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ABSTRACT

This study primarily proposes a high-precision pedestrian recognition model. In the
context of road object recognition, which is crucial for autonomous vehicles, pedestrian
recognition holds paramount importance. Pedestrian collisions result in the most severe
casualties, making pedestrians the objects that vehicles should avoid colliding with on the
road. This paper is expected to be used in self-driving in-car systems to achieve real-time
detection of pedestrians. Given the significant success of Transformer architecture models
in natural language processing in recent years, researchers have explored the application
of Transformer-based models in computer vision-related tasks. While the Vision
Transformer (ViT) have shown promise in achieving results on par with Convolutional
Neural Networks (CNNs), overcoming the high computational requirements and
extensive model parameters during training poses a significant challenge, especially when
targeting deployment on edge devices.

In 2021, Microsoft introduced the Swin Transformer, known for its powerful
performance, more streamlined model architecture compared to the Vision Transformers,
and its versatility in various downstream tasks. Swin Transformer is particularly suitable
as a feature extractor for object detection models. This research harnesses its robust
capabilities to capture multi-scale features and spatial relationships in images, making it
well-suited for the challenging task of pedestrian detection. Combined with a two-stage
detector based on the Faster R-CNN framework, which includes a cascade Region
Proposal Network (RPN) and Region of Interest (ROI) Head, and the use of all anchors
and Focal Loss during RPN training, this study showcases promising results in

experiments conducted on the Euro City Persons and CityPersons datasets. Particularly,
il

doi:10.6342/NTU202304551



the model in this study demonstrates outstanding performance in detecting heavily
occluded pedestrians, highlighting its ability to handle challenging scenarios that

traditional methods may struggle with.

Keywords: Computer vision, Deep learning, Object detection, Transformer
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Chapter 1  Introduction

1.1  Research Background

In recent years, with rapid technological advancements, autonomous driving
technology has become a prominent field in the automotive industry. The realization of
autonomous driving holds significant importance in improving traffic safety, reducing
accidents, and providing convenient means of transportation. However, in the process of
achieving vehicle autonomy, road object recognition plays a crucial role. Among them,
pedestrian recognition stands out as a key component since pedestrians are one of the
most critical objects to avoid collisions with on the road. Therefore, the development of
accurate and efficient pedestrian recognition algorithms is essential for realizing safe and

reliable autonomous driving systems.

1.2 Research Objectives

The main objective of this study is to explore the application of pedestrian recognition
techniques in vehicle autonomous driving systems. By analyzing existing methods,
technologies, and algorithms for pedestrian recognition, this research aims to develop a
precise and efficient pedestrian recognition system to enhance the safety and reliability
of autonomous vehicles. Additionally, this study will investigate future trends in
pedestrian recognition technology and propose corresponding improvements and

optimizations.
1.3 Research Methodology

This study will employ a combination of experimental and analytical approaches.
Firstly, a large dataset of pedestrian images and related data will be collected to establish

a pedestrian database. Then, existing pedestrian recognition algorithms will be evaluated
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and compared to determine their strengths and limitations. Based on these analyses, novel
pedestrian recognition algorithms will be developed, followed by detailed experiments,
and testing to validate their performance and effectiveness. Finally, system optimizations
and improvements will be conducted based on the experimental results, and relevant

recommendations and conclusions will be presented.

1.4  Research Organization

This paper will consist of five main sections. The first section is the introduction,
providing an overview of the research background, research objectives, research
methodology, and the structure of the paper. The second section will review relevant n
studies on pedestrian recognition, focusing on deep learning approaches. The third section
will introduce the dataset and experimental design employed in this research. The fourth
section will present the experimental results and discussions, analyzing the performance
and effectiveness of the pedestrian recognition algorithms. Lastly, the fifth section will
conclude and provide future perspectives, summarizing the research findings and

proposing directions for future improvements and research.

In conclusion, this chapter has introduced the research background, research objectives,
research methodology, and the structure of the paper. Pedestrian recognition is a crucial
component in vehicle autonomous driving systems, significantly contributing to road
safety. This study aims to develop an accurate and efficient pedestrian recognition system
and explore the future trends in pedestrian recognition technology. The paper will validate
the performance and effectiveness of pedestrian recognition algorithms through

experiments and analysis, along with proposing relevant improvement methods.
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Chapter 2 Related Work

In the field of computer vision, object detection methods can now be classified into
one-stage detectors and two-stage detectors. The main difference lies in whether pre-
defined candidate boxes are used. Two-stage detectors typically include a region proposal
network, which generates rough candidate boxes from the extracted feature map of an
image. These candidate boxes are then fed into subsequent networks for object
classification and more precise localization. On the other hand, one-stage detectors do not
have this intermediate step and can directly perform object recognition tasks on the
feature map. For example, in December 2015, Google introduced the Single Shot
Detector (SSD) method, where the abstract of their paper begins with "We present a
method for detecting objects in images using a single deep neural network."[1]

Two-stage detectors currently have a slight advantage over one-stage detectors in terms
of object recognition accuracy, due to the presence of the region proposal network.
However, because of the region proposal network, if multiple candidate boxes are selected,
each of these selected boxes needs to be further processed by the subsequent neural
network for classification and localization. As a result, two-stage detectors require more
computational time and hardware resources compared to one-stage detectors. In the
application of autonomous driving systems, the misidentification of pedestrians in
pedestrian detection tasks can lead to severe consequences. Therefore, to achieve higher

accuracy, this paper focuses on the methods of two-stage detectors.
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Fig 2.1 Architecture of Faster r-cnn [2]

Currently, the most well-known architecture among two-stage detectors is Faster R-
CNN, which is based on the R-CNN framework[2]. The Faster R-CNN network
architecture can be divided into three parts which as shown at Fig 1. The first part is the
feature extractor, also known as the backbone, which extracts feature maps from the input
image. The feature maps are then passed to the subsequent Region Proposal Network
(RPN) network through Feature Pyramid Networks (FPN), which is referred to as the
network's neck[3]. The second part is the Region Proposal Network (RPN). The goal of
the RPN is to extract candidate boxes. The essence of object detection is to generate
candidate boxes through regression. However, the network cannot generate candidate
boxes of arbitrary sizes. Therefore, the RPN utilizes many anchors. These anchors, based
on the feature map, divide the original image into many differently sized and aspect ratio

rectangular boxes. The RPN performs rough classification and regression on these boxes,
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selecting a set of positive class boxes containing foreground objects and negative class
boxes containing background regions after applying fine-tuning adjustments. These
selected boxes are then fed into the subsequent network for training. The third part of
Faster R-CNN is the ROI (Region of Interest) head. In the original Faster R-CNN, ROI
pooling was used in this part, but it has been improved to ROI align in subsequent
versions[4]. The ROI head takes the region proposals generated by the RPN and extracts
fixed-sized feature maps for each region of interest. These feature maps are then fed into
a fully connected network for object classification and bounding box regression. The ROI
head is responsible for refining the localization and predicting the class labels of the

proposed regions, ultimately producing the final detection results.

2.1 Faster RCNN Architecture

2.1.1 Feature Extractor

CNN Base. In the original Faster R-CNN paper, the backbone used is VGG16[5]. The
VGG16 architecture is a deep convolutional neural network that consists of 16 layers,
including convolutional layers, pooling layers, and fully connected layers. It is
responsible for extracting high-level visual features from the input image, which are then
used for region proposal and subsequent object classification and localization. However,
recently VGG16 has been gradually replaced by ResNet in many applications. ResNet,
short for Residual Network, is a deep convolutional neural network architecture that
introduced the concept of residual connections[6]. These connections allow the network
to learn residual mappings, making it easier to train very deep networks. Compared to
VGG16, ResNet has shown better performance in terms of accuracy and gradient flow,
especially in deeper network architectures. The popularity of ResNet in object detection

tasks has grown due to its ability to effectively capture complex visual patterns and handle
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the challenges posed by deep networks. It has become a common choice as the backbone
network in modern two-stage detectors, including Faster R-CNN variants. The integration
of ResNet as the backbone has significantly improved the detection performance and
contributed to the advancement of object detection research. In the field of pedestrian
recognition, HRNet (High-Resolution Network) is a specialized type of convolutional
neural network that has gained popularity due to its unique architecture and superior
performance[7]. HRNet is specifically designed to handle the challenges posed by
pedestrian images, such as variations in scale and the need to capture fine-grained details.
Unlike traditional convolutional neural networks that downsample the input image,
HRNet maintains high-resolution representations throughout its architecture. It achieves
this by incorporating parallel branches that operate at different resolutions. This allows
HRNet to simultaneously capture both high-level semantic information and fine-grained
details, resulting in more accurate pedestrian recognition. HRNet adopts an information
flow strategy that exchanges information across different resolution levels, enabling the
network to effectively integrate multi-scale features. By preserving high-resolution
representations, HRNet excels at capturing small-scale details that are crucial for accurate
pedestrian recognition, such as facial features and clothing patterns. The architecture of
HRNet consists of multiple stages, with each stage containing parallel sub-networks
operating at different resolutions. The outputs from these sub-networks are fused together
to form a comprehensive feature representation. This fusion of multi-scale features
enables HRNet to capture both global context and local details, leading to improved
accuracy in pedestrian recognition tasks. HRNet has achieved better performance on
various pedestrian recognition benchmarks and competitions, surpassing previous
approaches. Its ability to capture fine-grained details while maintaining a high level of

semantic information makes it a valuable tool in the field. HRNet has found applications

6
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in real-world scenarios such as surveillance systems, autonomous vehicles, and human-
computer interaction.

Transformer Base. Due to the outstanding achievements of the Transformers in the
field of natural language processing, there has been an expectation that the Transformers
could also be applied to image processing tasks. Several well-known Transformer models,
such as Vision Transformer (ViT)[8] for image classification and Detection with
Transformer (DETR)[9] for object detection, have shown promising results. However,
they have not yet surpassed the dominance of convolutional neural networks (CNNs) in
image processing. Since the introduction of the Swin Transformer[10] in 2021, it has
disrupted the previous belief that Transformers cannot outperform CNNs in the field of
computer vision. The Swin Transformer has emerged as a potential perfect alternative to
CNNs. The lack of significant breakthroughs when applying Transformers to image
processing tasks, as opposed to their success in natural language processing (NLP), can
be attributed to two main reasons. Firstly, NLP and image processing involve different
scales. NLP operates on fixed and standardized scales, while images exhibit a wide range
of scale variations. This discrepancy in scale poses a challenge when directly applying
Transformers to image data. Secondly, image processing tasks require higher resolution
compared to NLP. Additionally, the computational complexity of Transformers in image
processing is quadratic with respect to the image size, resulting in significant
computational demands.

To address these challenges, Swin Transformer introduces two key improvements
compared to previous models like Vision Transformer (ViT). Firstly, Swin Transformer
adopts a hierarchical construction method similar to convolutional neural networks
(CNNs). For example, it includes feature maps at different levels of down-sampling ratios,

such as 4x, 8x, and 16x. This hierarchical backbone facilitates tasks like object detection

7
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and instance segmentation. In contrast, Vision Transformer directly down-samples by a
factor of 16 from the beginning and maintains the same down-sampling rate for
subsequent feature maps. Secondly, Swin Transformer incorporates the concept of
Windows Multi-Head Self-Attention (W-MSA). For instance, at 4x and 8x down-
sampling, the feature maps are divided into non-overlapping regions called windows, and
Multi-Head Self-Attention is applied within each window. This approach reduces
computational complexity, especially for large shallow feature maps, compared to Vision
Transformer, which applies Multi-Head Self-Attention to the entire global feature map.
However, this partitioning of feature maps into windows can limit information exchange
between different windows. To address this issue, the Swin Transformer applied the
concept of Shifted Windows Multi-Head Self-Attention (SW-MSA), which allows
information to flow between adjacent windows. By incorporating these improvements,
the Swin Transformer effectively tackles the challenges of scale variation and
computational complexity, making it a promising choice for various computer vision
tasks such as image classification, object detection, and semantic segmentation.

2.1.2 Feature Pyramid Networks

In most traditional object detection algorithms, only the top-level features are used for
prediction. However, it is known that lower-level features have less semantic information
but provide accurate object localization, while higher-level features contain richer
semantic information but have coarser object localization. Although some algorithms
incorporate multi-scale feature fusion, it is typically done on fused features for prediction.
The key difference here is that in the concept of the feature pyramid[3], predictions are
made independently at different feature levels. In other words, the feature pyramid
addresses the trade-off between semantic information and positional accuracy by

leveraging features at different scales. It recognizes that lower-level features excel at
8
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precise object localization, while higher-level features offer a deeper semantic
understanding. By using a feature pyramid, the algorithm can make independent
predictions at different feature levels. This enables capturing both fine details and high-
level semantics simultaneously, resulting in improved object detection performance. The
feature pyramid fully exploits the strengths of different feature levels, allowing the
algorithm to better balance the relationship between object position and semantic
information.

Subsequent to the introduction of the feature pyramid, several improvements have been
proposed, such as PAFPN (Path Aggregation Network)[11], NAS-FPN (Neural
Architecture Search-based Feature Pyramid Network)[12], and FPG (Feature Pyramid
Grid)[13]. These methods aim to further enhance the effectiveness and efficiency of the
feature pyramid for object detection. These advancements in feature pyramid methods
have contributed to the ongoing progress in object detection, enabling more accurate and

efficient detection of objects at various scales and aspect ratios.

2.1.3 Region Proposal Network

e IS
mAD ------ »{ Reshape |—®»{Softmax |- Reshape [-—# Proposal i
1x1 ¢ ¥

,D 36

Fig 2.2 Architecture of RPN in Faster r-cnn [2]

im_info

Traditional methods are very time-consuming in generating detection boxes. For
example, OpenCV adaboost uses sliding windows and image pyramids to generate
detection boxes[ 14]. Or use the selective search method to generate detection boxes such

as RCNN. Faster RCNN abandons the traditional sliding window and selective search
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methods, and directly uses RPN to generate detection boxes. This is a huge advantage of
Faster R-CNN, which can greatly improve the generation speed of detection frames. Fig
2 shows the specific structure of the RPN network. It can be seen that the RPN network
is actually divided into 2 lines. The upper one obtains positive and negative classifications
through softmax classification anchors, and the lower one is used to calculate the
bounding box regression offset for anchors to obtain an accurate proposal. The final
proposal layer is responsible for synthesizing the positive anchors and the corresponding
bounding box regression offset to obtain proposals, while eliminating proposals that are
too small and beyond the boundary. When the entire network reaches the proposal layer,
the target positioning is completed. Anchors play a fundamental role in RPN. Anchors are
pre-defined bounding boxes of various sizes and aspect ratios that are overlaid onto an
image. The purpose of anchors is to serve as reference boxes that anchor or localize
potential objects in an image. These anchors act as starting points for generating region
proposals during the object detection process. By covering a range of sizes and aspect
ratios, anchors can capture objects of different scales and shapes. In the RPN, the anchors
are generated based on a feature map obtained from the backbone network. The feature
map is divided into a grid of cells, and each cell corresponds to a set of anchors of different
sizes and aspect ratios. For each anchor, the RPN predicts the probability of it containing
an object (foreground) or being background, as well as the adjustments needed to refine
its position and size. During training, the RPN compares the predicted anchors with
ground-truth bounding boxes to determine which anchors are positive (matching a
ground-truth object) or negative (background). The positive anchors are used to compute
classification and regression losses, which are then used to update the RPN's parameters
during the training process. By using anchors, the RPN can generate a set of candidate

region proposals that potentially contain objects of interest in an image. These proposals

10
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are subsequently refined and classified by the object detection network. Anchors help to
localize and classify objects accurately by providing a structured set of bounding box
priors that guide the object detection process.

In the existing RPN framework, there are still some challenges to overcome. For
instance, to obtain sufficient positive samples, a set of anchors with different scales and
ratios is required. Setting appropriate scales and aspect ratios is crucial for the
performance of object detection, and it often requires extensive manual tuning. To address
this issue, the Cascade RPN paper proposes a two-stage RPN with adaptive convolution
to automatically adjust and align anchors with the targets[15]. In the Cascade RPN
approach, the paper systematically tackles the problems of the RPN. Firstly, in the first
stage, a single anchor is used instead of using multiple scales and aspect ratios. The
definition of positive sample regions combines both anchor-based and anchor-free
evaluation criteria to improve detection performance. This approach replaces the use of
multiple scales and aspect ratios of anchors. Secondly, after each stage, adaptive
convolution is applied to refine the anchors. This adaptive convolution maintains the
alignment between anchor boxes and features while gaining refinement benefits from
multiple stages. It ensures that the refined anchors remain properly aligned with the
underlying features, leading to improved detection accuracy. By incorporating these
techniques, the Cascade RPN method effectively addresses the challenges of the RPN. It
simplifies the anchor design by using a single anchor and improves the detection
performance by combining anchor-based and anchor-free evaluation criteria. Additionally,
the adaptive convolution preserves the alignment between anchors and features

throughout the refinement process, contributing to enhanced object detection accuracy.
2.1.4 ROI Heads

Faster R-CNN's ROI (Region of Interest) heads are an important component of the
11
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architecture. Once the region proposals are generated by the RPN (Region Proposal
Network), the ROI heads refine and classify these proposed regions. The ROI heads
consist of two main parts: the ROI pooling layer and the fully connected layers. The ROI
pooling layer takes the region proposals and extracts fixed-sized feature maps from the
corresponding feature map obtained from the backbone network. This allows for
consistent feature map sizes for subsequent processing. The fixed-sized feature maps
from the ROI pooling layer are then fed into a series of fully connected layers. These
layers perform two tasks: classification and regression. In the classification task, the
network assigns a probability score to each region proposal for different object categories,
indicating the likelihood of containing a specific object class. The regression task adjusts
the coordinates of the bounding box for each proposal, refining its position and size to
better align with the object boundaries. By incorporating the ROI pooling layer and fully
connected layers, the ROI heads enable accurate object classification and precise
bounding box regression for each proposed region. This helps improve the overall object
detection performance of the Faster R-CNN model. However, ROI pooling suffers from
a limitation where it can only map the ROIs to the grid cells of the feature map at integer
precision, resulting in information loss and positional misalignment.

To overcome the limitations of ROI pooling, ROI align was introduced as an
improvement over ROI pooling[4]. ROI align uses bilinear interpolation within each sub-
region of the ROI, allowing for mapping of the coordinates of the region to floating-point
coordinates on the feature map, enabling more accurate position alignment and finer
feature extraction. Specifically, ROI align divides the ROI into smaller sub-regions and
performs bilinear interpolation within each sub-region to obtain feature values at floating-
point coordinates. The feature values from these sub-regions are then merged to form the

output feature representation of ROI align. Compared to ROI pooling, ROI align provides
12
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more accurate position alignment and finer feature representations. This improvement
helps enhance the accuracy and localization precision of object detection models,
particularly for small objects or cases that require more precise detection. As a result,
many state-of-the-art object detection models have adopted ROI align as a replacement
for ROI pooling.

In Cascade R-CNNJ16], one of the improvements in the ROI heads addresses the issue
of low-quality proposals generated by the Region Proposal Network (RPN). These low-
quality proposals make it challenging to directly use a high threshold detector. To
overcome this, Cascade R-CNN introduces cascade regression as a mechanism for re-
sampling proposals and progressively increasing their loU values across stages. Each
stage in Cascade R-CNN utilizes a ROI head that is trained with a specific IoU threshold.
This threshold is gradually increased across stages, allowing the ROI head in each stage
to focus on a subset of proposals that meet the higher threshold. By doing so, the cascade
regression helps improve the quality of proposals, making them better suited for
subsequent stages with higher IoU thresholds. Cascade R-CNN addresses the issue of
low-quality proposals by using cascade regression as a re-sampling mechanism. By
progressively increasing the IoU values of proposals across stages, Cascade R-CNN
improves the matching between proposals and detectors with higher IoU thresholds,

leading to better object detection performance.

2.2 Loss Function

The choice of the loss function is crucial during the training process of the model. In
the architecture of Faster R-CNN, different stages require the use of different loss

functions, and the model's weights are updated by summing all the losses. Typically,

13
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classification loss, such as cross-entropy, is used to determine the class of the image. This
loss measures the discrepancy between the predicted class probabilities and the true class
labels. It guides the model to accurately classify objects in the image. For precise
bounding box localization, regression loss, such as L1 loss (mean absolute error), is
commonly employed. This loss measures the difference between the predicted bounding
box coordinates and the ground truth coordinates. It helps the model to learn the precise
location and size of the objects. During training, the losses from different stages,
including the classification loss and regression loss, are summed to obtain the total loss.
The model's weights are then updated using backpropagation and gradient descent based
on this total loss. This process iterates until the model converges and achieves better
performance in classifying objects and localizing bounding boxes.

Focal loss is a specialized loss function that was introduced to address the problem of
class imbalance in object detection tasks[17]. In scenarios where the number of
background (negative) samples significantly outweighs the number of foreground
(positive) samples, traditional loss functions like cross-entropy may struggle to
effectively train the model. The key idea behind focal loss is to assign higher weights to
hard-to-classify examples, which are typically the minority class samples. It achieves this
by introducing a modulating factor called the focal parameter. The focal parameter
reduces the loss contribution of well-classified examples and increases the loss
contribution of misclassified examples. Focal loss has shown significant improvements
in object detection tasks, particularly in scenarios with imbalanced datasets. It effectively
addresses the problem of dominant background samples and helps the model to better
learn and distinguish the foreground objects of interest.

L1 and L2 loss in bounding box regression treat the four points of the bounding box

independently and calculate the loss by summing the errors of each coordinate. They do
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not consider the correlation between these coordinates. On the other hand, IOU loss,
which is based on the intersection over union metric, considers the correlation between
bounding box coordinates and provides a more comprehensive evaluation of the predicted
box compared to the ground truth box[18]. IOU loss measures the overlap between the
predicted box and the ground truth box by calculating the intersection area and the union
area. It captures the spatial relationship between the coordinates of the bounding boxes
and penalizes predictions with lower IOU values. This allows the model to learn the
spatial correlations and make more accurate predictions in terms of box localization and
shape. Several improvements to IOU loss have been proposed to address its limitations.
GIOU (Generalized I0OU) loss extends IOU by incorporating the notion of the smallest
enclosing box[19]. It not only measures the overlap between predicted and ground truth
boxes but also considers the bounding box's size and spatial alignment. By penalizing
both the localization error and the inconsistency in box sizes, GIOU loss provides a more
comprehensive evaluation metric. DIOU (Distance IOU) loss introduces an additional
term that measures the distance between the centers of predicted and ground truth
boxes[20]. By including this distance term, DIOU loss encourages better alignment of the
predicted box with the ground truth box in terms of both overlap and center proximity.
CIOU loss (Complete IOU) extends DIOU loss by incorporating an aspect ratio term that
measures the similarity in shape between the predicted and ground truth boxes[21]. This
aspect ratio term helps to penalize predictions with significant distortions compared to
the ground truth shape.

The high loss values associated with low-quality samples can cause excessively large
gradients, leading to unstable parameter updates during model training. Focal IOU loss
addresses this issue by penalizing the high loss caused by low-quality samples, effectively

reducing the impact of these samples on the gradients[22]. By incorporating the focal
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mechanism into the IOU loss calculation, Focal IOU assigns lower weights to low-quality
samples, reducing their contribution to the overall loss. This weight adjustment helps
mitigate the issue of excessively large gradients caused by high loss values and allows for
more stable parameter updates. As a result, the training process becomes less prone to
drastic parameter changes, and the model can converge more effectively towards better
performance. Focal IOU loss provides a means to alleviate the instability caused by high
loss values from low-quality samples, allowing for smoother training dynamics and

improved convergence during the training process.

2.3  Sampler

In object detection tasks, negative samples, typically referred to as background samples,
are samples that do not contain any objects of interest. However, some negative samples
may exhibit certain similarities with the objects, such as having similar textures or shapes.
These challenging negative samples can have a negative impact on the model training and
convergence, as the model may mistakenly identify them as positive samples. n traditional
training processes, due to the large number of negative samples compared to positive
samples (samples containing objects), the model may tend to classify them as negative
and overlook some challenging negative samples. This can lead to a performance drop
when the model encounters backgrounds that are similar to the objects of interest. Online
Hard Example Mining (OHEM) is a technique designed to address this issue by selecting
hard samples during training[23]. Hard samples refer to those samples with high loss
values in classification or regression tasks, specifically the background samples that are
similar to the objects. By selecting hard samples for training, the model is forced to learn
how to better differentiate between these challenging samples and the objects, thus

improving its accuracy and generalization ability when dealing with challenging negative
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samples. In the Faster R-CNN architecture, Online Hard Example Mining (OHEM) can
be applied to improve the training process by selecting hard negative samples during each
training iteration.

Region Proposal Network (RPN) Training. Train the RPN module to generate region
proposals. During this process, both positive and negative samples are selected based on
their IoU (Intersection over Union) overlap with the ground truth boxes. However, instead
of randomly sampling negative samples, OHEM can be applied to select hard negative
samples, which are challenging backgrounds that are similar to the objects of interest.
ROI Head Training. Train the ROI head module to perform object classification and
bounding box regression based on the extracted features. During this stage, OHEM can
be applied again to select hard negative samples to improve the model's ability to

distinguish challenging backgrounds from actual objects.
2.4 Non-Maximum Suppression

Faster R-CNN utilizes Non-Maximum Suppression (NMS) to refine the output of the
object detection process and remove redundant bounding box predictions. First, The RPN
generates a set of region proposals by scanning the image at multiple scales and aspect
ratios. Each proposal is associated with a confidence score indicating the likelihood of
containing an object. The region proposals are passed through the ROI align layer, which
extracts fixed-sized feature maps. These features are then fed into the ROI head, where
object classification and bounding box regression are performed. For each region
proposal, the model predicts the probability of object presence and refines the bounding
box coordinates. The region proposals are filtered based on a confidence score threshold.
Only the proposals with confidence scores above a certain threshold are considered for

further processing, while the rest are discarded as low-confidence predictions. NMS is
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applied to the remaining region proposals to eliminate duplicate and overlapping
predictions. The selected proposals after NMS represent the most confident and non-
overlapping predictions. These proposals, along with their associated class labels and
refined bounding box coordinates, are considered as the final output of the Faster R-CNN
model. By applying NMS, Faster R-CNN effectively eliminates redundant detections and
retains only the most confident and distinct bounding box predictions. This improves the
accuracy and efficiency of object detection by reducing duplicate outputs and simplifying

the downstream analysis.

2.5 Normalization

The limitation with Batch Normalization (BN) arises when the available computational
resources or memory constraints restrict the model to use only a small batch size. In such
cases, the effectiveness of BN may be compromised. When the model is limited to a small
batch size, BN may not accurately estimate the statistics needed for normalization,
leading to suboptimal performance. This is because BN computes the statistics (mean and
variance) based on the statistics of the mini-batch, and with a small batch size, the
estimated statistics may not be representative of the entire dataset. To address this issue,
Group Normalization (GN) was proposed as an alternative to BN. GN divides the
channels of a feature map into groups and computes normalization statistics within each
group independently[24]. This is in contrast to BN, which computes statistics across the
entire batch. By using group-wise normalization, GN reduces the dependency on the

batch size and performs normalization effectively even with smaller batch sizes.
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Fig 2.3 Comparison of different Norms [24]
By decoupling the normalization from the batch dimension and performing it within
groups, Group Normalization reduces the reliance on large batch sizes and improves the
model's performance, especially when dealing with limited computational resources or
large input image sizes. It has been shown to be effective in various tasks and has gained
popularity as an alternative to Batch Normalization in scenarios where small batch sizes
are preferred or necessary.

Weight Standardization is an alternative technique to normalize the weights of neural
network layers[25]. It aims to address the limitations of Batch Normalization and Group
Normalization by normalizing the weights themselves rather than normalizing the
activations. In traditional normalization techniques like BN or GN, the mean and standard
deviation are computed using the activations within a mini-batch or groups of channels.
However, Weight Standardization directly normalizes the weights of each layer by
subtracting the mean and dividing by the standard deviation of the weight values. By
normalizing the weights, Weight Standardization helps to stabilize the learning process
and improve the generalization performance of the model. It has been observed that
Weight Standardization can alleviate the issues caused by vanishing or exploding
gradients and reduce the sensitivity to the initialization of network weights. It also enables
the use of larger learning rates during training. Compared to BN and GN, Weight

Standardization has the advantage of not relying on mini-batch statistics or groups of
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channels, making it applicable to various batch sizes and network architectures. It has
been shown to be particularly effective in scenarios with small batch sizes or when the
data distribution varies significantly across samples. Overall, Weight Standardization is a
normalization technique that operates directly on the weights of neural network layers. It
offers an alternative to traditional activation-based normalization methods like BN and
GN, providing improved stability, generalization, and applicability across different

network setups.
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Chapter 3  Proposed Approach

Cascade RPN classification
i (2 stages)
image | swin PAPEN |—» Cascade Rol
Transformer > (3 stages)
bbox
regression
4 Swin Stages input with 4
(2,2,18,2) feature maps by 4

Swin stages

Fig 3.1 Architecture of our model

Pedestrian detection is a task in computer vision that aims to recognize and locate
pedestrians in images or videos. In this task, other objects are considered as background,
and the algorithm focuses solely on pedestrians. By employing image processing and
machine learning techniques, pedestrian detection plays a crucial role in various
applications such as traffic safety, video surveillance, and autonomous driving.

Because the two-stage detector can achieve more accurate localization, the entire
model architecture is designed using a two-stage framework which is shown as Fig 3.1.
It includes a feature extractor, an RPN (Region Proposal Network), and an ROI Align
connected to the final ROI Head. We believe that with this architecture, we can achieve
better performance in pedestrian detection. In this two-stage architecture, the feature
extractor is first used to extract features from the input image. Then, the RPN is
responsible for generating candidate pedestrian bounding boxes. The RPN uses anchors
to generate candidate boxes at different positions and scales. It classifies and performs
bounding box regression based on the features within each box, filtering out candidate
boxes that potentially contain pedestrians. Next, the RPN-generated candidate boxes are
aligned with the feature map using ROI Align, which extracts local features required for
each candidate box. ROI Align addresses the issue of pixel misalignment in traditional
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ROI Pooling methods, thus improving localization accuracy. Finally, the ROI Head
performs classification and bounding box regression on each candidate box. The ROI
Head typically consists of fully connected layers and classifiers, which classify the
extracted local features to determine whether a candidate box contains a pedestrian and

perform further refinement of the bounding box.

3.1 Feature Extractor

In the feature extractor, we have chosen the Swin Transformer v2 as the backbone
model, which has shown excellent performance in recent years. Pedestrians on the road
exhibit diverse poses and may be occluded by objects or blend with the surrounding
background, making pedestrian recognition challenging. Therefore, we utilize the Swin
Transformer, which can balance computational complexity while incorporating the entire
input image through window shifting self-attention mechanisms. The Swin Transformer
has demonstrated outstanding results in various computer vision-related papers and
downstream tasks, such as object classification, object segmentation, semantic
segmentation, and more. Its ability to capture global contextual information and handle
long-range dependencies makes it well-suited for addressing the challenges posed by
pedestrians in complex scenes. Swin Transformer v2 is an improved version of the Swin
Transformer, with three main enhancements[26]:

Post-normalization: The v2 version incorporates layer normalization after the self-
attention layer and MLP (Multi-Layer Perceptron) block. This normalization helps
stabilize gradients and improves the overall training stability.

Scaled cosine attention approach: Instead of using dot product similarity, the v2 version
employs the cosine similarity measure to compute the relationships between token pairs.

In the original self-attention mechanism, the similarity measurement between pairwise
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features is computed using the dot product. However, the authors of the Swin Transformer
v2 observed that when replaced with post-normalization, in larger models, certain blocks
or heads may be dominated by specific features in the attention map. To address this issue,
they replaced the dot product similarity with cosine similarity. By using cosine similarity,
they aim to mitigate the problem of certain feature pairs having excessively large dot
products, which can dominate the attention computation. The cosine function inherently
ranges between -1 and 1, and it is already normalized. This normalization property helps
alleviate the issue of a few dominant features overpowering the attention mechanism.
Log-spaced continuous position bias: The v2 version redefines the relative position
encoding by introducing log-spaced continuous position bias. This helps the model better
capture positional information and enables more effective handling of long-range
dependencies.

By incorporating these improvements, the Swin Transformer v2 aims to mitigate the
limitations of its predecessor and enhance its performance, stability, transferability, and

memory efficiency.

3.2  Feature Pyramid Networks

Feature Pyramid Networks Path Aggregation Feature Pyramid Networks

Fig 3.2 (a) Structure diagram of FPN and (b) Structure diagram of PAFPN. Comparing

the two, PAFPN has one more bottom-up path than FPN[27]
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After conducting extensive experiments, we have found that PAFPN (Path Aggregation
Network) yields the best performance improvement for pedestrian recognition. Therefore,
we have chosen PAFPN as the FPN (Feature Pyramid Network) in our model. In contrast,
other FPN architectures such as NASFPN or DYHead did not enhance the overall
recognition performance and, in fact, resulted in a negative impact.

According to the original research papers, NASFPN[12] is specifically designed for
RetinaNet[17], a single-stage object detection framework. NASFPN aims to optimize the
feature pyramid network architecture for the RetinaNet model. Single-stage detectors lack
the RPN and ROI align and directly predict bounding boxes after obtaining feature maps
from the feature extractor. Due to the structural differences between single-stage and two-
stage detectors, applying FPNs that perform well in single-stage detectors directly to two-
stage detectors can have adverse effects.

On the other hand, DyHead[28] is designed to be added after the FPN, utilizing neural
networks to enhance semantic structure. However, since DyHead adds several blocks of
neural networks, it incurs additional computational resources. The original paper suggests
that stacking 6 blocks of DyHead yields the best results. Stacking 6 blocks of DyHead is
not affordable or feasible for our research due to the increased computational cost and
additional GPU memory consumption. It is not a matter of practicality, but rather a
limitation in terms of available resources. Therefore, we tested stacking 2 or 3 blocks of
DyHead, but both resulted in a decrease in overall recognition performance. As a result,

adding DyHead is not suitable for the architecture of our research paper.
3.3 Region Proposal Network
In the architecture of the RPN (Region Proposal Network), we use the Cascade
RPNJ15]. This algorithm specifically addresses the misalignment issue between anchors
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and features that occurs during the iterative process of the RPN. The Cascade RPN utilizes
a single anchor and combines anchor-based and anchor-free criteria to determine positive
samples. It takes advantage of the benefits of multi-stage fine-tuning while maintaining
alignment between features and anchors. To achieve this, the Cascade RPN employs
adaptive convolution for fine-tuning the anchors at each stage. The adaptive convolution
can be seen as a lightweight ROI Align layer. In summary, the Cascade RPN employs
adaptive convolution in stage one to align anchors with features. The aligned anchors are
then passed to stage two, where classification is performed to determine whether they
belong to the background or foreground. Additionally, regression is applied to further
refine the bounding boxes. During Stage 1, the adaptive convolution mechanism adjusts
the anchors to align with the corresponding features, ensuring accurate localization. In
Stage 2, the aligned anchors are evaluated for classification, distinguishing between
background and foreground regions. Simultaneously, regression is utilized to refine the
bounding box coordinates of the detected objects, improving their accuracy. The entire

architecture of the Cascade RPN can be referred to as Fig 3.3(e).

C A c1 Al c A2 c1 Al c A2
Conv Conv Conv Conv Conv Conv Conv Conv Conv Conv
H H1 H2 H1 Offset H2
Conv Co Conv Conv Conv DefConv
I — Backbone I — Backbone T I I —> Backbone T T I
(a) RPN (b) Iterative RPN (c) Iterative RPN+
Loc Shape C A Al c2 A2
Conv Conv Conv Conv Conv N £ Conv Conv
e, D
Ve, o] [
Lo, [ |
H1 Offset H2 H1 S H2 ot e
Conv Conv DefConv DilConv | Bridged feature | AdaConv { |
[0 ]
i y ! Ehi
I — Backbone I — Backbone Regressed anchor
(d) GA-RPN (e) Cascade RPN

Fig 3.3 The architecture of different networks. “I”, “H”, “C” and “A” denote input

image, network head, classifier and anchor regressor, respectively.[15]
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By incorporating these stages and operations, Cascade RPN enhances the alignment

between anchors and features, leading to improved detection performance.

3.4 Cascade RCNN

Finally, in the model architecture, we have adopted the Cascade RCNN technique[16].
One common issue with proposals generated by the RPN is that a significant portion may
have low quality, making it challenging to use a high threshold detector directly. Cascade
R-CNN addresses this problem by employing cascade regression as a resampling
mechanism, gradually increasing the IoU value of the proposals at each stage. The
Cascade RCNN consists of multiple stages, and at each stage, the proposals undergo a
refinement process through cascade regression. The initial proposals from the RPN are
used as input in the first stage. The proposals that pass a certain IoU threshold in the
previous stage are resampled and refined in the current stage. This resampling mechanism
ensures that the proposals adapt to higher threshold requirements in subsequent stages.

In the Cascade RCNN framework, each stage's detector is designed to avoid overfitting
and ensure that there are enough samples satisfying the threshold conditions. This is
achieved by carefully selecting and resampling the proposals based on their loU with
ground truth during each stage. By doing so, the detectors in each stage are trained on a
subset of proposals that are more likely to be high-quality detections. With the cascading
structure, the deeper stages of the Cascade RCNN are optimized to handle proposals with
higher IoU thresholds. As the proposals progress through the cascade, the detectors in
each stage focus on refining the proposals and improving their quality. This enables the
model to effectively handle more challenging cases and detect objects with higher
accuracy. During inference, although the initial proposals generated by the RPN may have

lower quality, the quality improves at each stage of the Cascade RCNN. As the proposals
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pass through each stage, they undergo refinement and are filtered based on their quality.
This iterative process helps align the proposals with the higher IoU thresholds of
subsequent stages. As a result, the mismatch between the proposals and detectors with

higher IoU thresholds is mitigated, leading to improved detection performance.
3.5 Normalization

In our experiments, we incorporated Group Normalization[24] and Weight
Standardization[25] techniques. Group Normalization is a normalization technique that
divides the channels of a feature map into groups and normalizes each group
independently. This helps in reducing the dependency on batch sizes and improves the
generalization ability of the model. Weight Standardization, on the other hand, is a
regularization technique that normalizes the weights of the neural network layer-wise. It
helps in stabilizing the weight updates during training and has been shown to improve the
generalization performance of deep models. By using these techniques, we aim to
enhance the training stability, promote better convergence, and improve the overall

performance of the model.
3.6  Sampler

In the original RPN, positive and negative samples are randomly sampled based on
their IOU with ground truth boxes for training. This sampling technique helps balance the
number of positive and negative samples and guides the model's optimization direction.
However, if all anchor-generated candidate boxes are included for training without this
technique, it would result in many negative samples, which predominantly represent
background regions. This imbalance would lead to negative samples dominating the
training loss, most of which are easy to classify, thereby deviating the model's
optimization from the desired objective.
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However, inspired by the success of the focal loss in single-stage detectors, we
attempted to implement a similar technique in the RPN training of the two-stage detector.
The focal loss reduces the weight of easy-to-classify samples, allowing the model to focus
more on challenging samples during training. It uses an appropriate function to measure
the contribution of easy and hard samples to the total loss. By leveraging the advantages
of focal loss, we can avoid balanced one-to-one sampling of positive and negative
samples in RPN training and we can use all bounding box generated by all anchors to join
the training, regardless of whether they are positive samples or negative samples.
Experimental results have shown that although this approach may slightly reduce training
speed and increase memory consumption, it can further improve the accuracy of the

model.

3.7 Loss Functions

In our approach, we made specific choices for the loss functions used in different
components of the model. For the classification loss in the RPN (Region Proposal

Network), we replaced the commonly used cross-entropy loss with focal loss[17].

Jify=1
CE(pe) = —log(p),pr = {1 _pp ];zlerwise B-1

Jify=1
FL(py) = —a(1 —p,)" log(py), pr = {1 _pp ];zlerwise (3-2)

(3-1) is the cross-entropy loss in binary classification, p is the probability when y=1.
(3-2) formula is the focal loss in binary classification, p is the probability when y=1.

The formula (3-1) and (3-2) are compared, where the focal loss has an additional
modulating factor (1 —p;)Y. For accurately classified samples, p, approaches 1,
causing the modulating factor to approach 0. Conversely, for inaccurately classified
samples, the modulating factor approaches 1. As a result, compared to the cross-entropy
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loss, the focal loss has no significant impact on inaccurately classified samples, but it
reduces the loss for accurately classified samples. Overall, this effectively reduces the
weight of accurately classified samples in the total loss calculation.

This change was motivated by the sampling strategy mentioned earlier. Focal loss helps
address the issue of class imbalance by down weighting easily classified samples and
focusing more on hard examples, thereby improving the model's ability to handle

challenging cases.

3-3)

Leioy =1—10U +c—2+ v, V= pus arctanﬁ— arctanﬁ

p?(b,b,) 4 < wit W>

For the bounding box regression loss of the candidate boxes, we introduced the CIOU
(Complete Intersection over Union) loss[21] as a replacement for the smooth L1 loss used
in the Mask R-CNN paper. Equation (3-3) describes the CIOU (Complete Intersection
over Union) Loss. In equation (3-3), p%(b,b,) represents the Euclidean distance
between the center points of the prediction box and the ground truth, while the term v
accounts for the aspect ratio difference between the prediction box and the ground truth.
Minimizing CIOU involves not only considering the Intersection over Union (IOU) but
also ensuring that the prediction box and ground truth center points overlap as much as
possible, while their aspect ratios remain similar. We found that CIOU loss leads to faster
convergence and achieves better results. CIOU loss considers both the spatial overlap and
geometric properties of the bounding boxes, providing a more comprehensive measure
for localization accuracy. In the ROI (Region of Interest) head, we followed a similar
approach to the cascade R-CNN paper. We used cross-entropy loss for classification and

continued to employ the CIOU loss for bounding box regression. This choice aligns with

the cascade R-CNN framework and helps maintain consistency throughout the model.

29

doi:10.6342/NTU202304551



3.8 Data Augmentations

In the study, we encountered the challenge of limited pedestrian recognition datasets,
such as CityPersons, which contains only 2,975 images. Without data augmentation, the
model would be prone to overfitting due to the limited dataset size. To address this issue,
we employed various data augmentation techniques.

The data augmentation methods used in this research include random resizing followed
by random cropping. Additionally, we applied random transformations to the images,
such as altering the HUE, saturation, brightness, and contrast, performing equalization,
and introducing shadows and sun flares (each augmentation with an independent event
probability of 0.5). We found that these augmentation techniques significantly improved
the issue of overfitting, thereby enhancing the model's generalization capability.

By applying random resizing and cropping, the model learns to adapt to different
scales and perspectives of pedestrians in various images. The random transformations,
such as altering HUE, saturation, brightness and contrast, introduce variations in color,
further diversifying the dataset and reducing the risk of overfitting to specific color
distributions. The equalization technique helps to normalize the image histogram,
enhancing the visibility of important pedestrian features. Finally, the introduction of
shadows and sun flares adds variations in lighting conditions, enabling the model to

handle different illumination scenarios.
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Fig 3.4 data augmentation process

Overall, the combination of these data augmentation techniques effectively mitigates
overfitting, enhances the model's ability to generalize to unseen data, and improves

pedestrian recognition performance.

3.9 Post Processing

In our post-processing stage, we employed an improved version of NMS called Soft-
NMSJ[29], which addresses the limitations of traditional NMS used in the Faster R-CNN
paper. Traditional NMS aggressively eliminates bounding boxes with IOU values greater
than the NMS threshold by setting their scores to zero, effectively discarding them. This
can result in missed detections, especially in scenes with occlusions.

The Soft-NMS approach takes a different strategy by applying a score penalty
mechanism to bounding boxes with IOU values above the threshold. Instead of
completely discarding them, the scores of these bounding boxes are reduced using a
penalty function that is positively correlated with IOU. When neighboring detection
boxes have high IOU values with the current box, they should be suppressed, leading to
lower scores. Bounding boxes that are far away from each other remain unaffected. Soft-
NMS effectively mitigates the issue of missed detections caused by the aggressive

elimination of bounding boxes in traditional NMS, particularly in scenarios involving
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object occlusions.

In the field of pedestrian recognition, scenes often involve high occlusion, where
multiple pedestrians can be densely packed in specific areas of an image. This poses a
challenge for object detection algorithms, as traditional NMS may mistakenly discard
bounding boxes due to their overlapping nature.

By using Soft-NMS, we can reduce the issue of false deletion caused by overlapping
detection boxes. Soft-NMS applies a penalty mechanism to bounding boxes with high
IoU values, effectively suppressing their scores while still retaining them for further
consideration. This means that even in densely crowded scenes with overlapping
pedestrians, the algorithm can retain and accurately detect the individual pedestrians
without discarding their bounding boxes based solely on overlap.

Soft-NMS helps address the specific challenges posed by occlusion in pedestrian
recognition scenarios. By considering the degree of overlap and applying a penalty rather
than a binary elimination, Soft-NMS improves the overall detection accuracy and ensures

that important pedestrian instances are not overlooked.
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Chapter 4 Experiments

4.1 Datasets

We conducted experiments using two of the most well-known datasets in pedestrian
detection: CityPersons[30] and the Euro City Persons[31] dataset.

CityPersons is a subset of the Cityscape dataset, consisting of 2,975 training images
and 19,238 pedestrian instances. The images were collected from 27 major cities in
Germany over several months, covering the seasons of spring, summer, and autumn. The
images were captured during daylight hours under favorable weather conditions. This
dataset offers a wide diversity of scenes due to its varied locations and extended time span.
However, a limitation of CityPersons is the relatively small number of training samples
available.

The Euro City Persons dataset, on the other hand, provides a larger training set with
21,795 images and 201,323 pedestrian instances. The dataset encompasses 12 different
countries and 31 cities, offering a diverse range of scenes throughout all seasons of the
year. While the Euro City Persons dataset contains images captured during both daytime
and nighttime, for the sake of fair comparison with other methods, we solely used the
daytime images in this research.

Both datasets also include various other objects, such as groups of people,
motorcyclists, and vehicles, besides pedestrians. However, since the focus of this study is
on accurately detecting pedestrians, during training, we considered all other objects as
background and solely focused on the task of identifying pedestrians.

By utilizing these datasets, we aimed to evaluate the performance of our model in
accurately detecting pedestrians, considering the challenges posed by different lighting
conditions, occlusions, and diverse scenes. A detailed comparison of these two datasets is
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provided in Table 4.1.

Due to the submission limit imposed by the dataset's test server, we were unable to
utilize the testing set for evaluating the model's performance. As a common practice
followed in other researches, we used the validation set as a substitute for testing and
reported the results based on its evaluation.

Table 4.1 Pedestrian detection datasets summary

datasets CityPersons Euro City Persons

images 2975 21795
pedestrians 19238 201323
ped@strlans 6.47 9.2
per images

cities 27 31

weather dry dry, wet

resolutions 2048 x 1024 1920 x 1024

4.2 Evaluation metric

To measure the performance of the detector, we utilized the LAMR[32] (Log-average
miss rate), also known as MR™2.
To understand the meaning of this metric, it is necessary to first grasp the concepts of

MR (miss rate) and FPPI (false positives per image).

B FN(c) 4_1
M= TP + FN(O) -1
FpP
fppi = #i;;) 4-2)
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MR (miss rate) represents the ratio of missed detections (i.e., the number of false
negatives) to the total number of ground truth instances in the dataset. It indicates the
percentage of instances that were not detected by the model. FPPI (false positives per
image) measures the average number of false positive detections per image. It quantifies
the model's tendency to generate false alarms or incorrectly detect objects that are not
present.

The evaluation is performed by considering detections with a confidence value equal to
or greater than a specified threshold, denoted as c¢. This threshold serves as a control
variable commonly used in object detection evaluation. By lowering the threshold value
¢, more detections are included in the evaluation, resulting in a higher number of potential

true or false positives and fewer false negatives. And then we can define the formula

1
LAMR = exp —Z log | mr| argmax fppi(c) (4-3)
9 7 fppi(o)s f

The (4-3) formulas can be visualized as representing a two-dimensional coordinate
system with MR and FPPI as the vertical and horizontal axes, respectively. By selecting
different values for ¢, a curve can be plotted in this coordinate system. The LAMR metric
calculates the average of the MR values corresponding to nine logarithmically spaced
FPPI values on this curve.

In general, due to the non-rigid nature of pedestrians, we consider any predicted
bounding box with an Intersection over Union (IoU) value greater than or equal to 0.5
with the ground truth as a true positive. It means that the predicted bounding box has a
significant overlap with the actual pedestrian.

Furthermore, each ground truth can only be matched to one predicted bounding box. If
multiple predicted bounding boxes correspond to the same ground truth, we select the one

with the highest score and consider it as a true positive, while the other corresponding
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detections are treated as false positives. After matching all predicted bounding boxes to
the ground truth, any ground truth that remains unmatched is considered a false negative.
These are the instances where the detector failed to detect the presence of pedestrians.
This evaluation approach ensures that we focus on correctly identifying pedestrians
with a reasonable overlap and penalize false positives and false negatives accordingly.
The evaluation of pedestrian detection models considers various criteria to
accommodate the variations in size and visibility of pedestrians. These criteria are
detailed in Table 4.2 and follow the established conventions used in other references.
Differentiating the evaluation based on these criteria allows us to assess the detection

performance of the model across different scales and levels of occlusion.

Table 4.2 Evaluation settings for pedestrian datasets based on height and visibility.

CityPersons Euro City Persons
Settings
Visibility Height Visibility Height
Reasonable [0.65, oo] [50, oo] [0.6, o] [40, oo]
Small [0.65, o] [50, 75] [0.6, oo] [30, 60]
Heavy Occluded [0.2, 0.65] [50, oo] [0.2, 0.6] [40, o]
All [0.2, o] [20, oo] [0.2, oo] [20, oo]

4.3  Training Settings

We utilized a hardware configuration consisting of a single Nvidia GeForce RTX 4090
for all training and testing processes. Due to budget and cost constraints, we were unable
to utilize workstation-grade GPUs such as A100 or V100 for computation. Therefore,
within the limitations of our budget, we opted to use the best GPU available for personal
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computers, which is the Nvidia GeForce RTX 4090, to conduct our experiments.

Because of the limited VRAM of the Nvidia GeForce RTX 4090, we had to take certain

measures during training. Firstly, we applied data augmentation techniques to resize the

images to smaller resolutions. Additionally, we had to limit the batch size in our

experiments, with the maximum being a batch containing 5 images. These steps were

taken to optimize memory usage and ensure efficient training within the constraints of the

available hardware resources.

In terms of model architecture parameters, we used the Swin Transformer with a base

size, a drop rate of 0.2, and pretraining on the ImageNet-22k dataset at a resolution of 224

x 224 pixels. For detailed information on the model size settings, you can refer to

Table 4.3
Table 4.3 Detailed architecture of the Swin Transformer
Swin-Tiny Swin-Small Swin-Base Swin-Large
[dim 96, head 3] [dim 96, head 3] [dim 128, head 4] [dim 192, head 6]
stage 1
X 2 X 2 X 2 X 2
[dim 192, head 6] [dim 192, head 6] [dim 256, head 8] [dim 384, head 12]
stage 2
X2 X2 X 2 X 2
tace 3 [dim 384, head 12] | [dim 384, head 12] | [dim 512, head 16] [dim 768, head 24]
Slage X 6 x 18 x 18 x 18
[dim 768, head 24] | [dim 768, head 24] | [dim 1024, head 32] | [dim 1536, head 48]
stage 4
X 2 X 2 X 2 X 2
window
size for 7x7 7 %7 7x7 7 X7
all stage

In our configuration of PAFPN, we consistently output a 5-level FPN pyramid, with

each level having a channel size of 256. This choice of the number of levels and channel
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size aims to strike a balance between capturing multi-scale information and maintaining
computational efficiency. By having a 5-level FPN pyramid, we can effectively capture
features at different scales, enabling the model to handle objects of various sizes. The
choice of a channel size of 256 allows for sufficient expressive power while keeping the
computational demands manageable.

In the ROI (Region of Interest) align layer, we observed that increasing the size of the
ROI feature map from 7 X7 to 14 X 14 improves the precision of bounding box
localization. By increasing the size of the ROI feature map, we provide a finer level of
spatial resolution, allowing for more precise localization of the objects within the region
proposals. The larger feature map size enables the model to capture more detailed
information about the objects, which helps improve the accuracy of bounding box
regression. By adjusting the ROI feature map size to 14x14, we strike a balance between
computational efficiency and localization accuracy, achieving better results in this task.

Finally, we utilized the AdamW optimizer for training the model. We set the initial
learning rate to 0.001 and incorporated a warm-up phase for the first 1000 iterations,
gradually increasing the learning rate to its initial value. After the 20th epoch, we decayed
the learning rate to 0.0001 for further fine-tuning. The total training duration consisted of

40 epochs.

4.4  Results

In this section, we present a comprehensive comparison between our proposed method
and other state-of-the-art approaches in the field. The comparison is based on the
evaluation metric LAMR, also known as MR~?, which was discussed earlier. The

detailed comparison results are presented in Table 4.4
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Table 4.4 Comparison of our method with the current state-of-the-art detectors based on

MR™?
Method /MR ™2 Reasonable Small Heavy Occ All
City Persons

MS-CNN[33] 13.32% 15.56% 51.88% 39.94%
Cascade R-CNNJ[34] 11.62% 13.64% 47.14% 37.63%
Repulsion Loss[35] 11.48% 15.67% 52.59% 39.17%
AdaptiveNMS[36] 11.40% 13.64% 46.99% 38.89%
OR-CNN[37] 11.32% 14.19% 51.43% 40.19%
HBA-RCNNJ38] 11.26% 15.68% 39.54% 38.77%
DVRNet[39] 11.17% 15.62% 42.52% 40.99%
MGANTJ40] 9.29% 11.23% 40.97% 38.86%
Ours 11.46% 15.10% 37.63% 34.76%

Euro City Persons

SSD[41] 10.5% 20.5% 42.0% -

YOLOV3[41] 8.5% 17.8% 37.0% -

Faster R-CNN[41] 7.3% 16.6% 52.0% -

Cascade-RCNN[34] 6.6% 13.6% 33.3% -

F2D-Net[42] 6.1% 10.7% 28.2% -
Ours 5.7% 13.8% 28.0% 18.4%

The Table 4.4 provided in the previous section demonstrates a fair and just comparison
between our model and other state-of-the-art models. All models listed in the table were
trained solely on their respective datasets, without any additional training data from other

sources. For instance, the models evaluated on the Euro City Persons dataset were only
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trained on the Euro City Persons training dataset, and they did not utilize any data from
the CityPersons or other pedestrian datasets, such as Caltech. Similarly, our model was
trained exclusively on the Euro City Persons training data without incorporating data from
other sources. By ensuring that all compared models adhere to this criterion, we maintain
fairness and consistency in the evaluation process. This approach guarantees that each
model's performance is solely based on the data available within its respective dataset and

avoids any potential biases that could arise from using additional training data.

digfiwlty:reasonable, ignore_other_vru=True, evaltype=pedestrian difficulty=occluded, ignore_other_vru=True, evaltype=pedestrian
10 10°
—— lamr: 0.057821266918988194 —— lamr: 0.2800591132041071

Miss Rate
=
5]
Miss Rate
-
151

1072 10-2 4

T T T T T
1074 1073 1072 107t 10° 10t
FPPI FPPI

Fig 4.1 LAMR on the Euro City Persons dataset

Fig 4.1 illustrates the LAMR (Log Average Miss Rate) of the experiment on the Euro
City Persons dataset. As mentioned earlier when introducing LAMR, as MR (Miss Rate)
decreases, FPPI (False Positives Per Image) tends to increase. Therefore, LAMR serves
as an indicator that balances both characteristics and impartially assesses the model's
performance.

Based on our experimental findings, our model demonstrated outstanding performance
on the Euro City Persons dataset, surpassing even CNN-based models in reasonable
scenarios. However, its efficacy on the CityPersons dataset was comparatively weaker,
showing slightly inferior performance in various situations, except for cases involving
occlusion. We attribute this difference in performance to the nature of transformer-based

models, which typically require a larger amount of training data for optimal performance.
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With the relatively limited training data available in the CityPersons dataset, it is expected
that the performance of the transformer-based model may not match that of traditional
CNN-based models. Despite the somewhat lower performance on the CityPersons dataset,
we found a noteworthy trend in our model's detection capabilities. Specifically, when it
comes to heavily occluded pedestrians, our model outperformed many other models. This
result strongly indicates that our model is highly suitable for scenarios involving occluded
pedestrians. The capability of our model to excel in detecting heavily occluded
pedestrians highlights its potential in real-world scenarios where pedestrians are
frequently obstructed by various objects or other individuals. While further improvements
may be possible for detecting pedestrians in reasonable and small scales, our model's
proficiency in handling heavily occluded pedestrians is a promising and valuable aspect

of its performance.
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Fig 4.2 Detection result: the green rectangle is our predictions and the blue ones is the

ground truths.
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Chapter 5 Conclusion

In this study, we proposed a novel pedestrian detection model based on the Swin
Transformer architecture. Our model leveraged the powerful capabilities of the Swin
Transformers to capture long-range dependencies and spatial relationships in images,
making it well-suited for the challenging task of pedestrian detection. Through a series of
carefully designed modules and techniques, we aimed to address various issues, including
occlusions and scale variations, commonly encountered in pedestrian recognition
scenarios. We also employed data augmentation techniques, including random resizing,
cropping, and various image transformations, to mitigate overfitting due to the limited
size of the training datasets. Additionally, we used soft-NMS for post-processing, which
improved the detection results, especially in scenarios with high levels of occlusion. For
loss functions, we employed focal loss in the RPN stage and CIOU loss for bounding box
regression, which enhanced the model's convergence speed and detection accuracy.
Furthermore, we incorporated group normalization and weight standardization,
contributing to stable and efficient training. Our experiments on the Euro City Persons
and CityPersons datasets demonstrated promising results. In particular, our model
exhibited exceptional performance in detecting heavily occluded pedestrians, showcasing
its potential for handling challenging scenarios where traditional methods may struggle.
However, we also acknowledged that the performance on CityPersons was not as strong
as expected, which we attributed to the limited amount of training data available for a
Transformer-based backbone. This finding highlighted the need for larger datasets to fully
unleash the capabilities of our model. Our proposed pedestrian detection model based on
the Swin Transformer architecture demonstrated promising results, particularly in

scenarios with heavily occluded pedestrians. We showcased its potential to handle
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challenging detection tasks and provided fair comparisons with other state-of-the-art
models to objectively assess its performance. However, further improvements could be
achieved with larger training datasets and more powerful hardware. Our research
contributes valuable insights and sets a foundation for future advancements in pedestrian

detection using Transformer-based models.
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