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ABSTRACT

Synthetic Aperture Radar (SAR) imagery inherently suffers from multiplicative speckle
noise, which significantly deteriorates image quality and complicates subsequent analysis
tasks. Conventional denoising approaches typically overlook critical structural and
textural details, while prevalent noise estimation techniques are constrained by
oversimplified parametric assumptions, leading to suboptimal accuracy in complex SAR

Scences.

This study presents a robust framework for SAR speckle noise estimation and suppression,
integrating Bayesian Nonlocal Means (BNLM) filtering with sketch-based geometric
priors. In the noise estimation phase, a combination of Discrete Wavelet Transform
(DWT), adaptive local variance estimation, and polynomial regression markedly reduces

the estimation error to approximately 2.66%, surpassing conventional methodologies.

For noise suppression, the proposed enhanced BNLM method incorporates a Wiener
filter-based prior to accurately model local variance and employs an anisotropic Gaussian
kernel driven by geometric structural cues. Empirical evaluations utilizing public SAR
datasets demonstrate substantial enhancements in Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM), and computational efficiency, underscoring

the method's applicability for real-time satellite imagery processing.

Keywords: Synthetic Aperture Radar, speckle noise, Bayesian Nonlocal Means, noise

estimation, structural priors.
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Chapter 1 Introduction

Synthetic Aperture Radar (SAR) imagery plays a vital role in remote sensing due to its
ability to capture high-resolution data regardless of weather or lighting conditions.
However, the inherent presence of speckle noise, originating from the coherent nature of
radar signal reflection, severely degrades image quality, complicating tasks such as
segmentation, classification, and object detection. Unlike additive Gaussian noise,
speckle noise is multiplicative and signal-dependent, rendering conventional denoising

techniques suboptimal for SAR applications.

To tackle this challenge, both speckle noise estimation and suppression must be addressed
in a targeted, structure-aware manner. Accurate noise estimation serves as a cornerstone
for adaptive filtering, yet existing approaches often rely on strong assumptions (e.g., local
homogeneity or predefined distributions), which fail in heterogeneous or highly textured
regions. Classical filters such as Lee and Frost provide efficient noise suppression but
tend to oversmooth fine details and assume stationary statistics, limiting their

performance in real-world SAR scenarios.

Recent advances in transform-domain processing and nonlocal methods have
demonstrated improved performance by exploiting patch redundancy and multiscale
decomposition. BM3D-based extensions and Bayesian nonlocal means (BNLM) filters
exemplify this trend, but they either suffer from high computational complexity or lack
structural adaptivity. Moreover, the reliance on noisy patches as priors introduces bias,

particularly when structure and texture vary rapidly across the image.

doi:10.6342/NTU202502541



In this thesis, we propose an integrated framework for efficient speckle noise estimation
and suppression, tailored for SAR imagery. The first stage introduces a novel log-DWT-
based local variance estimation strategy, refined via polynomial regression to robustly
capture noise statistics across diverse scenes. The second stage enhances the BNLM filter
through two key contributions: a Wiener-based prior estimator and a sketch-based

structural prior, both designed to improve denoising accuracy and edge preservation.

Extensive experiments on the publicly available RadarS SAR airport dataset confirm the
superiority of our approach. The proposed method not only achieves significantly lower
estimation error (average 2.66%) compared to state-of-the-art estimators (e.g., Gaussian-
Hermite and GGD-based methods), but also demonstrates notable improvements in
PSNR and SSIM for despeckling, while maintaining practical runtime performance. This
work thus contributes a scalable and structure-aware solution for SAR image analysis,
with promising applications in real-time remote sensing and downstream computer vision

tasks.
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Chapter 2 Related Work

2.1 Noise Estimation

2.1.1 Estimation Using Bessel K-form PDF[15]

A significant contribution to statistical modeling of speckle noise is presented by Achim
et al., who proposed using the Bessel K-form (BKF) probability density function to model
log-transformed speckle noise coefficients in transform domains such as wavelet and
Curvelet. Unlike traditional Gaussian or Laplacian assumptions, BKF effectively captures
the heavy-tailed behavior of speckle noise, particularly in high-frequency subbands. The

BKF PDF is defined as

1 - 2
Sx (x,p,c) = J;F(p)c(zp+1)/4 |x|p - K, (\/;MJ 2.1)

where

I'(p) is the Gamma function,

K, (-) is the modified Bessel function of the second kind,
p is the shape parameter,

c 1is the scale parameter.

Special cases:

p = 1: reduces to Laplacian distribution,

p — oo: approximates Gaussian distribution,

p < 1: exhibits sharper peak and heavier tails.

To estimate these parameters, the authors initially proposed a moment-based estimator

using the kurtosis f and variance 62 of log-domain coefficients:
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However, to improve robustness, they developed a maximum likelihood estimation (MLE)
framework based on the log-likelihood function of the BKF. Given samples {x;}/-,, the

log-likelihood function is:
L(p,c) = Zlan (x[,p,c)
- 2.3)
:n(lln2—Elnc—lnl"(p)j+(p—ljiln|x.|+ian \/§|x|
2 2 2)5 T g e (Ne

2
By setting partial derivatives with respect to p and c¢ to zero, two nonlinear equations
are obtained. The paper solves them numerically using the secant method to obtain p

and ¢.

The BKF model was empirically validated using Kolmogorov—Smirnov tests on real
ultrasound images. Results demonstrated that BKF significantly outperformed Gaussian
and Normal Inverse Gaussian models in both wavelet and Curvelet domains, achieving

the lowest KS distances and most consistent alignment in PP-plots.

This approach provides a more accurate statistical description of speckle noise in
transform domains and is particularly relevant for our work, where precise modeling of
the noise distribution is critical for effective noise variance estimation and subsequent

denoising performance.

2.1.2 Estimation Using Generalized Gamma Distribution[16]

It is widely accepted that the observed intensity of an L-look SAR image conditioned on

the underlying reflectivity is gamma distributed:
4
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P(F|1)=GJL I{V (LLI) exp(—%j (2.4)

Under this model, the multiplicative noise is also gamma distributed.

However, such an assumption imposes restrictive constraints, particularly in
heterogeneous or highly textured areas. To address this limitation, recent work has
proposed adopting the Generalized Gamma Distribution (GGD) as a more flexible

statistical model for speckle noise. The GGD is a three-parameter distribution defined as:

f(xa,p,B)=—L—x! exp{—(%} } x>0 (2.5)
‘)

ﬂ“r[“
where @ > 0 and p > 0 are shape parameters, and f > 0 is a scale parameter. This
formulation includes the exponential(a¢ = p = 1), gamma(p = 1) and Weibull(a = 1)
distributions as special cases, making it a unifying framework for speckle modeling.
The first- and second-order moments of a GGD random variable X~GG(a,p,[) are

derived using the generalized moment ratio:

r(oﬁkj
G =P (2.6)

which leads to the expressions E[x] = 8- Gy, Var[x] = B2(G, — G,%)

Parameter estimation for the GGD is performed via Maximum Likelihood Estimation

(MLE). Given samples {x;}/-,, the log-likelihood function is:

InL(e,p,p)= nlnp—nalnﬁ—nlnl“[gj+(a—1)zn:1nxl. _Z”:[%j 2.7)
p i=1

i=l1
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This leads to a set of nonlinear equations in «, p, 5, which are solved numerically.

Experimental validation in the referenced study was conducted using a high-resolution
Ku-band SAR image divided into six homogeneous regions. The fit quality of GGD was
compared against gamma, Weibull, and log-normal models using a chi-square goodness-
of-fit test. The results consistently favored the GGD in terms of lower chi-square statistics,

confirming its superior adaptability in modeling SAR speckle across diverse textures.

2.1.3 Estimation Based on Gaussian-Hermite Moments[17]

Ma et al. propose to exploit orthogonal Gaussian—Hermite moments to quantify speckle

noise intensity in images. A 2D Gaussian smoothing kernel

exp(— x +y2j (2.8)

207

G(xy)=7—

is paired with Hermite polynomials H,(t), defined by

H, (t) = (—1) e Y e (2.9)

to form the 2D Gaussian—Hermite moment of order (p, q):

(o} (o}

M, =[[1(x.y)G(x.y)H, (ijﬂq (l]dxdy 2.10)

Here I(x,y) is the image intensity.

From these moments, the authors select four orders, (1,0),(0,1), (3,0),(0,3), to form at

each pixel (x,y) a feature vector
T
f(x’y)z[WloMlo’W01M01>W30M30aW03M03] (2.11)

where wp, are weights to balance sensitivity to horizontal (Mo, M3,) and vertical

6
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(M1, My3) structures. Empirically, when speckle of variance o2 1is added to a
homogeneous image of gray level g;, the distribution of these feature vectors forms a
roughly circular cluster centered at the origin, whose radius grows with noise intensity

and with g;.

To capture dispersion of the cluster, a noise characteristic value M,,, is defined as the

average radial distance:
1 N
M, =27 (o) (2.12)
i=1 1

where N is the number of pixels in the selected region.

By synthetically varying ¢ on a uniform image of g; = 50, the authors record pairs
(Myy,0%) and fit a fourth-order polynomial o2 = 0.0013x* —0.1269x3 +

0.8903x2 — 10.896x + 321.468 for x = M.

This method is notable for requiring no a priori statistical model of the scene beyond a
small homogeneous patch, and for its computational efficiency compared to exhaustive

matching or sliding-window filters.

2.2 Noise Removal

2.2.1 Lee Filter[11]

Lee (1980) proposed a class of non-recursive, pixel-wise enhancement and denoising
algorithms based on local statistics (local mean and variance). The methods are

computationally simple, well-suited for real-time and parallel hardware implementation.
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Given an input image X, for a pixel x;;, the local statistics are computed over a

l] >
neighborhood window (2n+ 1) X (2Zm + 1) as

1 i+tn jtm

Hos = (2n+1)(2m+l)k;nl§mxk’l €9
i+n /+m
2 p—
’ v (2n+l 2m+1 kZﬂlZm(XkI /Jl /) (214)

where y;; and al denote the local mean and variance respectively.

Lee proposed a simplified gain-based method:
Vi =t +k(x,—u,), k20 (2.15)

when k > 1 means high pass sharpening, 0 < k <1 means smoothing and k =0

means local averaging.

Multiplicative noise in this paper is modeled as:
2z, =% M, E[u]=pn,, Var(u)=o’, (2.16)
By Taylor expansion and local linearization, the model becomes:

)Aci,j =4 ;T Ki,j (Zi,j - :uu:ui,_/)
2 2
o’ 1, (2.17)

2 2 2 2
o i,jlu u +o ulu i,j

This adaptive formulation enables per-pixel denoising while respecting spatial variations

in both signal and noise.

Despite its efficiency and widespread use in speckle noise reduction, the Lee filter suffers
from several critical limitations. Its reliance on fixed-size local windows often leads to

over smoothing around edges and fine structures, especially in heterogeneous regions.
8
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Moreover, it assumes local stationarity within each window, which fails near sharp
transitions, causing either noise residuals or structural blurring. Additionally, the filter
ignores non-local redundancies and requires manual or global noise variance estimation,
which limits adaptability to spatially varying noise. These shortcomings motivate the
need for more adaptive and structure-preserving denoising frameworks, particularly those
that incorporate non-local similarity, automatic noise estimation, and enhanced filtering

control to better balance noise suppression and detail preservation.

2.2.2  Frost Filter[12][13]

Frost et al. (1982) derives a statistical model for coherent radar imagery, showing that the
observed intensity is degraded by multiplicative speckle noise. Under the assumption of
local stationarity, they derive a minimum-mean-square-error(MMSE) spatial filter M (f)

in the frequency domain:

CS(NHH(f) 1 :
S s o st 19
5.(/)

where S, and S,, are the power spectral densities of r and n, respectively, and H* is
the complex conjugate of the system transfer function. Assuming an autoregressive model
for r with variance ¢ and correlation length [, and a white-chi-square model for n

with variance o2, they obtain in the spatial domain an exponential (Frost) kernel:

2 2
m(x,y):KOexp(—a\/x2+y2), a= /U;_;;Z +% (2.19)

Here a is adapted at each pixel via local estimates of the sample mean [ and variance

6%. This “Adaptive Frost” filter yields minimum-MSE smoothing in homogeneous
regions while automatically narrowing its footprint near edges to preserve structure.

9
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Although the MMSE-derived Frost filter effectively suppresses speckle while preserving
edges, several weaknesses remain. First, the filter relies on a fixed, isotropic window size
and cannot simultaneously adapt to both large homogeneous regions and fine-scale details,
often over-smoothing small features or under-filtering broad areas. Second, it assumes
locally Gaussian backscatter and chi-square noise statistics, assumptions that break down
in highly textured, multi-class, or non-Gaussian scenes, leading to biased estimates. Third,
the exponential weighting kernel does not explicitly account for edge orientation or sub-
pixel geometry, so it can blur along strong contours or introduce directional artifacts when
edges change rapidly. Fourth, because it operates purely in the single-scale spatial domain,
it lacks the ability to distinguish high-frequency speckle from genuine fine details,
limiting its fidelity on multi-scale textures. Finally, the need to estimate local mean and
variance at every pixel and compute an adaptive exponential weight, which imposes a
significant computational burden, hindering real-time or large-scale applications.
Addressing these issues may require adaptive, multi-scale frameworks and data-driven
statistical models that better capture the nonstationary, anisotropic characteristics of real-

world SAR imagery.

2.2.3 SAR-BM3D [9][10]

Despite the recent surge in deep learning methods, BM3D (Block Matching and 3D
Filtering) remains a cornerstone in traditional image denoising due to its non-local,
adaptive, and transform-based design. It is particularly effective for Gaussian noise

removal and has even been extended to tasks such as non-blind deblurring.

First, we talk about the classical framework. BM3D operates in two sequential stages:
10
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Stage 1: Basic Estimate:

For each reference image patch R, the algorithm identifies a set of similar patches across
the image using a block matching strategy. These patches are stacked to form a 3D group,
which is then transformed using a 2D Discrete Cosine Transform (DCT) followed by a
1D Haar wavelet transform along the third dimension. The resulting coefficients undergo
hard-thresholding, acting as a shrinkage operation to suppress noise. After applying the
inverse 3D transform, each denoised patch is placed back into the image space, and

overlapping regions are aggregated with adaptive weights.

Stage 2: Wiener Refinement

The second step reuses the first stage estimate as a guide. New patch groups are formed:
one from the noisy image, the other from the denoised estimate. These are again processed
via 3D transforms, but instead of hard thresholding, a Wiener filter is applied, using prior
knowledge of noise statistics and the estimate to adaptively filter each coefficient. The

process again concludes with inverse transforms and weighted aggregation.

Formally, BM3D filtering can also be interpreted through an optimization lens, solving
coupled problems in the transform and spatial domains. The goal is to minimize the
deviation between the observed signal and its reconstruction, both in image space and

transform space:

. ) 1 3 2 L B 2
y —argmym{zo_2 ||z Ay||2+ 2 ||y 170 ||2} (2.20)
. ) 1
" = argmin {r”a)”p +E||a)—¢y *||1 (2.21)

where A is the degradation operator (e.g., blur kernel), 3 and ¢ are 3D

11
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transform/inverse transform matrices, and is the spectrum of the grouped patches. This
optimization is solved iteratively, balancing spatial fidelity and transform-domain

regularity.

However, the SAR-BM3D algorithm extends BM3D to address multiplicative speckle
noise, particularly in SAR imagery, where traditional Gaussian noise assumptions fail.
Instead of adapting BM3D through a log transform (as done in homomorphic filtering),
SAR-BM3D directly modifies the block matching and collaborative filtering stages to

handle the statistical properties of speckle.

Key improvements and adaptations in SAR-BM3D include:
1.  Speckle-Adaptive Block Matching
Unlike the standard Euclidean distance used in BM3D, SAR-BM3D introduces speckle-

specific similarity metrics:

First-pass distance metric (likelihood-based):

2 2
d“)(X,y)Zlog[£+ZJ=log[x T j (2.22)
y X 2xy
Second-pass distance metric (refined with estimate):
) gL (@-9)
d® (x,y,2,9) =log| ——2— |+ : 223
(roied)=log| = o= I o (223

where L is the number of looks in SAR imaging, and y is an empirical tuning parameter.

These metrics are grounded in the Nakagami or Gamma distributions modeling SAR

speckle, replacing the naive squared difference used in classical BM3D.

12
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2. Transform Domain and Filtering

SAR-BM3D performs collaborative filtering on grouped patches using:

First pass: An Undecimated Wavelet Transform (UDWT) for robustness and translation-
invariance, followed by hard-thresholding.

Second pass: A Wiener filter adapted to the speckle domain, using the basic estimate to
guide filtering decisions.

Each group undergoes a 3D transform, thresholding or Wiener filtering, and is then

inverse-transformed and aggregated, just like in BM3D.

2.2.4 Bayesian Nonlocal Means Filter[19]

Zhong et al. extend the Bayesian nonlocal means (BNLM) framework to synthetic
aperture radar images by integrating sigma preselection to mitigate the bias inherent in
using noisy patches as priors and to strengthen detail preservation. The proposed filter
computes the estimate over a refined neighborhood N(x), where weights derive from a

Bayesian risk minimization under fully developed speckle assumptions.

Y P (2)) p (' (v))u'(»)
2 ni P (9)) p(u'(v))

where the likelihood factorizes over the M X M patch pixels:

u(x)=

(2.24)

MxM

p(v(@)1u(x)) =TT p(n(x) I, () (2.25)
m=1
and each multiplicative-speckle term follows an L-look gamma distribution:

p(va (¥)lu, (¥))= v’"r((x L);l [umiy)]L eXp[—%(yx))j (2.26)

Taking logarithms and grouping yields a weight proportional to
13
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exp[—hl—ZMil L 'n (x) ] +1In (um (y)) - LT_I ln(vm (x))} (2.27)

m=1 \ Uy, ()’)

with smoothing parameter h = ko, ¢ = 1/+/L, and k ~ 2. This formulation naturally

reflects the multiplicative noise model.

To reduce bias from substituting u(y) by the noisy patch value, the authors introduce an
a priori mean u'(y) computed via a simple classification: if the coefficient of variation
(CV)ina 3 x 3 window is below the speckle standard deviation o, use the local mean;
otherwise, keep the raw noisy value. Pixel preselection then applies a sigma range (I3, 1,)

around u'(x), obtained by solving

12
gzj p.(s)ds, 0<I <1<, <o (2.28)

Iy

for a chosen inclusion probability .

Although sigma preselection successfully reduces bias and enhances edge and point-
scatter preservation, it depends on fixed hyperparameters (patch size, search window,
thresholds ¢ and @) that may not generalize across diverse scenes. The binary rule for a
priori mean estimation can still blur strong reflectors if the 3 X 3 estimate is applied
indiscriminately, and numerical determination of the sigma interval requires empirical
calibration. Computational demands remain high for large-scale or real-time applications,
and the single-scale formulation lacks the ability to distinguish fine speckle from genuine
high-frequency textures. Future extensions might explore adaptive threshold learning,
multiscale representations, or integration of learned texture priors to further improve both

accuracy and efficiency.
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2.2.5 Diffusion Probabilistic Model[ 18]

Perera et al. propose SAR-DDPM, a novel application of denoising diffusion probabilistic
models (DDPMs) to the task of speckle noise reduction in SAR images.
In DDPM, a forward noising process gradually corrupts a clean image x, into noise Xxr

through:

q(xt |xt—l)zN(xt;\ll_ﬂtxt—l’ﬂt]) (229)

Where f; is a fixed variance schedule. The marginal at any timestep t is:
t
q(x, 1%,) = N (x:4/Z %0, (1= @)1 ), with & =[] (1- ) (2.30)
i=1

A noisy image x; can be directly sampled as:

x, =@ x,+1-ae, £~N(0,I) (2.31)

The reverse process learns to recover x, by predicting the added noise:
Do (x,_1 | xt) = N(xt_l;,ug (x,,t),zg(xt,t)) (2.32)
Here, denotes the probability density of a multivariate Gaussian with mean u and

covariance, evaluated at x.

Instead of training by minimizing the simplified mean squared error (MSE) loss between
the true noise and the predicted noise, the network is trained conditioned on the speckled

image xgs to make the model effective for SAR despeckling.

L

o=, (1,555, | (233)

SAR-DDPM — Et,x[,,xs,g [

This allows the network to infer the clean image by learning to denoise samples generated

from xs.

15
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Chapter 3 Proposed Noise Estimation

3.1 Speckle Noise Model
The multiplicative degradation model of a speckle-corrupted image:

1(i, /) =x(i,j)*n(i, j) (3.1)
where x(i,j) and n(i,j) denote the noise-free image and the speckle noise,

respectively.

3.2 Methodology

The noise estimation framework relies on two core functions: speckle var (Figure 3.1
The algorithm flowchart for speckle var) and speckle est (Figure 3.2 The algorithm
flowchart for speckle est), which work sequentially to accurately estimate speckle noise

variance in SAR images.

For each sub-band, speckle var calculates the local noise variance using sliding windows
centered around each pixel. The local variance computation is further adjusted through
an adaptive weighting mechanism that assigns higher weights to homogeneous regions
and down-weights edges or high-contrast areas. This pixel-level noise map provides the

initial spatial distribution of noise variance for each sub-band.

After the three passes of speckle var on the LL, LH, and HL sub-bands, the results are
combined using a weighted averaging scheme to form an overall noise variance estimate.
The weights are determined based on the statistical characteristics of each sub-band,
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ensuring that sub-bands with more reliable noise information contribute more to the final
estimate.

DWT COEFFCIENTS

!

SLIDING WINDOW

LOCAL VARIANCE

'

Compute Weight C

|

ACCUMULATE

|

GLOBAL AVERAGE

Figure 3.1 The algorithm flowchart for speckle var

| LH COEFFCIENTS | | HH COEFFCIENTS I | HL COEFFCIENTS |

| SPECKLE VAR | | SPECKLE VAR | | SPECKLE VAR |

WEIGHT AVERAGE

ESTIMATED STD

Figure 3.2 The algorithm flowchart for speckle est

3.2.1 Log-Transform

Since speckle noise is modeled as (3.1). To convert this multiplicative relationship into

an additive one, we apply the logarithmic operation:

1'(i, j) = Log(1(i,j)+1)

17
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where we add 1 inside the logarithm to avoid issues when I(i,j) approaches zero. After

the log-transform, the noise model approximately becomes:
I'(i,j)zLog(x(i,j))+L0g(n(i,j)) (3.3)
Hence, the noise component transforms to an additive term Log(n(i,j)), making

subsequent steps, like wavelet-based noise isolation, more straightforward.

3.2.2 Discrete Wavelet Transform

The two-dimensional Discrete Wavelet Transform (DWT) decomposes an image into four
sub-bands by applying high-pass and low-pass filters in both horizontal and vertical
directions. Assuming a signal x passes through a low-pass filter with impulse response g,

the convolution operation is defined in (3.4).

o0

y[n]= 2 x[klg[n-k] (3.4)

k=—0

After down-sampling by a factor of two, the low-frequency (LP) and high-frequency (HP)
components can be extracted using the low-pass filter g and high-pass filter h, as shown

in (3.5) and (3.6).

yLP[n]:k:wa[k]-an—k] (3.5)
Vo [1] = Z x[kJh[2n -] (3.6)

This process results in four sub-bands: LL, LH, HL, and HH, each representing different
spatial and frequency characteristics. The LL sub-band contains the low-frequency
components, providing a coarse approximation of the image, while the LH, HL, and HH

18
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sub-bands capture high-frequency details in horizontal, vertical, and diagonal orientations,
respectively. Since noise is often concentrated in the high-frequency components, DWT

enables the extraction of noise elements for further processing.

In practice, common wavelet bases include Haar and Daubechies wavelets. Haar wavelet
is widely used due to its simplicity and low computational cost. However, for this study,
which focuses on SAR images, the sym4 wavelet from the Symlets family was selected
as the decomposition basis. The choice of sym4 is motivated by its symmetry, which
provides better boundary handling and feature preservation compared to other wavelet
bases. Moreover, sym4 retains the high-order vanishing moments characteristic of
Daubechies wavelets, ensuring effective noise suppression while maintaining image
details. This makes it particularly well-suited for SAR image processing, where
preserving high-frequency details and achieving smooth, stable decompositions are

crucial.

3.2.3 Local Variance Estimation and Accumulation

For each pixel (i,j),a (2n+ 1) X (2n + 1) neighborhood (or “local window”) around
that pixel is considered. The variance of the intensities in this local window is computed

as:

s =g 3 (1) Ia) 67

where (2 denotes the set of coordinates in the (2n+ 1) X (2n 4+ 1) neighborhood

around (i,j).

Next, a parameter 0,,,;;. S€rves as an initial guess or prior estimate of the noise variance.
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Using varycq; and oyp,pise, we define:

Varlocal

C= (3.8)

Varlocal t+o

noise

In this study, the initial noise variance 0,,,;s. 1s estimated based on the Equivalent
Number of Looks (ENL), which characterizes the level of speckle noise in SAR images.
Given that our target images are urban airports, we rely on prior knowledge from literature,
where typical ENL values for urban or complex terrain are generally low due to high
structural variability and limited spatial averaging. Specifically, we set the ENL to 0.5 for
initial estimation. This choice reflects the high noise level typically observed in such

environments, and the corresponding noise variance is calculated using:

O, .. = (3.9)

The intuition is as follows:

If varycar > Opoise, then C will be close to 1. This suggests that the local variance is
quite large, likely due to edges or texture rather than just noise.

If var,car = onoise> then C will be moderate, indicating the local variance is in the same
range as the noise variance.

If varycar K Opoise, then C will be close to 0, indicating that noise dominates, and the

algorithm will be more inclined to calculate that region.

To refine the overall noise estimate, we accumulate a weighted version of each local

variance into a running total, noise_var_sum. The weight chosen hereis (1 — )2, giving

noise_var_sum = (1-C)’ xvar,, (3.10)
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When local variance is much larger than 6,45, C = 1, so (1 — C)? = 0. This means
such pixels contribute very little to noise var sum, since they likely represent structure

or edges rather than just noise.

When local variance is on the order of 6,,4;50, C is smaller, so (1 — C)? is larger. These
areas are more indicative of genuine noise, and thus they add more weight to the

accumulated noise estimate.

After summing over all pixels in the image (or over all valid pixels where the local
window can be computed), the global noise variance estimate is obtained by dividing the

accumulated sum by the number of pixels, mathematically:

3 [0-C ) van 5.)]

init

- (3.11)
total pixel count

This final step averages the local noise-indicating contributions across the whole image.

2

The result is an overall estimate of the noise variance 6};;.

3.2.4 Final Noise Estimation Using Polynomial Regression

Polynomial regression is a technique employed to model a set of data points by

constructing a mathematical function or graph that best fits the given data.

This modeling process may include specific constraints or parameters, which can
potentially influence the overall pattern of the resulting function or graph. Widely
recognized within the research community, polynomial regression serves as a prominent
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statistical approach for addressing non-linear system outputs.

Therefore, we derive the polynomial regression coefficients from a set of experimental
speckle images specifically chosen for their diverse real-world texture variations. We
introduce known noise levels 06,4404 Into these images, then calculate initial noise
estimates ojy,;; using (3.11). Repeating this process over 100 trials and a broad range of
noise levels produces a robust g;,,;; dataset for each image. By averaging these results
elementwise, we obtain a single reference vector. This reference vector, in conjunction

with the corresponding 6,4404 Values, is used to build a polynomial mapping function.

3.3 Experiment and Results

The experiments were conducted using SAR airport images from the publicly available
RadarS SAR Dataset[6].To maintain consistency and fair comparison with the Gaussian-
Hermite approach[7] and the Generalized Gamma method[8], we introduced controlled

levels of speckle noise and measured the estimation errors using the same metric.

3.3.1 Evaluation Metric

To assess the effectiveness of the proposed algorithm, Speckle noise with Matlab
“imnoise” function was applied to all tested images at varying levels. The noise standard
deviation ranged from 10 to 100 in increments of 10. The performance evaluation was

conducted using an error metric derived from:

estimation Gadd@d _noise

Error(%) =

x100% (3.12)
O

added _noise
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3.3.2 Experimental Results of Speckle Noise Estimation

We first aggregated the errors across all noise levels (std = 10 to 100) and all images in
our test suite, arriving at an average estimation error. As seen in Table 3.1, our proposed
method achieves an average noise estimation error of 2.6644%, significantly
outperforming both the GH-based approach (63.5502%) and the GGD-based approach
(69.9423%).

Table 3.1 Comparison of average noise estimation error rates (%)

for all levels of added speckle noise on all images

Proposed GH-based GGD-based

Average Error 2.6644 63.5502 69.9423

This pronounced difference highlights the effectiveness of our local variance-driven
weighting strategy combined with DWT- based analysis, which enables better capture of
the multiplicative nature of speckle noise. The GH-based and GGD-based methods, on
the other hand, struggle with highly textured and heterogeneous regions, leading to

substantially higher estimation errors.

A more granular view of the estimation errors for each image is provided in Table 3.2.
Our approach consistently delivers low estimation errors, even in images with complex
textures, whereas both the GH-based and GGD-based techniques exhibit highly variable
errors. Notably, in datasets like BEIJING_shahejichang 2, our proposed method attains
a near-ideal error of 1.3142%, whereas the GH-based method produces a much larger
85.636% error, and the GGD-based method is also highly inaccurate at 78.745%. Similar

trends emerge across all images, reinforcing the robustness and adaptability of our local
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variance estimation and polynomial regression framework.

Table 3.2 Comparison of average noise estimation error rates (%)

for all levels of added speckle noise for individual datasets

Proposed GH-based GGD-based

BEIJING_shahejichang 1 3.1332 36.4373 45.109
BEIJING_shahejichang 2 1.3142 85.636 78.745
BEIJING _shahejichang 3 2.5696 46.7041 76.493
BEIJING_shahejichang 4 4.1386 38.6677 72.049
BEIJING _shahejichang 5 3.1850 35.466 45.254
BEIJING shahejichang 6 1.5565 66.3589 44.299
BEIJING xijiaojichang 1 1.4174 22.1305 41.655
BEIJING xijiaojichang 2 4.6972 24.8504 77.572
BEIJING_xijiaojichang 3 1.5758 22.8935 36.875
Guanghan_jichang 1 6.4368 50.182 42.762
Guanghan_jichang_2 1.7572 226.2633 70.485
Guanghan_jichang 3 1.0650 104.5253 71.67

Guanghan_jichang 4 1.7643 66.038 69.13

Figure 3.3 and Figure 3.4 illustrate the noise estimation trends for selected datasets, where

our proposed method closely tracks the ground truth across all noise levels. In contrast,

the GH-based and GGD-based approaches consistently exhibit substantial deviations. In

Figure 3.5, we provide an aggregated performance comparison across all tested datasets,

further confirming the superior tracking accuracy and stability of our proposed solution.
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Figure 3.3 Benchmarking of three methods on BEIJING xijiaojichang 1 dataset
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Figure 3.4 Benchmarking of three methods on BEIJING shahejichang 2 dataset
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Figure 3.5 Aggregated comparison of all three methods across datasets
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3.3.3 Summary of Experimental Findings

Our proposed DWT-based speckle noise estimation method achieves an average
estimation error of only 2.6644%, significantly outperforming both the Gaussian-Hermite
method (63.5502%) and the Generalized Gamma method (69.9423%). The results
demonstrate that our local variance-driven weighting strategy and polynomial regression
refinement provide a substantial advantage in accurately capturing the multiplicative
nature of speckle noise. These findings suggest that our approach is a more reliable
solution for real-world SAR image analysis, improving noise estimation accuracy and

enhancing subsequent image processing tasks.

This significant reduction in error is evident both in aggregate evaluations and on a per-
image basis, especially in challenging scenarios with complex textures. From a technical
standpoint, the method offers a robust framework for accurately capturing the
multiplicative nature of speckle noise, ensuring that subsequent image processing tasks
such as feature extraction and classification can be performed with higher fidelity. On a
commercial level, the high precision and reliability of our approach translate into
substantial cost efficiencies by reducing computational overhead and improving
processing times, and offer a competitive edge for deployment in advanced imaging
systems. Moreover, the versatility of the method suggests promising applications beyond
SAR imaging, including ultrasound and other high-demand fields where noise reduction

is critical.

In summary, this work not only sets a new benchmark in speckle noise estimation but also
paves the way for future innovations in image processing technologies, ensuring both

technical excellence and significant market impact.
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Chapter 4 Proposed Speckle Noise Removal

4.1 A New Form BNL Filter

Let v(x) represent the noisy observation at pixel, and let u(x) denote the noise-free
reflectance (intensity or amplitude) at the corresponding pixel in a SAR image.
Additionally, the notations v(x) and u(x) are also used to represent the vectorized patches
centered at pixel x with dimensions. The multiplicative speckle noise observed in SAR
images can thus be mathematically formulated as: v(x) = u(x) - s(x), where s(x)
represents the multiplicative speckle component, typically modeled by a Gamma

distribution governed by the number of looks L.

The refined BNLM estimate #i(x) [1] is computed pixel-wise as the weighted average

of all values u(y) in the neighborhood A(x) around pixel x. This is formally given by

> PV () p(u(y))u(v)
2 P () p(u ()

where 1(x) is obtain pixelwise as the weighted average of all gray values u(y) in the

i(x) = (4.1)

neighborhood A(x) of x. The term p(v(x)|u(y))p(u(y)) acts as the similarity measure

between v(x) and u(y)

We illustrate the formulation of the modified BNL filter using an intensity image as our
example, noting that the amplitude scenario yields a comparable formulation. Under the
assumption of fully developed, statistically independent speckle, the conditional

distribution p(v(x)|u(y)) introduced in equation (4.1) can be rewritten as
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NxN

p(v(x)lu(x))=TT p(va(x) () 4.2)

n-1
where u,(y) and v,(x) noting the nth pixel in the corresponding patches,
respectively. Assuming that u,(y) belongs to the set of potential reflectance values
corresponding to 1, (x), the conditional probability density function p(v,(x)|u,(y))

for an intensity SAR image with L-looks can be formulated as shown in [2][3]

)-S5 e

where I'(*) is the gamma function. Based on (4.3), (4.2) can be rewritten as [4]

o) 0] B o ) o) |

n=1

where 4 is the smoothing parameter.

While the original BNLM formulation employs a similarity metric defined in the spatial
domain, this formulation incurs substantial computational overhead due to the use of
explicit division and logarithmic operations on raw pixel values. In contrast, by
transitioning to the logarithmic domain via variable substitution and carefully deriving
the transformed likelihood, we obtain a new distance metric that retains the statistical
properties of the original model but enables much more efficient computation.

Taking the logarithm and summing across all patch elements yields the linear-

domain distance measure based on (4.4):

v, (x) L-1
d, = . | ——1
207 & Ly ) @3

Let s, =logv,, t, =logu,. Then v, =er, u, =e'. The transformation of
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variables yields:

p(s,|t,)= p(vn =e" |u, = et”) =p(v,|u,)e” (4.6)

Based on (4.6), (4.4) can be written as:

LL esn (L-1) e ‘
= —L Sn
p (Sl’l | tﬂ ) F(L) etnL exp[ et” Je
L
= 0 exp[sn (L-1)+s,—Lt, —Les"_t”] wn)
LL sn 7t?l
:mexp[[,(sn—tn)—Le ]

oc exp[—L (es"_t” —(s, -1, ))]

Assuming independence across patch pixels, the joint conditional density leads to a log-

domain distance based on (4.7):

di (x.7)==In [T p(s,(x)12,(»))

nepatch

L 3 [0 (s (1)1, ()]

ne patch

(4.8)

This becomes the dedicated distance metric for SAR despeckling under the log-domain

formulation.

The result is constructed identically to the BNLM framework:

Plog("(x)\“(J’))“eXp[—h—lzL > [es”(")”"(”—(sn (x)-1, (y))ﬂ (4.9)

ne patch

Let 02 denote the variance of speckle noise. As commonly adopted in related work such
as[5], the smoothing parameter h is modeled to scale linearly with the noise level, i.e.,
h = ko, where k = 2 is found to be effective for intensity SAR imagery. At the same
time, the speckle standard deviation is estimated by our previous noise estimation

algorithm.

29

doi:10.6342/NTU202502541



Previous works such as 4#3%! 35 % 3| £ B %k  commonly assume a uniform prior

distribution over u(y) to simplify the Bayesian estimator, i.e., p(u(y)) = 1/IA(x)l,
where |A(x)| denotes the number of candidates in the search region. Additionally, earlier
BNLM implementations tend to approximate both the unknown reflectance u(y) and
the target u(x) by their noisy counterparts v(y) and v(x), respectively. While this
substitution simplifies computation, it inevitably introduces estimation bias, especially in

high-variance or heterogeneous regions.

In contrast, our method proposes a refined estimation strategy where the prior estimate
u'(y) is not derived from local mean reflectance, but rather from the output of a
preliminary Wiener filter applied to the speckled image. This choice provides a more
stable and informative priori estimate that leverages local variance characteristics to

enhance noise suppression while retaining signal structures.

Further, we integrate a sketch-based structure-aware selection mechanism to guide the
computation of similarity weights. By analyzing gradient orientation and edge strength,
this mechanism designates whether a pixel belongs to a structural region. If so, anisotropic
weighting based on geometric alignment is applied, enabling better preservation of
directional features such as edges and textures. Critically, rather than assuming a uniform
prior p(u'(y)), our approach treats p(u'(y)) < G(x,y), where G(x,y) is the sketch-
based anisotropic Gaussian kernel, thus embedding structural information directly into
the prior. The aggregation subset N(x) c A(x) is thereby refined not only by intensity

similarity but also by structural conformity.
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Together, these two contributions (1) replacing the prior mean with Wiener-based prior

estimation, and (2) applying sketch-based structural referencing, yield the improved

estimator:

. ye;(np(v(x)'”'(y))(;(x’y)“'(y)

i(x)= y;‘(x)p(v(x)lu'(y))(;(x’y) (4.10)
where

p(v(x)|u' (y)) is the usual log-domain likelihood term
G(x,y) is the sketch-based anisotropic Gaussian kernel (so that structural patches are
weighted more heavily), and

N(x) is the preselected subset of A(x).

4.2 A Wiener-based Prior Estimation

In the original BNLM framework, the a priori mean u'(y) is computed via a local o-
filter that aggregates neighboring pixel intensities to approximate the true reflectance
before speckle corruption. This local mean plays a critical role in reducing estimation bias
by supplying a more accurate representation of u(y) when evaluating the likelihood
p(v(x)|u(y)). However, o-filter—based means are themselves susceptible to residual
speckle and may not optimally balance noise suppression with detail preservation in
heterogeneous SAR regions. In contrast, our proposed method replaces this o-filter mean
with the output of a Wiener filter applied to the raw speckled image. Specifically, by first
executing a spatially adaptive Wiener filter, parameterized by local variance estimates,
we obtain a smoothed image u,,(y) that better approximates the underlying noise-free

reflectance. This Wiener-filtered image serves as the new prior estimate:
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u'(y):uw(y)zWiener(v(y)) (4.11)
Because the Wiener filter incorporates both local mean and variance information, its
output suppresses speckle more effectively than a simple mean filter while retaining fine
structural details. Consequently, when computing nonlocal weights, we substitute
u'(y) = u, (y) into the likelihood term p(v(x)|u'(y)), thereby reducing bias and
improving denoising accuracy. This Wiener-based prior estimation not only aligns with
the Bayesian rationale of using the best available local estimate but also demonstrates
significantly enhanced performance in preserving texture and edge information compared

to the original o-filter approach.

4.3 Improved Preselection Based on the Sigma Range

In the original BNLM formulation, pixel-level preselection is used to restrict the
candidate set N(x) € A(x) by exploiting the statistical properties of multiplicative
speckle. Specifically, after computing the local a priori mean u'(y) (obtained via a o-
filter), one defines a threshold

v
T = o 4.12
5 (4.12)

where V4, is the maximum possible SAR intensity. If u'(y) > T the algorithm

determines a multiplicative interval [I;, I,] such that
12
J.ps(s)ds=.§, 0<1I, <1<, <o (4.13)
Iy

and p,(s) the Gamma-distributed speckle model with L looks. In practice, & is chosen
close to 0.90~0.95 to cover the bulk of the speckle distribution without including outliers

43! 7 5| %R Xk . Each candidate pixel y is included in N(x) only if its
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observed intensity v(y) satisfies
u'(x)1, <v(y)<u'(x)l, (4.14)

v(y)

e € [I;,1;]. Conversely, when u'(x) < T, the prior mean is deemed too small

ie., if
to reliably estimate a c-interval, so one simply retains all y € A(x), which means no

preselection, to avoid “dark-area” overpruning.

We refine this preselection step by substituting the o-filter—based mean with our Wiener-
filtered prior u,,(x). Since the Wiener output generally exhibits reduced speckle and
more accurate local variance estimates, the resulting interval [I;,I,] computed from
u,, (x) is tighter around the true reflectance. In other words, for u,,(x) > T, we solve
equation (4.13) in exactly the same way, but now u'(x) = u, (x). Consequently,

candidate pixels y are required to satisfy equation (4.14).

4.4 A Sketch-Based Structural Prior

In the original BNLM framework, the prior distribution over candidate patches u(y) is

assumed uniform

p(u<y>)=® (4.15)

where |A(x)| denotes the total number of pixels in the search window. Under this

assumption, all pixels in A(x) are treated equally, and the nonlocal weight reduces to the

likelihood term alone:

w,, (x,3)=p(v(x)[u'(y)) (4.16)

While this simplification reduces the computational burden, it completely ignores any
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geometric or structural information, leading to over-smoothing along edges or thin linear

features.

To address these shortcomings, we introduce a sketch-based structural prior that replaces
the uniform assumption. Let G(x) denote an anisotropic Gaussian kernel constructed
from local gradient orientation 6(x) (extracted via Sobel) and edge strength
(thresholded by Otsu). We now set p(u'(y)) « G(x,y), which biases the prior in favor
of pixels y aligned with the same local structure as x. Hence, the combined nonlocal

weight becomes
w(x,y)=p(v(x)u'(»))G(x,») 4.17)
where u'(y) is the Wiener-filtered prior estimate of the unknown reflectance at y.

Equivalently, one may normalize G(x,y) over the entire search region:

Auﬁ:% @
So that
w(x.y)=p(v(x)|u'(x)) p(u(r)) (4.19)

4.4.1 Sketch Map Extraction
First, we compute Sobel gradient magnitude Gy,q4(x) and orientation 6(x) at each
pixel. Apply Otsu’s method to threshold Gpq4(x) , yielding a binary edge mask E(x).
Then we define the sketch map S(x) as

S(x):[Gmag (x) >T:|VE()C) (4.20)

where 7 is a chosen gradient threshold, ensuring strong structural cues are captured.
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4.4.2 Anisotropic Gaussian Kernel

Inspired by [14], we want one axis of the Gaussian to lie along the structure (the “major”
axis, with larger variance), and the other axis across the structure (the “minor” axis, with
smaller variance). To do this: Let Ax = x, —y, and Ay =x, —y, be the relative
offsets from pixel x to candidate y. We can rotate these offsets by the local orientation
0 =0(x):

f, =—Aysin@+ Axcos 8, f, =Aycos+ Axsin@ 4.21)

Choose a minor-axis standard deviation o5 (e.g., 1-2 pixels) and an elongation factor

A>1.

Then we define

o) (do,)

G(x,y) = exp[{jp—l2 + LJ] (4.22)

Here, the major axis (lengthened by A) aligns with the local structure, allowing
smoothing along edges, while the minor axis remains narrow to avoid averaging across
the edge.

In other words, across-structure weight (term with f; ) penalizes large offsets
perpendicular to the edge and along-structure weight (term with f,) decays more slowly

along the edge direction encouraging stretching of the kernel along the line or edge.

If candidate y lies along the same structure direction as x, then f; = 0 and |f,| may
be moderate, yielding a relatively large G (x,y). Such pixels receive increased weight in

the BNLM average.
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Conversely, if y rosses a structural boundary, f; becomes large, causing G(x,y) to
become exponentially small. These cross-boundary pixels thus contribute negligibly,

preserving edge sharpness.

By embedding this sketch-based prior into the BNLM algorithm, we ensure that w(x, y)
strongly favors pixels that both statistically align in intensity (via the likelihood) and
geometrically align in structure (via G(x,y)). The combined estimator u'(x) in (4.10)
thus achieves a superior balance between despeckling and edge/line retention,

outperforming the original uniform-prior BNLM in preserving fine geometric details.

4.5 Experimental Results

In order to quantitatively assess despeckling performance, we use two widely adopted
image-quality metrics: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM). PSNR evaluates the pixel-wise fidelity between the denoised
output and the original, pre-noise image (i.e., the dataset image before synthetic speckle

was added). Mathematically,

(4.23)

2
PSNR=10log,, [wJ

MSE

where MAX is the maximum possible pixel value (e.g., 1.0 in normalized images) and
MSE is the mean squared error between the filtered result and the original image. A higher
PSNR indicates closer approximation to the original appearance. SSIM, on the other hand,
measures perceived structural similarity by combining local luminance, contrast, and
structural comparisons; it ranges from 0 to 1, with larger values indicating better

preservation of edges and textures. Together, PSNR and SSIM provide complementary
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perspectives: PSNR quantifies overall error reduction relative to the original image, while

SSIM gauges how well geometric and textural features are maintained.

To rigorously validate the proposed sketch-based BNLM framework, we evaluated

performance on a set of 208 synthetic SAR airport images from the publicly available

RadarS SAR Dataset. All images were processed under identical environment and

parameters. We compared our method against four well-accepted despeckling techniques:

1. Lee Filter

2.  Frost Filter

3. SAR-BM3D

4. Original Bayesian Nonlocal Means Filter

5. Diffusion Model

The following subsections present quantitative metrics (PSNR, SSIM), visual

comparisons, and runtime analysis.

4.5.1 Quantitative Metrics

We first report the average PSNR and SSIM values obtained by each method over all 208

test images.

Table 4.1 Average PSNR and SSIM across all test images

Method PSNR (dB) SSIM

Noisy Input 15.053 0.3437
Lee Filter 20.833 0.5366
Frost Filter 21.049 0.5593
SAR-BM3D 21.017 0.5297
Original BNLM 22.2286 0.6987

37

doi:10.6342/NTU202502541



Diffusion Model 15.0546 0.3511

Proposed 23.1713 0.7797

Next, Table 2 isolates the PSNR improvement (4dpsygr) of each method relative to the
noisy baseline:

Table 4.2 Average PSNR Gain over Noisy Input

Method Apsyr (dB)
Lee Filter +5.7800
Frost Filter +5.9960
SAR-BM3D +5.9640
Original BNLM +7.1756
Diffusion Model +0.0016
Proposed +8.1183

4.5.2 Visual Results

Quantitative metrics provide objective comparisons, but visual inspection remains
essential to gauge perceptual quality. Six example images from the dataset are shown to

as below.

In the figures, Lee filters oversmooth the edges, causing noticeable blurring. Frost better
preserves edges a little bit, and SAR-BM3D introduces block-like texture artifacts along
straight lines. Original BNLM maintains reasonable edge sharpness yet slightly blurs thin
lines due to its isotropic prior.

Our method retains the boundaries and subtle textural variations, owing to the anisotropic
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kernel alignment guided by the sketch map. The annotated SSIM of 0.7770 confirms

superior structure preservation.

Denoising results with Img of BEIJING shahejichang

Sar-BM3D

Diffusion Model Proposed Method

Figure 4.1 Denoising results of Image “BEIJING_shahejichang 2 117
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Denoising results with Img of BEIJING shahejichang

Sar-BM3D

Original BNLM

Diffusion Model Proposed Method

Figure 4.2 Denoising results of Image “BEIJING_shahejichang 1 16”
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Denoising results with Img of BEIJING shahejichang

Sar-BM3D

Diffusion Model Proposed Method

Figure 4.3 Denoising results of Image “BEIJING_shahejichang 1 4~
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Sar-BM3D

Diffusion Model Proposed Method

Figure 4.4 Denoising results of Image “BEIJING_shahejichang 3 5”
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Denoising results with Img of BEIJING xijiaojichang

Sar-BM3D

Diffusion Model Proposed Method

Figure 4.5Denoising results of Image “BEIJING _ xijiaojichang 3 6”
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Sar-BM3D

Diffusion Model Proposed Method

Figure 4.6Denoising results of Image “BEIJING _ xijiaojichang 3 7”
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4.5.3 Processing Time and Efficiency

Beyond denoising quality, computational efficiency is crucial for large-scale or real-time
SAR image analysis. Table 3 compares average processing times per 512x512 image.
While classical local filters (Lee: 0.066s, Frost: 0.7248s) remain fastest, they compromise
visual quality. SAR-BM3D (1.633s) improves structural fidelity but introduces
considerable computational overhead. Original BNLM, despite its strong despeckling

performance, exhibits impractically high runtime (123.8218s).

Table 4.3 Average Processing Time

Method Runtime (sec)
Lee Filter 0.066

Frost Filter 0.7248
SAR-BM3D 1.633
Original BNLM 123.8218
Diffusion Model 59.03
Proposed 3.2434

Lee Filter: 0.066 s, fastest local method but limited quality.

Frost Filter: 0.7248 s, moderate speed with improved smoothing.
SAR-BM3D: 1.633 s, advanced patch grouping at moderate cost.
Original BNLM: 130.04 s, exhaustive spatial-domain matching.
Diffusion Model: 59.03s, second longest time with lowest performance.

Proposed Method: 3.2434 s, ~40 X speedup over original BNLM.
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This acceleration arises from:

Log-domain distance computation, which replaces repeated divisions and logarithms on
raw intensities with more efficient exponentials on precomputed log-patches.
Sketch-based preselection, which prunes candidates outside the structural c-range before
exhaustive patch matching.

Anisotropic kernel weighting, which focuses computations on fewer, more relevant
patches aligned with local geometry. The proposed method thus achieves near-real-time
performance without compromising denoising accuracy, making it well-suited for

onboard satellite processing and large-batch SAR enhancement.

4.54 Summary of Experimental Findings

PSNR & SSIM: Proposed method achieves 23.17 dB PSNR and 0.7797 SSIM in average,
surpassing all baselines in both mean and consistency.

Visual Quality: Demonstrates superior edge preservation and speckle suppression across
varied SAR scenes.

Efficiency: Balances high-quality despeckling with practical runtimes (3.24 s/image)
suitable for large-scale applications.

These results validate the sketch-based BNLM framework as an effective and efficient

SAR despeckling solution.
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Chapter S Conclusion

Synthetic Aperture Radar imagery plays a vital role in remote sensing due to its ability to
capture high-resolution data regardless of weather or lighting conditions. However, the
inherent presence of speckle noise, originating from the coherent nature of radar signal
reflection, severely degrades image quality, complicating tasks such as segmentation,
classification, and object detection. Unlike additive Gaussian noise, speckle noise is
multiplicative and signal-dependent, rendering conventional denoising techniques

suboptimal for SAR applications.

To tackle this challenge, both speckle noise estimation and suppression must be addressed
in a targeted, structure-aware manner. Accurate noise estimation serves as a cornerstone
for adaptive filtering, yet existing approaches often rely on strong assumptions, which fail
in heterogeneous or highly textured regions. Classical filters such as Lee and Frost
provide efficient noise suppression but tend to oversmooth fine details and assume

stationary statistics, limiting their performance in real-world SAR scenarios.

Recent advances in transform-domain processing and nonlocal methods have
demonstrated improved performance by exploiting patch redundancy and multiscale
decomposition. BM3D-based extensions and Bayesian nonlocal means (BNLM) filters
exemplify this trend, but they either suffer from high computational complexity or lack
structural adaptivity. Moreover, the reliance on noisy patches as priors introduces bias,

particularly when structure and texture vary rapidly across the image.

In this thesis, we propose an integrated framework for efficient speckle noise estimation
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and suppression, tailored for SAR imagery. The first stage introduces a novel log-DWT-
based local variance estimation strategy, refined via polynomial regression to robustly
capture noise statistics across diverse scenes. The second stage enhances the BNLM filter
through two key contributions: a Wiener-based prior estimator and a sketch-based

structural prior, both designed to improve denoising accuracy and edge preservation.

Extensive experiments on the publicly available RadarS SAR airport dataset confirm the
superiority of our approach. The proposed method not only achieves significantly lower
estimation error compared to state-of-the-art estimators, but also demonstrates notable
improvements in PSNR and SSIM for despeckling, while maintaining practical runtime
performance. This work thus contributes a scalable and structure-aware solution for SAR
image analysis, with promising applications in real-time remote sensing and downstream

computer vision tasks.
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