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摘要

橋梁作為交通運輸系統中關鍵的基礎建設，其結構安全攸關公眾生命財產之

保障與基礎設施之永續運作。隨著橋梁使用年限逐漸提高，結構劣化問題日益嚴

重，傳統仰賴人力進行的橋梁檢測方法，存在檢測效率低落、人力成本高昂、作

業環境危險及檢測結果主觀性高等諸多限制，難以因應大量橋梁設施的日常維護

需求。面對此一挑戰，如何發展具即時性、自動化、低成本與高準確率之橋梁檢

測技術，已成為當前土木工程領域的重要研究議題。

為解決上述問題，本研究提出一套結合深度學習影像辨識與同步定位與地圖

建構（Simultaneous Localization and Mapping, SLAM）之無人機（Unmanned Aerial

Vehicle, UAV）智慧檢測系統。系統架構包含前端影像蒐集、中段即時推論與定

位、以及後端三維建模與資料整合等模組。前端部分以無人機搭載光學相機進行

橋梁影像拍攝，並以 NVIDIA Jetson Orin Nano作為邊緣運算平台，即時執行影像

辨識及同步定位與地圖建構。

影像辨識模組採用 YOLOv9進行多類別劣化偵測，針對常見缺陷類型如裂

縫、剝落與白華進行訓練與評估，訓練資料來自公開資料集，測試資料則為實地

拍攝之影像，並透過灰階轉換與超參數調整優化模型性能。同步定位與地圖建構

部分，採用 ORB-SLAM3作為核心演算法，於飛行過程中估算無人機姿態並同步

建立稀疏地圖。後續則結合其輸出的關鍵幀與相機外參資訊，匯入 COLMAP進
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行稠密點雲重建。為實現缺陷資訊於三維空間中的準確標註與視覺化展示，本研

究進一步整合建築資訊模型（Building Information Modeling, BIM），並透過點雲配

準技術進行空間對齊，最終輸出包含缺陷位置、構件對應、TWD97坐標與影像標

註之結構化檢測報告。

實驗結果顯示，最終 YOLOv9模型於本研究自建測試集上達到 mAP@0.5為

0.657，於道南橋進行之現地飛行測試中，可穩定完成即時辨識與定位作業，成

功標註 25處劣化並建立完整三維點雲模型，Micro F1-score達 0.656，驗證系統整

合效能與即時性優勢。整體而言，本研究所提出之系統具備高度模組化、即時運

作、低成本與高擴充性等特性，能有效協助橋梁管理單位進行結構檢測與缺陷紀

錄，提升傳統檢測流程之智慧化與作業效率，並提供具實務應用潛力之技術解決

方案。

關鍵字：無人機、橋梁檢測、影像辨識、同步定位與地圖建構、邊緣運算、建築
資訊模型
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Abstract

Bridges are critical components of transportation infrastructure, and their structural

integrity is essential for public safety and long-term serviceability. As aging structures face

increasing deterioration, traditional manual inspections have proven inefficient, costly,

hazardous, and prone to subjective errors—making them unsuitable for large-scale routine

monitoring. Addressing these challenges requires an automated, real-time, and accurate

inspection solution.

This study proposes aUAV-based intelligent inspection system integrating deep learn-

ing and Simultaneous Localization and Mapping (SLAM). The system consists of three

modules: image acquisition via UAVs, real-time inference and localization using the

NVIDIA Jetson Orin Nano, and 3D reconstruction and defect annotation. YOLOv9 is em-

ployed to detect common defects such as cracks, spalling, and efflorescence. The model

is trained on public datasets and tested with field-collected images, with performance en-

hanced through grayscale preprocessing and hyperparameter tuning.

iv
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For localization, ORB-SLAM3 estimates the UAV＇s pose and generates sparse maps

in real time. Keyframes and camera poses are then used in COLMAP to reconstruct dense

point clouds. These are aligned with Building Information Modeling (BIM) via point

cloud registration to produce accurate 3D annotations and structured inspection reports

containing defect locations, component IDs, and TWD97 coordinates.

Experimental results show that the optimizedYOLOv9model achieved anmAP@0.5

of 0.657. Field tests at Daonan Bridge demonstrated real-time detection andmapping of 25

defects with a micro F1-score of 0.656. The proposed system is modular, low-cost, and

scalable, offering an effective solution for automating bridge inspection and enhancing

maintenance workflows.

Keywords: Unmanned Aerial Vehicle (UAV), Bridge Inspection, Image Recognition, Si-

multaneous Localization and Mapping (SLAM), Edge Computing, Building Information

Modeling (BIM)
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第一章 緒論

1.1 研究背景與動機

臺灣地勢特殊，山區地勢陡峭，平原地狹人稠，造就了高度集中的都市發展

與完善的交通建設。根據劉翠溶的研究 [1]，臺灣都市化程度自 20世紀中期以來

顯著提升，平地地區的城市開發使得人口聚集現象越發明顯。為因應密集的人口

需求，部分都會區逐步發展出了密集的公路網絡與交通系統。

此外，臺灣山區開發程度高，為了連結山區與平原的交通，興建了大量的橋

梁與隧道作為基礎設施。根據交通部運輸研究所的統計，截至 2025年 6月 6日，

臺灣現有橋梁共計 26,338座，其中車行橋梁 22,996座、鐵道橋梁 1,490座及人行

天橋 1,852座，構成了全國交通網絡的重要支柱 [2]。這些基礎建設不僅滿足了交

通便利性的需求，也因應了特殊地理環境的挑戰。

然而，橋梁結構長期受到自然環境如地震、颱風與水流沖刷的影響，容易出

現劣化或損壞。臺灣歷年來曾發生多起因橋梁劣化導致的事故，例如 2019年南

方澳大橋坍塌事件，因鋼索鏽蝕斷裂導致橋梁坍塌，造成重大傷亡，凸顯了傳統

橋梁檢測方法的不足 [3]。因此，定期檢測橋梁結構的安全性，對於確保交通暢

通與公共安全至關重要。當今實務上常用的橋梁檢測方法包括目視檢測、無損

檢測技術（如超音波檢測、雷達檢測）以及結構健康監測系統（Structural Health

1
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Monitoring, SHM）[4–6]。

目視檢測雖然成本低且操作簡單，但高度依賴檢測人員的經驗，容易導致主

觀判斷錯誤 [7]。無損檢測技術能夠提供較為準確的結果，但需要昂貴的專業設

備，並且部分方法僅能檢測局部區域，無法全面掌握橋梁的整體健康狀態 [5]。此

外，結構健康監測系統能夠提供即時數據，但其安裝成本高昂，且長期維護需求

高，難以普遍應用於橋梁結構 [6]。

隨著電腦視覺與深度學習技術的快速發展，目視檢測逐漸能藉由自動化的

影像辨識系統來替代傳統人工檢測，顯著提高檢測效率與準確性 [8]。深度學習

技術，例如卷積神經網絡（Convolutional Neural Networks, CNNs），在結構裂縫檢

測、損傷分類與橋梁劣化評估中表現出色，能有效處理大量影像數據並提供精確

的檢測結果 [7, 8]。

同時，邊緣運算硬體的進步（如 NVIDIA Jetson等嵌入式系統），使得即時運

算能力得以實現在前端裝置上，大幅降低了數據傳輸延遲與計算資源需求，為橋

梁檢測的自動化與高效化提供了技術基礎 [9, 10]。

在突發災害情境下，例如地震、洪水或橋梁損壞事件，如何即時掌握橋梁結

構是否安全，對緊急應變極為關鍵。Mandirola等人於災後橋梁檢測研究中指出，

無人機可於事故發生後快速部署，第一時間取得橋面高解析度影像，並快速辨識

潛在劣化區域，減少人力進入危險區域的風險 [11]。該研究強調了「現場即時判

斷能力」在橋梁檢測任務中的重要性，特別是在災後初期階段，若能迅速提供決

策依據，將有助於有效規劃搶修與交通管制。

美國國家公路與運輸官員協會（AASHTO）於 Asphalt Magazine報告中探討

了無人機（Unmanned Aerial Vehicle, UAV）在橋梁檢測中的應用，指出無人機能

夠提高檢測效率、降低成本並提升安全性。例如，密西根州交通部的研究顯示，

2
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使用無人機進行橋面檢測的成本約為傳統方法百分之 5，且所需時間大幅減少。

此外，無人機還能減少交通中斷，降低使用者延誤成本 [12]。

此外，UAV技術的普及進一步促進了自動化橋梁檢測的應用。無人機具有靈

活的操作性能，能夠抵達人工難以接近的區域，並以低成本完成橋梁的全方位影

像採集。在土木工程領域，無人機已被廣泛應用於結構檢測、災害評估與建築監

測等場景 [13, 14]。例如，日本東日本高速道路株式會社（NEXCO東日本）已將

無人機應用於橋梁定期檢測，以減少對交通的影響並提高檢測品質 [15]。

這些技術的發展與應用背景為本研究提供了堅實的技術基礎，亦突顯即時性

與現場反應能力在橋梁劣化檢測系統中的必要性。本研究因此結合無人機、電腦

視覺與邊緣運算，提出能夠應對突發事件的高效檢測架構，期望能提升橋梁安全

維護作業的即時性與智慧化程度。

1.2 研究目的

傳統以人力方式進行的橋梁檢測方法存在許多限制，包括高度依賴人工判

斷、檢測效率低下，以及耗費大量人力與資源。這類方法往往需要檢測人員攀爬

至橋梁結構的高危險區域，存在安全隱患，同時因受檢測人員經驗與視覺條件的

影響，可能導致檢測結果的不一致與主觀偏差 [16]。

隨著無人機（UAV）技術的成熟，結合電腦視覺與深度學習技術的橋梁檢測

方法逐漸受到關注。無人機具有靈活性與低成本的特點，可高效完成橋梁全方位

影像資料的收集，而深度學習技術則能提供準確的劣化自動辨識能力，顯著提升

橋梁檢測的效率與準確性 [17]。為了解決傳統方法的不足，並滿足現代橋梁檢測

的需求，本研究提出結合無人機與電腦視覺技術的新檢測方法。

3
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本研究的主要目標如下：

1. 多類別劣化辨識：目前多數研究僅聚焦於單一橋梁劣化類型（如裂縫、混凝

土剝落），對於多類別劣化的同步辨識尚屬不足 [18]。本研究將建立能夠即

時識別多類別劣化的影像辨識模型，以提升橋梁檢測的適用性與精準性。

研究問題：應採用何種深度學習架構與訓練流程，以提升多類別劣化辨識之

即時性與精確性？不同劣化類型之資料蒐集與模型訓練有何挑戰？

2. 三維劣化定位與可視化：傳統方法在記錄劣化位置時，多依賴人工目視觀測

或簡單的影像套疊比對技術，耗費人力且難以準確定位劣化位置。為提升定

位精度，本研究將引入同步定位與地圖建構（Simultaneous Localization and

Mapping, SLAM）技術，透過無人機拍攝影像建立三維點雲模型，提供可視

化的檢測結果 [19]。並結合 BIM模型中的空間資訊，令橋檢人員知悉劣化

確切位置，以利後續維修與決策作業。

研究問題：如何結合 SLAM技術與 BIM模型，將多類劣化資訊正確投影於

三維空間中，並實現自動化座標轉換與可視化呈現？在複雜橋梁環境下，三

維定位與標註流程如何設計，以兼顧精度與實用性？

3. 高機動性的邊緣運算橋梁檢測系統：傳統的結構健康監測（SHM）系統雖具

備即時監測能力，但其硬體需在橋梁建設或施工後事先佈設，部署困難且機

動性差，且系統建置與維護成本高昂。本研究將透過 NVIDIA Jetson Orin

Nano進行邊緣運算，提升即時處理能力，結合無人機巡檢以即時進行缺陷

標註，並快速提供檢測結果 [10]。

研究問題：如何於嵌入式運算平台（如 NVIDIA Jetson Orin Nano）上實現即

時影像處理、劣化辨識與標註？在運算資源有限下，如何平衡模型精度、推

論速度與系統穩定性？
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綜上所述，本研究致力於開發一套高效率、高準確率且全面的橋梁劣化檢測

系統，融合多類別劣化辨識、三維劣化位置標註技術以及邊緣運算技術，以提升

檢測即時性並降低運算成本，使橋梁劣化檢測作業更加智慧化與自動化。

1.3 論文架構與研究流程

本研究共分為五個章節，各章節內容安排如下：

第一章為緒論，說明橋梁檢測的重要性及傳統方法的限制，進一步闡述本研

究的動機與目標。

第二章為文獻回顧，總結橋梁檢測相關領域的研究進展，包括現行檢測規

範、無人機應用、深度學習模型設計、SLAM定位方法等關鍵技術，並整理其優

勢與限制作為後續系統規劃基礎。

第三章為系統建構方法，說明本研究建立之橋梁劣化即時檢測系統的整體架

構，包括硬體組成、影像辨識模型訓練流程、ROS模組整合與後處理機制設計等

內容。

第四章為系統驗證與實測，分別說明模型訓練成果、前導實驗與正式實驗之

流程與目的，並呈現系統於實地飛行中所獲得之辨識結果與三維標註效果，進行

後處理與結果展示。

第五章為結論與建議，總結本研究成果與技術貢獻，並針對系統之潛在侷限

提出改善方向與後續應用建議。

本研究之整體流程可區分為四個階段，如圖 1.1所示。首先進行需求分析，

並針對現行規範與法規及現有技術進行全面盤點與探討，以奠定後續系統設計的
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基礎。再根據前述分析，依序完成資料集建立、硬體串接、ROS模組整合與後處

理流程設計。此外，模型訓練與測試亦同步進行，以形成完整之系統架構。接著

透過前導實驗與正式實驗，驗證系統於實地環境下之可行性與穩定性。最終，進

行後處理與成果展示，並歸納本研究的主要貢獻與未來展望。

圖 1.1: 研究流程圖
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第二章 文獻回顧

2.1 橋梁檢測定義與國內規範

橋梁檢測屬於專業的工程作業，為確保各單位作業一致，建立明確的檢測規

範與評估標準極為重要。透過制度化的規範，不僅能指引檢測作業流程，更可作

為後續缺陷辨識模型訓練與評估之基礎依據。以下將說明中華民國現行橋梁檢測

制度，並針對鋼筋混凝土橋梁常見劣化項目與辨識準則進行整理。

2.1.1 檢測制度與評估指標

我國現行的橋梁檢測作業有明確的分類與定義，並訂有正式規範作為依據。

例如交通部頒布之《公路橋梁檢測及補強規範》規定，橋梁檢測以目視檢查為主、

儀器檢測為輔，需於定期週期以及特定時機（如重大天然災害後）對橋梁各構件

進行全面檢查 [20]。定期檢測旨在及早發現橋梁構件的問題，掌握損傷劣化情況，

並採取必要對策以維持橋梁結構之良好狀態。檢測結果通常以圖繪或照片詳細記

錄各處劣化或損傷部位，並透過量化指標評估構件劣化程度，建立橋梁現況的基

本評估資料。許多國內單位會對每一橋梁構件劣化情形給予 D值、R值、U值等

指標（分別代表損壞程度、修復緩急以及使用功能受影響程度），再依各構件權重

計算全橋的綜合評估分數與狀況指標，作為後續維修補強優先順序的依據。
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2.1.2 橋梁檢測類型分類

橋梁檢測類型依據國內規範主要可分為下列幾種 [20]：

• 日常巡查：由養護單位人員對橋梁進行日常的巡迴檢查，以早期發現異常或

損傷徵兆。巡查頻率視橋齡及橋梁等級而定，例如臺北市對橋齡 30年以上

的橋梁每天巡查一次、15～30年每 3天一次、15年以下每 7天一次 [21]。

• 定期檢測：定期對所有橋梁構件進行例行的全面檢測評估，以確保橋梁結構

安全。例如臺北市政府規定一般市區橋梁原則上每 2年須進行 1次結構安全

檢測，重要橋梁則提高至每年 1次 [21]。

• 特別檢測：當橋梁遭遇特殊事件（如強烈地震、重大颱風、水患沖刷）或發

現重大劣化疑慮時所進行的額外檢測，針對可能受損的構件進行深入調查與

評估。

2.1.3 RC橋梁表面劣化項目與辨識標準

在鋼筋混凝土橋梁的目視檢查中，國內規範明確定義了各種常見表面劣化類

型及其評估基準 [20]。例如：

• 混凝土裂縫：細微髮線裂縫且無滲水、無鋼筋鏽蝕痕跡者屬輕微劣化；若伴

隨滲水或鏽蝕，則視為中重度劣化。

• 混凝土剝落與鋼筋外露：如保護層脫落並露出鏽蝕鋼筋，屬嚴重劣化。

• 白華與滲水：如混凝土表面出現白色結晶沉積伴隨水跡，則視為滲水性劣化

指標。
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• 構件傾斜與下陷：若影響結構穩定與行車安全，則屬最高等級劣化。

上述國內評估準則為本研究定義橋梁劣化辨識標準之重要依據；各類劣化類

型的判定門檻，皆參照規範所載描述與等級標準設定。此舉確保影像辨識結果與

國家標準一致，具備工程實用性與政策接軌性。

2.2 劣化辨識技術的發展

橋梁結構的劣化檢測是確保基礎設施安全的重要環節。隨著人工智慧與深度

學習技術的快速發展，近年來研究者紛紛嘗試利用影像辨識方法來提升檢測效率

與準確度。本節將依據「離線影像辨識」與「即時物件檢測」兩大方向，回顧相

關的研究成果。

2.2.1 離線影像辨識與多目標劣化檢測

早期橋梁劣化檢測主要依賴目視檢查，高度仰賴檢測人員經驗，易產生主觀

誤差且效率低下。為克服這些限制，研究者開發了基於手工特徵提取的技術，如

邊緣檢測與紋理分析，用於識別裂縫與剝落等缺陷 [22]。然而，這些方法在複雜

環境中表現欠佳，且難以應對多樣化的劣化類型。隨著深度學習技術的進展，特

別是卷積神經網絡（Convolutional Neural Networks, CNNs）的應用，劣化檢測的

準確性與效率顯著提升 [8]。

Cha等人於 2017年提出一種基於 CNN的橋梁裂縫檢測方法，不需手動特徵

提取即可自動辨識影像中的裂縫 [8]。而 Yeum與 Dyke於 2015年利用影像處理技

術發展出自動偵測橋梁裂縫的方法，顯著提升了檢測效率與準確度 [7]。Zou等人

於 2019年提出 DeepCrack，該模型結合多尺度與層級特徵來強化細小與不連續裂

9

http://dx.doi.org/10.6342/NTU202502165


doi:10.6342/NTU202502165

縫的辨識能力。其在多個實驗資料集上皆展現出優異的像素級分割效果，為橋梁

結構劣化監測提供了重要依據 [23]。另一方面，Spencer Jr. 等人於 2019年統整了

電腦視覺技術在橋梁檢測中的最新進展，強調人工智慧與機器學習在自動化監測

領域未來將發揮更大潛力 [24]。

近年來，基於 Transformer的模型在影像辨識領域表現突出。Wang與 Su於

2022年開發了一種基於 Transformer的裂縫分割模型，該模型透過多層自注意力

機制捕捉影像中的長距離相依性，提升了對裂縫形態變化的適應性 [25]。相較於

傳統 CNN，Transformer在處理不同材質與光線條件下的裂縫檢測時表現更優，尤

其在裂縫形態複雜或背景雜亂的情況下，能更精確地分割裂縫區域。

多目標劣化檢測方面，Hüthwohl等人於 2019年提出一個三階段多分類器系

統：首先利用 CNN進行初步分類，識別潛在缺陷區域；接著透過特徵提取網路

細化劣化區域；最後以決策樹進行最終分類，精確辨識裂縫、剝落與銹蝕等多類

混凝土缺陷，有效降低人工檢查的主觀影響 [26]。Mundt等人於 2019年發布了

CODEBRIM資料集，涵蓋五種常見缺陷，並考量缺陷間的重疊與多樣性，為多目

標分類提供更具挑戰性的訓練數據。該研究同時運用元學習技術最佳化 CNN架

構，使模型快速適應新型橋梁結構與損害模式 [27]。此外，CrackEmbed方法將裂

縫視為異常特徵嵌入點雲數據中，結合深度學習進行分割與檢測，顯著提升災後

結構裂縫識別的精度 [28]。

2.2.2 即時物件檢測與多重缺陷辨識

即時物件檢測技術的發展為橋梁劣化檢測帶來新機遇。Redmon等人於 2016

年提出的 YOLO（You Only Look Once）技術，採用單一神經網路同時預測物

件邊界框與類別機率，顯著提升即時檢測的效率與準確度 [29]。後續版本如
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YOLOv4引入 CSPNet架構與馬賽克資料增強技術，在不降低速度的情況下，顯

著提升了準確率 [30]。隨著技術演進，Wang等人於 2024年在先前版本的基礎上

提出了 YOLOv9架構，結合可編程梯度資訊（PGI）機制與廣義高效層聚合網路

（GELAN）架構，使其在低延遲應用（如無人機橋梁巡檢）中表現更為優異 [31]。

Ren等人於 2015年所提出的 Faster R-CNN，則代表兩階段偵測技術的主流架構，

其透過 RPN（Region Proposal Network）生成候選區域並進行分類，在準確率上表

現出色，雖然推論速度略慢，卻適合高精度需求場景 [32]。

針對多重損害特徵的即時辨識，Ali等人在 2021年的研究證實，在 GPS訊號

受限環境下，結合無人機（UAV）與深度學習的 Faster R-CNN模型，可有效進行

多目標缺陷的探測與定位。此方法在無人機自主巡檢情境下能取得穩定成果，展

現其在惡劣環境中的適應性與泛化能力 [33]。此外，Zhang等人於 2020年提出基

於 YOLOv3的單階段檢測器，並結合遷移學習與焦點損失技術，能有效偵測包括

裂縫、剝落及鋼筋外露等多種類型的橋面損害，在提升檢測準確度的同時，也兼

具良好的即時性與計算效率 [34]。

即時檢測技術在無人機巡檢中實現邊緣運算與即時反饋，但計算資源限制與

模型運算需求將是本研究會面對的挑戰。

2.2.3 性能比較與挑戰

表 2.1總結了劣化辨識技術特點與指標，並分析其挑戰。

雖然 Transformer、DeepCrack等方法常應用於離線處理流程，具備優異的空

間辨識能力，適合複雜裂縫特徵分析；而 YOLO系列、Faster R-CNN等方法則以

速度見長，在多數研究中展現出良好的即時處理潛力。然而，是否能達成即時運

作，仍須視實際的系統設計與部署環境而定，並非單由模型架構即可決定。
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表 2.1: 劣化辨識技術性能比較

參考文獻 技術 優勢 挑戰
Wang與 Su [25] Transformer分割模型 長距離特徵學習能

力強
訓練成本高、需大
量數據

Zou等人 [23] DeepCrack (多尺度 CNN) 裂縫分割精度高，
適應非連續裂縫

易受背景雜訊干擾

Hüthwohl等人 [26] 三階段分類系統 多類缺陷細分類 系統複雜、需大量
計算

Mundt等人 [27] CODEBRIM + 元 學 習
CNN

多目標泛化能力佳 標註困難、資料建
構成本高

Cha等人 [8] CNN影像分類 自動特徵提取，結
構簡單

光照敏感、依賴資
料品質

Redmon等人 [29] YOLOv1 單階段偵測速度快 難以處理小尺寸目
標

Bochkovskiy 等 人
[30]

YOLOv4 + CSPNet 精度與速度平衡佳 網路架構複雜

Wang等人 [31] YOLOv9 + PGI/GELAN 適用低延遲場景、
邊緣部署

需進一步模型精簡
化

Ren等人 [32] Faster R-CNN + RPN 準確率高，擅長多
類別辨識

推理速度較慢，不
利即時應用

Ali等人 [33] UAV + Faster R-CNN GPS 不足下仍可穩
定辨識

對硬體與能耗要求
高

Osco等人 [35] 深度學習於 UAV 應用總
覽

多應用場景整合，
強調實務潛力

模型泛化性與資料
標註仍為挑戰

綜觀這些方法，儘管在準確度與多目標偵測能力上已持續進步，仍面臨數項

挑戰，包括：資料集標註成本高昂、模型泛化能力不足，以及在資源受限設備上

兼顧速度與精度的困難，尚未形成可即時部署的完整檢測流程。

2.3 無人機影像辨識應用於土木工程

Osco等人於 2021年回顧了無人機（UAV）在農業、建築、災害監測等領域

的深度學習應用，指出 UAV結合 AI具有高度自動化潛力 [35]。由於無人機具備

高機動性與低成本優勢，能夠輕鬆抵達傳統人工作業難以到達的橋梁或建築結構

區域，並透過深度學習技術進行劣化辨識、維修評估與監測資料的收集。相較於

傳統的地面檢測與高空作業平台，無人機能顯著降低作業風險與時間成本。
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2.3.1 橋梁缺陷檢測與裂縫辨識

無人機結合影像辨識技術已廣泛應用於橋梁裂縫等缺陷的檢測。王姿樺等人

於 2022年利用 Faster R-CNN模型搭配 ResNet50骨幹網路，對無人機拍攝的橋梁

影像進行裂縫辨識。該方法在不同材質（如混凝土與鋼結構）的橋梁中均展現穩

定檢測效果，平均精度（mAP）達 80.7%，其結果顯示該方法在不同材質的橋梁

構造中均能保持穩定的檢測效果 [36]。張永辰等人於 2023年採用 YOLOv4模型

進行裂縫辨識，並開發裂縫寬度計算方法，通過影像像素校準技術實現毫米級精

度的測量，裂縫量測精度優於 0.22 mm，為結構安全評估提供精確數據 [37]。蔡

宜真於 2024年透過機器人作業系統（ROS）建立即時自動化檢測系統，整合無人

機影像與深度學習模型，提升橋梁裂縫檢測效率與準確度 [38]。此外，饒見有等

人於 2024年採用 DeepLabV3++進行影像語意分割，能同時辨識剝落、鋼筋銹蝕、

白華等多種劣化現象，有效減少人工介入需求 [17]。

Kao等人於 2022年進一步提出一套搭載雷射測距模組的無人機橋梁檢測系

統，能自動辨識並量測裂縫長度與深度，並整合圖像處理與位移資料進行智慧化

損傷判斷，其平均誤差在 1%以內 [39]。該研究證實整合感測器與 AI模型的 UAV

平台具備高精度與高效率的橋梁裂縫檢測能力，並具現地部署潛力。

2.3.2 三維測繪與缺陷可視化

無人機在三維測繪與結構建模領域亦展現出高度應用潛力。藉由搭載高解析

度相機與各類感測器，無人機能快速獲取大範圍影像資料，進而生成精確的三維

模型，顯著降低傳統測量所需的人力與時間成本。Ellenberg等人於 2016年採用無

人機拍攝的熱影像來偵測橋面剝離現象，不需直接接觸結構表面即可發現內部潛

在劣化，展示出紅外線影像在橋梁健康監測中的可行性與高效性 [40]。
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此外，Nex與 Remondino於 2014年回顧了無人機在 3D測繪領域的應用，並

強調飛行高度、相機參數及影像重疊度對三維建模精度的影響。他們指出，影像

重疊度達百分之 80，並適當控制飛行高度，可有效降低模型幾何誤差；且多旋翼

無人機適合局部精細掃描，而固定翼無人機則在廣域測繪中更具效率 [41]。

隨著技術進步，LiDAR感測器亦逐步整合至無人機系統中，進一步提升三維

測繪的精度與應用範疇。Bolourian與 Hammad於 2020年提出一種基於 LiDAR的

路徑規劃方法，通過分析三維點雲數據來預測缺陷可能出現的位置，並結合基因

演算法與 A*演算法對自主飛行路徑進行優化。此方法不僅提升了巡檢效率與覆

蓋範圍，還能針對高風險區域進行精細掃描，為結構健康監測提供更全面且可靠

的數據支援 [42]。

2.3.3 災後即時應變與邊緣運算技術

針對災後應變需求，Mandirola等人在 2022年研究中指出，無人機能在橋梁

坍塌或災後第一時間迅速部署進行損壞調查，獲取高解析度影像，減少人員進入

危險區域的風險，並即時提供關鍵資訊以支援決策 [11]。Tilon等人在 2022年於

專案中提出結合 UAV與邊緣運算的道路與橋梁即時監測系統，整合影像擷取、現

地處理與即時回傳，其回應時間低至數秒，顯著提升緊急情境下的資訊可得性與

應變效率 [43]。

此外，Lin等人於 2022年針對橋梁結構健康監測系統提出具邊緣運算能力的

感測節點，可於現場即時分析預力梁的應變數據，判別剛度變化與潛在劣化，減

少資料傳輸負擔與延遲 [44]。這些研究強調「即時性」在災後橋梁檢測中的關鍵

角色，並證明 UAV與邊緣計算可作為即時應變系統的關鍵節點。

災後巡查需求不僅存在於橋梁結構，在建築物等其他基礎設施中亦同樣重
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要。Jozi等人於 2024年針對住宅建築提出一種基於無人機的快速災後損傷評估方

法，結合紋理與邊緣特徵指標進行自動分類，無需多次航拍即可辨識受損建物，

準確率高達 91.3% [45]。該研究突顯 UAV技術在災後環境中提供單次快速航拍、

即時分析、全區域判斷的潛力，對於橋梁結構巡檢亦具高度借鑑價值，特別是在

災後初期無法逐點人力檢查的情境下，提供快速決策支援。

2.3.4 技術整合與實務應用推動

為滿足現場即時檢測與邊緣運算需求，Hakani 與 Rawat 於 2024 年利用

YOLOv9演算法結合 NVIDIA Jetson Nano邊緣運算裝置，實現無人機即時偵測，

展示了在邊緣平台上進行即時資料處理的能力 [46]。Chou與 Liu在 2024年亦提

出一個基於無人機輔助的橋梁劣化檢測邊緣運算平台，整合 AIoT與深度學習，

運用 Pilgrimage Walk Optimization (PWO)-Lite演算法優化 YOLOv7-tiny模型超參

數，並結合 DeepSORT演算法進行即時追蹤，為橋梁劣化檢測提供更迅速的資訊

[47]。此外，根據交通部發布的《無人機搭配 AI影像辨識應用於橋梁檢測之研

究》，此技術可顯著縮短人工檢測時間，並提升橋梁維護與管理效能 [17, 18]。

2.3.5 系統比較與應用挑戰

為比較不同 UAV檢測系統與深度學習整合方案之特點與限制，表 2.2彙整相

關技術於橋梁檢測應用上的性能與挑戰。

整體而言，UAV搭配不同深度學習模型與感測器技術已展現高度應用潛力。

實務應用中仍需考量模型部署、電源續航、資料標註與系統穩定性等問題，未來

整合低功耗 AI模型與自動導航策略將成為關鍵趨勢。

15

http://dx.doi.org/10.6342/NTU202502165


doi:10.6342/NTU202502165

表 2.2: UAV應用於橋梁檢測技術比較

參考文獻 技術組合 優勢 挑戰
王姿樺等人 [36] UAV + Faster R-CNN 穩定辨識不同材

質橋梁裂縫
訓練資料需涵蓋
多場景

張永辰等人 [37] UAV+YOLOv4 +寬度
計算

即時偵測並量化
裂縫尺寸

計算模型部署與
精度平衡

蔡宜真 [38] UAV + ROS + 深度學
習

實現即時自動巡
檢系統

系統整合度與電
力續航

Kao等人 [39] UAV + 雷射測距 + 影
像辨識

裂縫長度與深度
量測誤差低於 1%

感測器整合與成
本控制

饒見有等人 [17] UAV + DeepLabV3++ 多類劣化語意辨
識

語意標註成本高

Ellenberg等人 [40] UAV +紅外線影像 非接觸式檢測潛
在剝離

對熱成像設備依
賴高

Bolourian與 Hammad [42] UAV + LiDAR + A*演
算法

精準路徑與缺陷
預測

設備成本與重量
限制

Hakani與 Rawat [46] YOLOv9 + Jetson Nano 邊緣即時檢測能
力強

資源限制下的效
能優化

Chou與 Liu [47] YOLOv7-tiny + PWO-
Lite + DeepSORT

即時追蹤與輕量
模型

超參數調整與追
蹤穩定性

2.4 視覺 SLAM技術之發展

隨著無人機應用於橋梁巡檢與自主導航的需求日益增加，視覺 SLAM技術逐

漸成為構築智慧化巡檢系統的關鍵核心。本節將回顧視覺 SLAM的基本概念與主

流演算法架構，並探討其於動態環境與複雜場景中的應用挑戰與發展趨勢。

2.4.1 視覺 SLAM的核心概念與主要演算法

視覺同步定位與地圖構建（Visual Simultaneous Localization andMapping, Visual

SLAM），允許機器人或無人機依賴相機視覺數據在未知環境中同時定位自身並建

構地圖。在 GPS訊號弱的環境下，如橋梁底部或隧道內，視覺 SLAM成為無人機

自主導航的核心工具。

Cadena等人於 2016年全面回顧 SLAM發展，指出從傳統幾何方法如 EKF-
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SLAM、Graph-SLAM，到單目與雙目視覺 SLAM的應用演進，強調其在無 GPS

環境中的重要性，並提出未來朝「語意感知」、「多感測器融合」與「動態環境穩

健性」發展的方向，為後續 SLAM研究提供了重要的方向指引 [48]。Barros等人

於 2022年全面回顧了三大主要視覺 SLAM方法的代表性演算法，並從演算法類

型、地圖密度、全局優化、閉環檢測、嵌入式應用支援度及實際應用案例等六

項軟硬體面向，系統性整理並比較當前主流視覺 SLAM架構，如 ORB-SLAM、

DSO、LSD-SLAM、RTAB-Map等，為後續應用挑選合適系統提供實務參考 [49]。

Rublee等人於 2011年所提出的 ORB特徵點演算（Oriented FAST and Rotated

BRIEF），結合了 FAST的高效特徵點檢測和 BRIEF的快速描述符，並針對 BRIEF

進行了旋轉不變性的改進，計算速度快且旋轉不變性強，成為即時 SLAM的基礎

[50]。在此基礎上，Mur-Artal等人於 2015年提出的 ORB-SLAM系統，採用關鍵

幀（Keyframes）策略，通過特徵點追蹤、地圖建構和閉環檢測（Loop Closure）實

現高精度定位，適用於單目和 RGB-D攝影機 [51]。Campos等人在 2021年進一步

推出 ORB-SLAM3，支援視覺-慣性 SLAM及多地圖 SLAM，並導入了 Atlas架構

提升地圖管理機制，避免追蹤中斷或場景切換時出現大幅誤差。此外，該研究提

出了一種新的地點識別方法，提高閉環檢測的效率和回溯能力，減少延遲並增強

地圖合併的準確性，進一步強化在多樣化環境中的應用性。[52]。

2.4.2 動態環境與複雜場景下的 SLAM應用

為因應動態環境與複雜場景下的實務需求，Zhang 等人於 2018 年提出了

Semantic SLAM，在 Octomap技術中加入語意標記並降低雜訊干擾，並採用關

鍵幀追蹤策略，減少動態物體對定位準確性的影響，顯著提升地圖可用性與

SLAM整體可靠度，適用於大型室內或戶外空間 [53]。Zhong等人在 2018年則提

出 Detect-SLAM架構，透過深度神經網路進行物件偵測並過濾動態特徵點，有
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效減少移動物體帶來的干擾，大幅提升動態場景下的定位與建圖精度；同時，

Detect-SLAM也能即時產生語意層級的環境地圖，並在特殊視角、低光照及動態

模糊等極端條件下提供更穩定的目標辨識能力 [54]。

2.5 SLAM在土木工程等領域中的應用

隨著視覺 SLAM技術持續成熟，其應用已從機器人自主導航拓展至各類工程

與環境監測之中。本節將依序介紹 SLAM在橋梁與隧道巡檢、室內建築與施工場

域、災後快速應變，以及其他工程與環境場域的應用實例，並說明各種場景下技

術的優勢與限制。

2.5.1 橋梁與隧道巡檢

在橋梁與隧道等巡檢中，傳統方法往往受限於空間狹窄與 GPS訊號衰減。

Feng等人於 2023年提出將視覺–慣性 SLAM與影像超解析度技術整合於無人機

平台，用於橋梁裂縫的即時偵測與三維建模。實驗結果顯示，該系統在現場可快

速生成帶紋理的點雲模型，將重建時間縮減約 94%，並使裂縫寬度量測精度提升

16% [55]。在隧道巡檢方面，Xu等人在 2025年利用 LiDAR相機運行 SLAM產生

的關鍵幀點雲展開為平面圖，再透過深度學習模型進行裂縫分割，最終將辨識結

果投影回三維空間。該方法在實驗中半徑誤差低於 3公分，完成重建僅需 27秒，

證明了 SLAM結合深度學習模型在封閉空間中進行高精度定位的可行性 [56]。

2.5.2 室內建築與施工場域

室內與施工現場常因空間受限與動態作業而難以部署 GPS定位系統，SLAM

提供了一種既靈活又經濟的替代方案。Chen等人於 2025年開發的四足機器人平
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台，結合視覺與 2D LiDAR SLAM，即時重建室內點雲並自動對齊至 BIM模型，

驗證了低成本感測器在無 GPS室內環境中的應用可行性 [57]。另一方面，Lu等人

於 2021年提出將主成分分析方法用於校正 SLAM軌跡的幾何變形，並以僅需兩

個對應點的最簡配準算法，將重建路徑自動對齊至 BIM，將人工干預與對位時間

約減少 50% [58]。這些成果展示了 SLAM在施工現場資訊化管理與進度監測上的

實用價值，但同時也凸顯出完全自動化配準仍有待攻克的技術難題。

2.5.3 災後快速應變

在災後救援與結構損傷評估中，現場環境往往複雜且 GPS多失效，小型無人

機搭載 SLAM技術可迅速進場並提供關鍵三維資訊。Pan等人於 2025年設計了一

款微型 UAV平台，結合輕量 LiDAR與熱像儀，用於室內災區中的生還者定位與

環境點雲建立，實驗顯示該系統在無 GPS下仍能穩定重建環境並偵測熱源 [59]。

以上案例顯示，儘管視覺 SLAM在土木及其他工程場域已取得豐碩成果，但

在全自動化配準、動態干擾強健性、端到端即時性整合，以及多模態深度學習融

合等方面，仍存在諸多待解決的技術難題。

2.6 小結

綜合上述文獻與我國橋梁檢測制度，可歸納出以下幾項研究趨勢與挑戰：

• 橋梁檢測規範與制度需求：臺灣目前橋梁檢測制度以定期檢測、經常巡查與

特別檢測為主軸，並輔以劣化等級評估，已建立完善的管理架構。然實務上

仍高度仰賴人工操作，資料紀錄方式亦以紙本或照片為主，亟需導入自動化

影像辨識與數位化管控，以提升作業一致性與效率。
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• 深度學習技術發展：從傳統 CNN、Faster R-CNN 到 YOLO 系列與 Trans-

former等架構，以及結合元學習與語意分割的演算法，已廣泛應用於裂縫、

剝落、銹蝕等劣化型態之辨識，劣化辨識精度已顯著提升。

• 無人機影像應用拓展：UAV輔以影像、三維建模（如 COLMAP）、即時邊

緣運算平台（Jetson Nano等）與即時追蹤技術，能有效突破人工作業侷限，

提升檢測範圍與效率，並具備災後應變與現場決策輔助潛力。

• 視覺 SLAM系統演進：從 Detect-SLAM、Semantic SLAM到 ORB-SLAM系

列，持續提升動態場景下的定位穩定性、地圖建構品質與多源感測器融合能

力，特別適用於無 GPS環境下的結構巡檢與三維定位。

• 即時性整合瓶頸：先前關於物體偵測與定位相關的研究大多結合了 LiDAR、

IMU或熱像儀等感測器實現偵測與定位的同步作業，或透過後處裡方式進

行。未能在邊緣端以純視覺方式同步完成即時辨識、定位與建圖，難以滿足

現場快速回饋需求。

• 實務部署挑戰：即使技術已趨成熟，實際應用仍面臨資料標註成本高、模型

泛化能力不足、惡劣環境穩定性與設備資源受限等挑戰。未來須強化模型輕

量化、穩健性、跨場景適應與系統整合能力，才能真正落地部署。

綜上所述，橋梁檢測需兼顧平時定期維護與突發災後快速應變兩大面向。在

既有制度中，特別檢測對於突發事件後的快速掌握與判斷尤為重要，惟其現場風

險高、時效性要求強，使即時影像辨識與自動化巡檢技術成為關鍵輔助手段。劣

化辨識、無人機影像處理與視覺 SLAM已逐步融合為橋梁檢測系統的核心架構。

透過整合高精度辨識模型、UAV與多感測資料、視覺 SLAM三維定位能力，本研

究將致力於開發兼具效率、準確與實用性的自動化橋梁劣化檢測平台，為未來基

礎設施維護決策提供更全面且可靠的技術支援。
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第三章 系統建構方法

前兩章已闡述了臺灣橋梁結構檢測的重要性以及現存傳統方法之侷限，並從

文獻回顧中了解到無人機（UAV）結合電腦視覺與深度學習技術，在自動化橋梁

檢測領域具有相當潛力。特別是在應對多種類型的劣化現象（如裂縫、剝落、白

華等）時，深度學習可提供即時且準確的缺陷辨識；而視覺 SLAM技術則能為無

人機在 GPS訊號有限或複雜的環境中，提供自動化定位與三維地圖資訊。綜合上

述研究可知，若能在嵌入式平台上整合這些模組，並進一步在三維模型中標示缺

陷位置，即能顯著提升橋梁檢測的效率與品質。

基於此背景，本研究著手建構一套整合式檢測系統，以 DJI Inspire2 搭載

Zenmuse X5S雲台單眼相機拍攝影像，並以 NVIDIA Jetson Orin Nano作為邊緣運

算平台。系統於該平台上部署 Robot Operating System (ROS)環境，以協調各模組

間的資料流通，實現即時的 YOLOv9物件偵測與 ORB-SLAM3同步定位與地圖

構建。在後處理階段，使用桌上型電腦透過 COLMAP運行三角測量與多視角立

體重建 (Multi-View Stereo, MVS)產生稠密點雲，並透過點對標註與 ICP (Iterative

Closest Point)演算法將該點雲與帶有真實坐標資訊的 BIM點雲對齊。最終透過

PyVista套件將劣化偵測結果於三維空間中可視化顯示，並輸出橋梁檢測報告書。

本章將詳細介紹系統建構方法，包括硬體配置、影像與資料流的前處理方

式、劣化偵測與視覺 SLAM之核心技術，以及後處理與獲取空間資訊的步驟。
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3.1 硬體與系統架構

3.1.1 硬體設備組成

為實現即時橋梁劣化檢測，本研究整合多項硬體設備，分述如下：

1. DJI Inspire2空拍機：搭載 Zenmuse X5S單眼鏡頭，深入橋檢人員難以到達

的區域並蒐集影像以進行後續作業。支援 2.4/5.8 GHz無線影像傳輸。

2. DJI遙控器：接收空拍機傳回之即時影像訊號，並透過 HDMI 2.0介面輸出

影像。

3. 影像擷取盒 (AVerMedia)：透過 HDMI 2.0介面輸入 720p影像至嵌入式平

台，以 USB 3連線以滿足頻寬需求。

4. NVIDIA Jetson Orin Nano：攜帶式邊緣運算平台，安裝 Ubuntu 20.04 + ROS

Noetic，接收空拍影像並執行 YOLOv9與 ORB-SLAM3。

5. 行動電源：為開發板提供穩定電力 (15V輸出)，利於在戶外環境作業。

6. 桌上型電腦：後處理所使用之設備，搭載 Ubuntu 20.04作業系統，提供充足

的效能以運行 Python腳本、COLMAP與 PyVista套件，以及 CloudCompare

等應用程式。

表 3.1列出本研究所使用的空拍機、雲台相機及嵌入式開發板之關鍵規格，

說明其在影像蒐集與運算方面的效能。可以看見 DJI Inspire2具備相當的續航能

力、穩定性與無線傳輸距離，足以因應大面積橋梁巡檢需求；搭載的 Zenmuse

X5S單眼雲台相機具備高解析度與靈活度，能夠清晰的獲取各個角落的影像；
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NVIDIA Jetson Orin Nano則具備強大的 GPU資源，在邊緣端即可實現 YOLOv9

與 ORB-SLAM3的即時運算，而無需仰賴雲端服務。

表 3.1: 主要硬體設備之規格

設備 關鍵規格
DJI Inspire2

• 構造形式：多旋翼無人機

• 飛行時間：最長約 27分鐘

• 重量：3440 g

• 最大起飛重量：4000 g

• 無線傳輸距離：最遠可達 7公里

• 最大可承受風速：10 m/s

Zenmuse X5S

• 重量：461 g

• 傳感器：4/3” CMOS

• 有效像素 2080萬

• 解析度 5280 × 3956 (4:3)

• 可控轉動範圍：俯仰 +30°至 -90°

NVIDIA Jetson Orin
Nano • 作業系統：Ubuntu 20.04 + ROS Noetic

• GPU 架構：NVIDIA Ampere（1024 CUDA
核心、32 Tensor核心）

• CPU：6組 Arm Cortex-A78AE v8.2 64-bit核
心（1.5MB L2 + 4MB L3）

• 記憶體：8 GB LPDDR5

• 功耗：7W/15W模式

23

http://dx.doi.org/10.6342/NTU202502165


doi:10.6342/NTU202502165

3.1.2 系統流程概述

圖 3.1展示本研究系統之整體資料流與功能模組。系統可分為「影像資料取

得」、「即時偵測與定位」、「空間資訊獲取與缺陷可視化」三大階段，各階段在執

行時彼此串聯，各自負責不同任務，細節將於後續各節分別說明。

圖 3.1: 系統流程圖
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圖 3.2: 現地施測所需硬體示意圖

1. 階段一：影像資料取得：如圖 3.2所示，本系統透過空拍機（DJI Inspire2 +

Zenmuse X5S）進行橋梁區域的空拍影像蒐集，影像經由遙控器及擷取盒輸

入至 Jetson Orin Nano。

2. 階段二：即時偵測與定位：Jetson Orin Nano收到影像後，將影像導入 ROS，

在 ROS環境下由 OpenCV進行影像前處理，包括裁切、灰階轉換或對比增

強，並以 ROS話題的形式發佈。在完成影像處理後，系統同步執行兩大核

心套件：

• YOLOv9缺陷偵測：偵測橋梁常見的劣化類別（裂縫、剝落、白華），

輸出包含邊界框及置信度的推論結果，如圖 3.3a，並在過濾雜訊後，

輸出帶有標註框的影像，並將辨識成果以文字檔的方式儲存以利後續

資料處理。

• ORB-SLAM3同步定位與地圖構建：以單眼相機之影像為基礎，估計

相機姿態與場景結構，並動態生成地圖，如圖 3.3b。系統會將每張影

像對應的相機外參 (extrinsic)及時間戳 (Timestamp)作為之後三維重建

與標註的基礎。
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(a) YOLOv9檢測結果示意圖 (b) ORB-SLAM3地圖構建示意圖

圖 3.3: YOLOv9劣化偵測成果（左）與 ORB-SLAM3運行畫面（右）

由於此步驟直接在 Jetson Orin Nano上即時執行，可大幅降低資料傳輸量與

雲端依賴，同時保留即時性。詳細演算法流程與參數設置，請見第 3.4與

第 3.5節。

3. 階段三：空間資訊獲取與缺陷可視化：單眼相機之影像無法透過 SLAM即

時產生稠密點雲，為了呈現缺陷在三維空間中的樣貌與位置，在邊緣運算

裝置獲取初步成果後，再將資料移至桌上型電腦作進一步運算。本研究以

COLMAP將 ORB-SLAM3之關鍵幀（Keyframes）與對應的外參進行MVS，

建立稠密點雲；再透過 CloudCompare與 ICP演算法將點雲對齊至帶有真實

尺度與絕對坐標資訊的 BIM模型，取得變換矩陣並同步更新各劣化幀姿態。

最後以 PyVista在三維點雲與上疊加缺陷標註，視覺化呈現其絕對位置與結

構構件對應，並輸出相關數據資訊。詳見第 3.6節至 3.9節。

透過以上階段的串聯，本研究系統可同時兼顧即時偵測與定位，以及高精度

三維建模與缺陷標註。後續各節將針對每一部分之技術選用、實作流程與參數設

定等細節進行說明。
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3.2 橋梁劣化資料集

3.2.1 劣化型式說明

為因應橋梁檢測與維護之實務需求，本研究聚焦於三種類型的橋梁劣化，分

別為「裂縫（Crack）」、「剝落（Spalling）」以及「白華（Efflorescence）」。根據

Hüthwohl等人提出的多階段分類架構 [26]，結合交通部於 2023年頒布之公路橋

梁檢測及補強規範 [60]之實務指引，若能正確辨識上述三種常見缺陷，即可滿足

多數橋梁檢測場景的基本需求。本研究對其定義與可能影響範圍敘述如下：

1. 裂縫：混凝土或橋面鋪面產生的縱向、橫向、斜向或龜裂等破損狀態，包含

單條裂縫與多分支裂縫。由於裂縫常是構件內部受力失衡或環境侵蝕的初期

徵兆，若未及時修補，可能導致滲水、鋼筋鏽蝕與結構強度下降 [8, 26]。

2. 剝落：混凝土表層因脫落或破損而出現的局部剝落現象，常伴隨鋼筋外露。

成因包含載重疲勞、化學侵蝕或施工缺陷等。由於鋼筋外露後更易受侵蝕，

故若不及時處理，剝落範圍將持續擴大，影響橋梁耐久度 [26]。

3. 白華：混凝土基材中的可溶性鹽類隨水分遷移至表面並結晶，形成白色粉狀

或結晶狀沉積物 [17]。雖不一定立即危及結構安全，但顯示結構可能存在滲

漏或濕度問題，長期積累會加速其他類型劣化的產生。

圖 3.4展示了橋梁檢測中常見的三種類型劣化：(a)與 (b)顯示「裂縫」，其

中 (a)為單一裂縫，(b)則呈現較為分散且交錯的網狀裂縫；(c)與 (d)則顯示「剝

落」，(c)為普通剝落，而 (d)可見鋼筋外露的情況；(e)與 (f)則展示「白華」，表

現為混凝土表面出現鹽類結晶。
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(a)單一裂縫 (攝於福和橋) (b)網狀裂縫 (攝於一壽橋)

(c)剝落 (攝於永福橋) (d)剝落伴隨鋼筋外露 (攝於一壽橋)

(e)白華 (攝於永福橋) (f)白華 (攝於福和橋)

圖 3.4: 橋梁常見劣化類型範例
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綜觀上述文獻 [26, 60]，相較於其他類型之損傷，裂縫、剝落與白華的出現頻

率及可偵測性均較高，也較具即時檢測意義。後續章節將著重於此三類缺陷之自

動化偵測與三維標註流程。

3.2.2 資料蒐集與分割

本研究所使用之資料集總計 30248張影像。考量模型訓練需求以及避免過度

擬合（Overfitting），本研究按常見做法將資料分為訓練集、驗證集與測試集。其

中，訓練集與驗證集皆取自 Roboflow平台上的兩組開放影像資料集 [61, 62]；測

試集則分為兩組，一組取自與前述資料集相同之來源（測試集 A），用於初步評估

模型性能，另一組則由本研究使用空拍機與手機於 2024年 11月至 2025年 1月間

於雙北地區拍攝之混凝土橋梁影像（測試集 B，當中包含萬壽橋、恆光橋、一壽

橋、寶橋、福和橋、永福橋、舊中正橋、華中橋之影像），並於 Roboflow提供的

網頁介面進行標註 [63]，以評估模型的泛用性。表 3.2展示了各子集之影像張數、

標籤數統計及其佔比。

表 3.2: 資料集分割概況

資料集 影像張數 標籤總數
白華標籤 裂縫標籤 剝落標籤
數量 佔比 數量 佔比 數量 佔比

訓練集 26,090 56,308 14,896 26.5% 25,546 45.4% 15,866 28.2%

驗證集 2,514 5,368 1,432 26.7% 2,465 45.9% 1,471 27.4%

測試集 A 1,447 3,318 945 28.5% 1,433 43.2% 940 28.3%

測試集 B 197 353 78 23.2% 103 29.2% 172 48.7%

總計 30,248 65,347 17,351 26.6% 29,547 45.2% 18,449 28.2%

由表 3.2可知，本研究整合來自 Roboflow的開放資料集及本研究拍攝影像，

以涵蓋橋梁劣化檢測中最常見的三類缺陷（白華、裂縫、剝落）。
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考量標籤標註的一致性，本研究在資料合併時進行標籤歸類，原始資料集內

的多種類裂縫（如縱向裂縫、龜裂等）皆統一歸類為「Crack」；剝落與鋼筋外露

通常伴隨發生，因此統一歸類為「Spalling」；白華 (Efflorescence)作為獨立類別。

此舉可簡化標籤結構，亦更符合本研究的橋梁劣化檢測目標（參見第 3.2.1節）。

本研究的測試集除了使用 Roboflow資料，也特別加入實拍影像，涵蓋不同環

境條件（光照變化、角度、影像解析度等），以確保模型可以在真實場景中適用。

值得注意的是，相較於 Roboflow 資料集，本研究拍攝的測試集中「剝落

(Spalling)」標籤比例最高（48.7%），反映真實橋梁巡檢場景中，剝落相較於其他

兩者更為常見。此外，測試集中的「白華 (Efflorescence)」標籤比例最低（23.2%），

顯示其在實際場景中的可見性較低，亦會受到光照條件與拍攝角度的影響。

3.3 影像擷取與前處理

3.3.1 影像來源與 ROS輸入

本研究所使用之影像來自 DJI Inspire2 + Zenmuse X5S空拍機。影像經由無線

電頻段 (2.4/5.8 GHz)傳送至遙控器，並透過 HDMI 2.0介面輸出至影像擷取盒，

最終透過 USB 3介面傳輸至 Jetson Orin Nano進行處理。其內部執行 ROS環境，

使用 ROS的好處在於，每個功能皆能作為獨立模組，如影像擷取、轉換、發送

等，彼此間以話題 (Topic)形式進行資料傳遞，方便擴充、除錯，並讓系統在後續

整合 YOLO和 SLAM模組時更具彈性。

影像輸入階段由 camera_publisher節點將擷取之影像發布為 ROS Topic，格

式為 sensor_msgs/Image，解析度為 720p @ 15 fps。該影像數據可由其他 ROS節

點訂閱，以進行進一步的處理與分析。
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3.3.2 影像增強與轉換

影像處理在物件偵測與 SLAM系統中扮演關鍵角色。Redmon等人 (2016)指

出，適當的影像標準化與灰階轉換，可提升 YOLO 的辨識精度與模型泛化性

[29]；Krizhevsky等人 (2012)亦證實影像尺寸統一可減少計算資源消耗 [64]。另一

方面，Mur-Artal & Tardós (2017)在 ORB-SLAM2的研究中證明，對比度增強及亮

度調整可顯著提升特徵點匹配成功率 [65]，而 LSD-SLAM研究指出直方圖均衡化

與 Gamma校正等技術同樣有利於大範圍地圖建構 [66]。

為提升物件偵測與 SLAM系統的運行效果，camera_publisher所發布的影

像分別經由兩個 ROS節點訂閱並進行「YOLO影像預處理」與「SLAM影像增

強」分別進行前處理，以提升 YOLOv9偵測與 ORB-SLAM3的效能。整體影像處

理流程如圖 3.5所示。

圖 3.5: 影像前處理流程圖

圖 3.6則示範了相同橋梁影像在不同處理策略下的最終輸出：左上為原始影

像，右上為 YOLO使用的影像（灰階化與裁切），右下則是 SLAM使用的影像

（對比度增強）。
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圖 3.6: 原始影像、YOLO使用影像、SLAM使用影像的對比示例

• YOLO影像預處理：

輸入來源 由 image_processor節點訂閱 camera_publisher的影像，並執

行裁切、灰階轉換與尺寸標準化。

灰階轉換 混凝土橋梁表面受到油漆、光線等影響，會有表面顏色不一的狀

況，故將影像轉換為灰階格式，從而提升推論精度。

尺寸標準化 影像尺寸統一為 512× 512，與訓練集一致，同時降低推論計算

量 [29, 67]。

• SLAM影像增強：

輸入來源 由 image_enhancer節點訂閱 camera_publisher的影像，並執行

亮度/對比度調整、Gamma校正及直方圖均衡化。

影像增強 能凸顯影像細節，讓影像特徵點更加清楚，使 ORB-SLAM3的特

徵點偵測更穩定，提升定位與地圖構建的精度 [65, 66]。
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3.4 劣化偵測：YOLOv9

YOLOv9（You Only Look Once, version 9）為一套開源且高效能的單階段物件

偵測演算法，由王建堯等人於 2024年提出 [31]。其架構延續 YOLO系列強調即時

性與準確性的設計理念，並融合兩項核心創新：可編程梯度資訊（Programmable

Gradient Information, PGI）與廣義高效層聚合網路（Generalized Efficient Layer

Aggregation Network, GELAN），顯著提升模型於資源受限場域中的適應性與對微

小目標之辨識能力。本研究將 YOLOv9應用於橋梁劣化檢測任務中，結合 ROS

環境實現即時偵測，並於自建資料集上進行訓練與評估。本節將說明 YOLOv9模

型架構、推論流程、訓練方法與評估指標。

3.4.1 模型結構概述

YOLOv9採用模組化設計，整體結構可劃分為 Backbone、Neck、Head與訓

練期間專用之 Auxiliary 分支。為因應現代深度學習模型在即時性與準確性間

的權衡需求，其主幹架構融合可編程梯度資訊（PGI）與廣義高效層聚合網路

（GELAN）兩項關鍵技術，有效強化多尺度特徵提取能力並提升模型於邊緣裝置

之推論效率。以下將分別說明各模組之功能與設計細節。

圖 3.7展示了 PGI與 GELAN交互強化：PGI模組（左）可於資源受限場景彈

性開關動態單元；GELAN主幹（右）則以多層下／上採樣路徑與可逆分支交匯，

提升微小目標（如橋梁裂縫）的辨識效能。

• 可編程梯度資訊（PGI）：在每個 Stage以可學習 Gate動態開關殘差支路，訓

練時增加額外梯度路徑以減少資訊瓶頸，推論時自動裁剪冗餘計算，尤其利

於邊緣裝置。
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(a) PGI模組 (b) GELAN主幹網路

圖 3.7: YOLOv9之可編程梯度資訊 (左)與廣義高效層聚合網路 (右)。

• 廣義高效層聚合網路（GELAN）：以多分支–再聚合拓撲堆疊 RepNCSPELAN

與 ADown，在維持輕量計算的同時提升多尺度特徵利用率；分支結構經重

參數化後可於推論期折疊為單卷積核，延遲更低。

以下介紹 YOLOv9整體架構的四大部分：

1. Backbone：採用 GELAN結構，作為特徵提取的核心模組。Backbone包含

多個 RepNCSPELAN4 模組，利用深度可分離卷積與殘差連接（Residual

Connection）提升特徵表達能力與計算效率。此外，加入 ADown模組進行

空間降維與多尺度特徵提取，使模型能兼顧細節與語意層級的資訊，強化對

不同大小物件的感知能力。

2. Neck：以 PANet（Path Aggregation Network）為基礎設計，結合自訂的 SP-

PELAN模組，負責多層級特徵的融合與增強。Neck利用上採樣（Upsample）

與特徵串接（Concat）操作，有效整合高解析度與低解析度的特徵圖，強化

物件定位的精度與分類的辨識能力。

3. Head：負責物件的邊界框回歸與類別分類。Head使用多分支結構，分別預
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測邊界框位置、大小及物件類別機率，並結合非極大值抑制（NMS）等後處

理技術，輸出最終檢測結果。

4. Auxiliary：僅於訓練階段啟用，提供額外的梯度監督訊號，協助模型更快收

斂並避免陷入局部最優。Auxiliary模組通常包含輔助分類器或特徵監督層，

透過多任務學習的方式提升主模型的泛化能力與穩定性。

3.4.2 YOLOv9之 ROS模組

本研究使用 YOLOv9 於 ROS 環境中部署即時劣化辨識模組，此模組基於

yolov9_ros開源套件進行開發 [68]。模組運行流程如圖 3.8所示。

圖 3.8: 劣化辨識模組運作流程圖

本模組首先由 detect_ros節點透過訂閱處理後之影像，進行物件偵測並即

時辨識劣化情形，並發布即時辨識的初步結果。

於初步推論階段，考量到即時影像串流之影格數量龐大，且辨識模型可能產

生誤檢 (false positive)，因此於 detect_info訂閱節點中，設置了雙重過濾機制：

一為置信度閾值（confidence threshold），二為出現頻率閾值（frequency threshold）。

僅當特定類別的偵測結果在短時間內（2秒內）累積達到指定頻率（5次以上），
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且每次置信度皆高於設定門檻（0.4），才認定該次偵測成立，進而啟動影像儲存

與標註程序。此外，為避免短時間內重複儲存同一劣化類型之影格，本系統設置

冷卻機制，於每次成功儲存後，對該類別啟動固定冷卻期（2秒），在冷卻期間再

次偵測到同類型劣化不會重複儲存。

為保留劣化現象之原始彩色樣貌，系統在偵測過程中同步暫存原始影像。當

劣化事件確認成立後，依據辨識結果中的標註框（bounding box）坐標資訊，將標

註框重新繪製於對應的原始影像上，並以劣化類型與置信度作為檔名進行儲存，

如圖 3.9所示。同時，每筆劣化偵測資訊（包含時間戳、類型、置信度、坐標點

及影像檔案名稱）皆會被記錄，供後續分析使用。

(a)原始辨識結果 (b)透過標註框坐標將標註框繪製於原始影像

圖 3.9: 辨識時為灰階影像 (左)與帶有標註框的原始影像 (右)

完成初步儲存後，由於連續影格間高度重疊，易造成同一劣化特徵被重複偵

測。因此系統自動呼叫去重節點 dedup_by_conf，進行影像去除冗餘作業。該節

點基於感知哈希 (perceptual hash, pHash)演算法進行影像相似度過濾。pHash會將

影像轉為灰階，將圖片尺寸壓縮，執行離散餘弦轉換（DCT）後提取低頻特徵，

並生成 64 bit長度的哈希指紋。再透過計算 Hamming distance判斷影像間的視覺

相似度，有效移除冗餘影格，僅保留置信度最高之代表性影像 [69]。

此節點藉由 pHash方法計算每張影像的低頻視覺特徵哈希值，並將哈希距離
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在閾值範圍內（本研究以 10作為預設值）之影像歸為同一群組。於每一群相似影

像中，僅保留置信度最高者作為代表，刪除其他重複影格，以減少資料冗餘並提

升後續處理效率。去重後之影像將被儲存，並同步產生去重後的紀錄表，如表 3.3

所示。

表 3.3: 劣化影像之時間戳與辨識資訊範例

Timestamp Type Confidence Coordinates (x1,y1,x2,y2)

1741745114.514 Efflorescence 0.712 ( 19, 140, 457, 275)

1741745135.269 Spalling 0.652 ( 89, 112, 124, 301)

1741745181.353 Spalling 0.717 ( 60, 12, 160, 263)

1741745203.674 Crack 0.504 ( 4, 141, 58, 495)

· · · · · · · · · · · ·

3.4.3 訓練方法與流程

本研究採用 YOLOv9原作者於 GitHub開源之訓練腳本 [70]，並以 yolov9系

列模型 (yolov9-m, yolov9-c)為基礎進行訓練。訓練流程中，使用 yolov9作者提供

之預訓練權重，搭配官方提供之訓練腳本與對應的配置檔。資料集劃分為訓練集

與驗證集，透過驗證集監控模型於不同 epoch的收斂情況，並防止過度擬合。

損失函數方面，邊界框回歸採用 Complete IoU Loss（CIOU-Loss），能同時考

慮目標與預測框之中心距離、尺寸比例與重疊面積，提高定位準確性；分類則使

用 Binary Cross Entropy Loss（BCE Loss）[71]，適應多標籤物件偵測需求。學習

率調整方面，訓練起始階段採用Warm-up策略，並於訓練初期設定較高學習率以

快速收斂，隨後以 Cosine Annealing策略平滑下降，避免收斂後期因學習率震盪

而影響性能穩定性。

本研究依循原著之訓練方法，整體訓練流程如圖 3.10所示，後續驗證階段針
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對部分超參數進行微調之內容詳述於 4.1節。

輸入資料集
（影像與標註）

資料劃分
（訓練集 /驗證集）

資料增強
（影像平移, HSV等）

載入預訓練權重
（yolov9-c.pt)

模型訓練
（含 PGI與 GELAN）

損失函數
CIOU-Loss + BCE Loss

學習率調整
Warm-up + Cosine Annealing

驗證監控
（mAP, loss）

儲存最佳模型
（依驗證表現）

圖 3.10: YOLOv9訓練流程圖

3.4.4 評估指標

為評估 YOLOv9於橋梁缺陷偵測任務的表現，本研究採用以下評估指標：

• 精確率（Precision）：

Precision =
TP

TP + FP
(3.1)

其中，TP（True Positives）為正確偵測的目標數，FP（False Positives）為

錯誤偵測的目標數。Precision代表模型在預測為缺陷時，實際為缺陷的比

例，可衡量模型的誤檢率 [72]。

• 召回率（Recall）：

Recall =
TP

TP + FN
(3.2)

其中，FN（False Negatives）為未能偵測出的缺陷數。Recall代表實際存在
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的缺陷中，有多少成功被偵測出來，適用於衡量漏檢情況 [72]。

• F1-score：

F1-score = 2× Precision× Recall
Precision+ Recall

(3.3)

F1-score為 Precision與 Recall之調和平均數，綜合考量 Precision與 Recall，

以衡量模型的整體效能。

• mAP（Mean Average Precision）：

mAP =
1

N

N∑
i=1

APi (3.4)

其中，N 為所有類別數（本研究為 3），APi 為第 i類別的 Average Precision

（AP）。mAP衡量模型在不同 IOU閾值下的精度，為物件偵測任務的重要評

估標準 [72]。

• mAP@50：

mAP@50 =
1

N

N∑
i=1

AP IoU=0.5
i (3.5)

其中，AP IoU=0.5
i 代表在 IoU閾值設為 0.5的條件下計算出的 AP。本研究將

mAP@50作為主要評估指標，因其能有效衡量模型對於橋梁缺陷的準確率，

並較 mAP@0.5:0.95更適合實務應用 [72]。

3.5 同步定位與地圖構建：ORB-SLAM3

ORB-SLAM3是一套開源的即時同步定位與建圖（SLAM）系統，具備高度

模組化與多執行緒設計。其系統架構包含追蹤（Tracking）、局部建圖（Local

Mapping）與閉環檢測（Loop Closing）三大模組，能有效擷取場景中具區辨性

的 ORB 特徵點進行位置估計與環境重建。針對動態場景與長時間運行環境，
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ORB-SLAM3並引入多地圖管理與重定位機制，提升了系統的穩健性 [52]。本模

組使用 ORB-SLAM3搭配單眼鏡頭，以純視覺進行 SLAM運算。本節將詳細介紹

模組的架構與運作流程。

3.5.1 系統架構概述

ORB-SLAM3採用特徵式視覺定位與建圖方法，整體流程如圖 3.11所示。系

統以 ORB特徵點為基礎，依據輸入影像提取場景資訊，並透過前端追蹤與後端最

佳化以確保定位與地圖的穩定性與精度。核心流程包含以下四大模組：

圖 3.11: 無 IMU的 ORB-SLAM3運作流程圖

1. Tracking：此階段負責從輸入影像中提取 ORB特徵點，並進行地圖初始化。

系統會持續追蹤特徵點以進行局部地圖追蹤，並根據特徵匹配的穩定度與視

角變化自動決定是否新增 Keyframe，以確保地圖的密度與精度。

2. Local Mapping：新建的 Keyframe會被插入至本地地圖中，此階段會過濾
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掉不穩定的地圖點，確保地圖品質。接著執行局部光束平差（Local Bundle

Adjustment，Local BA）來最佳化相機姿態與地圖點的位置，以減少追蹤誤

差。

3. Loop Closing & Map Merging：為了修正長期累積誤差，系統會進行閉環偵

測（Loop Closure），當發現已經拜訪過的場景時，會進行閉環校正來調整整

個地圖的拓撲結構。此外，在多段軌跡的情境下，系統還會進行地圖合併

（Map Merging），以構建一致且完整的環境模型。

4. Full Bundle Adjustment (Full BA)：在完成閉環偵測後，系統會進一步執行

全域光束平差（Full BA），此步驟會同時最佳化所有關鍵影格（Keyframes）

與三維地圖點，進一步提升整體地圖的精度與一致性，尤其適用於大範圍場

景的精細建模。

此外，ORB-SLAM3亦具備完善的資料管理機制，用以協助地圖構建與歷史

資訊的高效存取。其可劃分為以下三大模組：

• DBoW2 資料庫：用於影像回溯與重定位的識別機制，包含 視覺辭典

（Visual Vocabulary）與識別資料庫（Recognition Database），協助系統在動

態場景中快速比對歷史影像。

• 活躍地圖（Active Map）：儲存目前追蹤與最佳化所使用的資料，包含地圖

點、共視圖、關鍵幀與生成樹等，為 SLAM系統即時運作的核心資料結構。

• 非活躍地圖（Inactive Map）：保存未使用或暫時脫離主要軌跡的資料，供未

來重定位或地圖合併時使用，提升系統於長時間運行下的穩定性。
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3.5.2 相機內參標定

為確保 ORB-SLAM3系統能準確執行特徵點投影與三維重建，本研究首先針

對所使用之 Zenmuse X5S相機進行內參標定。標定程序於 ROS環境下執行，透過

內建工具 cameracalibrator.py搭配棋盤格標定板與標定影像序列，計算相機之

投影矩陣與畸變參數，供 ORB-SLAM3模組初始化使用。

Zenmuse X5S 相機之標定結果如表 3.4 所示，包含影像解析度、相機矩陣

（camera matrix）及畸變係數（distortion coefficients）等資訊。

表 3.4: Zenmuse X5S相機內參（經標定取得）

參數 數值

image_width 1280

image_height 720

camera_matrix


1212.10609 0 672.41489

0 1209.0734 333.27649

0 0 1


distortion_model plumb_bob

distortion_coeffs [ 0.057274, −0.063448, −0.007219, 0.010737, 0 ]

3.5.3 ORB-SLAM3之 ROS模組

本研究在 ROS環境中部署同步定位與地圖構建模組，基於 orb_slam3_ros

開源套件進行開發 [73]。該模組整合 ORB-SLAM3演算法，實現即時的單目視覺

SLAM功能。為實現與 YOLOv9模組之間的時間同步與空間對應，本研究進一步

修改該套件，串接劣化資訊與相機姿態，實現劣化位置的即時三維標註功能。整

體模組運作流程如圖 3.12所示。
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圖 3.12: SLAM模組運作流程圖

本模組主要包含以下 ROS節點：

• /orb_slam3：在系統初始化階段，orb_slam3節點載入相機內參與 ORB字

典（ORBvoc.txt），並根據設定檔（.yaml）配置前述之相機內參等相關參

數。運行過程中，該節點訂閱 image_enhancer處裡後之影像，執行 ORB

特徵提取、追蹤、地圖建構與閉環偵測，輸出 /orb_slam3/camera_pose、

/orb_slam3/kf_markers等資訊。在節點結束運行時，orb_slam3將分別輸

出所有影格與關鍵幀之相機姿態資訊，包含時間戳（Timestamp）、位置座

標（px, py, pz）與對應的旋轉四元數（qx, qy, qz, qw），如表 3.5所示。

表 3.5: 影格之相機姿態資訊示意

Timestamp (nsec) px (m) py (m) pz (m) qx qy qz qw

1741748630808501058 0.956904 0.068050 0.728101 0.007236 -0.434805 -0.004299 0.900485
1741748630900607717 0.955512 0.067988 0.726118 0.007308 -0.436861 -0.004261 0.899489
1741748630012521704 0.955184 0.067916 0.725492 0.007401 -0.436859 -0.004377 0.899489
1741748630120001118 0.954531 0.067634 0.725391 0.007355 -0.437208 -0.004410 0.899319
· · · · · · · · · · · · · · · · · · · · · · · ·
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• /trajectory_server_orb_slam3：訂閱相機姿態資訊與時間戳，發布完整

軌跡於 /orb_slam3_ros/trajectory話題，供 rviz與後續模組使用。

以下節點被用於整合 YOLOv9劣化資訊與 ORB-SLAM3相機姿態，實現即時

劣化定位：

• /detect_info_output：整合 detect_info 中 YOLOv9 劣化資訊與 ORB-

SLAM3相機姿態資訊，輸出至 /deterioration_camera_pose。

• /defect_pose_marker：根據上述輸出，繪製三維坐標系中的劣化位置。如

圖 3.13所示，ORB-SLAM3成功建構出完整無人機飛行軌跡（綠線），其中

每個綠點為關鍵幀拍攝位置，並以箭頭標示對應劣化位置與方向。這些箭頭

為 /defect_pose_marker所輸出的即時劣化定位結果，有助於理解劣化相

對於橋梁結構之空間關係。

圖 3.13: ORB-SLAM3飛行軌跡與即時劣化標註結果
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3.6 相機外參與時間戳對應

為實現缺陷位置的三維標註，本研究將 YOLOv9 輸出之劣化辨識資訊與

ORB-SLAM3輸出之相機姿態進行整合。YOLOv9最終輸出的偵測結果中，均附

帶時間戳 (Timestamp)如表 3.3 所示，用於與 ORB-SLAM3 輸出之相機姿態 (表

3.5)當中的資訊進行對齊。雖然劣化偵測與 SLAM兩模組在開發版上同步運行，

但因為資料處理的時間差，所以紀錄的時間戳會有毫秒級的微小差異，足以被忽

略（±1幀 ≈ 66 ms@15 fps）。因此可透過時間戳的對應，從 SLAM輸出的外參資

料中找出時間差最小者，作為劣化影格之相機姿態。圖 3.14展示了時間戳對應的

方法，表 3.6展示了劣化類型 (Type)與對應的相機姿態。

圖 3.14: 時間戳對應方法示意

表 3.6: 相機位姿與缺陷類型對應結果示意

px py pz qx qy qz qw Type

0.7712 0.1178 1.2943 0.2060 -0.8152 0.2160 0.4964 Efflorescence

0.6320 0.1015 1.2354 0.2102 -0.8109 0.2232 0.4984 Spalling

0.7243 0.1503 1.5626 0.1802 -0.8549 0.2174 0.4352 Crack

0.6573 0.1320 1.6206 0.1789 -0.8546 0.2134 0.4383 Spalling

· · · · · · · · · · · · · · · · · · · · · · · ·
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3.7 點雲獲取

本節說明本研究中所使用之點雲資料來源、生成流程與應用情境。本研究

使用之點雲分為兩類：其一是由 UAV空拍影像與 SLAM輸出之相機外參，透過

COLMAP重建而成之稠密點雲 (dense point cloud)，帶有相對位置資訊；其二是由

BIM模型轉換而得之幾何點雲，帶有絕對位置的坐標資訊。

由於稠密點雲重建過程涉及大量圖像處理與三維重構計算，為確保運算效率

與成果品質，後續流程將透過高效能桌上型電腦執行，而非於開發板上進行。以

下將依點雲來源依序說明其建構方式與應用場景。

3.7.1 稠密點雲重建（COLMAP）

單眼相機於 SLAM任務中雖可實現同步定位與建圖，但所構建的地圖僅為稀

疏特徵點雲 (sparse point cloud)，難以提供完整的場景幾何資訊。為補足視覺化需

求並提供三維標註與比對所需之幾何基礎，本研究透過 COLMAP進行稠密點雲

重建。

COLMAP [74] 為一套功能完整的三維重建系統，整合了運動重建結構

（Structure-from-Motion, SfM）[75] 與多視角立體重建（Multi-View Stereo, MVS）

[76]技術，能從多張影像及其相對位姿中自動重建場景的三維點雲，並提供點雲、

相機參數與模型輸出等結果以供後續分析使用。

本研究採用已知之相機姿態進行稠密點雲重建，其流程如圖 3.15所示，主要

包含以下步驟：

1. SLAM運行與資料擷取：透過 ORB-SLAM3執行同步定位與建圖（SLAM），
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擷取關鍵幀影像（Keyframes）及其相機外參（旋轉四元數 (qx, qy, qz, qw)與

相機中心 C）。

2. 相機內參標定：使用 ROS工具完成相機內參（intrinsics）標定，包括相機矩

陣與畸變係數，詳見 3.5.2。

3. 位移向量計算：將 SLAM提供之旋轉四元數轉換為旋轉矩陣 R，並利用相

機中心 C計算 COLMAP所需之平移向量 t。其轉換關係式如下：

t = −RC (3.6)

此關係可確保世界坐標系與相機坐標系的一致性。

4. 建立稀疏模型骨架：將上述計算得到之 (R, t)與相機內參匯入 COLMAP，

建立與 SLAM坐標系對齊的 sparse model。

5. 特徵擷取與匹配：使用COLMAP的 feature_extractor與 exhaustive_matcher

模組，從對齊後的影像中萃取特徵描述子並匹配，將結果寫入資料庫。

6. 三角化重建稀疏點雲：透過 point_triangulator模組，結合 sparse model

與特徵匹配結果，三角化生成稀疏點雲。

7. 多視角立體重建（MVS）：在執行 image_undistorter影像去扭曲預處理後，

使用 patch_match_stereo模組估算稠密視差圖，再透過 stereo_fusion模

組融合多視角點雲，濾除不一致匹配，最終將稠密點雲輸出。此結果提供完

整場景幾何資訊，後續可用於缺陷分析與 BIM點雲配準。
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SLAM輸出
Keyframe影像與相機外參

相機內參標定
（相機矩陣、畸變係數）

位移計算
（t = −RC）

建立 sparse model

特徵擷取與匹配
（Feature / Matcher）

三角化
（Point Triangulation）

影像去扭曲
（Image Undistorter）

稠密視差估計
（PatchMatch Stereo）

融合點雲
（Stereo Fusion）

輸出稠密點雲
（Dense Point Cloud）

圖 3.15: COLMAP稠密點雲重建流程圖

3.7.2 BIM模型轉點雲

前述 COLMAP方法以純視覺方式重建密點雲，僅能獲取三維空間中的相對

位置資訊。倘若導入帶有真實世界坐標資訊與構件資訊之 BIM模型，方能進一步

提升系統的實用性。為方便進行後續點雲配準作業，會將 BIM當中的實體採樣為

點雲形式，以利後續運算。本研究之 BIM點雲轉換流程如圖 3.16所示，主要包含

以下步驟：

1. 模型匯出：將 BIM軟體中的模型以中性格式（如 IFC或 OBJ）匯出，使得模

型包含每個構件的幾何資訊與世界坐標。

2. 轉換為網格模型：將 IFC或 OBJ檔案匯入 Blender，轉換為三角網格模型

（.ply檔）。

3. 網格模型轉點雲：使用 Python與 Open3D函式庫將 Blender匯出的三角網格
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模型（.ply檔）轉換為幾何點雲。本研究採用均勻採樣（uniform sampling）

方式，於網格表面隨機生成點，產生密度適中的點雲資料。

4. 資料儲存與格式轉換：將轉換後之點雲以 .ply格式儲存，以利後續與稠密

點雲進行配準（registration）。

模型匯出
(IFC, OBJ)

匯入 Blender
轉換為三角網格模型

Python + Open3D
均勻採樣轉為點雲

儲存為 .ply點雲

圖 3.16: BIM模型轉點雲流程圖

透過上述轉換流程，BIM模型得以點雲表示形式，保留了原始模型的空間佈

局與尺度資訊，後續亦能與實測取得之稠密點雲進行配準。

3.8 點雲配準與相機位姿變換

本節說明如何將由 SLAM與 COLMAP重建之稠密點雲，與 BIM模型所轉換

之幾何點雲進行空間配準（point cloud registration），並同步計算相機位姿於真實

坐標系中的轉換關係。透過配準與姿態變換，可將劣化偵測結果映射至 BIM模型

空間，作為後續缺陷比對與定位之基礎。

3.8.1 點雲配準目的與流程

由於 SLAM與 COLMAP所重建之點雲為相對坐標系，與 BIM模型所使用之

絕對坐標系不一致，需透過配準將兩者轉換至統一空間。其目的包括：

• 建立稠密點雲與 BIM點雲之間的空間對應關係。

• 求解旋轉矩陣 R、平移向量 t與縮放係數 s，實現相機位姿與缺陷點坐標的

轉換。
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• 將所有劣化偵測結果映射至絕對坐標系，供後續巡檢使用。

本研究所採用之配準流程如圖 3.17所示，包含以下步驟：

密點雲
含坐標資訊之
BIM點雲

點對標註
(point-pair)

精細配準
(ICP)

坐標變換後的
密點雲

變換矩陣

圖 3.17: 點雲配準與轉換流程圖（point-pair與 ICP）

1. 輸入點雲準備：一組為 COLMAP重建之稠密點雲，另一組為由 BIM模型三

角網格均勻採樣轉換而得之點雲（含真實坐標資訊）。

2. 初步配準：於 CloudCompare應用程式 [77]中手動標註對應點對（point-pair

registration），取得粗略剛體變換初始值，記為矩陣 Tinitial。

3. 精細配準（ICP）：透過 Open3D套件 [78]執行 ICP（Iterative Closest Point）

演算法 [79]，採用 point-to-point模式，以最小化對應點雲距離來求解最佳剛

體變換矩陣 TICP：

TICP =

RICP tICP

0T 1

 (3.7)

4. 最終整合變換矩陣計算：將初始配準矩陣 Tinitial與 ICP精細配準矩陣 TICP透

過矩陣相乘方式整合成最終變換矩陣 Ttotal：

Ttotal = TICP · Tinitial =

Rtotal ttotal

0T 1

 (3.8)
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3.8.2 相機位姿變換與更新

完成點雲配準後，可將所得剛體變換矩陣 T套用至表 3.6當中的相機外參，

將相機位置與方向轉換至 BIM模型所使用之世界坐標系。本研究使用四元數

（quaternion）與旋轉矩陣相互轉換方式進行坐標更新，其步驟如下：

1. 原始外參重建：由每筆資料中之四元數 (qx, qy, qz, qw)計算旋轉矩陣 R：

R =


1− 2(q2y + q2z) 2(qxqy − qzqw) 2(qxqz + qyqw)

2(qxqy + qzqw) 1− 2(q2x + q2z) 2(qyqz − qxqw)

2(qxqz − qyqw) 2(qyqz + qxqw) 1− 2(q2x + q2y)

 (3.9)

2. 齊次外參矩陣重建：旋轉矩陣 R與平移向量 t組成 4× 4齊次外參矩陣：

E =

R t

0T 1

 (3.10)

3. 應用剛體變換：將配準所得變換矩陣 T左乘於每筆外參 E，得到更新後之姿

態：

E′ = T · E (3.11)

4. 旋轉矩陣轉回四元數：由 E′擷取旋轉部分 R′，透過以下公式轉回四元數：

s =
1

2
√
tr(R′) + 1

(3.12)
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

q′w = 1
4s

q′x = (R′
21 − R′

12)s

q′y = (R′
02 − R′

20)s

q′z = (R′
10 − R′

01)s

(3.13)

5. 輸出格式整理：最終將每筆更新後相機姿態 (x′, y′, z′, q′x, q
′
y, q

′
z, q

′
w)以及對應

缺陷類型整合輸出成 CSV檔。

此轉換流程已整合至 Python程式中實作，確保每一筆劣化標註點皆可精確對

應至真實坐標，後續可作為三維可視化、比對分析與巡檢引導之依據。

3.9 劣化資訊展示與互動應用

在完成點雲對齊與相機位姿轉換後，本研究進一步整合 BIM、相機外參與影

像資料，進行視覺化、構件對應與互動查驗，產出三種輸出成果進行整合與展示，

協助使用者掌握劣化分布、對應影像與所屬構件。整體流程如圖 3.18所示。

含構件幾何
與坐標之 BIM 劣化幀外參 劣化影像 對齊後之密點雲

構件名稱對應程式
三維視覺化展示
（PyVista）

密點雲匯入
CloudCompare

構件名稱對應與
TWD97報表

對應影像與
空間標註輸出

進行三維量測
與劣化查驗

圖 3.18: 劣化資訊展示與對應流程圖
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3.9.1 三維視覺化展示

於 Python 環境中，本研究採用 PyVista 套件 [80]，將轉換後的稠密點雲、

BIM點雲與劣化標註資訊整合顯示。輸入資料包括稠密點雲與 BIM幾何點雲、每

筆劣化的相機外參與時間戳等，最終可於同一視窗中以箭頭呈現劣化位置，並搭

配文字與影像資訊進行空間查驗。圖 3.19顯示了展示結果於稠密點雲與幾何點雲

上的應用，劣化點以箭頭與標註框呈現於對應位置。

(a) COLMAP建立之稠密點雲及劣化標註 (b) BIM模型轉換之點雲及劣化標註

圖 3.19: 使用 PyVista將劣化標註資訊展示於不同來源點雲

3.9.2 三維量測與位置查驗

針對細部位置與距離分析，本研究亦支援透過 CloudCompare進行互動式量

測與定位，如圖 3.20所示。使用者可點選任一點雲點查看坐標、法向量與 RGB，

亦可量測兩點間之空間距離及軸向分量，協助缺陷範圍評估與修補計畫制定。

(a)查看劣化坐標資訊 (b)量測劣化尺度

圖 3.20: 於 CloudCompare中進行劣化點雲之三維互動檢查
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3.9.3 劣化標註表與報告書

系統針對每一筆劣化標註結果，整合其三維空間位置、影像檔名與所屬構件

資訊，並輸出結構化表格。首先，系統載入 IFC模型，透過 ifcopenshell將模

型中 IfcProduct的幾何頂點轉換至世界座標系，並建立 KDTree索引結構，以利

於快速進行劣化點與構件之最近鄰查詢 [81]。

為進一步驗證劣化點與構件的空間對應關係，系統也實作射線碰撞偵測（ray

tracing）。此方法從每筆相機外參提供的位置與方向產生射線，並於 KDTree建立

的點雲資料中逐步檢查距離，若某採樣點與最近的點雲頂點距離小於設定閾值，

即判定為命中。系統隨後記錄命中位置，並將結果進行視覺化，圖 3.21展示相機

外參產生之射線（顏色依劣化類型區分）及其對應編號。

圖 3.21: 點雲射線碰撞結果視覺化

完成構件比對與射線碰撞分析後，系統將命中點的空間位置轉換為臺灣常

用的 TWD97平面坐標系，並整合構件名稱、劣化類型等資訊輸出完整報表（如

表 3.7）。報表記錄每筆劣化點的流水編號、所屬構件、劣化類型，以及其在

TWD97坐標系下的東坐標 E(X)、北坐標 Y (N)與高程（Elevation），以提供後續

工程分析及定位使用。
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表 3.7: 劣化位置彙整表範例 (單位：公尺)

Defect ID Element Type E(X) N(Y) Elevation

1 Span2_MainGirder2 Efflorescence 307780.83 2764564.17 16.33

2 Span2_DeckSlab Spalling 307795.74 2764568.31 16.51

3 Span2_MainGirder4 Efflorescence 307762.48 2764550.96 15.29

4 Pier2_CapBeam Crack 307792.60 2764560.37 15.44

5 Span1_DeckSlab Spalling 307794.13 2764558.76 15.88

另會透過 3.6節得到的相機位姿資訊，經運算後輸出相機位姿（表 3.8），記

錄相機於拍攝時的精確位置與朝向，包括縱坐標、橫坐標、高程，以及方向角

（Azimuth）與俯仰角（Pitch）。以利維修人員根據相機拍攝位置於現場尋找劣化。

表 3.8: 相機位姿資料範例 (單位：公尺)

Defect ID Type E(X) Y(N) Elevation Azimuth Pinch

1 Efflorescence 307780.08 2764563.98 16.52 91.96° +14.78°

2 Spalling 307780.50 2764563.14 16.06 86.79° +14.53°

3 Efflorescence 307791.35 2764567.01 16.74 87.39° +17.50°

4 Crack 307794.97 2764568.11 17.13 87.93° +18.70°

5 Spalling 307794.08 2764565.59 16.91 88.86° +17.81°

最終產出之劣化標註報表如圖 3.22所示，以一筆劣化為單位生成頁面，內容

綜合前述空間坐標與相機位姿資訊，並搭配對應的劣化影像及劣化位置平面圖。

此報表結構化呈現劣化點基本屬性、空間定位及拍攝姿態，方便使用者進行點對

點之現場查驗與修繕規劃。
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圖 3.22: 劣化檢測報表範例

此種報表結合影像與空間資訊，有助於提升劣化檢測結果的實用性與現場應

用價值，並支持後續自動化分析與決策流程。
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3.10 系統應用情境分析

本章節自前端至後端展示了完整的研究方法，當中包含可即時取得的資訊以

及需透過後處理獲得的資訊。這些內容建立在理想的情境基礎上，但在實務應用

中往往會面臨一些限制，例如老舊橋梁通常缺乏 BIM模型（本研究所使用之道南

橋 BIM模型亦是為了研究需求而根據圖資所建立）；此外，在災害發生時往往時

間緊迫，使用MVS技術生成稠密點雲所需之處理時間可能造成救災上的延誤。

為了應對上述的實務挑戰，本系統在設計時具備一定的彈性，能依據現場的

實際條件調整運作模式，特別是在後處理階段。以下將針對四種典型情境的系統

運作流程進行詳細說明。

1. 具備 BIM模型且時間寬裕：此為最理想之狀態，即現場已有可用的 BIM模

型，且有充裕時間進行MVS重建。本系統會先透過即時辨識獲得初步損傷

資訊，並即時透過 SLAM生成疏點雲與 BIM點雲進行初步疊合。之後再透

過MVS技術重建稠密點雲，提升後處理分析的精確性。

2. 缺乏 BIM模型但時間寬裕：在老舊橋梁缺乏 BIM模型的情況下，系統將會

依賴 SLAM生成之疏點雲以及後續MVS技術重建稠密點雲。儘管缺乏 BIM

參考，本方法仍能達到三維精確辨識與展示橋梁劣化的目標。

3. 具備 BIM模型但時間緊迫：此情境常見於災害現場，時間緊迫無法等待

MVS重建程序。本系統可即時運用 SLAM生成之疏點雲與現有 BIM點雲進

行快速疊合，即時提供現場工程師足夠準確的初步劣化分析。

4. 缺乏 BIM模型且時間緊迫：此為最嚴苛的情境，系統僅能即時辨識，無法

進行後處理。此時即時生成的 SLAM疏點雲與 YOLOv9辨識結果將直接作

為現場初步評估依據，提供即時損傷資訊，協助緊急應變決策。
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表 3.9整理了上述四種典型情境的特性，包含急迫性、是否具備 BIM模型，

以及常見發生情境等。

表 3.9: 不同應用場景之特性比較

場景編號 1 2 3 4
急迫性 低 低 高 高

BIM模型 有 無 有 無

常見情境 新建橋梁
定期檢測

老舊橋梁
定期檢測

新建橋梁
緊急檢測

老舊橋梁
緊急檢測

表 3.10整合不同情境下，各項子模組於系統流程中的適用性與處理時間，提

供工程師依據需求與現地條件進行應變調整。

表 3.10: 系統流程於不同情境之應用與處理時間

步驟 目的 應用場景 處理所需時間 建議設備

1 2 3 4

現地系統
部署

架設空拍機與邊緣
運算設備以進行巡
檢

● ● ● ● 設備運送至定點後，
預計數分鐘內可完成

邊緣平台

空拍機巡
檢作業

透過空拍機與邊緣
運算設備即時獲取
劣化偵測成果

● ● ● ●
視無人機飛行時間而
定，疏點雲與相機相
對姿態會即時被建立

邊緣平台

點雲配準
獲取劣化之絕對位
置及所在構件資訊

● ●
僅需數分鐘即可完成
手動配準，其餘自動
化流程僅需數秒

邊緣平台
或高效運
算設備

三維劣化
展示：

BIM點雲

令使用者知悉劣化
位置

● ● 渲染流程僅需數秒
邊緣平台
或高效運
算設備

橋檢報告
輸出

作為即時檢測的階
段成果，令使用者
快速掌握橋梁狀況

● ● 自動化流程僅需數秒
即可完成

邊緣平台
或高效運
算設備

稠密點雲
重建

作為後續劣化展示
與測量的關鍵工具

● ●
視飛行時長、點雲品
質、硬體設備而定，
通常需數小時

高效運算
設備

三維劣化
展示：稠
密點雲

令使用者知悉劣化
位置與劣化情況

● ● 渲染流程僅需數秒
高效運算
設備

劣化尺度
量測

令使用者了解劣化
尺度資訊以利後續
檢修作業

● 渲染流程僅需數秒
高效運算
設備
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3.11 小結

本章節說明了本研究建立之橋梁劣化檢測工作流程，綜合各節之內容，可歸

納以下五項關鍵要點與方法論特色：

1. 端到端整合式架構：系統自「影像取得」起，於邊緣裝置即時完成劣化偵

測（YOLOv9）與相機定位（ORB-SLAM3），透過 ROS串連各模組，確保

任務流程即時且可擴充。後端則執行稠密點雲重建（COLMAP）、點雲配準

（point-pair + ICP）、三維標註（PyVista）與報告書輸出，建立完整橋檢工作

流程。

2. 異質硬體協同運作：

• 空拍側：DJI Inspire2 + Zenmuse X5S提供清晰之橋梁影像。

• 邊緣側：Jetson Orin Nano搭配輕量化 YOLOv9模型，在 15W功耗下實

現即時推論與同步定位。

• 後端側：高效能桌機處理稠密點雲重建與可視化運算，強化整體流程

效能並避免單點瓶頸。

3. 劣化資料完整且評估機制嚴謹：建構涵蓋三類劣化（白華、裂縫、剝落）共

計 30,248張影像之多來源資料集，並區分訓練、驗證與測試集；模型效能

則以 Precision、Recall、F1與 mAP@50評估，確保其實用性與泛化能力。

4. 空間對位與自動標註機制強化：系統透過點雲配準求得剛體變換矩陣 T，統

一 SLAM、BIM與稠密點雲坐標系統，進而將劣化結果（類型與外參）精準

對位至結構構件。本研究進一步導入射線投射與 IFC模型解析，自動標註每

筆劣化所屬構件資訊，並轉換為 TWD97坐標格式，利於工程後續定位與應
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用整合。

5. 互動式視覺化與報告產出：整合 PyVista與 CloudCompare提供即時 3D劣化

展示、距離量測與坐標查詢功能，並支援結果匯出與自動化報告書產出。另

結合 pHash感知哈希進行影像去重與劣化篩選，有效提升資料品質與後處理

效率。

6. 多場景應用之彈性設計：參考橋梁年齡、災後急迫性與 BIM資訊完整度，

設計四種典型應用情境。本系統可依據場景選擇對應流程組合，如災後情境

可強調即時辨識與簡報輸出，而 BIM現有者可進一步執行構件對位與 IFC

標註，展現良好之模組彈性與適應能力。

綜上所述，本研究方法兼顧即時性、精確性與模組化特性，自空拍影像擷

取、邊緣辨識到三維定位與視覺化均建立具體實作流程，證實商用 UAV搭配低功

耗裝置即可達成「多類劣化即時辨識 +精準空間定位」目標，對橋梁巡檢數位轉

型具實質助益。
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第四章 系統驗證與實測

本章節將介紹本研究所採用的模型訓練、測試集驗證、以及實地測試結果，

並詳細說明點雲配準、BIM資訊整合、與劣化資訊展示的應用。

4.1 劣化辨識模型

本研究採用 YOLOv9作為劣化辨識任務的主體架構，進行混凝土結構物中三

種常見劣化型態：白華、裂縫與剝落之自動化偵測。考量橋梁檢測任務對即時性

與準確性的需求，YOLOv9能在高速推論的同時兼顧準確率，為本研究之首選。

4.1.1 實驗環境與系統設定

本研究之模型訓練與測試皆於單一工作站上進行，系統硬體與軟體環境如

表 4.1所示。所有訓練均於單張 GPU上進行，模型訓練過程包含資料擴增、前處

理、監督學習訓練與推論，於同一環境內完成所有測試以確保一致性。

表 4.1: 實驗硬體與系統環境

項目 規格與版本
中央處理器（CPU） AMD Ryzen 5 7600
圖形處理器（GPU） NVIDIA GeForce RTX 4080（16GB VRAM）
記憶體（DRAM） 32GB DDR5
作業系統 Ubuntu 20.04 LTS
深度學習框架 PyTorch 2.4.1（CUDA 12.1)
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4.1.2 模型選擇與實驗設計

本研究初步選定中階版權重 yolov9-m與輕量化模型 yolov9-c比較效能差異，

以確認模型容量對劣化辨識任務之影響。

在超參數調整方面，本研究採用「逐步優化調參策略」，每輪實驗僅針對一組

超參數進行變化，其餘設定保持不變，並保留該輪表現最佳之結果作為後續實驗

的基礎。此策略類似單一變數調整法（One-at-a-Time, OAT），但進一步納入「逐

步沿用最優組合」的概念，使調參過程更貼近實務中常見的參數疊加優化方式，

亦有助於控制實驗成本與提升整體效能。

本研究依此策略，依序調整以下三大類參數：

1. 模型與訓練參數：預訓練權重、batch size、優化器、學習率（learning rate）、

動量（momentum）、權重衰減（weight decay）；

2. 資料增強參數：影像平移（translation）、色相（hue）、飽和度（saturation）、

明度（brightness）；

3. 其他設定：其餘參數以 YOLOv9官方建議參數作為初始設定，測試時固定

初期置信度閾值為 0.3。

4.1.3 基礎訓練參數設定

為確保各項超參數調整實驗具可比性，本研究以表 4.2所展示之 YOLOv9官

方建議參數作為初始設定（baseline），所有變項調整皆基於此組參數進行。

本研究所有超參數調整實驗皆以此組基礎參數為控制設定，僅針對個別變數

進行調整，並於後續各表中清楚標示變動項目及其對應辨識效能。除此之外，本
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表 4.2: YOLOv9基礎訓練參數設定

參數 值 參數 值
初始學習率（lr0） 0.01 最終學習率比例（lrf） 0.01
動量（momentum） 0.937 權重衰減（weight_decay） 0.0005
Warmup次數（warmup_epochs） 3.0 Warmup動量（warmup_momentum） 0.8
初始 bias lr（warmup_bias_lr） 0.1 Box loss權重（box） 7.5
類別 loss權重（cls） 0.5 類別正樣本加權（cls_pw） 1.0
物件正樣本加權（obj_pw） 1.0 DFL loss權重（dfl） 1.5
IoU訓練門檻（iou_t） 0.20 Anchor門檻（anchor_t） 5.0
Focal loss gamma（fl_gamma） 0.0 HSV色相增強（hsv_h） 0.015
HSV飽和度增強（hsv_s） 0.7 HSV明度增強（hsv_v） 0.4
平移增強（translate） 0.1 縮放增強（scale） 0.9
左右翻轉（fliplr） 0.5 混合增強（mixup） 0.15
Copy-Paste增強（copy_paste） 0.3 上下翻轉（flipud） 0.0
旋轉（degrees） 0.0 透視（perspective） 0.0
錐形變形（shear） 0.0 馬賽克增強（mosaic） 0.0

研究所有模型訓練均採固定訓練輪數（epoch）為 100，以確保各組超參數調整實

驗在相同的訓練條件下進行，提升比較之公平性與一致性。於訓練過程中，對每

個 epoch進行驗證，並保留驗證 mAP@0.5表現最佳之模型作為最終輸出。

4.1.4 測試集設計與評估原則

為全面評估模型於不同場景之辨識能力，本研究設計兩組獨立測試資料集，

分述如下：

• 測試集（Roboflow）：與訓練資料來源相同，主要用於觀察模型在標準資料

下的學習效果；

• 測試集（本研究拍攝）：由本研究實地以空拍機與手機拍攝雙北地區混凝土

橋梁，並人工標註所得，用以模擬實務應用場景，檢驗模型泛用能力與實務

部署效能。

為確保訓練、測試與實際應用流程一致，兩組測試集之所有影像皆於測試前

統一 resize為 512 × 512並轉為灰階（grayscale），與模型訓練及部署階段的前處
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理完全相同。此設計有助於排除影像尺寸與色彩資訊帶來的變異，專注評估模型

對結構劣化特徵的辨識能力。

影像轉為灰階之細節與合理性已於 3.3.2節詳述，主要考量於橋梁現場檢測

時，主要目標為混凝土材質，灰階化能進一步提升模型對紋理與形狀特徵的敏感

度。後續小節亦將比較「有無轉為灰階」對辨識效能之影響，以驗證該預處理策

略之適用性。

雖然兩組測試集均進行完整測試，但本研究以本研究測試集（測試集 B）

之 mAP@0.5表現最佳者作為最終模型選擇依據，以確保模型適用於真實場域。

Roboflow測試集（測試集 A）則作為輔助觀察模型學習穩定性與訓練成效之參考

依據。

此外，為合理比較不同超參數組合的影響，所有超參數調整階段測試均統一

採用置信度閾值 0.3。此數值考量了橋梁檢測實務需求，為確保潛在劣化不被漏

檢，故選用較低的置信度作為超參數調整階段的參數。

在選出最終採用模型權重後，本研究進一步對該模型進行置信度閾值調整實

驗，以觀察不同偵測敏感度對 precision、recall與 mAP的影響，提供實務應用上

最適合的門檻建議。

4.1.5 模型比較與超參數調整

本節依「逐步優化調參策略」之流程，分別展示各超參數調整實驗的成

果。為利比較，所有試驗皆固定置信度閾值為 0.3，並以 mAP@0.5、Precision、

Recall為主要評估指標。表格依參數類別排列，先列模型／訓練參數，次列資料

增強參數，最後獨立展示置信度閾值微調結果。
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表 4.3: 不同預訓練權重對辨識效能之影響

預訓練權重
Roboflow測試集 本研究測試集

Precision Recall mAP@0.5 Precision Recall mAP@0.5

yolov9-m 0.788 0.355 0.576 0.581 0.588 0.606

yolov9-c 0.791 0.391 0.596 0.669 0.539 0.628

最佳值： yolov9-c

表 4.4: 不同 Batch size設定對辨識效能之影響（yolov9-c）

Batch size
Roboflow測試集 本研究測試集

Precision Recall mAP@0.5 Precision Recall mAP@0.5

4 0.824 0.335 0.577 0.665 0.449 0.566

8 0.805 0.374 0.590 0.607 0.544 0.591

12 0.806 0.381 0.600 0.648 0.530 0.611

16 0.791 0.391 0.596 0.669 0.539 0.628

最佳值： Batch size (BS) = 16

表 4.5: 不同 Optimizer對辨識效能之影響（yolov9-c, BS = 16）

Optimizer
Roboflow測試集 本研究測試集

Precision Recall mAP@0.5 Precision Recall mAP@0.5

SGD 0.791 0.391 0.596 0.669 0.539 0.628

Adam 0.923 0.221 0.572 0.889 0.318 0.607

AdamW 0.768 0.390 0.585 0.585 0.528 0.584

最佳值： SGD，與預設值相同
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表 4.6: 不同 Learning rate (lr0)設定對辨識效能之影響（yolov9-c, BS = 16）

Learning rate
Roboflow測試集 本研究測試集

Precision Recall mAP@0.5 Precision Recall mAP@0.5

0.005 0.759 0.411 0.590 0.628 0.573 0.615

0.010 0.791 0.391 0.596 0.669 0.539 0.628

0.020 0.820 0.311 0.569 0.661 0.443 0.580

0.040 0.853 0.243 0.549 0.818 0.360 0.600

最佳值： Learning rate = 0.01，與預設值相同

表 4.7: 不同Weight Decay設定對辨識效能之影響（yolov9-c, BS = 16）

Weight Decay
Roboflow測試集 本研究測試集

Precision Recall mAP@0.5 Precision Recall mAP@0.5

0.0001 0.726 0.418 0.581 0.624 0.542 0.583

0.0005 0.791 0.391 0.596 0.669 0.539 0.628

0.0010 0.852 0.319 0.587 0.741 0.513 0.637

0.0050 0.954 0.166 0.561 0.927 0.201 0.568

最佳值：Weight Decay (WD) = 0.001，優於預設值 0.0005

表 4.8: 不同Momentum設定對辨識效能之影響（yolov9-c, BS = 16, WD = 0.001）

Momentum
Roboflow測試集 本研究測試集

Precision Recall mAP@0.5 Precision Recall mAP@0.5

0.937 0.852 0.319 0.587 0.741 0.513 0.637

0.907 0.822 0.345 0.587 0.696 0.460 0.591

0.867 0.765 0.398 0.587 0.522 0.595 0.574

0.817 0.745 0.425 0.590 0.529 0.551 0.553

最佳值：Momentum = 0.937，與預設值相同

根據模型與訓練參數調整後的測試結果，yolov9-c 搭配 Batch size = 16 與

Weight Decay = 0.001為目前整體表現最佳之組合，後續所有超參數調整實驗皆以

此為基礎設定。
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表 4.9: 不同平移增強 (Translation)對辨識效能之影響

Translation
Roboflow測試集 本研究測試集

Precision Recall mAP@0.5 Precision Recall mAP@0.5

0.0 0.807 0.339 0.576 0.616 0.516 0.578

0.1 0.852 0.319 0.587 0.741 0.513 0.637

0.2 0.873 0.301 0.589 0.710 0.402 0.573

0.3 0.875 0.295 0.587 0.766 0.468 0.625

最佳值： Translation = 0.1，與預設值相同

表 4.10: 不同色相增強 (Hue)對辨識效能之影響

Hue
Roboflow測試集 本研究測試集

Precision Recall mAP@0.5 Precision Recall mAP@0.5

0.0075 0.848 0.325 0.587 0.685 0.489 0.601

0.0150 0.824 0.341 0.585 0.741 0.513 0.637

0.0225 0.839 0.333 0.589 0.661 0.506 0.604

0.0300 0.831 0.328 0.582 0.700 0.460 0.581

最佳值： Hue = 0.015，與預設值相同

表 4.11: 不同飽和度增強 (Saturation)對辨識效能之影響

Saturation
Roboflow測試集 本研究測試集

Precision Recall mAP@0.5 Precision Recall mAP@0.5

0.3 0.867 0.309 0.588 0.719 0.459 0.595

0.5 0.833 0.332 0.586 0.722 0.526 0.627

0.7 0.852 0.319 0.587 0.741 0.513 0.637

0.9 0.825 0.337 0.584 0.700 0.599 0.657

最佳值： Saturation = 0.9，優於預設值 0.7
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表 4.12: 不同亮度增強 (Brightness / Value)對辨識效能之影響（Saturation = 0.9）

Brightness
Roboflow測試集 本研究測試集

Precision Recall mAP@0.5 Precision Recall mAP@0.5

0.0 0.832 0.331 0.584 0.677 0.529 0.615

0.2 0.824 0.341 0.585 0.710 0.572 0.656

0.4 0.825 0.337 0.584 0.700 0.599 0.657

0.6 0.865 0.304 0.588 0.783 0.452 0.630

最佳值： Brightness = 0.2，優於預設值 0.4

4.1.6 模型訓練結果彙整

根據前述模型與訓練參數調整後的測試結果，yolov9-c搭配 Batch size = 16︑

Weight Decay = 0.001與Momentum = 0.937為整體表現最佳之組合。而資料增強

相關參數調整結果顯示，Saturation = 0.9能在不過度犧牲 Precision的前提下大幅

提升 Recall與整體 mAP表現，因此在進行置信度閾值調整前，將以此組資料增強

設定為訓練基礎。表 4.13整理目前實驗中所採用之 YOLOv9訓練超參數組合，表

中已將經過調整與更新的項目以粗體標示：

表 4.13: 最終 YOLOv9訓練參數設定（更新處以粗體標示）

參數 值 參數 值
初始學習率（lr0） 0.01 最終學習率比例（lrf） 0.01
動量（momentum） 0.937 權重衰減（weight_decay） 0.001
Warmup次數（warmup_epochs） 3.0 Warmup動量（warmup_momentum） 0.8
初始 bias lr（warmup_bias_lr） 0.1 Box loss權重（box） 7.5
類別 loss權重（cls） 0.5 類別正樣本加權（cls_pw） 1.0
物件正樣本加權（obj_pw） 1.0 DFL loss權重（dfl） 1.5
IoU訓練門檻（iou_t） 0.20 Anchor門檻（anchor_t） 5.0
Focal loss gamma（fl_gamma） 0.0 HSV色相增強（hsv_h） 0.015
HSV飽和度增強（hsv_s） 0.9 HSV明度增強（hsv_v） 0.4
平移增強（translate） 0.1 縮放增強（scale） 0.9
左右翻轉（fliplr） 0.5 混合增強（mixup） 0.15
Copy-Paste增強（copy_paste） 0.3 上下翻轉（flipud） 0.0
旋轉（degrees） 0.0 透視（perspective） 0.0
錐形變形（shear） 0.0 馬賽克增強（mosaic） 0.0
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圖 4.1 展示本研究最佳模型於訓練過程中的指標變化，包括 Precision、

Recall、mAP@0.5、mAP@0.5:0.95、學習率（lr）與 loss。由圖可見，各項指標自

訓練初期迅速提升，於 60至 80步左右趨於穩定，表示模型已有效收斂。最終

Precision、Recall、mAP@0.5均趨於穩定，且損失函數持續下降，顯示過擬合現

象不明顯，訓練過程穩健。

圖 4.1: 模型訓練過程中 Precision、Recall及 mAP等指標隨訓練步驟之變化

圖 4.2為驗證集的混淆矩陣，橫軸為真實標籤，縱軸為預測標籤。從矩陣中

可觀察到，模型對裂縫（Crack）和剝落（Spalling）類別的判斷較為準確，分別有
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0.58與 0.56的正確預測比率；白華（Efflorescence）則有較多漏檢的情況（0.60），

說明其外觀特徵與背景相近，是日後改善重點。

圖 4.2: 驗證集混淆矩陣

圖 4.3 呈現驗證集三類別及總體的 Precision-Recall 曲線。曲線下方面積

（AUC）越大代表辨識能力越好。剝落（Spalling）與裂縫（Crack）類在大部分召

回率區間內 Precision維持較高，分別有 mAP@0.5為 0.628與 0.614，驗證模型針

對這兩類劣化的判斷較為精確。白華（Efflorescence）mAP@0.5只有 0.395，說明

在多數閾值下精確率較難提升，符合前述混淆矩陣的結果，總體 mAP@0.5則達

到 0.546。

綜合上述結果，模型於訓練及驗證過程均展現良好的學習趨勢與泛化能力，

針對常見劣化類型（裂縫、剝落）具備高辨識率。未來可針對白華等難以區分的

類別，增強資料多樣性及提升特徵敏感度，以提升實務應用成效。
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圖 4.3: 驗證集各類別 Precision-Recall曲線，框內數值為各類別 mAP@0.5

由表 4.14及圖 4.4可觀察到，隨著置信度閾值提高，Precision呈現明顯上

升、Recall 則逐漸下降，顯示模型預測更為嚴格，但同時可能漏檢部分目標。

mAP@0.5則在 0.3附近達到最高值（0.657），為 Precision與 Recall之間取得最佳

平衡的區間。

表 4.14: 不同置信度閾值設定下最終模型於本研究測試集之辨識效能

置信度閾值 Precision Recall mAP@0.5

0.15 0.690 0.603 0.650

0.20 0.690 0.603 0.656

0.25 0.690 0.603 0.653

0.30 0.700 0.599 0.657

0.35 0.732 0.531 0.639

0.40 0.759 0.478 0.627

0.45 0.810 0.430 0.622

0.50 0.853 0.354 0.604
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圖 4.4: 不同置信度閾值下 Precision、Recall與 mAP@0.5之變化趨勢

綜合三項指標，當置信度閾值設定為 0.3時，模型同時保有較高的準確率與

召回率，並使整體辨識效能（mAP@0.5）達到最佳。故本研究後續劣化辨識結果

與分析皆採用置信度閾值 0.3作為最終判定基準。

4.1.7 橋梁劣化分類性能與案例

如圖 4.5與表 4.15所示，模型在本研究測試集展現出不錯的分類能力：

• 白華（Efflorescence）類別有 78筆標註，模型的 Precision為 0.613，Recall

為 0.590，mAP@0.5為 0.582。混淆矩陣中可見部分白華樣本被誤分類為背

景或其他類別，反映出白華特徵辨識的挑戰。

• 裂縫（Crack）類別有 103筆標註，Precision高達 0.764，Recall亦達 0.660，

mAP@0.5為 0.714，表現最佳。混淆矩陣顯示裂縫誤判情況較少，模型對裂

縫辨識能力較為穩健。

• 剝落（Spalling）類別有 172筆標註，Precision 0.723，Recall 0.547，mAP@0.5
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為 0.676。混淆矩陣指出剝落與背景或白華間存在部分誤判，未來可透過增

強資料與模型改進降低錯誤率。

• 整體（all）而言，模型 Precision與 Recall分別為 0.700與 0.599，mAP@0.5

為 0.657，說明模型對多類別劣化目標具優秀識別能力。

圖 4.5: 測試集混淆矩陣

表 4.15: 最佳模型在本研究測試集（置信度閾值 = 0.3）之分類效能

類別 影像數 標註數 Precision Recall mAP@0.5

全部 (all) 197 353 0.700 0.599 0.657

白華 (Efflorescence) 197 78 0.613 0.590 0.582

裂縫 (Crack) 197 103 0.764 0.660 0.714

剝落 (Spalling) 197 172 0.723 0.547 0.676

圖 4.6展示六組代表性測試案例，呈現模型於各類橋梁劣化的辨識效果。
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(a)裂縫正確偵測 (攝於永福橋) (b)白華漏檢 (攝於永福橋)

(c)白華正確偵測 (攝於永福橋) (d)三類型劣化同時出現，部分漏檢 (攝於永福橋)

(e)白華被誤檢為剝落 (攝於福和橋) (f)剝落多處皆正確辨識 (攝於永福橋)

圖 4.6: 本研究最佳模型於現地影像多類別劣化辨識成果實例。
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上圖中，(a)為單一明顯裂縫，模型能準確框選並給予高置信度；(b)為一組

白華特徵，由於紋理與背景差異較小，且受橋下護網影響，出現漏檢現象，顯示

模型對低對比目標仍有提升空間；(c)為白華區域正確被辨識之情形，證明經灰階

化預處理後模型對細微紋理具敏感性；(d)為白華、剝落與裂縫共存場景，其中剝

落與裂縫兩類劣化均正確辨識，惟白華出現漏檢情形；(e)為白華被誤判為剝落，

但白華仍被正確辨識；(f)為剝落分布於多處且皆被正確偵測，顯示本研究模型對

剝落類具有較高準確率與召回率。綜上，模型在主要劣化型態辨識展現良好性能，

針對複雜與低對比劣化仍有進一步改善空間。

4.1.8 灰階與原彩影像之辨識效能探討

為驗證影像灰階化對模型效能之實質影響，本研究特別針對本研究測試集，

分別以灰階影像（預設）與原彩影像作為輸入，並於其餘設定完全一致（包含

影像尺寸 512 × 512、預處理流程等）下，評估兩者之辨識效果。其結果彙整如

表 4.16所示。

表 4.16: 灰階影像與原彩影像輸入下各類別 mAP@0.5指標比較

類別 灰階 mAP@0.5 原彩 mAP@0.5 提升值
全部 (all) 0.657 0.521 +0.136

白華 (Efflorescence) 0.582 0.475 +0.107

裂縫 (Crack) 0.714 0.679 +0.035

剝落 (Spalling) 0.676 0.409 +0.267

上表可見灰階化處理能顯著提升模型於剝落與白華類別的辨識能力，其中剝

落類 mAP@0.5提升超過 0.26，白華類亦有 0.13以上的提升。裂縫類雖提升幅度

較小，但仍有助於整體辨識表現。
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(a)灰階影像辨識結果（永福橋） (b)原彩影像辨識結果（永福橋）

(c)灰階影像辨識結果（福和橋） (d)原彩影像辨識結果（福和橋）

圖 4.7: 灰階與原彩影像之劣化辨識結果對照

如圖 4.7所示，灰階影像（左欄）明顯較原彩影像（右欄）能更準確標註出白

華（Efflorescence）與剝落（Spalling）區域，尤其是剝落分布面積或形狀較不明顯

時，灰階化能使模型聚焦於紋理與結構變異。原彩影像雖可辨識大部分裂縫區域，

但對於低對比的白華與剝落則常有誤判或漏檢。

這驗證本研究將影像預處理統一為灰階的設計是有效且合理的。推測原因在

於剝落及白華劣化特徵色彩與背景相近，彩色影像易受干擾，灰階處理反而能突
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顯結構紋理，提升偵測準確性。未來若遇到色彩對比明顯之場域或新型態劣化，

亦可再評估保留色彩資訊之必要性。

綜合上述，本研究模型於測試集展現良好多類別辨識能力。對於明顯的裂縫

和剝落具高度偵測精度與召回率，白華類則仍易與背景混淆。整體而言，模型已

能應對大多數實務場景，未來可針對混合型與低對比度劣化目標進行進一步改

進，強化模型的實地適應力與全面性。

4.1.9 結果分析與小結

本研究針對 YOLOv9劣化辨識模型之設計、訓練與驗證，進行一系列系統性

實驗與調參，重點分析結果如下：

• 模型架構選擇：實驗顯示，輕量化 yolov9-c 權重在本研究測試集之

mAP@0.5與 precision表現優於 yolov9-m，且推論速度快、資源需求低，更

適合橋梁現場部署。說明本研究資料集規模及目標特徵複雜度適合中小型模

型，能有效避免過擬合並提升泛化能力。

• 訓練參數影響：經系統性調整，Batch size以 16為佳，兼顧模型穩定訓練及

效能提升。優化器方面，SGD展現最穩定的精度與召回率；Adam/AdamW

雖偶有較高 precision，但在 recall及 mAP上波動大，不利於工程部署下的

可靠性。學習率（lr）維持 YOLOv9官方預設 0.01，最能確保收斂速度與最

終效能；Weight Decay微調至 0.001，較預設值能提升泛化性，抑制過擬合。

• 資料增強與預處理：飽和度（Saturation）調高至 0.9，可顯著提升 mAP及

recall，特別對於剝落與白華類劣化，證明高飽和度資料擴增有助於模型學

習低對比目標特徵。此外，統一將所有影像轉換為灰階，能顯著提升對劣化
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的敏感度，尤其剝落與白華類別 mAP分別提升 0.267與 0.136，顯著優於原

彩輸入。

• 測試集設計與評估：兩組測試集皆經標準化前處理（resize、灰階化），排除

因資料型態差異產生的評估偏誤。最終以「本研究測試集」之 mAP@0.5作

為模型選擇依據，強調模型對現地場域的適應力。

• 置信度閾值調整：系列測試顯示，將閾值設為 0.3能兼顧 precision與 recall，

mAP@0.5達最高（0.657），推薦做為劣化自動辨識之預設門檻。現場應用

上可依實務風險容忍度彈性調整。

綜合分析，本研究最終模型組合如下：

yolov9-c, SGD, Batch size = 16, Weight Decay = 0.001, Saturation = 0.9

（其餘參數採官方預設，影像統一灰階化，置信度閾值 0.3）

該組合於自製測試集多類別指標（mAP@0.5 = 0.657, Precision = 0.700, Recall =

0.599）均達到最優，顯示模型具備應用潛力，特別在裂縫與剝落辨識上有穩定且

優異表現。白華雖辨識仍具挑戰，但灰階化及資料增強策略已帶來明顯進步。而

儘管本研究模型在裂縫與剝落辨識上表現優異，仍有數項待改善之處，歸納如下：

• 白華易與背景混淆：白華類 mAP@0.5僅 0.582，常被誤判為背景。建議擴

充不同環境下的白華樣本，並導入注意力模組 [82]以提升辨識能力。

• Recall偏低，潛在漏檢：總體 recall為 0.599，部分劣化在複雜背景或遮蔽情

境下未被偵測。可透過 hard negative mining [83]等策略提升召回率。

• 固定輸入尺寸限制細部辨識：單一尺度輸入對小面積劣化表現有限，建議未

來加入多尺度訓練或 super-resolution [84]等技術增強影像細節。

78

http://dx.doi.org/10.6342/NTU202502165


doi:10.6342/NTU202502165

綜上，本研究模型已具實用性，但針對白華、遮蔽、細節與多任務整合等問

題，仍有進一步優化空間。未來朝向資料多樣化與架構強化發展，可提升模型在

實地橋梁檢測中的穩定性與全面性。

4.2 前導實驗：系統可行性測試

本次初步驗證實驗選擇於臺北市與新北市交界之「寶橋」進行，目的為測試

本研究所建構之無人機檢測系統在實際橋梁環境下的整合運行可行性。寶橋橫跨

景美溪之都市型道路橋梁，於民國 67年（1978年）8月竣工，為四跨三墩之梁式

橋，全長 103.24公尺，橋寬 19.5公尺，連接臺北市文山區木新路與新北市新店區

寶橋路（如圖 4.8所示），為兩地之重要交通樞紐，長年承受高交通流量與各類載

重，具備劣化監測需求，故本研究以其作為初期系統驗證場地。

圖 4.8: 寶橋位置圖，方框內為本次實驗飛行範圍
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4.2.1 驗證目的與測試條件

本階段實驗以寶橋作為場域，進行本研究所建構之橋梁劣化檢測系統的首次

實地驗證。主要目的為確認無人機搭載 YOLOv9劣化辨識模組與 ORB-SLAM3定

位與建圖模組，在實際橋梁環境中的整合運作可行性，並蒐集實測資料供後續分

析與系統修正。具體實驗目的包括：

• 確認無人機飛行過程中，影像能穩定傳入 YOLO模組進行即時劣化偵測。

• 確認 ORB-SLAM3模組能同步進行影像追蹤與初步定位建圖，並與影像辨

識流程順利整合。

• 確認整體系統能完成 ROS架構下之任務串接，包含影像擷取、推論發布與

相機位姿記錄等。

• 初步觀察實地操作所需的飛行策略、視角設置與資料擷取條件，以作為後續

實驗之參考。

• 錄製 rosbag檔案，以利後續於離線環境中進行系統調整與模組改進。

本次驗證使用設備為 DJI Inspire 2無人機搭載 Zenmuse X5S單眼雲台相機，

搭配 NVIDIA Jetson Orin Nano作為邊緣運算平台，基於 ROS，整合 YOLOv9與

ORB-SLAM3模組，同步記錄影像與姿態資訊。詳細軟硬體資訊同表 3.1。

測試作業選於天氣良好、無強風之日間時段進行，系統架設地點位於寶橋橋

下自行車道，施作前進行基本場勘並設置飛行邊界。操作過程由一名飛手與一名

安全人員共同執行，確保飛行過程之設備與人員安全。所有影像與姿態資料將用

於後續稽核與系統調校。
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4.2.2 現地實驗紀錄

本次寶橋現地實驗記錄摘要如表 4.17所示，統整拍攝時間、氣候條件、操作

人員與影格資料量等基本資訊，並整理劣化偵測結果數量。

表 4.17: 寶橋現地實驗記錄

日期時間 2024/11/6下午 3時
天氣 多雲
實驗地點 寶橋（臺北市文山區與新北市新店區交界）
無人機飛手 陳羿清
參與作業人數 2人（飛手、安全人員）
紀錄時長 14分 52秒（892秒）
影格資料數 13380筆（892 × 15fps）
SLAM關鍵幀數 429幀（有追蹤失敗情況）
劣化幀數（經自動過濾） 63幀

圖 4.9展示操作人員進行飛行控制與影像串流作業之現場照片，可看出本場

域具備典型的都市河岸橋梁特徵，並存在部分飛行障礙（如濃密植栽），對系統整

合測試具代表性。

圖 4.9: 系統驗證現場操作實況 -寶橋
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此外，圖 4.10為本次實驗期間以 rqt_graph工具擷取之 ROS節點架構圖，

呈現各模組在 ROS架構下之實際串接關係與資料流向。圖中可見，相機影像經由

影像處理節點後，同步輸入 YOLO劣化辨識與 ORB-SLAM3模組，再由後端節點

整合辨識結果與相機位姿，並於 RViz中以箭頭與文字標註方式即時呈現，形成完

整的 ROS工作流程。

圖 4.10: ROS節點圖 (rqt_graph)

4.2.3 實驗觀察與問題分析

本次寶橋實驗聚焦於整合系統於實地場域中的運作可行性，包含影像串流、

劣化推論、SLAM定位與資料同步等模組是否能穩定執行。劣化辨識成果將於後

續正式實驗中進一步探討與分析，本節重點將聚焦於系統運行層面之實際觀察與

問題歸納。

本次寶橋實驗雖順利完成系統整合測試與資料收集，但亦觀察到數項影響系

統效能與操作安全的潛在問題，說明如下：

1. 橋下光照變化劇烈，影響影像穩定性：當日拍攝時部分區域因陽光穿透橋體

結構產生強烈陰影，造成影像明暗差異過大，易使 YOLO偵測結果出現誤

判，亦會影響 SLAM模組的特徵匹配準確度。系統實際運行畫面如圖 4.11

所示，包含即時 YOLO劣化辨識（左下）、ORB-SLAM3追蹤與 RViz中劣化

箭頭展示（中）、以及地圖建構狀態（右上）。
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2. 橋下環境障礙物密集，影響飛行安全與通訊穩定性：圖 4.12為寶橋空拍影

像，圖中可見寶橋橋下區域存在懸空電纜、鋼索等多項障礙物，對無人機飛

行操作造成實質干擾與潛在風險。另於繞行至橋墩背面或橫向飛行時，機體

可能暫時超出操作人員視距，導致影像鏈路中斷（如圖 4.13），進而影響即

時影像辨識與追蹤穩定性。

3. 純視覺 SLAM容易發生追蹤失敗（Tracking Loss）：ORB-SLAM3在無GNSS

或 IMU輔助的情況下，僅依賴單眼相機進行影像特徵追蹤與位姿估計，對

於特徵不足或畫面劇烈變動的情境極為敏感。在本次實驗中，當飛行軌跡出

現快速轉向、視角變化過大，或影像中出現大面積低紋理區域（如天空、水

面）時，系統即容易失去追蹤，導致 SLAM建圖中斷（如圖 4.14所示）。

整體而言，寶橋實驗成功驗證了系統運作可行性，但亦暴露出在複雜橋下場

域中，系統仍存在穩定性與操作風險。後續規劃中，須考量障礙物密度、視距限

制、相機角度控制與通訊品質等因素，以提升 SLAM穩定性與影像資料品質。

圖 4.11: 寶橋實驗，系統即時運行畫面
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圖 4.12: 寶橋空拍畫面，橋下區域存在懸空電纜、鋼索等多項障礙物

圖 4.13: 影像串流於飛行過程中短暫中斷，導致 SLAM模組追蹤失敗
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圖 4.14: ORB-SLAM3 MapViewer，因多次 tracking loss導致地圖不完整

4.3 正式實驗：系統應用與資料取得

繼寶橋之初步測試後，本研究進一步選擇同為臺北市文山區的「道南橋」（圖

4.15）作為正式實驗場地，針對整體系統進行更完整與深入的實地應用與資料採

集。道南橋為橫跨景美溪之都市型道路橋梁，於民國 73年（1984年）8月竣工，

位處車輛通行密集區域，橋體全長 120公尺，為三跨兩墩之預鑄 PC梁式橋。橋

寬 11.15公尺，銜接臺北市文山區的指南路一段與指南路二段（如圖 4.16所示），

具備典型城市橋梁構造特徵，且橋下空間相對開闊，便於飛行作業與影像觀測。

圖 4.15: 道南橋
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圖 4.16: 道南橋位置圖，方框內為本次實驗飛行範圍

4.3.1 實驗設計與作業流程

道南橋實驗為本研究系統進行整合後之正式應用場景，目的在於實地驗證整

體系統於橋梁結構下之劣化偵測、視覺定位與資料記錄功能是否具備實用性與穩

定性。本次實驗全面執行包含無人機作業規劃、飛行策略調整、資料採集流程、

影像串流與位姿同步記錄、以及後處理等完整流程，並將前次寶橋實驗中觀察到

的系統問題加以修正與強化。

本次驗證使用設備與前次相同，可參考表 3.1。檢測流程包含：

• 任務規劃與場勘：於施作前完成飛行區域界定與障礙物盤點，確認適合飛行

路徑並依據結構類型規劃拍攝策略。

• 飛行作業與資料同步記錄：操作人員於橋側進行飛行操控，並透過無

線連線將相機畫面同步傳入 Jetson Orin Nano，進行 YOLO 劣化辨識與
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ORB-SLAM3定位作業，並同步記錄各筆影像與相機姿態資訊。

• 後處理資料重建與整合：實驗結束後，彙整各關鍵幀影像與相機位姿，導入

COLMAP執行稠密點雲重建，並結合 BIM模型進行點雲對齊與缺陷空間定

位。詳細內容將在 4.4節中詳細說明。

針對前次寶橋測試所揭露之操作困難與技術瓶頸，本次道南橋實驗特別針對

下列面向進行修正與強化：

• 人員編組調整：前次實驗僅配置飛手與安全人員，本次道南橋實驗則新增

「系統監控人員」，協助即時檢查 YOLO與 SLAM模組運行狀態，並確認訊

號串流是否穩定，確保整體作業流暢度與系統穩定性。

• 橋下障礙物密度與飛行安全性提升：相較於寶橋，道南橋橋下空間開闊、無

懸吊電纜與結構突出物，可有效降低飛行風險，提升任務安全性。

• 穩定視角與路徑設計：根據前次 tracking loss問題，調整無人機飛行軌跡與

相機拍攝角度，避免快速視角切換，提升 SLAM模組追蹤穩定性。

• 拍攝時段選擇：拍攝時段選擇於接近正午時進行（橋下皆為陰影），以減少

光線頻繁變化對 YOLO與 ORB-SLAM3的影響。

圖 4.17為道南橋現地實驗之執行畫面，可見現場配置三名人員分工合作以確

保飛行任務順利執行。圖中左側著反光背心者為無人機飛手，負責操控飛行路徑

與相機視角；右側為安全人員，負責觀測周遭環境與提醒障礙物風險；中央人員

則負責系統監控及器材移動。透過明確分工與協作，確保整體作業流程穩定、資

訊同步完整。
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圖 4.17: 系統驗證現場操作實況 -道南橋

4.3.2 系統運行結果

為佐證本系統於複雜橋梁場域中之應用效能，道南橋實驗完整呈現了從影

像擷取、即時辨識、同步定位至地圖建構的全流程整合成果。實驗記錄摘要如

表 4.18所示，統整拍攝時間、氣候條件、操作人員與影格資料量等基本資訊，並

整理劣化偵測結果數量。

表 4.18: 道南橋現地實驗記錄

日期時間 2025/3/12上午 11時
天氣 多雲
實驗地點 道南橋（臺北市文山區）
無人機飛手 陳羿清
參與作業人數 3人（飛手、安全人員、系統監控）
紀錄時長 11分 03秒（663秒）
影格資料數 9945筆（663 × 15fps）
SLAM關鍵幀數 746幀
原始劣化幀數 52幀

圖 4.18為實驗期間系統即時運行畫面，可見 RViz中已同步顯示 SLAM所生
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成之空間點雲與辨識模組所偵測之劣化類型與信心分數；下方影像則顯示 SLAM

特徵點追蹤與 YOLOv9推論結果。

圖 4.18: 道南橋實驗，系統即時運行畫面

SLAM運行過程中，所有影像與軌跡資料成功建構為無追蹤中斷之地圖，整

體軌跡連續、點雲覆蓋範圍完整，顯示系統穩定性顯著優於前次寶橋測試，詳如

圖 4.19所示。RViz中顯示追蹤軌跡、SLAM建圖與劣化箭頭疊加成果。

圖 4.19: 道南橋完整地圖建構成果
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此外，本系統亦同步記錄實際辨識畫面，圖 4.20展示了部分現場辨識成果：

圖中紅色框為偵測之白華區域，紫色框則標註剝落位置，均為系統於橋下拍攝過

程中即時辨識與標註所得。這些畫面可協助工程人員即時了解缺陷位置與類型，

並輔助後續影像篩選與檢修規劃。

(a)白華辨識結果 (b)剝落辨識結果

圖 4.20: 道南橋劣化辨識成果示意

圖 4.21展示了去重程序的運作成果，左側為最終保留的劣化影像，右側則為

經去重程序剔除的影像。上列為系統使用感知哈希（pHash）自動辨識為重複的劣

化，兩者外觀幾乎一致，右圖因置信度低而被自動排除；下列則為經人工複查後

判定為重複的案例，兩張影像有顯著光影差異，屬於同一劣化但未被自動剔除。

(a)保留影像（自動） (b)被剔除影像（自動）

(c)保留影像（人工） (d)被剔除影像（人工）

圖 4.21: 保留與去重影像示例。左為保留之代表影像，右為被剔除之對應影像

90

http://dx.doi.org/10.6342/NTU202502165


doi:10.6342/NTU202502165

本次實驗即時劣化偵測模組初步偵測 52幀劣化影像，經 pHash技術自動去重

後減至 33幀，爾後透過人工複查再剔除 8幀重複影像，最終共保留 25幀具代表

性的劣化影像，並據此統計實驗中總計偵測到 25處劣化位置。

實驗顯示部分重複的影像並未被 pHash自動去重，主因可能包括以下幾點：

• 拍攝角度或構圖略有差異：雖為同一處劣化，但因 UAV或攝影裝置角度略

微偏移，使得畫面中劣化位置位移或比例不同，導致 pHash特徵值差異偏

大，無法達到自動判定閾值。

• 光照變化或遮蔽影響：天候變化或結構陰影造成畫面亮度、對比改變，使得

感知哈希產生的二進位特徵有顯著差異，誤判為非重複影像。

• 去重閾值設置較保守：為避免誤刪真正不同的劣化影像，本系統將 pHash相

似度門檻設定為較保守值（如 Hamming距離 ≤ 5），在提高精準度的同時，

可能會漏判部分實際重複的影像。

因此，人工後處理仍為提升資料品質之必要手段。尤其在實地應用中，考量

各種外在條件干擾，自動去重雖可大幅減少冗餘資料，但尚難完全取代人工辨識

的彈性與準確性。

經過自動與人工去重後，劣化個數如圖 4.22所示，圖中行表示模型預測類

別，列表示真實類別，數字為對應樣本數。可見：

• 白華（Efflorescence）共 14筆樣本，其中 11筆正確預測，3筆誤判為背景。

• 裂縫（Crack）共 4筆樣本，均正確辨識。

• 剝落（Spalling）共 7筆樣本，5筆正確辨識，1筆誤判為背景，1筆誤判為

白華。
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• 背景類別中有 15筆樣本被誤判為三種劣化之一。

圖 4.22: 道南橋實驗中即時劣化辨識之混淆矩陣

表 4.19彙整了道南橋實驗中三大劣化類別的辨識績效指標，包含 Precision

（精確率）、Recall（召回率）與 F1-Score。整體而言，道南橋現地實驗展現了較

模型測試階段（如表 4.15）更佳的 Precision（0.700提升至 0.800），主因在於系

統採用 pHash等自動去重機制，有效過濾重複與雜訊影像，降低誤報率，提升

精準度。然而，由於部分樣本被去重剔除，Recall相對略有下降（0.599下降至

0.556），但仍保持合理平衡，展現即時劣化辨識於實地複雜環境下的應用潛力。

表 4.19: 道南橋實驗即時劣化辨識之各類別 Precision、Recall與 F1-Score

類別 Precision Recall F1-Score

白華 (Efflorescence) 0.786 0.550 0.644

裂縫 (Crack) 1.000 0.571 0.727

剝落 (Spalling) 0.714 0.625 0.667

Micro平均 0.800 0.556 0.656
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4.4 實驗資料後處理與結果展示：道南橋

本節展示本研究於道南橋實驗中所蒐集之資料，經由後處理流程所產出之多

項成果，包含稠密點雲建構與配準、缺陷定位與三維資訊可視化。各步驟不僅驗

證本系統從資料擷取到空間標註的完整性，亦展現其在實務應用中的可行性。

4.4.1 稠密點雲重建成果

本研究利用 ORB-SLAM3所記錄之相機關鍵幀與姿態資料，依據 3.7.1小節

所述之流程，導入 COLMAP工具進行影像比對與稠密點雲重建。其第一步為建

立稀疏模型骨架（sparse model），以驗證相機軌跡與對應影像是否正確匯入，並

檢查是否與 SLAM系統所生成之姿態一致。圖 4.23顯示建立完成之稀疏模型，

可見 746筆影像皆成功註冊，共重建出 202217個三維點，平均每張影像有超過

1758個對應觀測點，重投影誤差控制於 0.71 px，整體成果良好，顯示資料品質可

支撐後續MVS重建。

圖 4.23: 道南橋 COLMAP建立稀疏模型成果
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在完成 stereo_fusion模組的深度融合後，COLMAP成功輸出完整稠密點

雲，圖 4.24為本研究於道南橋所建立之稠密點雲成果，可清楚辨識橋梁結構形貌

與周邊環境，包括橋台、橋墩、護欄與兩側堤岸等。此成果為後續與 BIM模型對

齊、缺陷定位與視覺展示之基礎資料。

圖 4.24: 道南橋 COLMAP重建之稠密點雲成果

4.4.2 空間配準與劣化定位成果

為將稠密點雲對齊至 BIM模型之絕對座標系，本研究使用 CloudCompare執

行初始配準，並搭配 Open3D套件進行精細 ICP演算法處理。初始點對由使用者

選定數對對應點，建立剛體初始轉換，接續以 point-to-point ICP進行誤差最小化，

最終取得稠密點雲與幾何模型間的剛體轉換矩陣與尺度係數，詳細流程已於 3.8

節中說明。

圖 4.25為由 BIM模型轉換而得之幾何點雲，可視為對齊目標之絕對座標基

準。圖 4.26為使用 CloudCompare工具進行初步點對配準之畫面，使用者手動對

應稠密點雲與幾何模型上的對應結構節點（如橋墩轉角、翼牆邊緣等），計算剛體

初始轉換與尺度。最後，圖 4.27為經過 ICP精細配準後之視覺化結果，點雲成功

對齊至 BIM幾何模型，顯示整體空間變換準確，後續劣化標註位置亦可正確映射

於模型中。
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圖 4.25: 道南橋之 BIM幾何模型點雲，作為絕對座標基準

圖 4.26: CloudCompare初步點對配準畫面

圖 4.27: Open3D執行 ICP配準成果
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經歷初步配準與 ICP精細配準後，依據前述方法分別取得兩組 4×4變換矩

陣，分別對應 CloudCompare初始配準與 Open3D ICP配準之剛體轉換。最終，透

過矩陣相乘方式合併兩階段的轉換結果，產出一組完整對應於稠密點雲與 BIM絕

對座標系之總變換矩陣，該矩陣將作為後續相機外參轉換之依據。

每筆劣化標註均對應一組相機外參與時間戳，本研究將其姿態透過前述剛體

變換矩陣轉換至真實世界座標，完成劣化標註於結構模型中的三維定位。轉換過

程可參考 3.8.2小節。

本階段輸出的劣化相機定位部分結果彙整於表 4.20，包含劣化標註於 BIM空

間中的三維位置（px, py, pz）、旋轉四元數（qx, qy, qz, qw）以及劣化類型。該資料

經由先前取得的剛體變換矩陣轉換後產出，作為後續缺陷位置視覺化的依據。

表 4.20: 本次實驗之劣化相機定位成果彙整表（節錄）

ID Type E(X) Y(N) Elevation Azimuth Pinch

1 Efflorescence 307780.08 2764563.98 16.52 91.96 14.78

2 Efflorescence 307780.5 2764563.14 16.06 86.79 14.53

3 Efflorescence 307791.35 2764567.01 16.74 87.39 17.50

4 Spalling 307794.97 2764568.11 17.13 87.93 18.70

5 Efflorescence 307794.08 2764565.59 16.91 88.86 17.81

6 Spalling 307793.15 2764565.22 16.67 89.18 17.73

7 Crack 307787.83 2764563.11 16.29 86.43 16.68

8 Crack 307770.74 2764556.34 15.00 85.52 14.48

9 Crack 307770.46 2764555.75 15.08 84.91 14.03

10 Efflorescence 307761.09 2764550.82 14.44 82.01 13.51

另外，系統亦會依據構件資訊進行比對，將劣化標註與 BIM模型中的構件名

稱對應，並彙整成結構化報表，如表 4.21所示，提供構件層級的缺陷位置與類型

資訊，以輔助工程師後續檢修與分析。具體方法在 3.9.3小節中已詳細說明。
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表 4.21: 劣化標註與 BIM構件名稱對應結果（節錄）

ID Element Type E(X) Y(N) Elevation

1 Span2_DeckSlab Efflorescence 307783.68 2764563.85 18.48

2 Span2_DeckSlab Efflorescence 307788.52 2764563.58 19.15

3 Span2_MainGirder6 Efflorescence 307795.71 2764567.18 19.15

4 Span2_MainGirder6 Spalling 307798.03 2764568.26 19.15

5 Span2_MainGirder4 Efflorescence 307797.90 2764565.70 19.15

6 Span2_MainGirder4 Spalling 307797.00 2764565.29 18.86

7 Span2_DeckSlab Crack 307792.57 2764563.41 18.70

8 Span2_DeckSlab Crack 307780.39 2764557.09 18.50

9 Span2_DeckSlab Crack 307780.13 2764556.61 18.51

10 Span2_MainGirder5 Efflorescence 307770.72 2764552.17 17.78

最終，系統進一步將各構件是否有缺陷以及其類型數量進行彙整，產出如

表 4.22所示之劣化分布表。該表提供橋檢人員快速檢索，亦作為報表生成與決策

建議的依據。
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表 4.22: 各構件劣化分布彙整表

Element HasDefect Efflorescence Crack Spalling

Abutment1_CapBeam no 0 0 0
Abutment1_CrossBeam yes 1 0 0
Abutment1_Wall no 0 0 0
Abutment2_CapBeam no 0 0 0
Abutment2_CrossBeam no 0 0 0
Abutment2_Wall no 0 0 0
Pier1_CapBeam no 0 0 0
Pier1_Column no 0 0 0
Pier1_CrossBeam1 no 0 0 0
Pier1_CrossBeam2 no 0 0 0
Pier2_CapBeam no 0 0 0
Pier2_Column no 0 0 0
Pier2_CrossBeam1 no 0 0 0
Pier2_CrossBeam2 no 0 0 0
Span1_DeckSlab yes 1 0 2
Span1_MainGirder1 no 0 0 0
Span1_MainGirder2 yes 2 0 1
Span1_MainGirder3 no 0 0 0
Span1_MainGirder4 yes 1 0 0
Span1_MainGirder5 no 0 0 0
Span1_MainGirder6 no 0 0 0
Span1_MainGirder7 yes 0 0 1
Span2_DeckSlab yes 4 4 1
Span2_MainGirder1 no 0 0 0
Span2_MainGirder2 yes 1 0 0
Span2_MainGirder3 no 0 0 0
Span2_MainGirder4 yes 1 0 1
Span2_MainGirder5 yes 1 0 0
Span2_MainGirder6 yes 1 0 1
Span2_MainGirder7 no 0 0 0
Span3_DeckSlab no 0 0 0
Span3_MainGirder1 no 0 0 0
Span3_MainGirder2 no 0 0 0
Span3_MainGirder3 no 0 0 0
Span3_MainGirder4 no 0 0 0
Span3_MainGirder5 no 0 0 0
Span3_MainGirder6 no 0 0 0
Span3_MainGirder7 no 0 0 0
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4.4.3 橋梁劣化檢測報告書範例

本節展示本系統產出的橋梁劣化檢測報告書範例，每頁記載一筆劣化資訊。

圖 4.28展示四筆劣化，每筆記錄包含缺陷類型、構件名稱、空間座標、相機位

姿、辨識影像以及平面圖中的缺陷位置標示，協助工程人員進行後續檢修作業。

圖 4.28: 橋梁劣化檢測報告書範例
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4.4.4 三維劣化展示與互動

整合上述空間配準與定位成果，本研究利用 PyVista平台進行三維劣化資訊之

視覺化展示。圖 4.29所示即為劣化點於三維空間中的位置與姿態，可即時檢視各

類缺陷之分佈，輔助工程人員更直觀地掌握劣化狀況。

圖 4.29: 使用 PyVista平台之三維劣化位置展示

此外，稠密點雲經轉換後帶有真實尺度與座標資訊，使用者可透過

CloudCompare工具，進行點雲瀏覽、量測等動作，提升資料應用的靈活性與準確

性。如圖 4.30所示，人員透過事前的劣化量測，可在前往現地作業前掌握劣化情

況，從而擬定修繕計畫。

圖 4.30: 利用 CloudCompare工具進行點雲量測與多重校驗
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4.5 實驗結果與討論

本節將彙整橋梁劣化辨識模型訓練及測試、系統實地驗證（寶橋與道南橋）

及三維重建的實驗成果。

4.5.1 實驗結果

劣化辨識模型（節 4.1）經測試確立以 yolov9-c為核心。關鍵成果包括：灰階

預處理顯著提升剝落（mAP@0.5提升 0.267）與白華（mAP@0.5提升 0.136）辨

識力；最終模型於「本研究測試集」達 mAP@0.5 0.657、Precision 0.700、Recall

0.599，對裂縫與剝落辨識穩健。

在不同測試資料集上的表現存在差異。Roboflow測試集 recall值普遍偏低，

顯示資料多樣性不足可能導致模型傾向過擬合至訓練樣本分佈。反之，自製測試

集包含現地拍攝資料，雖拍攝條件多樣，但 mAP整體表現更佳，且更符合我國的

實務應用場景。

進一步分析三類劣化之分類表現，裂縫與剝落類別精度與召回率較高，因其

特徵明顯，如裂縫具線性斷裂、剝落有邊界及陰影變化；白華則因與背景灰度接

近、特徵邊緣模糊，辨識仍具挑戰。

初步系統可行性測試（4.2節）於寶橋驗證 YOLOv9與 ORB-SLAM3於無人機

ROS平台整合的可行性，辨識出光照、障礙物及純視覺 SLAM穩定性等作業挑

戰。

正式實驗（4.3節）於道南橋進行，克服飛行與通訊障礙，實現 746關鍵幀

的連續 SLAM 建圖。即時劣化辨識共記錄 25 處劣化，現地辨識效能 Precision
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0.800、Recall 0.556、F1-Score 0.656。高 precision得益於感知哈希與人工複查流

程，降低誤判與重複資料。

實驗資料後處理（4.4節）利用道南橋 SLAM數據，以 COLMAP重建出高清

晰度（20.2萬點，重投影誤差 0.71 px）稠密點雲模型，並透過 ICP對齊至 BIM模

型，完成缺陷定位與報告輸出流程。

4.5.2 問題與討論

本研究所提出之橋梁劣化檢測系統整合 YOLOv9、ORB-SLAM3與 ROS架

構，並於寶橋與道南橋實地驗證整體流程之可行性。然而，從模型效能與實地作

業層面觀察，系統仍面臨數項挑戰與改進空間，說明如下：

• 白華辨識效能仍有限：雖透過灰階處理與高飽和度資料增強，白華類別

mAP有顯著提升，但與裂縫、剝落相比仍偏低。其原因在於白華邊界模糊、

灰階分布接近背景。未來可考慮導入注意力模組，或增加高變異性場景資料

以提升模型對細微變異的辨識能力。

• SLAM 容易失去追蹤（Tracking Loss）：寶橋實驗中觀察到，單眼 ORB-

SLAM3在低紋理、快速視角轉換或光照劇烈變化下容易失去追蹤。後續可

考慮整合 IMU輔助（Visual-Inertial SLAM），或採用更具穩健性的 SLAM架

構以提升穩定性。

• 現場飛行風險與操作限制：寶橋橋下電纜密集、通訊遮蔽、視距限制等問

題，均對作業安全與資料傳輸穩定性造成影響。道南橋雖已改善場域條件與

人員分工，但未來建議針對不同橋梁場域制定標準化飛行規範與安全評估機

制。
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• 自動去重機制具漏判風險：感知哈希（pHash）可初步過濾明顯重複影像，

但在構圖、角度或光照差異下可能漏判。為確保資料品質，人工複查仍不可

或缺。未來可考慮結合 BIM資訊或深度特徵匹配提升自動去重準確性。

• 三維定位精度受限於初始配準準確性：稠密點雲對齊至 BIM模型需仰賴手

動點對配準與 ICP精細化，若初始配對誤差大，恐影響後續劣化定位準確

度。未來可探討導入自動配準演算法或輔助定位標記，以提高整體空間標註

精度與效率。

綜合而言，本研究系統已展現實用性與可行性，惟於低對比特徵辨識、

SLAM穩健性、資料去重與三維標註流程等面向仍有精進空間。後續研究可朝多

感測器融合、模型多任務學習與自動化後處理流程發展，以提升系統於實務場域

中的穩定性與應用價值。
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第五章 結論與建議

本研究成功整合影像辨識與同步定位與地圖建構（SLAM）技術，並應用於

無人機（UAV）平台，建立了一套橋梁劣化即時檢測系統。透過本系統，期望能

提升橋梁檢測的效率、安全性與準確性，並為橋梁的維護管理提供更智慧化的解

決方案。本章將針對研究成果進行總結，探討研究過程中遭遇的限制，並對未來

的研究方向提出建議。

5.1 結論

本研究的主要貢獻與結論如下：

• 成功開發並驗證 UAV橋梁劣化即時檢測系統：本研究整合了 YOLOv9物件

偵測演算法與 ORB-SLAM3技術，成功在 UAV平台上實現了對橋梁常見劣

化（如裂縫、剝落、白華等）的即時辨識與三維定位。實驗結果顯示，系統

能夠在實際橋梁環境中運行，並初步達到預期的檢測效果。

• 實現多類別劣化辨識與初步定位：透過訓練 YOLOv9模型，系統能夠辨識

多種橋梁劣化類型。結合 ORB-SLAM3技術，能夠在 UAV飛行過程中，初

步記錄並視覺化劣化發生時的相機姿態，為後續的精確三維定位與點雲重建

提供基礎數據。
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• 建立劣化資訊後處理流程：本研究提出了一套後處理流程，能自動輸出包

含劣化座標、平面位置圖、對應影像及所屬構件的檢測報告書。並利用

COLMAP進行稠密點雲重建，讓使用者透過 CloudCompare與 PyVista等工

具，將辨識出的劣化資訊與 BIM模型或重建的三維點雲進行對位與可視化

展示，有助於橋檢人員直觀理解劣化位置與情況。

• 邊緣運算與系統整合：本系統以 NVIDIA Jetson Orin Nano作為邊緣運算平

台，在 ROS環境下整合各項模組，驗證了在資源受限的嵌入式設備上執行

複雜 AI模型的潛力，並提升了系統的即時反應能力。

5.2 研究限制

儘管本研究達成預期目標，但在研究過程中仍遭遇部分限制，條列如下：

• 無人機電量限制：無人機的電池續航力有限，可能影響單次檢測的範圍與時

長，特別是對於大型橋梁或需長時間作業的場景。

• 飛航法規與區域限制：無人機的飛行需遵守相關民航法規，部分區域（如高

速公路、鐵路周邊）需持有相關證照並額外申請許可方能進行檢測。

• 影像辨識模型的泛化能力：雖然本研究已使用多來源資料集進行影像辨識模

型訓練，涵蓋多種劣化情況，但現階段主要仍以日常巡檢中常見的劣化型態

為主，如混凝土裂縫、剝落與白華等，對於地震、水災等災害情境下可能出

現的特殊破壞類型（如構件斷裂、橋面隆起、墊層滑移等）尚未納入訓練資

料，限制了模型在災後緊急應變時的應用效能。

• SLAM定位精度與穩定性：純視覺 SLAM在環境特徵較少的區域（如大面

積單調的橋面或水面反射區域），定位精度和穩定性可能會下降，甚至出現
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追蹤失敗的情況。寶橋實驗中就觀察到多次 tracking loss導致地圖斷裂。

• 環境因素的影響：無人機的飛行與影像擷取易受風速、光照、橋下障礙物

（如寶橋實驗中的懸空電纜）等環境因素影響，可能導致影像品質不佳或飛

行安全問題，進而影響檢測結果的穩定性與完整性。

• 點雲重建與對位的複雜性：雖然本研究建立了點雲重建與 BIM對位的流

程，但單眼相機進行的稠密點雲重建在精度和完整性上仍有限制。且點雲與

BIM模型的自動化精準對位仍具挑戰，目前流程中仍需部分人工介入（如

CloudCompare中的手動點對配準）。

• 邊緣運算平台的效能限制：雖然 Jetson Orin Nano展現了不錯的邊緣運算能

力，但同時執行高複雜度的影像辨識與 SLAM運算，現階段仍可能面臨運

算資源的極限，影響系統的即時性與可擴展性。

5.3 未來研究建議

基於本研究的成果與限制，未來可從以下幾個方向進行深入研究：

• 提升影像辨識模型泛化能力：擴充涵蓋多橋型、材質、光照與災後情境（如

地震斷裂、洪災沖刷等）的劣化影像資料，建構具代表性的訓練集。亦可結

合歷年巡檢紀錄與航拍影像進行標註，搭配少量標註學習、遷移學習與自監

督方法，提升模型於災後情境的適應力。另可探索資料增強與多模態學習

（如融合 LiDAR資訊）技術，以強化模型整體的泛化與實用性。

• 增強 SLAM系統定位精度與穩定性：應用視覺慣性 SLAM（Visual-Inertial

SLAM, VI-SLAM）技術，整合 IMU數據以提升在動態環境或特徵稀疏區域

的定位穩健性。
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• UAV自主飛行與路徑規劃：結合 BIM模型或初步重建的稀疏地圖，進行

UAV自主飛行路徑規劃，以確保檢測的覆蓋率與影像品質；並研究基於強

化學習的 UAV自主避障與視角調整策略，以適應複雜的橋下環境。

• 應用數位孿生技術：深化 BIM模型與實測點雲的整合應用，建立更精確的

橋梁數位孿生（Digital Twin），實現劣化演變追蹤與預測性維護。

• 雲端協同運算：探索雲端協同運算架構，將部分非即時性的高複雜度運算

（如大規模點雲處理）移至雲端，實現雲端與邊緣裝置協同作業。

透過上述方向的持續研究與改進，期望能進一步完善 UAV橋梁劣化即時檢測

系統，使其在橋梁檢測工作中發揮更大的應用價值。
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