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中文摘要  

 

 在現今的社會，手機應用程式已經十分普及，人們透過這些程式來協助完成

他們各式各樣的任務，像是時間管理、購物、通訊等等。但跟電腦應用程式不同

的是，手機應用程式的開發通常要同時面對時間上的壓力和廣大同類型應用的競

爭。此時，除了效率和創新以外，另一個能令其脫穎而出的關鍵就是 GUI的設計。

但 UI設計是個很耗時的工程，需要不斷根據反饋和測試結果進行調整，確保最終

的設計能夠滿足用戶的期望。正因如此，我們希望能找出方法，為 UI開發過程提

供有效的自動化支持。在本論文中，我們利用問卷蒐集回答作為模型訓練用的標

籤，進一步結合機器學習的技術去做出一個能夠針對給定的 GUI，自動回答問卷

問題的模型。我們希望能透過這個模型自動化地檢測和識別 UI設計中的問題，並

向開發者提供建議，進而提高整個 UI開發過程的效率，使設計師和開發者能夠更

好地集中精力在創造性的方面，而不是繁瑣的錯誤修復上。 

 

關鍵字：手機應用程式、使用者介面設計、設計準則、問卷、自動回饋 
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ABSTRACT 

 

 In today's society, mobile applications have become ubiquitous, assisting people in 

various tasks such as time management, shopping, and communication. However, 

unlike computer applications, the development of mobile applications typically involves 

time constraints and fierce competition among similar apps. In addition to efficiency 

and innovation, another key factor that distinguishes an app is the design of its 

Graphical User Interface (GUI). UI design is a time-consuming process that requires 

continuous adjustments based on feedback and testing to ensure the final design meets 

user expectations. Therefore, we aim to find methods to provide effective automation 

support for the UI development process. 

In this thesis, we use questionnaires to collect responses as labels for model 

training. We further integrate machine learning techniques to develop a model capable 

of automatically answering questionnaire questions for a given GUI. Our goal is to 

automate the detection and identification of issues in UI design, providing suggestions 

to developers. This approach aims to enhance the overall efficiency of the UI 

development process, allowing designers and developers to focus more on creative 

aspects rather than tedious error fixes. 

 

Keywords : Mobile apps, UI Design, Design Guidelines, Automated Support, Survey, 

Questionnaire-Based Model 
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Chapter 1 Introduction 

1.1 Background 

In the modern era, mobile applications have become the primary gateway to the 

Internet and essential tools for daily tasks like reading, shopping, banking, and 

communication. However, unlike traditional desktop applications, mobile apps face 

fierce competition and time-to-market pressures, with over 3.8 million Android and 2 

million iPhone apps vying for users. 

A crucial aspect of mobile app success lies in the Graphical User Interface (GUI), 

facilitating user-software interaction. A poorly designed GUI can lead to user frustration 

and app uninstallation. Successful mobile apps require an intuitive, elegant GUI aligned 

with effective User Interface (UI) design guidelines. 

In order to build a user-friendly and aesthetic GUI, we can utilize the concept of 

"mental model" to understanding how individuals perceive system functionality based 

on prior knowledge. Several methods are employed to determine users' existing mental 

models, including Jakob’s Law, card sorting, surveys, and user reviews/interviews. In 

addition, following the UI design principles could be helpful. Mobile platforms, such as 

Android Material Design[1] and iOS Human Interface Guidelines, set specific GUI 

design standards that mobile applications running on these platforms are expected to 

follow. 

Building a successful UI/UX for mobile apps is a complex, iterative process 

compounded by challenges inherent in mobile app development. These challenges 

include the continuous pressure for frequent releases, the necessity to promptly address 

user reviews to enhance app quality, frequent platform updates, API instability, and the 

demand for custom components. The intricate nature of mobile app UI/UX design 
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underscores the need for efficient processes and tools to navigate these challenges 

successfully. 

 

Figure 1.1  Android Material Design – Design Guidelines Example1 

 

1.2 Motivation 

Implementing an intuitive and visually appealing Graphical User Interface (GUI) is 

widely recognized as a challenging task, given its complexity and high associated costs. 

The practical need for effective automated support becomes apparent to enhance the 

process of detecting and reporting design violations, providing developers with more 

accurate and actionable information. 

Previous research has shown limited concern for detecting visual design violations, 

creating a gap in addressing crucial aspects of GUI design. While most GUI testing 

methodologies[2][3][4] dynamically explore the behaviors of an application, they 

primarily focus on simulating user interactions to trigger app functionalities. Their 

evaluation is centered on code and GUI coverage, lacking the ability to validate the 

visual effects of GUI designs. 

                                                 

1 https://m3.material.io/components/navigation-bar/guidelines 
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In response to these challenges, some research initiatives[6][8] have introduced 

design guideline-based testing techniques. These techniques offer direct feedback to 

developers and UI designers, providing a more straightforward approach. However, 

these methods deviate from the typical feedback format, such as questionnaires, 

commonly received by developers and UI designers. This disparity highlights the need 

for a different approach to address design violations and provide actionable insights in a 

format familiar to development teams. 

 

1.3 Contributions 

1. Proposed questionnaire-based software framework QUX: 

We contribute to the field by introducing a questionnaire-based model designed to 

reduce the cost associated with analyzing the mental models of app users. This model 

leverages machine learning techniques with the goal of providing automated 

suggestions for GUI design improvements to app developers. We named this framework 

QUX. 

2. Synthetic GUI Datasets: 

To facilitate the training of our proposed model, we have built datasets of synthetic 

GUIs. This was achieved through the utilization of a self-developed UI generation 

algorithm, contributing a resource for training and testing the effectiveness of our 

approach. 

3. Pioneering Use of Questionnaire-Based Model in UI Development: 

As far as our knowledge extends, our work represents the first instance of employing a 

questionnaire-based model as an automated tool in the realm of UI development. This 

innovation is poised to streamline the process of gathering user insights and translating 
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them into actionable design recommendations. 

4. Construction of UI Design Guidelines Knowledge Base: 

To enhance the effectiveness of our questionnaire-based model, we have constructed a 

knowledge base of UI design guidelines. This knowledge base serves as a crucial 

reference point, aiding in the formulation of questionnaire questions that align with 

established principles in UI design. 

Overall, our contributions aim to advance the field of UI development by offering a 

comprehensive solution that combines user insights and machine learning to streamline 

the GUI design process for app developers.  
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Chapter 2 Related Work and Preliminaries 

2.1 Academic Research 

B. Yang, Z. Xing, X. Xia, C. Chen, D. Ye, and S. Li propose a multi-dimensional 

analysis method for detecting design guideline violations[8]. Their approach involves 

automatically parsing UI screenshots or prototype files to extract component metadata. 

This metadata is then matched with guideline violation conditions, offering a 

comprehensive method for identifying design guideline violations. 

Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guoqiang 

Li, and Jinshui Wang present an unsupervised deep learning method specifically for 

detecting GUI animation design guideline violations[6]. The method treats the 

validation against design-don't guidelines as a multi-class classification problem. 

Initially, a GUI animation feature extractor is trained to autonomously extract crucial 

temporal-spatial features from GUI animations in an unsupervised way. The trained 

feature extractor is then employed to map typical GUI animations that violate design 

guidelines into a dense vector space. For a given GUI animation, it is also mapped into 

this vector space. The violation is determined by conducting a KNN search to identify 

the most similar violating GUI animations. 

These related works showcase innovative approaches to detecting design guideline 

violations, one focusing on multi-dimensional analysis through UI screenshots and 

prototype files[8], and the other employing unsupervised deep learning for GUI 

animation guideline violations[6]. Each method contributes to the diverse range of 

techniques aimed at enhancing the automated detection of design guideline violations in 

user interfaces. 
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2.2 Figma 

 Figma stands as a collaborative interface design tool, commanding a significant 

market share of 36.17% in the collaborative design and prototyping market. Within this 

platform, Google has developed the Material 3 Design[1] Kit, offering components that 

align with official design guidelines. These components, including buttons, dialogs, 

navigation bars, etc., serve as the foundation for our UI Generating Algorithm. 

 

Figure 2.1  Material 3 Design Kit 

 

2.3 UI Automator 

UI Automator is a UI testing framework designed for cross-app functional UI 

testing across both system and installed apps. Its APIs enable interaction with visible 

elements on a device, irrespective of the focused activity. This flexibility allows 

operations such as opening the Settings menu or the app launcher in a test device. 

In the context of UI Automator, it serves as a tool for retrieving UI Layout Files, 

essential for our model's training data. These files contain the hierarchical structure of 

the UI, component coordinates, text, and other pertinent information. Utilizing UI 
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Automator simplifies the process of obtaining critical data for training our model. 

 



doi:10.6342/NTU202402814

 8 

Chapter 3 Methodology 

3.1 Global Picture of QUX 

 

Figure 3.1  Flowchart of Global Picture 

 

As shown in Figure 4.1, this flowchart represents the core steps outlined in the 

thesis and Software Framework of QUX. The process begins with an in-depth study of 

Material Design, Google's UI design guidelines, and relevant UI theories. Drawing 

inspiration from these guidelines, we formulate the methodology for designing 

questionnaire questions and developing the UI generation algorithm. 

The first pivotal step involves the construction of the UI generation algorithm. This 

algorithm is designed to generate UI based on the established guidelines. Subsequently, 

we utilize this algorithm to create a dataset comprising UI images paired with their 

corresponding layout files in XML format. The inclusion of layout files in the dataset is 

significant, as these files serve as additional training data for the subsequent stages. 

Following the dataset creation, we conduct a survey to collect user feedback on the 
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generated UIs. The gathered feedback from the survey is then utilized as labels for the 

dataset. 

In the final phase, armed with the dataset and corresponding labels, we employ 

machine learning techniques to train a model capable of automatically answering the 

questionnaire questions for a given GUI. This model represents a crucial component in 

our proposed methodology, aiming to streamline the process of UI evaluation and 

feedback collection. 

In summary, the global methodology involves research on design guidelines, the 

formulation of questionnaire questions, and the development of a UI generation 

algorithm. The subsequent steps encompass dataset creation, user feedback collection 

through surveys, and the training of a machine learning model to automate the 

questionnaire process for GUI evaluation. This comprehensive approach is geared 

towards enhancing the efficiency and effectiveness of UI design and evaluation in 

accordance with established principles. 
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3.2 Building UI Generating Algorithm 

 

Figure 3.2  Process of Building UI Generating Algorithm 

 

The foundation of our research lies in the development of a UI generation 

algorithm, crucial for training our model and creating a diverse dataset. The following 

flowchart illustrates the conceptualization and step-by-step construction of this 

algorithm. 

1. Selection of UI Templates: 

We initiated the algorithm by carefully selecting eight UI templates from popular 

mobile applications. These templates serve as the algorithm's foundational building 

blocks. Additionally, we curated a library of various component images from Figma, 

which would later be utilized to assemble UIs. 
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2. UI Analysis using UI Automator: 

Employing UI Automator, we conducted a detailed analysis of the chosen templates, 

extracting their UI layout files. These layout files, serving as templates themselves, are 

integral to our algorithm's design. The algorithm generates both UI images and their 

corresponding layout files. 

3. Automated UI Construction: 

The next step involved the development of a program capable of automatically selecting 

components from the library based on the chosen template's layout. By referencing the 

arrangement and positions of components in the template, this program constructs a UI 

image that mirrors the layout of the chosen template. 

4. Introduction of Design Guideline-Informed Mutation: 

In the final stage, we incorporated design guideline-informed mutations to introduce 

variability. Drawing inspiration from design guidelines, we determined the types of 

mutations, such as changes in color or component positions. These mutations, added in 

a randomized manner, bring about design variations, ensuring that the generated UIs 

exhibit diversity and creativity. 

In essence, this algorithm is rooted in a fixed template layout, augmented with 

random variations to create a UI generation process that produces both UI images and 

their corresponding layout files. The ensuing sections will delve into the specifics of 

each step, providing a comprehensive understanding of our approach to UI generation. 
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3.2.1 QUX - UI Generating Algorithm 

 

Figure 3.3  Flowchart of UI Generating Algorithm  

 

The above flowchart(Figure 4.3) for the UI generation process provides a 

step-by-step breakdown of each iteration, resulting in the creation of a UI image and its 

corresponding layout file. 
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1. Template and Mutation Selection: 

Choose one template from the set of eight, along with its corresponding layout file. 

Randomly select a mutation type using the program, recording the mutation type as a 

label associated with the generated UI. During dataset organization, this label is 

combined with feedback from the questionnaire, resulting in dual-labeling for each UI 

(questionnaire response and mutation type). 

2. Layout Editing for Mutations: 

If the mutation involves layout changes, such as component repositioning, edit the base 

template's layout file to align with the altered UI. For mutations like font changes, 

layout file editing is unnecessary. 

3. Component Assembly and Recordkeeping: 

With the selected template and mutation type, assemble the UI by retrieving the 

necessary components from the curated library. Assemble the UI according to the layout, 

simultaneously recording the edited layout file as the UI's corresponding layout file. 

Record the mutation type as an additional label, aiming to enable the model to learn 

distinctive features associated with each mutation type. 

 

Figure 3.4  Example of UI Generation 
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Figure 4.4 illustrate the practical application of the UI generation process. In this 

instance, a template referencing Instagram is selected. A random mutation type is 

chosen, determining modifications such as inconsistent color schemes, excess trailing 

icons, and the removal of the back arrow. The layout file is edited to accommodate the 

mutations, reflecting changes in component placement and components are retrieved 

from the library and assembled into a UI. The resulting UI, post-mutation, is visualized 

to provide clarity and its edited layout file are saved, and the mutation type is recorded 

in a separate JSON file. 

3.2.2 Mutation of UI 

The concrete implementation of mutations encompasses six dimensions: Layout, 

Color, Typography, Icon, Missing Item & Crossover, and Navigation Bar. Each 

dimension consists of 3 to 4 mutation types, offering a diverse set of alterations. The 

occurrence of mutations in each dimension is probabilistic, independent, and fixed. 

Additionally, there is a possibility that no mutations occur, maintaining the original 

appearance. 

These mutations are deliberately designed to deviate from design guidelines, 

serving as intentional challenges for the model to identify. The probability-based and 

independent nature of mutations ensures a diverse and unpredictable set of alterations in 

each dimension, contributing to the overall variability of the generated UIs. Table 4.1 

shows the list of mutation type. 

Dimension Mutation Type 

Layout 

Too many Trailing Icons 

Too many icons in Navigation Bar 

Lack of icon in Navigation Bar 
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Follow the F mode or not? 

Additions of Login Button 

More than one Floating Action Button 

Color 

Change in color theme 

Inconsistent color schemes 

Alterations to color saturation 

Navigation Bar has same color as background 

Typography, 

Inconsistent weight 

Alterations to weight  

Alterations to spacing 

Changes in font styles 

Missing Item & 

Crossover 

Crossover: mix elements from other templates into another  

Intentional omissions of elements 

Icon 

Inconsistent weight 

Alterations to weight 

Changes in icon styles 

Inconsistent colored icon set   

Navigation Bar Additions or omissions of Label 

Table 3.1  List of Mutation Types 

 

3.3 QUX - Survey Design and Feedback Collection 

A key component of our methodology involves the creation of a questionnaire 

aimed at examining the rationality of UI design and providing suggestions for 

improvement. Each questionnaire is meticulously crafted to assess various aspects of UI 



doi:10.6342/NTU202402814

 16 

design, enabling UI developers and designers to save on the costs associated with data 

collection. 

Following the questionnaire's design, feedback on UI designs is collected through 

surveys, with each questionnaire paired with a generated UI. Respondents access the 

questionnaire via a provided link and answer questions based on the accompanying UI 

image. The platform chosen for this purpose is Google Forms, offering a user-friendly 

and widely accessible interface for data collection. 

The collected feedback serves as labeled data for model training, providing 

valuable insights into users' perceptions and preferences regarding UI designs. This 

section outlines the methodology employed for survey design and feedback collection, 

emphasizing the importance of leveraging user feedback to enhance the efficacy of our 

model in automating questionnaire responses. 

 

Figure 3.5  Survey Respondents Distribution 

 

3.3.1 Questionnaire Questions 

In the questionnaire, we inquire about various aspects of user experience, all 
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centered around the UI images provided in the questionnaire, addressing elements such 

as color, icons, fonts, layout, and more. The questionnaire commences with the 

presentation of UI images generated by our system, followed by the series of questions. 

The question types include multiple-choice, multiple-choice but may be more than one 

answer, and rating questions. We reference the guidelines of questionnaire design to set 

questions 

 

 

As shown in Figure 4.6, The first question (Q1) is a multiple-choice question 

regarding the UI theme, enabling developers to assess the clarity of their UI themes 

based on feedback. 

 

Figure 3.7  Question 2 

 

Figure 3.6  Question 1 
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Figure 3.8  Question 3 

 

Following the theme assessment, respondents are queried about the factors 

influencing their choice. If the previous response indicates an unclear theme, 

respondents are asked to specify why (Q2/Q3). 

 

Figure 3.9  Question 4 

 

 

Figure 3.10  Question 5 
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Question 4 focuses on the login status, providing insight into the clarity of the UI's 

login status. Question 5 inquires whether respondents feel any elements or 

functionalities are lacking, offering developers insights into potential deficiencies in 

their UI. 

 

Figure 3.11  Question 6&7 
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Figure 3.12  Question 8&9 

 

Figure 3.13  Question 10&11 
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Figure 3.14  Question 12&13 

 

Questions 6&7 pertain to layout issues, with respondents first rating the UI layout 

and then specifying dissatisfaction points, providing developers with specific feedback. 

Similarly, Question 8&9 address UI color and tone, aiming to gather feedback on these 

aspects. Question 10&11&12&13 follow the same concept but focus on fonts and icons, 

respectively. Through these questions, developers can obtain recommendations and 

performance references across different aspects. 

 

Figure 3.15  Question 14 

 

Finally, the overall rating section provides respondents with a scale of 1 to 10 for 
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rating. 

 Number 

of 

Mutation 

Q6 Q8 Q10 Q12 Q14 

Correlation 

Coefficient 

1 -0.283495 -0.236261 -0.233441 -0.309036 -0.382062 

Table 3.2   Correlation between number of mutation and rating problem 

  

 To understand the effect of mutations, we additionally analyzed the survey 

responses. We performed a correlation analysis between the number of mutations in the 

UI and the scores in various aspects. As shown in Table 4.2, there is a negative 

correlation between the number of UI mutations and the scores. In other words, the 

greater the number of mutations, the lower the scores, which aligns with our initial 

expectations. 
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3.4 QUX - Questionnaire-based Model 

3.4.1 Model Architecture and Training 

 

Figure 3.16  Construction of Questionnaire-based Model 

 

In the training process, we utilize the dataset obtained from generated UI images 

and corresponding layout files, along with the labels collected from surveys, to train a 

questionnaire-based model using machine learning techniques. The training process 

involves two distinct models, each handling different types of input data: Model 1 
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processes UI images, while Model 2 handles layout files. Both models are trained 

following a multi-task learning framework, where each question from the questionnaire, 

along with the prediction of mutation types, is treated as a separate task. This approach 

allows the models to simultaneously address multiple tasks, corresponding to the 

various question types in the questionnaire. The tasks we are dealing with can be 

categorized into three types: 

1. Multi-Class Classification: Used for handling multiple-choice questions. In this task, 

each option corresponds to a class, and ultimately one of them is chosen as the 

answer. 

2. Multi-Label Classification: Used for handling multiple-choice questions which may 

be more than one answer. Unlike multi-class classification, where only one option is 

selected from multiple choices, in multi-label classification, there can be multiple 

answers, resulting in multiple output labels. 

3. Regression Problem: Used for handling rating questions. In this task, the answers to 

the questions are treated as a typical regression problem, where each question's 

rating corresponds to a numerical output. 

 

Model 1, which operates on image data, employs the ResNet50 architecture, while 

Model 2, which processes layout files, utilizes the XLNet architecture. Pretrained 

models serve as the basis for both, fine-tuned to optimize performance. 

In terms of other setup, the loss functions employed vary based on the task type: 

cross-entropy for multi-class classification tasks, binary cross-entropy for multi-label 

classification tasks, and smooth L1 loss for regression tasks. These loss functions are 

applied to each task independently, and the total loss is computed as the sum of losses 

across all tasks. The Adam optimizer is used to optimize the models during training. 
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Finally, an ensemble approach is employed to combine the outputs of Model 1 and 

Model 2. A weighted average is applied, determined through experimentation to find the 

optimal performance. 

3.4.2 Dataset 

The labeled data is divided into two distinct sets: the training set and the testing set. 

The training set is utilized for training the model, while the testing set is employed to 

evaluate the model's performance. 

The labeling methodology varies based on the type of questions present in the 

questionnaire. For choice questions, a One-Hot Encoding technique is applied for 

labeling. For instance, if there are five options and the first and second options are 

selected, a vector with five elements is used as the label, with the first and second 

elements marked as 1 and the rest as 0. For rating questions, integer values are used as 

labels. 
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Chapter 4 Implementations and Evaluations 

4.1 Programming Language and Environment Setup 

 First of all, the UI Generating Algorithm we proposed and training process of 

Questionnaire-based Model are implemented in Python 3.10.12 being a high-level, 

object-oriented, and interpreted programming language.  

The training process of Questionnaire-based Model is implemented on Google 

Colaboratory(Colab). Colab allows anybody to write and execute arbitrary python code 

through the browser, and is especially well suited to machine learning, data analysis and 

education. More technically, Colab is a hosted Jupyter notebook service that requires no 

setup to use, while providing access free of charge to computing resources including 

GPUs. 

For the machine learning aspects, specifically model development and training, we 

relied on PyTorch version 2.1.0. PyTorch is a powerful open-source deep learning 

framework known for its flexibility, ease of use, and strong community support. It offers 

a wide range of functionalities for building and training neural networks, making it an 

ideal choice for our research purposes. 

 

4.2 Model Performance on Training & Testing 

We conducted evaluations to assess both the performance of the models themselves 

and their real-world applicability when tested on actual mobile application UIs. 

Firstly, we evaluate the model themselves. Table 5.1 and Table 5.2 show the 

performance data of the models, with the Table 5.1 depicting training data and the Table 

5.2 depicting testing data. "M1" and "M2" denote Model 1 and Model 2, respectively, 

where Model 1 processes images and Model 2 processes Layout Files. The "S" prefix on 
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M1 and M2 indicates simplified versions of the models, where the pretrained models 

used in the shared layers are replaced with standard CNN architectures. The 

combination of both models is represented by "M1 + M2". Additionally, we included 

the performance of GPT-4o on the test set at the bottom of the Table 5.2 for comparison. 

For the evaluation of choice questions, we utilized metrics such as Accuracy, 

Precision, Recall, and F1 Score. Meanwhile, for rating questions, treated as a regression 

problem, we evaluated using Mean Absolute Error (MAE). 

Model Size Accuracy Precision Recall F1-Score MAE 

M1 110.1MB 90.25 80.02 67.8 73.4 1.069 

M2 1.07GB 70.54 59.61 54.8 57.1 2.403 

S_M1 16.3MB 88.45 75.28 64.21 69.3 1.132 

S_M2 2.8MB 83.21 65.55 45.54 53.74 1.506 

Table 4.1   Training Evaluation 

 

Model Accuracy Precision Recall F1-Score MAE 

M1 86.86 70.34 62.29 66.07 1.443 

M2 73.87 42.52 33.51 37.48 6.368 

M1 + M2 86.64 70.13 61.19 65.35 1.446 

S_M1 85.29 66.74 58.11 62.12 1.603 

S_M2 72.22 40.04 27.21 32.4 1.764 

M1 + S_M2 86.85 70.95 61 65.6 1.422 

S_M1 + M2 85.7 68.36 57.61 62.53 1.739 

S_M1 + S_M2 85.58 68.83 55.82 61.65 1.56 

GPT-4o 70.1 52.81 30.62 38.76 2.5 

Table 4.2   Testing Evaluation 

 

The performance analysis revealed that Model 2 exhibited comparatively lower 

performance than Model 1. This discrepancy may be attributed to Layout Files 

containing excessive noise and lacking visual representativeness. Layout Files often 

contain extensive hierarchical information based on developers' construction methods, 
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leading to a potential overload of irrelevant information. Additionally, Layout Files lack 

the ability to capture visual aspects such as color and style, further diminishing their 

relevance to static UI analysis. 

Regarding the simplified models, we experimented with different sizes to 

determine the optimal complexity level. By adjusting the neuron count in the fully 

connected layers preceding each task's output layer, we compared the performance of 

simplified Model 1 and Model 2 across three different sizes, ultimately selecting the 

simplified models with the highest testing F1 Score. Table 5.3 and Table 5.4 show the 

performance data of the models with different sizes 

Model Size Accuracy Precision Recall F1-Score MAE 

S_M1 51.5MB 88.17 74.41 64.24 68.81 1.204 

S_M1 27.3MB 88.54 75.03 65.53 69.95 1.193 

S_M1 16.3MB 88.45 75.28 64.21 69.3 1.132 

S_M2 3.3MB 84.05 66.48 50.05 57.1 1.516 

S_M2 2.8MB 83.21 65.55 45.54 53.74 1.506 

S_M2 2.6MB 82.5 64.76 41.43 50.53 1.478 

Table 4.3   Training Evaluation of the Simplified Models with Different Sizes 

 

Model Size Accuracy Precision Recall F1-Score MAE 

S_M1 51.5MB 84.78 65.72 57.41 61.28 1.643 

S_M1 27.3MB 85 66.47 57.41 61.6 1.694 

S_M1* 16.3MB 85.29 66.74 58.11 62.12 1.603 

S_M2 3.3MB 70.8 37.78 27.35 31.72 1.781 

S_M2* 2.8MB 72.22 40.04 27.21 32.4 1.764 

S_M2 2.6MB 72.35 38.65 23.73 29.4 1.754 

Table 4.4   Testing Evaluation of the Simplified Models with Different Sizes 

 

We also evaluated the impact of preprocessing on model performance. 

Preprocessing involved removing irrelevant information from Layout Files to address 

issues such as excessive length and GPU memory constraints. The Layout File captured 
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by UI Automator contains not only the hierarchy information and component 

coordinates of the UI but also a significant amount of information related to component 

interactions, such as whether they are clickable or draggable. Although this information 

is relevant to the user experience, our problem primarily concerns static visual analysis, 

where the relevance to dynamic aspects might not be as significant. Therefore, I 

attempted to remove this part of the information, retaining only the details relevant to 

the types of components and the hierarchical relationships within the UI. The results 

indicated a slight improvement in performance after preprocessing. Table 5.5 shows the 

performance data of the models built with and without data preprocessing. 

S_M2 Accuracy Precision Recall F1-Score MAE 

Raw           

-Training 82.34 63.59 42.68 51.07 1.502 

-Testing 71.63 38.58 26.27 31.25 1.769 

Preprocess           

-Training 85.59 69.25 54.56 61.03 1.46 

-Test 72.22 40.04 27.21 32.4 1.764 

Table 4.5   Model Performance with and without Data Preprocessing 

 

Furthermore, we conducted an analysis of individual questionnaire questions to 

gain insights into the models' performance on each task. The ensemble combinations 

displayed varying performance across choice and rating questions, with multiple-choice 

questions generally exhibiting superior performance compared to multiple-choice 

questions which may be more than one answer. Figure 5.1 shows the choice questions 

answering performance of all ensemble combinations and Figure 5.2 shows the rating 

questions answering performance 
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Figure 4.1  Choice Questions Answering Performance 

 

 

Figure 4.2  Rating Questions Answering Performance 

 

4.3 Testing on Unlabeled Real-World Data 

To evaluate the model's performance on real-world data, we conducted tests using 
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actual mobile applications as our testing objects. We fed screenshots and layout files of 

these apps into the model for assessment, focusing on aspects that could verify the 

correctness of answers and identify mutations, which are the objectives of our model.  

Table 5.6 shows the list of mobile applications for test. 

1 Airbnb 17 KKbox 33 Slack 

2 Amazon Shopping 18 Line TV 34 Snapchat 

3 Apple Music 19 Linkedin 35 Spotify 

4 BePtt 20 露天拍賣 36 TED 

5 Bilibili 21 Medium 37 Telegram 

6 Booking 22 Messenger 38 Google翻譯 

7 旋轉拍賣 23 Mixcloud 39 Twitter 

8 Google Chat 24 Mixerbox 40 Wechat 

9 Dcard 25 Momo購物 41 Whatsapp 

10 Ebay 26 Net a porter 42 Wall Street Journal 

11 Facebook 27 NY Times 43 Yoox 

12 Forest 28 PChome 44 Youtube 

13 Friday影音 29 Pinterest 45 Zara 

14 Gimy 30 Reddit 46 Google meet 

15 Ikea 31 Shopee     

16 Instagram 32 Skype     

Table 4.6   List of Mobile Applications 

 

Firstly, we assessed the model's ability in classifying the main themes of apps, 

corresponding to the first question in our questionnaire. We calculated the accuracy of 

the model in determining the application's theme. 
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Figure 4.3  Question Related to Class Classification 

 

Next, we evaluated the model's capability in identifying the types of navigation 

bars, which is one of the mutations types predicted by the model. The model categorizes 

apps into three types: those with a navigation bar and text-attached icons (similar to the 

UI on the Figure 5.4’s far left), those with a navigation bar but no text-attached icons, 

and those without a navigation bar. We calculated the accuracy of the model's 

classification of navigation bar types, testing its ability to capture UI features. 

 

Figure 4.4  3 Types of Navigation Bar 

 

Corresponding to question 5 in the questionnaire and the "missing item" mutation, 
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the model provides feedback to developers regarding potential missing elements and 

functionalities in their UI. We assessed the accuracy of this feedback. For instance, if 

the model suggests the presence of a "Member Center" in the UI, we would check if 

there is indeed a corresponding icon or option on the tested UI page. If not, it would be 

considered a reasonable suggestion by the model; otherwise, it would be classified as a 

false prediction. We calculated accuracy using this approach. 

 

Figure 4.5  Question Related to Finding Missing Items 

  

Finally, we correlated the overall rating given by the model with the Google Play 

Store rating through regression analysis. We aimed to observe a positive correlation 

between them to validate the model's effectiveness, indicating that highly-rated apps 

also receive high scores from the model. 
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Figure 4.6  Model Rating and Play Store Rating 

 

Table 5.7 presents the results of these tests for four ensemble combinations across 

the four dimensions mentioned above. The "Class" column represents the accuracy of 

theme classification, followed by the accuracy of navigation bar type classification, 

accuracy of missing item feedback, and the correlation coefficient between the overall 

score and the Play Store rating. And this table also includes the performance of GPT-4o 

for comparison. 

Model Class Navigation Bar Missing Item Correlation 

M1 + M2 36.95 50 70 0.11698 

M1 + S_M2 32.6 54.34 63.63 0.18275  

S_M1 + M2 43.47 52.17 58.33 0.13422 

S_M1 + S_M2 43.47 56.5 63.63 -0.01695 

M1 39.13 52.17 66.66 0.14235 

M2 36.95 47.82 62.5 0.11633 

S_M1 45.65 54.34 57.14 0.15856 

S_M2 28.26 52.17 58.33 0.12493 

GPT-4o 82.6 54.34 60 -0.12368 

Table 4.7   Evaluation of Model Performance on Real-World APP 

 

Notably, the performance of theme classification appears less satisfactory 

compared to the other dimensions. This might be attributed to the diverse themes 
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present in modern mobile applications, with many examples encompassing multiple 

themes simultaneously. Thus, it might be more appropriate to revise theme classification 

as a multi-label question. 

Regarding the correlation between the overall score and the Play Store rating, the 

correlation coefficient suggests a weak association between them. This might be 

because the Play Store rating is influenced by various factors such as brand image, 

pricing structure, service quality, etc., in addition to UI design. Hence, directly 

comparing the model's score with the Play Store rating might not reveal a strong 

correlation. A better approach could involve finding a universally recognized rating 

solely focused on UI. However, such a criterion is currently unavailable. If such a rating 

is identified in the future, further experiments could be conducted to observe its 

correlation with the model's scores. 
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Chapter 5 Conclusion and Future Work 

In this study, we propose a new method and framework(QUX) to automatically 

evaluate the UI designs. QUX include a questionnaire-based machine learning model 

aimed at providing automated feedback on GUI design for mobile applications and it’s 

training method. The model generates completed questionnaires, allowing developers 

and designers to promptly receive application feedback without the need for manual 

data collection. Using QUX, we could reduce the cost of analyzing the mental models 

of APP users and improve the overall efficiency of the mobile APP development 

process. 

To facilitate the training of our model, we developed a UI generation algorithm to 

construct synthetic GUI datasets. These datasets were designed in accordance with UI 

design guidelines to ensure their relevance to real-world applications. 

Our dataset has the potential for further expansion in terms of diversity and 

quantity. Techniques such as Generative Adversarial Networks (GAN) could be 

employed to enhance dataset variability, thereby improving model training. 

Furthermore, there are various avenues for enhancing our model. Different 

architectural setups beyond multitask learning could be explored. Experimentation with 

alternative combinations of loss functions, optimizers, and training methods, including 

unsupervised or semi-supervised approaches, may also yield performance 

improvements. 

Regarding the output format, while we presented questionnaire responses as the 

current output, future iterations could consider alternative formats tailored specifically 

for UI design feedback. Additionally, incorporating more detailed questions or dynamic 

analysis could provide developers with more comprehensive insights into their 
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application's UI. Developers can define new questions based on their preferences, and 

train their own model. 

In conclusion, there is ample room for improvement and expansion in both the 

dataset construction process and the model architecture. These avenues for future work 

represent opportunities to enhance the effectiveness and applicability of our 

questionnaire-based model for GUI design feedback in mobile applications.  
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