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摘要

給定一個系統（我們想描述的客體），例如一顆在真空中的電介質球，然後我

們用某個從遠處發出的單頻電磁波持續照射它，它會持續散射這些電磁波；這是

一個光與物質交互作用的例子，古典電動力學的彈性散射模型（如米理論）讓我

們可以描述這個系統中各個位置和時間的電磁場到一定的精確度。然而，本論文

將指出，古典彈性散射模型會違反調和場的坡印廷定理以及背後可能的原因，例

如物質的電磁性質會隨加熱改變，因此穩態電磁性質的假設不成立，或是能量有

可能透過非彈性散射進入其他頻率域，以及因為熱傳需要的溫度梯度違反均質假

設。最後，本文會回顧兩個受電磁波照射的雙體系統的中央間隙電漿生成機制的

理論，並指出極化電荷造成的電場熱點促使了電漿的生成。

關鍵字：極化電荷、雙體、電場熱點、米理論、坡印廷定理
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Abstract

Given a system (what we want to describe), for example, a dielectric sphere in vac-

uum; if we illuminate this sphere continuously using a monochromatic plane wave, the

sphere will keep scattering the plane wave. This is an example of light-matter interaction,

and classical elastic scatter model such as Mie theory can describe this system to a certain

accuracy. However, this thesis will show that the classical elastic scatter model will vi-

olate Poynting’s theorem for harmonic fields and discuss the probable cause, such as the

violation of steady-state assumption of electromagnetic property because of heating, or

the energy may enter other frequency through inelastic scatter, and the temperature gra-

dient needed for heat transfer violates the homogeneity assumption. Finally, this thesis

will discuss two theories regarding the mechanism of plasma formed between the gap of

dimer system under electromagnetic irradiation, and favor the theory that the electric field

hot-spot due to mutual enhancement of polarization charges causes the plasma formation.

Keywords: polarization charges, dimer, electric field hotspot, Mie theory, Poynting’s

theorem
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Chapter 1 Introduction to

Polarization Charges

In this chapter I discuss the basic idea of polarization charges and formalism of per-

mittivity. Through out this thesis I assume that the observer is in the same rest frame

with the dielectric medium (which is our system) initially. I exploit the 9th edition of SI

Brochure: The International System of Units (SI)1 published in 2019 Common Era (CE)

by Bureau International des Poids et Mesures; the length is in unit of meters (m); the

mass is in units of kilograms (kg); the time is in unit of seconds (s), and the charge is in

unit of coulombs (C). The seven defining constants of the SI and the seven corresponding

units they define are ascribed in [Table 1.1]. An interesting thing worth noted is that SI

actually defines 1 meter by defining speed of light in vacuum c to be 299 792 458 m/s and

define the time by defining the unperturbed ground-state hyperfine transition frequency

of Caesium-133 ∆νCs to be 9 192 631 770 Hz.

From CODATA 2022 provided on NIST website, vacuum electric permittivity2 ε0 = 8.854

187 8188(14) × 10−12 F · m−1 and vacuum magnetic permeability3 µ0 = 1.256 637 061

27(20) × 10−6 N · A−2. [(..) denotes the uncertainty in the final two digits. (88±14 and

27±20)].

1https://www.bipm.org/en/publications/si-brochure/
2https://physics.nist.gov/cgi-bin/cuu/Value?ep0|search_for=permittivity
3https://physics.nist.gov/cgi-bin/cuu/Value?mu0|search_for=permeability

1
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Defining constant Symbol Numerical value Unit
hyperfine transition frequency of Cs ∆νCs 9 192 631 770 Hz (s−1)
speed of light in vacuum c 299 792 458 m s−1

Planck constant h 6.626 070 15 × 10−34 J s
elementary charge e 1.602 176 634 × 10−19 C
Boltzmann constant k 1.380 649 × 10−23 J K−1

Avogadro constant NA 6.022 140 76 × 1023 mol−1

luminous efficacy Kcd 683 lm W−1

Table 1.1: The seven defining constants of SI and the seven corresponding units they
define, directly ascribed from Table 1 in English version of SI Brochure published in
2019 CE by Bureau International des Poids et Mesures. (https://www.bipm.org/
en/publications/si-brochure/), distributed under the terms of the Creative Com-
monsAttribution 3.0 IGOLicense (https://creativecommons.org/licenses/by/3.
0/igo/).

1.1 Polarization P and the displacement electric field D

When immersed in a static electric field, a dielectric object will generate internal field

against the external field (See [Figure 1.1], which is taken from [1, Fig. 1(a)]4). This is

the consequence of spatial variation of charge density (e.g., electron cloud around atomic

nuclei) due to external field. Such effect is called polarization. Vivid figures demon-

strating these ideas were provided by John David Jackson in his 3rd edition of Classical

Electrodynamics (see [2, Figure 4.2 and Figure 4.7]).

For a dielectric medium, the polarization effect can be described with the formula,

D(r, t) ≡ ε0E(r, t) + P(r, t), (1.1)

where D(r, t) is the electric displacement field at position r and time t, and from now on

the (r, t) suffix denotes the samemeaning, ε0 is permittivity in free space (vacuum),E(r, t)

is the local electric field, and P(r, t) is the polarization density. The electric displacement

field D(r, t) considers only free charges in the system, and thus the electric displacement

4https://doi.org/10.1063/5.0062014

2
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field must be continuous if there are no free charges in the system (If charges are not

free charges, they are said to be bound charges, meaning that they have opposite charges

binding them in close vicinity). Note that boldface indicates that the quantity is a three-

dimensional (3D) vector, and D, E, P are generally time-dependent vector fields in 3D.

Taking the divergence of Equation (1.1) gives:

∇ · D(r, t) = ε0∇ · E(r, t) +∇ · P(r, t) (1.2)

where

∇ · D(r, t) = ρf (r, t) (1.3)

ε0∇ · E(r, t) = ρ(r, t) (1.4)

∇ · P(r, t) = −ρb(r, t) (1.5)

ρf , ρ and ρb are charge density of free charges, total charges and bound charges, respec-

tively. It clearly follows that

ρ = ρf + ρb. (1.6)

In short, the displacement field allows us to consider the field without bound charges

first, and then add the effect of bound charges. Also, by this formulation, we are able to

transform the problem of solving electric field into solving the permittivity discussed in

Section 1.2.

3
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1.2 Permittivity of a material

1.2.1 Fourier Transform

Fourier transform (F.T.) converts the original scalar functionΨ(r, t) in time t domain

into a complex valued function Ψ̂(r,ω) in angular frequency ω domain by the formula (see

Jackson [2, p.243]),

Ψ̂(r,ω) =
∫ ∞

−∞
Ψ(r, t)eiωtdt (1.7)

with the inverse transformation being the Inverse Fourier Transform (Inverse F.T.),

Ψ(r, t) =
1

2π

∫ ∞

−∞
Ψ̂(r,ω)e−iωtdω (1.8)

or in short, 




Ψ : R3 ⊗ R→ R

Ψ̂ : R3 ⊗ R→ C

Ψ
F.T.−−→ Ψ̂

Ψ
Inverse F.T.←−−−−− Ψ̂

(1.9)

1.2.2 Frequency domain of permittivity and fields

The displacement field D(r, t) can be decomposed (called Fourier Decomposition,

it’s actually an Inverse F.T. from frequency domain) using Equation (1.8),

D(r, t) =
1

2π

∫
D(r,ω)e−iωtdω. (1.10)

4
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Define the constitutive equation in frequency domain

Di(r,ω) =
∑

j

εij(r,ω)Ej(r,ω) .
= εij(r,ω)Ej(r,ω), (1.11)

where ω = 2πf can now represent the angular frequency of electromagnetic waves

(EMW), where f is the usual frequency we use in the unit of Hz (1/s). Note that ω is

also called the frequency in much literature depending on the context, but in this thesis I

call f the frequency and ω the angular frequency. i = 1, 2, 3 and j = 1, 2, 3. Ej is the j-th

component of electric field EwhileDi is the i-th component of displacement fieldD. The

repeated index j in the final representation means sum over, which is the Einstein sum-

mation convention. εij is a second rank tensor called permittivity. It is a thermodynamic

state function (i.e., it depends only on current equilibrium thermodynamic state but not

on it’s path to the current state, and therefore can be described as function of thermody-

namic variables such as temperature and pressure) and can also depend on the magnitude,

direction, and frequency of the applied field.

Note that Equation (1.11) is is an ω-space relation. Therefore, in general5,

D(r, t) -= ε(r, t)E(r, t) (1.12)

The SI unit of permittivity is farad per meter (F/m).

5Note that under some conditions the equality may hold. See course handout of K.R. Chu, in Classical
Electrodynamics Ch.7.
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1.2.3 Nomenclature of the properties of permittivity of a medium

1.2.3.1 Isotropic versus anisotropic

If the permittivity of a medium is independent of the the direction of the electric field

E, themedium is said to be isotropic, otherwise it is said to be anisotropic. The permittivity

of an isotropic medium in frequency domain reduces to a scalar ε that can be a complex

number (ε ∈ C).

1.2.3.2 Linear versus nonlinear

If ε depends on the field strength |E| of the external electric field, it is said to be

nonlinear, otherwise it is said to be linear.

1.2.3.3 Homogeneous versus inhomogeneous

If ε is a constant throughout the material, the material is said to be homogeneous,

otherwise the material is said to be inhomogeneous.

1.2.3.4 Dispersive versus nondispersive

If ε depends on the frequency f of the external electric field, the material is said to be

dispersive, otherwise it is said to be non-dispersive. It can be shown that non-dispersive

property leads to violation of causal relations.

The terms describing the nature of the permittivity of a material are summarized in

Table 1.2.

6
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ε(ω) is independent of r E(r,ω)/|E(r,ω)| |E(r,ω)| f
Yes homogeneous isotropic linear nondispersive
No inhomogeneous anisotropic nonlinear dispersive

Table 1.2: Terms describing the nature of the permittivity of a material.

1.2.3.5 Complex permittivity (loss or gain in the medium)

For an isotropic homogeneous material, We can further define the quantities ε′ ≡

Re(ε) and ε
′′ ≡ ± Im(ε) for harmonic time-dependence of field exp(∓iωt), or equiva-

lently:

ε = ε
′ ± iε

′′ for field dependece exp(∓iωt). (1.13)

In this thesis we assume exp(−iωt) field dependence, and therefore,

ε = ε
′
+ iε

′′
, (1.14)

where i ≡
√
−1; ε′ and ε

′′ are the real and imaginary part of ε , respectively. Using this

definition, if ε′′ > 0 in the medium, the electromagnetic wave (EMW) passing the medium

will loss energy after passing the medium. If ε′′ < 0 the EMW will gain energy.

1.2.3.6 Relative permittivity

The relative permittivity εr is defined as,

εr ≡
ε

ε0
, (1.15)

where ε is the complex permittivity and ε0 is the permittivity of vacuum.

7
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1.2.3.7 Loss tangent

It is also a common practice to define a dimensionless quantity called electric loss

tangent tan(δ) to represent the dielectric loss:

tan(δ) =
ε
′′

ε′
(1.16)

note that δ is often called the loss angle. The loss tangent is an ubiquitous way to param-

eterized the inherent dissipation of electromagnetic energy.

1.3 Single dielectric sphere in vacuum

Now consider a dielectric sphere of an isotropic homogeneous linear medium im-

mersed in an uniform static electric field E = Eextx̂ and vacuum space, the polarization

charge is only on the surface of the sphere and is prescribed in [2, Equation (4.58)].

σpol = 3ε0

(
ε/ε0 − 1

ε/ε0 + 2

)
Eext cos θ (1.17)

Where σpol is the polarization charge density on the surface of the sphere, θ is the

polar angle. ε0 is the permittivity in vacuum (free space). Figure 1.1 (taken from [1, Fig.

1(a)]) demonstrates the polarization charge and field lines of a single dielectric orb of

isotropic medium immersed in an uniform electric field E = Eextx̂ and vacuum. Figure

1.2 shows the field strength distribution (taken from [1, Fig. 1(b)].)

8
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Figure 1.1: Polarization charge and field lines of a sphere immersed in uniform elec-
tric field, taken from Figure 1(a) of M. S. Lin, L. C. Liu, L. R. Barnett, Y. F. Tsai,
and K. R. Chu. On electromagnetic wave ignited sparks in aqueous dimers. Physics of
Plasmas, 28(10):102102, 2021. (https://doi.org/10.1063/5.0062014), licensed un-
der a Creative Commons Attribution (CC BY 4.0) license (http://creativecommons.
org/licenses/by/4.0/).
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Figure 1.2: Polarization field strength of a sphere immersed in uniform electric field.
dB(E)=log10 (|E|/Eext), taken from Figure 1(b) of M. S. Lin, L. C. Liu, L. R. Bar-
nett, Y. F. Tsai, and K. R. Chu. On electromagnetic wave ignited sparks in aqueous
dimers. Physics of Plasmas, 28(10):102102, 2021. (https://doi.org/10.1063/5.
0062014), licensed under a Creative Commons Attribution (CC BY 4.0) license (http:
//creativecommons.org/licenses/by/4.0/).
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Chapter 2 Dielectric Dispersion and

Relaxation

2.1 Dielectric dispersion

Dielectric dispersion is the dependence of the permittivity of a dielectric medium on

the frequency of the applied field. We can therefore write:

ε = ε(ω) (2.1)

where ω is the angular frequency of the applied electric field. By definition ω ≡ 2πf .

Oscillation

2.2 Dielectric relaxation

When exposed to a time-varying electric field, the permittivity of a dielectric material

will vary with the electric field but with a time delay (usually called relaxation time, de-

noted by τ ). This is usually the result of delayed molecular response. Usually, the delayed

permittivity response can be described as a function of frequency of applied electric field.

In an ideal system, such response can be described by Debye function [Equation 2.2].

11
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2.2.1 Debye function

In an ideal (linear, isotropic, homogeneous) system, the permittivity ε and relaxation

time τ of certain external electric field of angular frequency ω can be described by the

following function [3, 4],

εr(ω) =
ε(ω)

ε0
= εr(ω =∞) +

εr(ω = 0)− εr(ω =∞)

1− iωτ
, (2.2)

where εr(ω = ∞) is the relative permittivity at infinite frequency (optical regime) and

εr(ω = 0) is the electro-static relative permittivity. Note that due to different notation, the

complex conjugate of my εr is the ε in [4, Equation (4)]. If we rewrite the equation above

in form of Equation (1.14), we get1,

ε
′
(ω)

ε0
≡ Re[εr(ω)] = εr(ω =∞) +

εr(ω = 0)− εr(ω =∞)

1 + ω2τ 2
, (2.3)

ε
′′
(ω)

ε0
≡ Im[εr(ω)] =

[εr(ω = 0)− εr(ω =∞)]ωτ

1 + ω2τ 2
. (2.4)

2.3 Dielectric constant of water at atmospheric pressure

and different temperatures.

Dielectric constant of water is widely studied [4–7] in the past few decades. It is

also interesting that the dielectric relaxation of water in terahertz (THz) domain domain

which had been investigated using terahertz reflection spectroscopy and molecular dy-

namics (MD) simulation [7] seem to have an additional relaxation time apart from simple

Debye model. The MD simulation is also used to calculate the dielectric constant of water
1An interesting question may be raised here: Is Debye Model consistent with Kramers-Kronig relation?
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under constant D [8]. The temperature and pressure dependence of water had also been

investigated through MD simulations [9]. The general dependency of complex permittiv-

ity and relaxation time of water at frequency range of 1.1 gigahertz (GHz) to 57 GHz and

temperature between 0 ◦C and 50 ◦C had been proposed [4]; they are summarized below

[Equation (2.5-2.8)]:

εr(ω, T ) = εr(ω =∞, T ) +
εr(ω = 0, T )− εr(ω =∞, T )

1− iωτ(T )
(2.5)

εr(ω = 0, T ) = 101.94404−1.991×10−3K−1(T−273.15K) (2.6)

εr(ω =∞, T ) = 5.77− 2.74× 10−2K−1(T − 273.15K) (2.7)

τ(T ) = (3.745× 10−15s)[1+ (7× 10−5K−2)× (T − 300.65K)2] exp
(
2.2957× 103K

T

)

(2.8)

where εr(ω, T ) and τ(T ) resemble εr(ω) and τ in Equation (2.2), but add temperature T

(in units of Kelvins) into consideration.

Compare with [10, Table 1.1], which lists the complex permittivity of water at 20 ◦C

at different external electric field frequency and is taken from [11], the absolute values

of deviations of electric loss tangent (|[tan(δ1) − tan(δ2)]/ tan(δ2)|) are within 6.60% (

0.271% - 6.60%).

13
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2.4 An example of the quasi-static limit in electrodynam-

ics: Rayleigh Scatter

2.4.1 An elastic scatter model

The wavelength of the electromagnetic wave (EMW) of frequency f in the non-

magnetic (permeability µ = µ0) medium whose permittivity is ε is defined as λd(f, ε).

The real part of complex index of refraction n of a non-magnetic medium can be derived

from [2, Equation (7.5)]

Re(n) = nd =

√
|εr|+ Re(εr)

2
, (2.9)

and therefore,

λd = λ0/nd, (2.10)

where λ0 is the free-space wavelength given by λ0 = c/f . Consider a dielectric sphere

of radius r and permittivity ε is placed in an open space (which may be air or vacuum, I

assume the permittivity and permeability of the open space outside the dielectric sphere

are ε0 and µ0, respectively), and we hit this sphere by an incident plane wave whose elec-

tric field is Einc(r, t), linearly polarized in x-direction and traveling in positive z-direction

(k = ẑ), assumingmonochromatic harmonic time dependence e−iωt of field and there-

fore the system is in steady-state and the scattering process involved is elastic scatter

(the frequency of the scatter field is the same as the incident field), we may write the total

electric field E(r, t) as the sum of Einc(r, t) and the scatter electric field Esc(r, t),

E = Einc + Esc (2.11)

14
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Solving Maxwell equations mentioned in section 3.2 with scattering boundary condition,

we can get the spatial configuration of the electric field (For detailed analytical solutions,

please see [10]). For simplicity, I put the center of the sphere on (0,0,0).

2.4.2 Elastic scatter of a water sphere hit by 2.45 GHz microwave:

quasi-static case

Following subsection 2.4.1, suppose εr(f = 2.45 GHz, T = 298.15K) = 77.4 +

9.48i, and r = 1.000 mm / λd ≈ 13.88 mm. The simulation2 result (See Figure 2.1) of

normalized time-averaged electric field strength

〈|E(x, y, z)|〉 ≡
∫ 1/f

t=0 |E(r, t)|dt
∫ 1/f

t=0 |Einc(r, t)|dt
(2.12)

configuration of the field near the sphere looks just like the field configuration when the

sphere is immersed in the static electric field (See [Figure 1.1 and Figure 1.2]). This

phenomena is called the quasi-static limit [12, p.298]. The λd 1 r elastic scatter theory

is called Rayleigh scatter in literature, and for λd ≈ r it’s calledMie scatter; please see

the next chapter for further detail.

2Simulation was done using Ansys HFSS software, and the figure was drawn using Python packages
such as Matplotlib.
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Figure 2.1: 〈|E(x, 0, z)|〉 of a linear isotropic homogeneous (εr = 77.4 + 9.48i) water
sphere of radus r = 1.000 mm hit by 2.45 GHz plane wave whose k = ẑ and linearly
polarized in x̂ direction.
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Chapter 3 Resonances

3.1 Theory

Mie resonances are a type of scatters that the scattering objects are in the same scale

as the length of the incident wave, while the scattering objects can be seen as cavities

(therefore resonance happens within it). Danish physicist Ludvig Lorenz1 actually did

the equivalent calculations before Gustav Mie [13, p.789], and therefore Mie scatter the-

ory is also called Lorenz-Mie theory. Nevertheless, Mie scatter theory is still the most

popular name. The illuminated objects can be in the shapes that support resonance to

happen, such as spheres, cylinders and ellipsoids [14]. It is also called Morphology Dpen-

dent Resonances (MDRs). MDRs address the near-field effects of resonant interactions of

electromagnetic waves with wavelength-scale objects [15–17]. The objects can be con-

ductive or dielectric and absorptive or transparent, depending on the complex dielectric

permittivity of the material [15].

1His most famous work may be the Lorenz Gauge ∇ · A + 1
c2

∂V
∂t = 0 in electrodynamics; where

B = ∇× A and E = −∇V − ∂A
∂t .

17
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3.2 Formulation

Agroup ofwidely recognized equations of electromagnetic fields are calledMaxwell’s

equations. Formulation in free space, SI units convention and differential form is:

∇ · E =
ρ

ε0
(3.1)

∇ · B = 0 (3.2)

∇× E = −∂B
∂t

(3.3)

∇× B = µ0J+ µ0ε0
∂E
∂t

(3.4)

where E and B are the electric and magnetic field, respectively. µ0 is called the perme-

ability of free space. ρ and J are charge and current density, respectively, and subject to

conservation of charge [Equation (3.5)].

∇ · J+ ∂ρ

∂t
= 0 (3.5)

Equation (3.1-3.4) are called microscopic Maxwell’s equations, for their elucida-

tion of electromagnetic field (EM field) in terms of current and charge densities pre-

sented(which can be very small), as well as the interaction between electric and magnetic

field.

In mediums, there are charge distributions which are too sophisticated to model. Nu-

clei and surrounding electrons distributed through out the medium require large amount

of calculations if we do it using ab initio method without simplification. However, for a

highly homogeneous medium, we can use macroscopic Maxwell equations to model the

18
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macroscopic electromagnetic field within such system.

3.2.1 Macroscopic Maxwell equations

The four macroscopic Maxwell equations are:

∇ · D = ρf (3.6)

∇ · B = 0 (3.7)

∇× E = −∂B
∂t

(3.8)

∇×H = Jf +
∂D
∂t

(3.9)

where D field is introduced in Chapter 1, and H is simply the magnetic counterpart of E

(E and H are not continuous amid surfaces of mediums with different ε and µ). Jf is the

current density formed by free charges.

3.2.2 Wave equations

Consider in free space without charge distributions, if we take the curl of each curl

equation of microscopic Maxwell equations, and substitute another curl equation into it,

we will have two wave equations of electromagnetic field, and they are:

(∇2 − µ0ε0
∂2

∂t2
)E = !E = 0 (3.10)

(∇2 − µ0ε0
∂2

∂t2
)B = !B = 0 (3.11)
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where∇2 and! are Laplace and d’Alembert operator, respectively. This shows the wave-

like nature of electromagnetic fields.

3.3 Mie resonance in a single water sphere

Let’s consider a water sphere in air. According to [10], the first and second reso-

nance of 2.45 GHz electromagnetic wave happen when the radii of the lossy water (εr =

77.4 + 9.48i) sphere are 6.843 mm (this is close to (λd/2) ≈6.94 mm) and 9.796 mm,

respectively. Using Ansys High Frequency Structure Simulator (HFSS), which utilizes

finite-element method (FEM), let’s see spatial configuration of electric field intensity

〈|E(x, y, z)|〉 [see Equation (2.12)] of radii (a) 6.843 mm and (b) 9.796 mm in three or-

thogonal cross-sections in Figure 3.1 (x-y cross-section), Figure 3.2 (x-z cross-section)

and Figure 3.3 (y-z cross-section). These figures are drawn using Python packages. Note

that these simulations are done in a single frequency, and therefore monochromatic fields

(in other words, elastic scatter) at 2.45 GHz is assumed.

3.3.1 Analytical solutions

Adetailed derivation of the analytical solutions of electromagnetic fields of the elastic

scatter model of a dielectric sphere (as mentioned in subsection 2.4.1) and a dielectric

cylinder was done by K.W. Chen in his master thesis [10].
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(a) r = 6.843 mm

(b) r = 9.796 mm

Figure 3.1: 〈|E(x, y, 0)|〉 of linear isotropic homogeneous (εr = 77.4 + 9.48i) water
spheres of radii (a) r = 6.843 mm and (b) r = 9.796 mm hit by 2.45 GHz plane wave
whose k = ẑ and linearly polarized in x̂ direction.21
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(a) r = 6.843 mm

(b) r = 9.796 mm

Figure 3.2: 〈|E(x, 0, z)|〉 of linear isotropic homogeneous (εr = 77.4 + 9.48i) water
spheres of radii (a) r = 6.843 mm and (b) r = 9.796 mm hit by 2.45 GHz plane wave
whose k = ẑ and linearly polarized in x̂ direction.22
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(a) r = 6.843 mm

(b) r = 9.796 mm

Figure 3.3: 〈|E(0, y, z)|〉 of linear isotropic homogeneous (εr = 77.4 + 9.48i) water
spheres of radii (a) r = 6.843 mm and (b) r = 9.796 mm hit by 2.45 GHz plane wave
whose k = ẑ and linearly polarized in x̂ direction.23
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3.4 Application

MDRs are widely studied and exploited in literature [15, 17, 18]. Bakker, Reuben

M., et al. demonstrated both experimentally and theoretically that the enhancement of

localized electric and magnetic fields can be achieved in a silicon nanodimer utilizing

theory of MDRs [18]. Kuwata, Hitoshi, et al. proposed a simple analytical formula that

can quantitatively predict resonant light scattering from metal nanoparticles of arbitrary

shape, whose sizes are too large for Rayleigh approximation to be applicable [17]. Khat-

tak, Hamza K., Pablo Bianucci, and Aaron D. Slepkov linked plasma formation in grapes

to microwave resonances of aqueous dimers [15].
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Chapter 4 Dielectric Heating

4.1 Theory

We begin by considering the conservation of energy, and proceed to some particular

results of dielectric heating.

4.1.1 Poynting’s theorem (1884 CE)

Poynting’s theorem is a theory that considers the conservation of energy, and is well

documented [2, Section 6.7]. Specifically, Poynting’s theorem, in time domain, assum-

ing Newtonian equation of motion and Lorentz force [See Appendix A], is given by [2,

Equation (6.105)],

∫

V

J · E d3x = −
∫

V

[
∇ · (E×H) + E · ∂D

∂t
+H · ∂B

∂t

]
d3x . (4.1)

If we further assume:

1. The medium is linear, nondispersive and lossless.
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2. The total electromagnetic energy stored in the field can be represented by

u =
E · D+ B ·H

2
. (4.2)

Choose V to be an infinitesimal volume element, we will have [2, Equation (6.108)],

∂u

∂t
+∇ · S = −J · E (4.3)

where u is the energy stored in EM field (EM field energy), the J ·E on the right hand side

represents the conversion of electromagnetic energy into mechanical or heat energy. S is

the Poynting vector representing the energy flow, and can be written as,

S = E×H. (4.4)

The∇·S term describes the net energy transport out of certain point through EM field, and

will be negative if there’s net energy transport in certain point through EM field. ∂u/∂t

is the accumulation rate of EM field energy, and will be negative if the EM field energy

is decreasing. J ·E is the rate of conversion of electromagnetic energy into mechanical or

heat energy.

4.1.2 Poynting’s theorem in linear dispersive medium with losses

Poynting’s theorem in linear dispersivemediumwith losses can be quite complicated.

It was recorded in [2, Equation (6.127)],

∂ueff
∂t

+∇ · S = −J · E− ω0ε
′′
(ω0)〈E · E〉 − ω0µ

′′
(ω0)〈H ·H〉 (4.5)
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where ω0 is the carrier frequency and µ
′′
(ω0) is the imaginary part of the permeability of

the medium at frequency ω0. The effective potential ueff is given by [2, Equation (6.126b)]

ueff =
1

2

{
Re

[
d(ωε)
dω

(ω0)

]
〈E · E〉+ Re

[
d(ωµ)
dω

(ω0)

]
〈H ·H〉

}
. (4.6)

Note that 〈..〉 means the time-averaged value.

The ohmic losses J · E and the heating of the medium (if ε′′ -= 0 and/or µ′′ -= 0)

in realistic situation are now taking into consideration of local conservation of energy by

Equation (4.5).

4.2 Dielectric heating in an uniform AC electric field

Lin, M. S., Lin, S. M., Chiang, W. Y., Barnett, L. R., and Chu, K. R. had investigated

effects of polarization-charge shielding in microwave heating of spherical and cubical

object [19].

Consider a dielectric medium whose permittivity is in the form of Equation (1.14).

The medium is now immersed in an uniform AC electric field given by:

E = Re[Ec(r,ω) exp(−iωt)], (4.7)

where Ec(r,ω) is a constant electric field (i.e., Ec is a constant vector across all position),

the electrical polarization density P within the medium can now be given by (Re on the

right hand side of equation is omitted here in the following equation, as in [19]),
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P = (ε− ε0)Ec exp(−iωt). (4.8)

The polarization current density Jp can now be given by:

Jp ≡
∂P
∂t

= −iω(ε− ε0)Ec exp(−iωt) (4.9)

The power of heating in a unit volume of medium, Pheating, is then [19, Equation

(1)],

Pheating =
1

2
[Re(Jp · E∗)] =

1

2
ε
′′
ω|Ec|2. (4.10)

Note that 1
2 [Re(Jp ·E

∗)] is consistent with the first term of Equation (5.4a), since they are

the real part of two conjugated quantities (Re(J∗ · E) = Re[(J∗ · E)∗] = Re(J · E∗)).
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Chapter 5 Violation of Poynting’s

Theorem in Frequency

Domain in Mie Theory and

Probable Causes

Poynting’s theorem in frequency domain is prescribed by [2, Equation (6.134)],

1

2

∫

V

J∗ · Ed3x+ 2iω

∫

V

(we − wm)d
3x+

∮

S

S · n̂da = 0; (5.1)

where the real part of the first term is the time-averaged heating rate and we =
1
4(E ·D∗),

wm = 1
4(B · H∗), S = 1

2E × H∗ is the complex Poynting vector. Applying divergence

theorem on Equation (5.1), we will have,

1

2

∫

V

J∗ · Ed3x+ 2iω

∫

V

(we − wm)d
3x+

∫

V

∇ · Sd3x = 0, (5.2)

or simply let V be the infinitesimal volume element, and we will get,

1

2
J∗ · E+ 2iω(we − wm) +∇ · S = 0, (5.3)

29

http://dx.doi.org/10.6342/NTU202400923


doi:10.6342/NTU202400923

or explicitly,

Re
{
1

2
J∗ · E+ 2iω(we − wm) +∇ · S

}
= 0, (5.4a)

and

Im
{
1

2
J∗ · E+ 2iω(we − wm) +∇ · S

}
= 0. (5.4b)

Equation (5.1) actually can be derived from Equation (4.1), assuming harmonic time de-

pendence e−iωt of fields E(r, t) and H(r, t) and therefore steady-state (time-invariant) of

electromagnetic properties µ and ε. However, I will show that Equation (5.4a) didn’t hold

in classical Mie scatter theory, assuming linear homogeneous isotropic dielectric proper-

ties µ and ε. Equation (5.4a) can therefore be a useful tool in diagnosing classical models

in energy-conservation aspect.

5.1 Violation

Before continuing on the argument, I want to show you some evidence of the sim-

ulation results first. Let’s see Figure 5.1 (which was done using COMSOL multiphysics

software) and Figure 5.2 (which was done using Ansys HFSS software). We can see that

Equation (5.1) indeed doesn’t hold under assumptions of Mie scatter (amid different soft-

ware, morphology, frequency and material).
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5.2 Evidence from other literature

It is also written in literature [20] explicitly that these assumptions in traditional Mie

scattering problems are too strong.

5.3 Probable causes

5.3.1 Inelastic scatter

Note that Mie scatter is an elastic scatter mechanism, meaning that the energy E of

the incoming and scatter photon doesn’t change, and therefore the frequency f = E/h

doesn’t change.1 However, we do know that there exist some inelastic scatter mechanism

such as Stokes and anti-Stokes Raman scatter. Therefore, from this aspect, violation in

Equation (5.1) may make classical Mie theory better, because now we leave a room for

inelastic scatterings in our theory. The violation of Eq. (5.1) actually allows net energy

transport between different frequencies.

5.3.2 Non steady-state

Recall that we assume electromagnetic steady-state in Mie-scatter. However, we do

know that a microwave of 2.45 GHz will heat up a water sphere in room temperature and

atmospheric pressure (such as the working principle of commercial microwave ovens.)

From Section 2.3 we know that the dielectric constant ε depends on temperature. This

lead us to the violation of steady-state assumption.

1h is the Planck constant.
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5.3.3 Inhomogeneity

εr varies with temperature from Section 2.3. For heat to transfer from the inner part

of the sphere to the outer part of the sphere, there should be temperature gradients. This

violates the homogeneous assumption in classical derivation of Mie theory.

5.4 Short remarks

The deficiencies of monochromatic frequency-domain analysis in the energy-domain

actually reminds us the underlying physics - our theories are just approximations of the

real world. More precise theory may be built upon quantum field theory (ab initio) or

molecular dynamics (MD) simulation, but this will exceed the current (2024 CE) compu-

tational ability of tabletop computers, since we are talking about approximately 1023 (a

water sphere of radius 6.843 mm) of water molecules, unless some appropriate approxi-

mations are used. Nevertheless, Equation (5.4a) should still be a useful tool in diagnosing

the energy-consistency in classical models.
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Figure 5.1: COMSOL simulation plot of Re
[
1
2J

∗ · E+ 2iω(we − wm) +∇ · S
]
on the

central slice of a silicon nitride nano wire, immersed in air, whose long axis is along
the z− axis illuminated by a TE mode (linearly polarized in y− direction) plane wave
of electric field strength 1 V/m travelling in positive x−direction. The diameter of the
silicon nitride nanowire is 500 nm and its length is 13 µm. The free-space wavelength of
the incident plane wave is 561 nm. ε and µ are constant within wire. Courtesy of Yu-An
Chen (陳俞安) (ORCiD: 0009-0009-4575-3114, E-mail: cyuan933gmail.com).
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Figure 5.2: The central slice of x − z plane of Re
[
1
2J

∗ · E+ 2iω(we − wm) +∇ · S
]
in

W/m3 of a water sphere of radius 6.0 mm and constant ε and µ illuminated by a linearly
x̂-polarized plane wave of frequency 2.45 GHz and peak intensity 1 V/m traveling in ẑ-
direction in vacuum. The simulation is done by Chun-Yu Yang (楊鈞禹) (ORCiD:
0009-0006-1160-387X) using Ansys HFSS Student edition.
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Chapter 6 Two Theories Regarding

the Etiology of Plasma

Formation Between

Aqueous Dimers

6.1 MDRs (2019 CE)

In 2019 CE, Hamza K. Khattak, Pablo Bianucci and Aaron D. Slepkov published

their theories about the origin of plasma formation between spherical dimers [15]. They

linked the phenomena to the cooperative interaction of MDRs in the individual spheres,

and plenty of simulations and experiments were done. This research soon raised public

attention after covered by some famous scientific journals as well as general media.

6.1.1 MDRs

They suggest that the enhancement of EM field is the result of combination of dif-

ferent MDRs patterns within the gap region of the dimer system. The simulations of EM

field utilize finite element method (FEM). They observe several EM field hotspot in the
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gap and center part of the dimer system in the FEM simulations, and thus suggest that

there may be interactions between MDRs of each sphere.

6.1.2 Thermal behavior of the system

As discussed in Chapter 4, the dielectric heating of the system can be modeled by

Equation (4.5). This means that one can use thermal behavior of the system to infer the

EM field strength. The authors take infrared (IR) images to show the thermal behavior

of the system surface. They also do COMSOL simulations, and finally, they use thermal

papers wrapped around the system to record the thermal behavior of the system. They

find a subwavelength (λ0/80) thermal hotspot in the gap axial region, and thus infer that

there are cooperative interactions of MDRs of each sphere in the gap axial hotspot.

6.2 Polarization charges (2021 CE)

In 2021 CE, however, another group proposed another pourquoi story of plasma for-

mation between aqueous dimers [1]. They think polarization introduced in Chapter 1 is

the major cause, and I will discuss their results from now on.

6.2.1 Mutual enhancement of polarization between dimers

Quasi-static limits are mentioned in [12, p.298] and subsection 2.4.2. If the wave-

length of the imposed EM wave is large compare to the size of the object, we can simplify

our description of the system by mimicking electro-static conditions. Polarization is thus

a valid model for the dimer system.
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The polarization of each sphere in the dimer system will enhance the polarization

effect on each other, until they finally reach electro-static equilibrium.

To see whether polarization theory is correct, the authors performed the simulation

and experiment at 27MHz frequency. MDRs of the dimer system composed of two identi-

cal aqueous spheres of radius 7mm can not happen at this frequency. The result confirmed

that polarization alone can trigger sparks between such system.

6.2.2 Forces between dimers

Recall that when disposing the real-time in-situ snapshots of aqueous dimer, the work

[15] uses a concave instead of a horizontal plane to hold the dimer spheres together. This

method, however, will make the dimer system subject to gravitational force, and thus we

will be unable to see whether the initial external field causes attractive force or repul-

sive force between dimer spheres except when the resulting force is repulsive and strong

enough to conquer the force exerted by gravitation and the concave. The experiments in

[15] finally yield a oscillating result, but this should be the consequence of gravitational

force and elastic Leidenfrost effect [21]. The experiment of [1], in contrast, is able to

detect the force between the dimer spheres caused by external field. The attractive results

strongly suggest the polarization nature of the dimer systems, since the force should be

repulsive due to mutual radiation pressure if MDRs do dominate the system.

6.2.3 Electromagnetic fields between dimers

If the polarization theory is correct, because of the quasi-static nature of the system,

it is expected to observe strong enhancement electric fields between dimers, while the
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magnetic field strength may be relatively unchanged. If the MDRs theory is correct, both

electric andmagnetic field strengthmay be enhanced simultaneously in scale. Comparison

of [15] and [1] shows that the field profile suggests the polarization nature. The figures

in [15] do not distinguish magnetic and electric field strength, while the enhancement of

magnetic field strength is not in scale with the electric field in the simulations of [1].

6.2.4 Configuration that only MDRs occur

Interestingly, if we put the dimer system perpendicular to the external electric field,

we will be able to keep MDRs, while there will be no mutual enhancement of polarization

charge, as θ = ±π
2 in Equation (1.17) in the gap region. This enables us to test whether

sparks occur in absence of mutual enhancement of polarization.

The results are shown in [1, (Figs. 3,7)]. As expected, no evidence of spark forma-

tion is found. The results suggest that MDRs are not the major cause of spark formation

between dimer systems.

6.2.5 Evidence from other literatures

The polarization effect is well utilized inmany areas such as electrostatic self-assembly

of particles [22, 23], microwave assisted synthesis of quantum dots [24], etc. A recent pa-

per in Physical Review Letters also used electric hot spot (See Figure 6.1, taken from [25,

Fig. 1]). These literature suggest the electric nature of plasma formation of dimer systems

exposed in oscillating EM field.
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Figure 6.1: Schematic that showed the electric hot spot. Resonances happen within
spheres. Taken from Thanh Xuan Hoang, Daniel Leykam, and Yuri Kivshar. Photonic
Flatband Resonances in Multiple Light Scattering. Physical Review Letters, 132:043803,
Jan 2024. (DOI: https://doi.org/10.1103/PhysRevLett.132.043803), licensed
under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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Appendix A — Derivation of Poynting’s

Theorem in Time Domain and Time

Harmonics

Starting from Newtonian Equation of Motion, the power P done by a force F on a

particle moving with velocity v is,

P = F · v. (A.1)

For a charge particle of charge q moving in electric field E and magnetic field B, the

Lorentz force acting on it (in SI units) is,

F = q [E+ v× B ]. (A.2)

The power is therefore P = qE · v, or in a volume integral form,

P =

∫
d3x p =

∫
d3x ρE · v =

∫
d3x J · E, (A.3)

where p is the power density, ρ is the charge density and J is the current (density). Use

the macroscopic Maxwell equation∇×H = J + ∂D
∂t to substitue J in the final term, we
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have
∫

d3x J · E =

∫
d3x

[
(∇×H) · E− ∂D

∂t
· E

]
. (A.4)

Use

∇ · (E×H) = H · (∇× E)− E · (∇×H), (A.5)

and

∇× E = −∂B
∂t

, (A.6)

we will obtain,

∫
d3x J · E = −

∫
d3x

[
∇ · (E×H) + E · ∂D

∂t
+H · ∂B

∂t

]
, (A.7)

or the most general form of macroscopic energy balance (in time domain),

J · E+∇ · (E×H) +

[
E · ∂D

∂t
+H · ∂B

∂t

]
= 0. (A.8)

The frequency domain equation

1. assumes e−iωt dependence of above equation;

2. therefore assumes steady-state of ε and µ (assumes they are time-invariant).

3. evaluates the time-averaged quantities of Equation (A.8).

Following above steps, We will reach Equation (5.4a).
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