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中文摘要  

合成孔徑雷達（Synthetic Aperture Radar, SAR）影像由於雷達訊號的同調特性，固

有地存在著乘性散斑雜訊，嚴重降低影像品質並影響後續影像分析與應用。傳統去

噪技術雖具計算效率，但往往忽略結構與紋理資訊，導致無法有效地保留影像細節。

此外，多數現有的雜訊估測方法依賴特定的參數分布假設或均質區域選取，在面對

紋理複雜、結構多變的 SAR場景時，這些假設難以成立，因而顯著降低了估測準

確性。 

本論文提出了一種基於貝葉斯非局部平均（Bayesian Nonlocal Means, BNLM）濾波

器與草圖結構先驗（sketch-based geometric priors）的 SAR影像散斑雜訊高效估測

與抑制方法。在雜訊估測方面，研究結合了離散小波轉換（Discrete Wavelet 

Transform, DWT）、適應性局部變異數估測與多項式迴歸，成功地將雜訊估測的平

均誤差大幅降低至 2.66%，顯著優於傳統的 Gaussian-Hermite 方法與 Generalized 

Gamma Distribution方法。 

在雜訊抑制方面，我們所提出的改良型BNLM框架包含兩項關鍵改進：(1)以Wiener 

filter為基礎之先驗估測方法，能有效降低估測偏差並更精確地反映局部變異數 (2)

透過草圖結構導引之異向性高斯核函數，能更精準地保留影像中的邊緣與紋理結

構，本研究所提出之方法在量化指標 PSNR、SSIM、運算效率上均有明顯的提升。 

總體來說，本研究所提出之方法，在公開的 SAR機場資料集上進行的實驗驗證顯

示，在 SAR影像散斑雜訊估測與去噪中的準確性、視覺真實性及運算效率上皆有

顯著提升，未來更可廣泛應用於衛星影像即時處理等多元化遙測領域。 

 

關鍵字： 合成孔徑雷達、散斑雜訊、貝葉斯非局部平均法、雜訊估測、結構先驗 
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ABSTRACT 

Synthetic Aperture Radar (SAR) imagery inherently suffers from multiplicative speckle 

noise, which significantly deteriorates image quality and complicates subsequent analysis 

tasks. Conventional denoising approaches typically overlook critical structural and 

textural details, while prevalent noise estimation techniques are constrained by 

oversimplified parametric assumptions, leading to suboptimal accuracy in complex SAR 

scenes. 

 

This study presents a robust framework for SAR speckle noise estimation and suppression, 

integrating Bayesian Nonlocal Means (BNLM) filtering with sketch-based geometric 

priors. In the noise estimation phase, a combination of Discrete Wavelet Transform 

(DWT), adaptive local variance estimation, and polynomial regression markedly reduces 

the estimation error to approximately 2.66%, surpassing conventional methodologies. 

 

For noise suppression, the proposed enhanced BNLM method incorporates a Wiener 

filter-based prior to accurately model local variance and employs an anisotropic Gaussian 

kernel driven by geometric structural cues. Empirical evaluations utilizing public SAR 

datasets demonstrate substantial enhancements in Peak Signal-to-Noise Ratio (PSNR), 

Structural Similarity Index Measure (SSIM), and computational efficiency, underscoring 

the method's applicability for real-time satellite imagery processing. 

 

Keywords: Synthetic Aperture Radar, speckle noise, Bayesian Nonlocal Means, noise 

estimation, structural priors. 
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Chapter 1 Introduction 

Synthetic Aperture Radar (SAR) imagery plays a vital role in remote sensing due to its 

ability to capture high-resolution data regardless of weather or lighting conditions. 

However, the inherent presence of speckle noise, originating from the coherent nature of 

radar signal reflection, severely degrades image quality, complicating tasks such as 

segmentation, classification, and object detection. Unlike additive Gaussian noise, 

speckle noise is multiplicative and signal-dependent, rendering conventional denoising 

techniques suboptimal for SAR applications. 

 

To tackle this challenge, both speckle noise estimation and suppression must be addressed 

in a targeted, structure-aware manner. Accurate noise estimation serves as a cornerstone 

for adaptive filtering, yet existing approaches often rely on strong assumptions (e.g., local 

homogeneity or predefined distributions), which fail in heterogeneous or highly textured 

regions. Classical filters such as Lee and Frost provide efficient noise suppression but 

tend to oversmooth fine details and assume stationary statistics, limiting their 

performance in real-world SAR scenarios. 

 

Recent advances in transform-domain processing and nonlocal methods have 

demonstrated improved performance by exploiting patch redundancy and multiscale 

decomposition. BM3D-based extensions and Bayesian nonlocal means (BNLM) filters 

exemplify this trend, but they either suffer from high computational complexity or lack 

structural adaptivity. Moreover, the reliance on noisy patches as priors introduces bias, 

particularly when structure and texture vary rapidly across the image. 
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In this thesis, we propose an integrated framework for efficient speckle noise estimation 

and suppression, tailored for SAR imagery. The first stage introduces a novel log-DWT-

based local variance estimation strategy, refined via polynomial regression to robustly 

capture noise statistics across diverse scenes. The second stage enhances the BNLM filter 

through two key contributions: a Wiener-based prior estimator and a sketch-based 

structural prior, both designed to improve denoising accuracy and edge preservation. 

 

Extensive experiments on the publicly available RadarS SAR airport dataset confirm the 

superiority of our approach. The proposed method not only achieves significantly lower 

estimation error (average 2.66%) compared to state-of-the-art estimators (e.g., Gaussian-

Hermite and GGD-based methods), but also demonstrates notable improvements in 

PSNR and SSIM for despeckling, while maintaining practical runtime performance. This 

work thus contributes a scalable and structure-aware solution for SAR image analysis, 

with promising applications in real-time remote sensing and downstream computer vision 

tasks. 
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Chapter 2 Related Work 

2.1 Noise Estimation 

2.1.1 Estimation Using Bessel K-form PDF[15] 

A significant contribution to statistical modeling of speckle noise is presented by Achim 

et al., who proposed using the Bessel K-form (BKF) probability density function to model 

log-transformed speckle noise coefficients in transform domains such as wavelet and 

Curvelet. Unlike traditional Gaussian or Laplacian assumptions, BKF effectively captures 

the heavy-tailed behavior of speckle noise, particularly in high-frequency subbands. The 

BKF PDF is defined as 

 ( )
( ) ( )

1/2

1/22 1 /4

1 2
, ,

p

X pp
f x p c x K x

cp c

−

−+

 
=     

 (2.1) 

where 

𝛤(𝑝) is the Gamma function, 

𝐾𝑣(∙) is the modified Bessel function of the second kind, 

𝑝 is the shape parameter, 

𝑐 is the scale parameter. 

Special cases: 

𝑝 = 1: reduces to Laplacian distribution, 

𝑝 → ∞: approximates Gaussian distribution, 

𝑝 < 1: exhibits sharper peak and heavier tails. 

 

To estimate these parameters, the authors initially proposed a moment-based estimator 

using the kurtosis 𝛽 and variance 𝜎2 of log-domain coefficients: 
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23

,      
3

p c
p


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+
 (2.2) 

However, to improve robustness, they developed a maximum likelihood estimation (MLE) 

framework based on the log-likelihood function of the BKF. Given samples {𝑥𝑖}𝑖=1
𝑛 , the 

log-likelihood function is: 

 

( ) ( )

( )

1

1

1 1 2

, ln , ,

1 1 2
ln 2 ln ln ln ln

2 2 2

n

X i

i

n n

i i
p

i i

L p c f x p c

p
n c p p x K x

c

=

−
= =

=

    
= − −  + − +            



 
 (2.3) 

By setting partial derivatives with respect to 𝑝 and 𝑐 to zero, two nonlinear equations 

are obtained. The paper solves them numerically using the secant method to obtain 𝑝̂ 

and 𝑐̂. 

 

The BKF model was empirically validated using Kolmogorov–Smirnov tests on real 

ultrasound images. Results demonstrated that BKF significantly outperformed Gaussian 

and Normal Inverse Gaussian models in both wavelet and Curvelet domains, achieving 

the lowest KS distances and most consistent alignment in PP-plots. 

 

This approach provides a more accurate statistical description of speckle noise in 

transform domains and is particularly relevant for our work, where precise modeling of 

the noise distribution is critical for effective noise variance estimation and subsequent 

denoising performance. 

 

2.1.2 Estimation Using Generalized Gamma Distribution[16] 

It is widely accepted that the observed intensity of an L-look SAR image conditioned on 

the underlying reflectivity is gamma distributed: 
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 ( )
( )

1

| exp

L LL F LF
P F I

I L I

−
   

= −   
   

 (2.4) 

Under this model, the multiplicative noise is also gamma distributed. 

 

However, such an assumption imposes restrictive constraints, particularly in 

heterogeneous or highly textured areas. To address this limitation, recent work has 

proposed adopting the Generalized Gamma Distribution (GGD) as a more flexible 

statistical model for speckle noise. The GGD is a three-parameter distribution defined as: 

 ( ) 1; , , exp ,    0

p

p x
f x p x x

p





 




−
  

= −   
      
 

 (2.5) 

where 𝛼 > 0 and 𝑝 > 0 are shape parameters, and 𝛽 > 0 is a scale parameter. This 

formulation includes the exponential(𝛼 = 𝑝 = 1), gamma(𝑝 = 1) and Weibull(𝛼 = 1) 

distributions as special cases, making it a unifying framework for speckle modeling. 

The first- and second-order moments of a GGD random variable 𝑋~𝐺𝐺(𝛼, 𝑝, 𝛽)  are 

derived using the generalized moment ratio: 

 
k

k

p
G

p





 +
 
 =
 

 
 

 (2.6) 

which leads to the expressions 𝐸[𝑥] = 𝛽 ∙ 𝐺1, 𝑉𝑎𝑟[𝑥] = 𝛽2(𝐺2 − 𝐺1
2) 

 

Parameter estimation for the GGD is performed via Maximum Likelihood Estimation 

(MLE). Given samples {𝑥𝑖}𝑖=1
𝑛 , the log-likelihood function is: 

 ( ) ( )
1 1

ln , , ln ln ln 1 ln

p
n n

i
i

i i

x
L p n p n n x

p


    

= =

   
= − −  + − −   

  
   (2.7) 
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This leads to a set of nonlinear equations in 𝛼, 𝑝, 𝛽, which are solved numerically. 

 

Experimental validation in the referenced study was conducted using a high-resolution 

Ku-band SAR image divided into six homogeneous regions. The fit quality of GGD was 

compared against gamma, Weibull, and log-normal models using a chi-square goodness-

of-fit test. The results consistently favored the GGD in terms of lower chi-square statistics, 

confirming its superior adaptability in modeling SAR speckle across diverse textures. 

 

2.1.3 Estimation Based on Gaussian-Hermite Moments[17] 

Ma et al. propose to exploit orthogonal Gaussian–Hermite moments to quantify speckle 

noise intensity in images. A 2D Gaussian smoothing kernel 

 ( )
2 2

2 2

1
, exp

2 2

x y
G x y

 

 +
= − 

 
 (2.8) 

is paired with Hermite polynomials 𝐻𝑝(𝑡), defined by 

 ( ) ( )
2 2

1
n

n t t

n n

d
H t e e

dt

−= −  (2.9) 

to form the 2D Gaussian–Hermite moment of order (𝑝, 𝑞): 

 ( ) ( ), ,pq p q

x y
M I x y G x y H H dxdy

 

   
=    

   
  (2.10) 

Here 𝐼(𝑥, 𝑦) is the image intensity. 

 

From these moments, the authors select four orders, (1,0), (0,1), (3,0), (0,3), to form at 

each pixel (𝑥, 𝑦) a feature vector 

 ( )  10 10 01 01 30 30 03 03, , , ,
T

f x y w M w M w M w M=  (2.11) 

where 𝑤𝑝𝑞  are weights to balance sensitivity to horizontal (𝑀10, 𝑀30)  and vertical 
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(𝑀01, 𝑀03)  structures. Empirically, when speckle of variance 𝜎2  is added to a 

homogeneous image of gray level 𝑔𝑖, the distribution of these feature vectors forms a 

roughly circular cluster centered at the origin, whose radius grows with noise intensity 

and with 𝑔𝑖. 

 

To capture dispersion of the cluster, a noise characteristic value 𝑀𝑢𝑣 is defined as the 

average radial distance: 

 ( )
1 1

1
,

N

uv i i

i

M f x y
N =

=   (2.12) 

where 𝑁 is the number of pixels in the selected region. 

 

By synthetically varying 𝜎2 on a uniform image of 𝑔𝑖 = 50, the authors record pairs 

(𝑀𝑢𝑣, 𝜎2)  and fit a fourth-order polynomial 𝜎2 = 0.0013𝑥4 − 0.1269𝑥3 +

0.8903𝑥2 − 10.896𝑥 + 321.468 for 𝑥 = 𝑀𝑢𝑣. 

 

This method is notable for requiring no a priori statistical model of the scene beyond a 

small homogeneous patch, and for its computational efficiency compared to exhaustive 

matching or sliding-window filters. 

 

2.2 Noise Removal 

2.2.1 Lee Filter[11] 

Lee (1980) proposed a class of non-recursive, pixel-wise enhancement and denoising 

algorithms based on local statistics (local mean and variance). The methods are 

computationally simple, well-suited for real-time and parallel hardware implementation. 
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Given an input image 𝑋 , for a pixel 𝑥𝑖,𝑗 , the local statistics are computed over a 

neighborhood window (2𝑛 + 1) × (2𝑚 + 1) as 

 
( ) ( )

, ,

1

2 1 2 1

j mi n

i j k l

k i n l j m

x
n m


++

= − = −

=
+ +

   (2.13) 

 
( )( )

( )
2

2

, , ,

1

2 1 2 1

j mi n

i j k l i j

k i n l j m

x
n m

 
++

= − = −

= −
+ +

   (2.14) 

where 𝜇𝑖,𝑗 and 𝜎𝑖,𝑗
2  denote the local mean and variance respectively. 

 

Lee proposed a simplified gain-based method: 

 ( ), , , , ,   0i j i j i j i jy k x k = + −   (2.15) 

when 𝑘 > 1  means high pass sharpening, 0 < 𝑘 < 1  means smoothing and 𝑘 = 0 

means local averaging. 

 

Multiplicative noise in this paper is modeled as: 

   ( ) 2

, , , ,   ,   i j i j i j u uz x E u Var u  = = =  (2.16) 

By Taylor expansion and local linearization, the model becomes: 

 

( ), , , , ,

2 2

,

, 2 2 2 2

, ,

ˆ
i j i j i j i j u i j

i j u

i j

i j u u i j

x K z

K

  

 

   

= + −

=
+

 (2.17) 

This adaptive formulation enables per-pixel denoising while respecting spatial variations 

in both signal and noise. 

 

Despite its efficiency and widespread use in speckle noise reduction, the Lee filter suffers 

from several critical limitations. Its reliance on fixed-size local windows often leads to 

over smoothing around edges and fine structures, especially in heterogeneous regions. 
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Moreover, it assumes local stationarity within each window, which fails near sharp 

transitions, causing either noise residuals or structural blurring. Additionally, the filter 

ignores non-local redundancies and requires manual or global noise variance estimation, 

which limits adaptability to spatially varying noise. These shortcomings motivate the 

need for more adaptive and structure-preserving denoising frameworks, particularly those 

that incorporate non-local similarity, automatic noise estimation, and enhanced filtering 

control to better balance noise suppression and detail preservation. 

 

2.2.2 Frost Filter[12][13] 

Frost et al. (1982) derives a statistical model for coherent radar imagery, showing that the 

observed intensity is degraded by multiplicative speckle noise. Under the assumption of 

local stationarity, they derive a minimum-mean-square-error(MMSE) spatial filter 𝑀(𝑓) 

in the frequency domain: 

 
( ) ( )

( ) ( ) ( )
( )

( )
*

*1
M(f)=

1

r

nr n

r

S f H f
H f

S fS f S f

S f

=

+

 (2.18) 

where 𝑆𝑟 and 𝑆𝑛 are the power spectral densities of 𝑟 and 𝑛, respectively, and 𝐻∗ is 

the complex conjugate of the system transfer function. Assuming an autoregressive model 

for 𝑟 with variance 𝜎𝑟
2 and correlation length 𝑙, and a white-chi-square model for 𝑛 

with variance 𝜎𝑛
2, they obtain in the spatial domain an exponential (Frost) kernel: 

 ( ) ( )
2 2

2 2

0 2 2 2

1
, exp ,   +r

r n

l
m x y K x y

l


 

 

+
= − + =  (2.19) 

Here 𝛼 is adapted at each pixel via local estimates of the sample mean 𝜇̂ and variance 

𝜎̂2 . This “Adaptive Frost” filter yields minimum-MSE smoothing in homogeneous 

regions while automatically narrowing its footprint near edges to preserve structure. 
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Although the MMSE‐derived Frost filter effectively suppresses speckle while preserving 

edges, several weaknesses remain. First, the filter relies on a fixed, isotropic window size 

and cannot simultaneously adapt to both large homogeneous regions and fine-scale details, 

often over‐smoothing small features or under‐filtering broad areas. Second, it assumes 

locally Gaussian backscatter and chi‐square noise statistics, assumptions that break down 

in highly textured, multi‐class, or non‐Gaussian scenes, leading to biased estimates. Third, 

the exponential weighting kernel does not explicitly account for edge orientation or sub-

pixel geometry, so it can blur along strong contours or introduce directional artifacts when 

edges change rapidly. Fourth, because it operates purely in the single‐scale spatial domain, 

it lacks the ability to distinguish high-frequency speckle from genuine fine details, 

limiting its fidelity on multi-scale textures. Finally, the need to estimate local mean and 

variance at every pixel and compute an adaptive exponential weight, which imposes a 

significant computational burden, hindering real-time or large-scale applications. 

Addressing these issues may require adaptive, multi-scale frameworks and data-driven 

statistical models that better capture the nonstationary, anisotropic characteristics of real-

world SAR imagery. 

 

2.2.3 SAR-BM3D [9][10] 

Despite the recent surge in deep learning methods, BM3D (Block Matching and 3D 

Filtering) remains a cornerstone in traditional image denoising due to its non-local, 

adaptive, and transform-based design. It is particularly effective for Gaussian noise 

removal and has even been extended to tasks such as non-blind deblurring. 

 

First, we talk about the classical framework. BM3D operates in two sequential stages: 
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Stage 1: Basic Estimate: 

For each reference image patch R, the algorithm identifies a set of similar patches across 

the image using a block matching strategy. These patches are stacked to form a 3D group, 

which is then transformed using a 2D Discrete Cosine Transform (DCT) followed by a 

1D Haar wavelet transform along the third dimension. The resulting coefficients undergo 

hard-thresholding, acting as a shrinkage operation to suppress noise. After applying the 

inverse 3D transform, each denoised patch is placed back into the image space, and 

overlapping regions are aggregated with adaptive weights. 

 

Stage 2: Wiener Refinement 

The second step reuses the first stage estimate as a guide. New patch groups are formed: 

one from the noisy image, the other from the denoised estimate. These are again processed 

via 3D transforms, but instead of hard thresholding, a Wiener filter is applied, using prior 

knowledge of noise statistics and the estimate to adaptively filter each coefficient. The 

process again concludes with inverse transforms and weighted aggregation. 

 

Formally, BM3D filtering can also be interpreted through an optimization lens, solving 

coupled problems in the transform and spatial domains. The goal is to minimize the 

deviation between the observed signal and its reconstruction, both in image space and 

transform space: 

 
2 2

2 2 2

1 1
arg min *

2 2y
y z Ay y 

 

  
= − + − 

 
 (2.20) 

 
2

2

1
arg min *

2p
y


    



  
= + − 

 
 (2.21) 

where 𝐴  is the degradation operator (e.g., blur kernel), 𝜓  and 𝜙  are 3D 
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transform/inverse transform matrices, and is the spectrum of the grouped patches. This 

optimization is solved iteratively, balancing spatial fidelity and transform-domain 

regularity. 

 

However, the SAR-BM3D algorithm extends BM3D to address multiplicative speckle 

noise, particularly in SAR imagery, where traditional Gaussian noise assumptions fail. 

Instead of adapting BM3D through a log transform (as done in homomorphic filtering), 

SAR-BM3D directly modifies the block matching and collaborative filtering stages to 

handle the statistical properties of speckle. 

 

Key improvements and adaptations in SAR-BM3D include: 

1. Speckle-Adaptive Block Matching 

Unlike the standard Euclidean distance used in BM3D, SAR-BM3D introduces speckle-

specific similarity metrics: 

 

First-pass distance metric (likelihood-based): 

 ( )
2 2

(1) , log log
2

x y x y
d x y

y x xy

   +
= + =   

   
 (2.22) 

Second-pass distance metric (refined with estimate): 

 ( )
( )

2
2 22 2

(2)

2 2

ˆ ˆ
ˆ ˆ, , , log

ˆ ˆ2 2 1

u vx y L
d x y u v

xy L u v

 − +
= +  

− 
 (2.23) 

where 𝐿 is the number of looks in SAR imaging, and 𝛾 is an empirical tuning parameter. 

 

These metrics are grounded in the Nakagami or Gamma distributions modeling SAR 

speckle, replacing the naive squared difference used in classical BM3D. 



doi:10.6342/NTU202502541

 13 

 

2. Transform Domain and Filtering 

SAR-BM3D performs collaborative filtering on grouped patches using: 

First pass: An Undecimated Wavelet Transform (UDWT) for robustness and translation-

invariance, followed by hard-thresholding. 

Second pass: A Wiener filter adapted to the speckle domain, using the basic estimate to 

guide filtering decisions. 

Each group undergoes a 3D transform, thresholding or Wiener filtering, and is then 

inverse-transformed and aggregated, just like in BM3D. 

 

2.2.4 Bayesian Nonlocal Means Filter[19] 

Zhong et al. extend the Bayesian nonlocal means (BNLM) framework to synthetic 

aperture radar images by integrating sigma preselection to mitigate the bias inherent in 

using noisy patches as priors and to strengthen detail preservation. The proposed filter 

computes the estimate over a refined neighborhood 𝑁(𝑥), where weights derive from a 

Bayesian risk minimization under fully developed speckle assumptions. 

 
( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( )
( )

( )

| ' ' '
ˆ( )

| ' '

y N x

y N x

p v x u y p u y u y
u x

p v x u y p u y





=



 (2.24) 

where the likelihood factorizes over the 𝑀 × 𝑀 patch pixels: 

 ( ) ( )( ) ( ) ( )( )
1

| |
M M

m m

m

p v x u y p v x u y


=

=   (2.25) 

and each multiplicative-speckle term follows an 𝐿-look gamma distribution: 

 ( ) ( )( )
( )

( ) ( )

( )

( )

1

| exp

LL

m m

m m

m m

v x Lv xL
p v x u y

L u y u y

−
   

= −          
 (2.26) 

Taking logarithms and grouping yields a weight proportional to 
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( )

( )
( )( ) ( )( )2

1

1 1
exp ln ln

M M
m

m m

m m

v x L
u y v x

h u y L



=

   −
− + −    

  
  (2.27) 

with smoothing parameter ℎ = 𝑘𝜎, 𝜎 = 1/√𝐿, and 𝑘 ≈ 2. This formulation naturally 

reflects the multiplicative noise model. 

 

To reduce bias from substituting 𝑢(𝑦) by the noisy patch value, the authors introduce an 

a priori mean 𝑢′(𝑦) computed via a simple classification: if the coefficient of variation 

(CV) in a 3 × 3 window is below the speckle standard deviation 𝜎, use the local mean; 

otherwise, keep the raw noisy value. Pixel preselection then applies a sigma range (𝐼1, 𝐼2) 

around 𝑢′(𝑥), obtained by solving 

 
2

1

1 2= ( ) ,    0 1

I

s

I

p s ds I I       (2.28) 

for a chosen inclusion probability 𝜁. 

 

Although sigma preselection successfully reduces bias and enhances edge and point-

scatter preservation, it depends on fixed hyperparameters (patch size, search window, 

thresholds 𝜁 and Θ) that may not generalize across diverse scenes. The binary rule for a 

priori mean estimation can still blur strong reflectors if the 3 × 3 estimate is applied 

indiscriminately, and numerical determination of the sigma interval requires empirical 

calibration. Computational demands remain high for large-scale or real-time applications, 

and the single-scale formulation lacks the ability to distinguish fine speckle from genuine 

high-frequency textures. Future extensions might explore adaptive threshold learning, 

multiscale representations, or integration of learned texture priors to further improve both 

accuracy and efficiency. 
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2.2.5 Diffusion Probabilistic Model[18] 

Perera et al. propose SAR-DDPM, a novel application of denoising diffusion probabilistic 

models (DDPMs) to the task of speckle noise reduction in SAR images. 

In DDPM, a forward noising process gradually corrupts a clean image 𝑥0 into noise 𝑥𝑇 

through: 

 ( ) ( )1 1| ; 1 ,t t t t t tq x x N x x I − −= −  (2.29) 

Where 𝛽𝑡 is a fixed variance schedule. The marginal at any timestep 𝑡 is: 

 ( ) ( ) ( )0 0

1

| ; , (1 ) ,  with 1
t

t t t t t i

i

q x x N x x I   
=

= − = −  (2.30) 

A noisy image 𝑥𝑡 can be directly sampled as: 

 ( )0 1 ,  N 0,t t tx x I   = + −  (2.31) 

The reverse process learns to recover 𝑥0 by predicting the added noise: 

 ( ) ( ) ( )( )1 1| ; , , ,t t t t tp x x N x x t x t  
− −=   (2.32) 

Here, denotes the probability density of a multivariate Gaussian with mean 𝜇  and 

covariance𝛴, evaluated at 𝑥. 

 

Instead of training by minimizing the simplified mean squared error (MSE) loss between 

the true noise and the predicted noise, the network is trained conditioned on the speckled 

image 𝑥𝑆 to make the model effective for SAR despeckling.  

 ( )
0

2

SAR-DDPM , , ,L , ,
St x x t SE t x x   = −
 

 (2.33) 

This allows the network to infer the clean image by learning to denoise samples generated 

from 𝑥𝑆. 



doi:10.6342/NTU202502541

 16 

Chapter 3 Proposed Noise Estimation 

 

3.1 Speckle Noise Model 

The multiplicative degradation model of a speckle-corrupted image: 

 ( ) ( ) ( )I , , ,i j x i j n i j=   (3.1) 

where 𝑥(𝑖, 𝑗)  and 𝑛(𝑖, 𝑗)  denote the noise-free image and the speckle noise, 

respectively. 

 

3.2 Methodology 

The noise estimation framework relies on two core functions: speckle_var (Figure 3.1 

The algorithm flowchart for speckle_var) and speckle_est (Figure 3.2 The algorithm 

flowchart for speckle_est), which work sequentially to accurately estimate speckle noise 

variance in SAR images. 

 

For each sub-band, speckle_var calculates the local noise variance using sliding windows 

centered around each pixel. The local variance computation is further adjusted through 

an adaptive weighting mechanism that assigns higher weights to homogeneous regions 

and down-weights edges or high-contrast areas. This pixel-level noise map provides the 

initial spatial distribution of noise variance for each sub-band. 

 

After the three passes of speckle_var on the LL, LH, and HL sub-bands, the results are 

combined using a weighted averaging scheme to form an overall noise variance estimate. 

The weights are determined based on the statistical characteristics of each sub-band, 
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ensuring that sub-bands with more reliable noise information contribute more to the final 

estimate. 

 

Figure 3.1 The algorithm flowchart for speckle_var 

 

 

Figure 3.2 The algorithm flowchart for speckle_est 

 

3.2.1 Log-Transform 

Since speckle noise is modeled as (3.1). To convert this multiplicative relationship into 

an additive one, we apply the logarithmic operation: 

 ( ) ( )( )' , , 1I i j Log I i j= +  (3.2) 
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where we add 1 inside the logarithm to avoid issues when 𝐼(𝑖, 𝑗) approaches zero. After 

the log-transform, the noise model approximately becomes: 

 ( ) ( )( ) ( )( )' , , ,I i j Log x i j Log n i j +  (3.3) 

Hence, the noise component transforms to an additive term 𝐿𝑜𝑔(𝑛(𝑖, 𝑗)) , making 

subsequent steps, like wavelet‐based noise isolation, more straightforward. 

 

3.2.2 Discrete Wavelet Transform 

The two-dimensional Discrete Wavelet Transform (DWT) decomposes an image into four 

sub-bands by applying high-pass and low-pass filters in both horizontal and vertical 

directions. Assuming a signal x passes through a low-pass filter with impulse response g, 

the convolution operation is defined in (3.4). 

      
k

y n x k g n k


=−

= −  (3.4) 

 

After down-sampling by a factor of two, the low-frequency (LP) and high-frequency (HP) 

components can be extracted using the low-pass filter g and high-pass filter h, as shown 

in (3.5) and (3.6). 

      2LP

k

y n x k g n k


=−

= −  (3.5) 

      2HP

k

y n x k h n k


=−

= −  (3.6) 

 

This process results in four sub-bands: LL, LH, HL, and HH, each representing different 

spatial and frequency characteristics. The LL sub-band contains the low-frequency 

components, providing a coarse approximation of the image, while the LH, HL, and HH 
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sub-bands capture high-frequency details in horizontal, vertical, and diagonal orientations, 

respectively. Since noise is often concentrated in the high-frequency components, DWT 

enables the extraction of noise elements for further processing. 

 

In practice, common wavelet bases include Haar and Daubechies wavelets. Haar wavelet 

is widely used due to its simplicity and low computational cost. However, for this study, 

which focuses on SAR images, the sym4 wavelet from the Symlets family was selected 

as the decomposition basis. The choice of sym4 is motivated by its symmetry, which 

provides better boundary handling and feature preservation compared to other wavelet 

bases. Moreover, sym4 retains the high-order vanishing moments characteristic of 

Daubechies wavelets, ensuring effective noise suppression while maintaining image 

details. This makes it particularly well-suited for SAR image processing, where 

preserving high-frequency details and achieving smooth, stable decompositions are 

crucial. 

 

3.2.3 Local Variance Estimation and Accumulation 

For each pixel (𝑖, 𝑗), a (2𝑛 + 1) × (2𝑛 + 1) neighborhood (or “local window”) around 

that pixel is considered. The variance of the intensities in this local window is computed 

as: 

 ( )( )
( )

2

,

1
var ,local

u v

I u v I


= −

  (3.7) 

where 𝛺  denotes the set of coordinates in the (2𝑛 + 1) × (2𝑛 + 1)  neighborhood 

around (𝑖, 𝑗). 

 

Next, a parameter 𝜎𝑛𝑜𝑖𝑠𝑒 serves as an initial guess or prior estimate of the noise variance. 
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Using 𝑣𝑎𝑟𝑙𝑜𝑐𝑎𝑙 and 𝜎𝑛𝑜𝑖𝑠𝑒, we define: 

 
var

var

local

local noise

C


=
+

 (3.8) 

 

In this study, the initial noise variance 𝜎𝑛𝑜𝑖𝑠𝑒  is estimated based on the Equivalent 

Number of Looks (ENL), which characterizes the level of speckle noise in SAR images. 

Given that our target images are urban airports, we rely on prior knowledge from literature, 

where typical ENL values for urban or complex terrain are generally low due to high 

structural variability and limited spatial averaging. Specifically, we set the ENL to 0.5 for 

initial estimation. This choice reflects the high noise level typically observed in such 

environments, and the corresponding noise variance is calculated using: 

 
1

noise
ENL

 =  (3.9) 

The intuition is as follows: 

If  𝑣𝑎𝑟𝑙𝑜𝑐𝑎𝑙 ≫ 𝜎𝑛𝑜𝑖𝑠𝑒 , then C will be close to 1. This suggests that the local variance is 

quite large, likely due to edges or texture rather than just noise. 

If  𝑣𝑎𝑟𝑙𝑜𝑐𝑎𝑙 ≈ 𝜎𝑛𝑜𝑖𝑠𝑒, then C will be moderate, indicating the local variance is in the same 

range as the noise variance. 

If  𝑣𝑎𝑟𝑙𝑜𝑐𝑎𝑙 ≪ 𝜎𝑛𝑜𝑖𝑠𝑒 , then C will be close to 0, indicating that noise dominates, and the 

algorithm will be more inclined to calculate that region. 

 

To refine the overall noise estimate, we accumulate a weighted version of each local 

variance into a running total, noise_var_sum. The weight chosen here is (1 − 𝐶)2, giving 

 ( )
2

noise_var_sum 1 varlocalC= −   (3.10) 
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When local variance is much larger than 𝜎𝑛𝑜𝑖𝑠𝑒, 𝐶 ≈ 1, so (1 − 𝐶)2 ≈ 0. This means 

such pixels contribute very little to noise_var_sum, since they likely represent structure 

or edges rather than just noise. 

 

When local variance is on the order of 𝜎𝑛𝑜𝑖𝑠𝑒, C is smaller, so (1 − 𝐶)2 is larger. These 

areas are more indicative of genuine noise, and thus they add more weight to the 

accumulated noise estimate. 

 

After summing over all pixels in the image (or over all valid pixels where the local 

window can be computed), the global noise variance estimate is obtained by dividing the 

accumulated sum by the number of pixels, mathematically: 

 
( )( ) ( )

2

,2
1 , var ,

ˆ
total_pixel_count

locali j

init

C i j i j


 − 
 

=


 (3.11) 

 

This final step averages the local noise‐indicating contributions across the whole image. 

The result is an overall estimate of the noise variance 𝜎̂𝑖𝑛𝑖𝑡
2 . 

 

3.2.4 Final Noise Estimation Using Polynomial Regression 

Polynomial regression is a technique employed to model a set of data points by 

constructing a mathematical function or graph that best fits the given data.  

 

This modeling process may include specific constraints or parameters, which can 

potentially influence the overall pattern of the resulting function or graph. Widely 

recognized within the research community, polynomial regression serves as a prominent 
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statistical approach for addressing non-linear system outputs. 

 

Therefore, we derive the polynomial regression coefficients from a set of experimental 

speckle images specifically chosen for their diverse real-world texture variations. We 

introduce known noise levels 𝜎𝑎𝑑𝑑𝑒𝑑  into these images, then calculate initial noise 

estimates 𝜎𝑖𝑛𝑖𝑡 using (3.11). Repeating this process over 100 trials and a broad range of 

noise levels produces a robust 𝜎𝑖𝑛𝑖𝑡 dataset for each image. By averaging these results 

elementwise, we obtain a single reference vector. This reference vector, in conjunction 

with the corresponding 𝜎𝑎𝑑𝑑𝑒𝑑  values, is used to build a polynomial mapping function. 

 

3.3 Experiment and Results 

The experiments were conducted using SAR airport images from the publicly available 

RadarS SAR Dataset[6].To maintain consistency and fair comparison with the Gaussian-

Hermite approach[7] and the Generalized Gamma method[8], we introduced controlled 

levels of speckle noise and measured the estimation errors using the same metric. 

 

3.3.1 Evaluation Metric 

To assess the effectiveness of the proposed algorithm, Speckle noise with Matlab 

“imnoise” function was applied to all tested images at varying levels. The noise standard 

deviation ranged from 10 to 100 in increments of 10. The performance evaluation was 

conducted using an error metric derived from: 

 ( )
_

_

% 100%
estimation added noise

added noise

Error
 



−
=   (3.12) 
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3.3.2 Experimental Results of Speckle Noise Estimation 

We first aggregated the errors across all noise levels (std = 10 to 100) and all images in 

our test suite, arriving at an average estimation error. As seen in Table 3.1, our proposed 

method achieves an average noise estimation error of 2.6644%, significantly 

outperforming both the GH-based approach (63.5502%) and the GGD-based approach 

(69.9423%). 

Table 3.1 Comparison of average noise estimation error rates (%)  

for all levels of added speckle noise on all images 

 Proposed GH-based GGD-based 

Average Error 2.6644 63.5502 69.9423 

 

This pronounced difference highlights the effectiveness of our local variance-driven 

weighting strategy combined with DWT- based analysis, which enables better capture of 

the multiplicative nature of speckle noise. The GH-based and GGD-based methods, on 

the other hand, struggle with highly textured and heterogeneous regions, leading to 

substantially higher estimation errors. 

 

A more granular view of the estimation errors for each image is provided in Table 3.2. 

Our approach consistently delivers low estimation errors, even in images with complex 

textures, whereas both the GH-based and GGD-based techniques exhibit highly variable 

errors. Notably, in datasets like BEIJING_shahejichang_2, our proposed method attains 

a near-ideal error of 1.3142%, whereas the GH-based method produces a much larger 

85.636% error, and the GGD-based method is also highly inaccurate at 78.745%. Similar 

trends emerge across all images, reinforcing the robustness and adaptability of our local 
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variance estimation and polynomial regression framework. 

 

Table 3.2 Comparison of average noise estimation error rates (%) 

 for all levels of added speckle noise for individual datasets 

 Proposed GH-based GGD-based 

BEIJING_shahejichang_1 3.1332 36.4373 45.109 

BEIJING_shahejichang_2 1.3142 85.636 78.745 

BEIJING_shahejichang_3 2.5696 46.7041 76.493 

BEIJING_shahejichang_4 4.1386 38.6677 72.049 

BEIJING_shahejichang_5 3.1850 35.466 45.254 

BEIJING_shahejichang_6 1.5565 66.3589 44.299 

BEIJING_xijiaojichang_1 1.4174 22.1305 41.655 

BEIJING_xijiaojichang_2 4.6972 24.8504 77.572 

BEIJING_xijiaojichang_3 1.5758 22.8935 36.875 

Guanghan_jichang_1 6.4368 50.182 42.762 

Guanghan_jichang_2 1.7572 226.2633 70.485 

Guanghan_jichang_3 1.0650 104.5253 71.67 

Guanghan_jichang_4 1.7643 66.038 69.13 

 

Figure 3.3 and Figure 3.4 illustrate the noise estimation trends for selected datasets, where 

our proposed method closely tracks the ground truth across all noise levels. In contrast, 

the GH-based and GGD-based approaches consistently exhibit substantial deviations. In 

Figure 3.5, we provide an aggregated performance comparison across all tested datasets, 

further confirming the superior tracking accuracy and stability of our proposed solution. 
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Figure 3.3 Benchmarking of three methods on BEIJING_xijiaojichang_1 dataset 

 

 

 

Figure 3.4 Benchmarking of three methods on BEIJING_shahejichang_2 dataset 

 

 

 

Figure 3.5 Aggregated comparison of all three methods across datasets 
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3.3.3 Summary of Experimental Findings 

Our proposed DWT-based speckle noise estimation method achieves an average 

estimation error of only 2.6644%, significantly outperforming both the Gaussian-Hermite 

method (63.5502%) and the Generalized Gamma method (69.9423%). The results 

demonstrate that our local variance-driven weighting strategy and polynomial regression 

refinement provide a substantial advantage in accurately capturing the multiplicative 

nature of speckle noise. These findings suggest that our approach is a more reliable 

solution for real-world SAR image analysis, improving noise estimation accuracy and 

enhancing subsequent image processing tasks. 

 

This significant reduction in error is evident both in aggregate evaluations and on a per-

image basis, especially in challenging scenarios with complex textures. From a technical 

standpoint, the method offers a robust framework for accurately capturing the 

multiplicative nature of speckle noise, ensuring that subsequent image processing tasks 

such as feature extraction and classification can be performed with higher fidelity. On a 

commercial level, the high precision and reliability of our approach translate into 

substantial cost efficiencies by reducing computational overhead and improving 

processing times, and offer a competitive edge for deployment in advanced imaging 

systems. Moreover, the versatility of the method suggests promising applications beyond 

SAR imaging, including ultrasound and other high-demand fields where noise reduction 

is critical. 

 

In summary, this work not only sets a new benchmark in speckle noise estimation but also 

paves the way for future innovations in image processing technologies, ensuring both 

technical excellence and significant market impact. 
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Chapter 4 Proposed Speckle Noise Removal 

 

4.1 A New Form BNL Filter 

Let v(x) represent the noisy observation at pixel, and let u(x) denote the noise-free 

reflectance (intensity or amplitude) at the corresponding pixel in a SAR image. 

Additionally, the notations v(x) and u(x) are also used to represent the vectorized patches 

centered at pixel x with dimensions. The multiplicative speckle noise observed in SAR 

images can thus be mathematically formulated as: 𝑣(𝑥)  =  𝑢(𝑥)  ∙  𝑠(𝑥) , where s(x) 

represents the multiplicative speckle component, typically modeled by a Gamma 

distribution governed by the number of looks L. 

 

The refined BNLM estimate 𝑢̂(𝑥) [1] is computed pixel-wise as the weighted average 

of all values u(y) in the neighborhood ∆(𝑥) around pixel x. This is formally given by 

 
( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( )
( )

( )

|
ˆ( )

|

y x

y x

p v x u y p u y u y
u x

p v x u y p u y





=



 (4.1) 

where 𝑢̂(𝑥) is obtain pixelwise as the weighted average of all gray values u(y) in the 

neighborhood Δ(x) of x. The term 𝑝(𝑣(𝑥)|𝑢(𝑦))𝑝(𝑢(𝑦)) acts as the similarity measure 

between v(x) and u(y) 

 

We illustrate the formulation of the modified BNL filter using an intensity image as our 

example, noting that the amplitude scenario yields a comparable formulation. Under the 

assumption of fully developed, statistically independent speckle, the conditional 

distribution 𝑝(𝑣(𝑥)|𝑢(𝑦)) introduced in equation (4.1) can be rewritten as 
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 ( ) ( )( ) ( ) ( )( )
1

| |
N N

n n

n

p v x u y p v x u y


=

=  (4.2) 

where 𝑢𝑛(𝑦)  and 𝑣𝑛(𝑥)  noting the 𝑛 th pixel in the corresponding patches, 

respectively. Assuming that 𝑢𝑛(𝑦)  belongs to the set of potential reflectance values 

corresponding to 𝑣𝑛(𝑥) , the conditional probability density function 𝑝(𝑣𝑛(𝑥)|𝑢𝑛(𝑦)) 

for an intensity SAR image with L-looks can be formulated as shown in [2][3] 

 ( ) ( )( )
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   
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 (4.3) 

where Γ(·) is the gamma function. Based on (4.3), (4.2) can be rewritten as [4] 
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 − + −    

  
  (4.4) 

where h is the smoothing parameter. 

  

While the original BNLM formulation employs a similarity metric defined in the spatial 

domain, this formulation incurs substantial computational overhead due to the use of 

explicit division and logarithmic operations on raw pixel values. In contrast, by 

transitioning to the logarithmic domain via variable substitution and carefully deriving 

the transformed likelihood, we obtain a new distance metric that retains the statistical 

properties of the original model but enables much more efficient computation. 

 Taking the logarithm and summing across all patch elements yields the linear-

domain distance measure based on (4.4): 

 ( )
( )

( )
( ) ( )

1
, ln ln

n

lin n n

n patch n

v x L
d x y u y v x

u y L

 −
= + − 

 
  (4.5) 

Let 𝑠𝑛 = log 𝑣𝑛 , 𝑡𝑛 = log 𝑢𝑛 . Then 𝑣𝑛 = 𝑒𝑠𝑛 , 𝑢𝑛 = 𝑒𝑡𝑛 . The transformation of 
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variables yields: 

 ( ) ( ) ( )| | |n n ns t sn
n n n n n n

n
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= = = =  (4.6) 

Based on (4.6), (4.4) can be written as: 
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 (4.7) 

Assuming independence across patch pixels, the joint conditional density leads to a log-

domain distance based on (4.7): 
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This becomes the dedicated distance metric for SAR despeckling under the log-domain 

formulation.  

 

The result is constructed identically to the BNLM framework: 

 ( ) ( )( ) ( ) ( ) ( ) ( )( )log 2

1
| exp n ns x t y

n n
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p v x u y L e s x t y
h

−



 
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 
  (4.9) 

Let 𝜎2 denote the variance of speckle noise. As commonly adopted in related work such 

as[5], the smoothing parameter ℎ is modeled to scale linearly with the noise level, i.e., 

ℎ = 𝑘𝜎, where 𝑘 ≈ 2 is found to be effective for intensity SAR imagery. At the same 

time, the speckle standard deviation is estimated by our previous noise estimation 

algorithm. 
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Previous works such as 錯誤! 找不到參照來源。 commonly assume a uniform prior 

distribution over 𝑢(𝑦)  to simplify the Bayesian estimator, i.e., 𝑝(𝑢(𝑦)) = 1/|∆(𝑥)| , 

where |∆(x)| denotes the number of candidates in the search region. Additionally, earlier 

BNLM implementations tend to approximate both the unknown reflectance 𝑢(𝑦) and 

the target 𝑢(𝑥)  by their noisy counterparts 𝑣(𝑦)  and 𝑣(𝑥) , respectively. While this 

substitution simplifies computation, it inevitably introduces estimation bias, especially in 

high-variance or heterogeneous regions. 

 

In contrast, our method proposes a refined estimation strategy where the prior estimate 

𝑢′(𝑦)  is not derived from local mean reflectance, but rather from the output of a 

preliminary Wiener filter applied to the speckled image. This choice provides a more 

stable and informative priori estimate that leverages local variance characteristics to 

enhance noise suppression while retaining signal structures. 

 

Further, we integrate a sketch-based structure-aware selection mechanism to guide the 

computation of similarity weights. By analyzing gradient orientation and edge strength, 

this mechanism designates whether a pixel belongs to a structural region. If so, anisotropic 

weighting based on geometric alignment is applied, enabling better preservation of 

directional features such as edges and textures. Critically, rather than assuming a uniform 

prior 𝑝(𝑢′(𝑦)), our approach treats 𝑝(𝑢′(𝑦)) ∝ 𝐺(𝑥, 𝑦), where 𝐺(𝑥, 𝑦) is the sketch-

based anisotropic Gaussian kernel, thus embedding structural information directly into 

the prior. The aggregation subset 𝑁(𝑥) ⊂ ∆(𝑥) is thereby refined not only by intensity 

similarity but also by structural conformity. 
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Together, these two contributions (1) replacing the prior mean with Wiener-based prior 

estimation, and (2) applying sketch-based structural referencing, yield the improved 

estimator: 

 ( )

( ) ( )( ) ( )
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 (4.10) 

where  

𝑝(𝑣(𝑥)|𝑢′ (𝑦)) is the usual log‐domain likelihood term 

𝐺(𝑥, 𝑦) is the sketch‐based anisotropic Gaussian kernel (so that structural patches are 

weighted more heavily), and 

𝑁(𝑥) is the preselected subset of ∆(𝑥). 

 

4.2 A Wiener-based Prior Estimation 

In the original BNLM framework, the a priori mean 𝑢′(𝑦) is computed via a local σ‐

filter that aggregates neighboring pixel intensities to approximate the true reflectance 

before speckle corruption. This local mean plays a critical role in reducing estimation bias 

by supplying a more accurate representation of 𝑢(𝑦)  when evaluating the likelihood 

𝑝(𝑣(𝑥)|𝑢(𝑦)) . However, σ‐filter–based means are themselves susceptible to residual 

speckle and may not optimally balance noise suppression with detail preservation in 

heterogeneous SAR regions. In contrast, our proposed method replaces this σ‐filter mean 

with the output of a Wiener filter applied to the raw speckled image. Specifically, by first 

executing a spatially adaptive Wiener filter, parameterized by local variance estimates, 

we obtain a smoothed image 𝑢𝑤(𝑦) that better approximates the underlying noise‐free 

reflectance. This Wiener‐filtered image serves as the new prior estimate: 
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 ( ) ( ) ( )' ( )wu y u y Wiener v y= =  (4.11) 

Because the Wiener filter incorporates both local mean and variance information, its 

output suppresses speckle more effectively than a simple mean filter while retaining fine 

structural details. Consequently, when computing nonlocal weights, we substitute 

𝑢′(𝑦) = 𝑢𝑤(𝑦)  into the likelihood term 𝑝(𝑣(𝑥)|𝑢′(𝑦)) , thereby reducing bias and 

improving denoising accuracy. This Wiener‐based prior estimation not only aligns with 

the Bayesian rationale of using the best available local estimate but also demonstrates 

significantly enhanced performance in preserving texture and edge information compared 

to the original σ‐filter approach. 

 

4.3 Improved Preselection Based on the Sigma Range 

In the original BNLM formulation, pixel‐level preselection is used to restrict the 

candidate set 𝑁(𝑥) ⊂ ∆(𝑥)  by exploiting the statistical properties of multiplicative 

speckle. Specifically, after computing the local a priori mean 𝑢′(𝑦) (obtained via a σ‐

filter), one defines a threshold 

 max

2

v
T =  (4.12) 

where 𝑣𝑚𝑎𝑥  is the maximum possible SAR intensity. If 𝑢′(𝑦) > 𝑇 the algorithm 

determines a multiplicative interval [𝐼1, 𝐼2] such that 

 
2

1

1 2( ) ,    0 1

I

s

I

p s ds I I=       (4.13) 

and 𝑝𝑠(𝑠) the Gamma‐distributed speckle model with L looks. In practice, 𝜉 is chosen 

close to 0.90~0.95 to cover the bulk of the speckle distribution without including outliers 

錯誤! 找不到參照來源。. Each candidate pixel 𝑦  is included in 𝑁(𝑥)  only if its 
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observed intensity 𝑣(𝑦) satisfies 

 ( ) ( ) ( )1 2' 'u x I v y u x I   (4.14) 

i.e., if 
𝑣(𝑦)

𝑢′(𝑥)
∈ [𝐼1, 𝐼2]. Conversely, when 𝑢′(𝑥) ≤ 𝑇, the prior mean is deemed too small 

to reliably estimate a σ‐interval, so one simply retains all 𝑦 ∈ ∆(𝑥), which means no 

preselection, to avoid “dark‐area” overpruning. 

 

We refine this preselection step by substituting the σ‐filter–based mean with our Wiener‐

filtered prior 𝑢𝑤(𝑥) . Since the Wiener output generally exhibits reduced speckle and 

more accurate local variance estimates, the resulting interval [𝐼1, 𝐼2]  computed from 

𝑢𝑤(𝑥) is tighter around the true reflectance. In other words, for 𝑢𝑤(𝑥) > 𝑇, we solve 

equation (4.13) in exactly the same way, but now 𝑢′(𝑥) = 𝑢𝑤(𝑥) . Consequently, 

candidate pixels 𝑦 are required to satisfy equation (4.14). 

 

4.4 A Sketch‐Based Structural Prior 

In the original BNLM framework, the prior distribution over candidate patches 𝑢(𝑦) is 

assumed uniform 

 ( )
1

( )
( )

p u y
x

=


 (4.15) 

where |∆(𝑥)|  denotes the total number of pixels in the search window. Under this 

assumption, all pixels in ∆(𝑥) are treated equally, and the nonlocal weight reduces to the 

likelihood term alone: 

 ( ) ( ) ( )( ), | 'oriw x y p v x u y=  (4.16) 

 

While this simplification reduces the computational burden, it completely ignores any 
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geometric or structural information, leading to over‐smoothing along edges or thin linear 

features. 

 

To address these shortcomings, we introduce a sketch‐based structural prior that replaces 

the uniform assumption. Let 𝐺(𝑥) denote an anisotropic Gaussian kernel constructed 

from local gradient orientation 𝜃(𝑥)  (extracted via Sobel) and edge strength 

(thresholded by Otsu). We now set 𝑝(𝑢′(𝑦)) ∝ 𝐺(𝑥, 𝑦), which biases the prior in favor 

of pixels 𝑦 aligned with the same local structure as 𝑥. Hence, the combined nonlocal 

weight becomes 

 ( ) ( ) ( )( ) ( ), | ' ,w x y p v x u y G x y=  (4.17) 

where 𝑢′(𝑦)  is the Wiener‐filtered prior estimate of the unknown reflectance at 𝑦 . 

Equivalently, one may normalize 𝐺(𝑥, 𝑦) over the entire search region: 
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So that 
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4.4.1 Sketch Map Extraction 

First, we compute Sobel gradient magnitude 𝐺𝑚𝑎𝑔(𝑥)  and orientation 𝜃(𝑥)  at each 

pixel. Apply Otsu’s method to threshold 𝐺𝑚𝑎𝑔(𝑥) , yielding a binary edge mask 𝐸(𝑥). 

Then we define the sketch map 𝑆(𝑥) as 

 ( ) ( ) ( )magS x G x E x =     (4.20) 

where 𝜏 is a chosen gradient threshold, ensuring strong structural cues are captured. 
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4.4.2 Anisotropic Gaussian Kernel 

Inspired by [14], we want one axis of the Gaussian to lie along the structure (the “major” 

axis, with larger variance), and the other axis across the structure (the “minor” axis, with 

smaller variance). To do this: Let ∆𝑥 = 𝑥𝑥 − 𝑦𝑥  and ∆𝑦 = 𝑥𝑦 − 𝑦𝑦  be the relative 

offsets from pixel 𝑥 to candidate 𝑦. We can rotate these offsets by the local orientation 

𝜃 = 𝜃(𝑥): 

 
1 2sin cos ,   cos sinf y x f y x   = − + =  +  (4.21) 

Choose a minor‐axis standard deviation 𝜎𝑠 (e.g., 1–2 pixels) and an elongation factor 

𝜆 > 1.  

 

Then we define 
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 (4.22) 

Here, the major axis (lengthened by 𝜆 ) aligns with the local structure, allowing 

smoothing along edges, while the minor axis remains narrow to avoid averaging across 

the edge.  

In other words, across‐structure weight (term with 𝑓1 ) penalizes large offsets 

perpendicular to the edge and along‐structure weight (term with 𝑓2) decays more slowly 

along the edge direction encouraging stretching of the kernel along the line or edge. 

 

If candidate 𝑦 lies along the same structure direction as 𝑥, then 𝑓1 ≈ 0 and |𝑓2| may 

be moderate, yielding a relatively large 𝐺(𝑥, 𝑦). Such pixels receive increased weight in 

the BNLM average. 
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Conversely, if 𝑦  rosses a structural boundary, 𝑓1  becomes large, causing 𝐺(𝑥, 𝑦)  to 

become exponentially small. These cross‐boundary pixels thus contribute negligibly, 

preserving edge sharpness. 

 

By embedding this sketch‐based prior into the BNLM algorithm, we ensure that 𝑤(𝑥, 𝑦) 

strongly favors pixels that both statistically align in intensity (via the likelihood) and 

geometrically align in structure (via 𝐺(𝑥, 𝑦)). The combined estimator 𝑢′(𝑥) in (4.10) 

thus achieves a superior balance between despeckling and edge/line retention, 

outperforming the original uniform‐prior BNLM in preserving fine geometric details. 

 

4.5 Experimental Results 

In order to quantitatively assess despeckling performance, we use two widely adopted 

image‐quality metrics: Peak Signal‐to‐Noise Ratio (PSNR) and Structural Similarity 

Index Measure (SSIM). PSNR evaluates the pixel‐wise fidelity between the denoised 

output and the original, pre‐noise image (i.e., the dataset image before synthetic speckle 

was added). Mathematically, 

 
2

10PSNR=10log
MAX

MSE

 
 
 

 (4.23) 

where MAX is the maximum possible pixel value (e.g., 1.0 in normalized images) and 

MSE is the mean squared error between the filtered result and the original image. A higher 

PSNR indicates closer approximation to the original appearance. SSIM, on the other hand, 

measures perceived structural similarity by combining local luminance, contrast, and 

structural comparisons; it ranges from 0 to 1, with larger values indicating better 

preservation of edges and textures. Together, PSNR and SSIM provide complementary 
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perspectives: PSNR quantifies overall error reduction relative to the original image, while 

SSIM gauges how well geometric and textural features are maintained. 

To rigorously validate the proposed sketch-based BNLM framework, we evaluated 

performance on a set of 208 synthetic SAR airport images from the publicly available 

RadarS SAR Dataset. All images were processed under identical environment and 

parameters. We compared our method against four well‐accepted despeckling techniques: 

1. Lee Filter 

2. Frost Filter 

3. SAR-BM3D 

4. Original Bayesian Nonlocal Means Filter 

5. Diffusion Model 

The following subsections present quantitative metrics (PSNR, SSIM), visual 

comparisons, and runtime analysis. 

 

4.5.1 Quantitative Metrics 

We first report the average PSNR and SSIM values obtained by each method over all 208 

test images. 

Table 4.1 Average PSNR and SSIM across all test images 

Method PSNR (dB) SSIM 

Noisy Input 15.053 0.3437 

Lee Filter 20.833 0.5366 

Frost Filter 21.049 0.5593 

SAR‐BM3D 21.017 0.5297 

Original BNLM 22.2286 0.6987 
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Diffusion Model 15.0546 0.3511 

Proposed 23.1713 0.7797 

Next, Table 2 isolates the PSNR improvement (𝛥𝑃𝑆𝑁𝑅) of each method relative to the 

noisy baseline: 

Table 4.2 Average PSNR Gain over Noisy Input 

Method 𝛥𝑃𝑆𝑁𝑅 (dB) 

Lee Filter +5.7800 

Frost Filter +5.9960 

SAR‐BM3D +5.9640 

Original BNLM +7.1756 

Diffusion Model +0.0016 

Proposed +8.1183 

 

 

4.5.2 Visual Results 

Quantitative metrics provide objective comparisons, but visual inspection remains 

essential to gauge perceptual quality. Six example images from the dataset are shown to 

as below. 

 

In the figures, Lee filters oversmooth the edges, causing noticeable blurring. Frost better 

preserves edges a little bit, and SAR-BM3D introduces block‐like texture artifacts along 

straight lines. Original BNLM maintains reasonable edge sharpness yet slightly blurs thin 

lines due to its isotropic prior. 

Our method retains the boundaries and subtle textural variations, owing to the anisotropic 
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kernel alignment guided by the sketch map. The annotated SSIM of 0.7770 confirms 

superior structure preservation. 

 

Figure 4.1 Denoising results of Image “BEIJING_shahejichang_2_11” 
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Figure 4.2 Denoising results of Image “BEIJING_shahejichang_1_16” 
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Figure 4.3 Denoising results of Image “BEIJING_shahejichang_1_4” 
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Figure 4.4 Denoising results of Image “BEIJING_shahejichang_3_5” 
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Figure 4.5Denoising results of Image “BEIJING_ xijiaojichang_3_6” 
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Figure 4.6Denoising results of Image “BEIJING_ xijiaojichang_3_7” 
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4.5.3 Processing Time and Efficiency 

Beyond denoising quality, computational efficiency is crucial for large‐scale or real‐time 

SAR image analysis. Table 3 compares average processing times per 512×512 image. 

While classical local filters (Lee: 0.066s, Frost: 0.7248s) remain fastest, they compromise 

visual quality. SAR-BM3D (1.633s) improves structural fidelity but introduces 

considerable computational overhead. Original BNLM, despite its strong despeckling 

performance, exhibits impractically high runtime (123.8218s). 

 

Table 4.3 Average Processing Time 

Method Runtime (sec) 

Lee Filter 0.066 

Frost Filter 0.7248 

SAR‐BM3D 1.633 

Original BNLM 123.8218 

Diffusion Model 59.03 

Proposed 3.2434 

 

Lee Filter: 0.066 s, fastest local method but limited quality. 

Frost Filter: 0.7248 s, moderate speed with improved smoothing. 

SAR-BM3D: 1.633 s, advanced patch grouping at moderate cost. 

Original BNLM: 130.04 s, exhaustive spatial-domain matching. 

Diffusion Model: 59.03s, second longest time with lowest performance. 

Proposed Method: 3.2434 s, ~40 × speedup over original BNLM. 
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This acceleration arises from:  

Log‐domain distance computation, which replaces repeated divisions and logarithms on 

raw intensities with more efficient exponentials on precomputed log‐patches. 

Sketch‐based preselection, which prunes candidates outside the structural σ‐range before 

exhaustive patch matching. 

Anisotropic kernel weighting, which focuses computations on fewer, more relevant 

patches aligned with local geometry. The proposed method thus achieves near‐real‐time 

performance without compromising denoising accuracy, making it well‐suited for 

onboard satellite processing and large‐batch SAR enhancement. 

 

 

4.5.4 Summary of Experimental Findings 

PSNR & SSIM: Proposed method achieves 23.17 dB PSNR and 0.7797 SSIM in average, 

surpassing all baselines in both mean and consistency. 

Visual Quality: Demonstrates superior edge preservation and speckle suppression across 

varied SAR scenes. 

Efficiency: Balances high-quality despeckling with practical runtimes (3.24 s/image) 

suitable for large-scale applications. 

These results validate the sketch-based BNLM framework as an effective and efficient 

SAR despeckling solution. 
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Chapter 5 Conclusion 

Synthetic Aperture Radar imagery plays a vital role in remote sensing due to its ability to 

capture high-resolution data regardless of weather or lighting conditions. However, the 

inherent presence of speckle noise, originating from the coherent nature of radar signal 

reflection, severely degrades image quality, complicating tasks such as segmentation, 

classification, and object detection. Unlike additive Gaussian noise, speckle noise is 

multiplicative and signal-dependent, rendering conventional denoising techniques 

suboptimal for SAR applications. 

 

To tackle this challenge, both speckle noise estimation and suppression must be addressed 

in a targeted, structure-aware manner. Accurate noise estimation serves as a cornerstone 

for adaptive filtering, yet existing approaches often rely on strong assumptions, which fail 

in heterogeneous or highly textured regions. Classical filters such as Lee and Frost 

provide efficient noise suppression but tend to oversmooth fine details and assume 

stationary statistics, limiting their performance in real-world SAR scenarios. 

 

Recent advances in transform-domain processing and nonlocal methods have 

demonstrated improved performance by exploiting patch redundancy and multiscale 

decomposition. BM3D-based extensions and Bayesian nonlocal means (BNLM) filters 

exemplify this trend, but they either suffer from high computational complexity or lack 

structural adaptivity. Moreover, the reliance on noisy patches as priors introduces bias, 

particularly when structure and texture vary rapidly across the image. 

 

In this thesis, we propose an integrated framework for efficient speckle noise estimation 
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and suppression, tailored for SAR imagery. The first stage introduces a novel log-DWT-

based local variance estimation strategy, refined via polynomial regression to robustly 

capture noise statistics across diverse scenes. The second stage enhances the BNLM filter 

through two key contributions: a Wiener-based prior estimator and a sketch-based 

structural prior, both designed to improve denoising accuracy and edge preservation. 

 

Extensive experiments on the publicly available RadarS SAR airport dataset confirm the 

superiority of our approach. The proposed method not only achieves significantly lower 

estimation error compared to state-of-the-art estimators, but also demonstrates notable 

improvements in PSNR and SSIM for despeckling, while maintaining practical runtime 

performance. This work thus contributes a scalable and structure-aware solution for SAR 

image analysis, with promising applications in real-time remote sensing and downstream 

computer vision tasks. 
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