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中文摘要 

運用機器學習方法檢測小兒發展遲緩病症 

 

研究目的 

對臨床治療師而言，準確鑑別可能出現發展遲緩（DD）的兒童始終是一項挑戰。近年研究

指出，若兒童能及早接受介入治療，其臨床預後顯著優於未接受介入者。本研究旨在探討兒

童接受三類治療（物理治療、職能治療與語言治療）的頻率，是否可作為檢測其是否罹患發

展遲緩的依據。此方法的核心價值在於，相關特徵取得成本極低，若能建立有效的預測模

型，將可用於初步篩檢，在進行昂貴且複雜的診斷程序之前，先行辨識可能有 DD 風險的

兒童。 

研究方法 

本研究使用台灣某醫院於 2012 至 2016 年間蒐集之臨床資料，共涵蓋 2,552 位門診個案

（共 34,862 筆就診紀錄，平均年齡 72.34 月）。基於該資料集，本研究分別建立三種機器

學習預測模型：深度神經網路（Deep Neural Network, DNN）、支援向量機（Support Vector 

Machine, SVM）以及決策樹（Decision Tree, DT），以評估所提出方法的效能。 

研究結果 

實驗結果顯示，就 F1 分數（靈敏度與陽性預測值的調和平均數）而言，當需要維持高靈敏

度時，DT 模型的表現優於 DNN 與 SVM 模型。具體而言，本研究所建立的 DT 模型達

成靈敏度 0.902 與陽性預測值 0.723 的表現。 

研究結論 

本研究結果顯示，兒童接受治療的頻率蘊含重要訊息，能有效應用於發展遲緩的預測。由於
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此類特徵可在不增加額外成本的情況下獲取，且實驗結果展現良好效能，因此可合理推測，

依此建立之預測模型具備高度臨床應用潛力，並有望顯著改善發展遲緩兒童的治療成效。 

關鍵字：發展遲緩、職能治療服務、治療頻率、機器學習、決策樹、支援向量機、深度神經

網路 
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Abstract 

Detection of Pediatric Developmental Delay (DD) with Machine 

Learning Technologies 

 

Objective  

Accurate identification of children who will develop delay (DD) is challenging for therapists 

because recent studies have reported that children who underwent early intervention achieved more 

favorable outcomes than those who did not. In this study, we have investigated how the frequencies 

of three types of therapy, namely the physical therapy, the occupational therapy, and the speech 

therapy, received by a child can be exploited to predict whether the child suffers from DD or not. 

The effectiveness of the proposed approach is of high interest as these features can be obtained with 

essentially no cost and therefore a prediction model built accordingly can be employed to screen the 

subjects who may develop DD before advanced and costly diagnoses are carried out. 

Methods  

This study has been conducted based on a data set comprising the records of 2,552 outpatients (N = 

34,862 visits, mean age = 72.34 months) collected at a hospital in Taiwan from 2012 to 2016. We 

then built 3 types of machine learning based prediction models, namely the deep neural network 
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models (DNN), the support vector machine (SVM) models, and the decision tree (DT) models, to 

evaluate the effectiveness of the proposed approach. 

Results  

Experimental results reveal that in terms of the F1 score, which is the harmonic mean of the 

sensitivity and the positive predictive value, the DT models outperformed the DNN models and the 

SVM models, if a high level of sensitivity is desired. In particular, the DT model developed in this 

study delivered the sensitivity at 0.902 and the positive predictive value at 0.723. 

Conclusions 

What has been learned from this study is that the frequencies of the therapies that a child has 

received provide valuable information for predicting whether the child suffers from DD. Due to the 

performance observed in the experiments and the fact that these features can be obtained essentially 

without any cost, it is conceivable that the prediction models built accordingly can be wide 

exploited in clinical practices and significantly improve the treatment outcomes of the children who 

develop DD. 

Keywords: Developmental Delay, Occupational Therapy service, Frequency of therapy, Machine 

Learning, Decision Tree, Support Vector Machine, Deep Neural Networks 
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Chapter I Introduction 

1-1 Background 

Developmental delay (DD) refers to a distinct set of early childhood developmental 

disabilities, and it is primarily diagnosed by assessing a child’s behavioral and mental 

capacities [1]. Rehabilitation physicians and pediatric specialists employ a wide range 

of diagnostic strategies, clinical tools, and classification frameworks to assess and 

manage developmental delay (DD). These approaches encompass structured physical 

and neurological examinations, standardized motor and cognitive assessments, sensory 

evaluations (such as hearing and vision screening), genetic and metabolic testing, and 

neuroimaging modalities, all of which are essential for identifying underlying etiologies 

and guiding therapeutic planning [2-5]. Furthermore, systematic classification systems 

and rehabilitation taxonomies are increasingly integrated into clinical decision-making 

to stratify patients, personalize intervention strategies, and predict therapeutic outcomes, 

thereby enhancing the precision and effectiveness of early intervention programs [6]. 

However, these classification methods are often subjective, time-consuming, and prone 

to inconclusive results. Moreover, they fail to clarify the underlying causes and are 

ineffective for early detection [7]. Early intervention significantly improves a child’s 

likelihood of reaching their full potential, with studies reporting that children who 
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receive early intervention achieve more favorable outcomes than those who do not. [8,9-

13] Therefore, accurate classification of DD is crucial for providing effective early 

intervention services that ensure positive outcomes for children with DD. 

Machine learning has been employed to develop novel computational methods that 

incorporate mathematical learning, statistical estimation, and information theories [14]. 

These methods automatically identify meaningful patterns within large datasets. A key 

advantage of machine learning is its ability to generate highly accurate and reliable 

predictions based on data comprising multiple variables. Additionally, machine learning 

enables causal inference from non-experimental datasets [15]. 

In recent years, machine learning (ML) has emerged as a powerful tool in psychiatric 

and neurodevelopmental research, demonstrating its potential to detect and classify 

complex conditions such as autism spectrum disorder (ASD) [16], attention deficit 

hyperactivity disorder (ADHD) [17], and schizophrenia [18]. By extracting subtle 

patterns from high-dimensional data, ML has been shown to surpass conventional 

statistical methods in diagnostic accuracy and predictive performance. For example, 

Bishop et al. successfully applied ML to predict the lifetime health trajectories of adults 

with ASD, accurately forecasting the onset of cardiovascular, urinary, and respiratory 
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conditions [19]. These advances have positioned ML as a promising technology for 

early detection and personalized healthcare. 

Despite these achievements, existing ML approaches suffer from critical limitations that 

restrict their clinical applicability—particularly in the context of early intervention for 

developmental delay (DD). Most prior studies rely on costly and time-consuming data 

sources, such as neuroimaging, electrophysiological signals, or extensive behavioral 

assessments. These methods require specialized equipment, expert personnel, and 

complex analytical workflows, making them impractical for large-scale implementation 

in community or primary care settings. Moreover, the heavy dependence on 

retrospective datasets and resource-intensive pipelines often results in delayed outputs, 

limiting their utility for pre-symptomatic screening and proactive intervention. 

Consequently, although traditional ML techniques have demonstrated strong predictive 

capabilities, their lack of scalability, high operational costs, and lengthy processing 

times hinder their adoption in real-world clinical workflows, particularly in scenarios 

that demand timely decision-making and broad population coverage. 

 

1-2 Motivation  
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This gap is particularly concerning given the well-established importance of early 

intervention in developmental disorders. Studies have reported that most cases of DD 

gradually resolve over time [20], underscoring the value of identifying at-risk children 

as early as possible and providing targeted support before long-term functional deficits 

emerge. However, few studies to date have explored how ML can be harnessed not only 

to classify DD but also to identify key predictive factors that inform the timing, 

intensity, and optimization of intervention strategies. There remains a significant unmet 

need for predictive models that are cost-effective, scalable, and capable of integrating 

seamlessly into routine healthcare delivery. 

The novelty of our approach lies in addressing this gap by proposing the use of therapy 

utilization—specifically, the frequency of occupational, physical, and speech therapy 

services—as a predictive factor for DD classification and outcome forecasting [21-29]. 

Therapy frequency is a clinically meaningful and readily available variable that reflects 

both the severity of developmental challenges and the child’s responsiveness to 

intervention. Unlike imaging or specialized assessments, therapy utilization data are 

routinely collected in clinical practice, require no additional cost or infrastructure, and 

can be easily incorporated into electronic health records. By integrating such features 
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into ML models, we aim to develop predictive systems that are not only accurate but 

also practical and scalable. 

This approach offers several important advantages. First, it leverages existing clinical 

data to enable large-scale population screening without the financial and logistical 

barriers associated with traditional ML models. Second, it supports real-time decision-

making by allowing clinicians to monitor therapy responsiveness and adjust 

intervention strategies dynamically. Third, it enhances personalization in clinical care 

by identifying individual-level predictors of developmental outcomes, thereby 

facilitating the design of tailored therapeutic plans. Ultimately, by bridging the gap 

between algorithmic sophistication and clinical feasibility, our study seeks to transform 

ML from a research tool into a practical, actionable framework for early intervention in 

developmental delay. This paradigm shift holds the potential to improve developmental 

trajectories, reduce healthcare burdens, and ensure that at-risk children receive the right 

support at the right time. 

1-3 Organization of this thesis 

This dissertation is organized into seven chapters, each designed to build a logical and 

coherent narrative from foundational motivation to methodological development, 
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empirical validation, and future research directions. The structure reflects the 

interdisciplinary nature of this work, which integrates clinical knowledge, machine 

learning techniques, and public health considerations to advance early detection 

strategies for pediatric developmental delay (DD). 

Chapter I – Introduction establishes the conceptual foundation of the study. It 

presents the clinical and societal significance of early detection and intervention in DD, 

identifies critical limitations of existing diagnostic approaches, and articulates the 

central research questions and objectives. The chapter also outlines the study’s 

hypotheses and theoretical framework, situating the research within the broader context 

of computational medicine and predictive healthcare. 

Chapter II – Literature Review surveys the state of the art in machine learning 

applications for neurodevelopmental disorder classification, including autism spectrum 

disorder (ASD) and other developmental conditions. It critically analyzes a range of 

existing approaches—from classical classifiers such as linear discriminant analysis 

(LDA) and K-nearest neighbors (K-NN) to ensemble learning, deep learning, and 

multimodal fusion frameworks—and compares their performance, methodological 

assumptions, and clinical applicability. Special attention is given to the persistent 
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challenges of high cost, lengthy data acquisition, and limited scalability, which 

collectively underscore the necessity for innovative, cost-efficient approaches such as 

the one proposed in this dissertation. 

Chapter III – Methods describes the research design, dataset characteristics, and 

feature engineering strategies employed in this study. It explains the selection of key 

variables, including therapy utilization frequency (occupational, physical, and speech 

therapy sessions), and details the preprocessing steps, feature selection techniques, and 

modeling pipeline. The chapter also elaborates on the implementation of three 

predictive models—Decision Tree (DT), Support Vector Machine (SVM), and Deep 

Neural Network (DNN)—and outlines the evaluation metrics and validation procedures, 

including cross-validation, receiver operating characteristic (ROC) analysis, and 

precision-recall assessments. 

Chapter IV – Results presents the experimental findings and performance outcomes of 

the developed models. It provides a comprehensive analysis of predictive accuracy, 

sensitivity, specificity, precision, and F1-scores, as well as graphical representations 

such as ROC and precision-recall curves. The results are interpreted in relation to model 
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robustness, generalizability, and their clinical implications for early DD detection and 

patient stratification. 

Chapter V – Discussion offers an in-depth interpretation of the results and situates 

them within the context of existing literature and clinical practice. It discusses the 

advantages of therapy-based predictive modeling relative to traditional approaches, the 

implications for early intervention strategies, and the potential for integration into 

healthcare workflows. The chapter also addresses methodological considerations, 

practical deployment challenges, and the broader impact of predictive analytics on 

personalized rehabilitation planning. 

Chapter VI – Conclusion synthesizes the key contributions and findings of the 

dissertation. It emphasizes the novelty of leveraging therapy utilization as a predictive 

feature, the methodological advancements introduced, and the clinical value of 

developing a low-cost, scalable, and interpretable ML framework for early DD 

detection. The chapter further reflects on the study’s potential to influence future 

screening protocols and public health interventions. 

Chapter VII – Future Works outlines potential avenues for extending this research. 

These include exploring ensemble and hybrid modeling strategies, incorporating 
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additional clinical and sociodemographic features, validating models across larger and 

more diverse populations, and developing longitudinal predictive systems. The chapter 

also addresses ethical, practical, and translational considerations that will be essential 

for advancing predictive models toward clinical deployment. 
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Chapter II Literature Reviews 

Machine learning (ML) has become an increasingly powerful tool in the field of 

neurodevelopmental and psychiatric research, offering new ways to analyze complex 

datasets and identify subtle patterns that may underlie developmental disorders such as 

autism spectrum disorder (ASD) and developmental delay (DD). Researchers have 

explored a wide range of classification algorithms to diagnose and predict these 

conditions, each contributing to the evolving landscape of computational 

neurodevelopmental science. Among the earliest methods employed were linear 

discriminant analysis (LDA) and K-nearest neighbors (K-NN), both of which were used 

to classify ASD based on behavioral and questionnaire data [21]. Osman Altay and 

colleagues reported that LDA outperformed K-NN in terms of precision, highlighting 

the importance of algorithm selection in improving classification performance. 

Similarly, Fatiha Nur and Ali Öztürk compared several classifiers—including random 

forest (RF), naïve Bayes (NB), K-NN, and radial basis function networks (RBFN)—and 

concluded that RF achieved superior predictive outcomes [22]. These studies illustrate 

the foundational role of traditional classification algorithms in early ASD research and 

demonstrate how algorithmic choices can significantly affect diagnostic accuracy. 
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As ML techniques evolved, the integration of neuroimaging data into classification 

models marked a significant methodological advancement. Imaging modalities such as 

structural magnetic resonance imaging (sMRI) and resting-state functional MRI (rs-

fMRI) offer direct insights into neural connectivity, cortical structure, and brain 

organization, thereby enabling more biologically grounded models of DD classification. 

Dvornek et al. were among the first to combine phenotypic data with rs-fMRI using 

deep learning, achieving improved classification accuracy for ASD compared with 

traditional machine learning techniques [23]. Liao et al. proposed an innovative 

approach that incorporated community structure analysis with deep learning models, 

further enhancing predictive performance [24]. Dekhil et al. advanced this work by 

integrating anatomical and functional information from sMRI and fMRI, successfully 

distinguishing between autism and typical development [25]. These studies collectively 

demonstrate the substantial benefits of combining brain imaging data with ML 

techniques, suggesting that neurobiological features provide critical discriminative 

power for developmental disorder classification. 

Beyond anatomical data, researchers have also focused on cortical measures and 

functional connectivity patterns as important predictors of DD. Surface-based 

morphometry (SBM) approaches, such as those used by Yun Jiao and colleagues, 
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revealed cortical thickness to be a key predictive feature for ASD classification [26]. 

This finding underscores the potential of structural brain features as diagnostic 

biomarkers. In parallel, Heinsfeld et al. examined functional communication patterns 

derived from brain imaging and identified neural structures that differed significantly 

between ASD and typically developing individuals [27]. These contributions highlight 

how combining structural and functional information deepens our understanding of the 

neurobiological basis of DD, offering a more comprehensive view of how brain 

organization correlates with developmental outcomes. Such insights support the 

development of diagnostic models that are not only statistically robust but also 

biologically meaningful. 

More recent advances have focused on the refinement of classification algorithms to 

improve both sensitivity and specificity, particularly in clinical settings where 

diagnostic precision is paramount. Bone et al. developed highly adaptable algorithms 

that outperformed existing methods by enabling separate optimization of sensitivity and 

specificity [28]. Their models, which analyzed data from standardized diagnostic 

instruments such as the Autism Diagnostic Interview-Revised (ADI-R) and the Social 

Responsiveness Scale (SRS), demonstrated strong potential for clinical application. 

Similarly, Jin et al. applied multi-kernel support vector machine (SVM) methods to 
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classify infants at high risk for ASD as early as six months of age, integrating features 

related to white matter tracts and whole-brain connectivity [29]. Their approach 

outperformed single-scale network models, demonstrating the feasibility of early risk 

prediction using ML. Expanding beyond ASD, Kim et al. reported that SVM could 

outperform conventional statistical models in predicting the prognosis of Class III 

malocclusion, demonstrating the broader applicability of ML techniques beyond 

neurodevelopmental conditions [30]. Collectively, these advancements reflect 

significant methodological progress, showcasing how improvements in model 

architecture and feature engineering can translate into clinically relevant diagnostic 

tools. 

However, despite these promising developments, the literature reveals several critical 

limitations that hinder the widespread clinical adoption of existing ML-based DD 

classification approaches. A recurring challenge is the heavy reliance on diagnostic 

symptom data and specialized biomarkers. Many models are built on features derived 

from neuroimaging, standardized behavioral scales, or electrophysiological signals—

data sources that are often expensive, time-consuming, and difficult to obtain in routine 

clinical practice. For instance, MRI and fMRI acquisitions require costly infrastructure, 

trained personnel, and complex preprocessing pipelines, all of which contribute to 
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substantial financial and logistical barriers. Moreover, such studies typically involve 

small, highly controlled samples, raising concerns about their generalizability to broader 

populations. This dependency on specialized diagnostic data can significantly limit the 

scalability and practicality of ML models, particularly in community-based healthcare 

settings where resources are constrained and large-scale screening is necessary. 

Another major limitation concerns the temporal dimension of data acquisition. Most 

existing ML models rely on retrospective datasets, which means that predictions are 

often made after clinical symptoms have already emerged. As a result, these models are 

less effective in supporting proactive decision-making or early intervention strategies, 

which are crucial for improving long-term developmental outcomes. The time-intensive 

nature of data collection—especially in neuroimaging-based studies—also delays the 

deployment of ML tools in real-world settings. This is a significant drawback given that 

early intervention has consistently been shown to improve developmental trajectories 

and functional outcomes in children with DD. The gap between the timing of symptom 

onset and the availability of predictive information remains one of the most pressing 

challenges in the field. 
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Data availability and quality also pose significant challenges. Because many ML 

models depend on high-quality imaging or diagnostic data, they may not perform well 

in real-world clinical environments where data are heterogeneous, incomplete, or noisy. 

Moreover, behavioral assessments often rely on subjective caregiver reports, which can 

introduce cultural and reporting biases. These limitations collectively reduce the 

reliability, reproducibility, and clinical utility of many existing ML-based approaches 

[31–34]. Even when high classification accuracy is achieved in controlled research 

settings, translating these models into clinical workflows remains difficult due to cost, 

complexity, and data availability constraints. 

A deeper examination of previous research further reveals that methodological 

differences among machine learning approaches significantly influence their clinical 

applicability and predictive power. For instance, classical algorithms such as LDA and 

K-NN [21] laid the groundwork for early classification efforts by demonstrating the 

feasibility of computational diagnosis based on behavioral data. However, their 

relatively limited capacity to capture nonlinear patterns and complex feature interactions 

restricted their predictive accuracy. Ensemble methods such as random forests (RF) [22] 

improved upon these limitations by integrating multiple decision trees and leveraging 

feature importance measures, leading to more robust classification outcomes. 
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Nonetheless, even these methods remained constrained by their dependence on well-

curated datasets and their inability to dynamically adapt to heterogeneous, real-world 

clinical inputs. 

The integration of neuroimaging into ML models [23–25] represented a major 

methodological leap, offering biologically grounded insights and improving 

classification precision. Dvornek et al. [23] demonstrated that the inclusion of rs-fMRI 

data with phenotypic variables significantly enhanced the discriminative performance of 

deep learning models, illustrating the power of multimodal feature fusion. Liao et al. 

[24] expanded on this approach by using community structure analysis to better capture 

the topological organization of neural networks, yielding superior accuracy compared to 

conventional classifiers. Dekhil et al. [25] further advanced this paradigm by combining 

sMRI and fMRI data, demonstrating that structural and functional features jointly 

provide a richer and more nuanced representation of developmental disorders. These 

contributions underscore the potential of imaging-based features to elucidate the 

neurobiological underpinnings of ASD and DD. However, they also illustrate a critical 

trade-off: as model complexity and predictive accuracy increase, so too do the cost, 

computational requirements, and barriers to clinical implementation. 
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Further methodological innovations explored structural and functional metrics derived 

from cortical measures and brain communication patterns [26,27]. Surface-based 

morphometry studies, such as those conducted by Jiao et al. [26], identified cortical 

thickness as a key biomarker, while functional connectivity analyses by Heinsfeld et al. 

[27] provided insights into altered network dynamics in ASD populations. These studies 

not only advanced the field’s understanding of neurodevelopmental pathology but also 

demonstrated that ML can effectively detect subtle, spatially distributed neural 

differences. Yet, the need for high-resolution imaging data and specialized analytical 

workflows remains a significant limitation, reducing the feasibility of deploying such 

models outside of well-equipped research institutions. 

The development of more sophisticated algorithms aimed to overcome some of these 

limitations by increasing diagnostic sensitivity and specificity. Bone et al. [28] designed 

algorithms capable of weighting sensitivity and specificity independently, which is 

particularly valuable for clinical contexts where false negatives or false positives carry 

significant consequences. Jin et al. [29] extended these advances by demonstrating that 

multi-kernel SVM could classify high-risk infants as early as six months, thereby 

showing that ML has the potential to identify developmental vulnerabilities long before 

traditional diagnostic criteria can be applied. Kim et al. [30] further confirmed the 
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clinical utility of SVM in non-neurodevelopmental contexts, such as orthodontic 

prognosis, reinforcing the adaptability of these methods to a range of predictive 

healthcare applications. Despite these advances, the cost and time required to collect 

and process imaging data, coupled with the limited availability of longitudinal datasets, 

continue to impede large-scale clinical adoption. 

A comparative synthesis of the studies summarized in Table 1 illustrates both the 

progress and the persistent challenges in ML-based DD classification. Classical 

classifiers (e.g., LDA, K-NN) demonstrated feasibility but were limited in handling 

complex data [21]. Ensemble methods (RF, GBM) improved predictive power but still 

required carefully engineered features [22]. Deep learning approaches significantly 

enhanced classification performance when combined with phenotypic and imaging data 

[23,24], while multimodal integration yielded the highest accuracies by leveraging 

complementary structural and functional features [25]. Surface-based morphometry and 

connectivity analyses enriched the interpretability of models and deepened the 

understanding of disease mechanisms [26,27]. More advanced classifiers, such as multi-

kernel SVM and specialized ensemble algorithms, demonstrated potential for early 

detection and high-risk screening [28,29]. Yet, across all these methodologies, a 

common challenge persists: the reliance on expensive, specialized, and time-consuming 
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data collection processes, as well as the limited scalability of models to real-world 

healthcare settings. 

Table 1. A summary of the existing machine learning based predictors for 

identifying patients who may develop DD. 

 

The limitations of existing approaches have important implications for early 

intervention, which remains the most effective strategy for improving long-term 

outcomes in children with developmental delays. Early intervention can significantly 
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enhance cognitive, social, and behavioral development, but its success depends on the 

timely identification of children at risk. Unfortunately, the reliance on post-symptomatic 

diagnostic data, costly imaging techniques, and complex modeling workflows delays 

the point of identification, reducing the window of opportunity for early support. 

Furthermore, the resource-intensive nature of these approaches restricts their 

deployment to specialized research or tertiary care centers, leaving many children—

particularly those in underserved regions—without access to early diagnostic services. 

These systemic barriers highlight the urgent need for predictive models that are not only 

accurate but also cost-effective, scalable, and easily integrated into routine clinical 

workflows. 

It is within this context that the present study proposes an innovative approach centered 

on therapy utilization—specifically, the frequency of physical, occupational, and speech 

therapy sessions—as a predictive feature for DD classification and outcome prediction. 

This paradigm shift addresses several of the key limitations identified in the literature. 

First, therapy frequency is a readily available and routinely collected clinical variable, 

requiring no specialized equipment, imaging resources, or additional financial 

investment. Second, because therapy utilization directly reflects both the severity of a 

child’s developmental condition and their responsiveness to intervention, it serves as a 
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meaningful proxy for underlying developmental trajectories. Third, leveraging such data 

allows predictive models to be applied across diverse healthcare settings, including 

primary care and community-based programs, thereby increasing their accessibility and 

public health impact. 

The potential advantages of this approach extend beyond scalability and cost-

effectiveness. By transforming therapy frequency into a predictive feature, ML models 

can not only identify at-risk children earlier but also guide personalized treatment 

planning. For example, patterns of therapy utilization may reveal which children are 

likely to respond to standard intervention protocols and which may require more 

intensive or specialized support. Additionally, because therapy frequency is a 

modifiable variable, predictive models based on this feature have the potential to inform 

real-time clinical decision-making—enabling practitioners to adjust therapy plans 

dynamically in response to predicted outcomes. This feedback loop between prediction 

and intervention represents a significant advancement over existing ML frameworks, 

which are primarily diagnostic rather than prescriptive in nature. 

In summary, a comprehensive review of the literature reveals significant progress in the 

application of machine learning to the classification and prediction of developmental 
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disorders. Studies employing a variety of algorithms—from classical classifiers to deep 

learning and multimodal approaches—have demonstrated the feasibility and potential of 

ML in enhancing diagnostic precision [21-30]. However, the widespread adoption of 

these methods remains constrained by high costs, time-consuming data acquisition 

processes, and limited scalability [31-34]. These challenges underscore the need for 

innovative solutions that bridge the gap between methodological sophistication and 

clinical feasibility. The present study responds to this need by proposing a novel, low-

cost, and scalable predictive framework based on therapy utilization data. By exploiting 

information that is already collected in routine clinical practice, this approach offers a 

practical pathway toward early detection, individualized intervention planning, and 

improved developmental outcomes. Ultimately, this strategy holds the potential to 

transform ML-based DD classification from a research-oriented endeavor into a widely 

deployable clinical tool, enabling more timely and effective support for children at risk 

of developmental delay. 
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Chapter III Methods 

3-1. Data collection and outcome measurement 

In the present study, all patients included in the clinical group were previously given a 

diagnosis based on the criteria established in the Diagnostic and Statistical Manual of 

Mental Disorders-V-TR (DSM-5-TR) [35-36]. For example, the DSM-5-TR defines 

autism spectrum disorder (ASD) as involving persistent deficits in social 

communication across multiple environments, as outlined in the relevant diagnostic 

criterion. Assessments of comorbid psychiatric diagnoses and the development of 

treatment plans were completed by board-certified child psychiatrists. The main 

caregivers of the included participants received assistance from rehabilitation therapists 

with gathering sociodemographic and rehabilitation-clinical information and completing 

several forms. 

Assessments of DD symptoms were conducted by a rehabilitation physician who used 

the Rehabilitation Developmental Evaluation Form. In the outpatient department (OPD) 

of the study hospital, children with DD or child-and-adolescent psychiatry patients 

typically received rehabilitation therapy, and a structured data form was used to update 

their medical service records, which included information pertaining to the frequencies 

of occupational therapy services (OTS), physical therapy services (PTS), and 
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speech therapy services (STS). The dataset used in this study comprised the medical 

records of the outpatients who visited the rehabilitation clinic of the study hospital with 

suspected DD between January 1, 2012, and December 31, 2016. The Institutional 

Review Board of En Chu Kong Hospital reviewed the above documents and approved 

the study on 2024/07/23 (ECK-IRB Number: ECKIRB1130501). This approval is valid 

until 2025/07/22. To protect patient information and confidentiality, no subject names 

were collected. Each patient was assigned an anonymized study ID. The International 

Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes were 

used to define DD. The patients’ records extracted from the dataset included age, sex, 

and the frequencies of OTS, PTS, and STS received. Specific DD problems and 

disabilities were determined using a comprehensive literature review and after a 

consensus was reached by rehabilitation physicians and child psychiatry specialists. The 

International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-

CM) codes were used to identify various types of DD [37–39]. Figure 1. illustrates the 

participant selection process as a flow diagram. This study identified 2,552 outpatients 

under 12 years of age who made one or more OPD visits. Among these patients, 1,719 

(67.4%) had DD. The total number of OPD visits was 34,862. Table 2. presents the 

demographic and clinical characteristics of the patients with DD. Because of the 
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hospital’s strict documentation flowchart, the outpatient medical records from which 

our dataset was derived were highly accurate, with minimal missing data and few 

unmeasured confounders. 

The present study was approved by the ethics committee of En Chu Kong Hospital prior 

to data collection. Informed consent was waived by the committee because of the de-

identification and non-interventional design of the present study. 

 

Figure 1. Flow diagram for generating the study dataset. 
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Table 2. Demographic and clinical characteristics of patients with DD (n = 2,552). 

 

 

3-2. Experimental procedures  

The present study extracted information from OPD records, including data on 

demographic characteristics, such as sex and age, and the frequencies of therapy 

services used (OTS, PTS, and STS). The patients were divided into two groups, namely 

a DD group and a non-DD group. Data preprocessing included removal of incomplete 

records, normalization of continuous variables, and standardization of therapy 

frequencies to ensure cross-patient comparability. Figure 2. presents the experimental 

procedure that was employed to assess the performance of several prediction models. 
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Figure 2. The experimental procedure.  

 

3-3. Feature selection 

In this study, we included four features in our dataset: sex and the frequencies of OTS, 

PTS, and STS. In this respect, the frequency of a particular therapy service was defined 

to be the average number of sessions received per patient per year. Then, we conducted 

chi-squared tests to determine whether a feature was correlated with the outcome 

variable [40–42]. For the categorical feature “sex,” we carried out the chi-squared test 

of independence. For the frequencies of OTS, PTS, and STS, we performed chi-squared 

tests on discretized distributions (e.g., quartiles) as a goodness-of-fit framework, with 
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the null hypothesis specifying that the average frequency among patients with DD 

equals that among patients without DD [43]. Additionally, logistic regression with 

forward selection was employed to confirm predictor significance. Quartiles of therapy 

frequency were used to estimate odds ratios (ORs). Table 3. shows the p-values 

obtained from these tests. Accordingly, we included sex and the frequencies of OTS, 

PTS, and STS to build the prediction models. 

Table 3. Results of the feature selection by logistic regression (with odds ratios). 

 

 

3-4. Development of prediction models and performance evaluation 

In this study, we investigated the prediction performance of three categories of machine 

learning models, namely the decision tree (DT) models [44–46], the support vector 

machine (SVM) models [47], and the deep neural network (DNN) models [48]. The 

DT models are preferred by many clinicians due to the explicit, human-

readable decision rules output by the algorithm. On the other hand, the SVM models 

and the DNN models are two categories of the most advanced machine learning models 

that can generally outperform the DT models due to the nonlinear transformations 
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invoked in the prediction process. However, the same nonlinear transformations also 

make it almost impossible for a user to comprehend how the prediction is made. As a 

result, many clinicians are reluctant to trust the models that work like a black box. 

Therefore, it is of interest to investigate how the performance of alternative categories 

of machine learning models compares. If the performance of the DT models observed in 

the experiments is comparable to that of the advanced machine-learning models—as 

observed in our recent studies [49,50]—then DT models are favored because they 

output explicit decision rules. 

In order to obtain comprehensive pictures of how each category of prediction models 

performed, we employed alternative parameter settings to generate prediction models 

with different performance characteristics. Table 4. provides a summary of the software 

packages and alternative parameter settings employed to build the prediction models. 

Then, we conducted 10-fold cross-validation to evaluate the performance characteristics 

of each prediction model generated [51–53]. The performance metrics considered in this 

study include accuracy, sensitivity, specificity, positive predictive value (PPV; also 

known as precision), and F1 score. The F1 score, which is the harmonic mean of the 

sensitivity and the PPV, is commonly employed in machine-learning research and has 

increasingly been employed in biomedical research [54]. Furthermore, for each category 
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of prediction models (e.g., DT, SVM, or DNN), we evaluated overall performance 

based on the area under the receiver operating characteristic (ROC) curve [55-56]. To 

generate each ROC curve, we selected, at every sensitivity level, the configuration 

within that model family that delivered the highest F1 score. 

Table 4. Software packages and parameter settings employed to build the models. 
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Chapter IV Results 

The dataset comprised 2,552 children and 34,862 visits, with a mean age of 72.34 

months. Gender distribution showed a higher proportion of males, consistent with prior 

prevalence studies [57]. Children with DD demonstrated significantly greater utilization 

of OTS, PTS, and STS compared with non-DD peers (p < 0.001) shown in Table 2. 

Weighted modeling and stratified sampling approaches confirmed that this gender 

imbalance did not undermine classification reliability. Sensitivity analyses excluding 

age revealed minimal reduction in model accuracy, confirming therapy frequency as the 

dominant predictor. 

In Table 3., odds Ratios showed children with high therapy frequencies had over 

fourfold increased risk of DD.  

Figure 4. shows ROC curves and the corresponding areas under the curves (AUCs) of 

the DT, SVM, and DNN models. Table 5. shows the detailed performance data of the 

models that delivered sensitivities at the 0.80 level and at the 0.90 level. It is observed 

that the DNN models and the DT models outperformed the SVM models in terms of 

AUC. On the other hand, as shown in Table 5., the performance comparison showed 

DT sensitivity = 0.902, PPV = 0.723, and F1 = 0.803. DNN achieved higher AUC but 

lower PPV, while SVM underperformed across metrics. If a high level of sensitivity is 
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desirable, then the DT models significantly outperformed the DNN models and the 

SVM models in terms of the F1 score, which is the harmonic mean of the sensitivity 

(also called recall) and the positive predictive value (PPV, also called precision). 

Based on the data shown in Table 5., it is conceivable that the DT model that delivered 

the sensitivity at the 0.90 level is the favorite choice due to two reasons. Firstly, the 

PPV with this particular DT model is significantly higher than the PPVs with the SVM 

model and the DNN model that delivered the same level of sensitivity. Therefore, in 

clinical applications, the number of false positive predicted by this DT model should be 

significantly lower than the numbers of false positive predicted by the SVM model and 

the DNN model with the same level of sensitivity. Secondly, the PPV with this DT 

model is almost the same as the PPV with the DT model that delivered the sensitivity at 

the 0.80 level. Accordingly, in the subsequent discussions, we will focus on the DT 

model that delivered the sensitivity at the 0.90 level. 

Figure 3. shows the structure of the DT model generated by feeding our dataset into the 

software package and with cp and prior set to 0.01 and 0.55 respectively. According to 

our performance evaluation, this DT model should be able to deliver a sensitivity at the 

0.90 level and a PPV above 0.70. The top-down path, following the red arrows, 

illustrates how the prediction for a subject with sex = female, f_OTS = 60, f_PTS = 30, 
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and f_STS = 50 is made. The prediction made is positive, i.e., the subject suffers from 

DD, as the path ends at a red node. On the other hand, a subject is predicted to be 

negative, if the path corresponding to the subject's feature values ends at a blue node. 

The “n+” and “n-“ values associated with each node respectively specify the 

percentages of positive subjects and negative subjects among all the subjects that meet 

the criteria specified along the path to the node. In fact, a user can figure out the 

probability that a subject is positive or negative by examining the n+ and n- of the leaf 

node that the feature values of this subject fit into.  

These results confirm therapy frequencies are strong, low-cost predictors, and that DT 

combines accuracy with interpretability, making it suitable for clinical adoption. 
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Figure 3. The structure of the DT model generated by feeding our dataset into the 

software package and with cp and prior set to 0.01 and 0.55, respectively.  

 

 

 

Figure 4. ROC curves of the DNN, DT, SVM models. 
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Table 5. Detailed performance characteristics of alternative prediction models. 
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Chapter V Discussion 

The findings highlight therapy frequencies as clinically valuable predictors of DD. 

Unlike high-cost imaging or genetic testing, therapy records are universally available in 

outpatient care and can support cost-effective screening. The DT model’s explicit rules 

enhance clinical trust and usability. This transparency addresses the black-box 

limitations of models such as DNN, providing interpretable decision pathways that 

clinicians can readily apply. 

Model evaluation extended beyond conventional accuracy and AUC. The Precision-

Recall curves [58] provided insight under imbalance, while Odds Ratios linked 

predictions to clinically interpretable risk. Confusion matrices further demonstrated 

DT’s superior balance of true and false classifications. 

Bias due to male predominance was addressed by weighted modeling, confirming DT 

stability. Excluding age did not compromise performance, underscoring therapy 

frequency as the dominant predictor. Future incorporation of high-dimensional features 

may improve precision but could reduce interpretability. 

In this study, we have investigated how the frequencies of therapies can be exploited to 

build machine learning based prediction models for identifying children with 

development delay. Based on the experimental results observed, it is conceivable that 



doi:10.6342/NTU202504505

 

 

37 

 

the proposed approach can be widely exploited in clinical practices due to several 

reasons. Firstly, the performance observed with the prediction models developed in this 

study should meet the criteria acceptable by most physicians. For example, based on our 

experimental results, we can anticipate that the DT model shown in Table 5. can 

identify about 90.0% of the subjects who will develop DD in the future, while about 

72% of the subjects predicted to be positive are actually true positives. Secondly, the 

features employed to build the prediction models can be obtained with essentially no 

costs. Therefore, the prediction models can be exploited to screen the subjects who may 

develop DD before advanced and costly diagnoses are carried out. 

The experimental results also demonstrate that for the applications targeted by this 

study we do not need to trade performance for the interpretability of the prediction 

model. The F1 scores presented in Table 5. show that the DT models that delivered the 

sensitivity at the 0.90 level and at the 0.80 level outperformed the DNN models and the 

SVM model that delivered the sensitivity at the same level. For most applications, it is 

typical that advanced machine learning based prediction models such as the DNN 

models and the SVM models outperform the DT models due to the non-linear 

transformations invoked. However, the non-linear transformations invoked also make it 

almost impossible for a user to figure out how the prediction is made. Fortunately, for 
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our applications, we do not need to trade performance for the interpretability of the 

prediction model. 

The DT structure shown in Figure 3 illustrates how a user can examine the structure to 

figure out the decision rules followed by the prediction model to make predictions. 

Furthermore, the ratio of between the number of positive subjects and the number of 

negative subjects at each leaf node specifies how likely a subject that meets the criteria 

corresponding to the path to this particular leaf node develops DD. For example, the 

probability that the subject with sex = female, f_OTS = 60, f_PTS = 30, and f_STS = 50 

develops DD is 0.73. In clinical practice, a physician can refer to this specific 

probability and his/her clinical experiences to make the final diagnosis. 

In summary, the major finding due to this study is that the frequencies of the therapies 

that a child has received provide valuable information for predicting whether the child 

suffers from DD. Due to the performance observed in the experiments and the fact that 

these features can be obtained essentially without any cost, it is conceivable that the 

prediction models built accordingly can be wide exploited in clinical practices and 

significantly improve the treatment outcomes of the children who develop DD. Though 

the study was based on a dataset collected in a hospital in Taiwan, we anticipate that the 
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proposed method can be exploited to build accurate prediction models for populations 

in different countries with various race groups. 

Limitations 

Several limitations of this study should be noted. Firstly, this retrospective study relies 

on data extracted from the outpatient (OPD) database with children under 12 years old. 

Consequently, the findings may not be generalized for the other age groups. Secondly, 

the prediction models developed were solely based on the data collected from a hospital 

in Taiwan and its applicability to other hospitals has not been validated. Thirdly, the 

dataset employed in this study was derived from the clinical records in the OPD and 

therefore these patients were likely to already have DD conditions. Fourth, the restricted 

feature set limited granularity. Only therapy 

frequencies, sex, and age were included; important factors such as comorbidities, 

socioeconomic variables, family history, and longitudinal clinical data were unavailable. 

Fifth, despite the DT achieving a sensitivity of approximately 90%, around 10% of DD 

cases were misclassified as false negatives. This limitation is clinically significant, as it 

could delay recognition and treatment for a subset of children. Finally, it is observed 

that there were significantly more male patients than the female patients, which 
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conforms with previous findings [59,60]. Therefore, stratified sampling based on gender 

was not carried out. 

Limitations include reliance on a single hospital dataset and retrospective design. Future 

validation across hospitals and countries is necessary to enhance generalizability 

[61,62]. The use of ICD-9-CM and ICD-10-CM coding ensures compatibility, but 

variability in clinical documentation must still be considered. 

Ethical considerations include safeguarding patient privacy, ensuring transparent 

predictive processes, and establishing follow-up protocols for the ~10% of cases 

potentially missed by the model. Multi-stakeholder collaboration among clinicians, data 

scientists, and policymakers will be vital for responsible integration. 
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Chapter VI Conclusion 

This study demonstrates that therapy utilization frequencies—specifically occupational, 

physical, and speech therapies—are powerful, low-cost predictors of DD. The findings 

confirm that routinely collected rehabilitation data can serve as pragmatic indicators for 

scalable early screening, offering a cost-effective alternative to resource-intensive 

diagnostic modalities. 

Among the models evaluated, the DT consistently achieved a clinically meaningful 

balance of sensitivity and positive predictive value, while also providing interpretability 

that is essential for clinical adoption. The transparent decision rules embedded in DT 

structures allow physicians to integrate computational outputs with their clinical 

expertise, thereby supporting diagnostic reasoning and therapeutic planning. Compared 

with more complex models such as the SVM and DNN, the DT demonstrated superior 

clinical usability despite similar or slightly lower discriminative performance. 

By showing that low-cost, readily available clinical features can be effectively 

translated into interpretable ML models, this dissertation establishes a foundation for 

scalable ML-based DD screening systems. Such systems have the potential to 

complement, rather than replace, clinical expertise, enabling earlier detection, reducing 



doi:10.6342/NTU202504505

 

 

42 

 

diagnostic delays, and ultimately improving developmental outcomes in pediatric 

populations. 
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Chapter VII Future works 

Future research should pursue both methodological and clinical advancements to 

enhance the robustness, interpretability, and applicability of ML-based DD screening. 

1. Methodological Enhancements 

Ensemble approaches such as Extreme Gradient Boosting (XGBoost) [63,64] and 

Random Forests should be investigated, given their robustness against noisy data and 

capacity to capture complex non-linear interactions. Standardized benchmarking 

frameworks are also necessary, comparing ML algorithms not only against one another 

but also against established diagnostic standards such as DSM-5–based developmental 

assessments. Such comparisons would provide stronger evidence of the incremental 

value of ML approaches over current clinical practice. 

2. Expansion of Predictive Features 

While this study validated therapy frequencies, age, and sex as effective predictors, 

expanding the feature set could substantially improve predictive power. Potential 

additions include comorbidity profiles, hospitalization and medication history, 

socioeconomic variables, and longitudinal developmental records. Incorporating ICD-9-

CM and ICD-10-CM subcategories (e.g., F80–F89 neurodevelopmental disorders, G80 
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cerebral palsy, R62 developmental delay) would enable subtype-level classification. 

Such integration also improves interoperability with electronic health record systems, 

facilitating adoption in clinical workflows. 

3. Multimodal Predictive Frameworks 

Future studies should explore hybrid models that combine routine clinical metadata with 

high-dimensional modalities such as EEG, neuroimaging, and genetic features. These 

multimodal approaches could balance feasibility with diagnostic precision, particularly 

in tertiary care or research settings where advanced diagnostic resources are available. 

4. Evaluation Strategies 

Performance evaluation should move beyond ROC curves alone. Precision–Recall (PR) 

curves offer superior insight into imbalanced datasets, while odds ratios contextualize 

model outputs in epidemiological terms familiar to clinicians. Establishing standardized 

evaluation metrics will improve methodological rigor and clinical interpretability across 

future studies. 

5. Addressing False Negatives 

Although the DT model achieved ~90% sensitivity, approximately one in ten cases 

remained undetected. This limitation could be mitigated through ensemble modeling, 
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richer feature integration, and structured re-screening protocols. For example, children 

initially classified as non-DD but who continue to receive high-frequency therapy could 

be flagged for follow-up evaluation. Such safeguards are critical to reducing missed 

diagnoses and preventing delays in intervention. 

6. Age-Specific Therapy Patterns 

A particularly valuable research direction is the investigation of associations between 

therapy frequency and age. Identifying whether therapy utilization peaks within specific 

developmental stages may provide empirical support for the principle of early 

intervention. Furthermore, analyzing the age at diagnosis, therapy types received, and 

the period of highest therapy concentration could refine understanding of the critical 

timeframe for intervention. 

7. Validation and Generalizability 

Prospective, multicenter, and cross-national validation is essential to confirm 

generalizability. Differences in healthcare systems, cultural contexts, and access to 

therapy must be considered. Cross-institutional collaborations will help prevent 

overfitting to local patterns and ensure equitable applicability of ML-based DD 

screening tools worldwide. 
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8. Ethical and Clinical Integration 

Future implementations must prioritize ethical safeguards. Clinical integration should 

include structured protocols for follow-up of false negatives, safeguards for patient 

privacy, and mechanisms to monitor model drift as therapy practices evolve. Advances 

in explainable AI frameworks may further refine interpretability, ensuring that 

predictive systems complement—rather than replace—clinical expertise. 

Summary 

By advancing methodological rigor, expanding feature sets, integrating multimodal 

data, and embedding ethical safeguards, future research can establish ML-based DD 

screening as both a responsible and transformative tool in pediatric healthcare. 
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