
doi:10.6342/NTU202402814

國立臺灣大學電機資訊學院電機工程學研究所

碩士論文

Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master’s Thesis

QUX : 問卷基底 GUI 模型之軟體架構

QUX : A Software Framework for Questionnaire-Based GUI

Models

易行祐

HSING-YU YI

指導教授：王 凡 博士

Advisor: Farn Wang, Ph.D.

中華民國 113 年 7 月

July, 2024

doi:10.6342/NTU202402814

 i

誌謝

 能完成這篇論文，特別感謝我的父母，也感謝所有一路上曾經給予我支持與

鼓勵的人，謝謝大家。

doi:10.6342/NTU202402814

 ii

中文摘要

 在現今的社會，手機應用程式已經十分普及，人們透過這些程式來協助完成

他們各式各樣的任務，像是時間管理、購物、通訊等等。但跟電腦應用程式不同

的是，手機應用程式的開發通常要同時面對時間上的壓力和廣大同類型應用的競

爭。此時，除了效率和創新以外，另一個能令其脫穎而出的關鍵就是 GUI的設計。

但 UI設計是個很耗時的工程，需要不斷根據反饋和測試結果進行調整，確保最終

的設計能夠滿足用戶的期望。正因如此，我們希望能找出方法，為 UI開發過程提

供有效的自動化支持。在本論文中，我們利用問卷蒐集回答作為模型訓練用的標

籤，進一步結合機器學習的技術去做出一個能夠針對給定的 GUI，自動回答問卷

問題的模型。我們希望能透過這個模型自動化地檢測和識別 UI設計中的問題，並

向開發者提供建議，進而提高整個 UI開發過程的效率，使設計師和開發者能夠更

好地集中精力在創造性的方面，而不是繁瑣的錯誤修復上。

關鍵字：手機應用程式、使用者介面設計、設計準則、問卷、自動回饋

doi:10.6342/NTU202402814

 iii

ABSTRACT

 In today's society, mobile applications have become ubiquitous, assisting people in

various tasks such as time management, shopping, and communication. However,

unlike computer applications, the development of mobile applications typically involves

time constraints and fierce competition among similar apps. In addition to efficiency

and innovation, another key factor that distinguishes an app is the design of its

Graphical User Interface (GUI). UI design is a time-consuming process that requires

continuous adjustments based on feedback and testing to ensure the final design meets

user expectations. Therefore, we aim to find methods to provide effective automation

support for the UI development process.

In this thesis, we use questionnaires to collect responses as labels for model

training. We further integrate machine learning techniques to develop a model capable

of automatically answering questionnaire questions for a given GUI. Our goal is to

automate the detection and identification of issues in UI design, providing suggestions

to developers. This approach aims to enhance the overall efficiency of the UI

development process, allowing designers and developers to focus more on creative

aspects rather than tedious error fixes.

Keywords : Mobile apps, UI Design, Design Guidelines, Automated Support, Survey,

Questionnaire-Based Model

doi:10.6342/NTU202402814

 iv

CONTENTS

口試委員會審定書 ... #

誌謝 ..i

中文摘要 .. ii

ABSTRACT .. iii

CONTENTS ...iv

LIST OF FIGURES ..vi

LIST OF TABLES ... viii

Chapter 1 Introduction .. 1

1.1 Background ... 1

1.2 Motivation... 2

1.3 Contributions .. 3

Chapter 2 Related Work and Preliminaries .. 5

2.1 Academic Research .. 5

2.2 Figma .. 6

2.3 UI Automator .. 6

Chapter 3 Methodology ... 8

3.1 Global Picture ... 8

3.2 Building UI Generating Algorithm ... 10

3.2.1 UI Generating Algorithm .. 12

3.2.2 Mutation of UI ... 14

3.3 Survey Design and Feedback Collection .. 15

3.3.1 Questionnaire Questions ... 16

doi:10.6342/NTU202402814

 v

3.4 Questionnaire-based Model .. 23

3.4.1 Model Architecture and Training .. 23

3.4.2 Dataset ... 25

Chapter 4 Implementations and Evaluations .. 26

4.1 Programming Language and Environment Setup ... 26

4.2 Model Performance on Training & Testing .. 26

4.3 Testing on Unlabeled Real-World Data .. 30

Chapter 5 Conclusion and Future Work.. 36

REFERENCE .. 38

doi:10.6342/NTU202402814

 vi

LIST OF FIGURES

Figure 1.1 Android Material Design – Design Guidelines Example 2

Figure 3.1 Material 3 Design Kit ... 6

Figure 3.1 Flowchart of Global Picture.. 8

Figure 3.2 Process of Building UI Generating Algorithm ... 10

Figure 3.3 Flowchart of UI Generating Algorithm .. 12

Figure 3.4 Example of UI Generation .. 13

Figure 3.5 Survey Respondents Distribution ... 16

Figure 3.6 Question 1 ... 17

Figure 3.7 Question 2 ... 17

Figure 3.8 Question 3 ... 18

Figure 3.9 Question 4 ... 18

Figure 3.10 Question 5 ... 18

Figure 3.11 Question 6&7 .. 19

Figure 3.12 Question 8&9 .. 20

Figure 3.13 Question 10&11 .. 20

Figure 3.14 Question 12&13 .. 21

Figure 3.15 Question 14 ... 21

Figure 3.16 Construction of Questionnaire-based Model .. 23

Figure 4.1 Choice Questions Answering Performance .. 30

Figure 4.2 Rating Questions Answering Performance ... 30

Figure 4.3 Question Related to Class Classification .. 32

Figure 4.4 3 Types of Navigation Bar .. 32

file:///C:/Users/y1996/OneDrive/文件/論文進度/QUX/論文_v2.doc%23_Toc171502028

doi:10.6342/NTU202402814

 vii

Figure 4.5 Question Related to Finding Missing Items ... 33

Figure 4.6 Model Rating and Play Store Rating .. 34

doi:10.6342/NTU202402814

 viii

LIST OF TABLES

Table 3.1 List of Mutation Types .. 15

Table 3.2 Correlation between number of mutation and rating problem 22

Table 4.1 Training Evaluation .. 27

Table 4.2 Testing Evaluation .. 27

Table 4.3 Training Evaluation of the Simplified Models with Different Sizes 28

Table 4.4 Testing Evaluation of the Simplified Models with Different Sizes 28

Table 4.5 Model Performance with and without Data Preprocessing 29

Table 4.6 List of Mobile Applications .. 31

Table 4.7 Evaluation of Model Performance on Real-World APP 34

doi:10.6342/NTU202402814

 1

Chapter 1 Introduction

1.1 Background

In the modern era, mobile applications have become the primary gateway to the

Internet and essential tools for daily tasks like reading, shopping, banking, and

communication. However, unlike traditional desktop applications, mobile apps face

fierce competition and time-to-market pressures, with over 3.8 million Android and 2

million iPhone apps vying for users.

A crucial aspect of mobile app success lies in the Graphical User Interface (GUI),

facilitating user-software interaction. A poorly designed GUI can lead to user frustration

and app uninstallation. Successful mobile apps require an intuitive, elegant GUI aligned

with effective User Interface (UI) design guidelines.

In order to build a user-friendly and aesthetic GUI, we can utilize the concept of

"mental model" to understanding how individuals perceive system functionality based

on prior knowledge. Several methods are employed to determine users' existing mental

models, including Jakob’s Law, card sorting, surveys, and user reviews/interviews. In

addition, following the UI design principles could be helpful. Mobile platforms, such as

Android Material Design[1] and iOS Human Interface Guidelines, set specific GUI

design standards that mobile applications running on these platforms are expected to

follow.

Building a successful UI/UX for mobile apps is a complex, iterative process

compounded by challenges inherent in mobile app development. These challenges

include the continuous pressure for frequent releases, the necessity to promptly address

user reviews to enhance app quality, frequent platform updates, API instability, and the

demand for custom components. The intricate nature of mobile app UI/UX design

doi:10.6342/NTU202402814

 2

underscores the need for efficient processes and tools to navigate these challenges

successfully.

Figure 1.1 Android Material Design – Design Guidelines Example1

1.2 Motivation

Implementing an intuitive and visually appealing Graphical User Interface (GUI) is

widely recognized as a challenging task, given its complexity and high associated costs.

The practical need for effective automated support becomes apparent to enhance the

process of detecting and reporting design violations, providing developers with more

accurate and actionable information.

Previous research has shown limited concern for detecting visual design violations,

creating a gap in addressing crucial aspects of GUI design. While most GUI testing

methodologies[2][3][4] dynamically explore the behaviors of an application, they

primarily focus on simulating user interactions to trigger app functionalities. Their

evaluation is centered on code and GUI coverage, lacking the ability to validate the

visual effects of GUI designs.

1 https://m3.material.io/components/navigation-bar/guidelines

doi:10.6342/NTU202402814

 3

In response to these challenges, some research initiatives[6][8] have introduced

design guideline-based testing techniques. These techniques offer direct feedback to

developers and UI designers, providing a more straightforward approach. However,

these methods deviate from the typical feedback format, such as questionnaires,

commonly received by developers and UI designers. This disparity highlights the need

for a different approach to address design violations and provide actionable insights in a

format familiar to development teams.

1.3 Contributions

1. Proposed questionnaire-based software framework QUX:

We contribute to the field by introducing a questionnaire-based model designed to

reduce the cost associated with analyzing the mental models of app users. This model

leverages machine learning techniques with the goal of providing automated

suggestions for GUI design improvements to app developers. We named this framework

QUX.

2. Synthetic GUI Datasets:

To facilitate the training of our proposed model, we have built datasets of synthetic

GUIs. This was achieved through the utilization of a self-developed UI generation

algorithm, contributing a resource for training and testing the effectiveness of our

approach.

3. Pioneering Use of Questionnaire-Based Model in UI Development:

As far as our knowledge extends, our work represents the first instance of employing a

questionnaire-based model as an automated tool in the realm of UI development. This

innovation is poised to streamline the process of gathering user insights and translating

doi:10.6342/NTU202402814

 4

them into actionable design recommendations.

4. Construction of UI Design Guidelines Knowledge Base:

To enhance the effectiveness of our questionnaire-based model, we have constructed a

knowledge base of UI design guidelines. This knowledge base serves as a crucial

reference point, aiding in the formulation of questionnaire questions that align with

established principles in UI design.

Overall, our contributions aim to advance the field of UI development by offering a

comprehensive solution that combines user insights and machine learning to streamline

the GUI design process for app developers.

doi:10.6342/NTU202402814

 5

Chapter 2 Related Work and Preliminaries

2.1 Academic Research

B. Yang, Z. Xing, X. Xia, C. Chen, D. Ye, and S. Li propose a multi-dimensional

analysis method for detecting design guideline violations[8]. Their approach involves

automatically parsing UI screenshots or prototype files to extract component metadata.

This metadata is then matched with guideline violation conditions, offering a

comprehensive method for identifying design guideline violations.

Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guoqiang

Li, and Jinshui Wang present an unsupervised deep learning method specifically for

detecting GUI animation design guideline violations[6]. The method treats the

validation against design-don't guidelines as a multi-class classification problem.

Initially, a GUI animation feature extractor is trained to autonomously extract crucial

temporal-spatial features from GUI animations in an unsupervised way. The trained

feature extractor is then employed to map typical GUI animations that violate design

guidelines into a dense vector space. For a given GUI animation, it is also mapped into

this vector space. The violation is determined by conducting a KNN search to identify

the most similar violating GUI animations.

These related works showcase innovative approaches to detecting design guideline

violations, one focusing on multi-dimensional analysis through UI screenshots and

prototype files[8], and the other employing unsupervised deep learning for GUI

animation guideline violations[6]. Each method contributes to the diverse range of

techniques aimed at enhancing the automated detection of design guideline violations in

user interfaces.

doi:10.6342/NTU202402814

 6

2.2 Figma

 Figma stands as a collaborative interface design tool, commanding a significant

market share of 36.17% in the collaborative design and prototyping market. Within this

platform, Google has developed the Material 3 Design[1] Kit, offering components that

align with official design guidelines. These components, including buttons, dialogs,

navigation bars, etc., serve as the foundation for our UI Generating Algorithm.

Figure 2.1 Material 3 Design Kit

2.3 UI Automator

UI Automator is a UI testing framework designed for cross-app functional UI

testing across both system and installed apps. Its APIs enable interaction with visible

elements on a device, irrespective of the focused activity. This flexibility allows

operations such as opening the Settings menu or the app launcher in a test device.

In the context of UI Automator, it serves as a tool for retrieving UI Layout Files,

essential for our model's training data. These files contain the hierarchical structure of

the UI, component coordinates, text, and other pertinent information. Utilizing UI

doi:10.6342/NTU202402814

 7

Automator simplifies the process of obtaining critical data for training our model.

doi:10.6342/NTU202402814

 8

Chapter 3 Methodology

3.1 Global Picture of QUX

Figure 3.1 Flowchart of Global Picture

As shown in Figure 4.1, this flowchart represents the core steps outlined in the

thesis and Software Framework of QUX. The process begins with an in-depth study of

Material Design, Google's UI design guidelines, and relevant UI theories. Drawing

inspiration from these guidelines, we formulate the methodology for designing

questionnaire questions and developing the UI generation algorithm.

The first pivotal step involves the construction of the UI generation algorithm. This

algorithm is designed to generate UI based on the established guidelines. Subsequently,

we utilize this algorithm to create a dataset comprising UI images paired with their

corresponding layout files in XML format. The inclusion of layout files in the dataset is

significant, as these files serve as additional training data for the subsequent stages.

Following the dataset creation, we conduct a survey to collect user feedback on the

doi:10.6342/NTU202402814

 9

generated UIs. The gathered feedback from the survey is then utilized as labels for the

dataset.

In the final phase, armed with the dataset and corresponding labels, we employ

machine learning techniques to train a model capable of automatically answering the

questionnaire questions for a given GUI. This model represents a crucial component in

our proposed methodology, aiming to streamline the process of UI evaluation and

feedback collection.

In summary, the global methodology involves research on design guidelines, the

formulation of questionnaire questions, and the development of a UI generation

algorithm. The subsequent steps encompass dataset creation, user feedback collection

through surveys, and the training of a machine learning model to automate the

questionnaire process for GUI evaluation. This comprehensive approach is geared

towards enhancing the efficiency and effectiveness of UI design and evaluation in

accordance with established principles.

doi:10.6342/NTU202402814

 10

3.2 Building UI Generating Algorithm

Figure 3.2 Process of Building UI Generating Algorithm

The foundation of our research lies in the development of a UI generation

algorithm, crucial for training our model and creating a diverse dataset. The following

flowchart illustrates the conceptualization and step-by-step construction of this

algorithm.

1. Selection of UI Templates:

We initiated the algorithm by carefully selecting eight UI templates from popular

mobile applications. These templates serve as the algorithm's foundational building

blocks. Additionally, we curated a library of various component images from Figma,

which would later be utilized to assemble UIs.

doi:10.6342/NTU202402814

 11

2. UI Analysis using UI Automator:

Employing UI Automator, we conducted a detailed analysis of the chosen templates,

extracting their UI layout files. These layout files, serving as templates themselves, are

integral to our algorithm's design. The algorithm generates both UI images and their

corresponding layout files.

3. Automated UI Construction:

The next step involved the development of a program capable of automatically selecting

components from the library based on the chosen template's layout. By referencing the

arrangement and positions of components in the template, this program constructs a UI

image that mirrors the layout of the chosen template.

4. Introduction of Design Guideline-Informed Mutation:

In the final stage, we incorporated design guideline-informed mutations to introduce

variability. Drawing inspiration from design guidelines, we determined the types of

mutations, such as changes in color or component positions. These mutations, added in

a randomized manner, bring about design variations, ensuring that the generated UIs

exhibit diversity and creativity.

In essence, this algorithm is rooted in a fixed template layout, augmented with

random variations to create a UI generation process that produces both UI images and

their corresponding layout files. The ensuing sections will delve into the specifics of

each step, providing a comprehensive understanding of our approach to UI generation.

doi:10.6342/NTU202402814

 12

3.2.1 QUX - UI Generating Algorithm

Figure 3.3 Flowchart of UI Generating Algorithm

The above flowchart(Figure 4.3) for the UI generation process provides a

step-by-step breakdown of each iteration, resulting in the creation of a UI image and its

corresponding layout file.

doi:10.6342/NTU202402814

 13

1. Template and Mutation Selection:

Choose one template from the set of eight, along with its corresponding layout file.

Randomly select a mutation type using the program, recording the mutation type as a

label associated with the generated UI. During dataset organization, this label is

combined with feedback from the questionnaire, resulting in dual-labeling for each UI

(questionnaire response and mutation type).

2. Layout Editing for Mutations:

If the mutation involves layout changes, such as component repositioning, edit the base

template's layout file to align with the altered UI. For mutations like font changes,

layout file editing is unnecessary.

3. Component Assembly and Recordkeeping:

With the selected template and mutation type, assemble the UI by retrieving the

necessary components from the curated library. Assemble the UI according to the layout,

simultaneously recording the edited layout file as the UI's corresponding layout file.

Record the mutation type as an additional label, aiming to enable the model to learn

distinctive features associated with each mutation type.

Figure 3.4 Example of UI Generation

doi:10.6342/NTU202402814

 14

Figure 4.4 illustrate the practical application of the UI generation process. In this

instance, a template referencing Instagram is selected. A random mutation type is

chosen, determining modifications such as inconsistent color schemes, excess trailing

icons, and the removal of the back arrow. The layout file is edited to accommodate the

mutations, reflecting changes in component placement and components are retrieved

from the library and assembled into a UI. The resulting UI, post-mutation, is visualized

to provide clarity and its edited layout file are saved, and the mutation type is recorded

in a separate JSON file.

3.2.2 Mutation of UI

The concrete implementation of mutations encompasses six dimensions: Layout,

Color, Typography, Icon, Missing Item & Crossover, and Navigation Bar. Each

dimension consists of 3 to 4 mutation types, offering a diverse set of alterations. The

occurrence of mutations in each dimension is probabilistic, independent, and fixed.

Additionally, there is a possibility that no mutations occur, maintaining the original

appearance.

These mutations are deliberately designed to deviate from design guidelines,

serving as intentional challenges for the model to identify. The probability-based and

independent nature of mutations ensures a diverse and unpredictable set of alterations in

each dimension, contributing to the overall variability of the generated UIs. Table 4.1

shows the list of mutation type.

Dimension Mutation Type

Layout

Too many Trailing Icons

Too many icons in Navigation Bar

Lack of icon in Navigation Bar

doi:10.6342/NTU202402814

 15

Follow the F mode or not?

Additions of Login Button

More than one Floating Action Button

Color

Change in color theme

Inconsistent color schemes

Alterations to color saturation

Navigation Bar has same color as background

Typography,

Inconsistent weight

Alterations to weight

Alterations to spacing

Changes in font styles

Missing Item &

Crossover

Crossover: mix elements from other templates into another

Intentional omissions of elements

Icon

Inconsistent weight

Alterations to weight

Changes in icon styles

Inconsistent colored icon set

Navigation Bar Additions or omissions of Label

Table 3.1 List of Mutation Types

3.3 QUX - Survey Design and Feedback Collection

A key component of our methodology involves the creation of a questionnaire

aimed at examining the rationality of UI design and providing suggestions for

improvement. Each questionnaire is meticulously crafted to assess various aspects of UI

doi:10.6342/NTU202402814

 16

design, enabling UI developers and designers to save on the costs associated with data

collection.

Following the questionnaire's design, feedback on UI designs is collected through

surveys, with each questionnaire paired with a generated UI. Respondents access the

questionnaire via a provided link and answer questions based on the accompanying UI

image. The platform chosen for this purpose is Google Forms, offering a user-friendly

and widely accessible interface for data collection.

The collected feedback serves as labeled data for model training, providing

valuable insights into users' perceptions and preferences regarding UI designs. This

section outlines the methodology employed for survey design and feedback collection,

emphasizing the importance of leveraging user feedback to enhance the efficacy of our

model in automating questionnaire responses.

Figure 3.5 Survey Respondents Distribution

3.3.1 Questionnaire Questions

In the questionnaire, we inquire about various aspects of user experience, all

doi:10.6342/NTU202402814

 17

centered around the UI images provided in the questionnaire, addressing elements such

as color, icons, fonts, layout, and more. The questionnaire commences with the

presentation of UI images generated by our system, followed by the series of questions.

The question types include multiple-choice, multiple-choice but may be more than one

answer, and rating questions. We reference the guidelines of questionnaire design to set

questions

As shown in Figure 4.6, The first question (Q1) is a multiple-choice question

regarding the UI theme, enabling developers to assess the clarity of their UI themes

based on feedback.

Figure 3.7 Question 2

Figure 3.6 Question 1

doi:10.6342/NTU202402814

 18

Figure 3.8 Question 3

Following the theme assessment, respondents are queried about the factors

influencing their choice. If the previous response indicates an unclear theme,

respondents are asked to specify why (Q2/Q3).

Figure 3.9 Question 4

Figure 3.10 Question 5

doi:10.6342/NTU202402814

 19

Question 4 focuses on the login status, providing insight into the clarity of the UI's

login status. Question 5 inquires whether respondents feel any elements or

functionalities are lacking, offering developers insights into potential deficiencies in

their UI.

Figure 3.11 Question 6&7

doi:10.6342/NTU202402814

 20

Figure 3.12 Question 8&9

Figure 3.13 Question 10&11

doi:10.6342/NTU202402814

 21

Figure 3.14 Question 12&13

Questions 6&7 pertain to layout issues, with respondents first rating the UI layout

and then specifying dissatisfaction points, providing developers with specific feedback.

Similarly, Question 8&9 address UI color and tone, aiming to gather feedback on these

aspects. Question 10&11&12&13 follow the same concept but focus on fonts and icons,

respectively. Through these questions, developers can obtain recommendations and

performance references across different aspects.

Figure 3.15 Question 14

Finally, the overall rating section provides respondents with a scale of 1 to 10 for

doi:10.6342/NTU202402814

 22

rating.

 Number

of

Mutation

Q6 Q8 Q10 Q12 Q14

Correlation

Coefficient

1 -0.283495 -0.236261 -0.233441 -0.309036 -0.382062

Table 3.2 Correlation between number of mutation and rating problem

 To understand the effect of mutations, we additionally analyzed the survey

responses. We performed a correlation analysis between the number of mutations in the

UI and the scores in various aspects. As shown in Table 4.2, there is a negative

correlation between the number of UI mutations and the scores. In other words, the

greater the number of mutations, the lower the scores, which aligns with our initial

expectations.

doi:10.6342/NTU202402814

 23

3.4 QUX - Questionnaire-based Model

3.4.1 Model Architecture and Training

Figure 3.16 Construction of Questionnaire-based Model

In the training process, we utilize the dataset obtained from generated UI images

and corresponding layout files, along with the labels collected from surveys, to train a

questionnaire-based model using machine learning techniques. The training process

involves two distinct models, each handling different types of input data: Model 1

doi:10.6342/NTU202402814

 24

processes UI images, while Model 2 handles layout files. Both models are trained

following a multi-task learning framework, where each question from the questionnaire,

along with the prediction of mutation types, is treated as a separate task. This approach

allows the models to simultaneously address multiple tasks, corresponding to the

various question types in the questionnaire. The tasks we are dealing with can be

categorized into three types:

1. Multi-Class Classification: Used for handling multiple-choice questions. In this task,

each option corresponds to a class, and ultimately one of them is chosen as the

answer.

2. Multi-Label Classification: Used for handling multiple-choice questions which may

be more than one answer. Unlike multi-class classification, where only one option is

selected from multiple choices, in multi-label classification, there can be multiple

answers, resulting in multiple output labels.

3. Regression Problem: Used for handling rating questions. In this task, the answers to

the questions are treated as a typical regression problem, where each question's

rating corresponds to a numerical output.

Model 1, which operates on image data, employs the ResNet50 architecture, while

Model 2, which processes layout files, utilizes the XLNet architecture. Pretrained

models serve as the basis for both, fine-tuned to optimize performance.

In terms of other setup, the loss functions employed vary based on the task type:

cross-entropy for multi-class classification tasks, binary cross-entropy for multi-label

classification tasks, and smooth L1 loss for regression tasks. These loss functions are

applied to each task independently, and the total loss is computed as the sum of losses

across all tasks. The Adam optimizer is used to optimize the models during training.

doi:10.6342/NTU202402814

 25

Finally, an ensemble approach is employed to combine the outputs of Model 1 and

Model 2. A weighted average is applied, determined through experimentation to find the

optimal performance.

3.4.2 Dataset

The labeled data is divided into two distinct sets: the training set and the testing set.

The training set is utilized for training the model, while the testing set is employed to

evaluate the model's performance.

The labeling methodology varies based on the type of questions present in the

questionnaire. For choice questions, a One-Hot Encoding technique is applied for

labeling. For instance, if there are five options and the first and second options are

selected, a vector with five elements is used as the label, with the first and second

elements marked as 1 and the rest as 0. For rating questions, integer values are used as

labels.

doi:10.6342/NTU202402814

 26

Chapter 4 Implementations and Evaluations

4.1 Programming Language and Environment Setup

 First of all, the UI Generating Algorithm we proposed and training process of

Questionnaire-based Model are implemented in Python 3.10.12 being a high-level,

object-oriented, and interpreted programming language.

The training process of Questionnaire-based Model is implemented on Google

Colaboratory(Colab). Colab allows anybody to write and execute arbitrary python code

through the browser, and is especially well suited to machine learning, data analysis and

education. More technically, Colab is a hosted Jupyter notebook service that requires no

setup to use, while providing access free of charge to computing resources including

GPUs.

For the machine learning aspects, specifically model development and training, we

relied on PyTorch version 2.1.0. PyTorch is a powerful open-source deep learning

framework known for its flexibility, ease of use, and strong community support. It offers

a wide range of functionalities for building and training neural networks, making it an

ideal choice for our research purposes.

4.2 Model Performance on Training & Testing

We conducted evaluations to assess both the performance of the models themselves

and their real-world applicability when tested on actual mobile application UIs.

Firstly, we evaluate the model themselves. Table 5.1 and Table 5.2 show the

performance data of the models, with the Table 5.1 depicting training data and the Table

5.2 depicting testing data. "M1" and "M2" denote Model 1 and Model 2, respectively,

where Model 1 processes images and Model 2 processes Layout Files. The "S" prefix on

doi:10.6342/NTU202402814

 27

M1 and M2 indicates simplified versions of the models, where the pretrained models

used in the shared layers are replaced with standard CNN architectures. The

combination of both models is represented by "M1 + M2". Additionally, we included

the performance of GPT-4o on the test set at the bottom of the Table 5.2 for comparison.

For the evaluation of choice questions, we utilized metrics such as Accuracy,

Precision, Recall, and F1 Score. Meanwhile, for rating questions, treated as a regression

problem, we evaluated using Mean Absolute Error (MAE).

Model Size Accuracy Precision Recall F1-Score MAE

M1 110.1MB 90.25 80.02 67.8 73.4 1.069

M2 1.07GB 70.54 59.61 54.8 57.1 2.403

S_M1 16.3MB 88.45 75.28 64.21 69.3 1.132

S_M2 2.8MB 83.21 65.55 45.54 53.74 1.506

Table 4.1 Training Evaluation

Model Accuracy Precision Recall F1-Score MAE

M1 86.86 70.34 62.29 66.07 1.443

M2 73.87 42.52 33.51 37.48 6.368

M1 + M2 86.64 70.13 61.19 65.35 1.446

S_M1 85.29 66.74 58.11 62.12 1.603

S_M2 72.22 40.04 27.21 32.4 1.764

M1 + S_M2 86.85 70.95 61 65.6 1.422

S_M1 + M2 85.7 68.36 57.61 62.53 1.739

S_M1 + S_M2 85.58 68.83 55.82 61.65 1.56

GPT-4o 70.1 52.81 30.62 38.76 2.5

Table 4.2 Testing Evaluation

The performance analysis revealed that Model 2 exhibited comparatively lower

performance than Model 1. This discrepancy may be attributed to Layout Files

containing excessive noise and lacking visual representativeness. Layout Files often

contain extensive hierarchical information based on developers' construction methods,

doi:10.6342/NTU202402814

 28

leading to a potential overload of irrelevant information. Additionally, Layout Files lack

the ability to capture visual aspects such as color and style, further diminishing their

relevance to static UI analysis.

Regarding the simplified models, we experimented with different sizes to

determine the optimal complexity level. By adjusting the neuron count in the fully

connected layers preceding each task's output layer, we compared the performance of

simplified Model 1 and Model 2 across three different sizes, ultimately selecting the

simplified models with the highest testing F1 Score. Table 5.3 and Table 5.4 show the

performance data of the models with different sizes

Model Size Accuracy Precision Recall F1-Score MAE

S_M1 51.5MB 88.17 74.41 64.24 68.81 1.204

S_M1 27.3MB 88.54 75.03 65.53 69.95 1.193

S_M1 16.3MB 88.45 75.28 64.21 69.3 1.132

S_M2 3.3MB 84.05 66.48 50.05 57.1 1.516

S_M2 2.8MB 83.21 65.55 45.54 53.74 1.506

S_M2 2.6MB 82.5 64.76 41.43 50.53 1.478

Table 4.3 Training Evaluation of the Simplified Models with Different Sizes

Model Size Accuracy Precision Recall F1-Score MAE

S_M1 51.5MB 84.78 65.72 57.41 61.28 1.643

S_M1 27.3MB 85 66.47 57.41 61.6 1.694

S_M1* 16.3MB 85.29 66.74 58.11 62.12 1.603

S_M2 3.3MB 70.8 37.78 27.35 31.72 1.781

S_M2* 2.8MB 72.22 40.04 27.21 32.4 1.764

S_M2 2.6MB 72.35 38.65 23.73 29.4 1.754

Table 4.4 Testing Evaluation of the Simplified Models with Different Sizes

We also evaluated the impact of preprocessing on model performance.

Preprocessing involved removing irrelevant information from Layout Files to address

issues such as excessive length and GPU memory constraints. The Layout File captured

doi:10.6342/NTU202402814

 29

by UI Automator contains not only the hierarchy information and component

coordinates of the UI but also a significant amount of information related to component

interactions, such as whether they are clickable or draggable. Although this information

is relevant to the user experience, our problem primarily concerns static visual analysis,

where the relevance to dynamic aspects might not be as significant. Therefore, I

attempted to remove this part of the information, retaining only the details relevant to

the types of components and the hierarchical relationships within the UI. The results

indicated a slight improvement in performance after preprocessing. Table 5.5 shows the

performance data of the models built with and without data preprocessing.

S_M2 Accuracy Precision Recall F1-Score MAE

Raw

-Training 82.34 63.59 42.68 51.07 1.502

-Testing 71.63 38.58 26.27 31.25 1.769

Preprocess

-Training 85.59 69.25 54.56 61.03 1.46

-Test 72.22 40.04 27.21 32.4 1.764

Table 4.5 Model Performance with and without Data Preprocessing

Furthermore, we conducted an analysis of individual questionnaire questions to

gain insights into the models' performance on each task. The ensemble combinations

displayed varying performance across choice and rating questions, with multiple-choice

questions generally exhibiting superior performance compared to multiple-choice

questions which may be more than one answer. Figure 5.1 shows the choice questions

answering performance of all ensemble combinations and Figure 5.2 shows the rating

questions answering performance

doi:10.6342/NTU202402814

 30

Figure 4.1 Choice Questions Answering Performance

Figure 4.2 Rating Questions Answering Performance

4.3 Testing on Unlabeled Real-World Data

To evaluate the model's performance on real-world data, we conducted tests using

doi:10.6342/NTU202402814

 31

actual mobile applications as our testing objects. We fed screenshots and layout files of

these apps into the model for assessment, focusing on aspects that could verify the

correctness of answers and identify mutations, which are the objectives of our model.

Table 5.6 shows the list of mobile applications for test.

1 Airbnb 17 KKbox 33 Slack

2 Amazon Shopping 18 Line TV 34 Snapchat

3 Apple Music 19 Linkedin 35 Spotify

4 BePtt 20 露天拍賣 36 TED

5 Bilibili 21 Medium 37 Telegram

6 Booking 22 Messenger 38 Google翻譯

7 旋轉拍賣 23 Mixcloud 39 Twitter

8 Google Chat 24 Mixerbox 40 Wechat

9 Dcard 25 Momo購物 41 Whatsapp

10 Ebay 26 Net a porter 42 Wall Street Journal

11 Facebook 27 NY Times 43 Yoox

12 Forest 28 PChome 44 Youtube

13 Friday影音 29 Pinterest 45 Zara

14 Gimy 30 Reddit 46 Google meet

15 Ikea 31 Shopee

16 Instagram 32 Skype

Table 4.6 List of Mobile Applications

Firstly, we assessed the model's ability in classifying the main themes of apps,

corresponding to the first question in our questionnaire. We calculated the accuracy of

the model in determining the application's theme.

doi:10.6342/NTU202402814

 32

Figure 4.3 Question Related to Class Classification

Next, we evaluated the model's capability in identifying the types of navigation

bars, which is one of the mutations types predicted by the model. The model categorizes

apps into three types: those with a navigation bar and text-attached icons (similar to the

UI on the Figure 5.4’s far left), those with a navigation bar but no text-attached icons,

and those without a navigation bar. We calculated the accuracy of the model's

classification of navigation bar types, testing its ability to capture UI features.

Figure 4.4 3 Types of Navigation Bar

Corresponding to question 5 in the questionnaire and the "missing item" mutation,

doi:10.6342/NTU202402814

 33

the model provides feedback to developers regarding potential missing elements and

functionalities in their UI. We assessed the accuracy of this feedback. For instance, if

the model suggests the presence of a "Member Center" in the UI, we would check if

there is indeed a corresponding icon or option on the tested UI page. If not, it would be

considered a reasonable suggestion by the model; otherwise, it would be classified as a

false prediction. We calculated accuracy using this approach.

Figure 4.5 Question Related to Finding Missing Items

Finally, we correlated the overall rating given by the model with the Google Play

Store rating through regression analysis. We aimed to observe a positive correlation

between them to validate the model's effectiveness, indicating that highly-rated apps

also receive high scores from the model.

doi:10.6342/NTU202402814

 34

Figure 4.6 Model Rating and Play Store Rating

Table 5.7 presents the results of these tests for four ensemble combinations across

the four dimensions mentioned above. The "Class" column represents the accuracy of

theme classification, followed by the accuracy of navigation bar type classification,

accuracy of missing item feedback, and the correlation coefficient between the overall

score and the Play Store rating. And this table also includes the performance of GPT-4o

for comparison.

Model Class Navigation Bar Missing Item Correlation

M1 + M2 36.95 50 70 0.11698

M1 + S_M2 32.6 54.34 63.63 0.18275

S_M1 + M2 43.47 52.17 58.33 0.13422

S_M1 + S_M2 43.47 56.5 63.63 -0.01695

M1 39.13 52.17 66.66 0.14235

M2 36.95 47.82 62.5 0.11633

S_M1 45.65 54.34 57.14 0.15856

S_M2 28.26 52.17 58.33 0.12493

GPT-4o 82.6 54.34 60 -0.12368

Table 4.7 Evaluation of Model Performance on Real-World APP

Notably, the performance of theme classification appears less satisfactory

compared to the other dimensions. This might be attributed to the diverse themes

doi:10.6342/NTU202402814

 35

present in modern mobile applications, with many examples encompassing multiple

themes simultaneously. Thus, it might be more appropriate to revise theme classification

as a multi-label question.

Regarding the correlation between the overall score and the Play Store rating, the

correlation coefficient suggests a weak association between them. This might be

because the Play Store rating is influenced by various factors such as brand image,

pricing structure, service quality, etc., in addition to UI design. Hence, directly

comparing the model's score with the Play Store rating might not reveal a strong

correlation. A better approach could involve finding a universally recognized rating

solely focused on UI. However, such a criterion is currently unavailable. If such a rating

is identified in the future, further experiments could be conducted to observe its

correlation with the model's scores.

doi:10.6342/NTU202402814

 36

Chapter 5 Conclusion and Future Work

In this study, we propose a new method and framework(QUX) to automatically

evaluate the UI designs. QUX include a questionnaire-based machine learning model

aimed at providing automated feedback on GUI design for mobile applications and it’s

training method. The model generates completed questionnaires, allowing developers

and designers to promptly receive application feedback without the need for manual

data collection. Using QUX, we could reduce the cost of analyzing the mental models

of APP users and improve the overall efficiency of the mobile APP development

process.

To facilitate the training of our model, we developed a UI generation algorithm to

construct synthetic GUI datasets. These datasets were designed in accordance with UI

design guidelines to ensure their relevance to real-world applications.

Our dataset has the potential for further expansion in terms of diversity and

quantity. Techniques such as Generative Adversarial Networks (GAN) could be

employed to enhance dataset variability, thereby improving model training.

Furthermore, there are various avenues for enhancing our model. Different

architectural setups beyond multitask learning could be explored. Experimentation with

alternative combinations of loss functions, optimizers, and training methods, including

unsupervised or semi-supervised approaches, may also yield performance

improvements.

Regarding the output format, while we presented questionnaire responses as the

current output, future iterations could consider alternative formats tailored specifically

for UI design feedback. Additionally, incorporating more detailed questions or dynamic

analysis could provide developers with more comprehensive insights into their

doi:10.6342/NTU202402814

 37

application's UI. Developers can define new questions based on their preferences, and

train their own model.

In conclusion, there is ample room for improvement and expansion in both the

dataset construction process and the model architecture. These avenues for future work

represent opportunities to enhance the effectiveness and applicability of our

questionnaire-based model for GUI design feedback in mobile applications.

doi:10.6342/NTU202402814

 38

REFERENCE

[1] Material Design,

https://m3.material.io/

[2] C. Degott, N. P. Borges Jr, and A. Zeller, “Learning user interface element

interactions,” in Proceedings of the 28th ACM SIGSOFT Inter national

Symposium on Software Testing and Analysis, 2019, pp. 296–306.

[3] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang

Pu, YangLiu, andZhendongSu.2017. Guided,stochastic model-based GUI testing

of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8,

2017. ACM, 245–256.

[4] Thomas D White, Gordon Fraser, and Guy J Brown. 2019. Improving random

GUI testing with image-based widget detection. In Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis. 307–317.

[5] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.

Time-travel testing of android apps. In Proceedings of the ACM/IEEE 42nd Inter

national Conference on Software Engineering. 481–492.

[6] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guo

qiang Li, and Jinshui Wang. 2020. Seenomaly: vision-based linting of GUI

animation effects against design-don’t guidelines. In ICSE ’20: 42nd Interna

tional Conference on Software Engineering, Seoul, South Korea, 27 June- 19 July,

2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1286–1297.

[7] Kevin Moran, Boyang Li, Carlos Bernal-Cárdenas, Dan Jelf, and Denys Poshy

doi:10.6342/NTU202402814

 39

vanyk. 2018. Automated reporting of GUI design violations for mobile apps. In

Proceedings of the 40th International Conference on Software Engineering.

165–175.

[8] B. Yang, Z. Xing, X. Xia, C. Chen, D. Ye, and S. Li, UIS-hunter: Detecting UI

design smells in Android apps, In Proceedings of the 43rd International

Conference on Software Engineering: Companion Proceedings, pp. 89–92.

[9] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and

Lihua Xu. 2019. Storydroid: Automated generation of storyboard for Android

apps. In 2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE). IEEE, 596–607.

[10] Farnaz Behrang, Steven P Reiss, and Alessandro Orso. 2018. GUIfetch: sup

porting app design and development through GUI search. In 5th International

Conference on Mobile Software Engineering and Systems. 236–246.

[11] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,

Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset

for building data-driven design applications. In Proceedings of the 30th Annual

ACMSymposium on User Interface Software and Technology. 845–854.

[12] Ruder, S. (2017). An Overview of Multi-Task Learning in Deep Neural Networks.

ArXiv, abs/1706.05098.

[13] Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification.

Conference on Empirical Methods in Natural Language Processing.

