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MANDARIN ABSTRACT (中文摘要)  

 在影像處理領域中，邊緣偵測是一個基礎而重要的問題，因此一直都有受到持

續討論。我們觀察到在傳統的邊緣偵測方法中，有一個雖然關鍵卻較少受到關注的

子領域：脊偵測；此外有個能在邊緣偵測上派上用場，卻沒那麼常被實際運用到的

演算法：雙邊濾波器。 

在論文的前半部分中，我們先整理了包含邊緣偵測的三個領域的內容，並簡單

介紹了該領域歷年來的發展，以及對該領域內不同的方法按照類別做了總整理。其

中也包含了領域中一些方法的介紹和理論說明。 

而在後半部分，我們則基於前人提出過的方法，嘗試提出了關於雙邊濾波器以

及脊偵測的改進方法。在雙邊濾波器這部分，我們透過影像平滑和線性組合來避免

了傳統雙邊濾波器常有的無法保存特徵細節的問題。而在脊偵測這部分，我們則是

透過了多尺度的 LoG 偵測器來求出脊特徵在影像特定位置上的大小，再配合另一

個脊偵測演算法來求出該位置周圍的變化幅度來判斷是否為脊特徵，藉此也避開

了該方法原有的無法選定脊特徵大小的問題。 

最後我們則透過實驗去重現前半部分中部分比較重要的方法，以及我們提出

的方法在不同圖像上的效果，以此比較我們的方法的實際表現。 

 

 

關鍵字: 邊緣偵測、雙邊濾波器、脊偵測 
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ABSTRACT 

Edge detection is a fundamental and important issue in the image processing field, 

and thus has been continuously discussed. We observe that among the traditional edge 

detection methods, there is a sub-domain that has received less attention although it is 

crucial: ridge detection, and an algorithm that can be useful for edge detection but is not 

so often used in practice: the bilateral filter. 

In the first half of the thesis, we first organize the content of the three areas, and give 

a brief overview of the development of the area over the years, as well as a summary of 

the different methods in the area. An introduction and theoretical description of some of 

the methods in the field are also included. 

In the second half of the thesis, we try to present improved methods for bilateral 

filters and ridge detection, based on the methods proposed by the previous researchers. In 

the part of bilateral filter, we avoid the problem of not preserving feature details, which 

is often found in traditional bilateral filters, by image smoothing and linear combination. 

For ridge detection, we use a multi-scale LoG detector to determine the size of a ridge 

feature at a specific location in the image, and then use another ridge detection algorithm 

to detect ridge by variations, which avoids the problem of not being able to select the size 

of the ridge feature. 

Finally, we experimentally reproduce some of the more important methods in the 

first half of the thesis and compare the performance of our method with the results of our 

proposed method on different images. 

 

Keyword: edge detection, ridge detection, bilateral filter 
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Chapter 1 Introduction 

1.1 Motivation 

In recent years, deep learning has improved the performance of edge detection to 

a level that is difficult to achieve with traditional techniques. However, this has led to 

the decline of traditional methods based on theoretical interpretation of edges, and we 

believe that there should still be room for development in this section. 

Therefore, we would like to approach the two related domains, ridge detection and 

bilateral filter, to see if we can make some breakthroughs among the three fields from 

these two domains, which are not often interacted with edge detection domains these 

years, and to improve the understanding of the low-level features of images. 

1.2 Thesis organization 

In Chapters 2 to Chapter 4, we will introduce edge detection, ridge detection, and 

bilateral filter, respectively. This section is presented as an overview, so the main focus 

will be on the presentation of the more meaningful techniques in this area, as well as an 

introduction for some of the more useful or innovative methods and the explanation of 

their algorithm. 

In Chapter 5, we present the improved bilateral filter and ridge detector, and then 

we will evaluate the effectiveness of these proposed methods through the designed 

scoring function. And in Chapter 6, we will demonstrate implementations of the edge 

detection, ridge detection, and bilateral filter algorithms mentioned in the previous three 

chapters and compare them with the proposed method. 

Finally, we will summarize the performance of the proposed method in Chapter 7 

and discuss the future work. 
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Chapter 2 Edge detection 

2.1 Edge Detection 

2.1.1 Introduction 

 In computer vision, image feature is the structures that contains some specific 

characteristics, such as edges, corners, blobs and ridges. Among these features, edges 

are a low-level feature which has a strong image brightness variation. Because edges 

are usually boundaries between different regions, this feature can help in other image 

processing and computer vision domains, like image recognition, face recognition, 

target tracking, corner detection, image compressing, image segmentation, and others. 

Edge detector is the processing algorithm which detect and locate the edge feature 

from an input digital image, and then outputs an edge map that records information 

such as location and intensity of the edge features. Although edges are low-level image 

feature, detecting them is often a complex task because they are often interfered with 

by noise or shadows in the image, and sometimes they have different intensities and 

sources. And because of this, various types of edge detectors have been continually 

proposed. 

With reference to the papers I have read and the following two papers [1][2][3] on 

edge detection survey, I will first briefly explain the basic techniques related to edge 

detection in this chapter 2.1, then categorize edge detection into three broad categories: 

A, traditional hand-crafted methods, and learning based methods, and introduce them 

in the remaining three chapters 2.2, 2.3 and 2.4.  

2.1.2 Image differentiation 

In most cases, edge features will separate two regions with different intensity, so 
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the edge pixels between those must have a significant change in intensity. These 

changes can be detected by the partial derivatives or gradient, so assume that the input 

image is a grayscale image, then the image differentiation, i.e. partial derivatives of its 

intensity function could be a judgement of edge. The mathematical definition of partial 

derivative is (1), so set ℎ as 1 pixel width and apply in this formula (), and then we get 

this formula (2). 

  (1) 

  (2) 

Partial derivative can detect the slope on its direction. Therefore, the edge 

perpendicular to the derivative direction will be detected by the partial derivative. So if 

we calculate the partial derivative of an 2D image on the x-axis and y-axis direction, 

then we can detect the edge of all directions, as Fig. 2.1(b)(c) show.  

 

Fig. 2.1 The partial derivative map. 

After getting the two partial derivatives, some edge detectors just calculate the 

summation of derivative absolute value as edge map, i.e. |
𝜕𝐼

𝜕𝑥
| + |

𝜕𝐼

𝜕𝑦
|, and others use the 

definition of image gradient ∇𝐼 and calculate the gradient norm ‖∇𝐼‖ as edge map, i.e. 

𝜕𝑓(𝑥)

𝜕𝑥𝑖
= ⁡ lim

ℎ→0

(𝑓(𝑥1, … , 𝑥𝑖 + ℎ,… , 𝑥𝑛) − 𝑓(𝑥1, … , 𝑥𝑛))

ℎ
 

𝜕𝐼(𝑥, 𝑦)

𝜕𝑥
= 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥, 𝑦)⁡,

𝜕𝐼(𝑥, 𝑦)

𝜕𝑦
= 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦) 
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√(
𝜕𝐼

𝜕𝑥
)
2

+ (
𝜕𝐼

𝜕𝑦
)
2

. The formula of gradient and its magnitude and angle are shown below. 

  (3) 

  (4) 

2.1.3 Thresholding 

Threshold is a simple method to convert the edge score map to a binary edge map. 

The method requires a threshold value, and label the pixels larger than threshold value 

as edges. 

The threshold value can be decided by human, or be calculated by algorithm. This 

value should be larger than the value of noise or background part, and smaller than the 

edges in image. We can see that if the gap between value of edge pixels and others are 

bigger, the easier the threshold can separate them, so the performance of threshold 

depends not only on the selection of threshold value, but also on how good the edge 

detector is. However, it’s almost impossible to separate them perfectly. Besides, edges 

in different image also have different magnitude, so the same threshold might not be 

optimized for all edge segments in one image. 

2.1.4 Non Maximum Suppression 

Non Maximum Suppression(NMS) is an edge thinning method which can better 

localize edge pixels. To explain how NMS works, let's take a look at the 1d model of 

edge first. An edge would be like a cliff if we consider the intensity of image as height, 

so the 1d edge will look like a slope on the figure (Fig.5(a)). To find the edge on the 

∇𝐼 =
𝜕𝐼

𝜕𝑥
𝒙 +

𝜕𝐼

𝜕𝑦
𝒚 

|∇𝐼| = √(
𝜕𝐼

𝜕𝑥
)
2

+ (
𝜕𝐼

𝜕𝑦
)
2

, angle(∇𝐼) = tan−1 (
𝜕𝐼

𝜕𝑦
/
𝜕𝐼

𝜕𝑥
) 
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intensity function, we can find local maxima or local minima points of first-order 

derivate (first-order derivate might be negative too), or find the zero-crossing points 

(i.e. positive on one side and negative on the other side) on the second-order derivate, 

and NMS is just like the maximum calculation we use in 1d edge.  

Edges on edge map are like lines of mountains, so using local maximum 

calculation on edge map will only get some peaks points, not the ridges we want. And 

the NMS is just the method. Just like the height of mountain, the magnitude of edge 

will be higher when it is closer to the ridge top, and gradient of magnitude will be 

oriented towards the ridge top too, as the Fig.6.  

 

Fig. 2.2 The NMS Diagram  

NMS is based on this fact and proposes a condition to filter out the redundant 

pixels. For each pixel, we will compare it with its two neighbor pixels on the direction 

of gradient. The neighbor pixels will only contain the other 8 pixel inside the 3*3 region, 

and gradient direction will be chosen as one of the 4 directions in 0°, 45°, 90°, 135°(no 

need to consider the opposite direction). For example, the direction of gradient in 

Fig.6(b) is from top left to bottom right, so we would compare the top left pixel and 

bottom right pixel to the middle pixel. And if and only if the magnitude of middle pixel 

is greater than both of two pixels on the gradient direction, that means it is the closest 

pixel to the ridge on the gradient direction and satisfied the NMS condition. 



doi:10.6342/NTU202400629

 6 

2.1.5 Edge fixing 

This kind of methods use the morphology mathematical calculation. One example 

is that sometimes a long edge segment will have a short break, perhaps only several 

pixels wide. A solution of it is to perform morphological closing calculation, which can 

merge any two disjoint blocks. However, the adjacent edges will also be merged by 

closing calculation, so some methods will just merge the two line segments whose end 

points are close enough to each other [5]. After finding endpoints, it will connect these 

two endpoints along the local maximum pixels on edge score map. 

Another example method also proposed by [5] is the repairing of trihedral junction. 

In Fig. 2.3(a), The three places mark by number are trihedral junctions. Edges in 

trihedral junction regions are usually less obvious, as the Fig. 2.3(b) shows, and 

therefore we need to detect these regions and fix them. 

 

Fig. 2.3 Demonstration of trihedral junction fixing [5] 

Image curvature are often used to detect corners or trihedral junctions, and the 

formula of curvature is:  

  (5) 

𝑘 =
𝐼𝑥𝑥𝐼𝑦

2 − 2𝐼𝑥𝐼𝑦 + 𝐼𝑦𝑦𝐼𝑥
2

|∇𝐼|3
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Where the ∇𝐼 means image gradient, 𝐼𝑥, 𝐼𝑦 mean first order image derivatives, and 

𝐼𝑥𝑥, 𝐼𝑦𝑦 mean second order image derivatives. After we get the curvature (the Fig. 2.3 

(c)), find the regions where curvature is big enough (Fig. 2.3 (d)) and locate the edge 

endpoints inside the regions (Fig. 2.3 (e)). Then if any chain of pixels exist that are local 

maxima of edge score and are connected to an edge endpoint, these pixels are added to 

the edge map. 

2.2 Gradient and Gaussian based methods 

2.2.1 Derivative convolution kernels 

As mentioned earlier, the image differential is a simple method to obtain edge 

scores, and convolution kernels are initially used to calculate better partial derivatives 

for the edge detection. Convolution is a widely used mathematical operation in image 

processing. Simply speaking, convolution can detect features in the image that are 

similar to the corresponding convolution kernel matrix. The formula for 2D matrix 

convolution are show below.  

  (6) 

Where 𝐼 is the image function, 𝐻 is the convolution kernel matrix (kernel), 𝐹 is the 

output feature function. 

Therefore, we can also use convolution kernels to derive the image partial 

derivative.  

  (7) 

Where 𝐻𝑥 and 𝐻𝑦 are the partial derivative kernels of x and y. Take the previous 

𝐹[𝑥, 𝑦] = 𝐼[𝑥, 𝑦] ∗ 𝐻[𝑥, 𝑦] = ∑ ∑ 𝐼[𝑥 − 𝑖, 𝑦 − 𝑗] ⋅ 𝐻[𝑖, 𝑗]

∞

𝑗=−∞

∞

𝑖=−∞

 

𝜕𝐼(𝑥, 𝑦)

𝜕𝑥
= ⁡𝐼(𝑥, 𝑦) ∗ 𝐻𝑥(𝑥, 𝑦),

𝜕𝐼(𝑥, 𝑦)

𝜕𝑦
= ⁡𝐼(𝑥, 𝑦) ∗ 𝐻𝑦(𝑥, 𝑦) 
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partial derivative formula as an example, in that derivative formula, the kernel of x and 

y directions, 𝐻𝑥 and 𝐻𝑦, are: 

 𝐻𝑥 = [
1
−1
] , 𝐻𝑦 = [1 −1] (8) 

(
𝜕𝐼(𝑥, 𝑦)

𝜕𝑥
= 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥, 𝑦)⁡,

𝜕𝐼(𝑥, 𝑦)

𝜕𝑦
= 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦)) 

There are many kinds of convolution kernels for computing derivatives, and here 

is a table about 3 famous kernels invented at that time for edge detection.[1] 

Table 2.1 Kernels of derivative 

Method Kernels of first derivative on x & y directions 

Roberts 

𝐻1 = [
0 1
−1 0

] , 𝐻2 = [
1 0
0 −1

] 

(*It’s not on x and y direction, but still perpendicular to 

each other) 

Sobel 𝐻𝑥 =
1

4
[
1 2 1
0 0 0
−1 −2 −1

] , 𝐻𝑦 =
1

4
[
1 0 −1
2 0 −2
1 0 −1

] 

Prewitt 𝐻𝑥 =
1

3
[
1 1 1
0 0 0
−1 −1 −1

] , 𝐻𝑦 =
1

3
[
1 0 −1
1 0 −1
1 0 −1

] 

Different kernels have different pros and cons, for example, the Prewitt kernel 

perform better on the vertical or horizontal straight edge. There are many kernels with 

different designs and functions, and even different sizes and directions. 

2.2.2 Gradient calculation 

Gradient is a function of image which return vector which calculate the slope and 

angle of that pixel, so the vector norm of gradient can also be seen as an edge score. 

There are mainly two methods to compute the gradient of pixels form a digital 
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grayscale image, and both of which need the calculation of partial derivatives. The first 

calculating method, which we already mention in previous section, is to sum up two 

partial derivative vector in the x-axis and y-axis directions, as the Fig. 2.4(a) shown.  

 

Fig. 2.4 Gradient calculation method by using first order derivatives 

The formula of its vector form ∇𝐼, gradient magnitude |∇𝐼| and gradient angle 

angle(∇𝐼) are shown below.⁡𝒙 and 𝒚 mean the unit vector on the direction of x-axis 

and y-axis. 

The other definition of gradient is the maximum derivative of derivatives on all 

directions. Therefore, we need to choose some angles which evenly distribute between 

0° and 180° and smaller than 180° (for example: these four direction 0°, 45°, 90°, 135°), 

and then find the maximum partial derivative. The magnitude and angle of gradient will 

be the partial derivative and its angle (Fig. 2.4(b)). 

Both methods have their own advantages and disadvantages, but the former 

method is more simple, because the latter method usually need more partial derivatives 

to achieve a good gradient, while the former only need 2. Besides, the calculation of 

derivative in x or y directions is easier than which of other directions, so most of the 

earlier edge detectors, such as Sobel and Prewitt, use the former method. 

2.2.3 Image smoothing 

The disadvantage of the gradient methods is that derivatives from simple kernel 

are easily interfered by image noise. Noise is an unavoidable problem in images and 

can affect edge detection and interfere with edge pixel location. Although noise can be 

(a)       (b) 

 (b) 
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removed by the image smoothing techniques, it’s a challenge to remove noise while 

minimizing the loss of image features and blurring of edges, so how to take both into 

account is the main point[1][3]. 

One of these is median filter and mean filter. Mean filter will take the weighted 

average of window, which containing target pixels and its neighbor pixels, as the new 

pixel intensity, and one of the most commonly used weighting functions is the Gaussian 

function. Median filter[61] will take the median number inside window as new pixel 

value, which makes it particularly effective against certain types of noise(for example 

impulse noise). 

2.2.4 Gaussian blur 

Gaussian blur is a widely-used image smoothing method, and as its name, 

Gaussian blur can blur the input image to eliminate noise. Although the blurring will 

reduce both noise and detail of image, but most of the edge feature can still be reserved. 

  

Fig. 2.5 The Gaussian kernel 

Gaussian blur is applied by doing a convolution between the input image and 

Gaussian function (Fig. 2.5) which is also called normal distribution. And the formula 

of Gaussian kernel is at here: 

  (9) 

𝐺(𝑥, 𝑦) = ⁡
1

2𝜋𝜎2
exp (−

𝑥2 + 𝑦2

2𝜎2
) 
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where the scale constant σ is the scale size of Gaussian kernel. From the aspect of signal 

processing, Gaussian is a kind of low-pass filter, and noise is usually high- frequency 

signal. Therefore the scale constant determines how high the frequency of the noise is 

blocked by Gaussian filter. In other words, the larger the scale constant, the lower the 

allowable frequency, and the wider and stronger the noise will be removed, the greater 

the blurring will be. 

The fact that Gaussians have the property of scaling also makes Gaussian-based 

methods capable of detecting edges of corresponding widths, perhaps making them 

ultimately widely used by later edge detection methods. In the next paragraph we will 

introduce two of the earliest classical methods for Gaussian-based edge detection, 

Canny edge detector[4] and Laplace of Gaussian(LoG) [7]. 

2.2.5 Canny edge detector 

Canny edge detector is proposed by Canny [4] in 1986. Canny used mathematics 

to prove that derivate of Gaussian is one of the optimal solutions which satisfied these 

three criteria: good detection, good localization and single response. And due to the 

nature of convolution, we can use a single kernel to calculate the derivate of Gaussian, 

as the following equations show: 

 𝑓(𝑥) ∗ 𝑔(𝑥) = 𝑔(𝑥) ∗ 𝑓(𝑥) (10) 

 [𝑓(𝑥) ∗ 𝑔(𝑥)] ∗ ℎ(𝑥) = ⁡𝑓(𝑥) ∗ [𝑔(𝑥) ∗ ℎ(𝑥)] (11) 

  (12) 

Derivate of Gaussian kernel is a basis of many later edge detectors. However, 

because the kernel of derivative is much smaller than the kernel of Gaussian or derivate 

of Gaussian, so just calculate the derivatives from image blurred by Gaussian is faster, 

∂

∂𝑥
(𝐼(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦)) = (

∂

∂𝑥
∗ 𝐺(𝑥, 𝑦)) ∗ 𝐼(𝑥, 𝑦) 
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and that’s what Canny do in his edge detection algorithm. 

 

Fig. 2.6 Derivative of Gaussian(DoG) kernel 

Except for Gaussian blur, Canny also used NMS and double threshold to thinning 

the edge and make edge better. We have introduced NMS before, and double threshold 

is an improved version of threshold. There is an observation that some edge segments 

are deep in some parts and particularly shallow in others, which makes us uneasy to use 

a single edge to detect the total edge segments. Therefore, the double threshold method 

uses two threshold value, the high threshold 𝑇1 and low threshold 𝑇2. The pixels larger 

than high threshold 𝑇1 will satisfied the edge condition, and the edge smaller than high 

threshold 𝑇1, but larger than low threshold 𝑇2 can also satisfied the condition.  

 

Fig. 2.7 The demonstration of double threshold 

As the Fig. 2.7 shows, the shallow edge parts (green edge) which connected to 

deep edge parts (red edge) can be reserved, while the lonely shallow edge are 

abandoned. 

(a)            (b) 

 (b) 
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2.2.6 Laplacian of Gaussian edge detector(LoG) 

Laplacian of Gaussian(LoG) edge detector is proposed at 1980 [7]. Laplacian or 

Laplace operator is an operator which can be consider as the 2D case of second-order 

derivative, and Laplacian of Gaussian is just the literally what it means, the Laplacian 

of image blurred by Gaussian smoothing. The formula of Laplacian and LoG are shown 

below. 

 (13) 

∇2𝐺(𝑥, 𝑦) =
𝜕2𝐺(𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝐺(𝑥, 𝑦)

𝜕𝑦2
= −

1

𝜋𝜎4
[1 −

𝑥2 + 𝑦2

2𝜎2
] exp (−

𝑥2 + 𝑦2

2𝜎2
) 

  (14) 

The figure of LoG is also shown below. The shape of this kernel function looked 

like a Mexican hat, so it’s also called Mexican hat function (Fig. 2.8). 

 

Fig. 2.8 The LoG kernel (a) 1D case (b) 2D case 

There are two ways to find the location of the edge, the former is to find the 

extremum points of first-order derivative (Fig. 2.9(b)), and the latter is to find the zero-

crossing of second-order derivative(Fig. 2.9(c)). Therefore, the zero-crossing of 

Laplacian can be used as edge feature. 

∇2𝑓 =
𝜕2𝑓

𝜕𝑥2
+
𝜕2𝑓

𝜕𝑦2
 

(a)               (b) 

 (b) 
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Fig. 2.9 1D-case of edge detect (a) Original ridge intensity function 𝐼(𝑥) (b)(c) 

First and second derivative of intensity function 𝐼(𝑥) 

The detection of zero-crossing pixels is easy, just picks up those pixels whose 

positive and negative are different to their neighbor pixels. In order not to detect two 

pixels in one zero-crossing, the algorithm will only consider the down and right 

neighbor pixels (i.e. only positive x & y directions). 

LoG is also useful in other image processing too, but in order to save computation, 

it is sometimes approximated by a graphically similar Difference of Gaussian function, 

as the equation (15) shown. 

 ∇2𝐺(𝑥, 𝑦, 𝜎) ⁡≈ ⁡𝐺(𝑥, 𝑦, 𝜎1) − 𝐺(𝑥, 𝑦, 𝜎2) (15) 

2.2.7 Multi-detector and multi-scale fusing 

  

Fig. 2.10 Edge maps with different scale of DoG. 

(a)-(d) Edge maps from small scale to big (e) Fusing edge map. 

Edge is a complex feature and the results from a single detector are often 

insufficient, so some methods will apply multiple edge score form different detectors 

to produce a single edge map. Common functions used in merging of different edge 

score map are the Euclidean norm or maximum function. 

 (a)     (b)     (c)      (d)    (e) 

  (a)       (b)       (c) 
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Multi-scale method is one of the solutions of another normal problem on the 

Gaussian based methods. If we consider the information of the image as signals, then 

the gradient based edge detector is a high-pass filter which detect the high-frequency 

edge feature, but Gaussian smoothing will block the noise signal whose frequency is 

higher, so the Gaussian-based edge detectors will be a band-pass filters whose scale is 

decided by the size of Gaussian kernel. We can see that in Fig. 2.10(a)-(d). A solution 

of it, which was also mentioned as a solution by Canny[4] in the same thesis, is to fuse 

multiple Gaussian edge score with different scales, and that’s exactly the multi-scale 

methods. As Fig. 2.10 (e) show, the performance of multi-scale edge map become better 

than map of single scale. 

2.3 Other hand-crafted methods 

Gaussian-Based method still has some problem to be fixed, so many new methods 

were proposed after Canny and LoG. Some of them are improvements of the old 

methods, while others try to find new solutions to get better performance.  

These improvement novel methods can be broadly classified into two categories. 

The first kind of methods focus on the optimization of edge map computation, and they 

usually utilize multiple different edge maps by different methods, and then use them to 

generate a better edge map. An example is the previously mentioned multi-scale method. 

Another kind of methods are the pre-processing and post-processing, which are the 

processing performed on input images to make the edge map better, such as Gaussian 

blur or NMS and threshold. Of course there are some edge detection use the both 

methods.  

2.3.1 Color edge methods 

As shown in Section 2.2, the gradient-based and Gaussian-based methods are 
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designed for gray-scale images, and in the case where the input image is a color image, 

the image is usually converted directly to grayscale by the brightness formula (16). 

 𝐼(𝑥, 𝑦) = ⁡0.229 ⋅ 𝑅(𝑥, 𝑦) + 0.587 ⋅ 𝐺(𝑥, 𝑦) + 0.114 ⋅ 𝐵(𝑥, 𝑦)  (16) 

A color image is composed by three color channels: red, green and blue. As a result, 

color information will be lost while a color image is converted to a grayscale image.  

There are two main types of color edge methods: the first type is to calculate the 

edge scores for each color channel separately and then just combine them; the other 

class is to use the color vector. In a color image, a color vector consisting of three color 

intensities will be assigned to a pixel, and the distance between the color vectors will 

be used as the difference between pixels in the edge score calculation. The distance can 

be calculated by different formulas, such as Euclidean distance, or 𝜒2 distance[5],  

  (17) 

Where the two colors are 𝑔 = (𝑔1, 𝑔2, 𝑔3) and ℎ = (ℎ1, ℎ2, ℎ3). Besides, there’s also 

an approach to calculate color gradient by matrix multiplication. 

Another way to think about it is the color space conversion. One benefit of this 

method is that non-RGB color spaces, such as the Lab color space and YCbCr color 

space, sometimes appear better on the edge detection, and another is that these color 

space can separate brightness and color components, which helps us greatly in reducing 

the effects of shadows. The color-boundary method is also an example which uses the 

Red-Green and Blue-Yellow color channels in its calculation. 

Apart from these methods, a thesis [10] proposed a method based on Pointwise 

Mutual Information(PMI) which use the information theory to help the edge judgement. 

This paper finds that many false edges, such as those produced by stripes or leaves, the 

neighboring pixels will be certain color combinations, i.e. color adjacency. Take Fig. 

𝜒2(𝑔, ℎ) =
1

2
∑

(𝑔𝑖 − ℎ𝑖)
2

𝑔𝑖 + ℎ𝑖
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2.11 as example, the color adjacency of the stripes on the zebra (red circle) is black and 

white, and the color adjacency of grass and trees (blue circle) in background is two 

different green. 

 

Fig. 2.11 An example of color adjacency in PMI[10] 

And this paper performed PMI on the pixel colors of the input images to analyze 

the probability of two colors being adjacent. If any two pixels have high probability of 

color adjacency, then the probability of edge between them will be reduced. 

2.3.2 Fuzzy methods 

Fuzzy methods are based on the fuzzy logic which uses the concept of fuzzy and 

uncertainty. Unlike Boolean logic which expresses things as 0 and 1, the definition of 

edge in fuzzy methods is related to uncertainty, so some studies try to apply fuzzy theory 

to edge detection [2]. Besides, fuzzy logic is usually nonlinear (while convolution is 

linear), so it can do things that can't be done in other linear methods. 

Fuzzy methods are complicated, so I will only take Russo’s fuzzy edge detector 

[6] as example to explain how these methods work. Russo’s method will use some fuzzy 

function (Fig.14) in the edge judgement and the min and max calculations to eliminate 

the salt-and-pepper type noise.  
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Fig. 2.12 An example of fuzzy function [6] 

We can see that the function value will not change while the input value is small, 

which can be seen as a method to avoid noise from affecting the output. 

2.3.3 Texture methods 

For most edge detectors, once if the average intensity (or color) of the regions on 

both sides of an edge are similar, then this edge is hard to be detected, so edge detections 

about texture are proposed. 

In Martin’s method[9], the edge map is computed by four different edge score, and 

one of them is the texture feature edge score. In the computation of texture edge score, 

first 64 texture patterns(textons) are computed from the 200 training images (Fig. 

2.13(b)). After using these textons as convolution kernels and performing convolution, 

a texture map with texture vector of each pixel will have a length of 64 will be generated 

(Fig. 2.13(c), (d)), and the texture edge score will be the 𝜒2  difference() between 

feature vectors of different pixels. 

 

Fig. 2.13 The textons and texture map [9] 

 (a)                             (b)                          (c) 
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2.3.4 Wavelet methods 

Wavelet transform is a signal analysis which can detect signal and its frequency. 

Different from the Fourier transform, it can also detect the location of signal; besides, 

it can detect the same signal at different scales, so it’s also applied for edge detection. 

For edge detection, we need to use the discrete wavelet transform. As the Fig 

shows, it can decompose the signal into high frequency and low frequency components 

on the two axis. 

 

Fig. 2.14 An example of 2D wavelet decomposition. [8] 

Another method [14] use shearlet transform, which is an extension of wavelet 

transform, to applied a multi-scale direction detector and get a good performance[2]. 

2.3.5 Edge-preserving smoothing methods 

Gaussian smoothing is a widely used denoising method, but it sometimes becomes 

a problem in many edge detection methods because it will also erase the edge feature. 

Another kinds of methods to solve that problem is the edge-preserving smoothing. It’s 

an image smoothing algorithm which could detect edge feature during the smoothing 
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process and then preserves them afterwards. 

There are many edge-preserving smoothing methods, like anisotropic diffusion, 

bilateral filter, adaptive bilateral filter and guided image filter, and this part will be 

explained in more detail in the following Chapter 4. 

2.4 Learning based methods 

2.4.1 Traditional learning-based method 

Unlike traditional hand-crafted methods where edge detectors are designed 

manually, learning-based methods allow the algorithm to automatically find the desired 

image patterns from the input image data, or to learn how to judge edges by multiple 

input features through the training data. Learning-based methods are more efficient than 

human methods at these works, so some learning-based edge detection methods have 

been proposed and have performed well on edge detection. 

For example, Pb[9] using texton learned from training and use logistic regression 

to detect edge by different image feature maps, and SE[11] use learning-based decision 

tree to classify the edge patterns and then detect them. 

2.4.2 Convolutional Neural Network 

The emergence of deep learning has impacted many domains, and edge detection 

is also included. In the deep learning domain, Convolutional Neural Network(CNN) is 

the architecture which has the best performance in image processing, and therefore 

almost all of the best-performing edge detection methods recently are CNNs. CNNs are 

quite powerful in learning high-level features in images, so they have good ability to 

extract semantic edges which cannot be easily detected by human designed methods. 

The main topic of CNN models is to make the neural network model more efficient, 
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which is not similar to those traditional methods. For example HED[17] applied the 

powerful VGG16[16] structure, and RCF[12] and BDCN[18] focus on simplify the 

parameter number and solving multiscale problem. 

There are also some methods focus on the characteristic of edge and training data 

of edge detection, for example the pidinet[19] change the convolution logic in CNNs 

to better fit the edge detection, and UAED[20] focus on the uncertainty of groundtruth 

image of training data and try to fix it. 

2.4.3 Transformer model 

Transformer is a powerful deep learning architecture which is mainly used on 

natural language processing and computer vision fields. It just likes the convolution 

with unfixed kernel size and shape. The Vision transformer(ViT) model even got a score 

better than CNN models while the amount of training data is huge. In the EDTER 

method[13], the pre-train model of ViT is used in the training, and EDTER is the 

currently best edge detector in the performance score. 

2.5 Demonstration of survey methods 

In the process of studying related papers, we have successfully practiced some of 

the previous edge detection methods either through the programs provided by paper 

authors or by writing programs based on the algorithms provided in those papers. We 

hope this simple demonstration shows how edge detection technology is evolving as 

technology advances. 
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Table 2.2 Experiment outputs of survey edge detection methods 

Original 

image 

   

Prewitt 

   

Sober 

   

Log 

   

Canny[4] 

   

Edge-

Drawing 

[59] 
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HED[17]  

   

RCF[12] 

   

BDCN 

[18] 

   

Pidinet 

[19]  

   

RINDNet 

[60] 
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Chapter 3 Ridge filter 

3.1 Introduce 

Ridges and valleys are image features consist of connected linear local maximum 

or minimum pixels, respectively, and because valleys are ridges with opposing intensity 

distributions, so detections of both ridges and valleys are usually categorized as ridge 

detections. 

Ridge detection is useful in medical or biological images. Besides, both of ridges 

and edges are image features that appear on the boundaries of an object or an area, and 

thus ridges are sometimes regarded as a kind of edges. Because of the similarity 

between ridges and edges, ridge detection has a lot in common with edge detection. The 

explanations of the following ridge detection methods are based on my survey and two 

papers of ridge detection survey[21]. 

3.2 Undirected filters 

Convolution is the most intuitive tool to detect image features, and for ridge 

features, which often have their direction, there are two kinds of convolution methods: 

undirected filters and oriented filtered. 

The most common undirected filters for ridge detection are the LoG filter, which 

is also used as an edge detector at Section 2.2.6. In contrast to the usage in edge 

detection, where the zero-crossing of LoG is used as edge feature, in ridge detection the 

LoG is just the ridge score. Beside from LoG, Difference of Gaussian (DoG) or 

difference of Low-pass filter are also used in ridge detection.  

3.3 Oriented Filters 

Oriented filters are designed to be rotatable and capable to detect feature which 

has the same angle with filter. An example is the 2nd derivative Gaussian kernel. 
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  (18) 

As the cases of edge detectors, this kernel can be rotated to detect ridge in different 

directions. 

There are mainly two methods of oriented filter methods. The first method is to 

apply filter with corresponding angle on image, which requires knowledge of the 

direction of the ridges. A common way to find out the ridge direction of a pixel is 

usually to calculate its gradient direction. The second method is to apply filters with all 

angles and fuse the ridge scores of all angles. 

3.3.1 Low-Pass filter based methods 

Except for the Gaussian-based kernel filters, There are still other Low-Pass filters 

than can be used to make oriented filters, for example the Ziou Filter 𝑍 and Gouton 

Filter 𝑅 [21] (Fig. 3.1(a)).  

 (19) 

Their second derivative (Fig. 3.1(b)) can be use as the ridge detector in 1D, and 2d 

kernel can be derived by taking a Low-Pass filter and its vertically transposing 2nd 

order differentials. 

 

Fig. 3.1 Ziou, Gouton and Gaussian filters [21] 

𝑑2𝐺

𝑑𝑥2
(𝑥, 𝑦) =

1

2𝜋𝜎6
(𝑥2 − 𝜎2) exp (−

𝑥2 + 𝑦2

2𝜎2
) 

(a)          (b) 

 (b) 
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3.3.2 Gaussian based methods 

Methods in this part are designed based on the derivatives of the Gaussian kernel. 

Steerable Filter [32] can derive a series of filter that are odd-symmetric or even-

symmetric consisting of derivative with different order, and the design of filter can be 

changed by adjusting the parameters. For example, two of the steerable filters are given 

by: 

 𝑆𝐹(𝑀 = 2, 𝜇 = 0) = ⁡−√2 3𝜋⁄ 𝜎𝑔𝑦𝑦⁡ (20) 

𝑆𝐹(𝑀 = 4, 𝜇 = 0.25) = ⁡−0.392𝜎𝑔𝑦𝑦 + 0.113𝜎𝑔𝑥𝑥 

 +0.034𝜎3𝑔𝑦𝑦𝑦𝑦 + 0.113𝜎
3𝑔𝑥𝑥𝑦𝑦 + 0.113𝜎

3𝑔𝑥𝑥𝑥𝑥 (21) 

where 𝑔  is the Gaussian kernel and 𝑔𝑥𝑥 = 𝜕2𝑔 𝜕𝑥2⁄ , 𝑔𝑦𝑦 = 𝜕
2𝑔 𝜕𝑦2⁄ , 𝑔𝑥𝑥𝑥𝑥 =

𝜕4𝑔 𝜕𝑥4⁄ , 𝑔𝑥𝑥𝑦𝑦 = 𝜕
4𝑔 𝜕𝑥2𝜕𝑦2⁄ , 𝑔𝑦𝑦𝑦𝑦 = 𝜕4𝑔 𝜕𝑦4⁄  .  

 

Fig. 3.2 The steerable filter (a) Case(𝑀 = 2, 𝜇 = 0)(b) Case(𝑀 = 4, 𝜇 = 0.25)[32] 

SOAGK[22] uses the second order derivative of anisotropic Gaussian kernel, i.e. 

it uses a Gaussian kernel with adjustable aspect ratio, and then try all the combinations 

of angles, scales, and aspect ratio. The advantage of it is that longer kernels are more 

powerful at detecting some ridge lines, for example the crossing lines or straight line 

situation. SCIRD[24] further makes the curvature of kernels can be adjusted so that the 

kernels would be curved-support, which is powerful at detecting curved ridge segment. 
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3.3.3 Hilbert transform 

Paper [23] proposed an algorithm which is designed to detect edge and ridge in 

the same time. For this purpose, it uses a pair of odd and even symmetric filters for 

detecting edges and ridges, respectively. Then, in order to make the two filters 

orthogonal to each other, one of the filters will be the Hilbert transformations of another 

one, which is a new method to generate a ridge filter. 

3.4 Non-filter methods 

Unlike filter methods that use convolution to measure the magnitude of second 

derivative to detect ridges, derivative-based methods use derivatives to derive ridges. 

Many of these methods will still use those Gaussian derivative kernel to calculate the 

derivatives to minimize the effect of noise. 

3.4.1 Hessian matrix 

Hessian matrix is a tool to find out the main partial derivatives along all directions 

of the image function. For a 2D image, its Hessian matrix of any given point will be a 

2*2 matrix. 

 𝐻 = [
𝐼𝑥𝑥 𝐼𝑥𝑦
𝐼𝑥𝑦 𝐼𝑦𝑦

] , where 

{
 
 

 
 𝐼𝑥𝑥 =

𝜕2𝐼

𝜕𝑥2

𝐼𝑥𝑦 =
𝜕2𝐼

𝜕𝑥𝜕𝑦

𝐼𝑦𝑦 =
𝜕2𝐼

𝜕𝑦2

 (22) 

The two eigenvalues of Hessian matrix are the magnitude of the two main 

curvatures (2nd derivatives) of the intensity function, and the two eigenvectors are the 

direction of those 2nd derivatives. These two main derivatives will orthogonal to each 

other, and one of it will be the biggest derivative in all direction. 

An early method [25] used Hessian matrix to classify pixels as flat, edge or corner 

pixels by the two eigenvalue magnitudes, and this method can be used to detect ridge 

by the same idea of it. The latter methods usually utilize one or two of these eigenvalues, 
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or use the direction of main derivatives to check ridge direction. 

3.4.2 Weingarten 

Weingarten map[21] is a method to calculate the two principal curvatures at a 

given point of the surface. Curvature rather than 2nd order derivative. 

For an 1D signal 𝐼, the second derivative of it will be, and the curvature of it will 

be as below.  

  (23) 

Where 𝐼𝑥 means the 1st x derivative of signal 𝐼 and 𝐼𝑥𝑥 means the 2nd x derivative. 

In a nutshell it is like the 2nd order derivative which perpendiculars to the signal 𝐼. And 

for a 2D intensity function, Weingarten is like the 2D version of formula and the 

curvature version of Hessian matrix. 

  (24) 

Similar to Hessian matrix, the matrix here is a matrix representation of curvature. 

The two eigenvalues and eigenvectors are the two principal curvature of intensity 

function and the two directions of them. Therefore, these eigenvalues and eigenvectors 

can also be used in ridge detection. 

3.4.3 Separatrices and Drainage patterns 

These two types of methods[29] are designed for real ridges and valleys on digital 

elevation models(DEMs) image, i.e. map of terrain height, and because of this, both of 

these two kinds of methods utilize the rain water simulation simulated by the slope of 

DEMs images. 

𝐾𝑥𝑥 =⁡−
𝐼𝑥𝑥

(1 + 𝐼𝑥)3∕2
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Separatrices method is based on the concept of watersheds and river basins. High 

mountain ridge usually acts as watershed that divide different river basins, which means 

that rainwater falling on either side of it will eventually flow to different place. So the 

pixels whose slopelines go to the same minimum will be categorized in the same river 

basins, and the boundaries between different districts will be ridge. 

Drainage Patterns method uses the fact that rainwater that falls to the surface will 

eventually flow into the valley in real world. It simulates the water flow which flows to 

the lower place on DEM by the slope direction, and then measures the flow of water as 

valley scores. 

3.4.4 Divergence 

A paper [31] found that in some ridge points, for example points around a saddle 

point, the ridge will be discontinuous. In order to solve this problem, method proposed 

by paper uses the divergence of normalized gradient vector as ridge score and then use 

structure tensor to replace gradient vector in further method. 

 

Fig. 3.3 A demonstration of finding ridge by divergence [31] 
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3.4.5 Polynomial-fitting methods 

The Gaussian derivative kernels can be regarded as ways to estimate the shape of 

local area around a pixel point, and Savitzky-Golay (S-G) filter is something similar, 

which uses a LS polynomial fit to estimate the local area, so that the image derivatives 

of different orders and scalar can be determined. The polynomial-fitting process also 

has a smoothing effect, so Gaussian is not needed after this calculation. 

Method in [27] uses this polynomial to find the image derivatives of different order, 

and then use the derivatives to estimate the ridge direction, which will be used in the 

fusion of ridge maps detected by different oriented filters. [6] uses the polynomial to 

find out the Hessian matrix and check the variations of intensity along four directions 

of Hessian principal curvature, and that determine whether a point is plane, edge, peak, 

corner or a ridge by the combination of variations. 
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Chapter 4 Bilateral filter 

4.1 Introduce of bilateral filter 

Bilateral filter [33] is an edge-preserving smoothing filter for images or signal. 

Although Gaussian Blur is a very common and useful tool in many image processing, 

but one of the problem with it is that smoothing process also causes the low-level 

feature such as edges in the image to disappear. To solve this problem, edge-preserving 

smoothing methods have been invented and bilateral filter is one of them. Formula of 

bilateral filter is:  

  (25) 

Where the function 𝐺𝜎𝑠 and 𝐺𝜎𝑟 mean the Gaussian function whose scale parameter 

are 𝜎𝑠 and 𝜎𝑟. In contrast, the formula of a Gaussian smoothing filter is: 

  (26) 

We can see that the weight values of bilateral filter obtained by multiplying the 

following two components: the spatial kernel 𝐺𝜎𝑠(‖𝑥 − 𝑦‖)  and the range kernel 

𝐺𝜎𝑟(𝐼(𝑥) − 𝐼(𝑦)), while the weight values of Gaussian filter only contain the spatial 

kernel. The effect of the spatial kernel is to reduce the effect of more distant pixels, and 

the effect of the range kernel is to reduce the weight of pixels in the window whose 

brightness values are far from the center pixel. In this way, the pixels close to the edge 

will not be affected by pixels on the other side of the edge, so that bilateral filter can 

prevent the edge from disappearing. 

The following papers [34][35] are referenced in this chapter. 

𝐼𝐵𝐹(𝑥) =
∑ [𝐺𝜎𝑠(‖𝑥 − 𝑦‖) ⋅ 𝐺𝜎𝑟(𝐼(𝑥) − 𝐼(𝑦)) ⋅ 𝐼(𝑦)]𝑦∈𝑊𝑥

∑ [𝐺𝜎𝑠(‖𝑥 − 𝑦‖) ⋅ 𝐺𝜎𝑟(𝐼(𝑥) − 𝐼(𝑦))]𝑦∈𝑊𝑥

 

𝐼𝐺(𝑥) =
∑ [𝐺𝜎𝑠(‖𝑥 − 𝑦‖) ⋅ 𝐼(𝑦)]𝑦∈𝑊𝑥

∑ 𝐺𝜎𝑠(‖𝑥 − 𝑦‖)𝑦∈𝑊𝑥
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4.2 Improvement of bilateral filter 

4.2.1 Speed Improvement 

Many of improvements on bilateral filter are about the computation speed. 

Because unlike the Gaussian blur, bilateral filter is non-linear and unable to use 

convolution to speed up. By the help of convolution, the complexity of Gaussian filter 

is 𝑂(𝑛 log 𝑛) where 𝑛 is the number of pixels, and the complexity of bilateral filter 

is 𝑂(𝑛𝑚) where 𝑚 is the kernel size , and the complexity of it is obviously much 

larger. In order to solve this problem, different types of speeding up methods are 

proposed and following are some examples [49].  

Durand and Dorsey [42] propose a method to approximate the output of bilateral 

filter. The formula of bilateral filter can be considered as a convolution between 

𝐺𝜎𝑠(‖𝑥 − 𝑦‖) and 𝐺𝜎𝑟(𝐼(𝑥) − 𝐼(𝑦))𝐼(𝑦) as long as pixel value 𝐼(𝑥) is a fixed value 

for all pixel position 𝑥, so if to replace the pixel value 𝐼(𝑥) with a fixed intensity value 

𝑖 to replace, then the whole computation can be done by convolution. According to this 

idea, as long as we make convolutions between 𝐺𝜎𝑠(‖𝑥 − 𝑦‖) and 𝐺𝜎𝑟(𝑖 − 𝐼(𝑦))𝐼(𝑦) 

for all possible intensity value 𝑖 in image, then we can get the output of bilateral filter 

too. But it’s still slow*, so two things are done to further speed up it: the first thing is 

to calculate some of the intensity 𝑖, and then use interpolar to approximate the other 

intensity values. The second thing is to downsample the image in the convolutions, and 

then upsample them to original resolution after convolution. 

J. Chen, S. Paris and F. Durand [44] proposed another method using a new idea:  

Bilateral Grid, which convert the 2D image to a 3D grid where the first and second axis 

are pixel position and third axis are the pixel intensity 𝐼(𝑥, 𝑦) , and then use a 3D 

Gaussian kernel to do the convolution. 
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4.2.2 Adaptive bilateral filter 

Some researches change the structure or the kernel of bilateral filter to improve 

the performance of bilateral filter, for example adaptive bilateral filter can change range 

kernel based on different locations in the image. Paper [39] proposed a bilateral filter 

(equation (27)):  

  (27) 

The value of (𝜎𝑟(𝑥), 𝜁(𝑥)) for each pixel will be decided by LoG response, so it can 

automatically adjust whether the smoothing effect should be enhanced or reduced. 

Another method[36] uses polynomial fitting on the intensity histogram as range kernel. 

 

Fig. 4.1 Adaptive bilateral filter based on polynomial fitting [36] 

4.2.3 Joint/Cross Bilateral Filter 

Joint/cross bilateral filter [45][46] is a special kind of bilateral filter, which use 

two images in the filtering, the original image 𝐼𝑛 and the guidance image 𝐼𝑔. The idea 

is to use a noise-free guidance image to derive better range kernel weight, i.e. replace 

the image intensity in range kernel with guidance image intensity.  

𝐼𝐴𝐵𝐹(𝑥) =
∑ [𝐺𝜎𝑠(‖𝑥 − 𝑦‖) ⋅ 𝐺𝜎𝑟(𝑥)(𝐼(𝑥) − 𝜁(𝑥) − 𝐼(𝑦)) ⋅ 𝐼(𝑦)]𝑦∈𝑊𝑥

∑ [𝐺𝜎𝑠(‖𝑥 − 𝑦‖) ⋅ 𝐺𝜎𝑟(𝑥)(𝐼(𝑥) − 𝐼(𝑦))]𝑦∈𝑊𝑥
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  (28) 

The guidance image should be highly associated with original image. For example, 

photo taken without flash and the same photo but taken with flash and less noise, or the 

original image and its image-processed version. If the noise-free guidance image does 

not exist, then it can be derived from a denoising filter, such as Gaussian filter [41] or 

median filter.  

4.3 Other methods 

4.3.1 Anisotropic diffusion 

Anisotropic diffusion is a recursive method[38]. This method uses a diffusion 

formula to flatten the image, and the speed of diffusion is determined by its gradient 

while keep the pixels with high gradient (below).  

  (29) 

Where ∇𝐼 is gradient of image intensity, and 𝑔 is usually a monotonically decreasing 

function which get smaller while input increases. This decreasing function ensures the 

diffusion speed will slow down near regions with high gradient value, thus preserving 

the image features.  

Anisotropic diffusion and bilateral filter are not only similar in terms of edge-

preserving; one paper [47] demonstrated that the original bilateral filter can also be 

implemented by a diffusion computation, but with a different penalty function for 

optimization than for anisotropic diffusion. 

There are many researches about anisotropic diffusion, and here is a common 

model of anisotropic diffusion methods which use a Gaussian blur in the function 𝑔. 

𝐼𝐽𝐵𝐹(𝑥) =
∑ [𝐺𝜎𝑠(‖𝑥 − 𝑦‖) ⋅ 𝐺𝜎𝑟 (𝐼𝑔(𝑥) − 𝐼𝑔(𝑦)) ⋅ 𝐼𝑛(𝑦)]𝑦∈𝑊𝑥

∑ [𝐺𝜎𝑠(‖𝑥 − 𝑦‖) ⋅ 𝐺𝜎𝑟 (𝐼𝑔(𝑥) − 𝐼𝑔(𝑦))]𝑦∈𝑊𝑥

 

 

𝑑𝐼

𝑑𝑡
= div[𝑔(‖∇𝐼‖)∇𝐼] 
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The idea of it is similar to the guidance image mentioned at Section 4.2.3.  

  (30) 

4.3.2 Guided image filter 

Guided image filter[37] is another edge-preserving smoothing method. Just like 

the joint bilateral filter, the input of this guided image filter are an input image and a 

guided image, and guided image can be the same image as the input image. This 

algorithm will approximate the input image by linearly converting the guided image 

within a window and then the output image intensity of target point will be the result of 

the linear transformation for all the windows that cover that point. 

 

Fig. 4.2 A contrast between bilateral filter and Guided image filter. [37] 

The formula of linear transformation, which transforms guided image 𝐼 to output 

𝑞 in the window 𝜔𝑘 center at pixel 𝑘, and an error function to approximate this linear 

transformation to the input image 𝑝. 

 𝑞𝑖 = 𝑎𝑘𝐼𝑖 + 𝑏𝑘 , ∀𝑖 ∈ 𝜔𝑘 (31) 

  (32) 

In which 𝑖 and 𝑘 mean the pixel indexes, and 𝑎𝑘 and 𝑏𝑘 are parameters of linear 

transform. The error function is the sum of two terms, the first term (𝑞𝑖 − 𝑝𝑖) is the 

difference between the input and output, and the second term 𝜖𝑎𝑘
2 is a regularization 

𝑑𝐼

𝑑𝑡
= div[𝑔(‖∇(𝐺𝜎(𝐼))‖)∇𝐼] 

𝐸(𝑎𝑘, 𝑏𝑘) = ∑((𝑞𝑖 − 𝑝𝑖)
2 + 𝜖𝑎𝑘

2)

𝑖∈𝜔𝑘

= ∑((𝑎𝑘𝐼𝑖 + 𝑏𝑘 − 𝑝𝑖)
2 + 𝜖𝑎𝑘

2)

𝑖∈𝜔𝑘
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parameter that penalizing large 𝑎𝑘 because the gradient of output will be proportional 

to 𝑎𝑘, i.e. ∇𝑞 = 𝑎∇𝐼. Then the solution to this minimization problem is: 

  (33) 

where 𝐼𝜔𝑘 and 𝑝𝜔𝑘 mean the intersection of guided image and input image with the 

window 𝜔𝑘. The final output is the average of the linear transformations of all windows 

containing pixel 𝑖. And because of the symmetry of the box windows 𝜔𝑘, the equation 

can be simplified as follows.  

  (34) 

where 𝑎̅i =
1

|𝜔𝑖|
∑ 𝑎𝑘𝑘∈𝜔𝑖

 and 𝑏̅i =
1

|𝜔𝑖|
∑ 𝑏𝑘𝑘∈𝜔𝑖

.  

If the guided image is equal to input image( 𝐼 = 𝑝 ), then the two linear 

approximation parameter will be 𝑎𝑘 = var(𝑝𝜔𝑘) ∕ (var(𝑝𝜔𝑘) + 𝜖)  and 𝑏𝑘 = (1 −

−𝑎𝑘) ⋅ mean(𝑝𝜔𝑘), therefore it can be deduced that: 

if var(𝑝𝜔𝑘) ≫ 𝜖, 𝑎𝑘 ≈ 1, 𝑏𝑘 ≈ 0, (𝑎𝑘 ⋅ 𝐼𝑖 + 𝑏𝑘) ≈ 𝐼𝑖 (35) 

if var(𝑝𝜔𝑘) ≪ 𝜖, 𝑎𝑘 ≈ 0, 𝑏𝑘 ≈ mean(𝑝𝜔𝑘), (𝑎𝑘 ⋅ 𝐼𝑖 + 𝑏𝑘) ≈ mean(𝑝𝜔𝑘) (36) 

Which means that if a window's variance value is large, then its average value doesn’t 

take into consideration in the output calculation, thus reducing the smoothing effect 

around the edges.  

Experiment in paper [37] shows that the performance of guided image filter is 

close to bilateral filter, and although guided image filter is non-linear, but it can use 

convolution in its calculations, which avoids the speed problem of the conventional 

bilateral filter. 

𝑎𝑘 =
cov(𝐼𝜔𝑘 , 𝑝𝜔𝑘)

var(𝐼𝜔𝑘) + 𝜖
, 𝑏𝑘 = mean(𝑝𝜔𝑘) − 𝑎𝑘 ⋅ mean(𝐼𝜔𝑘) 

 

𝑞i =
1

|𝜔𝑖|
∑ (𝑎𝑘 ⋅ 𝐼𝑖 + 𝑏𝑘)

𝑘∈𝜔𝑖

= 𝑎̅i𝐼i + 𝑏̅i 
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Chapter 5 Proposed Bilateral filter 

5.1 Algorithm 

As previously introduced, bilateral filter can preserve edge features while 

eliminating noise. However, if the bilateral filter needs to eliminate noise with higher 

amplitude, the performance of the bilateral filter will become close to that of a normal 

Gaussian smoother, resulting in the edge part being smoothed out, especially those 

ridge-type and valley-type edges. In other words: formula of the range kernel cannot 

distinguish between noise and edge.  

To solve this problem, the proposed method uses the ideas of joint bilateral filter 

and a weighted combination of original image and smoothed image. In the first part, we 

use a Gaussian smoothed image 𝑔1 as guidance image of joint bilateral filter, and then 

we get a smoothed bilateral filter output 𝑦1. Below is a 1d case formula of 𝑦1.  

  (37) 

In the last part, we set the output as the weighted combination of the bilateral filter 

output 𝑦1[𝑛]  and the input signal 𝑥[𝑛] , and using the weight to make output 

dependent with difference between the noisy signal and another Gaussian smoothed 

image 𝑦2. The scale parameter of 𝑦2 in Gaussian smoothing is 3/4 times of that in 𝑔1. 

 𝑦[𝑛] = 𝑤[𝑛]𝑥[𝑛] + (1 − 𝑤[𝑛])𝑦1[𝑛] (38) 

  (39) 

And that weight is decided by a threshold function 𝑓. If position n is in the smooth 

region, then x[n] will be near to y[n]. In this case 𝑤[𝑛] ≅ ⁡0, and the output y[n] will 

be close to y2[n]; If position n is in the edge, ridge, or valley region, then x[n] will be 

𝑦1[𝑛] =
∑ [𝐺𝜎𝑠(|𝑛 −𝑚|) ⋅ 𝐺𝜎𝑟(𝑔1[𝑛] − 𝑔1[𝑚]) ⋅ 𝑥[𝑚]]𝑚

∑ [𝐺𝜎𝑠(|𝑛 − 𝑚|) ⋅ 𝐺𝜎𝑟(𝑔1[𝑛] − 𝑔1[𝑚])]𝑚

 

 

𝑤[𝑛] = 𝑓(𝑥[𝑛] − 𝑦2[𝑛]), 𝑓(𝑥) =
1

2
+
tanh(𝜏(|𝑥|−𝑥0))

2
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much different from y2[n]. In this case 𝑤[𝑛] ⁡≅ ⁡1, and y[n] is close to the original 

signal x[n].  

5.2 Experiment  

Experiment of 1d case on two signals: 

 

 

Fig. 5.1 Experiment of two 1D signals 

And here are a simple 2D experiment, the image is from GUFI dataset[55]. 

   

Fig. 5.2 Experiment of 2D image 

(a) Original image (b) output of original bilateral filter (c) output of proposed method 

As we can see, the proposed method works better than original bilateral filter. 

(a)         (b)      (c) 

 (b) 
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Chapter 6 Proposed Ridge detector 

6.1 Algorithm 

6.1.1 Introduction 

The proposed method is based on a previous thesis, “Improved Harris' Algorithm 

for Corner and Edge Detections”[26], which was based on a different approach than 

LoG to detect ridge. This method computes the variations in the directions horizontal 

and vertical to gradient, and then utilizes the variations as conditions for determining if 

a pixel is corner, edge, peak or ridge. The following figure Fig. 6.1 is a simple 

demonstration of how it works. 

 

Fig. 6.1 Pixels classification in Improved Harris' Algorithm [26] 

Problem of this method is that it doesn't automatically determine the width of ridge,  

Proposed method uses an adaptive filter to get the scale and direction information of 

ridges, then adopts the old method to detect ridge scores, and finally applying some 

post-processing methods to optimize the ridge map.  

The general flow of the proposed method is listed below (next page). 
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Fig. 6.2 Flow chart of proposed ridge detection method 

6.1.2 Multiscale directional filter 

In order to find the best scale size of ridge at target pixel, proposed method use an 

automatic scale selection by multiscale LoG filter. And Fig. 6.3 is the experiment results 

of ideal rectangular ridge(Fig. 6.3 (a), Fig. 6.4(a)) and triangle ridge(Fig. 6.3 (b), Fig. 

6.4(b))  with width w=10 in 1d case, respectively. 

 

Fig. 6.3 The output on ridge with different LoG widths. 

   

Fig. 6.4 Relation between LoG widths and center response 

By applied LoG filters with different scale parameters, we found that the LoG filter will 

have a maximum on the center ridge if the scale parameter is proper. 

The first part is automatic scale selection. We use four LoG filter with different 

widths as follow: (𝑤1, 𝑤2, 𝑤3, 𝑤4) = (3, 5, 8, 13) , select the width with highest 

(a)               (b) 

 (b) 

 

(a)                (b) 

 (b) 
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intensity, and then decide the ridge direction and size in the following part by this width. 

 𝑘[𝑚, 𝑛] = argmax
k

𝑎𝑏𝑠(𝐿𝑘[𝑚, 𝑛]) , 𝐿[𝑚,𝑛] = 𝑟𝑜𝑢𝑛𝑑(1.5𝑤𝑘[𝑚,𝑛]) (40) 

and also, this ridge size parameter will be used in ridge direction measure: 

Φ[𝑚, 𝑛] =
𝑚 + 𝑗𝑛

√𝑚2 + 𝑛2
⁡if − 𝐿 ≤ 𝑚, 𝑛 ≤ 𝐿⁡and⁡[𝑚, 𝑛] ≠ [0,0] 

 Φ[𝑚, 𝑛] = 0⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (41) 

 𝜃[𝑚, 𝑛] = ⁡∡(Φ[𝑚, 𝑛] ∗ 𝐼[𝑚, 𝑛]) (42) 

Where the * means convolution calculation and ∡ means the argument of that complex 

number. 

6.1.3 Ridge scoring 

After knowing the angle of ridge direction, we can find out the four directions of 

variations: 

 ±𝒆1[𝑚, 𝑛] = ⁡±(sin(𝜃[𝑚, 𝑛]) , − cos(𝜃[𝑚, 𝑛])) (43) 

 ±𝒆2[𝑚, 𝑛] = ⁡±(cos(𝜃[𝑚, 𝑛]) , sin(𝜃[𝑚, 𝑛])) (44) 

where ±𝒆1 are parallel to the ridge, and ±𝒆2 are parallel to the ridge. The next step 

is to calculate the four variations. The variation orthogonal to gradient direction 

(±𝑒1)⁡need to consider shorter distance. 

 
 
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[ , ]
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c
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=
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 (46) 

If pixel [m, n] is on a ridge-like region, then its variations should satisfy the next three 

conditions:  

(i) 2 2 1 1[ , ] [ , ] [ , ] [ , ]v m n v m n v m n v m n− −+  +
 (47) 

(ii)  ( ) ( )2 2[ , ] [ , ]sign v m n sign v m n−=
, (48) 
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(iii) 2 2[ , ] [ , ]v m n v m n−+
 should be sufficient large. (49) 

So according to these requirements, the score algorithm will be as follows:  

 𝑠𝑐0[𝑚, 𝑛] = {⁡
1 if⁡𝑠𝑖𝑔𝑛(𝑣2[𝑚, 𝑛]) = 𝑠𝑖𝑔𝑛(𝑣−2[𝑚, 𝑛])

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
⁡ (50) 

 𝑠𝑐1[𝑚, 𝑛] = |𝑣2[𝑚, 𝑛] + 𝑣−2[𝑚, 𝑛]| (51) 

  (52) 

 𝑠𝑐[𝑚, 𝑛] = 𝑠𝑐0[𝑚, 𝑛] ⋅ 𝑠𝑐1
0.8[𝑚, 𝑛] ⋅ 𝑠𝑐2

0.2[𝑚, 𝑛] (53) 

6.1.4 Local maximum and refinement 

After determining the ridge score, we will perform local maximum along e2, 

which is done by the following function 

   (i)   𝑠𝑐[𝑚, 𝑛] > 𝑠𝑐[[𝑚, 𝑛] + 𝑟𝑜𝑢𝑛𝑑(𝑑𝒆𝟐)]  (54) 

where d=1, 2, …, 13. The second is that sc[m, n] should be large enough: 

   (ii) 𝑠𝑐[𝑚, 𝑛] > 4𝑚𝑒𝑎𝑛(𝑠𝑐[𝑚, 𝑛]) (55) 

Furthermore, we also remove the isolated segment. That is, if count[m, n] is the 

number of pixels in the neighbor regions Ω: {[𝑚 + 𝑎, 𝑛 + 𝑏]|−4 ≤ 𝑎, 𝑏 ≤ 4}  which 

satisfy the two constraints (i) and (ii), then we need to make sure count[m, n] is also 

large enough so that it will not be isolated segment, so the third condition is: 

   (iii) 𝑐𝑜𝑢𝑛𝑡[𝑚, 𝑛] ≥ 16 (56) 

The final ridge pixels will be those that satisfy (i), (ii), and (iii). 

6.2 Experiment 

6.2.1 Scoring method 

In many papers[9], F-measure is used as an evaluation method for the edge score. 

For an edge detection result, if we set the number of ground truth pixels to 𝑁𝑔𝑡, the 

number of detected edge pixels to 𝑁𝑑, and the number of true detected edge pixels to 

𝑠𝑐2[𝑚, 𝑛] =
|𝑣2[𝑚, 𝑛] + 𝑣−2[𝑚, 𝑛]|

10 + |𝑣1[𝑚, 𝑛] + 𝑣−1[𝑚, 𝑛]|
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𝑁𝑡𝑑, then the accuracy of this detection will be [2]: 

 Precision = 
𝑁𝑡𝑑

𝑁𝑑
 (57) 

 Recall = 
𝑁𝑡𝑑

𝑁𝑔𝑡
 (58) 

In a nutshell, precision is the accuracy among the edge pixels detected by the target 

method, and recall is the accuracy among the real edge pixels provided by ground truths. 

And F-measure is the harmonic mean of them. 

  (59) 

However, this method is more suitable for higher precision detection, and we 

found that detected ridge pixels usually have small positional deviations from ground 

truth, so we propose a measurement method that allows for positional deviations. 

The original F-measure depends only on the true detected number 𝑁𝑡𝑑 and does 

not take into account the distance between detected ridge pixels and ground truth. 

Therefore, we replace 𝑁𝑡𝑑  with summation of a distance-based functions, 

𝑒−𝜆⋅𝑑𝑖𝑠𝑡(𝑝,𝑀𝑎𝑝), where 𝑑𝑖𝑠𝑡(𝑝,𝑀) means the minimum distance between pixel 𝑝 and 

map 𝑀, which will be one if detected ridge pixels is on ground truth and decreases 

with distance from ground truth. Based on this function, new precision and recall 

function are proposed. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐷, 𝑅) =
1

|𝐷|
∑ 𝑒−𝜆⋅𝑑𝑖𝑠𝑡(𝑑,𝑅)

𝑑∈𝐷

 

𝑟𝑒𝑐𝑎𝑙𝑙(𝐷, 𝑅) =
1

|𝑅|
∑𝑒−𝜆⋅𝑑𝑖𝑠𝑡(𝑟,𝐷)

𝑟∈𝑅

 

And then we can calculate new F-measure score base on this method. 

6.2.2 Dataset 

Three datasets, GUFI[55], RITE[57] and Sketch[54], are used for this part of the 

F − measure =
2 ⋅ Precision ⋅ Recall

Precision + Recall⁡
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experiments. They are datasets of fungi, retinal blood vessels, and human sketch images, 

respectively.  

GUFI (Ghent University Fungal Images) is a dataset of fungi images, and because 

the mycelium in fungi images (Fig. 6.5 (a)) is similar to ridges, it was used as a database 

for ridge detection, and the ridge groundtruths(Fig. 6.5(b)) were also provided in this 

dataset. 

 

Fig. 6.5  Example of GUFI. (a) fungi images (b) groundtruths (c)-(i) ridge outputs. 

RITE (Retinal Images vessel Tree Extraction) is a dataset of retinal image with 

vessels groundtruths inherited from DRIVE dataset[56], and then since the retinal 

vessel are not 1-pixel width, we used a thinning algorithm [58] to thinner them. 

 

Fig. 6.6 Example of RITE. (a) the retinal vessels image (b) the vessels groundtruth 

(c) thinner ridge ground truth. 

Sketch dataset is composed of human sketch of different items. We take out a part 
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of the images in dataset, and use them as experimental input images after adding noise 

and as groundtruths after thinning by the same algorithm [58], respectively. And since 

the dataset is already images with simple thin lines, I added noise to images and 

experimented twice with different noise intensities. 

 

Fig. 6.7 Example for Sketch (a) the original sketch image (b) the noisy image (c) 

thinned image(as groundtruth). 

6.2.3 Experiment Result 

Table 6.1 Comparison of evaluation scores 

Method GUFI[55] RITE[57] Sketch[54] 

𝑛𝑖 = 0.2 

Sketch 

𝑛𝑖 = 0.4 

Proposed 0.5153 0.1813 0.6567 0.6009 

Hessian 0.4556 0.3942 0.4595 0.4360 

SGSF[32] 0.3883 0.3145 0.2529 0.2657 

SF[27] 0.3820 0.3342 0.4065 0.4276 

SOAGK[22] 0.4951 0.4036 0.5044 0.5173 

SCIRD[24] 0.5563 0.4433 0.6348 0.6424 

SymFD[23] 0.5504 0.4063 0.7830 0.7345 

where 𝑛𝑖 in Sketch dataset means the noise intensity. 

We can also see that the performance of the proposed method on datasets GUFI 

and Sketch is close to that of SCIRD and SymFD, which is better among all the methods. 

SCIRD and SymFD are two complete programs provided by the author of their papers, 

not my own programs that I have implemented according to other authors' papers, so 

they contain complete ridge optimization like multi-scale and post-processing. 
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Therefore, it is good to be close to these two methods in terms of performance. Besides, 

we can see that running time of proposed method is much faster than SCIRD and 

SymFD by Table 6.2. 

Table 6.2 Average running time in dataset GUFI 

Method Running time 

 (seconds) 

Proposed 0.1648 

Hessian 0.0304 

SGSF[32] 0.0459 

SF[27] 0.0705 

SOAGK[22] 3.0292 

SCIRD[24] 0.5934 

SymFD[23] 0.4976 

However, the performance of proposed method on RITE dataset is the worst. 

Observing the ridge maps, we can find that proposed method is very poor at detecting 

the thinner and lighter ridge, while the images in RITE distributes a large number of 

vessels that satisfy that condition. In terms of precision and recall score, we can also 

find that the precision of the proposed method is very high while the recall is low, which 

means that although the ridges are detected with a high degree of conformity, many 

pixels of the ridges are missed.  
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Fig. 6.8 Example of RITE. (a) groundtruth (b) proposed method (c)-(h) other 

methods 

Table 6.3 Comparison of evaluation scores on RITE 

Method F-measure Precision Recall 

Proposed 0.1813 0.8833 0.1045 

Hessian 0.3942 0.5083 0.3412 

[32] 0.3145 0.514 0.2414 

[27] 0.3342 0.5841 0.2453 

SOAGK[22] 0.4036 0.461 0.4122 

SCIRD[24] 0.4433 0.884 0.3045 

SymFD[23] 0.4063 0.8415 0.2773 
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Chapter 7 Conclusion and future work 

7.1 Conclusion 

In our first proposed method, we applied smoother image as guidance image in 

range kernel of bilateral filter to fix the noise problem, and then use a weight 

combination to solve the ridge over-smoothed problem. We also further demonstrated 

its effectiveness on 1D experiment and 2D demonstration. 

In another proposed ridge method, we applied multiple 2D LoG filters to find the 

optimal filter width, so that we can adaptively determine ridge width and direction of 

all pixels, and then we refine the results by post processing methods. We also proposed 

a new ridge scoring method to calculate our ridge maps, and then prove that proposed 

method can approach those good multiscale ridge detectors with a faster speed by 

experiment. Although experiments also show our method will not work as well as other 

methods that in the dataset of complex ridge images. 

7.2  Future work 

The proposed bilateral filter is only a modification of the joint bilateral filter based 

on the ridge feature, so it may be possible to improve it based on other features. 

Experimental results on our ridge method may indicate that there is room for 

improvement of our multiscale directional filter, especially on test data with large width 

variations of ridges. How to make improvements in this area and to propose a better 

method for ridge scale measurement will be the focus in the future. In addition, the 

experiment did not consider deep learning methods as I was unable to find relevant 

papers, so it would have been better to have deep learning methods as a counterpart. 

In addition to our proposed methods, our proposed ridge scoring method also has 
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some problems. Although it can allow for positional shifts, because pixels are scored as 

long as there are neighboring pixels, it is difficult to penalize the discontinuity of ridge 

lines and false detections of multiple neighboring parallel ridge lines. While the former 

may be solved by complex morphological methods based on ridge line direction and 

distance between endpoints, the latter may have to be approached from the 

mathematical side, for example Canny talked about the one-to-one problem of edges in 

his paper on edges[4]. Changing the scoring method to a one-to-one method might also 

a solution, so that unmatched pixels do not add to the total score. 
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