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中文摘要  

 

 本研究主要是提出一種高精確度的行人辨識模型。在自駕車所必須的道路物

件辨識功能中，以辨識行人最為重要。因為與行人的碰撞事故一定傷亡最為嚴重，

所以行人是車輛在道路上最不該與其發生碰撞的物件。本文預期後續能應用在自

駕車的車內系統中，發揮即時偵測行人效果。因為於這幾年 Transformer架構的模

型在自然語言處理上的巨大成功，許多研究便將 Transformer架構的模型試著應用

在電腦視覺相關的任務上面。在其中的 Vision Transformer中雖獲得了可以與 CNN

並駕齊驅的結果，但在訓練過程中其所需高額的運算量與龐大的模型參數量，對於

要應用在終端的設備中，這是非常需要克服的難點。 

    2021 年微軟所提出的 Swin Transformer，其強大的性能、相比於 Vision 

Transformer 之下更為精簡的模型架構以及可在各種下游任務中廣泛且自由的應用，

非常適合拿來當作一個物件偵測模型的特徵抽取器。本研究便利用其的強大功能

來捕捉圖像中的多尺度特徵和空間關係，使其非常適合處理行人檢測這一具有挑

戰性的任務。再搭配基於 Faster R-CNN架構的兩階段的檢測器，結合階層式的 RPN

與 ROI Head，並且在訓練 RPN的過程中使用所有 Anchors與 Focal Loss。本研究

在 Euro City Persons和 CityPersons數據集上的實驗展示了令人鼓舞的結果。特別

是在檢測高度遮擋的行人方面，本研究的模型表現出色，展示了它應對傳統方法可

能難以應對的挑戰性場景的能力。 

 

關鍵字：深度學習、電腦視覺、物件偵測、Transformer 
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ABSTRACT 

 

    This study primarily proposes a high-precision pedestrian recognition model. In the 

context of road object recognition, which is crucial for autonomous vehicles, pedestrian 

recognition holds paramount importance. Pedestrian collisions result in the most severe 

casualties, making pedestrians the objects that vehicles should avoid colliding with on the 

road. This paper is expected to be used in self-driving in-car systems to achieve real-time 

detection of pedestrians. Given the significant success of Transformer architecture models 

in natural language processing in recent years, researchers have explored the application 

of Transformer-based models in computer vision-related tasks. While the Vision 

Transformer (ViT) have shown promise in achieving results on par with Convolutional 

Neural Networks (CNNs), overcoming the high computational requirements and 

extensive model parameters during training poses a significant challenge, especially when 

targeting deployment on edge devices. 

    In 2021, Microsoft introduced the Swin Transformer, known for its powerful 

performance, more streamlined model architecture compared to the Vision Transformers, 

and its versatility in various downstream tasks. Swin Transformer is particularly suitable 

as a feature extractor for object detection models. This research harnesses its robust 

capabilities to capture multi-scale features and spatial relationships in images, making it 

well-suited for the challenging task of pedestrian detection. Combined with a two-stage 

detector based on the Faster R-CNN framework, which includes a cascade Region 

Proposal Network (RPN) and Region of Interest (ROI) Head, and the use of all anchors 

and Focal Loss during RPN training, this study showcases promising results in 

experiments conducted on the Euro City Persons and CityPersons datasets. Particularly, 
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the model in this study demonstrates outstanding performance in detecting heavily 

occluded pedestrians, highlighting its ability to handle challenging scenarios that 

traditional methods may struggle with. 

 

Keywords: Computer vision, Deep learning, Object detection, Transformer  
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Chapter 1 Introduction 

1.1 Research Background 

In recent years, with rapid technological advancements, autonomous driving 

technology has become a prominent field in the automotive industry. The realization of 

autonomous driving holds significant importance in improving traffic safety, reducing 

accidents, and providing convenient means of transportation. However, in the process of 

achieving vehicle autonomy, road object recognition plays a crucial role. Among them, 

pedestrian recognition stands out as a key component since pedestrians are one of the 

most critical objects to avoid collisions with on the road. Therefore, the development of 

accurate and efficient pedestrian recognition algorithms is essential for realizing safe and 

reliable autonomous driving systems. 

1.2 Research Objectives 

The main objective of this study is to explore the application of pedestrian recognition 

techniques in vehicle autonomous driving systems. By analyzing existing methods, 

technologies, and algorithms for pedestrian recognition, this research aims to develop a 

precise and efficient pedestrian recognition system to enhance the safety and reliability 

of autonomous vehicles. Additionally, this study will investigate future trends in 

pedestrian recognition technology and propose corresponding improvements and 

optimizations. 

1.3 Research Methodology 

This study will employ a combination of experimental and analytical approaches. 

Firstly, a large dataset of pedestrian images and related data will be collected to establish 

a pedestrian database. Then, existing pedestrian recognition algorithms will be evaluated 
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and compared to determine their strengths and limitations. Based on these analyses, novel 

pedestrian recognition algorithms will be developed, followed by detailed experiments, 

and testing to validate their performance and effectiveness. Finally, system optimizations 

and improvements will be conducted based on the experimental results, and relevant 

recommendations and conclusions will be presented. 

1.4 Research Organization 

 This paper will consist of five main sections. The first section is the introduction, 

providing an overview of the research background, research objectives, research 

methodology, and the structure of the paper. The second section will review relevant n 

studies on pedestrian recognition, focusing on deep learning approaches. The third section 

will introduce the dataset and experimental design employed in this research. The fourth 

section will present the experimental results and discussions, analyzing the performance 

and effectiveness of the pedestrian recognition algorithms. Lastly, the fifth section will 

conclude and provide future perspectives, summarizing the research findings and 

proposing directions for future improvements and research. 

 

In conclusion, this chapter has introduced the research background, research objectives, 

research methodology, and the structure of the paper. Pedestrian recognition is a crucial 

component in vehicle autonomous driving systems, significantly contributing to road 

safety. This study aims to develop an accurate and efficient pedestrian recognition system 

and explore the future trends in pedestrian recognition technology. The paper will validate 

the performance and effectiveness of pedestrian recognition algorithms through 

experiments and analysis, along with proposing relevant improvement methods. 
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Chapter 2 Related Work 

  In the field of computer vision, object detection methods can now be classified into 

one-stage detectors and two-stage detectors. The main difference lies in whether pre-

defined candidate boxes are used. Two-stage detectors typically include a region proposal 

network, which generates rough candidate boxes from the extracted feature map of an 

image. These candidate boxes are then fed into subsequent networks for object 

classification and more precise localization. On the other hand, one-stage detectors do not 

have this intermediate step and can directly perform object recognition tasks on the 

feature map. For example, in December 2015, Google introduced the Single Shot 

Detector (SSD) method, where the abstract of their paper begins with "We present a 

method for detecting objects in images using a single deep neural network."[1] 

  Two-stage detectors currently have a slight advantage over one-stage detectors in terms 

of object recognition accuracy, due to the presence of the region proposal network. 

However, because of the region proposal network, if multiple candidate boxes are selected, 

each of these selected boxes needs to be further processed by the subsequent neural 

network for classification and localization. As a result, two-stage detectors require more 

computational time and hardware resources compared to one-stage detectors. In the 

application of autonomous driving systems, the misidentification of pedestrians in 

pedestrian detection tasks can lead to severe consequences. Therefore, to achieve higher 

accuracy, this paper focuses on the methods of two-stage detectors. 
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Fig 2.1 Architecture of Faster r-cnn [2] 

  Currently, the most well-known architecture among two-stage detectors is Faster R-

CNN, which is based on the R-CNN framework[2]. The Faster R-CNN network 

architecture can be divided into three parts which as shown at Fig 1. The first part is the 

feature extractor, also known as the backbone, which extracts feature maps from the input 

image. The feature maps are then passed to the subsequent Region Proposal Network 

(RPN) network through Feature Pyramid Networks (FPN), which is referred to as the 

network's neck[3]. The second part is the Region Proposal Network (RPN). The goal of 

the RPN is to extract candidate boxes. The essence of object detection is to generate 

candidate boxes through regression. However, the network cannot generate candidate 

boxes of arbitrary sizes. Therefore, the RPN utilizes many anchors. These anchors, based 

on the feature map, divide the original image into many differently sized and aspect ratio 

rectangular boxes. The RPN performs rough classification and regression on these boxes, 
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selecting a set of positive class boxes containing foreground objects and negative class 

boxes containing background regions after applying fine-tuning adjustments. These 

selected boxes are then fed into the subsequent network for training. The third part of 

Faster R-CNN is the ROI (Region of Interest) head. In the original Faster R-CNN, ROI 

pooling was used in this part, but it has been improved to ROI align in subsequent 

versions[4]. The ROI head takes the region proposals generated by the RPN and extracts 

fixed-sized feature maps for each region of interest. These feature maps are then fed into 

a fully connected network for object classification and bounding box regression. The ROI 

head is responsible for refining the localization and predicting the class labels of the 

proposed regions, ultimately producing the final detection results. 

2.1 Faster RCNN Architecture 

2.1.1 Feature Extractor 

  CNN Base. In the original Faster R-CNN paper, the backbone used is VGG16[5]. The 

VGG16 architecture is a deep convolutional neural network that consists of 16 layers, 

including convolutional layers, pooling layers, and fully connected layers. It is 

responsible for extracting high-level visual features from the input image, which are then 

used for region proposal and subsequent object classification and localization. However, 

recently VGG16 has been gradually replaced by ResNet in many applications. ResNet, 

short for Residual Network, is a deep convolutional neural network architecture that 

introduced the concept of residual connections[6]. These connections allow the network 

to learn residual mappings, making it easier to train very deep networks. Compared to 

VGG16, ResNet has shown better performance in terms of accuracy and gradient flow, 

especially in deeper network architectures. The popularity of ResNet in object detection 

tasks has grown due to its ability to effectively capture complex visual patterns and handle 
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the challenges posed by deep networks. It has become a common choice as the backbone 

network in modern two-stage detectors, including Faster R-CNN variants. The integration 

of ResNet as the backbone has significantly improved the detection performance and 

contributed to the advancement of object detection research. In the field of pedestrian 

recognition, HRNet (High-Resolution Network) is a specialized type of convolutional 

neural network that has gained popularity due to its unique architecture and superior 

performance[7]. HRNet is specifically designed to handle the challenges posed by 

pedestrian images, such as variations in scale and the need to capture fine-grained details. 

Unlike traditional convolutional neural networks that downsample the input image, 

HRNet maintains high-resolution representations throughout its architecture. It achieves 

this by incorporating parallel branches that operate at different resolutions. This allows 

HRNet to simultaneously capture both high-level semantic information and fine-grained 

details, resulting in more accurate pedestrian recognition. HRNet adopts an information 

flow strategy that exchanges information across different resolution levels, enabling the 

network to effectively integrate multi-scale features. By preserving high-resolution 

representations, HRNet excels at capturing small-scale details that are crucial for accurate 

pedestrian recognition, such as facial features and clothing patterns. The architecture of 

HRNet consists of multiple stages, with each stage containing parallel sub-networks 

operating at different resolutions. The outputs from these sub-networks are fused together 

to form a comprehensive feature representation. This fusion of multi-scale features 

enables HRNet to capture both global context and local details, leading to improved 

accuracy in pedestrian recognition tasks. HRNet has achieved better performance on 

various pedestrian recognition benchmarks and competitions, surpassing previous 

approaches. Its ability to capture fine-grained details while maintaining a high level of 

semantic information makes it a valuable tool in the field. HRNet has found applications 
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in real-world scenarios such as surveillance systems, autonomous vehicles, and human-

computer interaction. 

Transformer Base. Due to the outstanding achievements of the Transformers in the 

field of natural language processing, there has been an expectation that the Transformers 

could also be applied to image processing tasks. Several well-known Transformer models, 

such as Vision Transformer (ViT)[8] for image classification and Detection with 

Transformer (DETR)[9] for object detection, have shown promising results. However, 

they have not yet surpassed the dominance of convolutional neural networks (CNNs) in 

image processing. Since the introduction of the Swin Transformer[10] in 2021, it has 

disrupted the previous belief that Transformers cannot outperform CNNs in the field of 

computer vision. The Swin Transformer has emerged as a potential perfect alternative to 

CNNs. The lack of significant breakthroughs when applying Transformers to image 

processing tasks, as opposed to their success in natural language processing (NLP), can 

be attributed to two main reasons. Firstly, NLP and image processing involve different 

scales. NLP operates on fixed and standardized scales, while images exhibit a wide range 

of scale variations. This discrepancy in scale poses a challenge when directly applying 

Transformers to image data. Secondly, image processing tasks require higher resolution 

compared to NLP. Additionally, the computational complexity of Transformers in image 

processing is quadratic with respect to the image size, resulting in significant 

computational demands. 

To address these challenges, Swin Transformer introduces two key improvements 

compared to previous models like Vision Transformer (ViT). Firstly, Swin Transformer 

adopts a hierarchical construction method similar to convolutional neural networks 

(CNNs). For example, it includes feature maps at different levels of down-sampling ratios, 

such as 4x, 8x, and 16x. This hierarchical backbone facilitates tasks like object detection 
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and instance segmentation. In contrast, Vision Transformer directly down-samples by a 

factor of 16 from the beginning and maintains the same down-sampling rate for 

subsequent feature maps. Secondly, Swin Transformer incorporates the concept of 

Windows Multi-Head Self-Attention (W-MSA). For instance, at 4x and 8x down-

sampling, the feature maps are divided into non-overlapping regions called windows, and 

Multi-Head Self-Attention is applied within each window. This approach reduces 

computational complexity, especially for large shallow feature maps, compared to Vision 

Transformer, which applies Multi-Head Self-Attention to the entire global feature map. 

However, this partitioning of feature maps into windows can limit information exchange 

between different windows. To address this issue, the Swin Transformer applied the 

concept of Shifted Windows Multi-Head Self-Attention (SW-MSA), which allows 

information to flow between adjacent windows. By incorporating these improvements, 

the Swin Transformer effectively tackles the challenges of scale variation and 

computational complexity, making it a promising choice for various computer vision 

tasks such as image classification, object detection, and semantic segmentation. 

2.1.2 Feature Pyramid Networks 

  In most traditional object detection algorithms, only the top-level features are used for 

prediction. However, it is known that lower-level features have less semantic information 

but provide accurate object localization, while higher-level features contain richer 

semantic information but have coarser object localization. Although some algorithms 

incorporate multi-scale feature fusion, it is typically done on fused features for prediction. 

The key difference here is that in the concept of the feature pyramid[3], predictions are 

made independently at different feature levels. In other words, the feature pyramid 

addresses the trade-off between semantic information and positional accuracy by 

leveraging features at different scales. It recognizes that lower-level features excel at 
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precise object localization, while higher-level features offer a deeper semantic 

understanding. By using a feature pyramid, the algorithm can make independent 

predictions at different feature levels. This enables capturing both fine details and high-

level semantics simultaneously, resulting in improved object detection performance. The 

feature pyramid fully exploits the strengths of different feature levels, allowing the 

algorithm to better balance the relationship between object position and semantic 

information. 

  Subsequent to the introduction of the feature pyramid, several improvements have been 

proposed, such as PAFPN (Path Aggregation Network)[11], NAS-FPN (Neural 

Architecture Search-based Feature Pyramid Network)[12], and FPG (Feature Pyramid 

Grid)[13]. These methods aim to further enhance the effectiveness and efficiency of the 

feature pyramid for object detection. These advancements in feature pyramid methods 

have contributed to the ongoing progress in object detection, enabling more accurate and 

efficient detection of objects at various scales and aspect ratios. 

2.1.3 Region Proposal Network 

 

Fig 2.2 Architecture of RPN in Faster r-cnn [2] 

  Traditional methods are very time-consuming in generating detection boxes. For 

example, OpenCV adaboost uses sliding windows and image pyramids to generate 

detection boxes[14]. Or use the selective search method to generate detection boxes such 

as RCNN. Faster RCNN abandons the traditional sliding window and selective search 



doi:10.6342/NTU202304551

 10 

methods, and directly uses RPN to generate detection boxes. This is a huge advantage of 

Faster R-CNN, which can greatly improve the generation speed of detection frames. Fig 

2 shows the specific structure of the RPN network. It can be seen that the RPN network 

is actually divided into 2 lines. The upper one obtains positive and negative classifications 

through softmax classification anchors, and the lower one is used to calculate the 

bounding box regression offset for anchors to obtain an accurate proposal. The final 

proposal layer is responsible for synthesizing the positive anchors and the corresponding 

bounding box regression offset to obtain proposals, while eliminating proposals that are 

too small and beyond the boundary. When the entire network reaches the proposal layer, 

the target positioning is completed. Anchors play a fundamental role in RPN. Anchors are 

pre-defined bounding boxes of various sizes and aspect ratios that are overlaid onto an 

image. The purpose of anchors is to serve as reference boxes that anchor or localize 

potential objects in an image. These anchors act as starting points for generating region 

proposals during the object detection process. By covering a range of sizes and aspect 

ratios, anchors can capture objects of different scales and shapes. In the RPN, the anchors 

are generated based on a feature map obtained from the backbone network. The feature 

map is divided into a grid of cells, and each cell corresponds to a set of anchors of different 

sizes and aspect ratios. For each anchor, the RPN predicts the probability of it containing 

an object (foreground) or being background, as well as the adjustments needed to refine 

its position and size. During training, the RPN compares the predicted anchors with 

ground-truth bounding boxes to determine which anchors are positive (matching a 

ground-truth object) or negative (background). The positive anchors are used to compute 

classification and regression losses, which are then used to update the RPN's parameters 

during the training process. By using anchors, the RPN can generate a set of candidate 

region proposals that potentially contain objects of interest in an image. These proposals 
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are subsequently refined and classified by the object detection network. Anchors help to 

localize and classify objects accurately by providing a structured set of bounding box 

priors that guide the object detection process. 

  In the existing RPN framework, there are still some challenges to overcome. For 

instance, to obtain sufficient positive samples, a set of anchors with different scales and 

ratios is required. Setting appropriate scales and aspect ratios is crucial for the 

performance of object detection, and it often requires extensive manual tuning. To address 

this issue, the Cascade RPN paper proposes a two-stage RPN with adaptive convolution 

to automatically adjust and align anchors with the targets[15]. In the Cascade RPN 

approach, the paper systematically tackles the problems of the RPN. Firstly, in the first 

stage, a single anchor is used instead of using multiple scales and aspect ratios. The 

definition of positive sample regions combines both anchor-based and anchor-free 

evaluation criteria to improve detection performance. This approach replaces the use of 

multiple scales and aspect ratios of anchors. Secondly, after each stage, adaptive 

convolution is applied to refine the anchors. This adaptive convolution maintains the 

alignment between anchor boxes and features while gaining refinement benefits from 

multiple stages. It ensures that the refined anchors remain properly aligned with the 

underlying features, leading to improved detection accuracy. By incorporating these 

techniques, the Cascade RPN method effectively addresses the challenges of the RPN. It 

simplifies the anchor design by using a single anchor and improves the detection 

performance by combining anchor-based and anchor-free evaluation criteria. Additionally, 

the adaptive convolution preserves the alignment between anchors and features 

throughout the refinement process, contributing to enhanced object detection accuracy. 

2.1.4 ROI Heads 

Faster R-CNN's ROI (Region of Interest) heads are an important component of the 
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architecture. Once the region proposals are generated by the RPN (Region Proposal 

Network), the ROI heads refine and classify these proposed regions. The ROI heads 

consist of two main parts: the ROI pooling layer and the fully connected layers. The ROI 

pooling layer takes the region proposals and extracts fixed-sized feature maps from the 

corresponding feature map obtained from the backbone network. This allows for 

consistent feature map sizes for subsequent processing. The fixed-sized feature maps 

from the ROI pooling layer are then fed into a series of fully connected layers. These 

layers perform two tasks: classification and regression. In the classification task, the 

network assigns a probability score to each region proposal for different object categories, 

indicating the likelihood of containing a specific object class. The regression task adjusts 

the coordinates of the bounding box for each proposal, refining its position and size to 

better align with the object boundaries. By incorporating the ROI pooling layer and fully 

connected layers, the ROI heads enable accurate object classification and precise 

bounding box regression for each proposed region. This helps improve the overall object 

detection performance of the Faster R-CNN model. However, ROI pooling suffers from 

a limitation where it can only map the ROIs to the grid cells of the feature map at integer 

precision, resulting in information loss and positional misalignment. 

To overcome the limitations of ROI pooling, ROI align was introduced as an 

improvement over ROI pooling[4]. ROI align uses bilinear interpolation within each sub-

region of the ROI, allowing for mapping of the coordinates of the region to floating-point 

coordinates on the feature map, enabling more accurate position alignment and finer 

feature extraction. Specifically, ROI align divides the ROI into smaller sub-regions and 

performs bilinear interpolation within each sub-region to obtain feature values at floating-

point coordinates. The feature values from these sub-regions are then merged to form the 

output feature representation of ROI align. Compared to ROI pooling, ROI align provides 
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more accurate position alignment and finer feature representations. This improvement 

helps enhance the accuracy and localization precision of object detection models, 

particularly for small objects or cases that require more precise detection. As a result, 

many state-of-the-art object detection models have adopted ROI align as a replacement 

for ROI pooling.  

In Cascade R-CNN[16], one of the improvements in the ROI heads addresses the issue 

of low-quality proposals generated by the Region Proposal Network (RPN). These low-

quality proposals make it challenging to directly use a high threshold detector. To 

overcome this, Cascade R-CNN introduces cascade regression as a mechanism for re-

sampling proposals and progressively increasing their IoU values across stages. Each 

stage in Cascade R-CNN utilizes a ROI head that is trained with a specific IoU threshold. 

This threshold is gradually increased across stages, allowing the ROI head in each stage 

to focus on a subset of proposals that meet the higher threshold. By doing so, the cascade 

regression helps improve the quality of proposals, making them better suited for 

subsequent stages with higher IoU thresholds. Cascade R-CNN addresses the issue of 

low-quality proposals by using cascade regression as a re-sampling mechanism. By 

progressively increasing the IoU values of proposals across stages, Cascade R-CNN 

improves the matching between proposals and detectors with higher IoU thresholds, 

leading to better object detection performance. 

 

2.2 Loss Function 

The choice of the loss function is crucial during the training process of the model. In 

the architecture of Faster R-CNN, different stages require the use of different loss 

functions, and the model's weights are updated by summing all the losses. Typically, 
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classification loss, such as cross-entropy, is used to determine the class of the image. This 

loss measures the discrepancy between the predicted class probabilities and the true class 

labels. It guides the model to accurately classify objects in the image. For precise 

bounding box localization, regression loss, such as L1 loss (mean absolute error), is 

commonly employed. This loss measures the difference between the predicted bounding 

box coordinates and the ground truth coordinates. It helps the model to learn the precise 

location and size of the objects. During training, the losses from different stages, 

including the classification loss and regression loss, are summed to obtain the total loss. 

The model's weights are then updated using backpropagation and gradient descent based 

on this total loss. This process iterates until the model converges and achieves better 

performance in classifying objects and localizing bounding boxes. 

  Focal loss is a specialized loss function that was introduced to address the problem of 

class imbalance in object detection tasks[17]. In scenarios where the number of 

background (negative) samples significantly outweighs the number of foreground 

(positive) samples, traditional loss functions like cross-entropy may struggle to 

effectively train the model. The key idea behind focal loss is to assign higher weights to 

hard-to-classify examples, which are typically the minority class samples. It achieves this 

by introducing a modulating factor called the focal parameter. The focal parameter 

reduces the loss contribution of well-classified examples and increases the loss 

contribution of misclassified examples. Focal loss has shown significant improvements 

in object detection tasks, particularly in scenarios with imbalanced datasets. It effectively 

addresses the problem of dominant background samples and helps the model to better 

learn and distinguish the foreground objects of interest. 

  L1 and L2 loss in bounding box regression treat the four points of the bounding box 

independently and calculate the loss by summing the errors of each coordinate. They do 
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not consider the correlation between these coordinates. On the other hand, IOU loss, 

which is based on the intersection over union metric, considers the correlation between 

bounding box coordinates and provides a more comprehensive evaluation of the predicted 

box compared to the ground truth box[18]. IOU loss measures the overlap between the 

predicted box and the ground truth box by calculating the intersection area and the union 

area. It captures the spatial relationship between the coordinates of the bounding boxes 

and penalizes predictions with lower IOU values. This allows the model to learn the 

spatial correlations and make more accurate predictions in terms of box localization and 

shape. Several improvements to IOU loss have been proposed to address its limitations. 

GIOU (Generalized IOU) loss extends IOU by incorporating the notion of the smallest 

enclosing box[19]. It not only measures the overlap between predicted and ground truth 

boxes but also considers the bounding box's size and spatial alignment. By penalizing 

both the localization error and the inconsistency in box sizes, GIOU loss provides a more 

comprehensive evaluation metric. DIOU (Distance IOU) loss introduces an additional 

term that measures the distance between the centers of predicted and ground truth 

boxes[20]. By including this distance term, DIOU loss encourages better alignment of the 

predicted box with the ground truth box in terms of both overlap and center proximity. 

CIOU loss (Complete IOU) extends DIOU loss by incorporating an aspect ratio term that 

measures the similarity in shape between the predicted and ground truth boxes[21]. This 

aspect ratio term helps to penalize predictions with significant distortions compared to 

the ground truth shape.  

The high loss values associated with low-quality samples can cause excessively large 

gradients, leading to unstable parameter updates during model training. Focal IOU loss 

addresses this issue by penalizing the high loss caused by low-quality samples, effectively 

reducing the impact of these samples on the gradients[22]. By incorporating the focal 
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mechanism into the IOU loss calculation, Focal IOU assigns lower weights to low-quality 

samples, reducing their contribution to the overall loss. This weight adjustment helps 

mitigate the issue of excessively large gradients caused by high loss values and allows for 

more stable parameter updates. As a result, the training process becomes less prone to 

drastic parameter changes, and the model can converge more effectively towards better 

performance. Focal IOU loss provides a means to alleviate the instability caused by high 

loss values from low-quality samples, allowing for smoother training dynamics and 

improved convergence during the training process. 

2.3 Sampler 

In object detection tasks, negative samples, typically referred to as background samples, 

are samples that do not contain any objects of interest. However, some negative samples 

may exhibit certain similarities with the objects, such as having similar textures or shapes. 

These challenging negative samples can have a negative impact on the model training and 

convergence, as the model may mistakenly identify them as positive samples. n traditional 

training processes, due to the large number of negative samples compared to positive 

samples (samples containing objects), the model may tend to classify them as negative 

and overlook some challenging negative samples. This can lead to a performance drop 

when the model encounters backgrounds that are similar to the objects of interest. Online 

Hard Example Mining (OHEM) is a technique designed to address this issue by selecting 

hard samples during training[23]. Hard samples refer to those samples with high loss 

values in classification or regression tasks, specifically the background samples that are 

similar to the objects. By selecting hard samples for training, the model is forced to learn 

how to better differentiate between these challenging samples and the objects, thus 

improving its accuracy and generalization ability when dealing with challenging negative 
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samples. In the Faster R-CNN architecture, Online Hard Example Mining (OHEM) can 

be applied to improve the training process by selecting hard negative samples during each 

training iteration.  

Region Proposal Network (RPN) Training. Train the RPN module to generate region 

proposals. During this process, both positive and negative samples are selected based on 

their IoU (Intersection over Union) overlap with the ground truth boxes. However, instead 

of randomly sampling negative samples, OHEM can be applied to select hard negative 

samples, which are challenging backgrounds that are similar to the objects of interest. 

ROI Head Training. Train the ROI head module to perform object classification and 

bounding box regression based on the extracted features. During this stage, OHEM can 

be applied again to select hard negative samples to improve the model's ability to 

distinguish challenging backgrounds from actual objects. 

2.4 Non-Maximum Suppression 

 Faster R-CNN utilizes Non-Maximum Suppression (NMS) to refine the output of the 

object detection process and remove redundant bounding box predictions. First, The RPN 

generates a set of region proposals by scanning the image at multiple scales and aspect 

ratios. Each proposal is associated with a confidence score indicating the likelihood of 

containing an object. The region proposals are passed through the ROI align layer, which 

extracts fixed-sized feature maps. These features are then fed into the ROI head, where 

object classification and bounding box regression are performed. For each region 

proposal, the model predicts the probability of object presence and refines the bounding 

box coordinates. The region proposals are filtered based on a confidence score threshold. 

Only the proposals with confidence scores above a certain threshold are considered for 

further processing, while the rest are discarded as low-confidence predictions. NMS is 
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applied to the remaining region proposals to eliminate duplicate and overlapping 

predictions. The selected proposals after NMS represent the most confident and non-

overlapping predictions. These proposals, along with their associated class labels and 

refined bounding box coordinates, are considered as the final output of the Faster R-CNN 

model. By applying NMS, Faster R-CNN effectively eliminates redundant detections and 

retains only the most confident and distinct bounding box predictions. This improves the 

accuracy and efficiency of object detection by reducing duplicate outputs and simplifying 

the downstream analysis.  

2.5 Normalization 

The limitation with Batch Normalization (BN) arises when the available computational 

resources or memory constraints restrict the model to use only a small batch size. In such 

cases, the effectiveness of BN may be compromised. When the model is limited to a small 

batch size, BN may not accurately estimate the statistics needed for normalization, 

leading to suboptimal performance. This is because BN computes the statistics (mean and 

variance) based on the statistics of the mini-batch, and with a small batch size, the 

estimated statistics may not be representative of the entire dataset. To address this issue, 

Group Normalization (GN) was proposed as an alternative to BN. GN divides the 

channels of a feature map into groups and computes normalization statistics within each 

group independently[24]. This is in contrast to BN, which computes statistics across the 

entire batch. By using group-wise normalization, GN reduces the dependency on the 

batch size and performs normalization effectively even with smaller batch sizes. 
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Fig 2.3 Comparison of different Norms [24] 

By decoupling the normalization from the batch dimension and performing it within 

groups, Group Normalization reduces the reliance on large batch sizes and improves the 

model's performance, especially when dealing with limited computational resources or 

large input image sizes. It has been shown to be effective in various tasks and has gained 

popularity as an alternative to Batch Normalization in scenarios where small batch sizes 

are preferred or necessary. 

Weight Standardization is an alternative technique to normalize the weights of neural 

network layers[25]. It aims to address the limitations of Batch Normalization and Group 

Normalization by normalizing the weights themselves rather than normalizing the 

activations. In traditional normalization techniques like BN or GN, the mean and standard 

deviation are computed using the activations within a mini-batch or groups of channels. 

However, Weight Standardization directly normalizes the weights of each layer by 

subtracting the mean and dividing by the standard deviation of the weight values. By 

normalizing the weights, Weight Standardization helps to stabilize the learning process 

and improve the generalization performance of the model. It has been observed that 

Weight Standardization can alleviate the issues caused by vanishing or exploding 

gradients and reduce the sensitivity to the initialization of network weights. It also enables 

the use of larger learning rates during training. Compared to BN and GN, Weight 

Standardization has the advantage of not relying on mini-batch statistics or groups of 



doi:10.6342/NTU202304551

 20 

channels, making it applicable to various batch sizes and network architectures. It has 

been shown to be particularly effective in scenarios with small batch sizes or when the 

data distribution varies significantly across samples. Overall, Weight Standardization is a 

normalization technique that operates directly on the weights of neural network layers. It 

offers an alternative to traditional activation-based normalization methods like BN and 

GN, providing improved stability, generalization, and applicability across different 

network setups. 



doi:10.6342/NTU202304551

 21 

Chapter 3 Proposed Approach 

 

Fig 3.1 Architecture of our model 

   Pedestrian detection is a task in computer vision that aims to recognize and locate 

pedestrians in images or videos. In this task, other objects are considered as background, 

and the algorithm focuses solely on pedestrians. By employing image processing and 

machine learning techniques, pedestrian detection plays a crucial role in various 

applications such as traffic safety, video surveillance, and autonomous driving. 

  Because the two-stage detector can achieve more accurate localization, the entire 

model architecture is designed using a two-stage framework which is shown as Fig 3.1. 

It includes a feature extractor, an RPN (Region Proposal Network), and an ROI Align 

connected to the final ROI Head. We believe that with this architecture, we can achieve 

better performance in pedestrian detection. In this two-stage architecture, the feature 

extractor is first used to extract features from the input image. Then, the RPN is 

responsible for generating candidate pedestrian bounding boxes. The RPN uses anchors 

to generate candidate boxes at different positions and scales. It classifies and performs 

bounding box regression based on the features within each box, filtering out candidate 

boxes that potentially contain pedestrians. Next, the RPN-generated candidate boxes are 

aligned with the feature map using ROI Align, which extracts local features required for 

each candidate box. ROI Align addresses the issue of pixel misalignment in traditional 
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ROI Pooling methods, thus improving localization accuracy. Finally, the ROI Head 

performs classification and bounding box regression on each candidate box. The ROI 

Head typically consists of fully connected layers and classifiers, which classify the 

extracted local features to determine whether a candidate box contains a pedestrian and 

perform further refinement of the bounding box. 

3.1 Feature Extractor 

 In the feature extractor, we have chosen the Swin Transformer v2 as the backbone 

model, which has shown excellent performance in recent years. Pedestrians on the road 

exhibit diverse poses and may be occluded by objects or blend with the surrounding 

background, making pedestrian recognition challenging. Therefore, we utilize the Swin 

Transformer, which can balance computational complexity while incorporating the entire 

input image through window shifting self-attention mechanisms. The Swin Transformer 

has demonstrated outstanding results in various computer vision-related papers and 

downstream tasks, such as object classification, object segmentation, semantic 

segmentation, and more. Its ability to capture global contextual information and handle 

long-range dependencies makes it well-suited for addressing the challenges posed by 

pedestrians in complex scenes. Swin Transformer v2 is an improved version of the Swin 

Transformer, with three main enhancements[26]:  

Post-normalization: The v2 version incorporates layer normalization after the self-

attention layer and MLP (Multi-Layer Perceptron) block. This normalization helps 

stabilize gradients and improves the overall training stability. 

Scaled cosine attention approach: Instead of using dot product similarity, the v2 version 

employs the cosine similarity measure to compute the relationships between token pairs. 

In the original self-attention mechanism, the similarity measurement between pairwise 
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features is computed using the dot product. However, the authors of the Swin Transformer 

v2 observed that when replaced with post-normalization, in larger models, certain blocks 

or heads may be dominated by specific features in the attention map. To address this issue, 

they replaced the dot product similarity with cosine similarity. By using cosine similarity, 

they aim to mitigate the problem of certain feature pairs having excessively large dot 

products, which can dominate the attention computation. The cosine function inherently 

ranges between -1 and 1, and it is already normalized. This normalization property helps 

alleviate the issue of a few dominant features overpowering the attention mechanism. 

Log-spaced continuous position bias: The v2 version redefines the relative position 

encoding by introducing log-spaced continuous position bias. This helps the model better 

capture positional information and enables more effective handling of long-range 

dependencies.  

By incorporating these improvements, the Swin Transformer v2 aims to mitigate the 

limitations of its predecessor and enhance its performance, stability, transferability, and 

memory efficiency. 

3.2 Feature Pyramid Networks 

 

Fig 3.2 (a) Structure diagram of FPN and (b) Structure diagram of PAFPN. Comparing 

the two, PAFPN has one more bottom-up path than FPN[27] 
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After conducting extensive experiments, we have found that PAFPN (Path Aggregation 

Network) yields the best performance improvement for pedestrian recognition. Therefore, 

we have chosen PAFPN as the FPN (Feature Pyramid Network) in our model. In contrast, 

other FPN architectures such as NASFPN or DYHead did not enhance the overall 

recognition performance and, in fact, resulted in a negative impact. 

According to the original research papers, NASFPN[12] is specifically designed for 

RetinaNet[17], a single-stage object detection framework. NASFPN aims to optimize the 

feature pyramid network architecture for the RetinaNet model. Single-stage detectors lack 

the RPN and ROI align and directly predict bounding boxes after obtaining feature maps 

from the feature extractor. Due to the structural differences between single-stage and two-

stage detectors, applying FPNs that perform well in single-stage detectors directly to two-

stage detectors can have adverse effects. 

On the other hand, DyHead[28] is designed to be added after the FPN, utilizing neural 

networks to enhance semantic structure. However, since DyHead adds several blocks of 

neural networks, it incurs additional computational resources. The original paper suggests 

that stacking 6 blocks of DyHead yields the best results. Stacking 6 blocks of DyHead is 

not affordable or feasible for our research due to the increased computational cost and 

additional GPU memory consumption. It is not a matter of practicality, but rather a 

limitation in terms of available resources. Therefore, we tested stacking 2 or 3 blocks of 

DyHead, but both resulted in a decrease in overall recognition performance. As a result, 

adding DyHead is not suitable for the architecture of our research paper. 

3.3  Region Proposal Network 

 In the architecture of the RPN (Region Proposal Network), we use the Cascade 

RPN[15]. This algorithm specifically addresses the misalignment issue between anchors 
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and features that occurs during the iterative process of the RPN. The Cascade RPN utilizes 

a single anchor and combines anchor-based and anchor-free criteria to determine positive 

samples. It takes advantage of the benefits of multi-stage fine-tuning while maintaining 

alignment between features and anchors. To achieve this, the Cascade RPN employs 

adaptive convolution for fine-tuning the anchors at each stage. The adaptive convolution 

can be seen as a lightweight ROI Align layer. In summary, the Cascade RPN employs 

adaptive convolution in stage one to align anchors with features. The aligned anchors are 

then passed to stage two, where classification is performed to determine whether they 

belong to the background or foreground. Additionally, regression is applied to further 

refine the bounding boxes. During Stage 1, the adaptive convolution mechanism adjusts 

the anchors to align with the corresponding features, ensuring accurate localization. In 

Stage 2, the aligned anchors are evaluated for classification, distinguishing between 

background and foreground regions. Simultaneously, regression is utilized to refine the 

bounding box coordinates of the detected objects, improving their accuracy. The entire 

architecture of the Cascade RPN can be referred to as Fig 3.3(e). 

 

Fig 3.3 The architecture of different networks. “I”, “H”, “C” and “A” denote input 

image, network head, classifier and anchor regressor, respectively.[15] 
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By incorporating these stages and operations, Cascade RPN enhances the alignment 

between anchors and features, leading to improved detection performance. 

3.4 Cascade RCNN 

  Finally, in the model architecture, we have adopted the Cascade RCNN technique[16]. 

One common issue with proposals generated by the RPN is that a significant portion may 

have low quality, making it challenging to use a high threshold detector directly. Cascade 

R-CNN addresses this problem by employing cascade regression as a resampling 

mechanism, gradually increasing the IoU value of the proposals at each stage. The 

Cascade RCNN consists of multiple stages, and at each stage, the proposals undergo a 

refinement process through cascade regression. The initial proposals from the RPN are 

used as input in the first stage. The proposals that pass a certain IoU threshold in the 

previous stage are resampled and refined in the current stage. This resampling mechanism 

ensures that the proposals adapt to higher threshold requirements in subsequent stages. 

In the Cascade RCNN framework, each stage's detector is designed to avoid overfitting 

and ensure that there are enough samples satisfying the threshold conditions. This is 

achieved by carefully selecting and resampling the proposals based on their IoU with 

ground truth during each stage. By doing so, the detectors in each stage are trained on a 

subset of proposals that are more likely to be high-quality detections. With the cascading 

structure, the deeper stages of the Cascade RCNN are optimized to handle proposals with 

higher IoU thresholds. As the proposals progress through the cascade, the detectors in 

each stage focus on refining the proposals and improving their quality. This enables the 

model to effectively handle more challenging cases and detect objects with higher 

accuracy. During inference, although the initial proposals generated by the RPN may have 

lower quality, the quality improves at each stage of the Cascade RCNN. As the proposals 
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pass through each stage, they undergo refinement and are filtered based on their quality. 

This iterative process helps align the proposals with the higher IoU thresholds of 

subsequent stages. As a result, the mismatch between the proposals and detectors with 

higher IoU thresholds is mitigated, leading to improved detection performance. 

3.5 Normalization 

In our experiments, we incorporated Group Normalization[24] and Weight 

Standardization[25] techniques. Group Normalization is a normalization technique that 

divides the channels of a feature map into groups and normalizes each group 

independently. This helps in reducing the dependency on batch sizes and improves the 

generalization ability of the model. Weight Standardization, on the other hand, is a 

regularization technique that normalizes the weights of the neural network layer-wise. It 

helps in stabilizing the weight updates during training and has been shown to improve the 

generalization performance of deep models. By using these techniques, we aim to 

enhance the training stability, promote better convergence, and improve the overall 

performance of the model. 

3.6 Sampler 

In the original RPN, positive and negative samples are randomly sampled based on 

their IOU with ground truth boxes for training. This sampling technique helps balance the 

number of positive and negative samples and guides the model's optimization direction. 

However, if all anchor-generated candidate boxes are included for training without this 

technique, it would result in many negative samples, which predominantly represent 

background regions. This imbalance would lead to negative samples dominating the 

training loss, most of which are easy to classify, thereby deviating the model's 

optimization from the desired objective. 
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However, inspired by the success of the focal loss in single-stage detectors, we 

attempted to implement a similar technique in the RPN training of the two-stage detector. 

The focal loss reduces the weight of easy-to-classify samples, allowing the model to focus 

more on challenging samples during training. It uses an appropriate function to measure 

the contribution of easy and hard samples to the total loss. By leveraging the advantages 

of focal loss, we can avoid balanced one-to-one sampling of positive and negative 

samples in RPN training and we can use all bounding box generated by all anchors to join 

the training, regardless of whether they are positive samples or negative samples. 

Experimental results have shown that although this approach may slightly reduce training 

speed and increase memory consumption, it can further improve the accuracy of the 

model. 

3.7 Loss Functions 

In our approach, we made specific choices for the loss functions used in different 

components of the model. For the classification loss in the RPN (Region Proposal 

Network), we replaced the commonly used cross-entropy loss with focal loss[17].  

𝐶𝐸(𝑝𝑡) = − log(𝑝𝑡) , 𝑝𝑡 =  {
𝑝, 𝑖𝑓 𝑦 = 1

1 − 𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3 − 1) 

𝐹𝐿(𝑝𝑡) = −𝛼(1 − 𝑝𝑡)𝛾 log(𝑝𝑡) , 𝑝𝑡 =  {
𝑝, 𝑖𝑓 𝑦 = 1

1 − 𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3 − 2) 

(3-1) is the cross-entropy loss in binary classification, p is the probability when y=1. 

(3-2) formula is the focal loss in binary classification, p is the probability when y=1. 

The formula (3-1) and (3-2) are compared, where the focal loss has an additional 

modulating factor (1 − 𝑝𝑡)𝛾 . For accurately classified samples, 𝑝𝑡  approaches 1, 

causing the modulating factor to approach 0. Conversely, for inaccurately classified 

samples, the modulating factor approaches 1. As a result, compared to the cross-entropy 
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loss, the focal loss has no significant impact on inaccurately classified samples, but it 

reduces the loss for accurately classified samples. Overall, this effectively reduces the 

weight of accurately classified samples in the total loss calculation. 

This change was motivated by the sampling strategy mentioned earlier. Focal loss helps 

address the issue of class imbalance by down weighting easily classified samples and 

focusing more on hard examples, thereby improving the model's ability to handle 

challenging cases.  

𝐿𝑐𝑖𝑜𝑢 = 1 − 𝐼𝑂𝑈 +
𝜌2(𝑏, 𝑏𝑡)

𝑐2
+ 𝑣,   𝑣 =

4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔𝑡

ℎ𝑔𝑡
− 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤

ℎ
)            (3 − 3) 

For the bounding box regression loss of the candidate boxes, we introduced the CIOU 

(Complete Intersection over Union) loss[21] as a replacement for the smooth L1 loss used 

in the Mask R-CNN paper. Equation (3-3) describes the CIOU (Complete Intersection 

over Union) Loss. In equation (3-3), 𝜌2(𝑏, 𝑏𝑡)  represents the Euclidean distance 

between the center points of the prediction box and the ground truth, while the term 𝑣 

accounts for the aspect ratio difference between the prediction box and the ground truth. 

Minimizing CIOU involves not only considering the Intersection over Union (IOU) but 

also ensuring that the prediction box and ground truth center points overlap as much as 

possible, while their aspect ratios remain similar. We found that CIOU loss leads to faster 

convergence and achieves better results. CIOU loss considers both the spatial overlap and 

geometric properties of the bounding boxes, providing a more comprehensive measure 

for localization accuracy. In the ROI (Region of Interest) head, we followed a similar 

approach to the cascade R-CNN paper. We used cross-entropy loss for classification and 

continued to employ the CIOU loss for bounding box regression. This choice aligns with 

the cascade R-CNN framework and helps maintain consistency throughout the model. 
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3.8 Data Augmentations 

In the study, we encountered the challenge of limited pedestrian recognition datasets, 

such as CityPersons, which contains only 2,975 images. Without data augmentation, the 

model would be prone to overfitting due to the limited dataset size. To address this issue, 

we employed various data augmentation techniques. 

The data augmentation methods used in this research include random resizing followed 

by random cropping. Additionally, we applied random transformations to the images, 

such as altering the HUE, saturation, brightness, and contrast, performing equalization, 

and introducing shadows and sun flares (each augmentation with an independent event 

probability of 0.5). We found that these augmentation techniques significantly improved 

the issue of overfitting, thereby enhancing the model's generalization capability. 

By applying random resizing and cropping, the model learns to adapt to different 

scales and perspectives of pedestrians in various images. The random transformations, 

such as altering HUE, saturation, brightness and contrast, introduce variations in color, 

further diversifying the dataset and reducing the risk of overfitting to specific color 

distributions. The equalization technique helps to normalize the image histogram, 

enhancing the visibility of important pedestrian features. Finally, the introduction of 

shadows and sun flares adds variations in lighting conditions, enabling the model to 

handle different illumination scenarios. 
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Fig 3.4 data augmentation process 

 

Overall, the combination of these data augmentation techniques effectively mitigates 

overfitting, enhances the model's ability to generalize to unseen data, and improves 

pedestrian recognition performance. 

3.9 Post Processing 

In our post-processing stage, we employed an improved version of NMS called Soft-

NMS[29], which addresses the limitations of traditional NMS used in the Faster R-CNN 

paper. Traditional NMS aggressively eliminates bounding boxes with IOU values greater 

than the NMS threshold by setting their scores to zero, effectively discarding them. This 

can result in missed detections, especially in scenes with occlusions.  

The Soft-NMS approach takes a different strategy by applying a score penalty 

mechanism to bounding boxes with IOU values above the threshold. Instead of 

completely discarding them, the scores of these bounding boxes are reduced using a 

penalty function that is positively correlated with IOU. When neighboring detection 

boxes have high IOU values with the current box, they should be suppressed, leading to 

lower scores. Bounding boxes that are far away from each other remain unaffected. Soft-

NMS effectively mitigates the issue of missed detections caused by the aggressive 

elimination of bounding boxes in traditional NMS, particularly in scenarios involving 
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object occlusions.  

In the field of pedestrian recognition, scenes often involve high occlusion, where 

multiple pedestrians can be densely packed in specific areas of an image. This poses a 

challenge for object detection algorithms, as traditional NMS may mistakenly discard 

bounding boxes due to their overlapping nature. 

By using Soft-NMS, we can reduce the issue of false deletion caused by overlapping 

detection boxes. Soft-NMS applies a penalty mechanism to bounding boxes with high 

IoU values, effectively suppressing their scores while still retaining them for further 

consideration. This means that even in densely crowded scenes with overlapping 

pedestrians, the algorithm can retain and accurately detect the individual pedestrians 

without discarding their bounding boxes based solely on overlap. 

Soft-NMS helps address the specific challenges posed by occlusion in pedestrian 

recognition scenarios. By considering the degree of overlap and applying a penalty rather 

than a binary elimination, Soft-NMS improves the overall detection accuracy and ensures 

that important pedestrian instances are not overlooked. 
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Chapter 4 Experiments 

4.1 Datasets 

We conducted experiments using two of the most well-known datasets in pedestrian 

detection: CityPersons[30] and the Euro City Persons[31] dataset. 

CityPersons is a subset of the Cityscape dataset, consisting of 2,975 training images 

and 19,238 pedestrian instances. The images were collected from 27 major cities in 

Germany over several months, covering the seasons of spring, summer, and autumn. The 

images were captured during daylight hours under favorable weather conditions. This 

dataset offers a wide diversity of scenes due to its varied locations and extended time span. 

However, a limitation of CityPersons is the relatively small number of training samples 

available. 

The Euro City Persons dataset, on the other hand, provides a larger training set with 

21,795 images and 201,323 pedestrian instances. The dataset encompasses 12 different 

countries and 31 cities, offering a diverse range of scenes throughout all seasons of the 

year. While the Euro City Persons dataset contains images captured during both daytime 

and nighttime, for the sake of fair comparison with other methods, we solely used the 

daytime images in this research. 

Both datasets also include various other objects, such as groups of people, 

motorcyclists, and vehicles, besides pedestrians. However, since the focus of this study is 

on accurately detecting pedestrians, during training, we considered all other objects as 

background and solely focused on the task of identifying pedestrians. 

By utilizing these datasets, we aimed to evaluate the performance of our model in 

accurately detecting pedestrians, considering the challenges posed by different lighting 

conditions, occlusions, and diverse scenes. A detailed comparison of these two datasets is 
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provided in Table 4.1.  

  Due to the submission limit imposed by the dataset's test server, we were unable to 

utilize the testing set for evaluating the model's performance. As a common practice 

followed in other researches, we used the validation set as a substitute for testing and 

reported the results based on its evaluation. 

Table 4.1 Pedestrian detection datasets summary 

datasets CityPersons Euro City Persons 

images 2975 21795 

pedestrians 19238 201323 

pedestrians 

per images 
6.47 9.2 

cities 27 31 

weather dry dry, wet 

resolutions 2048 × 1024   1920 × 1024   

 

4.2 Evaluation metric 

To measure the performance of the detector, we utilized the LAMR[32] (Log-average 

miss rate), also known as 𝑀𝑅−2. 

To understand the meaning of this metric, it is necessary to first grasp the concepts of 

MR (miss rate) and FPPI (false positives per image).  

mr =
𝐹𝑁(𝑐)

𝑇𝑃(𝑐) + 𝐹𝑁(𝑐)
 (4 − 1) 

 

fppi =
𝐹𝑃(𝑐)

#𝑖𝑚𝑔
(4 − 2) 
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MR (miss rate) represents the ratio of missed detections (i.e., the number of false 

negatives) to the total number of ground truth instances in the dataset. It indicates the 

percentage of instances that were not detected by the model. FPPI (false positives per 

image) measures the average number of false positive detections per image. It quantifies 

the model's tendency to generate false alarms or incorrectly detect objects that are not 

present. 

 The evaluation is performed by considering detections with a confidence value equal to 

or greater than a specified threshold, denoted as c. This threshold serves as a control 

variable commonly used in object detection evaluation. By lowering the threshold value 

c, more detections are included in the evaluation, resulting in a higher number of potential 

true or false positives and fewer false negatives. And then we can define the formula 

LAMR = exp ( 
1

9
∑ log (𝑚𝑟 ( argmax

𝑓𝑝𝑝𝑖(𝑐)≤ 𝑓
 𝑓𝑝𝑝𝑖(𝑐)))

𝑓

) (4 − 3) 

The (4-3) formulas can be visualized as representing a two-dimensional coordinate 

system with MR and FPPI as the vertical and horizontal axes, respectively. By selecting 

different values for c, a curve can be plotted in this coordinate system. The LAMR metric 

calculates the average of the MR values corresponding to nine logarithmically spaced 

FPPI values on this curve.  

In general, due to the non-rigid nature of pedestrians, we consider any predicted 

bounding box with an Intersection over Union (IoU) value greater than or equal to 0.5 

with the ground truth as a true positive. It means that the predicted bounding box has a 

significant overlap with the actual pedestrian. 

Furthermore, each ground truth can only be matched to one predicted bounding box. If 

multiple predicted bounding boxes correspond to the same ground truth, we select the one 

with the highest score and consider it as a true positive, while the other corresponding 
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detections are treated as false positives. After matching all predicted bounding boxes to 

the ground truth, any ground truth that remains unmatched is considered a false negative. 

These are the instances where the detector failed to detect the presence of pedestrians. 

This evaluation approach ensures that we focus on correctly identifying pedestrians 

with a reasonable overlap and penalize false positives and false negatives accordingly. 

The evaluation of pedestrian detection models considers various criteria to 

accommodate the variations in size and visibility of pedestrians. These criteria are 

detailed in Table 4.2 and follow the established conventions used in other references. 

Differentiating the evaluation based on these criteria allows us to assess the detection 

performance of the model across different scales and levels of occlusion. 

 

Table 4.2 Evaluation settings for pedestrian datasets based on height and visibility. 

Settings 

CityPersons Euro City Persons 

Visibility Height Visibility Height 

Reasonable [0.65, ∞] [50, ∞] [0.6, ∞] [40, ∞] 

Small [0.65, ∞] [50, 75] [0.6, ∞] [30, 60] 

Heavy Occluded [0.2, 0.65] [50, ∞] [0.2, 0.6] [40, ∞] 

All [0.2, ∞] [20, ∞] [0.2, ∞] [20, ∞] 

 

4.3 Training Settings 

  We utilized a hardware configuration consisting of a single Nvidia GeForce RTX 4090 

for all training and testing processes. Due to budget and cost constraints, we were unable 

to utilize workstation-grade GPUs such as A100 or V100 for computation. Therefore, 

within the limitations of our budget, we opted to use the best GPU available for personal 
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computers, which is the Nvidia GeForce RTX 4090, to conduct our experiments. 

  Because of the limited VRAM of the Nvidia GeForce RTX 4090, we had to take certain 

measures during training. Firstly, we applied data augmentation techniques to resize the 

images to smaller resolutions. Additionally, we had to limit the batch size in our 

experiments, with the maximum being a batch containing 5 images. These steps were 

taken to optimize memory usage and ensure efficient training within the constraints of the 

available hardware resources. 

In terms of model architecture parameters, we used the Swin Transformer with a base 

size, a drop rate of 0.2, and pretraining on the ImageNet-22k dataset at a resolution of 224 

x 224 pixels. For detailed information on the model size settings, you can refer to    

Table 4.3 

 

Table 4.3 Detailed architecture of the Swin Transformer 

 Swin-Tiny Swin-Small Swin-Base Swin-Large 

stage 1 
[dim 96, head 3] 

× 2 

[dim 96, head 3] 

× 2 

[dim 128, head 4] 

× 2 

[dim 192, head 6] 

× 2 

stage 2 
[dim 192, head 6] 

× 2 

[dim 192, head 6] 

× 2 

[dim 256, head 8] 

× 2 

[dim 384, head 12] 

× 2 

stage 3 
[dim 384, head 12] 

× 6 

[dim 384, head 12] 

× 18 

[dim 512, head 16] 

× 18 

[dim 768, head 24] 

× 18 

stage 4 
[dim 768, head 24] 

× 2 

[dim 768, head 24] 

× 2 

[dim 1024, head 32] 

× 2 

[dim 1536, head 48] 

× 2 

window 

size for 

all stage 

7 × 7 7 × 7 7 × 7 7 × 7 

 

In our configuration of PAFPN, we consistently output a 5-level FPN pyramid, with 

each level having a channel size of 256. This choice of the number of levels and channel 
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size aims to strike a balance between capturing multi-scale information and maintaining 

computational efficiency. By having a 5-level FPN pyramid, we can effectively capture 

features at different scales, enabling the model to handle objects of various sizes. The 

choice of a channel size of 256 allows for sufficient expressive power while keeping the 

computational demands manageable. 

 In the ROI (Region of Interest) align layer, we observed that increasing the size of the 

ROI feature map from 7 × 7  to 14 × 14  improves the precision of bounding box 

localization. By increasing the size of the ROI feature map, we provide a finer level of 

spatial resolution, allowing for more precise localization of the objects within the region 

proposals. The larger feature map size enables the model to capture more detailed 

information about the objects, which helps improve the accuracy of bounding box 

regression. By adjusting the ROI feature map size to 14x14, we strike a balance between 

computational efficiency and localization accuracy, achieving better results in this task. 

Finally, we utilized the AdamW optimizer for training the model. We set the initial 

learning rate to 0.001 and incorporated a warm-up phase for the first 1000 iterations, 

gradually increasing the learning rate to its initial value. After the 20th epoch, we decayed 

the learning rate to 0.0001 for further fine-tuning. The total training duration consisted of 

40 epochs. 

4.4 Results 

 In this section, we present a comprehensive comparison between our proposed method 

and other state-of-the-art approaches in the field. The comparison is based on the 

evaluation metric LAMR, also known as 𝑀𝑅−2 , which was discussed earlier. The 

detailed comparison results are presented in Table 4.4 
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Table 4.4 Comparison of our method with the current state-of-the-art detectors based on 

𝑀𝑅−2 

Method /𝑀𝑅−2 Reasonable Small Heavy Occ All 

City Persons 

MS-CNN[33] 13.32% 15.56% 51.88% 39.94% 

Cascade R-CNN[34] 11.62% 13.64% 47.14% 37.63% 

Repulsion Loss[35] 11.48% 15.67% 52.59% 39.17% 

AdaptiveNMS[36] 11.40% 13.64% 46.99% 38.89% 

OR-CNN[37] 11.32% 14.19% 51.43% 40.19% 

HBA-RCNN[38] 11.26% 15.68% 39.54% 38.77% 

DVRNet[39] 11.17% 15.62% 42.52% 40.99% 

MGAN[40] 9.29% 11.23% 40.97% 38.86% 

Ours 11.46% 15.10% 37.63% 34.76% 

Euro City Persons 

SSD[41] 10.5% 20.5% 42.0% - 

YOLOv3[41] 8.5% 17.8% 37.0% - 

Faster R-CNN[41] 7.3% 16.6% 52.0% - 

Cascade-RCNN[34] 6.6% 13.6% 33.3% - 

F2D-Net[42] 6.1% 10.7% 28.2% - 

Ours 5.7% 13.8% 28.0% 18.4% 

 

The Table 4.4 provided in the previous section demonstrates a fair and just comparison 

between our model and other state-of-the-art models. All models listed in the table were 

trained solely on their respective datasets, without any additional training data from other 

sources. For instance, the models evaluated on the Euro City Persons dataset were only 
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trained on the Euro City Persons training dataset, and they did not utilize any data from 

the CityPersons or other pedestrian datasets, such as Caltech. Similarly, our model was 

trained exclusively on the Euro City Persons training data without incorporating data from 

other sources. By ensuring that all compared models adhere to this criterion, we maintain 

fairness and consistency in the evaluation process. This approach guarantees that each 

model's performance is solely based on the data available within its respective dataset and 

avoids any potential biases that could arise from using additional training data. 

 

Fig 4.1 LAMR on the Euro City Persons dataset 

  Fig 4.1 illustrates the LAMR (Log Average Miss Rate) of the experiment on the Euro 

City Persons dataset. As mentioned earlier when introducing LAMR, as MR (Miss Rate) 

decreases, FPPI (False Positives Per Image) tends to increase. Therefore, LAMR serves 

as an indicator that balances both characteristics and impartially assesses the model's 

performance. 

Based on our experimental findings, our model demonstrated outstanding performance 

on the Euro City Persons dataset, surpassing even CNN-based models in reasonable 

scenarios. However, its efficacy on the CityPersons dataset was comparatively weaker, 

showing slightly inferior performance in various situations, except for cases involving 

occlusion. We attribute this difference in performance to the nature of transformer-based 

models, which typically require a larger amount of training data for optimal performance. 
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With the relatively limited training data available in the CityPersons dataset, it is expected 

that the performance of the transformer-based model may not match that of traditional 

CNN-based models. Despite the somewhat lower performance on the CityPersons dataset, 

we found a noteworthy trend in our model's detection capabilities. Specifically, when it 

comes to heavily occluded pedestrians, our model outperformed many other models. This 

result strongly indicates that our model is highly suitable for scenarios involving occluded 

pedestrians. The capability of our model to excel in detecting heavily occluded 

pedestrians highlights its potential in real-world scenarios where pedestrians are 

frequently obstructed by various objects or other individuals. While further improvements 

may be possible for detecting pedestrians in reasonable and small scales, our model's 

proficiency in handling heavily occluded pedestrians is a promising and valuable aspect 

of its performance. 
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Fig 4.2 Detection result: the green rectangle is our predictions and the blue ones is the 

ground truths. 
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Chapter 5 Conclusion 

In this study, we proposed a novel pedestrian detection model based on the Swin 

Transformer architecture. Our model leveraged the powerful capabilities of the Swin 

Transformers to capture long-range dependencies and spatial relationships in images, 

making it well-suited for the challenging task of pedestrian detection. Through a series of 

carefully designed modules and techniques, we aimed to address various issues, including 

occlusions and scale variations, commonly encountered in pedestrian recognition 

scenarios. We also employed data augmentation techniques, including random resizing, 

cropping, and various image transformations, to mitigate overfitting due to the limited 

size of the training datasets. Additionally, we used soft-NMS for post-processing, which 

improved the detection results, especially in scenarios with high levels of occlusion. For 

loss functions, we employed focal loss in the RPN stage and CIOU loss for bounding box 

regression, which enhanced the model's convergence speed and detection accuracy. 

Furthermore, we incorporated group normalization and weight standardization, 

contributing to stable and efficient training. Our experiments on the Euro City Persons 

and CityPersons datasets demonstrated promising results. In particular, our model 

exhibited exceptional performance in detecting heavily occluded pedestrians, showcasing 

its potential for handling challenging scenarios where traditional methods may struggle. 

However, we also acknowledged that the performance on CityPersons was not as strong 

as expected, which we attributed to the limited amount of training data available for a 

Transformer-based backbone. This finding highlighted the need for larger datasets to fully 

unleash the capabilities of our model. Our proposed pedestrian detection model based on 

the Swin Transformer architecture demonstrated promising results, particularly in 

scenarios with heavily occluded pedestrians. We showcased its potential to handle 
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challenging detection tasks and provided fair comparisons with other state-of-the-art 

models to objectively assess its performance. However, further improvements could be 

achieved with larger training datasets and more powerful hardware. Our research 

contributes valuable insights and sets a foundation for future advancements in pedestrian 

detection using Transformer-based models. 
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