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Abstract
Detection of Pediatric Developmental Delay (DD) with Machine

Learning Technologies

Objective

Accurate identification of children who will develop delay (DD) is challenging for therapists
because recent studies have reported that children who underwent early intervention achieved more
favorable outcomes than those who did not. In this study, we have investigated how the frequencies
of three types of therapy, namely the physical therapy, the occupational therapy, and the speech
therapy, received by a child can be exploited to predict whether the child suffers from DD or not.
The effectiveness of the proposed approach is of high interest as these features can be obtained with
essentially no cost and therefore a prediction model built accordingly can be employed to screen the
subjects who may develop DD before advanced and costly diagnoses are carried out.

Methods

This study has been conducted based on a data set comprising the records of 2,552 outpatients (N =
34,862 visits, mean age = 72.34 months) collected at a hospital in Taiwan from 2012 to 2016. We

then built 3 types of machine learning based prediction models, namely the deep neural network

VI
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models (DNN), the support vector machine (SVM) models, and the decision tree (DT) models, to

evaluate the effectiveness of the proposed approach.

Results

Experimental results reveal that in terms of the F1 score, which is the harmonic mean of the

sensitivity and the positive predictive value, the DT models outperformed the DNN models and the

SVM models, if a high level of sensitivity is desired. In particular, the DT model developed in this

study delivered the sensitivity at 0.902 and the positive predictive value at 0.723.

Conclusions

What has been learned from this study is that the frequencies of the therapies that a child has

received provide valuable information for predicting whether the child suffers from DD. Due to the

performance observed in the experiments and the fact that these features can be obtained essentially

without any cost, it is conceivable that the prediction models built accordingly can be wide

exploited in clinical practices and significantly improve the treatment outcomes of the children who

develop DD.

Keywords: Developmental Delay, Occupational Therapy service, Frequency of therapy, Machine

Learning, Decision Tree, Support Vector Machine, Deep Neural Networks
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Chapter I Introduction

1-1 Background

Developmental delay (DD) refers to a distinct set of early childhood developmental
disabilities, and it is primarily diagnosed by assessing a child’s behavioral and mental
capacities [1]. Rehabilitation physicians and pediatric specialists employ a wide range
of diagnostic strategies, clinical tools, and classification frameworks to assess and
manage developmental delay (DD). These approaches encompass structured physical
and neurological examinations, standardized motor and cognitive assessments, sensory
evaluations (such as hearing and vision screening), genetic and metabolic testing, and
neuroimaging modalities, all of which are essential for identifying underlying etiologies
and guiding therapeutic planning [2-5]. Furthermore, systematic classification systems
and rehabilitation taxonomies are increasingly integrated into clinical decision-making
to stratify patients, personalize intervention strategies, and predict therapeutic outcomes,
thereby enhancing the precision and effectiveness of early intervention programs [6].
However, these classification methods are often subjective, time-consuming, and prone
to inconclusive results. Moreover, they fail to clarify the underlying causes and are
ineffective for early detection [7]. Early intervention significantly improves a child’s

likelihood of reaching their full potential, with studies reporting that children who
1
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receive early intervention achieve more favorable outcomes than those who do not. [8,9-

13] Therefore, accurate classification of DD is crucial for providing effective early

intervention services that ensure positive outcomes for children with DD.

Machine learning has been employed to develop novel computational methods that

incorporate mathematical learning, statistical estimation, and information theories [14].

These methods automatically identify meaningful patterns within large datasets. A key

advantage of machine learning is its ability to generate highly accurate and reliable

predictions based on data comprising multiple variables. Additionally, machine learning

enables causal inference from non-experimental datasets [15].

In recent years, machine learning (ML) has emerged as a powerful tool in psychiatric

and neurodevelopmental research, demonstrating its potential to detect and classify

complex conditions such as autism spectrum disorder (ASD) [16], attention deficit

hyperactivity disorder (ADHD) [17], and schizophrenia [18]. By extracting subtle

patterns from high-dimensional data, ML has been shown to surpass conventional

statistical methods in diagnostic accuracy and predictive performance. For example,

Bishop et al. successfully applied ML to predict the lifetime health trajectories of adults

with ASD, accurately forecasting the onset of cardiovascular, urinary, and respiratory
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conditions [19]. These advances have positioned ML as a promising technology for

early detection and personalized healthcare.

Despite these achievements, existing ML approaches suffer from critical limitations that

restrict their clinical applicability—particularly in the context of early intervention for

developmental delay (DD). Most prior studies rely on costly and time-consuming data

sources, such as neuroimaging, electrophysiological signals, or extensive behavioral

assessments. These methods require specialized equipment, expert personnel, and

complex analytical workflows, making them impractical for large-scale implementation

in community or primary care settings. Moreover, the heavy dependence on

retrospective datasets and resource-intensive pipelines often results in delayed outputs,

limiting their utility for pre-symptomatic screening and proactive intervention.

Consequently, although traditional ML techniques have demonstrated strong predictive

capabilities, their lack of scalability, high operational costs, and lengthy processing

times hinder their adoption in real-world clinical workflows, particularly in scenarios

that demand timely decision-making and broad population coverage.

1-2 Motivation
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This gap is particularly concerning given the well-established importance of early

intervention in developmental disorders. Studies have reported that most cases of DD

gradually resolve over time [20], underscoring the value of identifying at-risk children

as early as possible and providing targeted support before long-term functional deficits

emerge. However, few studies to date have explored how ML can be harnessed not only

to classify DD but also to identify key predictive factors that inform the timing,

intensity, and optimization of intervention strategies. There remains a significant unmet

need for predictive models that are cost-effective, scalable, and capable of integrating

seamlessly into routine healthcare delivery.

The novelty of our approach lies in addressing this gap by proposing the use of therapy

utilization—specifically, the frequency of occupational, physical, and speech therapy

services—as a predictive factor for DD classification and outcome forecasting [21-29].

Therapy frequency is a clinically meaningful and readily available variable that reflects

both the severity of developmental challenges and the child’s responsiveness to

intervention. Unlike imaging or specialized assessments, therapy utilization data are

routinely collected in clinical practice, require no additional cost or infrastructure, and

can be easily incorporated into electronic health records. By integrating such features
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into ML models, we aim to develop predictive systems that are not only accurate but

also practical and scalable.

This approach offers several important advantages. First, it leverages existing clinical
data to enable large-scale population screening without the financial and logistical
barriers associated with traditional ML models. Second, it supports real-time decision-
making by allowing clinicians to monitor therapy responsiveness and adjust
intervention strategies dynamically. Third, it enhances personalization in clinical care
by identifying individual-level predictors of developmental outcomes, thereby
facilitating the design of tailored therapeutic plans. Ultimately, by bridging the gap
between algorithmic sophistication and clinical feasibility, our study seeks to transform
ML from a research tool into a practical, actionable framework for early intervention in
developmental delay. This paradigm shift holds the potential to improve developmental
trajectories, reduce healthcare burdens, and ensure that at-risk children receive the right

support at the right time.

1-3 Organization of this thesis

This dissertation is organized into seven chapters, each designed to build a logical and

coherent narrative from foundational motivation to methodological development,
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empirical validation, and future research directions. The structure reflects the

interdisciplinary nature of this work, which integrates clinical knowledge, machine

learning techniques, and public health considerations to advance early detection

strategies for pediatric developmental delay (DD).

Chapter I — Introduction establishes the conceptual foundation of the study. It

presents the clinical and societal significance of early detection and intervention in DD,

identifies critical limitations of existing diagnostic approaches, and articulates the

central research questions and objectives. The chapter also outlines the study’s

hypotheses and theoretical framework, situating the research within the broader context

of computational medicine and predictive healthcare.

Chapter II — Literature Review surveys the state of the art in machine learning

applications for neurodevelopmental disorder classification, including autism spectrum

disorder (ASD) and other developmental conditions. It critically analyzes a range of

existing approaches—from classical classifiers such as linear discriminant analysis

(LDA) and K-nearest neighbors (K-NN) to ensemble learning, deep learning, and

multimodal fusion frameworks—and compares their performance, methodological

assumptions, and clinical applicability. Special attention is given to the persistent
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challenges of high cost, lengthy data acquisition, and limited scalability, which

collectively underscore the necessity for innovative, cost-efficient approaches such as

the one proposed in this dissertation.

Chapter I1I — Methods describes the research design, dataset characteristics, and

feature engineering strategies employed in this study. It explains the selection of key

variables, including therapy utilization frequency (occupational, physical, and speech

therapy sessions), and details the preprocessing steps, feature selection techniques, and

modeling pipeline. The chapter also elaborates on the implementation of three

predictive models—Decision Tree (DT), Support Vector Machine (SVM), and Deep

Neural Network (DNN)—and outlines the evaluation metrics and validation procedures,

including cross-validation, receiver operating characteristic (ROC) analysis, and

precision-recall assessments.

Chapter IV — Results presents the experimental findings and performance outcomes of

the developed models. It provides a comprehensive analysis of predictive accuracy,

sensitivity, specificity, precision, and F1-scores, as well as graphical representations

such as ROC and precision-recall curves. The results are interpreted in relation to model
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robustness, generalizability, and their clinical implications for early DD detection and

patient stratification.

Chapter V — Discussion offers an in-depth interpretation of the results and situates

them within the context of existing literature and clinical practice. It discusses the

advantages of therapy-based predictive modeling relative to traditional approaches, the

implications for early intervention strategies, and the potential for integration into

healthcare workflows. The chapter also addresses methodological considerations,

practical deployment challenges, and the broader impact of predictive analytics on

personalized rehabilitation planning.

Chapter VI — Conclusion synthesizes the key contributions and findings of the

dissertation. It emphasizes the novelty of leveraging therapy utilization as a predictive

feature, the methodological advancements introduced, and the clinical value of

developing a low-cost, scalable, and interpretable ML framework for early DD

detection. The chapter further reflects on the study’s potential to influence future

screening protocols and public health interventions.

Chapter VII — Future Works outlines potential avenues for extending this research.

These include exploring ensemble and hybrid modeling strategies, incorporating
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additional clinical and sociodemographic features, validating models across larger and

more diverse populations, and developing longitudinal predictive systems. The chapter

also addresses ethical, practical, and translational considerations that will be essential

for advancing predictive models toward clinical deployment.
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Chapter II Literature Reviews

Machine learning (ML) has become an increasingly powerful tool in the field of
neurodevelopmental and psychiatric research, offering new ways to analyze complex
datasets and identify subtle patterns that may underlie developmental disorders such as
autism spectrum disorder (ASD) and developmental delay (DD). Researchers have
explored a wide range of classification algorithms to diagnose and predict these
conditions, each contributing to the evolving landscape of computational
neurodevelopmental science. Among the earliest methods employed were linear
discriminant analysis (LDA) and K-nearest neighbors (K-NN), both of which were used
to classify ASD based on behavioral and questionnaire data [21]. Osman Altay and
colleagues reported that LDA outperformed K-NN in terms of precision, highlighting
the importance of algorithm selection in improving classification performance.
Similarly, Fatiha Nur and Ali Oztiirk compared several classifiers—including random
forest (RF), naive Bayes (NB), K-NN, and radial basis function networks (RBFN)—and
concluded that RF achieved superior predictive outcomes [22]. These studies illustrate
the foundational role of traditional classification algorithms in early ASD research and

demonstrate how algorithmic choices can significantly affect diagnostic accuracy.

10
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As ML techniques evolved, the integration of neuroimaging data into classification

models marked a significant methodological advancement. Imaging modalities such as

structural magnetic resonance imaging (SMRI) and resting-state functional MRI (rs-

fMRI) offer direct insights into neural connectivity, cortical structure, and brain

organization, thereby enabling more biologically grounded models of DD classification.

Dvornek et al. were among the first to combine phenotypic data with rs-fMRI using

deep learning, achieving improved classification accuracy for ASD compared with

traditional machine learning techniques [23]. Liao et al. proposed an innovative

approach that incorporated community structure analysis with deep learning models,

further enhancing predictive performance [24]. Dekhil et al. advanced this work by

integrating anatomical and functional information from sMRI and fMRI, successfully

distinguishing between autism and typical development [25]. These studies collectively

demonstrate the substantial benefits of combining brain imaging data with ML

techniques, suggesting that neurobiological features provide critical discriminative

power for developmental disorder classification.

Beyond anatomical data, researchers have also focused on cortical measures and

functional connectivity patterns as important predictors of DD. Surface-based

morphometry (SBM) approaches, such as those used by Yun Jiao and colleagues,
11
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revealed cortical thickness to be a key predictive feature for ASD classification [26].

This finding underscores the potential of structural brain features as diagnostic

biomarkers. In parallel, Heinsfeld et al. examined functional communication patterns

derived from brain imaging and identified neural structures that differed significantly

between ASD and typically developing individuals [27]. These contributions highlight

how combining structural and functional information deepens our understanding of the

neurobiological basis of DD, offering a more comprehensive view of how brain

organization correlates with developmental outcomes. Such insights support the

development of diagnostic models that are not only statistically robust but also

biologically meaningful.

More recent advances have focused on the refinement of classification algorithms to

improve both sensitivity and specificity, particularly in clinical settings where

diagnostic precision is paramount. Bone et al. developed highly adaptable algorithms

that outperformed existing methods by enabling separate optimization of sensitivity and

specificity [28]. Their models, which analyzed data from standardized diagnostic

instruments such as the Autism Diagnostic Interview-Revised (ADI-R) and the Social

Responsiveness Scale (SRS), demonstrated strong potential for clinical application.

Similarly, Jin et al. applied multi-kernel support vector machine (SVM) methods to
12
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classify infants at high risk for ASD as early as six months of age, integrating features

related to white matter tracts and whole-brain connectivity [29]. Their approach

outperformed single-scale network models, demonstrating the feasibility of early risk

prediction using ML. Expanding beyond ASD, Kim et al. reported that SVM could

outperform conventional statistical models in predicting the prognosis of Class III

malocclusion, demonstrating the broader applicability of ML techniques beyond

neurodevelopmental conditions [30]. Collectively, these advancements reflect

significant methodological progress, showcasing how improvements in model

architecture and feature engineering can translate into clinically relevant diagnostic

tools.

However, despite these promising developments, the literature reveals several critical

limitations that hinder the widespread clinical adoption of existing ML-based DD

classification approaches. A recurring challenge is the heavy reliance on diagnostic

symptom data and specialized biomarkers. Many models are built on features derived

from neuroimaging, standardized behavioral scales, or electrophysiological signals—

data sources that are often expensive, time-consuming, and difficult to obtain in routine

clinical practice. For instance, MRI and fMRI acquisitions require costly infrastructure,

trained personnel, and complex preprocessing pipelines, all of which contribute to
13
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substantial financial and logistical barriers. Moreover, such studies typically involve

small, highly controlled samples, raising concerns about their generalizability to broader

populations. This dependency on specialized diagnostic data can significantly limit the

scalability and practicality of ML models, particularly in community-based healthcare

settings where resources are constrained and large-scale screening is necessary.

Another major limitation concerns the temporal dimension of data acquisition. Most

existing ML models rely on retrospective datasets, which means that predictions are

often made after clinical symptoms have already emerged. As a result, these models are

less effective in supporting proactive decision-making or early intervention strategies,

which are crucial for improving long-term developmental outcomes. The time-intensive

nature of data collection—especially in neuroimaging-based studies—also delays the

deployment of ML tools in real-world settings. This is a significant drawback given that

early intervention has consistently been shown to improve developmental trajectories

and functional outcomes in children with DD. The gap between the timing of symptom

onset and the availability of predictive information remains one of the most pressing

challenges in the field.

14
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Data availability and quality also pose significant challenges. Because many ML

models depend on high-quality imaging or diagnostic data, they may not perform well

in real-world clinical environments where data are heterogeneous, incomplete, or noisy.

Moreover, behavioral assessments often rely on subjective caregiver reports, which can

introduce cultural and reporting biases. These limitations collectively reduce the

reliability, reproducibility, and clinical utility of many existing ML-based approaches

[31-34]. Even when high classification accuracy is achieved in controlled research

settings, translating these models into clinical workflows remains difficult due to cost,

complexity, and data availability constraints.

A deeper examination of previous research further reveals that methodological

differences among machine learning approaches significantly influence their clinical

applicability and predictive power. For instance, classical algorithms such as LDA and

K-NN [21] laid the groundwork for early classification efforts by demonstrating the

feasibility of computational diagnosis based on behavioral data. However, their

relatively limited capacity to capture nonlinear patterns and complex feature interactions

restricted their predictive accuracy. Ensemble methods such as random forests (RF) [22]

improved upon these limitations by integrating multiple decision trees and leveraging

feature importance measures, leading to more robust classification outcomes.

15
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Nonetheless, even these methods remained constrained by their dependence on well-

curated datasets and their inability to dynamically adapt to heterogeneous, real-world

clinical inputs.

The integration of neuroimaging into ML models [23-25] represented a major

methodological leap, offering biologically grounded insights and improving

classification precision. Dvornek et al. [23] demonstrated that the inclusion of rs-fMRI

data with phenotypic variables significantly enhanced the discriminative performance of

deep learning models, illustrating the power of multimodal feature fusion. Liao et al.

[24] expanded on this approach by using community structure analysis to better capture

the topological organization of neural networks, yielding superior accuracy compared to

conventional classifiers. Dekhil et al. [25] further advanced this paradigm by combining

sMRI and fMRI data, demonstrating that structural and functional features jointly

provide a richer and more nuanced representation of developmental disorders. These

contributions underscore the potential of imaging-based features to elucidate the

neurobiological underpinnings of ASD and DD. However, they also illustrate a critical

trade-off: as model complexity and predictive accuracy increase, so too do the cost,

computational requirements, and barriers to clinical implementation.
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Further methodological innovations explored structural and functional metrics derived

from cortical measures and brain communication patterns [26,27]. Surface-based

morphometry studies, such as those conducted by Jiao et al. [26], identified cortical

thickness as a key biomarker, while functional connectivity analyses by Heinsfeld et al.

[27] provided insights into altered network dynamics in ASD populations. These studies

not only advanced the field’s understanding of neurodevelopmental pathology but also

demonstrated that ML can effectively detect subtle, spatially distributed neural

differences. Yet, the need for high-resolution imaging data and specialized analytical

workflows remains a significant limitation, reducing the feasibility of deploying such

models outside of well-equipped research institutions.

The development of more sophisticated algorithms aimed to overcome some of these

limitations by increasing diagnostic sensitivity and specificity. Bone et al. [28] designed

algorithms capable of weighting sensitivity and specificity independently, which is

particularly valuable for clinical contexts where false negatives or false positives carry

significant consequences. Jin et al. [29] extended these advances by demonstrating that

multi-kernel SVM could classify high-risk infants as early as six months, thereby

showing that ML has the potential to identify developmental vulnerabilities long before

traditional diagnostic criteria can be applied. Kim et al. [30] further confirmed the
17
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clinical utility of SVM in non-neurodevelopmental contexts, such as orthodontic

prognosis, reinforcing the adaptability of these methods to a range of predictive

healthcare applications. Despite these advances, the cost and time required to collect

and process imaging data, coupled with the limited availability of longitudinal datasets,

continue to impede large-scale clinical adoption.

A comparative synthesis of the studies summarized in Table 1 illustrates both the

progress and the persistent challenges in ML-based DD classification. Classical

classifiers (e.g., LDA, K-NN) demonstrated feasibility but were limited in handling

complex data [21]. Ensemble methods (RF, GBM) improved predictive power but still

required carefully engineered features [22]. Deep learning approaches significantly

enhanced classification performance when combined with phenotypic and imaging data

[23,24], while multimodal integration yielded the highest accuracies by leveraging

complementary structural and functional features [25]. Surface-based morphometry and

connectivity analyses enriched the interpretability of models and deepened the

understanding of disease mechanisms [26,27]. More advanced classifiers, such as multi-

kernel SVM and specialized ensemble algorithms, demonstrated potential for early

detection and high-risk screening [28,29]. Yet, across all these methodologies, a

common challenge persists: the reliance on expensive, specialized, and time-consuming
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data collection processes, as well as the limited scalability of models to real-world

healthcare settings.

Table 1. A summary of the existing machine learning based predictors for

identifying patients who may develop DD.

Classifier Used Modality Number Features Performance Contribution / Key Insight

of
Subjects

RF, GEM [7] MRI 876 (417 White matter, gray matter, RF ACC= Pioneered the use of neuroanatomical MRI features to
ASD. 459 CSF, total intracranial 60%% classify developmental delay, establishing early
D) volume evidence for the potential of brain structural

biomarkers despite limited accuracy.

LDA, K-NN Questionnaire 292 (141 19 behavioral K-NNAUC  Demonstrated the fieasibility of low-cost,

[21] ASD. 151 attributes/questions =61% questionnaire-based screening, revealing early-stage
Non-ASD, predictive potential and emphasizing the need for
4-11 Yrs) richer feature sets.

NB, K-NN, Questionnaire 244 21 behavioral RF ACC = Highlighted the significant impact of classifier

REFN, RF [12] attributes/questions D6.4% selection, showing that enzemble methods like RF

enhance specificity even with non-clinical behavioral
data_

NN [23] rsfMRT 1100 (329 Phenotypic features (age, DNN ACC = Combined resting-state fMRI and phenotypic data to
ASD, 371 sex, handedness, IQ, eye T0.1% improve classification accuracy, illustrating the added
controls) status) wvalue of integrating neuroimaging with demographic

variables.

Deep Learning  rsfMRIT Group I: INMI matrix, Pearson NMIACC= Advanced the application of deep leaming to

[24] 38; Group correlation matrix 59.09% correlation-based connectivity features, highlighting
I 110; both the promise and challenges of dataset variability.
Group III:

35

MDN [25] sMEI, fMRI 47 (22 Cerebral cortex, white MDN ACC = Introduced a multimodal fusion approach combining
ASD, 25 matter volumes 24.7% structural and functional MET significantly enhancing
cottrols) performance and demonstrating complementary

feature synerzy.

SVML FT,LMT MRI 38 (22 Cortical thickness, FT/LMT Employed detailed cortical morphometry to improve

[26] AED. 16 curvature metrics, folding ACC=76%  model interpretability and classification accuracy.
cottrols) indices contributing to refined neuroimaging feature

engineering.

DNN, SVM.RF rsMRI sMRI = 1035 (305 Phenotypic features (age, DNN ACC = Demonstrated the superiority of deep learning over

27 ASD, 330 sex, handedness, IQ, eve T0% classical models for complex, multi-modal feature
comtrols) statue) sets, underscoring the value of data integration.

MLCV, SVM Questionnaire 1726 Correlation-bazed features MLCWV ACC  Achieved high predictive accuracy using advanced

[28] (1264 =§9.2% correlation-bazed feature engineering, proving that
ASD, 462 well-designed feature extraction can offset modality
non-ASD) limitations.

SVM [29] MERI 20 (40 Multizcale connectivity SVM ACC = Focused on early detection in high-risk infants,
high-rislk network Tav revealing the potential of functional connectivity
infants, 40 markers for pre-symptomatic identification of
low-rigk) developmental risk.

Abb linear di reis (LDA), mixh ity network (MDI), naive bayes (WB), k-nearest neighbor (KNI, radial basis fimetion

(RBF), gradient boosting model (GBM) lized mutuzl i ton (M), resting-state | magne=t maging (r=RI), structoral

MRI (sMRI), functional MRI (MRI), desp neural network (DNN), random forest (RF), finctional tree (FT), machine leaming (ML), logistic model tree
(LMT), accnracy (ACC) and area under curve (AUC).

The limitations of existing approaches have important implications for early

intervention, which remains the most effective strategy for improving long-term

outcomes in children with developmental delays. Early intervention can significantly
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enhance cognitive, social, and behavioral development, but its success depends on the

timely identification of children at risk. Unfortunately, the reliance on post-symptomatic

diagnostic data, costly imaging techniques, and complex modeling workflows delays

the point of identification, reducing the window of opportunity for early support.

Furthermore, the resource-intensive nature of these approaches restricts their

deployment to specialized research or tertiary care centers, leaving many children—

particularly those in underserved regions—without access to early diagnostic services.

These systemic barriers highlight the urgent need for predictive models that are not only

accurate but also cost-effective, scalable, and easily integrated into routine clinical

workflows.

It is within this context that the present study proposes an innovative approach centered

on therapy utilization—specifically, the frequency of physical, occupational, and speech

therapy sessions—as a predictive feature for DD classification and outcome prediction.

This paradigm shift addresses several of the key limitations identified in the literature.

First, therapy frequency is a readily available and routinely collected clinical variable,

requiring no specialized equipment, imaging resources, or additional financial

investment. Second, because therapy utilization directly reflects both the severity of a

child’s developmental condition and their responsiveness to intervention, it serves as a
20
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meaningful proxy for underlying developmental trajectories. Third, leveraging such data

allows predictive models to be applied across diverse healthcare settings, including

primary care and community-based programs, thereby increasing their accessibility and

public health impact.

The potential advantages of this approach extend beyond scalability and cost-

effectiveness. By transforming therapy frequency into a predictive feature, ML models

can not only identify at-risk children earlier but also guide personalized treatment

planning. For example, patterns of therapy utilization may reveal which children are

likely to respond to standard intervention protocols and which may require more

intensive or specialized support. Additionally, because therapy frequency is a

modifiable variable, predictive models based on this feature have the potential to inform

real-time clinical decision-making—enabling practitioners to adjust therapy plans

dynamically in response to predicted outcomes. This feedback loop between prediction

and intervention represents a significant advancement over existing ML frameworks,

which are primarily diagnostic rather than prescriptive in nature.

In summary, a comprehensive review of the literature reveals significant progress in the

application of machine learning to the classification and prediction of developmental
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disorders. Studies employing a variety of algorithms—from classical classifiers to deep

learning and multimodal approaches—have demonstrated the feasibility and potential of

ML in enhancing diagnostic precision [21-30]. However, the widespread adoption of

these methods remains constrained by high costs, time-consuming data acquisition

processes, and limited scalability [31-34]. These challenges underscore the need for

innovative solutions that bridge the gap between methodological sophistication and

clinical feasibility. The present study responds to this need by proposing a novel, low-

cost, and scalable predictive framework based on therapy utilization data. By exploiting

information that is already collected in routine clinical practice, this approach offers a

practical pathway toward early detection, individualized intervention planning, and

improved developmental outcomes. Ultimately, this strategy holds the potential to

transform ML-based DD classification from a research-oriented endeavor into a widely

deployable clinical tool, enabling more timely and effective support for children at risk

of developmental delay.
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Chapter III Methods

3-1. Data collection and outcome measurement

In the present study, all patients included in the clinical group were previously given a
diagnosis based on the criteria established in the Diagnostic and Statistical Manual of
Mental Disorders-V-TR (DSM-5-TR) [35-36]. For example, the DSM-5-TR defines
autism spectrum disorder (ASD) as involving persistent deficits in social
communication across multiple environments, as outlined in the relevant diagnostic
criterion. Assessments of comorbid psychiatric diagnoses and the development of
treatment plans were completed by board-certified child psychiatrists. The main
caregivers of the included participants received assistance from rehabilitation therapists
with gathering sociodemographic and rehabilitation-clinical information and completing
several forms.

Assessments of DD symptoms were conducted by a rehabilitation physician who used
the Rehabilitation Developmental Evaluation Form. In the outpatient department (OPD)
of the study hospital, children with DD or child-and-adolescent psychiatry patients
typically received rehabilitation therapy, and a structured data form was used to update
their medical service records, which included information pertaining to the frequencies

of occupational therapy services (OTS), physical therapy services (PTS), and
23
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speech therapy services (STS). The dataset used in this study comprised the medical

records of the outpatients who visited the rehabilitation clinic of the study hospital with

suspected DD between January 1, 2012, and December 31, 2016. The Institutional

Review Board of En Chu Kong Hospital reviewed the above documents and approved

the study on 2024/07/23 (ECK-IRB Number: ECKIRB1130501). This approval is valid

until 2025/07/22. To protect patient information and confidentiality, no subject names

were collected. Each patient was assigned an anonymized study ID. The International

Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes were

used to define DD. The patients’ records extracted from the dataset included age, sex,

and the frequencies of OTS, PTS, and STS received. Specific DD problems and

disabilities were determined using a comprehensive literature review and after a

consensus was reached by rehabilitation physicians and child psychiatry specialists. The

International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-

CM) codes were used to identify various types of DD [37-39]. Figure 1. illustrates the

participant selection process as a flow diagram. This study identified 2,552 outpatients

under 12 years of age who made one or more OPD visits. Among these patients, 1,719

(67.4%) had DD. The total number of OPD visits was 34,862. Table 2. presents the

demographic and clinical characteristics of the patients with DD. Because of the
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hospital’s strict documentation flowchart, the outpatient medical records from which
our dataset was derived were highly accurate, with minimal missing data and few
unmeasured confounders.

The present study was approved by the ethics committee of En Chu Kong Hospital prior
to data collection. Informed consent was waived by the committee because of the de-

identification and non-interventional design of the present study.

Inclusion criteria:
Cases from the OPD visits dataset that were reported
between 2012 and 2016

|

Unrecognized identity, exceeding 12 years old, and

Exclusion criteria:

cases with incomplete records

1 1

34,862 cases from the OPD visits records

|

Merged the multiple records from the same patient

|

Cohort of the present study :

2,552 of cohort OPD patient records

N J N N ) N

Figure 1. Flow diagram for generating the study dataset.
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Table 2. Demographic and clinical characteristics of patients with DD (n = 2,552).

Characteristics Num. (%0) Num. (%0) Chi-squared test
P value

Developmental Delay (DD) DD Non-DD
1,719 (67.4) 833 (32.6)

Gender Men Women P=0.0017*
1,778 (69.6) 774 (30.4)

Age in months 60.5=30.7

(Mean=5D)

OTS Yes No P<0.001" "
2,152 (84.3) 400(15.7)

PTS Yes No P<0.001***
1,624 (63.6) 928 (36.3)

8TS Yes No P<0.0017%*
1570 (61.5) 982 (38.9)

NOTE. Tke p-valuas weare caleulatad based on the 32 tast of indepandance. Abbreviations: standard desiztion (SD).

3-2. Experimental procedures

The present study extracted information from OPD records, including data on
demographic characteristics, such as sex and age, and the frequencies of therapy
services used (OTS, PTS, and STS). The patients were divided into two groups, namely
a DD group and a non-DD group. Data preprocessing included removal of incomplete
records, normalization of continuous variables, and standardization of therapy
frequencies to ensure cross-patient comparability. Figure 2. presents the experimental

procedure that was employed to assess the performance of several prediction models.
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OPD visits dataset with Developmental Delay (DD)

3

~
Feature selection with Chi-square test analysis
»
[ )

|

Construction of the DT, SVM, DNN prediction
models

|

Performance evaluation based on
10-fold cross-validation

Figure 2. The experimental procedure.

3-3. Feature selection

In this study, we included four features in our dataset: sex and the frequencies of OTS,

PTS, and STS. In this respect, the frequency of a particular therapy service was defined

to be the average number of sessions received per patient per year. Then, we conducted

chi-squared tests to determine whether a feature was correlated with the outcome

variable [40—42]. For the categorical feature “sex,” we carried out the chi-squared test

of independence. For the frequencies of OTS, PTS, and STS, we performed chi-squared

tests on discretized distributions (e.g., quartiles) as a goodness-of-fit framework, with
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the null hypothesis specifying that the average frequency among patients with DD
equals that among patients without DD [43]. Additionally, logistic regression with
forward selection was employed to confirm predictor significance. Quartiles of therapy
frequency were used to estimate odds ratios (ORs). Table 3. shows the p-values
obtained from these tests. Accordingly, we included sex and the frequencies of OTS,
PTS, and STS to build the prediction models.

Table 3. Results of the feature selection by logistic regression (with odds ratios).

'-'o'ariabl&s P value OR (Q4 vs Q) 9504 CI

Gender 0.000022 1.84 1.45-2.33
0TS 0.000000 437 3.12-6.11
PTS 0.000000 [392 277533
STS | 0.000000 4.95 3.44-6.98

3-4. Development of prediction models and performance evaluation

In this study, we investigated the prediction performance of three categories of machine
learning models, namely the decision tree (DT) models [44—46], the support vector
machine (SVM) models [47], and the deep neural network (DNN) models [48]. The
DT models are preferred by many clinicians due to the explicit, human-

readable decision rules output by the algorithm. On the other hand, the SVM models
and the DNN models are two categories of the most advanced machine learning models

that can generally outperform the DT models due to the nonlinear transformations
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invoked in the prediction process. However, the same nonlinear transformations also

make it almost impossible for a user to comprehend how the prediction is made. As a

result, many clinicians are reluctant to trust the models that work like a black box.

Therefore, it is of interest to investigate how the performance of alternative categories

of machine learning models compares. If the performance of the DT models observed in

the experiments is comparable to that of the advanced machine-learning models—as

observed in our recent studies [49,50]—then DT models are favored because they

output explicit decision rules.

In order to obtain comprehensive pictures of how each category of prediction models

performed, we employed alternative parameter settings to generate prediction models

with different performance characteristics. Table 4. provides a summary of the software

packages and alternative parameter settings employed to build the prediction models.

Then, we conducted 10-fold cross-validation to evaluate the performance characteristics

of each prediction model generated [51-53]. The performance metrics considered in this

study include accuracy, sensitivity, specificity, positive predictive value (PPV; also

known as precision), and F1 score. The F1 score, which is the harmonic mean of the

sensitivity and the PPV, is commonly employed in machine-learning research and has

increasingly been employed in biomedical research [54]. Furthermore, for each category

9
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of prediction models (e.g., DT, SVM, or DNN), we evaluated overall performance

based on the area under the receiver operating characteristic (ROC) curve [55-56]. To

generate each ROC curve, we selected, at every sensitivity level, the configuration

within that model family that delivered the highest F1 score.

Table 4. Software packages and parameter settings employed to build the models.

Model| Programming Language | Package Parameters

Split="information”

Prior=0.01 ~0.9 with 0.008 step size, cp = [0.03,0.04,0.03,0.02.0.01]

Input neurons = [4] for 4 features set, Hidden neurons = [5,10,27]

Hidden layer =[3.3.9]

Kemel = [‘linear”, 'rof’,"poly”], C=[0.01,0.1,1.3,10,15,20]; gamma="autc’
Probability =True; Best for rbf-kernal (cost= 10, gamma=0.23, epsilon=0.1)

DT | Python pandas sklearn

DNN | Python Tenzor Flow

SVM | Python sklearn svm
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Chapter IV Results

The dataset comprised 2,552 children and 34,862 visits, with a mean age of 72.34
months. Gender distribution showed a higher proportion of males, consistent with prior
prevalence studies [57]. Children with DD demonstrated significantly greater utilization
of OTS, PTS, and STS compared with non-DD peers (p < 0.001) shown in Table 2.
Weighted modeling and stratified sampling approaches confirmed that this gender
imbalance did not undermine classification reliability. Sensitivity analyses excluding
age revealed minimal reduction in model accuracy, confirming therapy frequency as the
dominant predictor.

In Table 3., odds Ratios showed children with high therapy frequencies had over
fourfold increased risk of DD.

Figure 4. shows ROC curves and the corresponding areas under the curves (AUCs) of
the DT, SVM, and DNN models. Table 5. shows the detailed performance data of the
models that delivered sensitivities at the 0.80 level and at the 0.90 level. It is observed
that the DNN models and the DT models outperformed the SVM models in terms of
AUC. On the other hand, as shown in Table 5., the performance comparison showed
DT sensitivity = 0.902, PPV = (.723, and F1 = 0.803. DNN achieved higher AUC but

lower PPV, while SVM underperformed across metrics. If a high level of sensitivity is
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desirable, then the DT models significantly outperformed the DNN models and the

SVM models in terms of the F1 score, which is the harmonic mean of the sensitivity

(also called recall) and the positive predictive value (PPV, also called precision).

Based on the data shown in Table 5., it is conceivable that the DT model that delivered

the sensitivity at the 0.90 level is the favorite choice due to two reasons. Firstly, the

PPV with this particular DT model is significantly higher than the PPVs with the SVM

model and the DNN model that delivered the same level of sensitivity. Therefore, in

clinical applications, the number of false positive predicted by this DT model should be

significantly lower than the numbers of false positive predicted by the SVM model and

the DNN model with the same level of sensitivity. Secondly, the PPV with this DT

model is almost the same as the PPV with the DT model that delivered the sensitivity at

the 0.80 level. Accordingly, in the subsequent discussions, we will focus on the DT

model that delivered the sensitivity at the 0.90 level.

Figure 3. shows the structure of the DT model generated by feeding our dataset into the

software package and with cp and prior set to 0.01 and 0.55 respectively. According to

our performance evaluation, this DT model should be able to deliver a sensitivity at the

0.90 level and a PPV above 0.70. The top-down path, following the red arrows,

illustrates how the prediction for a subject with sex = female, f OTS =60, f PTS = 30,
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and f STS = 50 is made. The prediction made is positive, i.e., the subject suffers from

DD, as the path ends at a red node. On the other hand, a subject is predicted to be

negative, if the path corresponding to the subject's feature values ends at a blue node.

The “n+” and “n-* values associated with each node respectively specify the

percentages of positive subjects and negative subjects among all the subjects that meet

the criteria specified along the path to the node. In fact, a user can figure out the

probability that a subject is positive or negative by examining the n+ and n- of the leaf

node that the feature values of this subject fit into.

These results confirm therapy frequencies are strong, low-cost predictors, and that DT

combines accuracy with interpretability, making it suitable for clinical adoption.
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N=2552 Note:

subjects = 100.0% f_OTS: frequency of occupational therapy service
N*=70%N- =30%
f OTS <=40.5 f_PTS: frequency of physical therapy service

False f_STS: frequency of speech therapy service

N+: percentage of positive subjects
N- : percentage of negative subjects

subjects = 32.3%
N- =56% N*=44%
Class= No DD
f_OTS <=88.5

False
True Qse

subjects = 16.2%
N*=36 N- = 64%
Class= No DD
f_PTS <=31.5

Try \False True False
subjects = 0.4% subjects = 14.9% subjects =5.3% | subjects = 10.9%
N*=0 N*=48% N* = 8% N*=45%
N-=100% N-=52% N-=92% N- =55%
Class= No DD Class= No DD Class= No DD Class= No DD

Figure 3. The structure of the DT model generated by feeding our dataset into the
software package and with cp and prior set to 0.01 and 0.55, respectively.
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Figure 4. ROC curves of the DNN, DT, SVM models.
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Table 5. Detailed performance characteristics of alternative prediction models.

Target Sensitivity Model Accuracy | Sensitivity | Specificity Precision F1 Score
08 DT 0.650 0.802 0337 0.734 0744
SVM 0.597 0.802 0488 0.454 0.580
DNN 0.663 0.808 0587 0500 0.624
0.9 DT 0.701 0.902 0.289 0.723 0.803
SVM 0.487 0.598 0269 0393 0.548
DNN 0.616 0.904 0.464 0472 0.620
35
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Chapter V Discussion

The findings highlight therapy frequencies as clinically valuable predictors of DD.
Unlike high-cost imaging or genetic testing, therapy records are universally available in
outpatient care and can support cost-effective screening. The DT model’s explicit rules
enhance clinical trust and usability. This transparency addresses the black-box
limitations of models such as DNN, providing interpretable decision pathways that
clinicians can readily apply.

Model evaluation extended beyond conventional accuracy and AUC. The Precision-
Recall curves [58] provided insight under imbalance, while Odds Ratios linked
predictions to clinically interpretable risk. Confusion matrices further demonstrated
DT’s superior balance of true and false classifications.

Bias due to male predominance was addressed by weighted modeling, confirming DT
stability. Excluding age did not compromise performance, underscoring therapy
frequency as the dominant predictor. Future incorporation of high-dimensional features
may improve precision but could reduce interpretability.

In this study, we have investigated how the frequencies of therapies can be exploited to
build machine learning based prediction models for identifying children with

development delay. Based on the experimental results observed, it is conceivable that

36
doi:10.6342/NTU202504505



the proposed approach can be widely exploited in clinical practices due to several

reasons. Firstly, the performance observed with the prediction models developed in this

study should meet the criteria acceptable by most physicians. For example, based on our

experimental results, we can anticipate that the DT model shown in Table 5. can

identify about 90.0% of the subjects who will develop DD in the future, while about

72% of the subjects predicted to be positive are actually true positives. Secondly, the

features employed to build the prediction models can be obtained with essentially no

costs. Therefore, the prediction models can be exploited to screen the subjects who may

develop DD before advanced and costly diagnoses are carried out.

The experimental results also demonstrate that for the applications targeted by this

study we do not need to trade performance for the interpretability of the prediction

model. The F1 scores presented in Table 5. show that the DT models that delivered the

sensitivity at the 0.90 level and at the 0.80 level outperformed the DNN models and the

SVM model that delivered the sensitivity at the same level. For most applications, it is

typical that advanced machine learning based prediction models such as the DNN

models and the SVM models outperform the DT models due to the non-linear

transformations invoked. However, the non-linear transformations invoked also make it

almost impossible for a user to figure out how the prediction is made. Fortunately, for
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our applications, we do not need to trade performance for the interpretability of the

prediction model.

The DT structure shown in Figure 3 illustrates how a user can examine the structure to

figure out the decision rules followed by the prediction model to make predictions.

Furthermore, the ratio of between the number of positive subjects and the number of

negative subjects at each leaf node specifies how likely a subject that meets the criteria

corresponding to the path to this particular leaf node develops DD. For example, the

probability that the subject with sex = female, f OTS =60, f PTS =30, and f STS =50

develops DD is 0.73. In clinical practice, a physician can refer to this specific

probability and his/her clinical experiences to make the final diagnosis.

In summary, the major finding due to this study is that the frequencies of the therapies

that a child has received provide valuable information for predicting whether the child

suffers from DD. Due to the performance observed in the experiments and the fact that

these features can be obtained essentially without any cost, it is conceivable that the

prediction models built accordingly can be wide exploited in clinical practices and

significantly improve the treatment outcomes of the children who develop DD. Though

the study was based on a dataset collected in a hospital in Taiwan, we anticipate that the
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proposed method can be exploited to build accurate prediction models for populations

in different countries with various race groups.

Limitations

Several limitations of this study should be noted. Firstly, this retrospective study relies

on data extracted from the outpatient (OPD) database with children under 12 years old.

Consequently, the findings may not be generalized for the other age groups. Secondly,

the prediction models developed were solely based on the data collected from a hospital

in Taiwan and its applicability to other hospitals has not been validated. Thirdly, the

dataset employed in this study was derived from the clinical records in the OPD and

therefore these patients were likely to already have DD conditions. Fourth, the restricted

feature set limited granularity. Only therapy

frequencies, sex, and age were included; important factors such as comorbidities,

socioeconomic variables, family history, and longitudinal clinical data were unavailable.

Fifth, despite the DT achieving a sensitivity of approximately 90%, around 10% of DD

cases were misclassified as false negatives. This limitation is clinically significant, as it

could delay recognition and treatment for a subset of children. Finally, it is observed

that there were significantly more male patients than the female patients, which
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conforms with previous findings [59,60]. Therefore, stratified sampling based on gender

was not carried out.

Limitations include reliance on a single hospital dataset and retrospective design. Future

validation across hospitals and countries is necessary to enhance generalizability

[61,62]. The use of ICD-9-CM and ICD-10-CM coding ensures compatibility, but

variability in clinical documentation must still be considered.

Ethical considerations include safeguarding patient privacy, ensuring transparent

predictive processes, and establishing follow-up protocols for the ~10% of cases

potentially missed by the model. Multi-stakeholder collaboration among clinicians, data

scientists, and policymakers will be vital for responsible integration.
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Chapter VI Conclusion

This study demonstrates that therapy utilization frequencies—specifically occupational,
physical, and speech therapies—are powerful, low-cost predictors of DD. The findings
confirm that routinely collected rehabilitation data can serve as pragmatic indicators for
scalable early screening, offering a cost-effective alternative to resource-intensive
diagnostic modalities.

Among the models evaluated, the DT consistently achieved a clinically meaningful
balance of sensitivity and positive predictive value, while also providing interpretability
that is essential for clinical adoption. The transparent decision rules embedded in DT
structures allow physicians to integrate computational outputs with their clinical
expertise, thereby supporting diagnostic reasoning and therapeutic planning. Compared
with more complex models such as the SVM and DNN, the DT demonstrated superior
clinical usability despite similar or slightly lower discriminative performance.

By showing that low-cost, readily available clinical features can be effectively
translated into interpretable ML models, this dissertation establishes a foundation for
scalable ML-based DD screening systems. Such systems have the potential to

complement, rather than replace, clinical expertise, enabling earlier detection, reducing
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diagnostic delays, and ultimately improving developmental outcomes in pediatric

populations.
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Chapter VII Future works

Future research should pursue both methodological and clinical advancements to

enhance the robustness, interpretability, and applicability of ML-based DD screening.

1. Methodological Enhancements

Ensemble approaches such as Extreme Gradient Boosting (XGBoost) [63,64] and
Random Forests should be investigated, given their robustness against noisy data and
capacity to capture complex non-linear interactions. Standardized benchmarking
frameworks are also necessary, comparing ML algorithms not only against one another
but also against established diagnostic standards such as DSM-5—based developmental
assessments. Such comparisons would provide stronger evidence of the incremental

value of ML approaches over current clinical practice.

2. Expansion of Predictive Features

While this study validated therapy frequencies, age, and sex as effective predictors,
expanding the feature set could substantially improve predictive power. Potential
additions include comorbidity profiles, hospitalization and medication history,
socioeconomic variables, and longitudinal developmental records. Incorporating ICD-9-

CM and ICD-10-CM subcategories (e.g., FS0—F89 neurodevelopmental disorders, G80
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cerebral palsy, R62 developmental delay) would enable subtype-level classification.
Such integration also improves interoperability with electronic health record systems,

facilitating adoption in clinical workflows.

3. Multimodal Predictive Frameworks

Future studies should explore hybrid models that combine routine clinical metadata with
high-dimensional modalities such as EEG, neuroimaging, and genetic features. These
multimodal approaches could balance feasibility with diagnostic precision, particularly

in tertiary care or research settings where advanced diagnostic resources are available.

4. Evaluation Strategies

Performance evaluation should move beyond ROC curves alone. Precision—Recall (PR)
curves offer superior insight into imbalanced datasets, while odds ratios contextualize

model outputs in epidemiological terms familiar to clinicians. Establishing standardized
evaluation metrics will improve methodological rigor and clinical interpretability across

future studies.

5. Addressing False Negatives

Although the DT model achieved ~90% sensitivity, approximately one in ten cases

remained undetected. This limitation could be mitigated through ensemble modeling,
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richer feature integration, and structured re-screening protocols. For example, children
initially classified as non-DD but who continue to receive high-frequency therapy could
be flagged for follow-up evaluation. Such safeguards are critical to reducing missed

diagnoses and preventing delays in intervention.

6. Age-Specific Therapy Patterns

A particularly valuable research direction is the investigation of associations between
therapy frequency and age. Identifying whether therapy utilization peaks within specific
developmental stages may provide empirical support for the principle of early
intervention. Furthermore, analyzing the age at diagnosis, therapy types received, and
the period of highest therapy concentration could refine understanding of the critical

timeframe for intervention.

7. Validation and Generalizability

Prospective, multicenter, and cross-national validation is essential to confirm
generalizability. Differences in healthcare systems, cultural contexts, and access to
therapy must be considered. Cross-institutional collaborations will help prevent
overfitting to local patterns and ensure equitable applicability of ML-based DD

screening tools worldwide.
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8. Ethical and Clinical Integration

Future implementations must prioritize ethical safeguards. Clinical integration should
include structured protocols for follow-up of false negatives, safeguards for patient
privacy, and mechanisms to monitor model drift as therapy practices evolve. Advances
in explainable Al frameworks may further refine interpretability, ensuring that

predictive systems complement—rather than replace—clinical expertise.

Summary

By advancing methodological rigor, expanding feature sets, integrating multimodal
data, and embedding ethical safeguards, future research can establish ML-based DD

screening as both a responsible and transformative tool in pediatric healthcare.
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