樣的作法對紅線分開的八塊區域分別計算）

位類別分成八組各自統計這些指標。如此一來，我們既可以依據每個音位類別觀

察在不同離散表徵對該類別的表現差異，也可以比較不同音位類別彼此的整體趨

勢，歸納音位類別本身發音特徵被捕捉的難易程度。

表 3.7中呈現了這些模型的比較數據。由圖中依然可以觀察到 HuBERT優於

其他模型，且分群數愈多時相互資訊與音位純度愈高，這些趨勢與前面所有的觀

察結論一致。

從音位類別之間的比較，我們可以觀察到：撇除非音位（表格中的「其他」）

類別不考慮8，可以確定塞音和塞擦音的純度較低，確實是較難以集中歸類的音位

類別；而近音、雙元音和擦音則純度相對較高，這也驗證為什麼它們的離散單元

熵值較低且分佈較為集中。
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表 3.7: 按照音位類別分開各自計算的純度與相互資訊
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(a) HuBERT，分群數 50

(b) HuBERT，分群數 100

(c) CPC，分群數 100

圖 3.10: 熱圖驗證塞音、塞擦音較難以被離散單元歸類

注意塞擦音在「HuBERT，分群數 50」和「CPC，分群數 100」

甚至可能沒有專門的離散單元以其為代表
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(a) HuBERT，分群數 50

(b) HuBERT，分群數 100

(c) CPC，分群數 100

圖 3.11: 熱圖驗證擦音、雙元音與近音的特徵較明顯
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3.6.4 整體熱圖驗證

　　最後，參考韋氏（Wells）[12]的研究方法，我們探討不同音位類別中音位

與離散單元的對應關係。比起直接看離散單元的編號，我們改對機率熱圖進行

分區觀察以確認趨勢。為了同時對比語音表徵與分群數兩個變因造成的差異，

我們比較 HuBERT分群數 50和 100以及 CPC分群數 100的機率熱圖，並參考

SpeechTokenizer [45]和 DinoSR [51]的作法，以 PY |J(y|j)呈現，確認離散表徵對

於音位的歸類效果，最終驗證前述觀察。圖 3.10中框出的區域為前述觀察到較為

分散的塞音與塞擦音，這些區域確實顏色較淺（塞擦音在「HuBERT，分群數 50」

和「CPC，分群數 100」甚至可能沒有專門的離散單元以其為代表），證明其語音

特徵歸類的確較為困難；而圖 3.11中框出的區域則是離散表徵歸類較集中的擦

音、雙元音與近音，這幾區的色塊如前面推論所預測的較為明顯，屬於容易區分

的音位類別。

3.7 本章總結

　　本章節探討以音框為單位取出的語音離散表徵與對應的音位標註之間的關

係。我們從純度的計算開始，對整個機率熱圖進行可視化分析，並透過語音知識

的協助，尤其是對音位類別的定義，使我們能對原先約 40類獨立的標註進行更深

入的分析。

透過這些探討，從語音學的角度，我們發現塞音的離散單元分佈較為分散，

而擦音則較為集中。同時，藉由比對不同模型間的數據表現差異，也確認了

HuBERT模型的離散表徵在各項數據中與音位之間的相似性最為明顯。因此，進

一步印證了 HuBERT為何是抽取語音離散表徵時最常使用的模型，並常被無文字
8因其只有 sil一類標註，因此相互資訊和純度相當高。
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自然語言處理架構所使用。

然而，單一離散表徵僅能代表 10或 20毫秒的語音訊號，而音位的長度經常

佔據不只一個離散表徵。因此，下一章節將嘗試進一步組合多個離散表徵成為符

記，分析它們與音位之間的關係。
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第四章 多個語音離散表徵與音位的關係

4.1 動機

　　如第三章所述，一個文字或音位通常對應數百毫秒的語音訊號。然而，單

一離散單元對應的聲音訊號時間較短，約只有 10或 20毫秒。因此，同一段語

音對應的離散單元數量比音位或文字多得多。受到自然語言處理中分詞演算法

（Tokenization）的啟發，我們可以嘗試將這些演算法應用於離散單元序列上。類

似於將多個文字字符（Character）組合成次詞單位（Subword Unit）的過程，同

樣的演算法也可以用來組合多個離散單元，使原先的語音訊號轉變為新的單位序

列，並縮短序列長度。根據任氏（Ren）等人的研究 [11]，這些新的單位因類似於

「單詞片段（WordPiece）[58]」及「句片段（SentencePiece）[59]」等演算法1，被

稱為「聲學片段（Acoustic Piece）」。本章將利用聲學片段重新編碼語音訊號，並

延續上一章的分析方法，與離散單元序列的結果進行比較，以檢驗這些由多個離

散單元構成的新單位序列是否更接近音位序列，進而具備在無文字（Textless）自

然語言處理架構 [46, 6, 43]等後續研究的應用潛能。

4.2 相關研究

　　自無文字自然語言處理架構提出約兩年後，逐漸有研究開始探索多個離散單

元的組合。任氏（Ren）等人 [11]最早提出聲學片段的概念，他們在比較離散單

元序列與對應的文字轉寫時，發現了許多相似的類型（Pattern）反覆出現，且這

些類型並不限於單一語者。受此啟發，該研究利用文字處理中常用的「句片段

1僅將演算法處理的對象從文字字符改為離散單元。
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（SentencePiece）[59]」套件，將多個離散單元組合為新的單位—「聲學片段」，並

應用於語音辨識的預訓練中。

不久後，吳氏（Wu）等人的Wav2seq [14]研究基於離散單元與音位的關聯，

考量到文字與語音序列的長度差異，也將離散單元視為字符進行類似處理，並將

語音訊號轉換為「虛擬語言（Pseudo-language）2」，以協助語音到文字模型的訓

練。其核心動機在於對應用場景的考量，因為解碼器的生成目標是次詞單位組成

的文字序列，該研究旨在利用聲學片段3構成的虛擬語言，使模型能在預訓練後快

速適應下游任務。與吳氏的研究相呼應，聲學片段在語音預訓練中的效果也在阿

氏（Ali）等人 [60]的研究中獲得探討。聲學片段此後更被應用於縮短資料序列長

度 [50]、語音生成 [61]及學習更穩健（Robust）的語音表徵 [62]等場景。近期，

張氏（Chang）等人 [15]將「組合離散單元為聲學片段」的處理流程（Pipeline）納

入 ESPNet套件 [63]中，並在語音辨識和語音翻譯等任務中取得了優於以往的表

現，進一步證明了聲學片段的應用價值。

為了讓讀者能夠更好地理解離散單元如何組成聲學片段，我們將簡介文字處

理中的分詞演算法，然後再進行聲學片段的分析。

4.3 文字處理中的分詞演算法

　　在以文字為主的自然語言處理中，除了使用單詞（Word）或字符（Character）

作為處理單位外，更常見的是透過分詞演算法將文本分段，並使用「次詞單位」

構成詞彙表重新編碼文本，以用於文字模型的訓練與推理。

使用次詞單位的優點包含：

2虛擬語言所對應的離散單元則被視為「虛擬文字（Pseudo-text）」。
3儘管概念基本相同，該篇論文並未直接使用「聲學片段」一詞。
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1. 固定詞彙表大小，避免未登錄詞（Out-of-vocabulary，OOV）問題。

2. 縮短資料序列的長度，提升訓練和推理的效率。

3. 分解單詞，捕捉更細緻的語意關係，例如模擬英語中的字首（Prefix）和字

尾（Suffix）等具有特定意義的字符組合。

4.3.1 常見演算法

　　以下介紹幾種常見的分詞方法：

位元組對編碼（Byte Pair Encoding，BPE）

　　位元組對編碼 [64, 65]是一種常用的分詞演算法，最初來自資料壓縮技術

[64]，後來被引入到自然語言處理領域，用於處理機器翻譯問題 [65]。該演算法首

先將字符作為次詞單位形成詞彙表，然後根據詞彙表中各單位的出現頻率，不斷

合併最常見的字符成為新的次詞單位並加入詞彙表，直到達到預定的大小。

單詞片段（WordPiece）

　　單詞片段 [58]演算法最初由 Google提出，用於訓練機器翻譯系統，並在

BERT [31]模型中被使用而廣為人知。與位元組對編碼相似，此方法同樣使用反

覆合併的策略，但合併的依據是機率模型而非出現頻率。

單一詞語言模型（Unigram Language Model）

　　單一詞語言模型 [66]演算法是基於語言模型的分詞方法，它根據機率分佈選

擇次詞單位，並最大化輸入文本的機率來進行分詞。
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4.3.2 「句片段（SentencePiece）」套件

　　「句片段（SentencePiece）[59]」是由 Google開發的分詞套件，實作了位元組

對編碼和單一詞演算法。其優勢在於統一並簡化了不同語言文本的處理流程，特

別是在中文或日文等不使用空格分隔單詞的語言中，該套件可以省去許多前處理

的步驟。

4.4 分析方法

　　為了方便與上一章節的結果進行比較，本章節的分析對象仍然沿用第三章的

語音資料，即 LibriSpeech資料集 [54]中的 train-clean-100訓練子集。我們首先透

過語音基石模型得到語音表徵，然後通過量化模型獲得離散單元序列。與第三章

不同的是，我們隨後會將這些序列輸入句片段套件，將離散單元組合成聲學片段

後，形成以聲學片段序列組成的「虛擬語言」語料，並將原先的離散單元序列作

為對照組觀察差異。由於離散單元序列本身不具備明確的空格分隔單詞，本章所

有聲學片段序列均透過句片段套件的單一詞演算法生成。除了比較離散單元和聲

學片段的差異外，考慮到不同聲學片段的總數 4 可能影響分析結果，我們設定

不同聲學片段總數為 500、1000、8000、10000、20000，各自對每種語音表徵和

K-平均量化模型的分群數，分別取得虛擬語言語料進行分析。

本章的分析方式與第三章類似，除了整體的純度和相互資訊數據外，還從聲

學片段和音位的角度分別探討。通過調整不同聲學片段的總數，分析其如何影響

聲學片段與音位標註之間的相關性。為避免結果過於複雜，細部分析將著重於比

較不同聲學片段總數為 500和 1000的結果變化。

因為本章探討的重點是不同聲學片段總數變化的影響，延續第三章的發現，

4對應於文字分詞演算法中的詞彙表大小。
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後續分析將主要以表現最好的 HuBERT離散表徵為主。在需要比較離散單元分群

數影響時，我們會對比分群數為 50與 100的差異，否則為避免數據過於複雜，將

直接預設離散單元的分群數為 50進行細部探討。

4.5 分析結果

　　遵循上一章節的分析順序，我們首先將純度等數據與條件機率熱圖 PY |J(y|j)

5兩者互相對照，並以語音學排序呈現，觀察聲學片段與音位之間的分佈關係。

4.5.1 由聲學片段角度探討

不同聲學片段總數的影響

　　表 4.1是 HuBERT模型透過離散單元與不同聲學片段總數的純度與相互資訊

數據。首先，為了觀察聲學片段數量對於機率熱圖與純度數據的影響，圖 4.1與

圖 4.2分別以 HuBERT表徵、分群數為 50和 100的離散單元為基礎，比較離散單

元與 500、1000種不同聲學片段共三種設定下的條件機率熱圖。從中我們可以看

出，當具有更多不同的聲學片段時，熱圖可以觀察出許多更深的色塊，也就是有

更多的聲學片段可以更集中的對應到特定音位。由此可見，有了更多樣的聲學片

段可以區別出更細節的發音差異，使整體的純度數值有所提升；然而，機率熱圖

整體也變得更加破碎，因此歸類同樣音位的效果也相對變得較不明顯。

為了確認各自聲學片段對應音位之集中狀況，我們可以考慮這些機率熱圖

的條件音位熵 H(Y |J)，以直方圖呈現來確認變化。透過觀察圖 4.3與圖 4.4的結

果，可以確認與第三章的離散單元相比，引入聲學片段確實能降低整體的條件音

5由於共同機率分佈熱圖 PY J 的數值對於觀察符記對應到音位的關係較不明顯，因此仿照

SpeechTokenizer [45]、DinoSR [51]等論文使用 PY |J(y|j)呈現。
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不同聲學片段總數 音位純度 聲學片段純度 音位熵 聲學片段熵 相互資訊

離散單元 0.5256 0.3382 3.3152 3.8681 0.4993

500 0.5574 0.0829 3.3152 6.0282 0.5357

1000 0.5744 0.0556 3.3152 6.6594 0.5466

8000 0.5957 0.0257 3.3152 8.5192 0.5729

10000 0.5955 0.0238 3.3152 8.7207 0.5750

20000 0.5921 0.0182 3.3152 9.3527 0.5820

(a)分群數 = 50

不同聲學片段總數 音位純度 聲學片段純度 音位熵 聲學片段熵 相互資訊

離散單元 0.6097 0.2553 3.3152 4.5704 0.5786

500 0.6260 0.0972 3.3152 6.0655 0.5990

1000 0.6372 0.0631 3.3152 6.7181 0.6089

8000 0.6536 0.0237 3.3152 8.5954 0.6308

10000 0.6527 0.0219 3.3152 8.7938 0.6324

20000 0.6490 0.0173 3.3152 9.4123 0.6378

(b)分群數 = 100

表 4.1: HuBERT模型在不同聲學片段總數時的純度分析數據
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(a)離散單元

(b) 500種不同聲學片段

(c) 1000種不同聲學片段

圖 4.1: HuBERT表徵在 K-平均演算法使用分群數 50後，比較不同聲學片段總數

的條件機率分佈 PY |J(y|j)熱圖

61



doi:10.6342/NTU202500258

(a)離散單元

(b) 500種不同聲學片段

(c) 1000種不同聲學片段

圖 4.2: HuBERT表徵在 K-平均演算法使用分群數 100後，比較不同聲學片段總數

的條件機率分佈 PY |J(y|j)熱圖
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(a)離散單元

(b) 500種不同聲學片段

(c) 1000種不同聲學片段

圖 4.3: HuBERT表徵在 K-平均演算法使用分群數 50後，比較不同聲學片段總數

的音位條件熵 H(Y |J)直方圖
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(a)離散單元

(b) 500種不同聲學片段

(c) 1000種不同聲學片段

圖 4.4: HuBERT表徵在 K-平均演算法使用分群數 100後，比較不同聲學片段總數

的音位條件熵 H(Y |J)直方圖
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(a)分群數 = 50

(b)分群數 = 100

圖 4.5: 同樣取不同聲學片段總數為 500，著重比較 HuBERT表徵在 K-平均演算法

使用分群數 50與 100的條件機率熱圖 PY |J(y|j)差異
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位熵，亦即聲學片段相較於原先的離散單元序列，能夠更明確對應到特定音位，

與我們從機率熱圖上所觀察到的趨勢符合。

雖然改用聲學片段會使熱圖更加破碎而複雜，但除純度與相互資訊的數值

變化外，觀察每個聲學片段對應之最高機率音位 Y ∗(j)以及它們的音位類別比例

變化，也可以驗證「更多種類的符記6可以區別發音細節差異」這點。再次觀察

HuBERT在分群數 50時的機率熱圖（圖 4.1），圖中熱圖的藍色鉛直線是每個符

記7 在找出對應音位 Y ∗(j)後，按音位類別分區排序的結果。因此，比較藍色鉛

直線在橫軸上各區的比例變化，可以知道有多少比例的符記能表示特定類型的發

音。第三章結尾時提及過，在離散單元分群數為 50時，由於離散單元分群數較

少，使得虛擬文字文本不同符記的總數亦較少，因而並沒有任何單元最能直接對

應塞擦音音位。然而，當將這些離散單元重組為聲學片段後，整體不同符記的總

數提升，使得不管在不同聲學片段總數為 500或 1000的機率熱圖上，都可以發現

至少出現一個以上的聲學片段得以對應到塞擦音。由此，我們驗證了聲學片段的

引入，由於能夠提升不同符記的總數 8並對離散單元進行重組，對捕捉更細微的

發音差異的確有所幫助。

離散單元分群數對聲學片段表現的影響

　　然而，儘管引入聲學片段一定程度上能幫助區別語音訊號中的細微發音差

異，原先在語音表徵進行離散化時 K-平均演算法設定的分群數，在捕捉語音資訊
6符記（Token）在離散單元組成的虛擬文字文本中為離散單元，而該類文本經過句片段套件處

理後得到的虛擬語言文本，符記則為聲學片段。前者符記的種類數分別由 K-平均演算法的分群數

決定，後者則由句片段套件的詞彙表大小參數決定。
7圖 4.1a為離散單元，而圖 4.1b與圖 4.1c則為聲學片段。
8因為分詞演算法的詞彙表大小必須大於原先的字符總數，因此不同聲學片段的總數也必然大

於原先離散單元的分群數，不同符記的總數因而提升。
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(a)塞音

表 4.2: HuBERT表徵、K-平均演算法分群數 50，比較單一離散單元與使用 500種

不同聲學片段，依據不同音位分類比較符記各自對應的前五高音位

上半部為離散單元，下半部為聲學片段。

圖中的百分比為最高機率音位的條件機率 PY |J(Y
∗(j)|j)

67



doi:10.6342/NTU202500258

(b)擦音

表 4.2: HuBERT表徵、K-平均演算法分群數 50，比較單一離散單元與使用 500種

不同聲學片段，依據不同音位分類比較符記各自對應的前五高音位（續）
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(c)單元音

表 4.2: HuBERT表徵、K-平均演算法分群數 50，比較單一離散單元與使用 500種

不同聲學片段，依據不同音位分類比較符記各自對應的前五高音位（續）
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表 4.3: 對 HuBERT分群數 50離散單元取得 500種不同聲學片段後，對應到塞擦

音的聲學片段之音位條件機率排名

不同聲學片段總數 音位類別純度 音位類別標註對應之聲學片段純度

離散單元 0.7006 0.1509

500 0.7116 0.0340

1000 0.7186 0.0226

8000 0.7080 0.0119

10000 0.7048 0.0113

20000 0.6929 0.0089

(a)分群數 = 50

不同聲學片段總數 音位類別純度 音位類別標註對應之聲學片段純度

離散單元 0.7584 0.0882

500 0.7578 0.0326

1000 0.7576 0.0223

8000 0.7382 0.0097

10000 0.7346 0.0090

20000 0.7235 0.0074

(b)分群數 = 100

表 4.4: HuBERT模型在不同詞表大小時的語音學類別分析數據

70



doi:10.6342/NTU202500258

的能力上，仍然對後續產生的聲學片段起到關鍵性作用。圖 4.5比較了同樣設定

產生 500種不同聲學片段的情境下，原先 K-平均演算法的離散表徵分群數選擇

50和 100時，造成的機率熱圖差異。相比之下，我們不難發現離散單元分群數為

100的聲學片段能更加平均的對應到不同音位。然而，即便與音位的對應效果最

大取決於 K-平均的分群數，但分群演算法本身卻相當消耗計算資源。因此，當遇

到運算資源有所限制，致使 K-平均演算法的分群數難以設置得很大時，聲學片段

的引入仍舊能提升整體表現。

聲學片段對應最高機率之音位間的比較

　　接下來，我們比較各個聲學片段與音位之間的對應關係，亦即每個聲學片段

所對應最可能的前幾個音位之間，是否依然如離散單元那樣存在特定特徵。觀察

以 HuBERT模型、分群數 50為基礎，分別以「離散單元」與「500種不同聲學片

段」為符記組成的語音資料，將對應到塞音、擦音和單元音部分的符記取出觀察，

將每個符記對應前五高機率的音位排名呈現在表 4.2中9，圖中上半部是以離散單

元為符記，下半部則是以聲學片段為符記的結果。相互比較後可以發現，由於使

用聲學片段時，不同符記的總數比使用離散單元時更多，因此在維持對應音位之

間相關性的同時，卻能呈現出不同音位間更細節的相關性。例如在表 4.2a中，上

半部顯示原先以離散單元為符記時，因為不同符記的總數僅為 50，因此只能看出

T、B與 D比較容易和哪些其他音位比較相關，但聲學片段卻可以呈現出 P、T、

B、D等更多細節的音位關係。特別值得注意的是，表 4.3是對應到塞擦音的幾個

聲學片段，這些對應到 CH和 JH兩種塞擦音的聲學片段也確實給予了同樣是塞擦

音的其他音位較高的機率。

仿照第三章，藉由以音位類別作為新的標註計算純度，我們可以確認聲學片

9並附上最高機率音位 Y ∗(j)的條件機率值 PY |J(Y
∗(j)|j)。
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段給予同類音位較高機率的效果。然而從表 4.4可以發現，隨著不同聲學片段總

數的提升，僅在離散單元分群數為 50時 10，音位類別的純度有微幅提升，多數時

候，不同聲學片段總數的提高，伴隨的反而是音位類別純度些微的降低。由此可

以推斷，聲學片段的引入雖能帶來更多樣的符記，對應音位間的關係卻在 K-平

均演算法得到的離散單元中已經大致抵定，聲學片段幾乎難以帶來多少改善的空

間。此現象的成因很可能是源自分詞演算法原先為文字設計的特性，使聲學片段

的計算過程可以把原先代表不同種類音位的離散單元組合在一起。因此，即便聲

學片段對應音位的純度有所提升，對音位類別的相關性卻降低不少。

4.5.2 由音位角度探討

　　考慮完聲學片段，接著我們一樣以音位的角度切入，觀察各自音位的聲學片

段分佈的集中程度（並與離散單元相互對照）。表 4.5是對 HuBERT模型所得的離

散單元（比較離散單元分群數為 50和 100的差異），不同聲學片段總數對應聲學

片段條件熵 H(J |Y )最高與最低的排名。比對最左側直行顯示的離散單元排名，

亦即第三章不引入聲學片段的結果，可以發現對應聲學片段最分散的音位仍以

AH、IH、T、D為主，而聲學片段最集中的音位亦仍然是 ZH、SH、F、EY，與

離散單元的情況接近。由此可以推論，音位本身的較容易或較難以歸類的特性，

在對語音表徵進行分群時就已經大致呈現；然而，即便產生聲學片段的演算法允

許將代表不同類別音位的離散單元重新組合，音位本身對應的聲學片段分散程

度，卻仍舊維持了原先在離散單元呈現出來的趨勢。因此，不論符記是使用 K-平

均演算法離散化獲得的離散單元，或是重新歸類組合出的聲學片段，音位所對應

的符記集中或分散程度，都呈現差不多的趨勢，可見音位本身的發音特徵確實是

10不同符記的總數較少。
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(a)分群數 = 50

(b)分群數 = 100

表 4.5: HuBERT表徵、K-平均演算法分群數 50和 100，比較不同聲學片段總數

時，聲學片段熵最高與最低的音位排名
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表 4.6: HuBERT分群數 50的離散單元，以不同聲學片段總數，按照音位分類分開

各自計算的純度與相互資訊
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表 4.7: HuBERT分群數 100的離散單元，以不同聲學片段總數，按照音位分類分

開各自計算的純度與相互資訊
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超出單一音框、影響範圍更廣的特性。

最後，我們可以將音位類別分別考慮，統計其各自的純度與相互資訊數據，

與上一章節比對。對「HuBERT，分群數 50」之離散單元文本以不同聲學片段總

數處理後，不同音位類別各自的純度與相互資訊數據以表 4.6呈現。由結果可以

發現，隨著不同聲學片段的總數增加，除了原本音位純度較低的塞音在音位純度

與相互資訊的提升較為明顯外，其他音位類別的音位純度與相互資訊就已經較

高，因而雖然增加得不是很明顯，但整體大致仍然有所改善。比較表 4.7，可以確

認此一變化在分群數改為 100時依然可見。

4.5.3 分析結論

　　基於對離散單元的重新組合，聲學片段能夠區別語音訊號中的細微發音差

異，進一步提升音位純度和相互資訊等指標，從而提高與音位序列之間的相關

性。雖然聲學片段演算法允許重新組合代表不同音位的離散單元，但新生成的聲

學片段與原先的離散單元在與音位的對應上，集中或分散程度沒有顯著差異。因

此，從離散單元序列中獲取聲學片段可以作為除 K-平均演算法外的另一種語音訊

號離散化選擇。

4.6 本章總結

　　本章基於離散單元文本，借鑑文字處理中次詞單元的概念，嘗試將離散單元

序列重新組合成聲學片段，並仿照第三章的分析方法，將離散單元與聲學片段進

行比較，探討兩者與音位之間的關係變化。結果顯示，無論是使用 K-平均演算法

得到的離散單元，抑或是句片段套件得到的聲學片段，儘管兩者在語音資訊捕捉

效果上有所不同，但隨著符記種類的增加，都能獲得更加細節的語音資訊，並提
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升與音位的相關性。期望這一發現可以在未來建立語音語言模型時，除了 K-平均

演算法的離散單元外，考慮結合使用聲學片段的演算法，以更全面地從語音訊號

中提取音位相關的語音學資訊。
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第五章 結論與展望

5.1 研究貢獻與討論

　　本論文旨在深入探討和比較各種語音基石模型所得到的離散表徵與音位之間

的關係；並藉助音位類別等語音學知識，拓展音位標註所提供的資訊，使用純度

和相互資訊等指標進行的深入詮釋。我們也詳細觀察了機器學習所得到的離散表

徵與音位標註之間的相似與異同。

在論文中，我們首先從分群演算法所獲得的離散單元出發，比較不同語音基

石模型形成的表徵以及分群演算法的分群數對結果的影響。接著，藉由將文字處

理中的分詞演算法應用於離散單元序列得到新的單位—聲學片段，並比較不同的

聲學片段的總數所構成的序列之間，以及它們與原先的離散單元所構成的序列間

的差異。無論是離散單元還是聲學片段，都是將語音訊號離散化的方式，皆可視

為語音的「離散表徵」。因此，我們分別從離散表徵和音位的角度出發，詳細探討

除了純度與相互資訊外，語音的離散表徵與音位間更細微的相關性差異。

首先，論文的第三章重點探討了離散單元序列與音位序列之間的關係。本章

從介紹無文字自然語言處理架構與語音表徵相關的分析研究開始，解釋了如何利

用純度和相互資訊等統計數據分析離散單元的表現。為了進一步發掘上述統計指

標是否能提供更多細節的觀察，我們簡介了語音學中如何根據發音特性定義音位

類別。在此基礎上，我們延伸了純度與相互資訊的定義，並回頭觀察了共同機率

分佈。本章從離散單元和音位兩個角度切入，比較各自的條件機率分佈特性，觀

察不同模型、不同分群參數或不同音位之間是否存在特定的集中或分散關係，以

及不同離散表徵模型對語音訊號特性歸類的能力。

結果顯示，HuBERT作為目前無文字自然語言處理架構中最常用的語音離散
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表徵模型，其優勢可能來自於相對於音位，其純度和相互資訊皆較高，能更有效

地捕捉到語音中與內容相關的重要資訊。進一步以音位類別作為新的標註取代音

位的分析，我們也觀察到了同樣的趨勢，證實了 HuBERT對發音特徵的捕捉較其

他模型更為全面。此外，章節末尾還比較了不同音位類別的離散單元條件熵、純

度和相互資訊，發現塞音與塞擦音是較難歸類的音位類別，而擦音、雙元音和近

音的發音特徵相對較易被捕捉。

接著，論文的第四章鑑於音位往往對應到多於單一離散單元，乃將離散單元

視為文字字符，套用常見的分詞演算法，得到由多個離散單元組合而成的「聲學

片段」序列，並依循第三章的分析模式進行重新探討，觀察使用聲學片段取代離

散單元以及不同聲學片段的總數對分析數據的影響。結果表明，通過在離散單元

序列上生成聲學片段，可以提供除了分群演算法外的另一種增加不同的離散表徵

總數的方法。儘管效果可能不如直接對語音表徵進行分群演算法，但聲學片段的

生成過程成本相對較低，且能在維持音位類別間趨勢的同時，進一步提升離散表

徵與音位之間的相關性。因此，聲學片段可作為除分群演算法外，語音訊號離散

化的另一種選擇。

5.2 未來展望

　　希望這些對離散單元和聲學片段的觀察分析，能幫助我們在訓練任務之前，

選擇更適合作為語音訊號離散化基礎的語音基石模型。未來，我們期望針對常見

的語音任務，特別是語音辨識和語音翻譯等內容處理相關任務，比較這些離散表

徵在實際訓練中取得的成效與分析數據之間的關係，並對這些任務中的錯誤案例

進行統計和個案研究。

此外，針對如何結合多個語音離散單元形成新的離散表徵，往後可以探索除
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聲學片段外的其他方法，例如將此目標形塑為語音分段（Speech Segmentation）任

務進行訓練，以縮短序列長度，並使其更符合音位等語音標註的需求。

最後，利用音位類別作為音位標註的切入點，未來在分析離散單元或連續語

音表徵時，不再僅限於參考音位或文字本身，而是可以參考來自語音學的知識，

找出哪些音位在語音模型表徵和語音學上均表現出相似或相異的特徵，為錯誤發

音修正等應用任務提供參考依據。
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