Mo fgt ST PFAERTALAS |
At wm~
Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University

Master’s Thesis

FZWANETTEOT P BIRAE P e

Kernel Modules Fault Recovery by a Time Interval-based

Monitor

You-Ting Li

#}3 o Flm gL
Advisor: Shih-Wei Li, Ph.D.

PEARII3E 9

September 2024

doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Bl o 28 R PR 2 A
nREBEERE

MASTER’S THESIS ACCEPTANCE CERTIFICATE
NATIONAL TAIWAN UNIVERSITY

738 7w Rl R @ Y B2 R 25 IR AR A A% AR 4B gE 3R

Kernel Modules Fault Recovery by a Time Interval-based
Monitor

WX AEFER ($IER11922002) B LESRLENT RS
ARmzAE2mmx o NREIBZFEOA24BATIEARZEE SR
WA T RBA 0 IS o

The undersigned, appointed by the Department of Computer Science and Information Engineering

on 24 September 2024 have examined a Master’s thesis entitled above presented by YOU-TING LI
(student ID: R11922002) candidate and hereby certify that it is worthy of acceptance.

a2 h=1 . . .
=4 aﬁ&—ﬁ- B Oral examination committee:

i AN e 2

(45 J 2% Advisor)

% X 12/A7 K Director: a z% %

i doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

i

doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

W%

TE AP Rt AR A L X 2 eniRE G FiRS e £ 3 2023 £

&1t > Linux Kernel éhf7ffce A= + = 7§ FA2 4 > R~ OB E LSS &

SRR P FE B e 0k SPLS T AREF A SR T v § HR DS EAE ® panic o v
null pointer deference - use after free © F]p* » 2 & Arm v8 chZEH T & 7 - £

L ¢ T H P~ 48 systemcall > #-H 2 & % A o compartment 0 T %%'

d 4 473% compartment 7 call graph > % 4122 %< H {5 ¥R 1> share = global memory °

FifipE e RMP F 0 AP F T - £ Time Interval Based <7 Monitor » & € % 4
A8 > #7F process ¥ % B B I FOIR o F IR R B AL 4S8 T4 P
4 1% i hypercall i& » EL2 w42 %775 B ek i > £ 2 monitor w 4 £ 3 2o B 48 chp
% 0 B {4 3R process W F|iE » system call # e,k Bk iR 0 TiE wAS IS 0 LR R

FE WG AR e s B E Tk e 2 R R e

MRS : hT > AP CHESE e T

11 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

v

doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Abstract

The isolation of the operating system kernel is of great benefit to the security of the
system itself. As of 2023, the Linux Kernel will have more than 36 million lines of code,
and the huge amount of code will make it increasingly difficult to debug the program, and
inadvertent mistakes made by the kernel engineers may cause the kernel to be corrupted
and become panic, e.g., null pointer deference, use after free. Therefore, we propose a
backup mechanism in the Arm v8 architecture, trying to prevent kernel crash after these
mistakes causes kernel errors. Firstly, we will select one of the system calls, which is
defined as our compartment, and analyze the control flow graph of the compartment to find
out the global variables shared outside of the compartment. And then, we design a Time
Interval Based Monitor, which can record and back up all value changes to the memory
addresses. When the compartment encounters an error, the monitor can recover tracked
memory locations, and allows the process to return to the original system state before

entering the compartment, thus achieving the purpose of protecting the system kernel and

v doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

maintaining kernel availability.

Keywords: System Security, System Kernel Isolation, Kernel Availability

vi doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Contents

Page

Verification Letter from the Oral Examination Committee i
W iii
Abstract \4
Contents vii
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Background 5
2.1 Overview of the ARM Architecture 5

2.1.1 ExceptionLevel 5

2.1.2 KeyRegisters 6

213 ARMTrustZone 7

22 SeKVM e 8

2.3 LLVM Intermediate Representation (LLVMIR). 9

2.4 Instrumentation Granularity for Monitor API 10

2.4.1 Function Level Granularity 10

2.4.2 Assembly Level Granularity 10

vil doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

243
2.5
Chapter 3
Chapter 4
Chapter 5
5.1
52
5.2.1
522
523
524
525
5.2.6
53
Chapter 6
6.1
6.2
Chapter 7
7.1

7.1.1

LLVM IR Level Granularity

Control Flow Path

Overview
Threat Model

Design

Motivation - Error Path Analyzing
Time Interval-based Monitor
SharedData
Synchronization Primitives
HeapData
SharedField
Registers.
Monitor State

Isolated Memory Address Space

Evaluation

Performance

Security Analysis

Related Work and Future Work

Related Work
Isolation Techniques

Crash Recovery Mechanisms

Combining Isolation and Recovery

Future Work

doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Chapter 8 Conclusions 61
References 63

Appendix A — Introduction 67

Al Data Structures in the Monitor

1X doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

List of Figures

Figure 2.1 Arm ExceptionLevel 6
Figure 3.1 Architecture 14
Figure 3.2 Compartment definition 14
Figure 3.3 Compartment Workflow 15
Figure 4.1 Memory Layout 18
Figure 5.1 Three Type of Conditions For Shared Data API 29
Figure 5.2 Finite State of Monitor 37
Figure 5.3 Detailed Runtime Workflow 38

X1 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

xii doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

List of Tables

Table 5.1 Callee FunctionPairs 21
Table 6.1 APICostTime i 44
Table 7.1 Comparison Between Related Works 51

Xiil doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

X1v doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Chapter 1 Introduction

In modern operating systems, ensuring the availability of system kernels has become
critical due to the increasing number of vulnerabilities and potential attack vectors. The
Linux kernel, with its vast codebase, faces a constant influx of vulnerabilities, particularly
those related to memory management, such as errors that trigger exceptions and cause the
CPU to enter an exception handler. These vulnerabilities can lead to memory corruption,
posing significant risks to system stability and availability. Without effective recovery

mechanisms, these errors often result in kernel crashes and extended system downtime.

A widely adopted approach for handling such issues in system recovery is check-
pointing, which captures the entire system state at specific intervals to enable recovery
when a failure occurs. However, existing checkpointing solutions are generally coarse-
grained, targeting recovery at the user level [5, 11, 18, 22] or virtual machine (VM)
level [3, 12]. These solutions aim to restore the entire system / process to a previous state
after an error, which may not be suitable for more frequent or fine-grained failures like
system call errors in the kernel. For example, works such as QEMU snapshots [1, 14—-16]
offers recovery mechanisms for virtualized environments but do not provide the granular-

ity necessary for efficient recovery at the kernel system call.

Our design offers a more fine-grained approach by focusing on recovering system

1 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

calls within the kernel rather than entire systems or applications. This allows for a faster,
more targeted recovery process, specifically addressing errors such as null pointer deref-
erences and use-after-free vulnerabilities that trigger exceptions. By monitoring system
calls and saving memory and register states at critical points, our time-interval-based mon-
itor allows for efficient recovery without needing to revert the entire kernel or application

state.

When compared to other checkpointing approaches such as CRAK [22], which pro-
vides transparent checkpointing and restart capabilities at the application level, and Kckpt [5],
which operates at the user-space level, our design is more fine-grained and specifically
targets system call recovery within the kernel. CRAK focuses on process migration and
provides checkpointing for networked applications, allowing processes to resume even
after failure. However, it does not focus on kernel-level errors that trigger exceptions,
which are common causes of system failures. Similarly, Kckpt is designed for user-space
checkpointing in the UnixWare kernel and captures user-space information, but it does
not extend to kernel space, limiting its applicability in protecting the kernel from memory

corruption.

In contrast, our work extends these concepts by applying recovery mechanisms at the
system call level within the kernel itself, providing an even finer granularity of protection.
Unlike CRAK and Kckpt, which focus on capturing the state of user-level processes and
user-space data, our approach targets memory corruption vulnerabilities in the kernel and
ensures the availability and stability of the system without needing to revert the entire

user-space or virtual machine state.

Furthermore, ARM TrustZone-based solutions [4, 19, 20] focus on providing recov-

2 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

ery by isolating and protecting trusted execution environments (TEEs). These approaches,
while effective, offer recovery mechanisms at a higher granularity, focusing on entire com-

ponents or systems rather than individual system calls.

By addressing the granularity gap between existing coarse-grained checkpointing
methods and the fine-grained system call recovery approach presented in this thesis, our
work demonstrates an innovative approach to system call level protection. This makes
our solution particularly effective in recovering from memory corruption issues, ensuring

system availability without incurring the overhead of rolling back the entire system state.

In summary, this thesis makes the following contributions:

1. We propose a fine-grained recovery mechanism for mitigating memory corruption
vulnerabilities at the system call level, focusing on errors that cause the CPU to

enter the exception handler.

2. We introduce a time-interval-based monitoring system that enables efficient recov-

ery from these errors while minimizing performance overhead.

3. We compare our fine-grained approach with existing checkpointing methods that
target recovery at broader levels, such as VMs or applications, and demonstrate

how our solution provides more targeted recovery.

4. We evaluate the performance of our prototype on the SeKVM architecture, demon-

strating its effectiveness in maintaining system availability.

5. We outline potential future work to integrate our solution with other protection
mechanisms, such as ARM’ s MTE and KASAN, to further enhance kernel se-
curity.

3 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

The remainder of this thesis is organized as follows: Chapter 2 presents the back-
ground and related work in kernel recovery mechanisms. Chapter 3 outlines the design
of our time-interval-based monitoring system. Chapter 4 provides an evaluation of our
prototype implementation. Chapter 5 discusses related work in the field, and Chapter 6

concludes the thesis with key findings and contributions.

4 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Chapter 2 Background

2.1 Overview of the ARM Architecture

Our work is discussed based on ARM architecture. The ARM architecture is a family
of Reduced Instruction Set Computing (RISC) architectures. It is widely used in a variety
of applications, including embedded systems, mobile devices, and increasingly in servers
and high-performance computing due to its power efficiency and performance character-
istics. ARM processors use a simplified instruction set that enables higher performance
and more efficient instruction execution compared to Complex Instruction Set Comput-
ing (CISC) architectures like x86. It provides both 32-bit (ARMv7) and 64-bit (ARMv8)
architectures, supporting a wide range of applications from low-power embedded devices

to high-performance computing.

2.1.1 Exception Level

The ARMvVS architecture introduces a hierarchical and structured exception handling
mechanism categorized into four distinct exception levels (ELs). These levels provide dif-
ferent privileges and control over the system, enhancing security and separation between

various execution environments. ELO (User Level) is the least privileged level. It exe-

5 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Non-secure Secure

ry - '_":|
ELO AArch32
App

EL1 AArché64 Kernel AArch32 Kernel B Trusted OS

AArch64 Trusted Services

AArch32 App

Manager*
EL3 Firmware / Secure Monitor

* Secure EL2 from Armv8.4-A

Figure 2.1: Arm Exception Level

cutes user applications and cannot access most system resources directly; EL1 (Kernel/
Operating System) executes operating system kernel. It manages resources and hardware
directly, and can handle system calls from and exceptions from ELO/EL1; EL2 (Hyper-
visor) manages virtualization. It controls and monitors virtual machines running at EL1,
and provides isolation between virtual machines; Last, EL3 (Secure Monitor) is the most
privileged level. It executes secure monitor code and manages transitions between secure
and non-secure states (Trusted Execution Environment). To advance to higher levels, you

need to use exceptions (e.g., interruptions, page faults, etc.).

2.1.2 Key Registers

ARM architecture defines a variety of registers to manage its operations:

* General Purpose Registers. There are set of registers (e.g., R0O-R15 in ARMv7,

X0-X30 in ARMvS) for general computational purposes.

* Program Counter (PC). It holds the address of the next instruction to be executed.

6 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

« Stack Pointer (SP). It points to the current stack location, separate for each exception

level.

* Link Register (LR). It stores the return address for subroutine calls.

» Program Status Registers (CPSR/SPSR). CPSR (Current Program Status Register)
holds the current state of the processor, while SPSR (Saved Program Status Register)

saves the processor state when an exception is taken.

* Exception Link Registers (ELR _ELx). It holds the address to return to after han-

dling an exception.

* Memory Management Registers (TTBR, TCR, etc.). They control memory transla-

tion and attributes for different memory regions.

2.1.3 ARM TrustZone

ARM TrustZone is a security technology that creates a secure execution environment
within ARM processors by dividing the system into two distinct worlds: the Secure World
and the Non-Secure World. The Secure World handles sensitive operations and data, while
the Non-Secure World runs regular applications and the operating system. TrustZone pro-
vides hardware-enforced isolation between these worlds, ensuring that critical data in the

Secure World cannot be accessed by the Non-Secure World.

Key components of TrustZone include the Secure Monitor, which manages transi-
tions between the two worlds, the TrustZone Address Space Controller (TZASC) for se-
cure memory management, and the TrustZone Protection Controller (TZPC) for managing

peripheral access. TrustZone supports secure boot processes, digital rights management

7 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

(DRM), secure payment systems, and secure authentication and biometrics, enhancing

security across a wide range of applications.

By isolating sensitive operations and data, TrustZone significantly reduces the at-
tack surface, enhancing overall system security. Its flexibility and compatibility with ex-
isting ARM architectures make it a valuable security solution for devices ranging from
smartphones to IoT devices. TrustZone ensures robust protection for sensitive operations,

making it an essential technology for modern secure computing environments.

2.2 SeKVM

This thesis builds upon SeKVM, a formally verified architecture built on the Linux
KVM hypervisor, enhances security by isolating memory address spaces and providing
several critical register copying functions within the EL2 (Exception Level 2) privilege

mode.

Memory isolation in SeKVM is achieved by mapping the hypervisor’s critical com-
ponents, such as the monitor’s data and text sections, into an isolated memory address
space that is separate from the general kernel and user space. This isolation is enforced
by the hypervisor at EL2, which has higher privileges than the regular operating system
running at EL1. By segregating memory in this manner, SeKVM ensures that sensitive
data and execution contexts are protected from potential attacks originating from lower

privilege levels, such as user space processes or even the kernel itself.

SeKVM also includes register copying functions within EL2, which are crucial for
securely managing the state of the virtual machines (VMs). When a VM needs to be

paused, resumed, or recovered from an error, these functions allow for the safe copying

8 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

and restoration of the system registers, including those critical for VM execution. This
mechanism is essential for maintaining the integrity of VM states across different con-
texts, such as during VM migration, snapshotting, or error recovery. By leveraging these
features, SeK VM provides robust isolation and state management, which are fundamental

for building secure multiprocessor environments.

2.3 LLVM Intermediate Representation (LLVM IR)

LLVM Intermediate Representation (LLVM IR) is a low-level programming lan-
guage that serves as an intermediate step in the compilation process within the LLVM
compiler framework. It is designed to be both human-readable and machine-independent,
providing a common platform for optimizing code and supporting multiple target archi-
tectures. LLVM IR operates at a level of abstraction between high-level source code and
machine code, making it suitable for various types of analysis and transformation during

compilation.

One of the key advantages of LLVM IR is its flexibility in representing complex pro-
gram structures, such as loops and function calls, while still being close enough to the
hardware to allow for detailed optimization. This makes it an ideal choice for instrument-
ing code, as it allows for precise control over how operations are translated and executed
on different hardware platforms. Additionally, the modularity of LLVM IR facilitates
the development of custom optimization passes, enabling developers to insert, modify, or

analyze specific instructions at this intermediate stage of compilation.

In the context of our project, we leverage LLVM IR to automate the instrumentation

of our monitor API, allowing us to efficiently manage memory and process states within

9 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

a compartmentalized environment.

2.4 Instrumentation Granularity for Monitor API

In our project, we explore different levels of instruction instrumentation granularity
to automate the integration of our monitor API. The primary levels of granularity con-
sidered are Function Level Granularity, Assembly Level Granularity, and LLVM IR Level

Granularity.

2.4.1 Function Level Granularity

At the function level, we utilize error-handling functions to restore the kernel state
to a stable condition. In kernel programming, system developers typically implement
error-handling paths within functions that may fail, such as those involving kmalloc. The
advantage of using function-level granularity is that error-handling functions are generally
straightforward to read and understand. However, a significant drawback is the need to
customize each error-handling function to correspond to its respective original function,

which complicates the automation of the instruction replacement process.

2.4.2 Assembly Level Granularity

In the paper Lightweight Fault Isolation: Practical, Efficient, and Secure Software
Sandboxing [21], the authors describe using a compiler to instrument assembly code dur-
ing compile time, shifting memory addresses to the target address space and isolating
compartment memory from the kernel address space. Assembly-level granularity facili-

tates automating the instruction replacement process. However, it presents challenges in

10 doi:10.6342/NTU202404466

https://dl.acm.org/doi/10.1145/3620665.3640408
https://dl.acm.org/doi/10.1145/3620665.3640408
http://dx.doi.org/10.6342/NTU202404466

distinguishing whether memory addresses are within the compartment.

243 LLVMIR Level Granularity

Using LLVM IR-level granularity offers several benefits. It simplifies the automation
of the instruction instrumentation process by adding an LLVM optimization pass to instru-
ment LLVM IR nodes. Additionally, it is easier to distinguish whether memory addresses

are within the compartment, as the readability of the code is retained.

In our project, we ultimately selected LLVM IR-level granularity for instrumenta-
tion. This choice facilitates easier automation and provides a better distinction of memory

addresses within compartments.

2.5 Control Flow Path

In operating systems, particularly in the Linux kernel, a control flow path refers to the
sequence of execution that a process or thread follows during its runtime. This sequence
includes the series of function calls, interrupts, and system calls made by a process while
interacting with kernel services. The control flow path is essential in determining how
the kernel handles various operations, such as memory management, I/O operations, and

process scheduling.

When a process executes a system call, it transitions from user mode to kernel mode,
where the kernel takes control to perform privileged operations on behalf of the process.
The control path in the kernel begins when the process issues a system call, invoking

a handler that manages the system request. This handler passes through various kernel

11 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

subsystems, such as memory management or device drivers, depending on the nature of

the request, and finally returns the result back to the process.

Understanding the control flow path is crucial in designing security mechanisms, as
it helps identify critical points where errors or vulnerabilities that trigger exceptions and
cause the CPU to enter an exception handler may occur. By monitoring and analyzing the
control flow path, it is possible to instrument checks and recovery mechanisms that can

prevent the kernel from crashing or being exploited.

12 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Chapter 3 Overview

The motivation for this work stems from the limitations of existing kernel recovery
mechanisms, which are either too coarse-grained (e.g., checkpointing entire applications/
VMs) or only provide isolation without recovery. Our goal is to develop a fine-grained
recovery system that operates at the system call level, enabling the kernel to recover from
errors that trigger exceptions and cause the CPU to enter an exception handler like null
pointer dereferences or use-after-free without rolling back the entire system state. This
approach enhances system availability by minimizing downtime and ensuring that errors

are contained within the kernel, rather than escalating to broader system failures.

Our time interval-based monitor isolates and tracks value changes for memory ad-
dresses within the compartment by instrumenting our provided monitor API and copying
values to an isolated memory address space. A compartment is a set of functions for the
kernel to execute to handle the system call. For instance, in Figure 3.2, function 1 and

function 3 are included in our compartment, whereas function 2 is not.

Figure 3.1 illustrates the architecture of the time interval-based monitor. The green
section represents our design components, including register/memory backup space, shared
data space, and the monitor APIs. The register/memory backup space is a domain in iso-

lated memory space that saves a copy of the register/memory state. The shared data space

13 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

User Space User Space
Process (ELO)

!

Kernel Address

Syscall Entry Space (EL1)
Exception
Compartment Handler

A

Register / Isolated
Monitor API <«<— Memory Memory
Backup Space Address Space
(EL2)

Figure 3.1: Architecture

Kernel Control Path 1 Kernel Control Path 2

(In Compartment) - (Out of Compartment)
Function 1 Function 2
call function 3 call function 3
¥
Function 3
return from function 3 return from function 3

y . ¥

Function 1 : Function 2

Figure 3.2: Compartment definition

14 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Compile

. Run Time
Time
kernel error 4 ™
happens
> Recover
boot the
kernel A /
Instrumentation Record

-~ ~

> Restore

process finish in the

compartment . J

Figure 3.3: Compartment Workflow

is accessible by both the kernel and the monitor. The monitor APIs are entry points in the
kernel address space for the compartment to access the register/memory backup space.
Within the kernel address space, monitor APIs will call certain kernel APIs not supported
in isolated memory address space (EL2), including kernel synchronization primitives APIs
like mutex_lock/mutex_unlock, spin_lock/spin_unlock, and kernel memory man-
agement APIs like kmalloc/kfree. These APIs facilitate the functionality of copying
memory state/register state to the register/memory backup space and putting states back
to kernel address space when error occurs. The red section represents the compartment,
which might contain buggy kernel code. For the red and blue sections, we instrument our

monitor API.

When traversing a control path within the compartment, various types of data are
accessed, including global shared data, global locks, and local data. Global shared data
includes memory allocated before entering the compartment, such as function parame-
ters and global variables. Global locks are synchronization primitives used in the com-
partment, including mutex, spin_lock, mmap_lock, and rcu_lock. Local data refers
to memory allocated within the compartment, including function stacks and dynamically
allocated memory by kernel memory allocation APIs [7].

15 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

To summarize our design workflow from instrumentation to kernel execution, start-
ing from the original Linux kernel, there are three main stages in the design as depicted in

Figure 3.3:

1. Instrumentation Phase: Instrument the original load/store memory instructions on

data that need to be backed up to our provided monitor APIs.

2. Recording Phase: Processes save a copy of variable values in the compartment to the
memory backup space during runtime before an error occurs. In this stage, we aims
to preserve the current state of critical variables in this phase, enabling recovery in

case of errors.

3. Recovery / Restoration Phase: In the recovery phase, the kernel register state saved
before entering the compartment path is copied from the memory backup space to
the kernel address space by the process after an error occurs. In the restoration
phase, the memory state is copied from the memory backup space to the kernel
address space to restore the system and continue kernel execution. This phase aims
to restore the kernel to its previous stable state, minimizing the impact of errors that

trigger exceptions and cause the CPU to enter an exception handler.

16 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Chapter 4 Threat Model

In this work, we assume that an attacker can exploit vulnerabilities within a compart-
ment of the kernel, specifically targeting errors that trigger exceptions and cause the CPU
to enter an exception handler, including overflow to access unmapped memory or access
memory with incorrect permission, use-after-free that cause crashes, divide-by-zero, stack
overflow and NULL pointer dereferences. Our Trusted Computing Base (TCB) includes
the parts of the kernel outside the compartment, the monitor, and the register/memory
backup space. We assume that the memory regions used by these components, depicted

as grey regions in Figure 4.1, remain secure and unmodified by attackers.

Attackers can not hijack the kernel’ s control flow by manipulating function pointers
or employing code-reuse attacks such as Return-Oriented Programming (ROP) and
Jump-Oriented Programming (JOP) attacks in our work. However, we assume there
might contain vulnerabilities that will not break the original kernel control flow in the

compartment.

We also assume that programmers will hold the respective locks when accessing
global variables. We expect programmers will replace the global shared variable refer-
enced in every function with our monitor API. If there are instances where the global

variable is not tagged, we will be unable to track and record the changes, thus preventing

17 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Compartment
Local Data

Kernel

Data Compartment

Kernel Address Space
and Kernel

Isolated
memory
address space

Figure 4.1: Memory Layout

recovery of the global data.

Furthermore, our framework does not address attacks aimed at creating system dead-
locks. So exploiting attack to kernel and causing deadlock, such as ROP attack to a critical

section, is out of scope. Lastly, we assume the system remains uncompromised during the

boot process.

18 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Chapter S Design

Our objective is to maintain kernel availability in the event of errors that trigger ex-
ceptions and cause the CPU to enter an exception handler. If an error occurs in the com-
partment, the kernel can be restored to its previous state before the process entered the
compartment. The system then informs the user that the system call encountered an error,

allowing the user to decide whether to re-execute the system call.

During execution within the compartment, the process performs operations such as
loading states from memory and registers, modifying these states, and writing the updated
states back to memory and registers. These operations affect both memory and register
states. To ensure proper recovery in the event of an error within the compartment, it is
essential to save a copy of the memory and register states that the process accesses to an
isolated memory address space before it enters the compartment. This enables the system

to recover these states when an error occurs, preventing the kernel from crashing.

To summarize, several key challenges need to be addressed:

1. What types of data need to be saved? Identifying the critical memory and register

states that must be saved as copies is essential for effective recovery.

2. How do we save a copy of these data, particularly under context-switching sce-
narios? Ensuring the correctness of data copies in a multi-process environment,

19 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

where context switches occur, adds complexity to the saving mechanism.

3. How can we ensure that the isolated memory address space remains uncom-
promised? Protecting the integrity of the isolated memory space against potential

attacks is critical for maintaining system security.

5.1 Motivation - Error Path Analyzing

During execution within the compartment, various types of data states may be mod-
ified, including common registers, system registers, local data, heap data, global shared
data, and synchronization primitives. To address the first challenge—identifying which
data states need to be saved for recovery—we analyze existing error-handling paths in the

Linux kernel, with a focus on how the kernel manages and recovers from errors.

Our initial approach involves identifying a system call that is straightforward to ana-
lyze and has a well-defined error-handling path within the compartment. For this purpose,
we randomly select a system call, the kvm_create_vm function in kvm_main.c, assum-
ing it represents our compartment. We then examine the callee functions invoked within
kvm_create_vm and their corresponding recovery functions in the error-handling path.
Specifically, we investigate the memory operations performed by these functions, as these
operations represent the memory addresses that need to be recovered if an error occurs
within the compartment. Below are the pairs of callee functions within kvm_create_vm

that we investigate:

After analyzing how these recovery functions restore memory states, we have iden-
tified several types of data that must be recovered, as well as those that do not require

recovery.

20 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

callee function recovery function

kvm_arch_alloc_vm(kvm) kvm_arch_free_vm(kvm)

mmgrab (current->mm) mmdrop (current->mm)

init_srcu_struct (&kvm- cleanup_srcu_struct (&kvm-

>srcu) >srcu)

refcount_set (&kvm- refcount_dec_and_test (&kvm-

>users_count, 1) >users_count)

kvm_alloc_memslots() kvm free memslots(kvm, kvm-
>memslots[0])

kvm_arch init vm() kvm_arch_destroy_vm(kvm)

Table 5.1: Callee Function Pairs

* Global Shared Data. This includes data such as vm_11ist, which are accessed out-
side the compartment. Global shared data consists of statically allocated variables
stored in the .bss or .data sections of an object file. Since these sections are not
reset each time a process accesses them, failing to recover shared data may lead to
errors in subsequent processes due to incorrect states. Therefore, it is essential to

recover this data.

* Heap Data. Heap data refers to memory allocated during runtime using kernel
memory allocation APIs, such as kmalloc. Recovery functions handle heap data

by calling kfree, which prevents memory leaks by freeing the allocated memory.

* Local Data. Recovery functions typically do not restore local data. This is because
local data is reinitialized with each invocation of functions like kvm create vm,

eliminating the need for recovery.

Beyond the data types managed by the recovery functions, it is also crucial to consider

the recovery of registers and synchronization primitives.

* Register States. This includes both system registers and common registers, which
are modified within the compartment. As these register states are critical to the

21 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

correct execution of processes, they must be preserved and restored in case of errors.

* Synchronization Primitives. These are essential for controlling access to shared
data within the compartment. For example, in the function kvm_create_vm, locks
such as kvm_1lock are used when accessing vm_1list. In our threat model, a process
might crash while holding a lock, necessitating the recovery of locks to their state

before entering the compartment to prevent deadlocks and ensure consistency.

In summary, the types of data states that must be saved to isolated memory address
space include common registers, system registers, heap data, shared data, and synchro-
nization primitives. By saving these states, the system can recover memory and registers
to their state before entering the compartment, ensuring the kernel does not crash even if

an error occurs within the compartment.

5.2 Time Interval-based Monitor

After identifying the critical memory and register states that need to be saved, we now
address the second challenge: how to save copies of these states in scenarios involving
context switching. Drawing inspiration from the paper by Narayanan et al. [6], which de-
scribes creating copies of shared data, isolating them in different memory address spaces,
and automatically instrumenting the shared data, we designed our Time Interval-based
Monitor to operate within an isolated memory address space. This approach provides
security by ensuring that the monitor cannot be compromised. Our design involves in-
strumenting data that requires copying, thereby ensuring kernel availability even when

€ITrors oCcCur.

22 doi:10.6342/NTU202404466

https://www.usenix.org/conference/osdi22/presentation/huang-yongzhe
http://dx.doi.org/10.6342/NTU202404466

To facilitate this process, we explored different levels of instruction instrumenta-
tion granularity and ultimately chose to use LLVM Intermediate Representation (IR). This
choice provides a better distinction of memory addresses in the compartment. We utilize
the LLVM compiler from the repository available at this repository [10]. This compiler
automatically identifies shared data, heap data, and shared locks in the compartment dur-
ing compile time and instruments the relevant functions at the IR level, assisting us during

the instrumentation phase.

With the instrumentation approach in place, our next objective is to discuss the spe-
cific monitor APIs we will design to facilitate the saving of data states during context
switching. In section 5.1, we examined the kvm_create_vm system call and identified the
critical data types that need to be saved for recovery: common registers, system registers,
heap data, shared data, and synchronization primitives. We will now design corresponding

monitor APIs to handle these tasks.

5.2.1 Shared Data

1 /*

2 addr: addr of the shared data

3 */

4 u64 comp_mem_get_data(void *addr);

s /*

6 addr: addr of the shared data

7 val: the value of the shared data.
8*/

9 void comp_mem_set_data(void *addr, u64 val);

Listing 1: Shared Data API

To enhance the availability of the kernel, we aim to enable processes to context switch
within the compartment. Without our shared data API instrumentation, an error occurring

during a context switch while accessing shared data can render the shared data state un-

23 doi:10.6342/NTU202404466

https://github.com/lilihsu/llvm-project
http://dx.doi.org/10.6342/NTU202404466

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

int global_varl, global_var2, global_var3;

DEFINE_MUTEX (global_lock) ;

void increase_var_3(void){
mutex_lock(&global_lock);
global_var3 += 1;
mutex_unlock(&global_lock) ;

void increase_var_2(void){
mutex_lock(&global_lock);
global_var2 += 1;
mutex_unlock(&global_lock) ;

void increase_var_1(void){
mutex_lock(&global_lock);
global_varl += 1;
mutex_unlock(&global_lock);

}
int syscall2(void){
/* PB */
increase_var_3();
increase_var_1Q0); // -——— 1
increase_var_1(); /) —— 2
}
int syscalll(void){
/* PA */
int* err_ptr = (void *) 0;
increase_var_10; // -—- 3
increase_var_2(Q);
xerr_ptr = 1; /-4
}

Listing 2: Case that Dependency Issue might occur

24

doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

20

21

22

23

24

25

26

27

28

29

30

32

33

34

int global_varl, global_var2, global_var3;
DEFINE_MUTEX (global_lock);

void increase_var_3(void){
com_mem_mutex_lock(&global_lock);
com_mem_set_data(&global_var3, com_mem_get_data(&global_var3) + 1);
com_mem_mutex_unlock(&global_lock);

void increase_var_2(void){
com_mem_mutex_lock(&global_lock);
com_mem_set_data(&global_var2, com_mem_get_data(&global_var2) + 1);
com_mem_mutex_unlock(&global_lock);

void increase_var_1(void){
com_mem_mutex_lock(&global_lock);
com_mem_set_data(&global_varl, com_mem_get_data(&global_varl) + 1);
com_mem_mutex_unlock(&global_lock) ;

int syscall2(void){
/* PB */
increase_var_3Q);
increase _var_1(Q); /) -1
increase_var_1(Q); /) == 2

int syscalll(void){
/* PA */
int* err_ptr = (void *) 0;
increase_var_1(); // -——— 3
increase_var_2();
xerr_ptr = 1; // === 4 // where null pointer deference error
- occurs

Listing 3: Case After Instrumentation Phase

25 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

recoverable, which means a situation where the shared data state has been altered due to
an error, and there is no mechanism to recover it to its state before entering the compart-
ment. As a result, when other processes access this shared data again, errors might recur
because the shared data state has become dirty, meaning it retains an incorrect state that

could propagate errors to other processes.

For example, consider the case in Listing 2, where two system call control paths
invoke the same function, create_or_inc. An error will occur if a process executes the
program at line 33. Assume two processes, PA and PB, enter different system call control
paths (syscalll and syscall2) on the same CPU core. The issue will manifest if the

CPU executes instructions in the following order:

1. Atline 31, PA calls the increase_var_1 function, changing global varl’s state

in kernel address space from 0 to 1.

2. Atline 25, PB calls the increase_var_1 function, changing global_varl’s state

from 1 to 2.

3. Atline 33, PA encounters a null pointer dereference error.

4. Atline 26, PB calls the increase_var_1 function again, intending to change global_var1l’s
state. The state of global_varl should be 1, reflecting PA’s error; however, due
to the absence of a recovery mechanism, global_varl’s state is still 2, and PB

increases it to 3 instead of remaining at 2.

This example illustrates how shared data can become unrecoverable without proper
instrumentation and recovery mechanisms in place, leading to further errors in other pro-

CCSSES.

26 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

To ensure kernel availability and resilience to errors, we instrument kernel code in the
compartment with our monitor API to recover these memory states. There are two ways
that a shared data is accessed in an instruction in the compartment, either is referenced in an
instruction or is assigned a new state in an instruction. Both will load the state of the share
data from the memory. Therefore, we created two monitor APIs, comp_mem_get_data
and comp_mem_set_data, to monitor the state of shared data, as shown in Listing 1. When
a shared data is referenced in an instruction in the compartment, we instrument the instruc-
tion with comp _mem_get data during the instrumentation phase and pass the variable’s
address as a parameter to get a copy of its current state during the record phase. Con-
versely, when a shared data is assigned a new state in an instruction in the compartment,
we instrument the instruction with comp_mem_set_data and pass the shared data address

along with the new value as parameters to update the shared data state.

After instrumenting the two APIs during the instrumentation phase and defining their
actions during the record phase, we focus on the monitor’s actions during the restore and
recovery phases. When the process exits the compartment, it calls the comp_mem_exit compartment
API, and the monitor copies the shared data state from the isolated memory address space
back to the kernel address space during the restore phase. This ensures that the process
can continue executing normally after exiting the compartment. If an error occurs in one
of the processes within the compartment, the monitor enters the recovery phase. Dur-
ing this phase, the monitor does not copy the shared data state back to the kernel address
space, preserving the shared data states as they were when the process initially entered the

compartment.

However, if the monitor only recovers the process that encountered the error, a de-

pendency issue may arise. This issue occurs when different processes access the same

27 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

memory address within the compartment, and one process crashes and enters the recovery
phase. For example, consider the case in Listing 2, where two system call control paths

are within the compartment. The program, after instrumentation, is shown in Listing 3:

1. Atline31, PAcallsthe increase_var_1 function, and the monitor changing global varl’s

state in the isolated memory address space from 0 to 1.

2. Atline25,PBcallsthe increase_var_1 function, and the monitor changes global varl’s

state in the isolated memory address space from 1 to 2.

3. At line 33, PA triggers a null pointer dereference error and enters the recovery
phase. In the recovery phase, the monitor deletes the global vari1’snode, resetting

global_var1l’s state to 0.

4. Atline 26, PB calls the increase_var_1 function again, intending to change global_var1l’s
state from 2 to 3. However, since the state has been reset by PA during its recovery

routine, this causes an error.

In this case, we refer to PA and PB as dependent processes because both processes have

accessed the same memory address global_varl in the compartment when PA crashed.

To effectively address the dependency issues discussed above, the design of the
shared data API accounts for the three types of scenarios outlined below, as illustrated

in Figure 5.1.

1. Process accesses the same shared data, instructions of accessing the shared data are
instrumented, and the dependent processes are in the compartment.

Processes accessing shared data where both the accessing instructions and depen-

28 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Access Shared
Data

Astructions are
instrumented with

onitor API?
Yes

Condition 3:
Write shared data state

Control Path in
compartment?

Mo

o Wait until

Condition 1: processes in the |

Copy shared data state compartment

during record phase finish !

i Condition2: | |

, Write shared data state

v v v
Isolated Memory |, Original Kernel
Address Space . Address Space

Condition 1:

Restore shared data state
during restore phase

——————————————————— > >
Data Flow Workflow

Figure 5.1: Three Type of Conditions For Shared Data API

29 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

dent processes are within the compartment require careful handling. The solution in-
volves identifying dependent processes of the crashed process and tracing all mem-
ory addresses they accessed. Subsequently, dependent processes are placed into the
recovery phase. For example, in Listing 2, if both syscalll and syscall2 are sys-
tem call control paths in the compartment and share global_varl, global var2,
global_var3, and global_lock, the state of these shared variables and shared
locks is recovered to prevent dependency issues. This ensures addresses that these
dependent processes has accessed recovered to their states prior to entering the com-

partment.

. Process access the same shared data, instructions of accessing the shared data are
instrumented, but dependent processes are not within the compartment.

When processes accessing shared data have some control paths within the com-
partment and others outside, preemptive scheduling and CPU rescheduling are em-
ployed. This approach ensures that processes before entering the compartment are
preempted until processes within the compartment exit the path successfully. For
instance, in Listing 2, if increase_var_1 is accessed by both syscalll (in com-
partment) and syscall2 (not in compartment), syscall?2 is delayed from access-
ing global_vari until syscalll exits the compartment and completes its recovery

phase.

. Process accesses the same shared data, and instructions of accessing the shared data
are not instrumented.

In cases where shared data access instructions are not instrumented, a straightfor-
ward approach is adopted. The shared data state is not recovered if the processes

within the compartment encounter error. Processes within the compartment directly

30 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

modify the data state in kernel address space. This scenario introduces risks as the
kernel may encounter errors if the data state isn’t recorded in isolated address space.
However, such occurrences are expected to be minimized through comprehensive

analysis and instrumentation of all relevant variables within the Linux Kernel.

These solutions aim to mitigate dependency issues arising from shared data access
across different control paths, ensuring robustness and security in system operations within
compartmentalized environments. Additionally, if one of the dependent processes exits
the compartment without errors, the monitor must wait for the other dependent processes
to exit and restore them together. This ensures that, even if an error occurs in one of the
dependent processes, the monitor can still recover all dependent processes as they remain

monitored within the compartment.

5.2.2 Synchronization Primitives

1 void comp_mem_mutex_lock(struct mutex *lock);

» void comp_mem_mutex_unlock(struct mutex *lock);
3 void comp_mem_spin_lock(spinlock_t *1lock);

4 void comp_mem_spin_unlock(spinlock_t *lock);

Listing 4: Shared Lock API

In many cases, shared data within a compartment is protected by synchronization
primitives such as mutex and spin_lock to ensure consistency and prevent race condi-
tions. For example, in Listing 2, each global _var is protected by critical sections created
by global_lock. However, in our threat model, a process may crash while holding locks.
Therefore, during the recovery phase, it is necessary to release any locks that were held
by the process at the time of the crash. To achieve this, we instrument the kernel lock/

unlock APIs for each mutex and spin_lock in the compartment by replacing them with

31 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

our shared lock API, as shown in Listing 4, during the instrumentation phase. We pass the
lock address to the isolated memory address space to track which mutex or spin lock is

held or released.

If the original kernel code creates a critical section using synchronization primitives
to protect shared data within the compartment, it is essential to ensure that this critical
section remains intact after instrumenting the kernel lock/unlock APIs with our shared
lock API during the record phase. Additionally, the lock state must be recovered during the
recovery phase if an error occurs within the compartment. To protect our monitor APIs and
ensure that the critical section cannot be executed by multiple processes simultaneously,

we use monitor mutex in the monitor.

To address the three types of scenarios in the shared data API design, as shown in
Figure 5.1, we design the shared lock API to avoid directly calling the kernel synchroniza-
tion primitives APIs. Instead, we save the lock state to the isolated memory address space
during the record phase. When a process attempts to acquire a synchronization primitive,
it calls comp_mem mutex lock or comp_mem_spin_lock to check if any other process
currently holds the synchronization primitive. If the primitive is held, the API yields the
process and waits until the primitive is released before retrying. If the synchronization
primitive is not held, the API updates the synchronization primitive’s state in the isolated
memory address space, allowing the process to acquire the lock. Since the monitor APIs
are also protected by monitor mutex, the original critical section remains protected after

instrumenting the shared lock API.

During the restore phase, we ensure that the synchronization primitives in the kernel

address space reflect their state within the compartment. If a synchronization primitive

32 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

was released in the compartment, it is released in the kernel address space; if the syn-
chronization primitive was not released, it is held. In the recovery phase, we adjust the
synchronization primitives based on their state when the process entered the compart-
ment. Synchronization primitives that were not held before entering the compartment
are released, and those that were not released are retained. This approach helps prevent

deadlocks after the restore or recovery phase.

5.2.3 Heap Data

1 /*

2 size: stze of memory object need to allocate

3 */

4 void *comp_mem_kmalloc(int size);

6 /*

7 addr: addr of the memory object that need to be freed
8 */

9 void comp_mem_kfree(void *addr);

Listing 5: Memory Allocation API

In the compartment, some memory in the kernel might be dynamically allocated from
the heap using kernel memory allocation APIs like kmalloc. To prevent memory leaks,
this heap memory must be freed by calling kfree. However, in our threat model, a process
might crash before executing the kfree API within the compartment, leading to potential
memory leaks. Therefore, we instrument these APIs with our monitor to manage memory
deallocation and provide a recovery mechanism in case of errors. As shown in Listing 5,
we instrument kmalloc as comp _mem_kmalloc and kfree as comp _mem_kfree in the

compartment.

There are three scenarios we need to consider for heap data in the compartment, based
on whether the memory is allocated or freed within the compartment:

33 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

1. Allocated and freed within the compartment: This scenario occurs when both

allocation and deallocation happen within the compartment.

2. Allocated within the compartment but not freed within the compartment: An
example of this scenario is a memory allocation performed by the malloc system

call, where the deallocation occurs outside the compartment.

3. Not allocated within the compartment but freed within the compartment: This
scenario is exemplified by the free system call, where the memory was allocated

outside the compartment but is deallocated within it.

To handle all three scenarios, maintain compatibility with the kernel memory allo-
cator, and provide a recovery mechanism, we implement a lazy free mechanism for heap
data within the compartment. During the record phase, the comp_mem_kmalloc API calls
the kernel memory allocation API kmalloc, passing the size of the memory object as a
parameter. The address returned from the kernel memory allocation API is then saved
to the isolated memory address space. On the other hand, during the record phase, the
comp_mem_kfree API only marks the heap data as invalid in the isolated memory address
space and does not immediately free the memory using the kernel memory allocation API

kfree. The actual memory deallocation is deferred to the restore phase.

This approach is necessary to address the third type of heap data scenario, where the
data might need to be recovered during the recovery phase. If the memory were freed im-
mediately by calling kfree when comp_mem_kfree is invoked during the record phase,
the memory address could be reused by other processes. This would cause null pointer
dereference errors when the heap data is accessed after the recovery phase. By defer-

ring the deallocation, we ensure that the memory state remains intact and can be properly

34 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

managed during recovery and restoration phase.

5.2.4 Shared Field

1 /*

2 field_addr: addr of the field data

3 base_addr: the structure's base address that the field belongs to
4 */

5 u64 comp_mem_get_field(void *field_addr, void *base_addr);

6

7 /*

8 field_addr: addr of the field data

9 base_addr: the structure's base address that the field belongs to
10 val: the wvalue of the field data

11 */

12 void comp_mem_set_field(void *field_addr, void *base_addr, u64 val);

Listing 6: Field Data API

To save the state of data in the isolated memory address space, we create a sequence
of data nodes that maintain these states. Each data node is a fixed-length structure, 64 bits
long, and is organized as a key/value pair, where the data address serves as the key and
the corresponding data state as the value. This design ensures that multiple nodes are not
created for the same data address. Additionally, each data node contains a field that records
the process IDs of the processes that have accessed the data within the compartment. This
information is used during both the restore and recovery phases to identify dependent

processes.

However, some data might be composite types, such as structures, rather than primi-
tive types, leading to variable-sized states. To handle this, we implement a field data API
to record each field of a structure separately, allowing these data to be saved in fixed-
length data nodes. The field data API is instrumented when a structure’s field is accessed
within the compartment during the instrumentation phase and records data state during the

record phase, similar to the shared data API. The key difference, as shown in Listing 6,

35 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

is that we pass an additional argument base_addr, which represents the base address of
the structure containing the field. This approach ensures that we only copy the state of the
specific field that is modified, rather than the entire structure, reducing the time and space

overhead of recovery.

The shared field API is also applied when dealing with heap data that are composite
types. When such heap data is allocated or freed, the monitor ensures that all relevant
fields are restored or recovered together, maintaining consistency across the data state.

This design optimizes both recovery efficiency and data usage.

5.2.5 Registers

To recover the system state to what it was before entering the compartment when a
process crashes, it is necessary to restore not only the memory state but also the register
state, as both can be modified during execution in the compartment. There are two types of
registers that may be altered in the compartment: common registers and system registers.
The monitor saves these register states to an isolated memory address space and adds the
current process ID to the monitor to indicate that the process has entered the compartment

through the comp_mem_enter_compartment APIL.

The mechanism for saving registers is analogous to the principle of virtual machine
(VM) switching, where the process traps into the hypervisor mode (EL2) and copies the
states of the common registers and EL1 system registers to the isolated memory address
space. If an error occurs, the process enters the recovery phase, trapping into EL2 to
restore the register state saved before entering the compartment. Once the registers state

are restored, and the recovery phase is complete, the process returns to EL1 and resumes

36 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

processes in the compartment

reach the maximum size

full

\ new

a process enters
the recovery phase

vailable for_

all dependency processes

no process is in the compartment

all processes have
finished the restore phase

have finished v

the recovery phase

finished

a process enters

‘V/—-'—--\\

'

all process have finished
the restore phase

recover

the recovery phase

Figure 5.2: Finite State of Monitor

execution from the point where it trapped into EL2. This ensures that the process can

continue running with the correct register state, preventing further errors after recovery.

5.2.6 Monitor State

In Listing 3, we demonstrated that if a process crashes within the compartment, all

dependent processes must also be recovered. In our implementation, the isolated mem-

ory address space has limited capacity and cannot accommodate an unlimited number

of processes. Therefore, we must limit the number of processes allowed in the compart-

ment. To address these challenges and facilitate communication between processes within

37

doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

System Call Execution Flowchart

User Address Space

Kernel Address

Isolated Address

Yes

Space Space
@
'—‘\
System Call Register
Entry < Backup
-/
\
Compartment

Accessing

No hared variable?

Compartment
Finish?

Exception

Getter /
Setter API

Recover

handler

> registers &
memory

Figure 5.3: Detailed Runtime Workflow

38

doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Algorithm 1 Monitor State Transitioning Condition

monitor_state < AVAILABLE FOR _NEW
function CHANGE STATE(void)
if monitor_state = AVAILABLE FOR_NEW and pid_list is full then
monitor_state = FULL
else if monitor _state = AVAILABLE FOR_NFEW and all pid.done ==
then

monitor_state = FINISHED
else if monitor state = FULL and all pid.done == 1 then
monitor_state = FINISHED
else if monitor _state = AVAILABLE FOR_NFEW and one of the process
failed then
monitor_state = RECOV ER
else if monitor state = F'ULL and one of the process encounter an error then
monitor_state = RECOV ER
else if monitor _state = RECOV ER and pid_list is empty then
monitor_state = AVAILABLE FOR_NEW
else if monitor_state = FINISHED and pid_list is empty then
monitor_state = AVAILABLE FOR _NEW
end if
end function

the compartment, we define several states for the monitor. These states help manage each
process’s phase, and the monitor takes appropriate actions when a process transitions from
one phase to another. Ultimately, these states and transitions form a finite state machine
shown in Figure 5.2. A brief description of each monitor state is provided below, with the

monitor initialized to the available for new state after kernel boot.

In Listing 3, we demonstrated that if a process crashes within the compartment, all
dependent processes must also be recovered. Since the isolated memory address space
has limited capacity and cannot accommodate an unlimited number of processes, it is
necessary to limit the number of processes allowed in the compartment. To address these
challenges and facilitate communication between processes within the compartment, we
define several states for the monitor. These states help manage each process’s phase, and
the monitor takes appropriate actions when a process transitions from one phase to another.
Ultimately, these states and transitions form a finite state machine, as shown in Figure 5.2.

39 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

A brief description of each monitor state is provided below, with the monitor initialized

to the available for new state after the kernel boots.

* available_for _new: The monitor is available for new processes to enter.

* full: The monitor has reached its maximum capacity for processes.

* finished: All processes have finished the execution in the compartment.

* recover: One of the processes has encountered an error and entered the recovery

phase.

Whenever a process calls the monitor API, the API first invokes the
monitor_state_check_and_change function to update the monitor’s state based on the
process’s current state, and then performs actions according to the monitor’s state using
different APIs. Below are the transition conditions for the monitor states, and Algorithm 1

provides a brief overview of the algorithm used to transition states in our implementation.

Entering the Compartment: When a process enters the compartment, it calls the
comp_mem_enter_ compartment API. If the monitor’s current state is available for new
and there is still capacity for new processes, the process creates a data structure in the
pid_list in the isolated memory address space. This data structure stores the process
ID and tracks the process’s current phase. If the compartment is full, the monitor state
changes to full, and any additional processes attempting to enter will yield until the monitor

transitions back to the available for new state.

Completing Execution: When a process completes execution in the compartment
without encountering errors, it labels itself as done and checks whether all dependent

processes have finished. If the monitor’s current state is available for new or full, and all

40 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

dependent processes are marked as done, the monitor transitions to the finished state. At
this point, all data states accessed by the dependent processes are restored, and their data

structures are removed from the pid_list.

Exiting the Compartment: If a process is labeled as done and sees that the monitor
is in the finished state, it exits the compartment by cleaning its data structure from the

pid_list.

Encountering an Error: If a process encounters an error, the monitor state transi-
tions to recover. The monitor then cleans all recorded states in the isolated memory address
space and removes the process’s data structure from the pid_1list. Once other dependent

processes detect the transition to the recover state, they clean their data structures as well.

Re-entering the Compartment: When a new process attempts to enter the com-
partment and finds that the monitor state is either finished or recover, and there are no
processes recorded in the pid_1ist, the monitor state changes to available for new, al-

lowing the process to enter the compartment.

This design ensures that the monitor effectively manages the phases of each process
within the compartment, handling transitions and dependencies to maintain kernel stability
and availability in the event of errors. We summarize the detailed runtime workflow in

Figure 5.3.

5.3 Isolated Memory Address Space

After detailing how our monitor is designed to save copies of data to the isolated

memory address space under context-switching scenarios, we now address the final chal-

41 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

lenge: How can we ensure that the isolated memory address space remains uncompro-

mised?

As mentioned in previous sections, the data nodes storing copies of data states, pro-
cess information saved in the pid_list, and the monitor state itself are all saved in the
isolated memory address space. Therefore, protecting this space is crucial. To secure the
isolated memory address space, we map the monitor’s data and text sections from the EL1
virtual address space to the EL2 address space using the create_hyp_mappings func-
tion. This function is executed in EL1 during KVM initialization and sets up the EL2
page tables before transitioning to EL2. We have modified the function to support mem-
ory block duplication in hypervisor mode (EL2). Since EL2 has higher privileges than
EL1, attackers cannot directly compromise the monitor or the isolated memory address

space, as access is restricted to monitor APIs.

This approach ensures that the isolated memory address space remains secure and

protected from potential attacks, maintaining the integrity of the monitor’s operations.

42 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

1

2

3

4

5

6

7

14

15

Chapter 6 Evaluation

6.1 Performance

int global_var = O;
#define EXEC_ TIMES 10000000
int demo_syscall(int a, int b)

{
int i;
for (i = 0; i < EXEC_TIMES; i++) {
/* montitor API / original instruction is putted in this section
.
comp_mem_set_data(&global_var, i + 1);
/* monitor API / original instruction ts putted in this section
— */
}
return O;
}
asmlinkage long __sys_compartment_test(int para_a, int para_b)
{
if (!comp_mem_enter_compartment()) {
return O;
}
ret = demo_syscall(para_a, para_b);
comp_mem_exit_compartment () ;
}

Listing 7: API Cost Time Evaluation Program

We implemented our prototype based on the design proposed in chapter 5, using the
Linux 5.15 SeKVM kernel architecture [8, 9] as the foundation. SeKVM already provides
isolated memory address spaces and register copying functions in EL2, ensuring the ro-

bustness of isolated memory spaces, which makes it a reliable base for our design. Our

43 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

API type executed original monitor ratio (monitor API /

times instruction | API (sec) original instruction)
(sec)

kmalloc / kfree pair 10° 0.249 37.995 152.59

mutex_lock / mutex_unlock | 107 0.273 1.463 5.359

pair

spin_lock / spin_unlock pair | 107 2.992 1.683 0.563

set_data 107 0.008 6.137 767.125

get data 107 0.015 6.154 410.267

set_field 107 0.011 5.932 539.273

get field 107 0.013 6.215 478.077

Table 6.1: API Cost Time

implementation includes our time-interval-based monitor, with an additional 1,153 lines
of kernel code beside SeKVM’s codebase. We evaluated the performance of the monitor
APIs by comparing their execution time to that of the original kernel APIs, using QEMU
version 7.0.0. All experiments were conducted on a prototype with a single 64-bit ARM
Cortex-A57 CPU core and 2GB of memory. The host running QEMU was configured

with Linux 5.15 and had 16 Intel 17-12700K CPU cores and 16GB of memory.

Our analysis focuses on evaluating the overhead introduced when system operations
in the compartment are replaced by our monitor APIs. The results in Table 6.1 were mea-
sured by implementing a custom system call (shown in Listing 7) in the Linux kernel. We
then measured the system execution time required for the original operations, as well as the
execution time after instrumenting the system with our monitor APIs. The custom system
call used for evaluation includes 224 lines of code and assumes that all instructions ac-
cessing shared data are fully instrumented, meaning that it does not cover scenarios where

only partial instrumentation is applied.

The execution time for each API in Listing 7 represents the total time taken from
when the process enters the system call to when it exits. Therefore, the measured time
can be expressed as: ”Time before the process enters the demo_syscall function” +

44 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

”Time spent on the monitor API / original operation” + ”Time after the process exits
the demo_syscall function.” To isolate the time spent on the ”monitor API / original
operation”, we executed the APIs in our system call 10° to 107 times. This large number
of executions allows us to minimize the influence of unrelated overhead and focus on the

performance impact of the APIs themselves.

By analyzing the data in Table 6.1, we can draw the following conclusions:

1. Getter/setter APIs and kmalloc/kfree APIs: These APIs introduce significant
overhead, ranging from 100x to 700x, after replacing them with our monitor APIL.
The substantial increase is primarily due to hypercall overhead, the cost of saving the
state of the data, additional checks and updates to the monitor state, and the need
to acquire mutex locks within the monitor. These factors contribute to a marked

increase in execution time.

2. Mutex API overhead: The overhead for the mutex APIs is relatively lower because
our monitor already uses an internal mutex to prevent multiple processes from ac-
cessing the monitor simultaneously. This means that when the kernel’ s original
mutex APIs are replaced with our monitor’ s mutex APIs, only one additional lock

needs to be acquired, which limits the performance impact.

3. Spinlock API overhead: Similar to the mutex API, we do not directly hold the
spinlock within the monitor. Instead, we label the data node to indicate that the
lock is held by another process. By avoiding the busy waiting typical of spinlocks,
our monitor API reduces the performance overhead, resulting in better performance

than the original spinlock implementation.

Additionally, we tested the correctness of our design by executing a null pointer def-

45 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

erence bug system call within the compartment, which triggered an exception in the ker-
nel. In this scenario, the process was successfully recovered to its state before entering
the compartment and returned to user space without any kernel errors. Furthermore, the
kernel continued operating without showing any errors, confirming the effectiveness of

the recovery mechanism.

In summary, while the overhead introduced by the monitor APIs is significant for
some operations (especially getter/setter and memory allocation APIs), the performance
remains acceptable for operations like mutex and spinlock handling. These results high-
light the trade-off between increased security (through memory isolation and data state

recovery) and performance.

6.2 Security Analysis

Our protection mechanism involves saving copies of memory and register states in an
isolated memory address space that is secure from compromise. This allows us to recover
these states in the event of errors that trigger exceptions and cause the CPU to enter an

exception handler.

Since 2014, there have been 1,658 vulnerabilities identified within the Linux kernel,
with 1,345 of these classified as memory corruption vulnerabilities, constituting 85% of
the total. In many cases, memory corruption is caused by unchecked code, leading to
errors that trigger exceptions. To evaluate the effectiveness of our design in recovering
from such errors, we analyze several CVEs as examples, demonstrating how our protection

mechanism can mitigate these specific vulnerabilities.

CVE-2024-26598 is a vulnerability in the Linux Kernel Virtual Machine (KVM)

46 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

on the ARM64 architecture, specifically related to the Virtual Generic Interrupt Con-
troller (VGIC) Interrupt Translation Service (ITS) subsystem. The issue is a potential
use-after-free (UAF) scenario in the Local Peripheral Interrupt (LPI) translation cache.
The vulnerability occurs when there is a race condition between an LPI translation cache
hit and an operation that invalidates the cache. The core problem is that the function
vgic_its_check_cache () fails to properly elevate the reference count (refcount) on the
vgic_irq structure before releasing a lock that serializes changes to the refcount. This
could lead to the vgic_irq structure being freed while it is still in use, causing a use-after-
free condition. Our design protects against this type of vulnerability by saving a copy of
the data state before it is freed. Specifically, when a process or thread accesses shared data
that could be involved in race conditions, such as the codevgic irq structure, our mech-
anism records the state in an isolated memory address space. In the event of an error,
such as a use-after-free condition, the system can recover the data state from the isolated
memory address space, preventing the exploitation of the freed memory. This approach
helps to maintain the integrity and availability of the kernel, even in the presence of such

vulnerabilities.

CVE-2019-6974 is another vulnerability in the Linux Kernel Virtual Machine (KVM)
subsystem, specifically related to the kvm_ioctl create_device function in virt/
kvm/kvm _main.c. The issue is a use-after-free (UAF) vulnerability as well caused by
mishandling reference counting due to a race condition. The vulnerability arises during
the process of creating a virtual device in KVM. The kvm_ioctl create_device func-

tion performs several steps:

1. Device Creation: It creates a device that holds a reference to the VM (Virtual Ma-

chine) object, but this reference is a ”"borrowed” one, meaning that the VM'’s refer-

47 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

ence count has not been increased yet.

2. Device Initialization: The device is initialized.

3. Ownership Transfer: The reference to the device is transferred to the caller’s file

descriptor table.

4. Reference Count Update: The function then calls kvm_get_kvm() to convert the

borrowed reference into a real reference by increasing the VM'’s reference count.

This sequence allows for a race condition that leads to a use-after-free scenario, potentially
causing undefined behavior, such as kernel crashes or memory corruption. Our design
addresses this by saving copies of critical memory and register states in an isolated memory
address space that cannot be compromised. Even if an error that trigger exceptions occurs,
our system can restore the previous valid states from the isolated memory, maintaining
kernel integrity and preventing exploitation or crashes due to such memory corruption

vulnerabilities.

CVE-2017-15274 is a null pointer dereference vulnerability in the Linux kernel’s
key management subsystem (security/keys/keyctl.c). This vulnerability is triggered
when the sys_add_key () function or the KEYCTL_UPDATE operation of the sys_keyct1()
function is called with a null payload pointer and a nonzero length value. Several key types
in the kernel do not handle this situation correctly, leading to a null pointer dereference
and a resulting kernel panic (OOPS). Our design ensures that if such an error occurs, the
system can restore the memory and register states before the add_key or keyctl system
calls from the isolated memory address space. This capability prevents the system from

crashing and maintains kernel availability.

48 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

In summary, these examples demonstrate that our monitor design, through the instru-
mentation of code and the use of isolated memory for state saving, can effectively recover
from memory corruption vulnerabilities like those described in the selected CVEs, thereby

preventing kernel crashes and maintaining system stability.

49 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

50

doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Chapter 7 Related Work and Future

7.1 Related Work

Work

In this section, we review and compare notable works with similarities and differ-

ences to our design, focusing on key dimensions such as the target of protection, the gran-

ularity of the recovery mechanism, and the overall approach to crash recovery.

Works Protect Target Error recovery machnism

Our Design | kernel data accessed in the system | recover to the state before entering
call control path the compartment

Ksplit driver no

Driverlets driver/device interactions replay interactions

HAKC kernel compartment no

ACES compartment on bare-metal system | no

QEMU virtual machine checkpoint and replay the entire

VM state
CRAK user process process migration focus
Kckpt user process user-space recovery

Table 7.1: Comparison Between Related Works

51

doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

7.1.1 [Isolation Techniques

The following works serve as prominent examples of isolation techniques designed

to prevent faults in specific components of the Linux kernel.

KSplit [6] is designed to isolate device drivers from the rest of the Linux kernel.
It works by separating the shared memory space between the device driver and the ker-
nel, thereby preventing faulty drivers from corrupting critical kernel data. KSplit isolates
driver-related faults through instrumentation and synchronization of shared data but does
not provide a checkpointing or recovery mechanism. It prevents errors from propagating
within the kernel but lacks the ability to revert to a prior system state after a failure. In
contrast, our work not only isolates faults at the system call level but also provides a re-
covery mechanism, checkpointing and restoring the system call states to maintain kernel

availability.

Driverlets [4], introduced in the paper Minimum Viable Device Drivers for ARM
TrustZone, takes a fine-grained approach by isolating specific IO operations in device
drivers. These 10 operations typically involve sensitive device communication (such as
sending and receiving data from hardware peripherals) and are critical to ensuring the
correctness of driver behavior. Driverlets use a replay-based mechanism to ensure 10
correctness, and they run within the ARM TrustZone OP-TEE environment to securely
handle interactions between untrusted operating systems and trusted devices. This de-
sign isolates sensitive operations, ensuring that even if the OS is compromised, the 10
operations remain secure. However, Driverlets are limited to IO interactions and do not
extend to broader kernel operations or offer recovery from system call errors. Our work,

on the other hand, focuses on system calls across the entire kernel and provides a recovery

52 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

mechanism for restoring the kernel to a stable state after memory corruption issues.

HAKC (Hardware-assisted Kernel Checker) [13] focuses on detecting and pre-
venting control-flow violations at runtime using hardware features to enforce control-flow
integrity (CFI). HAKC helps in detecting potential vulnerabilities like return-oriented pro-
gramming (ROP) attacks by monitoring kernel code execution. However, it is primarily
focused on detection and prevention of control flow errors rather than recovery from ker-
nel memory corruption errors. Unlike our system, HAKC does not address null pointer
dereference or use-after-free errors, nor does it offer a recovery mechanism to restore sys-
tem stability after such failures. Our work takes a broader approach by targeting memory
corruption recovery and addressing system calls specifically within the kernel, ensuring

availability even after errors occur.

ACES (Asymmetric Cores for Error-tolerant Systems) [2] leverages asymmetric
core architectures to isolate and tolerate errors in system execution. ACES is focused
on bare-metal embedded systems where advanced hardware isolation mechanisms like
Memory Management Units (MMUSs) are often unavailable. It aims to isolate components
(e.g., code, data, peripherals) from one another in a very fine-grained manner, preventing
faults or vulnerabilities in one compartment from compromising the entire system. Our
design includes active recovery mechanisms, recovering memory and register states in
response to errors (such as null pointer dereference or use-after-free). ACES, in contrast,
is more about fault isolation rather than recovery. ACES is tailored for embedded systems
without advanced hardware, while our design focuses on general-purpose kernels (e.g.,

Linux) with SeKVM, applying more specifically to system calls.

REWIND [17] is a platform designed to secure serverless function execution by pro-

53 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

viding isolation between consecutive requests. REWIND is on the serverless computing
environment, operates at the container level, restoring the memory, file system, and pro-
cesses after each serverless function request. It focuses on ensuring that each function exe-
cution starts in a clean state, preventing the leakage of data between different invocations.
It’s recovery mechanism will resets the entire container state, providing a coarse-grained
recovery mechanism for the entire container. On the other hand, our design’s recovery
mechanism restores individual memory and register states within the kernel when a sys-

tem call encounters errors.

In contrast to these isolation techniques, our design not only isolates faults at the
system call level but also offers a recovery mechanism that checkpointed system calls and
restored them after a failure. This ability to both contain and recover from faults is what

distinguishes our approach from isolation-centric techniques.

7.1.2 Crash Recovery Mechanisms

Several checkpointing mechanisms such as QEMU’ s record/replay, CRAK, and

Kckpt provide system recovery at varying levels of granularity.

QEMU?’s record/replay [14-16] mechanism captures the entire state of a virtual
machine (VM) at specific intervals, allowing deterministic replay in the event of a failure.
This approach focuses on VM-level recovery, which is coarse-grained since it records
the entire VM state, including memory, CPU registers, and device states. When an error
occurs, the system rolls back the entire VM to a previous state. While effective for full-
system recovery, this method incurs significant overhead due to the need to revert the entire

system. In contrast, our design is more fine-grained, targeting kernel-level recovery by

54 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

recording individual memory and register operations for system calls. This enables faster

and more targeted recovery without the need to revert the entire system state.

CRAK (Checkpoint/Restart as a Kernel Module) [22] offers transparent check-
pointing and restart capabilities for Linux networked applications, preserving user-space
data such as memory, registers, file descriptors, and IPC structures. It is particularly useful
for process migration and parallel application scenarios, but it does not target kernel-level
crash recovery. CRAK’ s focus is on process migration, enabling processes to be moved
between systems while retaining their state. Our design differs in that it aims to maintain
kernel availability by providing recovery for system calls in case of memory corruption or
system crashes. Instead of focusing on user-space processes, we ensure that kernel-level

operations can recover from errors without causing the kernel to crash.

Kckpt [5], another checkpointing mechanism for UnixWare, captures process state
for user-space processes, offering both user-directed and automatic checkpoints. Similar
to CRAK, Kckpt focuses on user-space data, such as open files and system calls that affect
user processes. While Kckpt effectively restores user-space processes after a crash, it
does not address kernel-level recovery. In contrast, our work is focused on kernel-space
recovery, specifically targeting memory corruption errors related to system calls. While
Kckpt restores processes, our system restores kernel memory and register states accessed

by those processes.

7.1.3 Combining Isolation and Recovery

Our work is unique in that it combines isolation and recovery mechanisms at the

kernel level, offering both fault containment and the ability to restore system call states in

55 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

case of failure.

* Isolation: Similar to KSplit, Driverlets, HAKC, ACES, REWIND, our design iso-
lates faults in critical parts of the kernel (system calls) to prevent fault propagation.
However, unlike these systems, which focus on fault isolation for device drivers
or 10 operations, our work isolates errors within system calls, affecting the entire

kernel.

* Recovery: Like QEMU, CRAK, and Kckpt, we provide checkpointing mechanisms
for system recovery. However, our approach is more fine-grained, targeting system
calls rather than user-space processes or entire VMs. This enables efficient recovery

without the overhead of rolling back the entire system.

» Strength of Our Work: By combining both isolation and recovery, we offer an
efficient, low-overhead solution for handling common kernel memory corruption
errors, such as null pointer dereference and use-after-free vulnerabilities. Our time-
interval-based monitoring system precisely captures and restores kernel states at the
system call level, ensuring that the system remains available and stable even after

€1rors occur.

In conclusion, as shown in Table 7.1, while KSplit, Driverlets, HAKC, and ACES
provide isolation, and tools like QEMU, CRAK, and Kckpt offer broader checkpointing
solutions, our design fills a gap by offering a fine-grained, kernel-level recovery mecha-
nism. Our work focuses on recovering from memory corruption errors specifically within
system calls, ensuring that the kernel remains stable and operational without the need for
full system rollbacks. This combined approach of isolation and recovery provides a robust
solution for kernel error handling.

56 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

7.2 Future Work

struct demo_entry {
struct list_head list;
int val;

+;

LIST_HEAD(demo_list);

void list_val_init(void)

{
struct demo_entry *entry;
entry = kmalloc(sizeof (*entry), GFP_KERNEL);
if (lentry)
return -ENOMEM;
entry->val = O;
list_add(&entry->list, &demo_list);
return O;
}

Listing 8: Data That Might not Need to Recover

The recovery mechanism is protected because each system call control path must
first invoke the enter_compartment API. This API registers the process ID in an iso-
lated memory address space, marking the process as operating within the compartment. If
an attacker attempts to invoke the record/recovery API without properly entering the com-
partment (i.e., without calling enter compartment), the process will not be recognized
by the API. As a result, the attacker will be unable to alter the compartment’ s data state.
This ensures that only legitimate processes within the compartment can trigger recovery

actions, safeguarding the integrity of the monitor.

However, if an attacker employs a Return-Oriented Programming (ROP) or a Jump-
Oriented Programming (JOP) attack to invoke enter_compartment, the system will mis-
takenly treat the process as safely entering the system call. This could allow the attacker to
make unauthorized calls to the monitor. To prevent this type of attack, in our future work, it

is necessary to enforce ARM Pointer Authentication Code (PAC) and Branch Target Iden-

57 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

tification (BTI) techniques. These hardware-level protections ensure that indirect calls,
such as those made through ROP or JOP, are validated, providing an additional layer of
security against such exploits. Similarily, ARM’ s Memory Tagging Extension (MTE)
and Kernel Address Sanitizer (KASAN) can label memory regions within the Linux ker-
nel, triggering exceptions if an attacker attempts to access invalid or misused memory
addresses. This mechanism would prevent attackers from leveraging compartments to

corrupt memory outside of the compartment.

This approach hardens the fault recovery mechanism and protects the system from

ROP or JOP attacks that could manipulate the system call flow.

In our current design for managing heap data (as mentioned in subsection 5.2.3), we
rely on the kernel’ s memory allocation API (kmalloc) for allocating memory. This means
the kernel memory allocator must be trusted and free from compromise. To further reduce
our Trusted Computing Base (TCB), we propose developing an isolated memory allocator
within the isolated memory address space, which would handle memory allocations with-
out needing to rely on the kernel’ s allocation APIs. Combining this with PAC and BTI
techniques, the kernel address space can be excluded from our TCB, ensuring that even if
an attacker compromises the kernel’ s control flow through function pointer manipulation
or code-reuse attacks (e.g., ROP or JOP), the isolated memory and compartment remain

securc.

Regarding the dependency issues mentioned in subsection 5.2.1, we assume that if
shared data are not ”fully instrumented”—meaning not all instructions referencing the
shared data are instrumented—kernel recovery cannot be guaranteed after an error occurs.

This is because if we cannot fully record the data state in the isolated memory address

58 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

space, it becomes impossible to identify dependent processes and recover them when
one process crashes. In future work, we plan to analyze which types of shared data, if
not recovered, will not compromise kernel stability or lead to crashes. For instance, in
Listing 8, if a demo_entry node is added to the linked list demo_list in the function
list _val init—with demo_list being a shared data structure—then all instructions
referencing the linked list must be instrumented with our monitor API to enable recovery.
If a process that accesses this linked list crashes and the shared data demo_list is not
recovered, it may lead to a memory leak. However, if the data is initialized correctly, the

kernel may not crash despite the memory leak.

A promising approach to addressing this issue is through semantic analysis of shared
data, allowing us to determine which shared data may not critically impact the kernel if not
recovered. By doing so, we can reduce dependency issues and avoid the need to recover

all data.

59 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

60

doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Chapter 8 Conclusions

This thesis introduces a software-based solution to address critical kernel vulnerabili-
ties, particularly those caused by memory corruption, such as errors that trigger exceptions
and cause the CPU to enter an exception handler. We developed a time-interval-based
monitor that operates at the kernel level, which saves copies of memory and register states
in an isolated memory address space. This mechanism enables efficient recovery in the
event of kernel errors, ensuring system availability without the need for hardware-specific
features. The proposed solution offers flexibility in deployment across different environ-

ments by focusing on kernel-level recovery.

Our evaluation demonstrated the system’ s effectiveness in mitigating real-world vul-
nerabilities, all while maintaining minimal performance overhead. This approach ensures
system resilience and preserves kernel integrity in the presence of memory corruption
errors. In conclusion, our work contributes a flexible, software-based recovery solution
that enhances kernel availability and addresses critical vulnerabilities in modern operating

systems.

61 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

62

doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

References

[1] H.-S. Chen. Toward record replay of virtual machines on linux kvm for arm. In

Proceedings of the 1st Workshop on Architectural and System Support for Improving

Software Dependability, 2024.

[2] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer. Aces: automatic com-

partments for embedded systems. In Proceedings of the 27th USENIX Conference

on Security Symposium, SEC’18, page 65-82, USA, 2018. USENIX Association.

[3] D. A. S. de Oliveira, J. R. Crandall, G. Wassermann, S. F. Wu, Z. Su, and F. T.
Chong. Execrecorder: Vm-based full-system replay for attack analysis and system

recovery. In Proceedings of the 1st Workshop on Architectural and System Support

for Improving Software Dependability, ASID ’06, page 66-71, New York, NY, USA,

2006. Association for Computing Machinery.

[4] L. Guo and F. X. Lin. Minimum viable device drivers for arm trustzone. In

Proceedings of the Seventeenth European Conference on Computer Systems, Eu-

roSys ’22, page 300-316, New York, NY, USA, 2022. Association for Computing

Machinery.

[5] G. Hong, S. J. Ahn, S. C. Han, T. Park, H. Yeom, and Y. Cho. Kckpt: checkpoint

63 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

and recovery facility on unixware kernel. In Proceedings of the 15th International

Conference on Computers and Their Applications (ISCA). Citeseer, 2000.

[6] Y. Huang, V. Narayanan, D. Detweiler, K. Huang, G. Tan, T. Jaeger, and A. Burtsev.

{KSplit}: Automating device driver isolation. In 16th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 22), pages 613-631, 2022.

[7] kernel contributors. Memory Management APIs —The Linux Kernel documenta-

tion.

[8] S.-W. Li, J. S. Koh, and J. Nieh. Protecting cloud virtual machines from hypervisor

and host operating system exploits. In 28th USENIX Security Symposium (USENIX

Security 19), pages 1357-1374, 2019.

[9] S.-W. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui. Formally verified memory protection

for a commodity multiprocessor hypervisor. In 30th USENIX Security Symposium

(USENIX Security 21), pages 3953—-3970, 2021.

[10] Lilihsu. GitHub - lilihsu/llvm-project: The LLVM Project is a collection of modular

and reusable compiler and toolchain technologies.

[11] D. Lometand G. Weikum. Efficient transparent application recovery in client-server

information systems. In Proceedings of the 1998 ACM SIGMOD International

Conference on Management of Data, SIGMOD °98, page 460-471, New York, NY,

USA, 1998. Association for Computing Machinery.

[12] A.J.Mashtizadeh, T. Garfinkel, D. Terei, D. Mazieres, and M. Rosenblum. Towards

practical default-on multi-core record/replay. ACM SIGPLAN Notices, 52(4):693—

708, 2017.

64 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

[13] D. P. McKee, Y. Giannaris, C. Ortega, H. E. Shrobe, M. Payer, H. Okhravi, and

N. Burow. Preventing kernel hacks with hakcs. In NDSS, pages 1-17, 2022.

[14] gemu contributors. CheckPoint and Restart (CPR) —QEMU documentation.

[15] gemu contributors. Documentation/CreateSnapshot - QEMU.

[16] gemu contributors. Record/replay —QEMU documentation.

[17] J. Song, B. Kim, M. Kwak, B. Lee, E. Seo, and J. Jeong. A secure, fast,
and {Resource-Efficient} serverless platform with function {REWIND}. In 2024

USENIX Annual Technical Conference (USENIX ATC 24), pages 597-613, 2024.

[18] J. P. Walters and V. Chaudhary. Application-level checkpointing techniques for par-

allel programs. In University at Buffalo, The State University of New York, pages

222-233, 2006.

[19] S. Wan, M. Sun, K. Sun, N. Zhang, and X. He. Rustee: Developing memory-safe

arm trustzone applications. In Proceedings of the 36th Annual Computer Security

Applications Conference, ACSAC ’20, page 442-453, New York, NY, USA, 2020.

Association for Computing Machinery.

[20] J. Wang, A. Li, H. Li, C. Lu, and N. Zhang. Rt-tee: Real-time system availability for

cyber-physical systems using arm trustzone. In 2022 IEEE Symposium on Security

and Privacy (SP), pages 352-369. IEEE, 2022.

[21] Z. Yedidia. Lightweight fault isolation: Practical, efficient, and secure soft-

ware sandboxing. In Proceedings of the 29th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems, Volume

2, pages 649—-665, 2024.

65 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

[22] H. Zhong and J. Nieh. Crak: Linux checkpoint/restart as a kernel module. Technical

report, Citeseer, 2001.

66 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

Appendix A — Introduction

A.1 Data Structures in the Monitor

1 struct comp_mem_record_node{

2 int pid[COMPARTMENT_MAX_PROCESS];
3 int pid_num;

4 enum comp_mem_node_type type;

5 u64 addr;

6 u64 value;

7 u64 original_value;

8 bool is_freed_inside;

9 bool is_alloc_inside;

10 u64 base_addr;

1 int lock_hold_by;

12 struct hlist_node node;
13 }

Listing 9: Record Node

* pid: which pids have accessed to this record node.

* type: type of the data node, including {global, field, spin_lock, mutex}

* addr: addr of the global shared memory

* value: value we record in the compartment

« original value: data value in kernel address space before getting into system call

* is_freed inside: check if the memory address is free inside the compartment

67 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

+ is_alloc_inside: check if the memory address is allocted inside the compartment
* base addr: only used for field node, the parent structure base address.

* lock hold by: only used by lock type node, track the pid who holds the lock

We use an array to record pids that have used this memory address. So if there are
over 1 process have accessed to this node, this node will be a shared variable according to

our definition.

1 struct comp_mem_pid_list {
2 u64 pid;

int finished;

int recovered;

v oA W

};

Listing 10: Pid List

* pid: The structure belongs to which pid. Each pid tracked in the monitor will have

one.
+ finished: The process for this pid has finished the compartment successfully or not.

 recovered: The process has recovered all of it’s record node or not.

Forpid_list, when each process first enters the compartment, it will create its pid_list space

by monitor, which will record its current process status.

68 doi:10.6342/NTU202404466

http://dx.doi.org/10.6342/NTU202404466

	Verification Letter from the Oral Examination Committee
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Overview of the ARM Architecture
	Exception Level
	Key Registers
	ARM TrustZone

	SeKVM
	LLVM Intermediate Representation (LLVM IR)
	Instrumentation Granularity for Monitor API
	Function Level Granularity
	Assembly Level Granularity
	LLVM IR Level Granularity

	Control Flow Path

	Overview
	Threat Model
	Design
	Motivation - Error Path Analyzing
	Time Interval-based Monitor
	Shared Data
	Synchronization Primitives
	Heap Data
	Shared Field
	Registers
	Monitor State

	Isolated Memory Address Space

	Evaluation
	Performance
	Security Analysis

	Related Work and Future Work
	Related Work
	Isolation Techniques
	Crash Recovery Mechanisms
	Combining Isolation and Recovery

	Future Work

	Conclusions
	References
	Appendix A — Introduction
	Data Structures in the Monitor

