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論文摘要 

 近年來，因為物聯網 (IoT, Internet of Things) 機器的出現，配備機器的服務業

在收集資料的方式可以轉為自動化。除了可以精確的得到機器運轉的情況，也能

過濾掉機器使用狀況異常的訊號。從物聯網感測器所收集到的資料具備大數據的

性質，包含資料量(Volume)，以及速度(Velocity)，和多樣性(Variety)。這樣的資料

性質可以針對特定機器的運轉情況作出客製化的處理，詳細記錄時間的資訊也能

更有效地執行時間序列分析。 

本研究使用洗衣租賃業所提供的物聯網機器資料，針對 700 多台洗衣機總共

兩年的資料進行時間序列分析及預測，並期望幫助服務業避免使用經驗做出新增

機器的決策，轉向使用資料輔助預測的方式達到資源分配的目的。我們首先利用

物聯網機器狀態轉變的訊號進行處理，依照不同的時間段切分運轉情況。再針對

所有的機器使用狀況建立深度學習模型，搭自編碼器(Autoencoder)技術處理複雜

大量的物聯網資料，進行準確的時間序列預測，可以得出特定機器未來的運轉狀

況。除此之外，我們提出兩階段的深度學習架構，使用分群演算法搭配分類演算

法，可以使用所收集到的物聯網機器資料建立模型，幫助沒有歷史資料的機器，

針對機器的性質，所要放置的地點進行預測，計算出未來可能的運轉情況。 

根據本研究所提出的深度學習預測架構，企業可以針對物聯網機器所預測出

的運轉情況和當前的資源分配做出比較，了解機器分配的情況並做出調整。不管

特定機器是否有歷史資料，都能夠運用我們提出的架構，得到準確的運轉情況預

測。 

 

關鍵詞:  物聯網機器、大數據、時間序列分析、深度學習 
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In recent years, the advent of Internet of Things (IoT) devices has revolutionized 

data collection in the service industry, enabling automation and precise monitoring of 

machine operations. IoT sensors generate large-scale data characterized by volume, 

velocity, and variety, which can be tailored to analyze specific machine performance and 

facilitate effective time series analysis. 

This study leverages IoT data from a laundromat industry, analyzing over two years 

of data from more than 700 washing machines. The goal is to transition from experience-

based decision-making to data-driven predictions for resource allocation. We process 

signals from IoT devices to segment machine operations over different temporal 

dependencies. Using deep learning models and autoencoder technique, we accurately 

forecast time series data to predict future machine performance. 

Additionally, we propose a two-phase deep learning framework that combines 

clustering and classification algorithms. This approach allows us to build predictive 

models for machines without historical data, estimating future performance based on 

related features such as machine characteristics and deployment locations. 

Our predictive framework enables businesses to compare forecasted machine 

operations with current resource allocation, optimizing machine distribution and 

adjustments. Whether or not a machine has historical data, our approach provides accurate 

performance predictions. 

Keywords: IoT machine data, Big Data, Autoencoder, Deep Learning 
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Chapter 1  

Introduction 

1.1 Background and Motivation 

 Recent advancements in technology have improved the accuracy of data-driven 

decision-making. By analyzing historical data, service providers can gain insights into 

the previous performance of their services, enabling them to make decisions based on the 

past experience. In service industries, proper resource allocation allows increasing 

efficiency, reducing service idle time and improving overall performance. With the aid of 

historical data, service providers no longer have to guess the capacity in a long period, as 

well as taking the risk of unforeseeable future demand. 

 A significant development of this field is the rise of the Internet of Things (IoT). 

Through IoT devices, it is possible to meticulously record every aspect of a service 

operation. Automated data collection via these devices eliminated errors from manually 

recording, ensuring the data’s accuracy and completeness. Beyond simple data collection, 

these devices process and convert raw data into actionable insights that can guide 

decision-making and strategic planning. The precision of IoT data down to every 

individual operational task boosts our confidence in predicting future service demands. 

 Service industries integrated with IoT enable data can also benefit from Big Data 

Analytics. While Big Data Analytics emphasizes on rapid data processing, IoT messages 

passing techniques ensure real time data transmission. The convergence of these 

technologies allows for comprehensive data analysis, resulting in more precise demand 

prediction than traditional approaches. 

 In recent service sector, the usage patterns of service provided may not be recorded 

correctly. For instance, service company that rent machines as their business model can 
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be struggled from knowing the actual usage condition of each machines. Thus, they could 

not be clear about the demand of their business, which casued inefficiency. With the aid 

of IoT-enabled message passing devices, every single operational records are allowed to 

be recorded in a flexible way. Based on the received data format, service industries can 

utilize these data to conduct further analysis and make data-driven decisions. 

 

1.2 Research Objectives 

  Capacity management has long been a significant challenge for services with fixed 

capacities. Such services often struggled from achieving optimal resource allocation, 

especially given that usage patterns can vary substantially across different time frames. 

Once resources are initially deployed, adjusting them in response to shifting demands 

becomes a formidable task. Nevertheless, capacity management can lead to better 

customer satisfaction, optimized operational cost and rectify service inefficiencies. If one 

could predict resource needs using historical data, it would be possible to optimize initial 

resource allocation and facilitate dynamic adjustments as needed. In this study, we will 

present the methodology that combines IoT-driven data with deep learning techniques to 

assist in predicting future demands, using a rental washing machine service as a case study. 

 In scenarios where service lacks historical data, decision-making primarily relies on 

predefined features, such as location, type of appliance, and other characteristics 

determined prior to the service’s launch. Our goal is to introduce a framework that 

harnesses the power of deep learning models to facilitate optimal capacity planning in the 

service sector. This model aims to forecast potential usage patterns even when only 

foundational features are presented, overcoming the challenges of a cold start. 
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1.3 Research Scope and Limitation 

(1) Capacity-Constrained Services 

In this study, our primary objective is to explore optimal capacity planning through the 

integration of IoT-driven data and a deep learning framework. Even though capacity 

planning could relate to personnel, facilities and equipment, we are trying to narrow our 

research scope to the equipment aspect in order to manifest the power of IoT collected 

data. The case used by this study is to use data from washing machines with IoT devices 

attached to collect real-time data. By using these data, we intend to build a framework 

that is capable of analyzing the positive consequences resulting from equipment 

reallocation. Also, the essence of capacity planning could be managed by two distinct 

aspects: managing the supply for a fixed demand, or managing the demand for a fixed 

supply[31]. We only focus on the service industries that present the property that the 

service supply is fixed, but demand fluctuates over time. 

(2) Multiple Geographical Area 

For the scope of capacity planning, we envision services with several locations in 

different geographical areas that the resources could be reallocated. For instance, 

equipment may be allocated to three different geographical areas, where each area 

contains five sub area. In this case, the resource allocation becomes even more complex 

and require data-support information to efficiently allocate machine and appliance, 

avoiding biases while making decisions. A key consideration in our model is the 

incorporation of location as a feature, which recognized its potential influence on 

customer demand. By analyzing location-specific data, we could further discern usage 

patterns across different regions to inform resource decisions for each service location. 
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(3) Features Collected  

Our methodology leans heavily on time series analysis to construct the predictive 

framework, and trying to use statistical methods to apply on the service industries that 

lack historical data. However, if only sparse features are available, for instance, only 

location and service type are provided, it would be challenging to correctly predict the 

precise amounts of operational tasks. To avoid this, we introduce an alternative approach 

that classifies services into distinct groups and try to match the property of the services 

to their counterpart without historical data and offering valuable insights. 
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Chapter 2  

Literature Review 

2.1 Capacity Planning  

In the service sector, capacity typically refers to the availability of personnel, 

facilities, and equipment to deliver the service, and thus proper capacity planning ensures 

that resources could reflect on the instability of the demand and are not wasted at any 

time[40]. With the improvement of technology, the service sector is now able to rely on 

automated machines to deliver their service to customers, which emphasizes the 

importance of equipment capacity planning. Actually, the pure service sector could 

encounter multiple problems due to the complex structure of service delivery, including 

the problem of product mix, the problem of setup time, and the problem of varying 

efficiency[10]. Therefore, the more automation is involved, the less factors are considered 

when it comes to decision-making in service delivery. Applications regarding to the 

development of capacity planning emerged recently due to recent technological 

advancements. This trend is exemplified by various studies employing advanced 

algorithms for predictive modeling in different domains. For instance, Su[34] utilized a 

combination of Recurrent Neural Networks (RNN) and Firefly Genetic Algorithms to 

develop a prediction model for electric vehicle charging piles, aiming to optimize power 

supply and minimize waste. Similarly, Qiu et al[27]. introduced a model that leverage 

Genetic Algorithms and RNNs for efficient utilization of parking space capacity. Jung et 

al. [43] applied Long Short-Term Memory (LTSM) network for forecasting in solar 

photovoltaic systems, focusing on capturing temporal patterns in South Korea. This 

growing body of research addresses capacity challenges across various sectors, benefiting 

from cutting-edge technological advancements. In our study, we will delve into the 
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intricacies of IoT message passing and explore the capabilities of deep learning, situating 

our research within this context of advanced computational techniques. 

2.2 Combination of IoT message and Deep Learning 

Capacity planning in the service sector has long been challenging in various type of 

services, including capacity-constrained services, hospital resource planning, and 

appliance rental services[20]. Previous studies used mathematical solution to locate the 

problem of capacity planning, including minimum staffing[1] and ICU capacity 

management [17] in hospital resources. This article introduces deep learning techniques 

to address the issue of the limitation on mathematical solutions, improving the predictive 

precision of the actual usage patterns.   

Multiple strategies related to dynamically adjusting the allocation of resources also 

serves as an important role when dealing with this type of problem[44]. Some research 

also emphasized on the strategies to react to the temporary down of services[4]. 

Nevertheless, with IoT message passing devices attached, emergencies could be noticed 

in real time and further action could be taken place shortly, which allows the resource 

reallocation being more efficient and rapid. 

2.3 Deep Learning for Time Series Analysis 

 Ideally, service firms should adjust capacity according to demand fluctuation[26]. 

Emphasizing the seasonality factor, it becomes evident that demand patterns require time 

series analysis for accurate forecasting. Therefore, we aim to apply deep learning 

techniques and time series analysis on IoT message-passing washing machines to forecast 

future demand. 

 Deep learning techniques for time series analysis have gained significant attention 

over an extended period. The Artificial Neural Network (ANN), comprising 
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interconnected computing units, has been instrumental in addressing a myriad of 

challenges[29]. Each computing unit in the network processes data and passes it to 

subsequent units, facilitating continuous learning. The advent of ANNs have paved the 

way for comprehending intricate patterns, reducing the reliance on expert-driven data 

interpretation. Their adaptability and self-learning capabilities offer a robust alternative 

to traditional time series forecasting models, underscoring their utility in dynamic data 

environments[12].  

 In addition, Convolution Neural Network (CNN), which is a specialized class of 

deep learning model, has become a popular modeling technique to resolve even more 

complex data input, such as image, audio and video[3]. They leverage spatial hierarchies 

and local connectivity patterns, making them exceptionally proficient at tasks like image 

recognition and classification.  

 Recurrent Neural Network (RNN) has also become a widely used deep learning 

model that has the ability to recognize sequences of data, such as text, speech, or time 

series[45]. Unlike traditional feedforward networks, RNNs possess loops allowing 

information to persist, enabling them to maintain memory of previous input. However, 

due to issues like the vanishing gradient problem, variants like Long Short-Term Memory 

(LTSM) have been developed to address their limitations[37]. LTSM are a specialized 

type of RNN designed to alleviate the long-term dependency problem inherent in 

traditional RNN. It uses gating mechanisms, namely input, output and forget gate, to 

regulate the flow of information, enabling them to better learn and remember over long 

sequences without being significantly affected by the vanishing or exploding gradient 

problem[14]. 

Sequence-to-sequence (Seq2Seq) autoencoders have emerged as a powerful 

technique in time series analysis due to their ability to capture complex temporal 
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dependencies and generate meaningful representations of sequential data[6]. When 

integrated with Long Short-Term Memory (LSTM) networks, Seq2Seq models 

significantly enhance the prediction accuracy and robustness of time series 

forecasting[21]. LSTMs, known for their capability to retain long-term dependencies, 

work harmoniously with autoencoders to manage and encode sequential data into a latent 

space effectively[18]. This combination allows for the reconstruction and prediction of 

time series data with high fidelity, enabling more accurate and reliable forecasting.  

2.4 Clustering Algorithms 

In service firms where historical data is scarce, traditional time series analysis may 

not be feasible. We propose an alternative deep learning-based clustering method to 

address this limitation. Conventional time series clustering prioritizes similarity measures 

and feature extraction, making it susceptible to noise and potentially overlooking local 

shifts. Incorporating deep learning techniques, such as Autoencoders, enhances noise 

reduction and feature extraction capabilities[2]. Furthermore, the inherent capacity of 

deep learning to discern complex time series patterns paves the way for more 

sophisticated analytical approaches. In the following section of this paper, we delineate 

our problem and introduce deep learning-based methods to address our problem. 

 Traditional clustering approaches such as K-means, K-medoids, and Fuzzy C-means, 

fall under the category of Partitioning Methods. While these methods are characterized 

by their simplicity, ease of implementation, and agility, they do come with a drawback. 

Specifically, the number of clusters must be predetermined, necessitating multiple 

experiments and often requiring expert judgement for optimal results. The random 

selection of initial centroids can lead to poor convergence or convergence to local minima, 

affecting the overall quality of the clustering. Moreover, conventional clustering methods 

often assume that the clusters are spherical and evenly sized, which makes it less effective 
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for clusters of different shapes and densities. 

  HDBSCAN (Hierarchical Density-Based Spatial Clustering of Application 

with Noise) is a clustering algorithm that extends DBSCAN by converting it to a 

hierarchical clustering algorithm. It’s particularly well-suited for dealing with clusters of 

varying density and is robust in the presence of noise[28]. HDBSCAN builds upon 

DBSCAN by using a hierarchical tree of clusters, allowing it to find arbitrary shaped 

clusters and exclude points in low-density areas[23]. In the utilization of IoT messages, 

density clustering approach should gain more visibility on the data structure and may 

generate more robust clustering model by strategically remove noise information. 

 After exploring various approaches to group machine usage pattern into clusters, we 

would attempt on partitioning clustering such as K-means, and Density-based clustering 

method such as HDBSCAN, to apply robust clustering techniques and group machines 

with its given features, We will delve deeper into the handling of IoT messaging data and 

the construction of modeling frameworks, with the aim of deriving meaningful insights 

from the results. 
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Chapter 3  

Problem Description 

 In this chapter, we aim to describe the problem of our research by examining the 

preprocessing of raw data as a foundational step, followed by a discussion on feature 

extraction techniques that serve to augment the predictive capacity of our model. 

Subsequently, a comparative analysis of various deep learning architectures is presented, 

measuring their respective advantages and limitations to elucidate their applicability. 

Finally, the chapter introduces deep clustering strategies as innovative solutions for 

service sectors confronted with the challenge of limited historical dataset. 

3.1 Raw Data Preprocessing 

With the integration of IoT messaging devices, we can acquire real-time data specific 

to each transmitted signal. The data is collected in JavaScript Object Notation (JSON) for 

each record. To harness the potential of this IoT data, preprocessing is essential to convert 

the raw information into a format compatible with deep learning models. For instance, 

Table 3-1 shows the concept of identifying single operational run from the IoT collected 

data, when analyzing data from IoT-enable message passing devices, we identify the 

completion of an operational run by detecting a status change from Running to Ready. By 

organizing the raw data chronologically, we can pinpoint accurate operational tasks and 

filter out irrelevant records and erroneous status changes due to network failure to 

enhance the training process’s feasibility as well as the data quality.  

Additionally, for consistency in analysis, we standardize the time column values to 

the “HH:MM:SS” format and arrange them chronologically. In our study, we have 

collected specific temporal-scale of raw data from IoT-enable washing machines. By 

monitoring status change signal from these devices, we are able to track each operational 
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cycle in detail down to second. This capability allows us to leverage the data for advanced 

deep learning techniques aimed at achieving the desired outcomes. Specifically, the 

clarity and robustness of this data enhance its utility in applications such as deep learning 

time series analysis and deep clustering algorithms, where clear, consistent patterns are 

crucial for effective analysis. 

Table 3-1 Example status changed detection mechanism, machine with status changed 

from running to ready is consider one operational run 

Time Machine ID 
Previous 

Status 

Current 

Status 

Run 

Completion 

2023-06-30 

22:57:07 
XXXXXXXX Ready Running False 

2023-06-30 

23:37:33 
XXXXXXXX Running Ready True 

 

3.2 Feature Extraction 

 To effectively use preprocessed data in deep learning models, it is imperative to 

generate additional features that enhance the model’s ability to discern the time series 

patterns of our target. This necessitates feature extraction, which augments the data with 

detailed attributes related to individual operational runs. Prior to this, we need to ascertain 

the granularity of our data analysis. For example, if usage patterns remain relatively 

consistent on a weekly basis, we introduce a ‘weekday’ column to note the specific day 

of each run. While if usage patterns fluctuate throughout a whole year, we may use a 

monthly column to denote the seasonal differences. Moreover, the precision of IoT 

messaging data, accurate to the second, prompted us to add another column reflecting the 

time period within a day. For example, we can segment a day into four intervals, each 

spanning six hours, enabling a robust analysis of the washing machine’s usage behavior. 

The concept of seasonality in analyzing IoT data can vary significantly depending 

on the nature and context of the data being examined. Different IoT devices and their 
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operational environments dictate the need for distinct seasonal definitions to accurately 

capture relevant patterns. For instance, for an industrial machine in a manufacturing 

setting, the 'seasons' might be better defined in terms of production cycles or maintenance 

schedules, which could span different timeframes, such as quarterly or biannually. 

Additionally, in environments where human activity plays a crucial role, such as in 

residential energy usage, the definition of seasonality might incorporate social patterns 

like holidays, school calendars, or typical vacation periods. Each of these scenarios 

demands a tailored approach to defining seasonality, ensuring that the time series analysis 

aligns with the specific operational rhythms and external influences impacting the IoT 

data. This customization allows for more accurate and meaningful insights, as it aligns 

the data analysis with the real-world factors that most significantly affect the device’s 

usage patterns. Therefore, determining the appropriate seasonal definition is a critical step 

in preprocessing IoT data for deep learning models, as it directly influences the model’s 

ability to detect and learn from the most pertinent patterns in the data." 

 Last but not least, additional features including the contractor information of the 

machine, number of years this machine has been employed, and the location where this 

machine is placed. Due to the fact that we could not determine which feature mostly 

affects the usage pattern of the machine, different aspects of attribute should be imported 

to ensure comprehensive analysis has been conducted. Furthermore, we can group the 

machine by location and calculate the sum of the machine in a single location to 

understand the supply and improve capacity planning process. 

 To effectively incorporate the additional attributes — contractor information, years 

of machine employment, and location — with the previously collected time series data, a 

multifaceted analytical approach is required. The time series data, which primarily tracks 

the usage patterns of the machines over time, provides a dynamic view of how these 
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machines are operated. By integrating this data with the additional static attributes, we 

can gain a more holistic understanding of the factors influencing these usage patterns. For 

instance, combining time series data with the number of years a machine has been 

employed can reveal trends in machine efficiency or maintenance needs over time. 

Similarly, analyzing usage patterns in conjunction with the machine's location can 

uncover geographical influences on machine utilization. The contractor information adds 

another layer, potentially highlighting how different contractors' operational strategies 

impact machine usage. To achieve this integration, advanced data analysis techniques 

such as multivariate time series analysis or machine learning models can be employed. 

These methods can handle the complexity of combining time-based patterns with static 

attributes, allowing for a more comprehensive analysis. This integrated approach not only 

aids in understanding the usage patterns more deeply but also enhances capacity planning 

processes by identifying key factors that influence machine utilization across different 

locations and operational contexts. 

When analyzing temporal features, it is crucial to account for the varying operational 

periods of real-world machine. In the IoT service sector, the dynamic updating of machine 

allocations frequently occurs, which must consider to prevent data preparation from 

compromised by differing recording time slots. Figure 1 illustrates the duty periods of 

various IoT machines. The data collection process can be further complicated not only by 

system shutdowns but also by the distinct onboard time of the machines, making it 

challenging to achieve perfect IoT message collection. 
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Figure 1. Real world IoT message-passing device actual operational time frame, x axis 

represents the date range that the machine is onboard, and each y tick stands for one 

single machine identifier. 

 

3.3 Time Series Model Selection and Evaluation 

In this section, we explore deep learning models to evaluate their performance on 

training and validating time series data, aiming to achieve optimal predictions of 

subsequent time periods. The efficacy of each model will be determined using specific 

machine learning metrics, which will be elaborated upon later in this chapter.  
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3.3.1 Time Series Data Model Selection 

Tree-based deep learning models, such as decision trees, random forests, and 

gradient boosted trees, each offer unique advantages and challenges in the context of time 

series data. A notable strength of these models is their interpretability. The transparent 

decision-making framework of tree-based models provides valuable insights into the 

importance of individual features. However, tree-based models do not fit for the times 

series data with complicated features and thus are not included in this study. 

In our analysis, we consider neural network architectures, specifically artificial 

neural networks (ANNs) and convolutional neural networks (CNNs). Due to their strong 

computational power, these networks can efficiently handle vast data sets, allowing 

intricate usage patterns to be discerned.  

Finally, Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LTSMs) 

play an integral role in our study. RNNs themselves have the strong ability to process 

input data and are also capable of maintaining previous information captured. However, 

to overcome long dependency problems associated with RNNs, LTSMs are employed to 

address gradient-related problems inherent to RNNs. 

As we mentioned in Chapter 2, the mechanism of RNN involves recognizing 

sequences by maintaining a memory of previous inputs through their looped connections. 

This implies that each input in an RNN is processed in the context of the preceding inputs, 

creating a chain of dependent operations. However, RNN's ability to maintain information 

from earlier in the sequence diminishes over time, which leads to vanishing gradient 

problem. On the other hand, LSTMs, while following the sequential processing principle 

of RNNs, introduce a more sophisticated approach through their unique gating 

mechanisms. The input, output, and forget gate allow LTSM to selectively remember and 

forget information, thus efficiently managing the flow of data through the network. This 
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means that LSTMs can maintain relevant information over longer sequences and discard 

non-essential data, addressing the long-term dependency issue inherent in traditional 

RNNs. Consequently, while both models process data sequentially, LSTMs provide a 

more nuanced control over what is remembered and what is discarded, making them 

better suited for tasks where long-term contextual information is crucial. 

Furthermore, we will incorporate autoencoders into our framework to effectively 

capture crucial information from our dataset. Utilizing an encoder-decoder structure, 

autoencoders can filter and identify important features while minimizing reconstruction 

loss[5]. While IoT message-passing machine often generate vast amounts of feature data 

to record machine properties and transactional information, autoencoders focus on 

essential elements that influence our predictions, thus enhancing the model’s efficiency 

and accuracy. 

Our approach involves generating different datasets, evaluating the foundational 

performance of each model, and examining insights they generated. Subsequently to this 

preliminary assessment, we will fine-tune model parameters, guided by observed data 

patterns, to maximize their performance. 

3.3.2 Time Series Data Model Evaluation 

For architectures like RNNs and LTSMs, which are tailored to time series data, it is 

crucial to use evaluation metrics that consider their spatial hierarchies and temporal 

dependencies. Therefore, Mean Squared Error (MSE) and Mean Absolute Error (MAE) 

are appropriate for continuous output, as they assess the model’s ability to capturing 

trends and magnitudes within the time series data. 

MSE (Mean square error) = (
1

n
)  Σ (Yi - Ŷi)

2
    (1) 

MAE (Mean absolute error)=
1

n
 Σ｜Yi- Ŷi｜    (2) 
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where n is the number of data, 𝑌𝑖 stands for the predicted value and the 𝑌�̂� stands for 

the actual value. 

To effectively evaluate the performance of deep learning models on regression task, 

particularly with architecture like RNNs and LSTMs tailored to time series data, it is 

essential to choose metrics that capture both the temporal dependencies and spatial 

hierarchies inherent in the data. MSE and MAE are foundational for assessing trends and 

magnitudes, which allow deep learning model assessment through comparison. 

3.4 Clustering Data Model Selection and Evaluation 

Service firms with limited historical data can leverage deep embedding time series 

clustering techniques to discern usage patterns closely aligned with their operations. 

Initially, deep clustering categorizes the data into well-defined groups, facilitating the 

discovery of these patterns.  

3.4.1 Clustering Data Model Selection 

Once clusters are established, cluster labels could be defined and help further 

analysis new onboarded IoT machines to predict their future usage patterns. This process 

required two essential phases of actions to fulfilled our expectation: (1) Firstly, 

performing unsupervised clustering to create clusters and generate labels; (2) 

Secondly, employed these labels yielded from the first phase in a supervised deep 

learning classification to categorize new machine within the existing clusters. 

Subsequently, the average number of operational runs for the machine can be calculated, 

providing a predictive measure for new machine over a specified timeframe. This method 

allows service firms to utilize existing dataset attributes to predict operational activities, 

thereby empowering them with predictive insights as new IoT machines are integrated.  

As we mentioned in Chapter 2, traditional and recent clustering approaches both 
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have the ability to successfully conduct clustering on time series data. K-means and K-

medoids are praised for their expediency but are hindered by the prerequisite to 

predetermine the number of clusters, which often lead the model to stuck in the local 

minima. Moreover, these traditional clustering methods are focus on the numerical 

representation of data, other meaningful categorical features could not be included in the 

clustering dataset. On the other hand, given the ability to handle sequence data, RNN and 

LTSM can be employed for clustering by extracting features or representation from time 

series and form embedded data, which can then be clustered using traditional methods. 

In addition to conventional methods, we could employ deep clustering 

methodologies such as HDBSCAN (Hierarchical Density-Based Spatial Clustering of 

Application with Noise) and Autoencoders combination. While HDBSCAN transform 

time series data into hierarchical tree cluster representation in order to find varying 

density between each data point, Autoencoder compresses the data into a compact, lower-

dimensional space. Without knowing which approach is better for resolving our problem, 

we expect to employ the approaches mentioned above and attempt to understand the 

essence of our data. 

 Each approach mentioned above brings unique perspectives to handling time series 

data. For instance, K-means and K-medoids require a predetermined number of clusters 

and typically work with vectorized representations of time series data, while RNN and 

LTSM first extract features or representations from time series before these features can 

be clustered using traditional methods. HDBSCAN, elevate this further by transforming 

time series data into hierarchical tree cluster representations, especially useful for 

sequences of varying lengths. Autoencoders, on the other hand, compress data into a more 

compact, lower-dimensional space to relief curse of dimensionality and simplify the input 

data that would fit into the clustering model. Each method fundamentally alters the nature 
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of the input data, making it more amenable for clustering in a transformed feature space. 

3.4.2 Clustering Data Model Evaluation 

For the service sectors lack historical data, we employed various evaluation metrics 

corresponding to clustering methods to assess the quality and relevance of discovered 

patterns. The Silhouette Coefficient measures how similar an object is to its own cluster 

(cohesion) compared to other clusters (separation), which is crucial for assessing the 

appropriateness of the cluster assignments, especially when the number of clusters is not 

predefined. 

Additionally, the Davies-Bouldin Index evaluate clustering validity by measuring 

the average similarity between clusters, where lower values indicate better clustering[8]. 

For deep embedding clustering approaches like autoencoders, the reconstruction error 

provides insight into the compressed representations. 

To further classified target machine without historical data, we introduce supervised 

classification to take the clustering result as target variable and conduct classification. In 

supervised classification tasks, evaluation metrics such as tend to examine the amounts 

of labels that have correctly be predicted. Evaluation metrics including Accuracy, Recall, 

Precision, and F1-score are variables that examine the model performance. Accuracy 

measures the proportion of correctly predicted instances among the total instances. Recall 

evaluates the model's ability to identify all relevant instances. Precision calculates the 

proportion of true positive predictions among all positive predictions. F1-score is the 

harmonic mean of Precision and Recall, providing a single metric that balances both 

concerns[25]. These metrics offer comprehensive insights into the effectiveness and 

reliability of the model. 
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Chapter 4  

Model Building 

In this chapter, we aim to further process our dataset to include more features in 

order to fit our models. Different methodologies of time series forecasting and deep 

learning clustering are introduced separately by the detailed steps of processing data and 

conducting model training and evaluation to provide solution for a large scale IoT formed 

dataset. 

4.1 Feature Engineering  

First of all, before feeding dataset into deep learning model, we should retrieve all 

meaningful information regards to our data as described below in this subsection. 

4.1.1 Feature Selection  

We aim to realize the essence of IoT passed dataset and add other features based on 

the machine identifier in this study. While trying to combine every useful column in our 

dataset, such as location and machine properties, it is essential that every feature in our 

generated dataset is not correlated to other features in order to avoid linear correlation. 

For instance, if both the location identifier and the location property columns contain 

nearly identical values, indicating that each location possesses unique property, it may be 

cautious to either eliminate the location property column or seek an alternative feature. 

This alternative should offer distinct value variations and align with domain-specific 

knowledge.  

Since IoT machine lending services often require collaboration with several 

contractors to boost demand across large geographical areas, we suggest including data 

related to these contractors in our dataset as well. By incorporating the columns that 
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capture contractor-specific attributes, deep learning models can effectively discern 

variations in user perceptions and the condition of equipment provided by different 

contractors.  

While categorical features often require one-hot encoding, which can lead to the  

curse of dimensionality, numerical features are recommended to enhance the richness of 

the dataset[15]. Therefore, we can enhance our dataset by implementing feature 

engineering techniques that generate numerical columns, thereby enriching the data 

variety. For instance, we can aggregate IoT-enabled machines based on their its location 

identifiers to count the total amount of machines in each location. This metric can then 

be used to gauge the demand for each machine based on its location density. Additionally, 

given that our framework accommodates varying usage patterns of machines, it is crucial 

to record the actual operating duration of each machine as a feature. By capturing the 

timestamp of the initial and final operational signals from the IoT devices within a specific 

timeframe, we can calculate the total active period in days for each machine.  

In addition to the feature mentioned above, it is essential to incorporate external data 

that could influence machine usage patterns, thereby capturing information beyond the 

control of service provider and the contractors. For instance, service providers with IoT-

equipped devices located outdoors may experience a decrease in demand during severe 

weather events. Accordingly, leveraging domain knowledge, we have integrated weather-

related features such as precipitation and the number of rainfall days into our dataset as 

numerical variables to further enrich our analysis.    

4.1.2 Machine Identifier 

For the machine identifier, we should carefully conduct experiment on the influence 

when different decision is chosen. The effect that we add or remove the machine identifier 

could cause significant impact on the way that the model learning the patterns. Due to the 
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fact that the machine identifier is not a general feature, simply feed the value into the 

model may mislead the model’s view of the data[16]. On the other hand, remove the 

machine identifier may let the model facing unstructured data and hard to adjust. To 

decide whether the model needs this column or not, we’ve conducted several experiments 

to know whether it is proper to add it into our dataset. We suggest to use mechanism to 

help the model realize the machine identifier in the first place, which could help the model 

avoid misunderstanding the meaning of this column.  

4.2 Time Series Dataset preparation 

After we transformed the raw data to records that could be identified as a single 

operational run, or a unit of usage, more features should be utilized to help our model 

recognizes specific patterns. The reason that we introduced features such as weekday and 

multiple periods within a day previously in Chapter 3 would be addressed here. 

Different from original time series analysis which use date as a feature, service sector 

with IoT message passing machine equipped may not gain a large number of usage 

amount in a single day. In deep learning field, an insufficient amount of data could lead 

to overfitting, where a model learns the training data too well, including the noise and 

outliers, and fails to generalize to new, unseen data.  

On the other hands, recent research has demonstrated that deep learning prediction 

mechanisms have significantly improved inventory forecasting[30]. Both the retail and 

food industries can utilize these advancements by recording the number of parts or 

materials consumed in specific time slot and applying deep learning techniques to predict 

future needs. Similarly, data captured from IoT message-passing devices, which share 

data patterns with inventory prediction, can be integrated into this framework. Instead of 

tracking the quantity of parts or materials consumed, these devices record the number of 

operational runs within specific time slots. This approach allows us to leverage existing 
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deep learning models and achieve accurate prediction outcomes. 

Therefore, we abandon the date feature, instead of making each data point down to 

a single day, we tend to aggregate the time series data by summing it with different 

temporal feature to feed model more comprehensive data, and compare different 

permutation to choose the best data representation referred to our dataset. 

Data captured by IoT machines can be detailed down to minute, it is an advantage 

to further divide several patterns within a day to gain more information from the analysis 

as well. In addition, in real world condition, the data obtained from IoT machines may 

not always be consistent. Several reasons such as maintenance, system downtime, or 

machine not onboard at the same time could cause segmentation when it comes to IoT 

message passing devices. Therefore, we should pick suitable timeframe for our captured 

IoT data when conducting time series analysis. The criteria of choosing the right 

timeframe for our data is to ensure enough amount of data could be recorded and avoid 

unnecessary complexity. In our framework, we aggregate each period of data based on 

the temporal features mentioned above to make every single record representative. After 

appropriate time slice chosen, we aggregate the data simply by summing the records with 

the same temporal features.  

 After generating the aggregated datasets, we then connect each dataset from different 

aspects and pack specific number of records into sequences, which also referred to as time 

steps in deep learning mechanism. Due to the fact that we would further combine specific 

number of records into sequence to help fit into the model, there are several approaches 

to align the records. By arranging the desire order of records and binding specific amounts 

of records prepared as time steps for model fitting process, different permutations 

generate distinct time series prediction model. When different scope of temporal feature 

existed in the dataset, the way we arrange the records stands for different aspect while the 
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model processed the data. Table 4-1 shows the example arrangement of time series dataset 

to illustrate our thought.  

Table 4-1. Time Series Dataset illustration, the records vary from period first, then goes 

weekday and year 

Machine 

Identifier 
Year Weekday 

Period 

Number 

Number of 

runs 

Other 

Features 

Machine A 1st Monday 1 19 value 

Machine A 1st Monday 2 20 value 

Machine A 1st Monday 3 32 value 

Machine A 1st Monday 4 53 value 

Machine A 1st Tuesday 1 17 value 

Machine A 1st Tuesday 2 24 value 

Machine A 1st Tuesday 3 33 value 

Machine A 1st Tuesday 4 68 value 

Machine A 1st Wednesday 1 29 value 

Machine A 1st Wednesday 2 31 value 

Machine A 1st Wednesday 3 62 value 

Machine A 1st Wednesday 4 65 value 

… … … … … … 

Machine N 4th Sunday 1 6 value 

Machine N 4th Sunday 2 0 value 

Machine N 4th Sunday 3 5 value 

Machine N 4th Sunday 4 26 value 

 
 

4.3 Deep Clustering Dataset preparation 

 As mentioned in Section 3.4, to allow IoT devices without historical data could 

benefits from our approaches, two phase of model building require to complete this task. 

Below we would first address on the first phase unsupervised clustering and illustrate our 

concept with a table. Next, we would explain how to conduct second phase supervised 

classification to achieve our goal. 

4.3.1 First Phase Unsupervised Clustering 

For clustering data, first of all, we conduct data transformation process to every 

machine using identical technique as the previous time series data. To allow most 
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insightful records prepared for our clustering model, we align the weekday feature and 

period feature into columns to represent the real usage patterns in specific time frame. 

Table 4-2 visualizes our concept of the clustering dataset, the column represents each 

temporal features combination, where the row indicates the machine ID, and each record 

stands for the number of operational runs in specific timeframe for a single machine. The 

ultimate goal is to use one record to represent individual machines, therefore, we apply 

aggregation on the different time frame of a single machine. For instance, integrating 

temporal feature into columns to stands for the usage patterns of a machine.  

However, when too many temporal features are chosen, the resulting larger number 

of columns may cause dimensionality curse, leading to increased computational 

complexity and a higher risk of overfitting, especially when the dataset is not 

proportionately large. Therefore, we transform appropriate number of temporal features 

into columns, tailored to the specific requirements and the characteristic of the dataset. 

To avoid the temporal feature combination leads to dimensionality curse or the number 

of records not in proportion to the number of features, a practical approach involves 

computing the mean of the number of occurrences within distinct time frame. This 

transformation enables the dataset to adopt a new representation whose records 

encapsulate the usage pattern of an individual machines. Consequently, this facilitates the 

ability of time series clustering models to discern and classify distinct patterns of machine 

usage. 

To enrich the information contains in the data representation, in additional to 

numerous features that constituted by temporal features indicating the number of 

operational runs, we apply feature engineering to captured deterministic factors that could 

successfully distinguish the usage condition of individual machines. Due to the fact that 

solely using numerical features that stands for the number of operational runs may not 
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yield desire output while conducting clustering, categorical variables that points out the 

characteristic of the machines could contribute to this end. However, linear clustering 

algorithm have its limitation regarding to categorical variables and may lose the 

advantages when sparse feature included. Therefore, we see this dataset in different aspect 

and would explain more in the next paragraph. 

Table 4-2. Clustering Dataset Illustration, each row stands for one single machine, and the 

columns indicates the number of operational runs in specific temporal feature  

Machine 

identifier 

Monday 

period 1 

Monday 

period 2 

Monday 

period 3 

Monday 

period 4 

Tuesday 

period 1 

Tuesday 

period 2 

temporal 

features 

Sunday 

period 3 

Sunday 

period 4 

Machine 1 20 16 26 45 18 18 … 30 46 

Machine 2 4 3 6 19 5 3 … 6 18 

Machine 3 13 4 12 28 12 2 … 15 26 

Machine 4 6 10 18 41 6 7 … 28 47 

Machine 5 6 7 16 41 6 4 … 24 41 

Machine 6 12 10 28 45 10 6 … 34 46 

Machine 7 8 6 12 32 4 5 … 18 35 

Machine 8 6 5 13 31 6 4 … 19 36 

Machine 9 6 11 24 37 6 9 … 27 37 

… … … … … … … … … … 

Machine N 5 4 6 24 6 2  7 20 

 

4.3.2 Second Phase Supervised Deep Learning Classification 

Additionally, as discussed in Chapter 3, IoT machines lacking historical data 

required two phases of implementation to calculate the average number of operational 

runs in specified timeframe. Once the desired clusters and labels are determined, these 

labels can be reassigned to their corresponding machine identifier. Consequently, the 

dataset would then include the machine identifier, the number of operational runs during 

specific periods, and other categorical variables that describe the machine’s properties. 

Meanwhile, cluster labels, which grouped machines with similar usage patterns, are 

recorded, marking the completion of the first phase of implementation. 

With the clustering labels and features we have introduced, the second phase 

supervised deep learning classification process can now accurately assign new machine 
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to their respective categories based on the result. These results illustrate the aggregated 

usage patterns of IoT message-passing machine with the same cluster, which are then 

used to calculate the mean operational runs across various temporal features. 

Consequently, this approach enables us to identify groups of machines with similar usage 

patterns based solely on machine properties. This capability provides the service sector 

with predictive insights right from the initial state. 

4.4 Time Series Model building and Evaluation 

In the era of Big Data, the variety and volume of data collected have reached 

unprecedented level. While high-quality, large volume datasets can provide deep learning 

architectures with valuable information, facilitating more accurate outputs, traditional 

forecasting approaches often struggle to efficiently process the diverse and massive 

datasets generated by modern big data techniques and IoT devices[9]. This phenomenon 

necessitates a reevaluation of conventional machine learning algorithms and offers a new 

perspective on data analysis. As such, there is a growing need to innovate and adapt these 

models to better handle the complexity and scale of data, particularly with regard to IoT 

message passing and real-time data processing. This chapter will explore the limitations 

of traditional models and introduce alternative strategies that are more suitable to the 

demands of Big Data and IoT environments. 

4.4.1 Time Series Forecasting Model building  

While dealing with time series data, recent work generally use date as timestamp to 

predict the value of the target variable[19]. In our approach, we recommend aggregating 

the number of operational runs using specific temporal features to eliminate the date 

column from the dataset. By doing so, we aim to process the data with a more 

comprehensive perspective.  
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Figure 2 and Figure 3 illustrate one machine usage distribution using date as a 

timestamp and one machine usage pattern aggregated by temporal features, respectively. 

By comparing the data distribution before and after aggregation, we can infer that the data 

distribution in Figure 4-2 is likely to achieve better performance during training due to its 

clearer patterns. Thus, we believed that using specific time slots to record the number of 

runs and conduct time series prediction can yield more accurate outcomes.  

 

Figure 2. Machine usage patterns shown by date 

 

Figure 3. Machine usage patterns after aggregate year, weekday and period 

 

Additionally, time series data requires defining time steps before fitting into models 

to determine how many records to consider during training process[35]. Because different 

arrangements of temporal features can lead to distinct training and prediction 

performances, our research accommodates time series data that may include periods of 

system shutdowns, machine maintenance, or the onboarding of new machines at different 

times. Thus, determining the time steps parameter during the training process is crucial 
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for helping the model recognize machine usage patterns effectively.  

In the approach that rearrange data sequence with different time step configured, it 

is essential to identify the smallest unit that can represent machine usage patterns. For 

instance, if the dataset is structured by fixed year, fixed month and varying weekday 

values, the desired time steps should encompass at least one week’s worth of records 

without exceeding or crossing over into another month.  

In time series analysis domain, several deep learning models have proved own strong 

capability to process enormous amount of data and minimize errors. As we have stated in 

Chapter 2, RNN, LSTM, GRU, are all powerful deep learning models when it comes to 

time series analysis. With the proposed aggregation method, new formed data appears 

clear and meaningful patterns that is suitable to fit in above-mentioned time series 

analysis models. However, the visualization of machine patterns distribution only present 

one single machine. With hundreds of lines, namely, hundreds of machines required to be 

processed during training, the data that will fit in the model is actually much more 

complex.  

 Autoencoder, employed encoder-decoder architecture, is good at denoising and 

dimensionality reduction[7]. Furthermore, sequence-to-sequence autoencoder, designed 

for handling sequence data, combines the capabilities of autoencoder and recurrent neural 

network like LSTMs[11]. This architecture is particularly useful for time series prediction 

tasks because it can effectively capture temporal dependencies in the data while also 

learning a compressed latent representation. Figure 4 demonstrates the concept of 

autoencoder integrated with LSTM. 

In order to process the huge amounts of records and columns result from aggregating 

the data with several temporal features and the native machine properties, we can utilize 

the advantage of Autoencoder to learn a compressed latent representation that captures 
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the essential features and patterns in the time series data.  In our study case, deep learning 

time series models are not capable of dealing with the enormous amount of usage patterns 

collected from the IoT message-passing devices. Therefore, without providing baseline 

approach to compare with our proposed framework, we would demonstrate the model 

building and evaluation step with autoencoder-employed architecture. We list the 

experiment results that we have conducted in the Appendix. 

 

 

Figure 4. LSTM autoencoder architecture diagram 

 

4.4.2 Time Series Forecasting Model Evaluation 

 For time series data, we explore a variety of evaluation metrics tailored for time 

series forecasting models in Chapter 3.4. Key metrics such as MAE, MSE are utilized to 

assess the performance of the selected models.  

Moreover, RMSE, which served large errors more costly and attempting to minimize 

them, also play an important role here. The calculation of this metrics leaves more penalty 

on the larger errors by squares the errors before averaging, which makes it more sensitive 

to larger errors. Last but not least, RMSE is widely used in regression tasks to measure 

the standard deviation of prediction errors or residuals, providing a clear measure of 
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model accuracy. The formula of RMSE is listed as follows. 

    RMSE (Root mean square error)=√MSE= √( (
1

n
)  ∑ (Yi- Ŷi)²)     (3) 

Where n is the number of data, 𝑌𝑖 stands for the predicted value and the 𝑌�̂� stands for 

the actual value. 

We leverage the advantages of MAE and RMSE in our analysis to compute the 

residuals between the predicted values and the true values. While being effective in 

evaluation, we should also be aware of the limitations of these metrics, such as less 

robustness for outliers and over-penalization of large errors. Thus, both metrics would be 

employed to evaluate our model forecasting values to help assess the result objectively. 

4.5 Deep Clustering Model Building and Evaluation 

In this section, we focus on the IoT message passing machine that lack historical 

operational data, to perform two phase tasks: (1) unsupervised clustering model 

building and (2) supervised deep learning classification to provide result for time series 

forecasting. 

4.5.1 Deep Clustering Model Building 

4.5.1.1 First Phase Unsupervised Clustering 

Data generated by IoT devices typically consists of complex logic and numerous 

features derived from machine operations. Beyond the basic properties of machines, data 

may contain concealed information. In our work, we aim to transform temporal features 

related to operational runs into structured columns. This approach attempts to enrich the 

data with detailed insights into the actual conditions of machine usage, thereby increasing 

the complexity of data representation.  

Traditional clustering algorithms, such as K-means and Gaussian Mixture Models 
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(GMM), primarily analyze numerical features to measure the similarity among data points, 

which are then grouped around centroids[38]. These methods typically model data 

distributions within a two-dimensional latent space. While effective for certain datasets, 

these traditional techniques often assume the data is linearly separable and normally 

distributed, which can limit their applicability to complex real-world data that may exhibit 

non-linear patterns and multi-modal distributions[42]. To address these limitations, more 

sophisticated approaches should be involved to incorporate dimensionality reduction 

techniques or kernel methods to capture deeper insight from the data structure. 

 Density-Based Clustering methods, such as DBSCAN and HDBSCAN, operates on 

the principle of identifying dense region of data points[13]. These regions are considered 

clusters, while sparser areas are treated as noise. These approaches are particularly good 

at handling dataset where clusters are not uniformly distributed. HDBSCAN, unlike 

DBSCAN, which requires the specification of a globally density threshold (eps)[33], it 

builds a hierarchy of clusters and doesn’t need a predefined distance threshold. Besides, 

a minimal spanning tree is employed by calculating the mutual reachability distance 

between all pairs of points, and further build the hierarchical tree for clustering.  

In the service sector, which frequently handles complex and disorganized data, 

traditional partitional clustering methods such as K means and GMM may not effectively 

distribute machines usage patterns. Additionally, partially collected time series data often 

contain extraneous information that would mislead the model while conducting clustering. 

Consequently, we would utilize a Density-Based clustering method to determine the 

optimal number of clusters for our data. We will then compare these results with those 

obtained from conventional clustering methods and provide a detailed justification for 

our choice. 

While choosing the number of clusters that will be separated by the clustering 
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models, we should be cautious to decide a proper number of clusters that would then 

become labels in the second phase classification task. For partitioning clustering methods 

like K-means, which requires predefined number of clusters, we suggest minimizing the 

number of machines within the cluster to help decrease the loss while conduct average to 

yield the predicted usage pattern. A cluster may contain five to twenty machines as most 

to ensure the predicted result would still make sense even conduct mean on several 

machines. In addition, for the density-based clustering method, we would not need to 

predetermine the number of clusters in advance, instead, we let the model decide what 

would be the optimal number of clusters with one noise cluster that we tend to remove 

from our dataset. 

 General service sector that has employed IoT message passing equipment, often 

contains large amounts of organized properties that could be used as features in our 

clustering framework. Following the feature engineering process described in the 

previous section, the prepared dataset may suffer from curse of dimensionality and 

inefficiency. Moreover, the clustering model has struggled to accurately assign data points 

to the appropriate clusters and to distribute the data evenly.  

To address these challenges, Deep Embedding Clustering (DEC) has demonstrated 

significantly improved results when handling complex data structure[41]. Our approach 

incorporates an embedding layer that utilized Autoencoder technique within our 

clustering process, aiming to transform the data to lower-dimensional representation. 

Initially, we construct an Autoencoder to compress the high-dimensional data into a dense, 

embedding space. This transformation not only reduces dimensionality but also enhances 

the clustering process by highlighting intrinsic data pattern more effectively. 

Subsequently, we apply density-based clustering method to organize the embedded data 

into distinct groups, optimizing both the feature extraction and clustering phases 



doi:10.6342/NTU202401885

34 
 

concurrently for superior accuracy and efficiency. 

4.5.1.2 Second Phase Supervised Deep Learning Classification 

In the second phase of our supervised classification process, we have opted for tree-

based deep learning models to their significant advantages. Tree-based models are 

proficient in handing both numerical and categorical variables, demonstrate robustness 

against outliers, and are highly interpretable[24]. These features are crucial given the 

diverse and segmented operational records introduced in Chapter 4.1 and our two phases 

implementation strategy for machine without historical data. Moreover, the 

interpretability of tree-based models allows us to analyze feature importance post-training, 

ensuring the accuracy of our classification task based on domain knowledge.  

4.5.2 Deep Clustering Model Evaluation 

As for clustering data, we treated two phases model performance measurement 

separately, since each phase employed different deep learning models to conduct the 

training process. 

4.5.2.1 First Phase Unsupervised Clustering Evaluation 

Partitioning clustering tasks usually focus on the mathematical evaluation metrics to 

measure the geographical distance, for instance, Euclidean distance, between centroid and 

each data point. Silhouette Score is another robust metrics used to assess the effectiveness 

of partitioning clustering method like K-means. It evaluates how well each data point fits 

within its cluster compared to other clusters, quantifying the compactness and separation 

of clusters[32].  

Silhouette Score      s(i)= 
b(i)-a(i)

max(a(i), b(i))
      (4) 

 where a(i) is average distance from i to all other data points in the same cluster and 

b(i) stands for minimum average distance from i to points in a different cluster, for all 
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clusters i is not a member. 

Evaluating density-based clustering methods like HDBSCAN often involves 

specific metrics tailored to assess cluster quality in the context of variable density patterns. 

Metrics such as Silhouette Score may be less effective due to HDBSCAN’s handling of 

noise and varied cluster densities, potentially leading to low score even with good 

clustering. Alternatively, the Davies – Bouldin Index and Calinski – Harabasz Index are 

more advantageous as they consider intra-cluster distances and inter-cluster 

separation[22]. However, their effectiveness can still vary depending on the dataset’s 

structure and the inherent distribution of data points. The Davies – Boudlin Index and 

Calinski – Harabasz Index equation is listed below:  

  Davies-Boudlin Index (DB)     =   (
1

s
) Σ max(Rij)   (5) 

    Calinski-Harabasz Index (CH)   =   
Σ ni∙‖ci-c‖2 / (k-1)

Σ Σ ‖x-ci‖
2 / (n-k)

    (6) 

where s is the number of clusters and Rij is a measure of dissimilarity between cluster 

I and the cluster most similar to i. For the Calinski-Harabasz Index, k is the number of 

clusters, 𝑛𝑖 is the number of points in the i-th cluster, 𝑐𝑖 is the centroid of the i-th cluster, 

c is the overall mean of the data, and n is the total number of points. 

4.5.2.2 Second Phase Supervised Deep Learning Classification 

As we mentioned in Chapter 3, the second phase of time series prediction suite for 

IoT message-passing machine without historical operational records, could be classified 

to specific group of machines that we have already separated with the first phase method. 

Therefore, tree-based deep learning classification models would then be introduced to 

help our cluster assign process. In deep learning classification field, evaluation metrics 

mainly focus on the difference between predicted label and the actual label. The metrics 

typically involved Accuracy, Precision, Recall, and F1-Score, each catering to different 
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aspects of model performance. Accuracy measures overall correctness, but might not be 

reliable alone, especially in imbalanced dataset. Precision and Recall provide insights into 

the model’s performance regarding positive class predictions, while F1-Score 

harmonizing the balance between Precision and Recall, making it crucial for datasets 

where false negative and positive are equally costly[39].  

    Accuracy             =          
TP + TN

 TP + TN + FP + FN
     (7) 

    Precision             =               
TP

TP + FP
      (8) 

    Recall                   =               
TP

TP + FN
      (9) 

    F1 Score              =       2 ×
Precision * Recall

Precision + Recall
    (10) 

where TP (True Positives) represents cases correctly identified as positive; TN (True 

Negatives) represents cases correctly identified as negative; FP (False Positives), also 

known as Type I error, involves cases incorrectly labeled as positive; and FN (False 

Negatives), known as Type II error, involves cases incorrectly labeled as negative.  

4.5.2.3 Two Phase Evaluation Trade off 

 Since two phases required to assign similar machine group to the new onboards IoT 

device, the performance of both models should take into consideration together. As we 

mentioned in Chapter 4.3, the number of clustering defined is essential to make the 

process more robust. Both the clustering model and the classification model should 

perform well enough to achieve the usage pattern prediction for IoT machine without 

historical data. However, the contradictory of the clustering loss and the classification 

accuracy make it difficult to successfully choose the right models as we observed that 

while assign more clusters to minimize the average loss effect, the label increase in 

classification would cause decreasing accuracy. We recommend setting threshold for each 

phase task to ensure both procedures are implemented correctly. For instance, for the 
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unsupervised clustering task, the baseline training and testing loss, and the Silhouette 

Score can be recorded to compare with further advance methodologies with partitioning 

clustering methods. It is worth to notice that Silhouette Score applied to density-based 

clustering methods may leads to misunderstanding of the clustering result. For the 

classification task, about 80% above accuracy and 70 % above recall are acceptable for 

the supervised classification model in IoT data classification[36]. While both the model 

passed two phases of evaluation, we could then calculate the mean number of operational 

runs in specific periods to finish our time series forecasting process. 
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Chapter 5  

Experiment Result 

 In this section, we apply the model building procedure introduced in Chapter 4 to a 

real case, a group of IoT-enabled washing machines in the laundromat industry. These 

machines, equipped with sensors, are primarily located in college dormitories across 

various regions of Taiwan. We analyze approximately 700 machines over a two-year 

period, applying time series analysis and a deep clustering approach introduced in Chapter 

4. 

5.1 Feature Selection 

 In both time series and deep clustering approaches, relevant features regarding IoT-

enabled washing machine, no matter numerical or categorical variables, should be 

integrated within our dataset. Therefore, we leverage existing variables which is yielded 

from the IoT message-passing process and domain knowledge regarding to the 

laundromat industry to form our informative dataset.  

In our framework, specific amounts of temporal features and their arrangements are 

crucial to conduct a comprehensive work on machine usage pattern prediction and 

machine clustering. It is worth to mention that correctly slice specific time frame with the 

collected data is the key point to yield accurate forecasting result during model training. 

In our case, since the duty periods of each washing machine vary a lot, an inconsistent 

length of records occurs in our collected data. We slice two-year period of data from each 

machine to ensure enough information contained in the dataset. Furthermore, we grouped 

each half year data and assign feature “year” to represent 4 distinct values: 1st half, 2nd 

half, 3rd half, and 4th half.  

In IoT laundromat industry, the usage pattern varied every single day. We have 
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employed three kinds of temporal feature to capture the usage pattern difference between 

each temporal dependency: year, weekday and period. For period feature, we decided to 

divided four periods a day, each expanding six hours, to distinguish the usage pattern 

within a day. Figure 5 shows the usage pattern of seven days a week, four periods a day 

drawn of a washing machine by a bar plot with each color stands for a different period.  

 

 

Figure 5. The Usage Pattern with Regards to Number of Operational Runs within 7 

Weekdays and 4 Periods a Day. 

 

Since the fluctuated rate of equipment utilization of washing machine in laundromat 

industry may lead to decrease profit, we aim to produce forecasting based on each of the 

four periods within a day. Consequently, companies could take action to address the low 

usage period and minimize machine ideal time. Furthermore, we have included variables 

such as contractor’s information, the physical properties of the machine, and the weather 

information of each location based on domain knowledge. Table 5-1 shows the features 

that have be employed during our model training process. 
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Table 5-1. Features in our dataset, including temporal features, location, contractor 

information, and weather 

Variables  Description Type 

data_cid Machine identifier integer 

year Indicate which half year time slice was the operation run happened categorical, 4 options 

weekday Indicate which weekday was the operation run happened categorical, 7 options 

period Indicate which period within a day was the operation run happened categorical, 4 options 

location Physical location of the machine  categorical, 60 locations 

duty period Whole period each machine has been operated numerical, unit day 

machine count Number of machines within the same location numerical 

machine type Brand or type of the washing machine categorical, 6 types 

contractor id Contractor identifier with machine equipped in their facility categorical 

floor  Physical floor the machine is equipped categorical 

property Indicate the machine location properties such as indoor/outdoor, etc categorical 

gender Gender of the user within specific location categorical 

city Large geographic area that the machine is resided in categorical 

avg_temperature Average temperature of the city in 2 years, record each half year numerical, float 

precipitation Precipitation of the city in 2 years, record each half year numerical, float 

rel_humidity Relative humidity of the city in 2 years, record each half year numerical, float 

rainfall_days Rainfall days of the city in 2 years, record each half year numerical, integer 

sun_duration Sunshine duration of the city in 2 years, record each half year numerical, float 

5.2 Time Series Model Performance Evaluation 

For time series model experiment, we have prepared four types of arrangement of 

temporal features, each pattern provides distinct information during training process. We 

would first illustrate the different arrangement of the data, and then demonstrate the 

model training result tables. 

5.2.1 Dataset Characteristic 

 Since we have observed different data arrangement, namely, different sequence of 

records would be packed with specific time steps, could cause distinct training outcome. 

Therefore, we demonstrate four types of dataset arrangement and their training result to 

prove our idea. 
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(1) Contiguous periods 

The first way is to align the smallest scale temporal feature consecutively, and also 

sort the other temporal features in an ascending order, e.g., period, day, week, month, 

quarter, etc. By using this kind of arrangement, we further pack specific amounts of 

records to feed in the model so that the model would receive the smallest scale of data 

arrangement. In this approach, we expect the model to realize the usage pattern in a 

concentration aspect, namely, the model would be more focus on the present usage 

and try to learn the usage pattern of the near future. The advantage of this approach is 

that the model learns from the contiguous usage pattern of the small-scale timeframe. 

However, the model lacks of the ability to realize seasonality pattern and even the 

usage pattern of data in the far future. 

Table 5-2. Contiguous Period Dataset illustration, you can see the records vary from 

period, weekday, year 

Machine 

Identifier 
Year Weekday 

Period 

Number 

Number of 

runs 

Other 

Features 

Machine A 1st half Monday 1 19 value 

Machine A 1st half Monday 2 20 value 

Machine A 1st half Monday 3 32 value 

Machine A 1st half Monday 4 53 value 

Machine A 1st half Tuesday 1 17 value 

Machine A 1st half Tuesday 2 24 value 

Machine A 1st half Tuesday 3 33 value 

Machine A 1st half Tuesday 4 68 value 

Machine A 1st half Wednesday 1 29 value 

Machine A 1st half Wednesday 2 31 value 

Machine A 1st half Wednesday 3 62 value 

Machine A 1st half Wednesday 4 65 value 

… … … … … … 

Machine N 4th half Sunday 1 6 value 

Machine N 4th half Sunday 2 0 value 

Machine N 4th half Sunday 3 5 value 

Machine N 4th half Sunday 4 26 value 
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(2) Weekday based series 

In this approach, we suggest the meaningful feature, weekday, to be the temporal 

feature that varied first. Based on the domain knowledge of the laundromat industry, 

weekday feature appears to be the main difference of the machine usage pattern.  

For the other temporal features, we again align them in an ascending order to help the 

model focus on the contiguous change on the weekday so that the model emphasizes 

more on what we are caring about. The pros of this representation enforce the model 

to learn the main variation of the machine usage, while unseen data emerged, the 

model would own the ability to know the completely different pattern that exist in the 

real condition. The cons of this approach are similar to the Contiguous period 

approach, where the model could not gain visibility of the whole timeframe and know 

the real usage condition in the data we provided. 

Table 5-3. Weekday Based Dataset illustration, the records vary from weekday first 

Machine 

Identifier 
Year Weekday 

Period 

Number 

Number of 

runs 

Other 

Features 

Machine A 1st half Monday 1 19 value 

Machine A 1st half Tuesday 1 17 value 

Machine A 1st half Wednesday 1 29 value 

Machine A 1st half Thursday 1 30 value 

Machine A 1st half Friday 1 34 value 

Machine A 1st half Saturday 1 23 value 

Machine A 1st half Sunday 1 19 value 

Machine A 1st half Monday 2 20 value 

Machine A 1st half Tuesday 2 24 value 

Machine A 1st half Wednesday 2 31 value 

Machine A 1st half Thursday 2 31 value 

Machine A 1st half Friday 2 34 value 

… … … … … … 

Machine N 4th half Thursday 4 36 value 

Machine N 4th half Friday 4 13 value 

Machine N 4th half Saturday 4 13 value 

Machine N 4th half Sunday 4 26 value 
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(3) Half year scope prediction dataset 

For half year scope prediction, we arrange the data by the largest scope temporal 

feature, for instance, year, half year, quarter. Furthermore, align the other temporal 

features in descending order. This kind of data would provide the model with large 

scale data realization, to let the model understand in large timeframe, the variation of 

number of operational runs. We expect that if the model knows the whole timeframe 

data in each training batch, it gains the ability to understand the usage condition more 

thoroughly.  

 

Table 5-4. Half year scope Dataset illustration, the records vary from year, weekday, and 

then period 

Machine 

Identifier 
Year Weekday 

Period 

Number 

Number of 

runs 

Other 

Features 

Machine A 1st half Monday 1 19 value 

Machine A 2nd half Monday 1 24 value 

Machine A 3rd half Monday 1 21 value 

Machine A 4th half Monday 1 15 value 

Machine A 1st half Tuesday 1 17 value 

Machine A 2nd half Tuesday 1 14 value 

Machine A 3rd half Tuesday 1 24 value 

Machine A 4th half Tuesday 1 18 value 

Machine A 1st half Wednesday 1 29 value 

Machine A 2nd half Wednesday 1 17 value 

Machine A 3rd half Wednesday 1 27 value 

Machine A 4th half Wednesday 1 21 value 

… … … … … … 

Machine N 1st half Sunday 4 19 value 

Machine N 2nd half Sunday 4 15 value 

Machine N 3rd half Sunday 4 19 value 

Machine N 4th half Sunday 4 26 value 
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(4) Half year scope prediction dataset – varied continuous period 

Last but not least, we could arrange data with the contiguous period firstly, then align 

other temporal features in a descending way. For instance, the data aligned would vary 

the period first. After iterated through the option of period, the next sequence of data 

would change the largest scope. This approach suggests compromising the ability to 

know the comprehensive view of the dataset and the variation of the smallest 

timeframe, which means that we are trying to balance the pros and cons exist in the 

way to arrange data records.  

 

Table 5-5. Half Year Scope Dataset, varied period Dataset illustration, the records vary 

from year, period, finally weekday 

Machine 

Identifier 
Year Weekday 

Period 

Number 

Number of 

runs 

Other 

Features 

Machine A 1st half Monday 1 19 value 

Machine A 2nd half Monday 1 24 value 

Machine A 3rd half Monday 1 21 value 

Machine A 4th half Monday 1 15 value 

Machine A 1st half Monday 2 20 value 

Machine A 2nd half Monday 2 14 value 

Machine A 3rd half Monday 2 13 value 

Machine A 4th half Monday 2 18 value 

Machine A 1st half Monday 3 32 value 

Machine A 2nd half Monday 3 18 value 

Machine A 3rd half Monday 3 32 value 

Machine A 4th half Monday 3 24 value 

… … … … … … 

Machine N 1st half Sunday 4 19 value 

Machine N 2nd half Sunday 4 15 value 

Machine N 3rd half Sunday 4 19 value 

Machine N 4th half Sunday 4 26 value 

 
We suggest to adapt different arrangement of dataset and conduct time series analysis 

model training separately so that we can understand the differences between distinct data 

representation on time series forecasting results. 
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5.2.2 Time Series Model Performance Evaluation 

The LSTM autoencoder architecture in our case including input layer, two LSTM 

layer for encoder and decoder, output Layer, and repeat vector. While the model is fed 

with sequence data from input layer with time steps defined, the LSTM encoder layer 

compress the input into lower dimensional latent representation, which will then go 

through a repeat vector and attempt to capture crucial features of the sequence. The repeat 

vector be processed by LSTM decoder layer to maintain the temporal structure. Last but 

not least, output layer applies dense transformation to each time step individually to 

reconstruct the sequence back to its original feature size. 

 Figure 6 illustrates the model architecture that we employ in our deep learning time 

series prediction framework. While the second parameter in the input sequence shape 

indicates time steps selection, we packed four records as a sequence to represent the half 

year scope prediction dataset usage patterns. 

 

Figure 6. LSTM Autoencoder Time Series Prediction Model Architecture 
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In the evaluation steps, we use MAE and RMSE to measure each model’s 

performance. Table 5-6 shows the assessment of each model and corresponding metrics, 

demonstrate the actual performance of our experiments. We denoted contiguous period 

dataset as DS1, weekday-based dataset as DS2, half year scope dataset as DS3 and half 

year scope – varied period dataset as DS4. The number of rows and columns of these 

datasets before encoded features using one-hot encoding is 40,684 rows and 19 columns, 

respectively. The time step column indicates the length of sequence that we group the 

records in the dataset, which may vary based on different dataset and needs. DS1 yielded 

MAE 0.022 and RMSE 0.106, which is good for regression forecasting task. DS2 

improved the model prediction with lower MAE and RMSE. While we varied the largest 

temporal dependency half year first, which is represented by DS3 and DS4, the training 

and validation MAE enhance even more, which inferred that the comprehensive view of 

IoT devices data may contains information that helps the model training process. Besides, 

the relatively small value of time steps may also contribute to better performance. 

Table 5-6. Assessment of each dataset with MAE and RMSE 

Dataset Time step MAE RMSE 

DS1 28 0.0220 0.1060 

DS2 7 0.0192 0.0934 

DS3 4 0.0070 0.0578 

DS4 4 0.0067 0.0588 

 

Moreover, we have observed the training and validation loss drop from current 

condition after certain epochs. Figures 7 to 10 demonstrate the training and validation 

MAE of each dataset. We can see that the DS2 have a small drop on the training and 

validation MAE, while the DS3 and DS4 have significant drop of training and validation 

MAE. The decrease after certain epoch demonstrated by the red circle further improves 
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the model performance and are considered escaping the local minima during training 

process, which indicate that the models have gain even more information after specific 

training epochs. 

 

Figure 7. Training and Validation MAE -- DS1 

 

 

Figure 8. Training and Validation MAE – DS2 
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Figure 9. Training and Validation MAE – DS3 

 

 

Figure 10. Training and Validation MAE – DS4 
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In our research, the complex and noisy data collected from IoT message-passing 

machines have precisely been addressed by the advantage of autoencoder handling noise 

data and learn essential information by minimizing the reconstruction loss during training 

process. Furthermore, we have discovered that different arrangement of data could lead 

to distinct model performance and forecasting precision. By aggregating time series data 

with certain temporal features, we could yield strong prediction capability with the 

proposed framework. 

5.3 Deep Clustering Model Performance Evaluation 

As for IoT-enabled washing machines lack historical data, with only the properties 

that we have demonstrated in section 5.1, deep clustering methods enable grouping 

machines into similar clusters. Furthermore, supervised classification task could define 

the target machine to specific group based on its original essences. Below we would 

introduce the two phases framework separately, aiming to provide a thorough procedure 

to conduct usage pattern forecasting with machines without historical operational data. 

5.3.1 First Phase: Unsupervised Learning Model Performance 

 In the first phase, we aim to form dataset like Table 4-2, to represent single machine 

usage patterns within two years in one record. We convert the temporal features weekday 

and period to columns to indicate the temporal dependency of the machine in our time 

frame. For a machine with full four half year data, 4 records are yielded, each indicating 

the usage pattern within one half year. Since not every machine contains full time data, 

we calculate the average number of operational runs among each half year record, aiming 

to aggregate the machine usage pattern to present by a single row.  

 We have addressed the power of deep embedding clustering methods that combines 

traditional partitioning clustering algorithm or density-based clustering approaches with 
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autoencoder to retrieve crucial information within lower latent space. Here, we utilized 

K-means and HDBSCAN with autoencoder, to conduct experiments on our dataset. While 

K-means requires predefined number of clusters to group machine around the centroid, 

HDBSCAN automatically distributed the data point in the perspective of density, and also 

help isolate the noise records within our dataset. We have conduct K-means clustering 

with three different number of clusters defined, and also apply grid search to fine tune the 

optimal structure of autoencoder before feed into HDBSCAN clustering model, the 

clustering result of Silhouette Score, Davies-Boudlin Index and Calinski-Harabasz Index 

are shown in Table 5-8. 

 In order to find a suitable number of clusters that could minimize the average loss 

while we calculate the mean of number of operational runs in the second phase, we 

conduct experiments and show the clustering performance with ten and twenty clusters. 

Since we have around 700 machines, each cluster should contain no more than 100 

machines to minimize the loss while compute average number of operational runs.  

We first list a distribution of the numbers of machines and its corresponding cluster 

when using K-means with autoencoder to conduct the clustering in Table 5-7. The large 

number of machines in one group may increase the loss while conducting average on the 

number of operational runs significantly, leading to poor forecasting result. Therefore, 

while choosing proper number of clusters to group the machines, few experiments are 

required to achieve the optimal result in distribution as well as the second phase 

classification. 
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Table 5-7. Number of machines in each cluster using K-means with 20 clusters predefined. 

Cluster 
Number of 

Machines 

Cluster 0 34 

Cluster 1 22 

Cluster 2 34 

Cluster 3 60 

Cluster 4 39 

Cluster 5 17 

Cluster 6 39 

Cluster 7 25 

Cluster 8 54 

Cluster 9 54 

Cluster 10 13 

Cluster 11 51 

Cluster 12 29 

Cluster 13 19 

Cluster 14 56 

Cluster 15 52 

Cluster 16 23 

Cluster 17 24 

Cluster 18 37 

Cluster 19 28 

 
 

Table 5-8. Clustering result assessment for K-means with different number of clusters 

defined and HDBSCAN with grid search fine-tuned optimal autoencoder structure. 

Dataset Silhouette Score Davies-Boudlin Index Calinski-Harabasz Index 

K-means, 10 clusters 0.118 2.040 80.675 

K-means, 20 clusters 0.103 2.095 59.499 

K-means, 30 clusters 0.130 1.853 52.792 

HDBSCAN, 31 clusters -0.112 2.476 75.134 

 

 

The clustering result have proved that while the number of defined clusters increase, 

the Silhouette Score and Davies-Boudlin Index are better performance, which infer that 

the encoded features that comes from the autoencoder require large number of clusters to 
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distribute each data point. However, the Calinski-Harabasz Index decreases as the number 

of clusters increases, indicating that the difference between did not increase against the 

increasing number of clusters. Moreover, the result of HDBSCAN have automatically 

distribute 31 clusters in the first phase operation, which is more feasible while evaluating 

with Calinski-Harabasz Index.  

 Figure 11 illustrates the data point distribution while using HDBSCAN plot by the 

t-Distributed Stochastic Neighbor Embedding (t-SNE) representation, which is a 

dimensionality reduction technique particularly well-suited for the visualization of high-

dimensional dataset. It maps multi-dimensional data to two dimensions for visualization. 

Without showing all 31 clusters data, the t-SNE plot illustrates the overview of data 

distribution performed by HDBSCAN. Although a large amount of noise point presented, 

we can see that most data point can correctly gather into the cluster with similar machine 

operation pattern in dimensional reduction format.  

 

Figure 11. t-Distributed Stochastic Neighbor Embedding plot of HDBSCAN clustering 



doi:10.6342/NTU202401885

53 
 

 

5.3.2 Second Phase Supervised Learning Model Performance 

 In second phase evaluation process, we have conduct supervised classification on 

the result of clustering model from the first phase. Both random forest and XGBoost tree-

based classification model are employed to understand the performance of the clustering 

results. We list the evaluation metrics including precision, recall, and F1-score in 

weighted average for each classification result to better understand each model’s ability.  

In addition, we have conduct cross validation in five folds to calculate the average 

accuracy of each model with random forest, presenting a robust evaluation on the 

performance of both tree models. The feature importance plot in classification results also 

demonstrate the features that determines the relation between value in each record and it 

label assigned. 

Table 5-9.Classification performance of Random Forest and XGBoost apply on the 

clustering result in the first phase. 

Dataset 

Random Forest XGBoost 

Precision Recall F1-Score 
Cross 

Accuracy 
Precision Recall F1-Score 

K-means, 10 clusters 0.87 0.85 0.86 0.75 0.83 0.82 0.83 

K-means, 20 clusters 0.84 0.81 0.80 0.75 0.81 0.82 0.80 

K-means, 30 clusters 0.77 0.73 0.73 0.70 0.81 0.76 0.77 

HDBSCAN, 30 clusters 

(remove noise) 
0.92 0.93 0.91 0.89 0.94 0.93 0.93 

 

  

From the experiment result, the HDBSCAN with 30 cluster after removing the 

machine records in noise cluster performed the best. It yielded 0.89 on five folds cross 

validation from random forest model and 0.94 precision using XGBoost model. Therefore, 

we recommend use density-based clustering methods such as HDBSCAN while conduct 
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clustering on complex IoT message-passing machine data. In addition, we find that the 

performance of the second phase task from random forest decrease while the number of 

clusters increase, infers that the trade-off between the number of clusters and the result of 

classification task exists. 

 Last but not least, with the aid of tree-based algorithms, it is possible to visualize the 

tree structure to know how the model process input data and make classification decisions. 

The feature importance plot shown in Figure 12 illustrates the notable features that have 

high score during the classification task, which help understand the variable’s 

contribution during the training process. The duty period and location feature appear to 

be the deterministic element during the training process in our case, which also make 

sense while consider domain knowledge. 

 

 Figure 12. Feature Importance Plot 
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Chapter 6  

Conclusion  

6.1 Conclusion 

In this paper, we have explored various methods to optimize prediction outcomes 

from IoT-enabled collected data, acknowledging the complexities of data collection and 

processing due to varying data formats. A crucial aspect of enhancing our framework’s 

forecasting capability is ensuring the long-term validity and accuracy of IoT data 

collection to reflect actual machine usage patterns. By contiguously integrating with new 

data, we can build comprehensive models that improve the robustness and accuracy of 

predictions. 

We have proposed a framework that aggregates the data into specific temporal 

dependencies, enabling deep learning time series forecasting on IoT message-passing 

machines. This framework employs deep learning models and autoencoders, 

demonstrating the ability to handle complex IoT data of varying lengths and providing 

insights real-world collected raw IoT data. 

For the machines lacking historical data, a deep embedding clustering approach 

combined with supervised classification methods forms a two-phase procedure to predict 

the future usage patterns based solely on machine properties and related features. This 

framework offers robust prediction outcomes, aiding the service sector in making data-

supported business strategies. 

Moreover, the application of this framework extends beyond business insights, 

offering significant benefits for human being. For example, implementing time series data 

forecasting on light bulbs equipped with sensors can predict the indoor periods of the 

elderly, enabling automatic lighting within precise time slots, enhancing safety without 
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wasting electricity. Moreover, the allocation of electric vehicle supply equipment can also 

take advantage of our framework to avoid low occupy rate and high traffics in certain 

area. 

In conclusion, the proposed framework not only provides the forecasting capabilities 

for service industries that utilize IoT-enabled machines but also leverages high-volume 

and high-quality data to offer forecasting advantages regardless of the presence of 

historical data. Beyond the service sectors, any field with IoT sensors and data collection 

mechanism can benefit from our framework, gaining greater visibility for future planning. 

6.2 Managerial Implication 

The integration of IoT data and advanced deep learning models presents numerous 

managerial implications across various sectors. In manufacturing, predictive usage 

patterns powered by IoT data provides forecasting ability on future machine usage., while 

accurate inventory forecasting ensures optimal spare parts availability. In healthcare, 

continuous patient monitoring through IoT sensors allows for early detection of potential 

health issues, improving patient outcomes and operational efficiency. Smart facility 

management optimizes the use of hospital equipment, leading to better resource 

utilization. Energy management benefits from IoT-enabled smart lighting systems that 

enhance energy efficiency by automating lighting schedules based on usage patterns, and 

predictive analytics optimize the placement and operation of electric vehicle charging 

stations, reducing congestion and improving user satisfaction. In the retail and supply 

chain sectors, IoT data-driven inventory forecasting reduces stockouts and overstock 

situations, while cold chain management ensures the quality of temperature-sensitive 

goods during transit. These applications demonstrate how leveraging IoT data for 

predictive analytics enhances decision-making, optimizes operations, and fosters 

innovation, ultimately driving business success and competitive advantage. 
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6.3 Future work 

 We have explored various methods to achieve optimal prediction outcomes from the 

collected IoT messages. However, data collection and processing are complex tasks that 

require dynamical adjustments based on varying data formats. To enhance the forecasting 

capability of our framework, it is crucial to ensure that long-term IoT data collection is 

valid and accurately represents the actual usage patterns of individual machines. 

Consequently, by contiguously adding new data, we can build more comprehensive 

models with robust data quality, thereby improving the accuracy of our prediction 

outcomes. 

 Thanks to modern technology and computing power, pretrained models that can be 

applied to various data sources can be developed effectively. If a robust data collection 

procedure is established and sufficient data is prepared, it is recommended to build 

pretrained model based on our framework. With high-quality data, these pretrained 

models can achieve flexibility and be easily adapted for use in various domains.  

 For IoT machines without historical data, the deep embedding clustering approach 

allows these machines to be classified into clusters with similar usage patterns based 

solely on their properties. In our case, we compute the mean usage pattern from the 

machine within the same cluster to forecast the future usage pattern of the target 

machine. Alternatively, is it possible to build a deep learning time series forecasting 

model based on the data from machines in the assigned cluster. The prediction outcomes 

generated from this model should be more accurate and robust compared to simply 

computing the mean usage pattern of these machines. 
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Appendix 
 

Table - A 1. The training result for four dataset and recurrent neural network models 

Dataset, Model / Evaluation Metrics 
Testing 

MSE 

Prediction 

MAE 

Prediction 

RMSE 

Contiguous Period, RNN 92.96 7.08 14.07 

Weekday Based, RNN 109.37 7.61 13.08 

Half Year Scope, RNN 251.02 13.04 17.95 

Half Year vary Contiguous Period, RNN 85.33 7.05 14.72 

Contiguous Period, RNN, without machine 

identifier 
154.03 8.22 17.11 

Weekday Based, RNN, without machine identifier 210.15 10.81 19.47 

Half Year Scope, RNN, without machine 

identifier 
144.25 8.45 19.01 

Half Year vary Contiguous Period, RNN, without 

machine identifier 
136.16 8.41 18.07 

Contiguous Period, LSTM, with Embedding layer 

for machine identifier 
155.26 10.21 12.46 

Weekday Based, LSTM, with Embedding layer 

for machine identifier 
152.85 10.01 12.35 

Half Year Scope, LSTM, with Embedding layer 

for machine identifier 
151.73 9.98 12.34 

Half Year vary Contiguous Period, LSTM, with 

Embedding layer for machine identifier 
151.32 9.92 12.31 

 

 

  



doi:10.6342/NTU202401885

64 
 

Table - A 2. Clustering Result without autoencoder employed 

 Silhouette Score Data Point Distribution 

K-means without 

autoencoder, 10 clusters 
0.159 

 

HDBSCAN without 

autoencoder, 8 clusters 
-0.214 

 

 


