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中文摘要 

哼唱檢索系統(Query by Humming)是設計用在不知道傳統歌曲搜尋的資訊(如:

歌名、歌手、歌詞等)的情況下，透過哼出一段旋律來搜尋出期望之歌曲。與常見

的歌曲辨識不同，哼唱檢索是使用者哼出一段旋律，而非從背景聲音中找出撥放中

的歌曲，這樣可能會導致哼唱的音高、速度都與使用者期望得到的歌曲有所出入。 

常見的哼唱檢索系統分為三個部分:音符切割(或稱為發端檢測)、音高辨識、資料比

對，其中音符切割又分為兩種做法:音框導向及音符導向。 

音框導向透過將輸入切割成固定長度的片段，辨識這個片段的音高後，透過所

有片段的音符序列與資料庫的序列做比較。 

另一種做法是音符導向，為了提升音高辨識的準確率，降低哼唱時的節奏差異

以及音高抖動帶來的影響。音符導向透過偵測每個音的開始，藉此來切割出不同的

音符片段，用來做音高的辨識。 

相較於傳統將問題分成三個子問題來完成。也有些論文透過機器學習的方式

來改善前兩個子問題的準確性，但大多受限於公開訓練資料的不足，導致效果不慎

理想。 

不過近年有論文提出將哼唱檢索系統視為是翻唱歌曲辨識的特殊情況，可以

藉此透過翻唱歌曲辨識更多的公開資料來改善訓練資料的不足。本篇論文基於以

上的假設，藉由機器學習的方式，將輸入的哼唱音訊轉換成一個高維的特徵，透過

比對資料庫內的特徵相似度，來獲得最相近的歌曲排序，能獲得比傳統的方法更加

準確的結果，同時也能規避哼唱檢索系統的公開資料不足的影響。 

關鍵字：哼唱檢索、深度學習、聲紋辨識 
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ABSTRACT 

 

 A Query by Humming (QBH) system is designed for situations where traditional 

song search information (such as title, artist, or lyrics) is unknown, allowing a user to find 

a desired song by humming a part of its melody. Unlike common song recognition, which 

identifies a song playing from a background source, QBH involves the user producing the 

melody themselves. This can result in discrepancies in pitch and tempo compared to the 

original song the user is trying to find. 

Conventional Query by Humming systems are typically composed of three main 

parts: note segmentation (or onset detection), pitch recognition, and data matching. 

Within note segmentation, there are two common approaches: frame-based and note-

based. 

The frame-based approach segments the input audio into fixed-length frames. After 

identifying the pitch of each frame, the resulting sequence of notes is compared against 

sequences in the database. 

The other approach is note-based, which aims to improve pitch recognition accuracy 

and reduce the impact of rhythmic variations and pitch fluctuations inherent in humming. 

The note-based method works by detecting the start of each note, thereby segmenting the 

audio into distinct note fragments that are then used for pitch recognition. 

In contrast to the traditional method of dividing the problem into these three sub-

problems, some recent studies have leveraged machine learning to improve the 

performance of the first two components. However, these approaches are often limited by 

the scarcity of large-scale, publicly available QBH datasets, resulting in suboptimal 

performance. 
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To address this limitation, recent research has proposed treating QBH as a special 

case of cover song identification, allowing the use of more abundant public cover song 

datasets for training. Based on this assumption, this work employs a machine learning 

approach that transforms input humming audio into a high-dimensional feature vector. 

The system then obtains a ranked list of the most similar songs by comparing feature 

similarity within the database. This method can achieve more accurate results than 

traditional approaches and also helps to circumvent the challenges posed by the limited 

availability of public data for Query by Humming systems. 

 

Index Terms- Query by humming, deep learning, Audio fingerprinting 
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Chapter 1 Introduction 

 

In our daily life, there comes a moment that we want to find a song. Unfortunately, 

we cannot recognize either lyrics or title. The only thing that we have is a piece of melody. 

Query by Humming(QBH) system is aimed to solve this problem by allowing user to 

retrieve music through their humming melody. 

 In traditional QBH implement, we split QBH system into two main part melody 

extraction which also known as pitch estimate and melody matching. A typical process of 

a QBH system is when user send a query by humming the melody they remembered, 

QBH system first using melody extraction module to extract the melody. Then use this 

melody to compare with database to find most similar piece, the song name of this piece 

will return to user as the result. 

Melody extraction, which means to generate a sequence of pitch or frequency to 

describe the audio signal. For an example, using staff notation to label a piano music is 

called melody extraction. There are two types of pitch labeling, single or chord. The 

example just mention is apparently chord type since piano music mostly comes with chord. 

It’s not accurate using one single frequency to describe the music in any point. Fortunately, 

human can only sing a tone at same time. This leads to song melody can be noted as a 

sequence of main frequency. That is to say, we only need to extract one frequency in the 

same time which is easier than finding every tone. 

On the other perspective of melody extraction, it can also split into two different 

types frame based and note based. Frame based using a fix length to sample a frequency. 

For example, the audio signal is sampled as 44100Hz, we can split this signal into some 

piece which is 512 samples long. Then we calculate the most significant frequency and 
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use it to represent this frame. Another way to separate signal is note based, in this method 

we use note to pronounce the audio. To do this, we have to detect onset and offset perfectly. 

Otherwise the pitch could be calculated wrong or combine two notes into one note. There 

are two main advantages of this procedure. First, using this way to separate audio can 

benefit pitch estimation since it usually has longer samples compare to frame based. Also, 

the unstable frequency at the beginning of a note can be ignored which is not possible in 

frame based procedure. Second, we can ignore the tempo difference between query and 

reference which needs some matching tricks to reduce the impact in frame based system. 

The other part of QBH system is melody matching, this can be seen as sequence 

matching problem. Given a short sequence, calculate the similarity with every long 

sequence generate by reference song or man labeled data. In this sub problem, there are 

some algorism that perform well in small dataset such as Earth Mover’s Distance or 

dynamic time warp. There also have some algorism aims to improve searching speed for 

example local sensitive hash or multistage matching. 

These work mentioned above have some challenges. In melody extraction, framed 

based method will suffer from tempo difference between query and reference song which 

need to use more complex matching algorism to collaborate. On the other side, although 

note based method can ignore tempo difference, this method still has its own problem 

such as missing note (like onset undetected make two notes seen as one note), poor 

performance on gliding pitch. In melody matching, since the query can be start at any 

time in reference song and the length of query notes are not fixed. The matching algorism 

will get slower in large database and long reference song. Furthermore, the matching 

algorism usually have to collaborate the imperfect extraction of melody. These problems 

make query by humming system impractical in real scenario due to there always have 

large amount of songs. 
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According to these disadvantages, there is a need for more robust method that can 

speed up in matching stage, handle noise, tone difference. To address this problem, we 

propose a novel QBH system that using fingerprinting to describe segment of audio. This 

method has some advantages that can improve the performance of QBH system. First, 

using machine learning method as audio fingerprinting can make dataset not rely on 

human labeled note sequence. Second, conformer structure model can make classification 

more accuracy without adding more dimension on fingerprint vector. Lastly, as the query 

and reference are using fingerprint vector to matching not note sequence, we use cosine 

similarity as the matching algorism to improve the matching speed. 

In summary, this work addresses the limitations of traditional QBH systems—such 

as limited tolerance to pitch and tempo variations, and dependence on note-based 

symbolic representation—by leveraging a deep neural architecture. We propose a 

Conformer-based embedding model that integrates harmonic attention and domain-

adversarial training to improve robustness and generalization. Our contributions are 

threefold: (1) by using audio fingerprinting, we can use cosine similarity to boost retrieval 

speed, (2) we employ harmonic block to enhance pitch structure modeling, and (3) we 

use conformer model to achieves superior performance using a comparable embedding 

dimension compared to ByteHum[8]. 

 

1.1 Terms Definitions 

Before introduce our proposed method, there are some related terms that people need 

to know. The definitions of some terms are shown below. 

Table 1-1 Definitions of terms 

Note A symbol to represent pitch and duration of a sound. 
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Frame 

A small clip of a sound. Usually split sound into same 

frame size. 

Pitch 

Quantize frequency using 12-tone equal temperament 

scale 

Octave 

An octave contain 12 tones, an octave higher means 

double of frequency in Hz 

Constant-Q 

Transform(CQT) 

Transform audio into a time-frequency spectrum with 

pitch representation. Higher frequency resolution in 

lower frequencies. 
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Chapter 2 Related work 

 

2.1 Traditional approach 

2.1.1 Frame-based approach 

In frame-based systems, the audio signal is divided into fixed-size overlapping 

frames (e.g., 512 samples), and pitch is estimated for each frame independently. This 

method simplifies implementation and aligns well with spectral-based pitch trackers such 

as YIN or autocorrelation-based methods. 

However, frame-based systems are sensitive to tempo differences between the query 

and reference. A faster or slower humming speed may shift the temporal alignment, 

requiring additional matching algorithms such as Dynamic Time Warping (DTW) to 

compensate for timing variations [4], [13]. Moreover, frame-level pitch estimation may 

suffer from inaccuracies in low-energy or gliding regions, where pitch salience is weak 

or unstable. 

 

2.1.2 Note-based approach 

The note-based approach is a widely adopted strategy in traditional Query-by-

Humming (QBH) systems. Unlike frame-based methods that estimate pitch at fixed time 

intervals, note-based systems attempt to segment the audio into discrete musical notes by 

detecting onset and offset events. Each note is then assigned a pitch value, and the 

resulting symbolic sequence serves as the melodic representation of the audio. This 

representation is naturally invariant to tempo variations and is more aligned with human 

perception of melody. 

Several works from National Taiwan University have focused on improving note-
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based QBH pipelines. Lin [1] proposed an onset-based segmentation method combined 

with dynamic time warping (DTW) to align pitch sequences between query and reference 

songs. Hu [4] similarly employed onset detection and developed a modified melody 

matching algorithm to improve alignment accuracy. Both systems rely heavily on 

symbolic note representations and traditional signal processing techniques. 

To improve onset detection accuracy, Chen [2] introduced a CNN-based model that 

integrates multiple acoustic features—such as spectral flux and energy envelope—into a 

unified onset detector. Although deep learning is used for onset estimation, the overall 

retrieval process still follows a traditional note-based pipeline, including pitch estimation 

and symbolic matching. Building upon this, Hung [3] further replaced the CNN with a 

more robust model and introduced a waveform-level autoencoder to denoise vocal inputs 

before pitch extraction. [17] proposed using a vocal linguistic feature to improve the 

onset/offset detection. While these enhancements improve the reliability of melody 

extraction, they do not change the fundamental nature of the system, which remains 

rooted in symbolic, note-level representation and DTW-based matching. 

Despite their conceptual clarity, note-based approaches face challenges in practical 

scenarios. Accurate onset detection remains difficult, especially in noisy, gliding, or 

expressive vocal input. Misdetected or missing onsets can lead to pitch merging or 

segmentation errors, ultimately affecting retrieval accuracy. Additionally, pitch 

estimation from short segments is susceptible to harmonic interference, which can 

misidentify overtones as the fundamental frequency. 

Beyond conventional onset/offset detectors, some recent studies reformulate 

onset/offset detection as an object detection task on spectrograms. Musicyolo[18] 

demonstrates that treating a note as an object, then the boundaries of the object boxes can 

be seen as the onset and offset of the note. This method allows notes that are very close 
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to other notes to be detected more accurately. 

 

2.1.3 Pitch estimation 

Pitch estimation is one of the most critical components in traditional Query-by-

Humming (QBH) systems, as it directly determines the accuracy of the extracted melody. 

The goal is to estimate the fundamental frequency (f₀) of the input audio segment, which 

is the basis of melody. 

Conventional pitch estimation algorithms typically work on short-time frames using 

frequency-domain techniques. Notable examples include time-domain based methods 

ACF, AMDF and frequency-domain based methods HPS, Cepstrum. Both methods 

perform well in ideal scenarios. 

However, these methods can easily be affected by noise, harmonic frequency, and 

instability of the vocal. One of the most common failures is identifying harmonic 

frequency as fundamental frequency, also known as octave error. To eliminate the effect 

of this problem, several enhancements have been proposed, such as energy-based 

thresholding and pitch smoothing across frames [6],[9],[12]. 

Some note-based approaches attempt to improve pitch estimation by leveraging 

onset and offset information, given stable note regions for pitch estimation. While this 

can reduce transient noise and vibrato effects, it also introduces new dependencies on the 

accuracy of onset detection. 

Due to these limitations, recent research has shifted toward learning-based pitch 

estimation. Methods such as CREPE and other neural network-based f₀ trackers[26], [30] 

have demonstrated superior robustness in noisy and unconstrained environments, 

motivating their integration into modern QBH pipelines. 

In addition, [16] further proposed a lightweight pitch estimation encoder-decoder 
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model with an integrated detector to determine whether a melody exists in each input 

frame. With this method, it can perform better in some scenarios. 

 

2.1.4 Sequence Matching Algorithms 

After melody extraction, the next step is to compare the query sequence with entries 

in the database. Several algorithms have been proposed for sequence matching: 

1 Dynamic Time Warping (DTW) [4] aligns sequences with non-linear time distortion, 

allowing tolerance to tempo variation. 

2 Earth Mover’s Distance (EMD) [14] computes similarity by measuring the minimum 

effort to transform one sequence into another. 

3 Longest Common Subsequence (LCS) captures symbolic similarity by counting 

matching note subsequences. 

4 Multistage Matching [13] and Locality-Sensitive Hashing (LSH) are used to 

accelerate matching in large-scale databases. 

 

While effective in small or mid-scale setups, these methods often struggle with 

scalability. The retrieval time grows with the number and length of candidate songs, 

making them less suitable for real-world music libraries containing millions of tracks. 

Additionally, some studies like [12] use smoothing techniques to refine the sequence 

and eliminate certain octave errors to generate a more accurate sequence that can benefit 

the matching result. 

 

2.2 Machine learning approach 

Deep learning has significantly reshaped the landscape of Query-by-Humming 
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(QBH) systems. Historically, QBH pipelines have drawn heavily from singing melody 

transcription methods, which aim to predict a pitch sequence from audio. These 

transcription approaches can be categorized into frame-based and note-based paradigms, 

often coupled with pitch estimation modules. More recently, a novel perspective 

emerged—proposing that QBH can be seen as a special case of the cover song 

identification (CSI) problem, where a user-generated humming query serves as the cover 

variant. This view laid the foundation for transferring CSI models to the QBH task, as 

exemplified by ByteHum [8], which leverages this framing to use large-scale CSI datasets 

for supervised training [32]. 

Several fully deep learning-based systems have been proposed. [5] treats QBH as a 

classification problem, using a chromagram to reduce unnecessary information and a 

CNN-based model for classification. ByteHum [8] adopts a CSI framework by applying 

neural fingerprinting to CQT spectrograms extracted from vocal-separated tracks. Using 

triplet loss for metric learning, it produces robust segment-level embeddings that are 

matched using cosine similarity. CoverHunter [20] shows that the combination of 

attention mechanisms and convolutional networks can achieves better performance on the 

CSI problem compared to convolutional networks alone. DisCover [21] further separates 

melody-relevant content from confounding factors using disentangled representation 

learning, increasing retrieval performance under varied acoustic conditions. 

Other works focused on deep learning-based melody extraction. For example, [7] 

uses both temporal and frequency domain attention mechanisms to improve melody 

extraction accuracy. HANet [26] further proposes a harmonic attention mechanism to 

improve pitch estimation, especially in polyphonic settings. HKDSME [15] uses 

harmonic supervision to improve melody extraction under semi-supervised conditions. 

These systems, while not end-to-end QBH pipelines, provide important building blocks 
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that enhance the quality of humming representations. 

A key distinction should be made between systems that only incorporate neural 

components (e.g., using CNNs for onset detection [2], or denoising autoencoders [3]) and 

those where the entire pipeline, from spectrogram input to retrieval result, is optimized 

via deep learning. The latter enables robustness to key variations, tempo changes, and 

background noise, making them better suited for real-world deployment. 

2.3 Audio Fingerprinting and Metric Learning 

Among the deep learning-based approaches to QBH, one of the most transformative 

techniques is neural audio fingerprinting. Unlike symbolic methods that rely on explicit 

pitch sequences, fingerprinting encodes audio segments into dense, discriminative 

embeddings in a fixed-dimensional vector space. These fingerprints allow fast and 

accurate retrieval via vector similarity, even in noisy or distorted queries. 

Neural fingerprinting can be viewed as an extension of traditional audio 

fingerprinting systems, but instead of using hand-crafted features, it uses convolutional 

or transformer-based encoders trained with metric learning objectives such as triplet loss 

[22] or contrastive loss. The model learns to pull embeddings of similar (hummed vs. 

original) segments closer, while pushing dissimilar ones apart. This enables efficient 

Maximum Inner Product Search (MIPS) over large-scale reference databases. 

Systems like “Now playing”[19], ByteHum [8], and CoverHunter [20] implement 

this concept effectively. In ByteHum, the vocal-separated audio is converted into CQT 

spectrograms and processed by a CNN-based encoder followed by L2 normalization. The 

resulting 128-dimensional vectors serve as neural fingerprints. CoverHunter enhances 

this architecture with attention mechanisms and alignment refinements, improving 

precision in partial or noisy queries. 
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There are three main advantages of audio fingerprinting: 

1. Speed: Fingerprints can be indexed and retrieved using fast approximate nearest 

neighbor (ANN) methods. 

2. Robustness: Embeddings tolerate pitch drift, tempo variation, and background noise 

better than symbolic features. 

3. Scalability: Retrieval remains efficient even when searching across tens of thousands 

of songs. 

 

By framing QBH as a segment-level retrieval task with neural fingerprints, these 

systems sidestep many limitations of traditional note-based approaches, such as onset 

misalignment and gliding pitch distortion. Neural fingerprinting thus represents a 

paradigm shift in QBH system design. 
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Chapter 3 Method 

 

In this section, we present the architecture of our proposed method, including overall 

system, data preprocessing, model architecture, and loss function. The overall workflow 

is shown in Figure 3.1. 

 

Figure 3.1 System architecture overview 

 

3.1 Overall system 

The architecture of our proposed system is inspired by ByteHum[8], as shown in 

Figure 3.1, the audio will be split into 8-second segments with a 3-seconds hop. Then we 

transform each segment into time-frequency image by Constant-Q Transform(CQT). 

After this step, we feed the images into model, which will output a 128-dimensional 

fingerprint. We use this fingerprint to compare the cosine similarity with a database that 

is generated through the same process using reference songs. 
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3.2 Data preprocess 

In traditional QBH systems, we only need some samples to validate the performance 

of a system, it leads to the lack of humming audio data on the internet. To deal with this 

problem, in [32], they proposed to consider QBH as a special case of Cover Song 

Identification(CSI). Following this thought, we separate the vocal soundtrack from 

dataset by demucs[25] to simulate humming audio. 

After separate vocal tracks, we split vocal tracks into 8-seconds segment with a 3-

seconds hop, and use RMS energy to check whether segment has voice. For those 

segments containing voice, we take same time shift window to original songs. These vocal 

clips, original song clips and some MIR-QBSH segments will be conbined as our training 

set. 

Segments in training set will apply Constant-Q Transform with 96 bins which means 

8 octave from C0 to B7 and 256 samples hop. 

The vocal tracks were separated using Demucs[25] pre-trained model, applied on 

both synthetic datasets ST500[28] and Kaggle Humming Audio[29]. For quality control, 

we used RMS thresholding to exclude silent or low-energy segments; segments with 

mean RMS below 0.02 were discarded. To simulate real-world humming input, no 

additional pitch correction or post-processing was applied to the separated vocal. 

 

3.3 Model Architecture 

Our proposed model architecture shown in Figure 3.1, can be separated into four 

parts, each part is describe below: 
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3.3.1 Down sampling and projecting to higher dimension space 

In common, when we need to down sampling in time domain, we can either use 1D 

convolution or pooling to achieve. These functions can maintain the same dimension 

along frequency axis. However, in our scenario we also need to projection to upper space 

in frequency axis. It means maintain same dimension is unimportant, so we use 2D 

convolution to make down sampling consist both time and frequency information. Then 

use linear projection to reshape frequency axis to embedding dimension we want. 

Specifically, we use 2 layers of 2D convolution with 2 sample stride to reduce both 

dimension to 1/4. In order to not lose frequency information, we set channel to same as 

embedding dimension. Then we reshape it into (T/4,Demb*D/4) and use a linear project 

to project to embedding dimension(Demb). 

 

3.3.2 Harmonic block 

From previous works[2], they showed that one of the difficulty of QBH system is to 

estimate pitch perfectly. Furthermore, the main factor affecting pitch estimation accuracy 

is the incorrect identification of harmonics as the fundamental frequency. 
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Figure 3.2 [30] shows an example of harmonic frequency predict as fundamental 

frequency 

This shows that the relationships between the fundamental frequency and harmonics 

are important in QBH system. To better capture these relations, HANET[26] proposed a 

method using temporal and frequency two branch to capture both side features shown in 

Figure 3.3.  
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Figure 3.3 HANet[26] proposed Harmonic Block to capture harmonic relations 

In this block, they use two 2D convolution layers to upscale channel to 3X. Then in 

the temporal branch, they use an average pooling to smooth the image, then use an 1d 

convolution along time axis to get temporal features. On the other side, frequency branch 

use another average pooling to smooth the image, then use 3 different kernel sizes 1d 

convolution to capture different harmonic features. After this, they concatenate 3 images 

from different convolutions and multiply with temporal features. 

To better capture the difference harmonic relations, they adopt 3 different Harmonic 

Block and use a modified channel attention block shown in Figure 3.4 to fusion different 

Harmonic Block’s output. 
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Figure 3.4 HANet[26] proposed modified channel attention block 

We adopt this method after down sampling. According to different input shape, 

specific bins per octave, we modified the kernel size to match the original concept[26] 

shown in Table 3-1. 

Table 3-1 Kernel size comparison with original setting 

 Kernel size Kernel size(original) 

Full [12, 42, 72] [60, 210, 360] 

Mid [12, 30, 48] [60, 150, 240] 

Tiny [12, 18, 24] [60, 90, 120] 

 

3.3.3 Conformer 

When the transformer model published, its strong performance on language task 

such as translation has generated significant interest. As previous work[23], they shows 

that the combination of transformer and convolution neural network(CNN) which known 

as conformer has strong ability on speech task. On the other hand, query by humming can 

be seen as a type of speech recognition task. Based on this assumption, we use conformer 

as the main component of our proposed method. In detail, we use 128 dimension as our 

model token size, with 256 feed forward neural and 4 attention head as one conformer 



doi:10.6342/NTU202503400

 18 

layer. In our model, we use 4 layers of conformer to generate the feature. After conformer 

block, we use a pooling layer to make final fingerprint output as 128 dimension. 

 

3.4 Loss function 

To train the model effectively, we employ a composite loss function that combines 

three components: focal loss, triplet loss, and domain adversarial loss. The total loss is 

defined as: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑓𝑜𝑐𝑎𝑙 + 0.3 ∗ 𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 + 0.1 ∗ 𝐿𝑑𝑜𝑚𝑎𝑖𝑛 (3.1) 

 

This weighted combination encourages the model to simultaneously perform 

accurate embedding learning, sample discrimination, and domain-invariant 

representation extraction. 

 

3.4.1 Focal loss 

In [24], they proposed a new loss function called focal loss to handle imbalanced 

data between classes during training, particularly in the classification-based auxiliary 

tasks. It modulates the standard cross-entropy loss by focusing more on hard-to-classify 

examples. The focal loss is defined as: 

 𝐿𝑓𝑜𝑐𝑎𝑙 = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡) (3.2) 

where 𝑝𝑡 is the model’s estimated probability for the true class, 𝛼𝑡 is a balancing 

factor, and 𝛾 is the focusing parameter. In our experiments, we set 𝛼𝑡 = 1 and 𝛾 = 2, 

for our training process. 
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3.4.2 Triplet loss 

To encourage embeddings of similar audio segments to be close in the embedding 

space, we apply triplet loss. Each training sample consists of an anchor a, a positive 

sample p from the same song or vocal variation, and a negative sample n from a different 

song. The triplet loss is computed as: 

 𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = max(0, d(a, p) − d(a, n) + m) (3.3) 

where d(⋅,⋅) denotes cosine distance, and m is a predefined margin which is set to 

0.3 

 

3.4.3 Domain loss 

To reduce the domain gap between humming queries and original vocal segments, 

we introduce a domain adversarial loss based on the Gradient Reversal Layer (GRL) 

framework [31]. 

In this setup, a domain classifier is appended to the shared feature encoder. During 

training, the GRL inverts the gradient of the domain classification loss before it is 

propagated to the encoder. This encourages the encoder to produce domain-invariant 

embeddings while allowing the classifier to learn to discriminate between domains. 

 

Figure 3.5 domain loss architecture 

Let D be the binary domain label (0 for singing, 1 for humming). The binary cross-
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entropy loss is defined as: 

 𝐿𝑑𝑜𝑚𝑎𝑖𝑛 = 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) (3.4) 

 

During backpropagation, the gradient passed to the encoder through the GRL is 

multiplied by −λ, effectively reversing the optimization objective. While the domain 

classifier aims to minimize classification error, the encoder learns to confuse the classifier, 

thus producing more domain-agnostic features. In our experiments, we set the GRL 

coefficient λ = 1.0. 
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Chapter 4 Experiment 

4.1 Experimental Setup 

In this work, we use several datasets in both training and testing. The training dataset 

contains three different datasets, the detailed information is listed below in Table 4-1. 

Table 4-1 Dataset infomation 

# 1 2 3 

source MIR-QBSH[27] ST500[28] 

Kaggle humming 

audio[29] 

usage Training & testing Training Training 

length 4431(3987/444) 384songs 

200 songs/206 

humming record 

Type humming song Song&humming 

 

Dataset1 is split into 90% of training and reference data, and other 10% for testing 

query. The other 2 datasets are used for training, combined with separated vocal tracks 

and original song to gather the training set. 

 

4.2 Evaluation Metrics 

In our work, we propose an end-to-end QBH system, to assess the performance of 

the proposed Query-by-Humming (QBH) system, we adopt several commonly used 

evaluation metrics in music retrieval tasks such as MRR and Top-k ratio. These 

measurement parameters are come from the MIREX query by singing/humming standard.  
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4.2.1 Top-K ratio 

The Top-K ratio is used to calculate the ratio of right answer in first K candidates for 

all given query. We use Top-1, and Top-10 as our evaluation metrics. The Top-K ratio 

formula is: 

 𝑇𝑜𝑝 − 𝐾 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑛 𝑓𝑖𝑟𝑠𝑡 𝐾 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑞𝑢𝑒𝑟𝑦
 (4.1) 

 

4.2.2 Mean Reciprocal Rank (MRR) 

Mean Reciprocal Rank(MRR) is used to evaluate the overall ranking quality of the 

retrieval results. For each query, the reciprocal rank is calculated as the inverse of the 

position at which the correct song is first retrieved. Then calculate the mean across all 

query. MRR is defined as: 

 𝑀𝑅𝑅 =
1

𝑞𝑢𝑒𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟
∑

1

𝑅𝑎𝑛𝑘(𝑥)

𝑄𝑢𝑒𝑟𝑖𝑒𝑠

𝑥

 (4.2) 

 

4.3 Main Results 

In this section, we compare our proposed QBH system with several models and 

previous work on MIR-QBSH dataset. Table 4-2 shows the performance of Mean 

Reciprocal Rank(MRR), top-1,and top-10 hit rates of our system and others. 

Our method achieves MRR of 0.971 and Top-1 hit rate of 0.95 which is the highest 

of the table, outperforming ByteHum[8] and other traditional or learning-based methods. 

Although our method achieves the same Top-10 accuracy as ByteHum[8], our proposed 

method shows better performance in Top-1, which indicates our system performs better 

in early rankings. This also shows the reason of better performance on MRR. 
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Compared to traditional note-based method proposed by Lin[1], which achieves 

0.806 in MRR, our system improves by over 20% or 16.5% in absolute. Similarly, our 

method outperforms Chen[2]’s method, and other note-based systems. These results 

demonstrate the effectiveness of the neural fingerprinting approach. 

 

Table 4-2 Evaluation matric comparison with different method 

Method MRR 

hitrate 

Top1 Top10 

proposed 0.971 0.95 0.99 

ByteHum [8] 0.94 0.9 0.99 

Lin [1] 0.806 0.7415 0.9438 

Chen [2] 0.9547 - 0.989 

CHAD [10] - - 0.921 

Mostafa & Fung [14] 0.919 - - 

Ulfi &  

Mandala [7] 

0.33 0.17 0.73 

Ranjan & Arora [6] 0.771 - - 

Triastanto & Mandala [9] ~0.3* ~0.2* ~0.7* 

Alfaro-Paredes 

et al. [11] 

DTW 0.26 0.1583 0.5 

Qmax 0.24 0.1667 0.375 

* Denotes values that were estimated from the corresponding figure in the source. 

 

4.4 Ablation Studies 
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To validate the effectiveness of individual components in our proposed QBH system, 

we conducted a series of ablation studies. Specifically, we examined the impact of the 

Conformer encoder structure, harmonic block, and domain adversarial training. Table 4-3 

summarizes the performance of different architectural variants in terms of Mean 

Reciprocal Rank (MRR) and Top-1 rate. 

Table 4-3 Ablation Study result 

Method MRR difference Top1 difference 

conformer 0.90832 - 0.86486 - 

transformer 0.53829 -40.74% 0.40766 -52.86% 

proposed 0.93454 - 0.8964 - 

conformer 

without harmonic 

block 

0.90832 -2.81% 0.86486 -3.52% 

conformer 

without convolution 

prelayer 

0.87589 -6.28% 0.81532 -9.05% 

conformer 

without domain loss 

0.89574 -4.15% 0.84685 -5.53% 

 

4.4.1 Effect of Conformer vs. Transformer Encoder 

To evaluate the impact of temporal modeling architecture, we compare our proposed 

Conformer-based encoder with a Transformer-based counterpart using the same input 

preprocessing and convolutional reshaping method. Both variants are trained under the 

same loss functions and dataset conditions to ensure a fair comparison. 
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Figure 4.1 MRR comparison between Conformer and Transformer 

As shown in Table 4-3 and Figure 4.1, the Conformer-based model achieves an MRR 

of 0.908, significantly outperforming the Transformer-based variant, which only achieves 

0.538. The Top-1 rate also drops from 0.896 to 0.408. This demonstrates that the 

combination of self-attention and local convolution in the Conformer structure is better 

suited for modeling the time-frequency patterns of humming audio. 

The Transformer encoder, while capable of capturing long-range dependencies via 

self-attention, lacks the ability to model local acoustic continuity and harmonic structure 

effectively. In contrast, the Conformer integrates convolutional modules that capture local 

sequential features, which are essential for robust melody representation in humming 

queries—especially under gliding pitch or expressive singing. 

These results validate the importance of using convolution-augmented attention 

mechanisms in QBH systems, where both global and local temporal context are crucial 

for matching melodic patterns. 
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4.4.2 Effect of Harmonic Block 

 

Figure 4.2 Comparison the effect of harmonic block 

Since the previous section demonstrated the effectiveness of Conformer model, we 

evaluate the effect of the harmonic block by comparing the full Conformer model with 

its harmonic block removed. When harmonic modeling is disabled, the performance drops 

noticeably across all metrics (MRR drops from 0.935 to 0.908; Top-1 from 0.896 to 0.865). 

The harmonic block is specifically designed to capture pitch-relevant frequency 

relationships by using multiple 1D convolutions with different kernel sizes across the 

frequency axis. This allows the model to explicitly learn harmonic intervals, such as 

octaves and fifths, which often occur in music and humming inputs. By aggregating these 

multi-resolution harmonic cues, the model becomes more sensitive to subtle pitch 

structures, even when the fundamental frequency is weak or slightly off-key. 

Without this module, the model relies solely on the downstream encoder to infer 

frequency structure, which may lead to confusion between closely spaced overtones and 

reduce the discriminative power of embeddings. The ablation results confirm that 

removing the harmonic block leads to a significant degradation in both MRR and Top-1 
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accuracy, reinforcing its importance in enhancing melody contour representation and 

improving retrieval robustness under pitch fluctuation or vibrato. 

 

4.4.3 Effect of convolution reshape 

 

Figure 4.3 Comparison the effect of convolution reshape 

In [20], a 2D convolutional layer is used to reduce the temporal length of the CQT 

input and to project the frequency axis into the embedding dimension of the backbone 

model. Inspired by this, we adopt a similar convolutional reshape mechanism in our 

model to not only accelerate inference but also replace the need for a separate linear 

projection. 

Figure 4.3 compares the performance of the model with convolutional reshape and 

the variant using linear projection instead. As shown in the figure, the model with 

convolutional reshape achieves higher MRR across all epochs. According to Table 4-3, 

the final model without reshape suffers a 6.28% drop in MRR and a 9.05% drop in Top-

1 accuracy, highlighting the importance of this design choice. 

We hypothesize that the convolutional reshape facilitates better alignment between 
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frequency-domain features and the encoder’s input space, enabling more stable and 

effective learning of melodic patterns. Without this step, the model may require more 

capacity to learn this transformation implicitly, leading to slower convergence and 

degraded performance. 

 

4.4.4 Effect of Domain Adversarial Loss 

According to the lack of aligned humming audio resource, we use separated singing 

vocal tracks as a kind of humming audio which is inspired by [32]. To minimize the 

difference between separated vocal and humming audio, we adopt an adversarial loss 

 

Figure 4.4 Comparison the effect of domain loss 

We also examine the impact of domain loss by removing the GRL-based domain 

classifier. As shown in “conformer wo domain loss,” the MRR drops from 0.935 to 0.896, 

and Top-10 accuracy decreases from 0.896 to 0.847. 

 

The domain adversarial loss plays a crucial role in promoting domain-invariant 

representations between training and query inputs, which may differ in style, tone quality, 
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or recording conditions. Specifically, we adopt a Gradient Reversal Layer (GRL) that 

connects the embedding output to a domain classifier. During backpropagation, the GRL 

inverts gradients flowing into the encoder, encouraging it to produce embeddings that 

confuse the domain classifier and thus become agnostic to domain-specific characteristics. 

This mechanism helps bridge the distributional gap between clean singing vocals 

(e.g., from ST500[28]) and user-generated humming inputs (e.g., from MIR-QBSH[27]). 

Without this alignment, the model may overfit to synthetic vocal training data and fail to 

generalize to real-world queries. The performance drop observed in the ablation confirms 

that domain adversarial training enhances robustness and consistency across diverse input 

sources. 
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Chapter 5 Conclusion 

 

In this thesis, we proposed a robust and scalable deep learning-based Query-by-

Humming (QBH) system that combines harmonic-aware audio fingerprinting with 

advanced temporal modeling. Our method integrates a harmonic block to enhance pitch-

related features and adopts a Conformer-based encoder to effectively capture both local 

and global temporal dependencies in humming queries. To further improve generalization 

across different audio domains, we introduced a domain-adversarial training objective 

using a gradient reversal layer (GRL). 

We trained our system on datasets including ST500 and Kaggle Humming Audio 

and evaluated the system on the MIR-QBSH benchmark. Experimental results 

demonstrated that our method outperforms previous approaches, including traditional 

pitch-based DTW systems and recent deep learning baselines such as ByteHum. The 

system achieved state-of-the-art performance in terms of MRR and Top-k accuracy, 

thereby confirming the effectiveness of the proposed architecture. 

In addition, we conducted ablation studies to validate the contributions of each 

component, including the harmonic block, Conformer encoder, and domain loss. The 

results highlight the importance of jointly modeling pitch harmonics and time-frequency 

structures for accurate and efficient humming-based music retrieval. 

While the proposed system performs well on clean and moderately noisy queries, 

limitations remain in handling heavily distorted, fragmented, or off-pitch queries in real-

world environments. Future work may explore stronger augmentation techniques, semi-

supervised pretraining, and broader query modalities such as whistling or beatboxing to 

further enhance the robustness and applicability of QBH systems. 
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In conclusion, this work contributes to the ongoing development of content-based 

music retrieval systems by demonstrating the potential of neural fingerprinting and 

harmonic modeling in QBH tasks. We hope this research serves as a foundation for more 

intelligent, efficient, and user-friendly music search technologies. 

 



doi:10.6342/NTU202503400

 32 

Chapter 6 Reference 

 

[1] 林巧薇 (2016). "應用節奏與頻率資訊之改良式哼唱檢索系統及改良式發端偵

測與旋律匹配" 

[2] 陳秉鴻 (2020). "深度學習, 池化運算及改良式動態規劃應用於哼唱檢索系統." 

[3] 洪譽承 (2022). "基於深度學習原音自編碼器去噪應用於哼唱式系統" 

[4] 胡哲銘 (2010). "歌聲檢索系統：改良式發端識別以及修正式旋律比對"  

[5] K. -Y. Chen and J. -J. Ding, "Chromagram Features Analysis for Learning-Based 

Query by Humming Systems," 2025 International Conference on Electronics, 

Information, and Communication (ICEIC), Osaka, Japan, 2025, pp. 1-4, doi: 

10.1109/ICEIC64972.2025.10879656. 

[6] S. Ranjan and V. Arora, "A Bioinformatic Method Of Semi-Global Alignment For 

Query-By-Humming," 2020 IEEE 4th Conference on Information & Communication 

Technology (CICT), Chennai, India, 2020, pp. 1-5, doi: 

10.1109/CICT51604.2020.9312085. 

[7] M. Ulfi and R. Mandala, "Improving Query by Humming System using Frequency-

Temporal Attention Network and Partial Query Matching," 2022 9th International 

Conference on Advanced Informatics: Concepts, Theory and Applications 

(ICAICTA), Tokoname, Japan, 2022, pp. 1-6, doi: 

10.1109/ICAICTA56449.2022.9933001. 

[8] X. Du, P. Zou, M. Liu, X. Liang, M. Chu and B. Zhu, "ByteHum: Fast and Accurate 

Query-by-Humming in the Wild," ICASSP 2024 - 2024 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, 

Republic of, 2024, pp. 1111-1115, doi: 10.1109/ICASSP48485.2024.10448117. 



doi:10.6342/NTU202503400

 33 

[9] A. N. Dwi Triastanto and R. Mandala, "Query by Humming Music Information 

Retrieval using DNN-LSTM based Melody Extraction and Noise Filtration," 2022 

5th International Conference on Information and Communications Technology 

(ICOIACT), Yogyakarta, Indonesia, 2022, pp. 503-508, doi: 

10.1109/ICOIACT55506.2022.9972121. 

[10] A. Amatov, D. Lamanov, M. Titov, I. Vovk, I. Makarov, and M. Kudinov, “A Semi-

Supervised Deep Learning approach to dataset collection for Query-By-Humming 

task,” arXiv.org, Dec. 02, 2023. https://arxiv.org/abs/2312.01092 

[11] E. Alfaro-Paredes, L. Alfaro-Carrasco, and W. Ugarte, “Query by humming for song 

identification using voice isolation,” in Lecture notes in computer science, 2021, pp. 

323–334. doi: 10.1007/978-3-030-79463-7_27. 

[12] S. Ranjan and V. Srivastava, “Incorporating Total Variation Regularization in the 

design of an intelligent Query by Humming system,” arXiv.org, Feb. 09, 

2023. https://arxiv.org/abs/2302.04577 

[13] M. Li, Z. Zhao and P. Shi, "Query by humming based on the hierarchical matching 

algorithm," 2015 IEEE International Conference on Computer and Communications 

(ICCC), Chengdu, China, 2015, pp. 82-86, doi: 10.1109/CompComm.2015.7387545.  

[14] N. Mostafa and P. Fung, “A Note Based Query By Humming System Using 

Convolutional Neural Network,” Interspeech 2017, pp. 3102–3106, Aug. 2017, doi: 

https://doi.org/10.21437/interspeech.2017-1590. 

[15] S. Yu, X. He, K. Chen, and Y. Yu, “HKDSME: Heterogeneous Knowledge 

Distillation for Semi-supervised Singing Melody Extraction Using Harmonic 

Supervision,” pp. 545–553, Oct. 2024, doi: 10.1145/3664647.3681288. 

[16] T. -H. Hsieh, L. Su and Y. -H. Yang, "A Streamlined Encoder/decoder Architecture 

for Melody Extraction," ICASSP 2019 - 2019 IEEE International Conference on 



doi:10.6342/NTU202503400

 34 

Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019, pp. 156-

160, doi: 10.1109/ICASSP.2019.8682389. 

[17] S. Yong, L. Su and J. Nam, "A Phoneme-Informed Neural Network Model For Note-

Level Singing Transcription," ICASSP 2023 - 2023 IEEE International Conference 

on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, 

pp. 1-5, doi: 10.1109/ICASSP49357.2023.10096707. 

[18] X. Wang, W. Xu, W. Yang and W. Cheng, "Musicyolo: A Sight-Singing Onset/Offset 

Detection Framework Based on Object Detection Instead of Spectrum 

Frames," ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech 

and Signal Processing (ICASSP), Singapore, Singapore, 2022, pp. 396-400, doi: 

10.1109/ICASSP43922.2022.9746684. 

[19] B. Agüera y Arcas et al., “Now Playing: Continuous low-power music recognition,” 

Nov. 2017, [Online]. Available: https://arxiv.org/abs/1711.10958 

[20] F. Liu, D. Tuo, Y. Xu and X. Han, "CoverHunter: Cover Song Identification with 

Refined Attention and Alignments," 2023 IEEE International Conference on 

Multimedia and Expo (ICME), Brisbane, Australia, 2023, pp. 1080-1085, doi: 

10.1109/ICME55011.2023.00189. 

[21] J. Xun et al., “DisCover: Disentangled Music Representation Learning for Cover 

Song Identification,” Proceedings of the 46th International ACM SIGIR Conference 

on Research and Development in Information Retrieval, pp. 453–463, Jul. 2023, doi: 

https://doi.org/10.1145/3539618.3591664. 

[22] F. Schroff, D. Kalenichenko and J. Philbin, "FaceNet: A unified embedding for face 

recognition and clustering," 2015 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), Boston, MA, USA, 2015, pp. 815-823, doi: 

10.1109/CVPR.2015.7298682. 



doi:10.6342/NTU202503400

 35 

[23] A. Gulati et al., “Conformer: Convolution-augmented transformer for speech 

recognition,” arXiv.org, May 16, 2020. https://arxiv.org/abs/2005.08100 

[24] T. -Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, "Focal Loss for Dense Object 

Detection," 2017 IEEE International Conference on Computer Vision (ICCV), 

Venice, Italy, 2017, pp. 2999-3007, doi: 10.1109/ICCV.2017.324. 

[25] S. Rouard, F. Massa, and A. Défossez, “Hybrid transformers for music source 

separation,” arXiv.org, Nov. 15, 2022. https://arxiv.org/abs/2211.08553 

[26] S. Wang, X. Kong, H. Huang, K. Wang and Y. Hu, "HANet: A Harmonic Attention-

Based Network for Singing Melody Extraction from Polyphonic Music," ICASSP 

2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), Hyderabad, India, 2025, pp. 1-5, doi: 

10.1109/ICASSP49660.2025.10889955. 

[27] R. Jang “MIR-QBSH-corpus,” MIR Lab, CS Dept., Tsing Hua Univ., Taiwan. Link: 

http://mirlab.org/dataSet/public/MIR-QBSH.zip 

[28] R. Jang “MIR-ST500,” MIR Lab, CS Dept., Tsing Hua Univ., Taiwan. Link: 

http://mirlab.org/dataset/public/MIR-ST500_20201014.zip 

[29] J. Z. M. Lim, "Query by Humming (QBH) audio dataset," Kaggle, 2021. [Dataset]. 

[Online]. Available: https://www.kaggle.com/datasets/limzhiminjessie/query-by-

humming-qbh-audio-dataset 

[30] K. Chen, S. Yu, C. -i. Wang, W. Li, T. Berg-Kirkpatrick and S. Dubnov, "Tonet: Tone-

Octave Network for Singing Melody Extraction from Polyphonic Music," ICASSP 

2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), Singapore, Singapore, 2022, pp. 621-625, doi: 

10.1109/ICASSP43922.2022.9747304. 

[31] Yaroslav Ganin et al., “Domain-Adversarial Training of Neural Networks,” Journal 



doi:10.6342/NTU202503400

 36 

of Machine Learning Research, vol. 17, no. 59, pp. 1–35, 2016. Available: 

http://www.jmlr.org/papers/v17/15-239.html 

[32] J. Salamon, J. Serrà, and E. Gómez, “Tonal representations for music retrieval: from 

version identification to query-by-humming,” International Journal of Multimedia 

Information Retrieval, vol. 2, no. 1, pp. 45–58, Dec. 2012, doi: 10.1007/s13735-012-

0026-0. 




