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ABSTRACT

A Query by Humming (QBH) system is designed for situations where traditional
song search information (such as title, artist, or lyrics) is unknown, allowing a user to find
a desired song by humming a part of its melody. Unlike common song recognition, which
identifies a song playing from a background source, QBH involves the user producing the
melody themselves. This can result in discrepancies in pitch and tempo compared to the
original song the user is trying to find.

Conventional Query by Humming systems are typically composed of three main
parts: note segmentation (or onset detection), pitch recognition, and data matching.
Within note segmentation, there are two common approaches: frame-based and note-
based.

The frame-based approach segments the input audio into fixed-length frames. After
identifying the pitch of each frame, the resulting sequence of notes is compared against
sequences in the database.

The other approach is note-based, which aims to improve pitch recognition accuracy
and reduce the impact of rhythmic variations and pitch fluctuations inherent in humming.
The note-based method works by detecting the start of each note, thereby segmenting the
audio into distinct note fragments that are then used for pitch recognition.

In contrast to the traditional method of dividing the problem into these three sub-
problems, some recent studies have leveraged machine learning to improve the
performance of the first two components. However, these approaches are often limited by
the scarcity of large-scale, publicly available QBH datasets, resulting in suboptimal

performance.
iii
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To address this limitation, recent research has proposed treating QBH as a special
case of cover song identification, allowing the use of more abundant public cover song
datasets for training. Based on this assumption, this work employs a machine learning
approach that transforms input humming audio into a high-dimensional feature vector.
The system then obtains a ranked list of the most similar songs by comparing feature
similarity within the database. This method can achieve more accurate results than
traditional approaches and also helps to circumvent the challenges posed by the limited

availability of public data for Query by Humming systems.

Index Terms- Query by humming, deep learning, Audio fingerprinting
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Chapter 1  Introduction

In our daily life, there comes a moment that we want to find a song. Unfortunately,
we cannot recognize either lyrics or title. The only thing that we have is a piece of melody.
Query by Humming(QBH) system is aimed to solve this problem by allowing user to
retrieve music through their humming melody.

In traditional QBH implement, we split QBH system into two main part melody
extraction which also known as pitch estimate and melody matching. A typical process of
a QBH system is when user send a query by humming the melody they remembered,
QBH system first using melody extraction module to extract the melody. Then use this
melody to compare with database to find most similar piece, the song name of this piece
will return to user as the result.

Melody extraction, which means to generate a sequence of pitch or frequency to
describe the audio signal. For an example, using staff notation to label a piano music is
called melody extraction. There are two types of pitch labeling, single or chord. The
example just mention is apparently chord type since piano music mostly comes with chord.
It’s not accurate using one single frequency to describe the music in any point. Fortunately,
human can only sing a tone at same time. This leads to song melody can be noted as a
sequence of main frequency. That is to say, we only need to extract one frequency in the
same time which is easier than finding every tone.

On the other perspective of melody extraction, it can also split into two different
types frame based and note based. Frame based using a fix length to sample a frequency.
For example, the audio signal is sampled as 44100Hz, we can split this signal into some

piece which is 512 samples long. Then we calculate the most significant frequency and
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use it to represent this frame. Another way to separate signal is note based, in this method
we use note to pronounce the audio. To do this, we have to detect onset and offset perfectly.
Otherwise the pitch could be calculated wrong or combine two notes into one note. There
are two main advantages of this procedure. First, using this way to separate audio can
benefit pitch estimation since it usually has longer samples compare to frame based. Also,
the unstable frequency at the beginning of a note can be ignored which is not possible in
frame based procedure. Second, we can ignore the tempo difference between query and
reference which needs some matching tricks to reduce the impact in frame based system.

The other part of QBH system is melody matching, this can be seen as sequence
matching problem. Given a short sequence, calculate the similarity with every long
sequence generate by reference song or man labeled data. In this sub problem, there are
some algorism that perform well in small dataset such as Earth Mover’s Distance or
dynamic time warp. There also have some algorism aims to improve searching speed for
example local sensitive hash or multistage matching.

These work mentioned above have some challenges. In melody extraction, framed
based method will suffer from tempo difference between query and reference song which
need to use more complex matching algorism to collaborate. On the other side, although
note based method can ignore tempo difference, this method still has its own problem
such as missing note (like onset undetected make two notes seen as one note), poor
performance on gliding pitch. In melody matching, since the query can be start at any
time in reference song and the length of query notes are not fixed. The matching algorism
will get slower in large database and long reference song. Furthermore, the matching
algorism usually have to collaborate the imperfect extraction of melody. These problems
make query by humming system impractical in real scenario due to there always have

large amount of songs.
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According to these disadvantages, there is a need for more robust method that can
speed up in matching stage, handle noise, tone difference. To address this problem, we
propose a novel QBH system that using fingerprinting to describe segment of audio. This
method has some advantages that can improve the performance of QBH system. First,
using machine learning method as audio fingerprinting can make dataset not rely on
human labeled note sequence. Second, conformer structure model can make classification
more accuracy without adding more dimension on fingerprint vector. Lastly, as the query
and reference are using fingerprint vector to matching not note sequence, we use cosine
similarity as the matching algorism to improve the matching speed.

In summary, this work addresses the limitations of traditional QBH systems—such
as limited tolerance to pitch and tempo variations, and dependence on note-based
symbolic representation—by leveraging a deep neural architecture. We propose a
Conformer-based embedding model that integrates harmonic attention and domain-
adversarial training to improve robustness and generalization. Our contributions are
threefold: (1) by using audio fingerprinting, we can use cosine similarity to boost retrieval
speed, (2) we employ harmonic block to enhance pitch structure modeling, and (3) we
use conformer model to achieves superior performance using a comparable embedding

dimension compared to ByteHum[8].

1.1 Terms Definitions

Before introduce our proposed method, there are some related terms that people need
to know. The definitions of some terms are shown below.

Table 1-1 Definitions of terms

Note A symbol to represent pitch and duration of a sound.
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A small clip of a sound. Usually split sound into same

Frame

frame size.

Quantize frequency using 12-tone equal temperament
Pitch

scale

An octave contain 12 tones, an octave higher means
Octave

double of frequency in Hz

Transform audio into a time-frequency spectrum with
Constant-Q

pitch representation. Higher frequency resolution in
Transform(CQT)

lower frequencies.
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Chapter 2 Related work

2.1 Traditional approach

2.1.1 Frame-based approach

In frame-based systems, the audio signal is divided into fixed-size overlapping
frames (e.g., 512 samples), and pitch is estimated for each frame independently. This
method simplifies implementation and aligns well with spectral-based pitch trackers such
as YIN or autocorrelation-based methods.

However, frame-based systems are sensitive to tempo differences between the query
and reference. A faster or slower humming speed may shift the temporal alignment,
requiring additional matching algorithms such as Dynamic Time Warping (DTW) to
compensate for timing variations [4], [13]. Moreover, frame-level pitch estimation may
suffer from inaccuracies in low-energy or gliding regions, where pitch salience is weak

or unstable.

2.1.2 Note-based approach

The note-based approach is a widely adopted strategy in traditional Query-by-
Humming (QBH) systems. Unlike frame-based methods that estimate pitch at fixed time
intervals, note-based systems attempt to segment the audio into discrete musical notes by
detecting onset and offset events. Each note is then assigned a pitch value, and the
resulting symbolic sequence serves as the melodic representation of the audio. This
representation is naturally invariant to tempo variations and is more aligned with human
perception of melody.

Several works from National Taiwan University have focused on improving note-
5
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based QBH pipelines. Lin [1] proposed an onset-based segmentation method combined
with dynamic time warping (DTW) to align pitch sequences between query and reference
songs. Hu [4] similarly employed onset detection and developed a modified melody
matching algorithm to improve alignment accuracy. Both systems rely heavily on
symbolic note representations and traditional signal processing techniques.

To improve onset detection accuracy, Chen [2] introduced a CNN-based model that
integrates multiple acoustic features—such as spectral flux and energy envelope—into a
unified onset detector. Although deep learning is used for onset estimation, the overall
retrieval process still follows a traditional note-based pipeline, including pitch estimation
and symbolic matching. Building upon this, Hung [3] further replaced the CNN with a
more robust model and introduced a waveform-level autoencoder to denoise vocal inputs
before pitch extraction. [17] proposed using a vocal linguistic feature to improve the
onset/offset detection. While these enhancements improve the reliability of melody
extraction, they do not change the fundamental nature of the system, which remains
rooted in symbolic, note-level representation and DTW-based matching.

Despite their conceptual clarity, note-based approaches face challenges in practical
scenarios. Accurate onset detection remains difficult, especially in noisy, gliding, or
expressive vocal input. Misdetected or missing onsets can lead to pitch merging or
segmentation errors, ultimately affecting retrieval accuracy. Additionally, pitch
estimation from short segments is susceptible to harmonic interference, which can
misidentify overtones as the fundamental frequency.

Beyond conventional onset/offset detectors, some recent studies reformulate
onset/offset detection as an object detection task on spectrograms. Musicyolo[18]
demonstrates that treating a note as an object, then the boundaries of the object boxes can

be seen as the onset and offset of the note. This method allows notes that are very close

6
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to other notes to be detected more accurately.

2.1.3 Pitch estimation

Pitch estimation is one of the most critical components in traditional Query-by-
Humming (QBH) systems, as it directly determines the accuracy of the extracted melody.
The goal is to estimate the fundamental frequency (fo) of the input audio segment, which
is the basis of melody.

Conventional pitch estimation algorithms typically work on short-time frames using
frequency-domain techniques. Notable examples include time-domain based methods
ACF, AMDF and frequency-domain based methods HPS, Cepstrum. Both methods
perform well in ideal scenarios.

However, these methods can easily be affected by noise, harmonic frequency, and
instability of the vocal. One of the most common failures is identifying harmonic
frequency as fundamental frequency, also known as octave error. To eliminate the effect
of this problem, several enhancements have been proposed, such as energy-based
thresholding and pitch smoothing across frames [6],[9],[12].

Some note-based approaches attempt to improve pitch estimation by leveraging
onset and offset information, given stable note regions for pitch estimation. While this
can reduce transient noise and vibrato effects, it also introduces new dependencies on the
accuracy of onset detection.

Due to these limitations, recent research has shifted toward learning-based pitch
estimation. Methods such as CREPE and other neural network-based fo trackers[26], [30]
have demonstrated superior robustness in noisy and unconstrained environments,
motivating their integration into modern QBH pipelines.

In addition, [16] further proposed a lightweight pitch estimation encoder-decoder
7
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model with an integrated detector to determine whether a melody exists in each input

frame. With this method, it can perform better in some scenarios.

2.1.4 Sequence Matching Algorithms

After melody extraction, the next step is to compare the query sequence with entries

in the database. Several algorithms have been proposed for sequence matching:

1 Dynamic Time Warping (DTW) [4] aligns sequences with non-linear time distortion,
allowing tolerance to tempo variation.

2  Earth Mover’s Distance (EMD) [14] computes similarity by measuring the minimum
effort to transform one sequence into another.

3 Longest Common Subsequence (LCS) captures symbolic similarity by counting
matching note subsequences.

4  Multistage Matching [13] and Locality-Sensitive Hashing (LSH) are used to

accelerate matching in large-scale databases.

While effective in small or mid-scale setups, these methods often struggle with
scalability. The retrieval time grows with the number and length of candidate songs,
making them less suitable for real-world music libraries containing millions of tracks.

Additionally, some studies like [12] use smoothing techniques to refine the sequence
and eliminate certain octave errors to generate a more accurate sequence that can benefit

the matching result.

2.2 Machine learning approach

Deep learning has significantly reshaped the landscape of Query-by-Humming
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(QBH) systems. Historically, QBH pipelines have drawn heavily from singing melody
transcription methods, which aim to predict a pitch sequence from audio. These
transcription approaches can be categorized into frame-based and note-based paradigms,
often coupled with pitch estimation modules. More recently, a novel perspective
emerged—proposing that QBH can be seen as a special case of the cover song
identification (CSI) problem, where a user-generated humming query serves as the cover
variant. This view laid the foundation for transferring CSI models to the QBH task, as
exemplified by ByteHum [8], which leverages this framing to use large-scale CSI datasets
for supervised training [32].

Several fully deep learning-based systems have been proposed. [5] treats QBH as a
classification problem, using a chromagram to reduce unnecessary information and a
CNN-based model for classification. ByteHum [8] adopts a CSI framework by applying
neural fingerprinting to CQT spectrograms extracted from vocal-separated tracks. Using
triplet loss for metric learning, it produces robust segment-level embeddings that are
matched using cosine similarity. CoverHunter [20] shows that the combination of
attention mechanisms and convolutional networks can achieves better performance on the
CSI problem compared to convolutional networks alone. DisCover [21] further separates
melody-relevant content from confounding factors using disentangled representation
learning, increasing retrieval performance under varied acoustic conditions.

Other works focused on deep learning-based melody extraction. For example, [7]
uses both temporal and frequency domain attention mechanisms to improve melody
extraction accuracy. HANet [26] further proposes a harmonic attention mechanism to
improve pitch estimation, especially in polyphonic settings. HKDSME [15] uses
harmonic supervision to improve melody extraction under semi-supervised conditions.

These systems, while not end-to-end QBH pipelines, provide important building blocks
9
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that enhance the quality of humming representations.

A key distinction should be made between systems that only incorporate neural
components (e.g., using CNNs for onset detection [2], or denoising autoencoders [3]) and
those where the entire pipeline, from spectrogram input to retrieval result, is optimized
via deep learning. The latter enables robustness to key variations, tempo changes, and

background noise, making them better suited for real-world deployment.
2.3  Audio Fingerprinting and Metric Learning

Among the deep learning-based approaches to QBH, one of the most transformative
techniques is neural audio fingerprinting. Unlike symbolic methods that rely on explicit
pitch sequences, fingerprinting encodes audio segments into dense, discriminative
embeddings in a fixed-dimensional vector space. These fingerprints allow fast and
accurate retrieval via vector similarity, even in noisy or distorted queries.

Neural fingerprinting can be viewed as an extension of traditional audio
fingerprinting systems, but instead of using hand-crafted features, it uses convolutional
or transformer-based encoders trained with metric learning objectives such as triplet loss
[22] or contrastive loss. The model learns to pull embeddings of similar (hummed vs.
original) segments closer, while pushing dissimilar ones apart. This enables efficient
Maximum Inner Product Search (MIPS) over large-scale reference databases.

Systems like “Now playing”[19], ByteHum [8], and CoverHunter [20] implement
this concept effectively. In ByteHum, the vocal-separated audio is converted into CQT
spectrograms and processed by a CNN-based encoder followed by L2 normalization. The
resulting 128-dimensional vectors serve as neural fingerprints. CoverHunter enhances
this architecture with attention mechanisms and alignment refinements, improving

precision in partial or noisy queries.

10
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There are three main advantages of audio fingerprinting:

1. Speed: Fingerprints can be indexed and retrieved using fast approximate nearest
neighbor (ANN) methods.

2. Robustness: Embeddings tolerate pitch drift, tempo variation, and background noise
better than symbolic features.

3. Scalability: Retrieval remains efficient even when searching across tens of thousands

of songs.

By framing QBH as a segment-level retrieval task with neural fingerprints, these
systems sidestep many limitations of traditional note-based approaches, such as onset
misalignment and gliding pitch distortion. Neural fingerprinting thus represents a

paradigm shift in QBH system design.

11
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Chapter 3 Method

In this section, we present the architecture of our proposed method, including overall
system, data preprocessing, model architecture, and loss function. The overall workflow

is shown in Figure 3.1.

demucs

humming audio Audio signal »  seperated vocal
label classification Triplet loss
3 A
¥
convelutional reshape X
embedding
A
v v
harmonic block > conformer » pooling domain loss

Figure 3.1 System architecture overview

3.1  Overall system

The architecture of our proposed system is inspired by ByteHum[8], as shown in
Figure 3.1, the audio will be split into 8-second segments with a 3-seconds hop. Then we
transform each segment into time-frequency image by Constant-Q Transform(CQT).
After this step, we feed the images into model, which will output a 128-dimensional
fingerprint. We use this fingerprint to compare the cosine similarity with a database that

is generated through the same process using reference songs.

12
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3.2 Data preprocess

In traditional QBH systems, we only need some samples to validate the performance
of a system, it leads to the lack of humming audio data on the internet. To deal with this
problem, in [32], they proposed to consider QBH as a special case of Cover Song
Identification(CSI). Following this thought, we separate the vocal soundtrack from
dataset by demucs[25] to simulate humming audio.

After separate vocal tracks, we split vocal tracks into 8-seconds segment with a 3-
seconds hop, and use RMS energy to check whether segment has voice. For those
segments containing voice, we take same time shift window to original songs. These vocal
clips, original song clips and some MIR-QBSH segments will be conbined as our training
set.

Segments in training set will apply Constant-Q Transform with 96 bins which means
8 octave from CO to B7 and 256 samples hop.

The vocal tracks were separated using Demucs[25] pre-trained model, applied on
both synthetic datasets ST500[28] and Kaggle Humming Audio[29]. For quality control,
we used RMS thresholding to exclude silent or low-energy segments; segments with
mean RMS below 0.02 were discarded. To simulate real-world humming input, no

additional pitch correction or post-processing was applied to the separated vocal.

3.3 Model Architecture

Our proposed model architecture shown in Figure 3.1, can be separated into four

parts, each part is describe below:

13
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3.3.1 Down sampling and projecting to higher dimension space

In common, when we need to down sampling in time domain, we can either use 1D
convolution or pooling to achieve. These functions can maintain the same dimension
along frequency axis. However, in our scenario we also need to projection to upper space
in frequency axis. It means maintain same dimension is unimportant, so we use 2D
convolution to make down sampling consist both time and frequency information. Then
use linear projection to reshape frequency axis to embedding dimension we want.

Specifically, we use 2 layers of 2D convolution with 2 sample stride to reduce both
dimension to 1/4. In order to not lose frequency information, we set channel to same as
embedding dimension. Then we reshape it into (T/4,Demb*D/4) and use a linear project

to project to embedding dimension(Demb).

3.3.2 Harmonic block

From previous works[2], they showed that one of the difficulty of QBH system is to
estimate pitch perfectly. Furthermore, the main factor affecting pitch estimation accuracy

is the incorrect identification of harmonics as the fundamental frequency.

14
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Figure 3.2 [30] shows an example of harmonic frequency predict as fundamental
frequency
This shows that the relationships between the fundamental frequency and harmonics
are important in QBH system. To better capture these relations, HANET[26] proposed a
method using temporal and frequency two branch to capture both side features shown in

Figure 3.3.

15
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Figure 3.3 HANet[26] proposed Harmonic Block to capture harmonic relations

In this block, they use two 2D convolution layers to upscale channel to 3X. Then in
the temporal branch, they use an average pooling to smooth the image, then use an 1d
convolution along time axis to get temporal features. On the other side, frequency branch
use another average pooling to smooth the image, then use 3 different kernel sizes 1d
convolution to capture different harmonic features. After this, they concatenate 3 images
from different convolutions and multiply with temporal features.

To better capture the difference harmonic relations, they adopt 3 different Harmonic
Block and use a modified channel attention block shown in Figure 3.4 to fusion different

Harmonic Block’s output.

16
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Figure 3.4 HANet[26] proposed modified channel attention block
We adopt this method after down sampling. According to different input shape,
specific bins per octave, we modified the kernel size to match the original concept[26]
shown in Table 3-1.

Table 3-1 Kernel size comparison with original setting

Kernel size Kernel size(original)
Full [12,42,72] [60, 210, 360]
Mid [12, 30, 48] [60, 150, 240]
Tiny [12, 18, 24] [60, 90, 120]

3.3.3 Conformer

When the transformer model published, its strong performance on language task
such as translation has generated significant interest. As previous work[23], they shows
that the combination of transformer and convolution neural network(CNN) which known
as conformer has strong ability on speech task. On the other hand, query by humming can
be seen as a type of speech recognition task. Based on this assumption, we use conformer
as the main component of our proposed method. In detail, we use 128 dimension as our
model token size, with 256 feed forward neural and 4 attention head as one conformer
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layer. In our model, we use 4 layers of conformer to generate the feature. After conformer

block, we use a pooling layer to make final fingerprint output as 128 dimension.

3.4 Loss function

To train the model effectively, we employ a composite loss function that combines
three components: focal loss, triplet loss, and domain adversarial loss. The total loss is
defined as:

Ltotar = Locar + 0.3 * Liriptet + 0.1 * Laomain 3.1

This weighted combination encourages the model to simultaneously perform
accurate embedding learning, sample discrimination, and domain-invariant

representation extraction.

3.4.1 Focal loss

In [24], they proposed a new loss function called focal loss to handle imbalanced
data between classes during training, particularly in the classification-based auxiliary
tasks. It modulates the standard cross-entropy loss by focusing more on hard-to-classify
examples. The focal loss is defined as:

Liocar = —a: (1 — p)Y log(py) (3.2)
where p; is the model’s estimated probability for the true class, «, is a balancing
factor, and y is the focusing parameter. In our experiments, we set a; =1 and y =2,

for our training process.
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3.4.2 Triplet loss

To encourage embeddings of similar audio segments to be close in the embedding
space, we apply triplet loss. Each training sample consists of an anchor a, a positive
sample p from the same song or vocal variation, and a negative sample n from a different
song. The triplet loss is computed as:

Liripier = max(0,d(a, p) — d(a,n) + m) (3.3)
where d(:,-) denotes cosine distance, and m is a predefined margin which is set to

0.3

3.4.3 Domain loss

To reduce the domain gap between humming queries and original vocal segments,
we introduce a domain adversarial loss based on the Gradient Reversal Layer (GRL)
framework [31].

In this setup, a domain classifier is appended to the shared feature encoder. During
training, the GRL inverts the gradient of the domain classification loss before it is
propagated to the encoder. This encourages the encoder to produce domain-invariant

embeddings while allowing the classifier to learn to discriminate between domains.

embedding GRL <| meural domain label
| network d

dLd dLd domain loss
6d fd Ld

F 9

Figure 3.5 domain loss architecture

Let D be the binary domain label (0 for singing, 1 for humming). The binary cross-
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entropy loss is defined as:

Laomain = cross entropy(D) (3.4)

During backpropagation, the gradient passed to the encoder through the GRL is
multiplied by —A, effectively reversing the optimization objective. While the domain
classifier aims to minimize classification error, the encoder learns to confuse the classifier,
thus producing more domain-agnostic features. In our experiments, we set the GRL

coefficient A = 1.0.
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Chapter 4 Experiment

4.1 Experimental Setup

In this work, we use several datasets in both training and testing. The training dataset
contains three different datasets, the detailed information is listed below in Table 4-1.

Table 4-1 Dataset infomation

# 1 2 3
Kaggle humming
source MIR-QBSH][27] ST500[28]
audio[29]
usage Training & testing Training Training
200 songs/206
length 4431(3987/444) 384songs
humming record
Type humming song Song&humming

Datasetl is split into 90% of training and reference data, and other 10% for testing
query. The other 2 datasets are used for training, combined with separated vocal tracks

and original song to gather the training set.

4.2 Evaluation Metrics

In our work, we propose an end-to-end QBH system, to assess the performance of
the proposed Query-by-Humming (QBH) system, we adopt several commonly used
evaluation metrics in music retrieval tasks such as MRR and Top-k ratio. These

measurement parameters are come from the MIREX query by singing/humming standard.
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4.2.1 Top-K ratio

The Top-K ratio is used to calculate the ratio of right answer in first K candidates for
all given query. We use Top-1, and Top-10 as our evaluation metrics. The Top-K ratio
formula is:

number of right answer in first K candidates

Top — K = 4.1)

number of all query

4.2.2 Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank(MRR) is used to evaluate the overall ranking quality of the
retrieval results. For each query, the reciprocal rank is calculated as the inverse of the
position at which the correct song is first retrieved. Then calculate the mean across all

query. MRR is defined as:

Queries

1
MRR = Z _— 4.2
query number Rank(x) (42)
X

4.3 Main Results

In this section, we compare our proposed QBH system with several models and
previous work on MIR-QBSH dataset. Table 4-2 shows the performance of Mean
Reciprocal Rank(MRR), top-1,and top-10 hit rates of our system and others.

Our method achieves MRR of 0.971 and Top-1 hit rate of 0.95 which is the highest
of the table, outperforming ByteHum[8] and other traditional or learning-based methods.
Although our method achieves the same Top-10 accuracy as ByteHum[8], our proposed
method shows better performance in Top-1, which indicates our system performs better

in early rankings. This also shows the reason of better performance on MRR.
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Compared to traditional note-based method proposed by Lin[1], which achieves
0.806 in MRR, our system improves by over 20% or 16.5% in absolute. Similarly, our
method outperforms Chen[2]’s method, and other note-based systems. These results

demonstrate the effectiveness of the neural fingerprinting approach.

Table 4-2 Evaluation matric comparison with different method

hitrate
Method MRR
Topl Top10
proposed 0.971 0.95 0.99
ByteHum [8] 0.94 0.9 0.99
Lin [1] 0.806 0.7415 0.9438
Chen [2] 0.9547 - 0.989
CHAD [10] - - 0.921
Mostafa & Fung [14] 0.919 - -
Ulfi &
0.33 0.17 0.73
Mandala [7]
Ranjan & Arora [6] 0.771 - -
Triastanto & Mandala [9] ~0.3* ~0.2% ~0.7*%
Alfaro-Paredes | DTW 0.26 0.1583 0.5
etal. [11] Qmax 0.24 0.1667 0.375

* Denotes values that were estimated from the corresponding figure in the source.

4.4  Ablation Studies
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To validate the effectiveness of individual components in our proposed QBH system,

we conducted a series of ablation studies. Specifically, we examined the impact of the

Conformer encoder structure, harmonic block, and domain adversarial training. Table 4-3

summarizes the performance of different architectural variants in terms of Mean

Reciprocal Rank (MRR) and Top-1 rate.

Table 4-3 Ablation Study result

Method MRR difference Topl difference
conformer 0.90832 - 0.86486 -
transformer 0.53829 -40.74% 0.40766 -52.86%
proposed 0.93454 - 0.8964 -
conformer
without harmonic 0.90832 -2.81% 0.86486 -3.52%
block
conformer
without convolution 0.87589 -6.28% 0.81532 -9.05%
prelayer
conformer
0.89574 -4.15% 0.84685 -5.53%
without domain loss

441 Effect of Conformer vs. Transformer Encoder

To evaluate the impact of temporal modeling architecture, we compare our proposed

Conformer-based encoder with a Transformer-based counterpart using the same input

preprocessing and convolutional reshaping method. Both variants are trained under the

same loss functions and dataset conditions to ensure a fair comparison.
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Figure 4.1 MRR comparison between Conformer and Transformer

As shown in Table 4-3 and Figure 4.1, the Conformer-based model achieves an MRR
01 0.908, significantly outperforming the Transformer-based variant, which only achieves
0.538. The Top-1 rate also drops from 0.896 to 0.408. This demonstrates that the
combination of self-attention and local convolution in the Conformer structure is better
suited for modeling the time-frequency patterns of humming audio.

The Transformer encoder, while capable of capturing long-range dependencies via
self-attention, lacks the ability to model local acoustic continuity and harmonic structure
effectively. In contrast, the Conformer integrates convolutional modules that capture local
sequential features, which are essential for robust melody representation in humming
queries—especially under gliding pitch or expressive singing.

These results validate the importance of using convolution-augmented attention
mechanisms in QBH systems, where both global and local temporal context are crucial

for matching melodic patterns.
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4.4.2 Effect of Harmonic Block

TR
0.9
0.8
&
0.7
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without harmonic block
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0.4

epochs

Figure 4.2 Comparison the effect of harmonic block

Since the previous section demonstrated the effectiveness of Conformer model, we
evaluate the effect of the harmonic block by comparing the full Conformer model with
its harmonic block removed. When harmonic modeling is disabled, the performance drops
noticeably across all metrics (MRR drops from 0.935 to 0.908; Top-1 from 0.896 to 0.865).

The harmonic block is specifically designed to capture pitch-relevant frequency
relationships by using multiple 1D convolutions with different kernel sizes across the
frequency axis. This allows the model to explicitly learn harmonic intervals, such as
octaves and fifths, which often occur in music and humming inputs. By aggregating these
multi-resolution harmonic cues, the model becomes more sensitive to subtle pitch
structures, even when the fundamental frequency is weak or slightly off-key.

Without this module, the model relies solely on the downstream encoder to infer
frequency structure, which may lead to confusion between closely spaced overtones and
reduce the discriminative power of embeddings. The ablation results confirm that

removing the harmonic block leads to a significant degradation in both MRR and Top-1
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accuracy, reinforcing its importance in enhancing melody contour representation and

improving retrieval robustness under pitch fluctuation or vibrato.

4.4.3 Effect of convolution reshape

0.9
0.8

0.7

MRR

0.6

0.5
= \Vith conv reshape

0.4 without conv reshape

0.3

epochs

Figure 4.3 Comparison the effect of convolution reshape

In [20], a 2D convolutional layer is used to reduce the temporal length of the CQT
input and to project the frequency axis into the embedding dimension of the backbone
model. Inspired by this, we adopt a similar convolutional reshape mechanism in our
model to not only accelerate inference but also replace the need for a separate linear
projection.

Figure 4.3 compares the performance of the model with convolutional reshape and
the variant using linear projection instead. As shown in the figure, the model with
convolutional reshape achieves higher MRR across all epochs. According to Table 4-3,
the final model without reshape suffers a 6.28% drop in MRR and a 9.05% drop in Top-
1 accuracy, highlighting the importance of this design choice.

We hypothesize that the convolutional reshape facilitates better alignment between
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frequency-domain features and the encoder’s input space, enabling more stable and
effective learning of melodic patterns. Without this step, the model may require more
capacity to learn this transformation implicitly, leading to slower convergence and

degraded performance.

444 Effect of Domain Adversarial Loss

According to the lack of aligned humming audio resource, we use separated singing
vocal tracks as a kind of humming audio which is inspired by [32]. To minimize the

difference between separated vocal and humming audio, we adopt an adversarial loss

0.8

0.7

MRR

0.6

0.5
= \\ith domain loss

0.4 without domain loss

0.3

epochs

Figure 4.4 Comparison the effect of domain loss
We also examine the impact of domain loss by removing the GRL-based domain
classifier. As shown in “conformer wo domain loss,” the MRR drops from 0.935 to 0.896,

and Top-10 accuracy decreases from 0.896 to 0.847.

The domain adversarial loss plays a crucial role in promoting domain-invariant

representations between training and query inputs, which may differ in style, tone quality,
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or recording conditions. Specifically, we adopt a Gradient Reversal Layer (GRL) that
connects the embedding output to a domain classifier. During backpropagation, the GRL
inverts gradients flowing into the encoder, encouraging it to produce embeddings that
confuse the domain classifier and thus become agnostic to domain-specific characteristics.

This mechanism helps bridge the distributional gap between clean singing vocals
(e.g., from ST500[28]) and user-generated humming inputs (e.g., from MIR-QBSH[27]).
Without this alignment, the model may overfit to synthetic vocal training data and fail to
generalize to real-world queries. The performance drop observed in the ablation confirms
that domain adversarial training enhances robustness and consistency across diverse input

Sources.
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Chapter 5 Conclusion

In this thesis, we proposed a robust and scalable deep learning-based Query-by-
Humming (QBH) system that combines harmonic-aware audio fingerprinting with
advanced temporal modeling. Our method integrates a harmonic block to enhance pitch-
related features and adopts a Conformer-based encoder to effectively capture both local
and global temporal dependencies in humming queries. To further improve generalization
across different audio domains, we introduced a domain-adversarial training objective
using a gradient reversal layer (GRL).

We trained our system on datasets including ST500 and Kaggle Humming Audio
and evaluated the system on the MIR-QBSH benchmark. Experimental results
demonstrated that our method outperforms previous approaches, including traditional
pitch-based DTW systems and recent deep learning baselines such as ByteHum. The
system achieved state-of-the-art performance in terms of MRR and Top-k accuracy,
thereby confirming the effectiveness of the proposed architecture.

In addition, we conducted ablation studies to validate the contributions of each
component, including the harmonic block, Conformer encoder, and domain loss. The
results highlight the importance of jointly modeling pitch harmonics and time-frequency
structures for accurate and efficient humming-based music retrieval.

While the proposed system performs well on clean and moderately noisy queries,
limitations remain in handling heavily distorted, fragmented, or off-pitch queries in real-
world environments. Future work may explore stronger augmentation techniques, semi-
supervised pretraining, and broader query modalities such as whistling or beatboxing to

further enhance the robustness and applicability of QBH systems.
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In conclusion, this work contributes to the ongoing development of content-based
music retrieval systems by demonstrating the potential of neural fingerprinting and
harmonic modeling in QBH tasks. We hope this research serves as a foundation for more

intelligent, efficient, and user-friendly music search technologies.
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