
doi:10.6342/NTU202301027

國立臺灣大學電機資訊學院資訊網路與多媒體研究所

碩士論文

Graduate Institute of Networking and Multimedia

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

打造公平的遊戲轉蛋：在不洩漏原始碼的前提下驗證

虛擬轉蛋的機率

Securing Fair Loot Box Games: An Efficient Approach to
Verifying Loot Box Probability Statement Without Source

Code Disclosure

王靖傑

Jing-Jie Wang

指導教授: 蕭旭君博士

Advisor: Hsu-Chun Hsiao Ph.D.

中華民國 112年 6月

June, 2023

doi:10.6342/NTU202301027

摘要

虛擬轉蛋是一種隨機獲取獎勵的機制，並且已經是近期遊戲產業主要的盈利

模式。然而，世界各地發生過許多起針對虛擬轉蛋消費糾紛事件，例如近期台灣

發生的「丁特 v.s. 天堂M」事件，玩家實測出的掉寶機率與遊戲公告的機率明顯

不符，後續公平交易委員會也證實遊戲公司確實有廣告不實。面對這些事件，許

多國家制定法律，要求遊戲公司需明確揭露虛擬轉蛋中獎機率。然而，目前並沒

有一個公認可行的方式來驗證虛擬轉蛋的實際中獎機率，其中一些方法並無法完

整驗證資料，一些方法要求將程式碼開源。但考量到現實情況，要求遊戲公司開

源是不實際的，因為轉蛋演算法往往是重要的商業機密。於是本篇研究提出在不

洩漏原始碼的前提下驗證虛擬轉蛋中獎機率的方法。我們提出的方法包括兩種協

定：機率驗證協定以及轉蛋抽獎協定。機率驗證協定使用隨機信標及函數承諾等

密碼學工具，提供不可預測的隨機源及執行正確性的驗證，以此獲得測試資料進

行機率驗證；轉蛋抽獎協定讓讓玩家及遊戲伺服器共同產生一個隨機參數，使得

雙方都不能預測或控制轉蛋的機率，保障玩家在抽獎過程並沒有被降低機率。此

外，我們也實作提出的兩種協定，並對於不同參數進行實驗比較。結果顯示我們

的系統擁有良好的效能及實用性。

關鍵字：資訊安全、密碼學、虛擬轉蛋

iii

doi:10.6342/NTU202301027iv

doi:10.6342/NTU202301027

Abstract

Loot boxes, which have become a predominant revenue model in contemporary mo-

bile games, offer players the opportunity to acquire random rewards. However, there have

been numerous incidents of disputes related to loot box consumption around the world.

For example, in the recent “Dinter v.s. LineageM” incident in Taiwan, where players con-

ducted tests and found that the winning probability did not align with the probability stated

by the game company. The Fair Trade Commission later confirmed that the game com-

pany had engaged in false advertising. Faced with these incidents, some countries have

adopted laws mandating the explicit disclosure of probabilities. However, currently, there

is no practical method to verify the probability statements. As a result, in this work, we

propose an efficient approach for verifying the probability of loot boxes without disclos-

ing the source code. In particular, we propose two protocols: a probability verification

protocol and a loot box opening protocol. The probability verification protocol allows

players to verify the winning probability of loot boxes using publicly verifiable random

v

doi:10.6342/NTU202301027

sources. On the other hand, the loot box opening protocol establishes a mechanism for

the game servers and players to agree on a random input, ensuring that neither party can

manipulate the outcome. We also implemented our protocols and conducted experiments

to evaluate their performance. The results demonstrate that these protocols are efficient

and practical.

Keywords: security, cryptography, loot box

vi

doi:10.6342/NTU202301027

Contents

Page

Verification Letter from the Oral Examination Committee ii

摘要 iii

Abstract v

Contents vii

Chapter 1 Introduction 1

1.1 What is a loot box . 1

1.2 Current verification of loot box probability statement 2

Chapter 2 Background 5

2.1 Regulations on loot box around the world 5

2.2 Regulation on loot box in Taiwan 7

2.3 Public randomness beacon (PRB) 9

2.4 Functional Commitment . 10

Chapter 3 Preliminaries 11

3.1 Verifiable Delay Function . 11

3.2 Cryptographic Accumulator . 12

3.3 Public Randomness Beacon . 14

3.4 Functional Commitment . 15

vii

doi:10.6342/NTU202301027

Chapter 4 Problem Formulation 19

4.1 Assumptions . 20

4.2 Threat Model . 21

4.3 Objectives . 21

Chapter 5 Proposed Protocols 23

5.1 Probability Verification Protocol . 23

5.1.1 Probability Verification Through Public Randomness Beacon 23

5.1.2 Probability Verification Through Dry-Run API 27

5.1.3 Probability Verification Through Public Bulletin Board 29

5.1.4 Probability Verification Through Third-Party Auditing 30

5.2 Loot Box Opening Protocol . 31

Chapter 6 Discussion 35

6.1 Hypothesis test . 35

6.2 Determine the number of test inputs 36

Chapter 7 Security Analysis 39

7.1 Correctness & Soundness . 39

7.2 Public Verifiability . 39

7.3 Individual Verifiability . 40

7.4 Input Transparency . 40

7.5 Algorithmic Hiding . 40

Chapter 8 Evaluation 43

8.1 Implementation . 43

8.2 Complexity Analysis . 44

viii

doi:10.6342/NTU202301027

8.3 Execution Time Analysis . 44

Chapter 9 Conclusion 47

References 49

ix

doi:10.6342/NTU202301027x

doi:10.6342/NTU202301027

Chapter 1 Introduction

1.1 What is a loot box

Loot boxes are commonly utilized in the game industry to describe a mechanism

where players spend in-game currency to receive a random in-game item. Currently, the

majority of games that incorporate loot box mechanisms are mobile freemium games,

allowing players to use them at no cost. However, fees will be charged if players require

supplementary services, such as obtaining rare items. The loot box business model has

gained significant popularity in recent years and currently dominates the gaming industry.

In 2020, free-to-play games were responsible for generating 78% of the total revenue in

the gaming industry, as reported by SuperData [32].

Previous research has demonstrated a strong correlation between engagement in loot

boxes and the severity of problem gambling, which is characterized by the extent to which

an individual is affected by addictive or problematic gambling behavior [15] [33] [8] [25].

This problem is even more significant among adolescent players, as suggested by [23].

Besides pointing out the solid correlation for problem gambling, certain studies have sug-

gested that regulations should be implemented to mandate game companies to disclose the

probability of obtaining rare items in loot boxes [36].

1

doi:10.6342/NTU202301027

Several countries, game industries, and platforms have already published regulations

regarding loot boxes, either through legal power or self-regulation. In Section 2, we will

examine these regulations in greater detail.

1.2 Current verification of loot box probability statement

Although there are already some laws and regulations requiring game companies to

disclose probabilities explicitly, verifying probability statements remains a challenging

issue.

Recently, the Taiwanese government, collaboratingwithNTUSTGamelab, published

a third-party verification website [19]. Game players can upload their loot box opening

records on this platform, along with a screen recording video that provides proof of au-

thenticity for the record. Once a sufficient number of loot box opening records have been

collected, the platform can display the validity of probability statements with different

confidence intervals.

However, using this third-party verification platform has the following issues:

1. Proving the authenticity of records can be challenging and expensive. The platform

utilizes screen recording videos as a method to ensure record authenticity, but this

approach is costly and does not guarantee 100% accuracy of the data.

2. The platform does not offer a means for the public to authenticate the data. While

the platform claims to have a dedicated team responsible for data verification, the

lack of transparency leaves us with no choice but to trust the platform, which is not

ideal.

2

doi:10.6342/NTU202301027

3. Detecting hidden inputs is not possible. Given the doubts surrounding the treatment

of different players with varying winning probabilities, such as the case described in

[26], it is crucial to confirm that there are no hidden inputs in the loot box algorithm.

4. There is a possibility of selective data uploading. For instance, game companies

may select and upload only winning records from a large sample of opening records,

leading to a biased probability.

On the other hand, Carvalho proposed a transparent loot box scheme, which utilizes

blockchain and smart contracts [9]. However, this approach necessitates game companies

to implement their loot box function using smart contracts, resulting in the disclosure of

the function’s source code once it is uploaded to the blockchain. In addition, this approach

uses the timestamp as its random source, which is predictable to the players. Consequently,

players can exploit this predictability to increase their chances of winning.

Ideally, if game companies are willing to make their loot box algorithm open-source,

curious players would have the opportunity to audit the source code or manually run it

to verify if the actual probabilities match the stated probabilities. However, in reality,

since loot box algorithms are considered trade secrets by game companies, they often take

measures to protect and conceal the source code from the public. Moreover, it is almost

impossible to compel game companies to open-source their loot box algorithms from a

regulatory standpoint.

As a result, our main goal is to enable players to verify the loot box probability with

minimal information disclosure of the underlying opening function. Additionally, it is

crucial to ensure that the game company cannotmanipulate the randomness used in the loot

box opening process, in order to prevent intentional decreases in the winning probability

3

doi:10.6342/NTU202301027

of certain players.

In this work, we propose two protocols: the probability verification protocol and the

loot box opening protocol. The probability verification protocol allows players to verify

the winning probability of loot boxes using publicly verifiable random sources. On the

other hand, the loot box opening protocol establishes a mechanism for the game servers

and players to agree on a random input, ensuring that neither party can manipulate the

outcome.

This paper makes the following contributions:

1. We investigated the problem of loot box probability disclosure, and examine current

regulations surrounding loot boxes.

2. We propose the probability verification protocol and the loot box opening protocol

as solutions to verify the loot box probability statement without disclosing the source

code.

3. We optimize the HeadStart beacon by using a cryptographic accumulator, which

reduces the complexity of verification to constant with respect to the number of

contributions.

4. We implement and evaluate the probability verification protocol and the loot box

opening protocol, showing that our protocols are efficient and practical.

4

doi:10.6342/NTU202301027

Chapter 2 Background

In this section, we will cover the following topics. Firstly, we will examine the dif-

ferent regulations on loot boxes worldwide, with a particular focus on the new “gacha

regulation” recently implemented in Taiwan in 2023. Secondly, we will provide a high-

level introduction to the public randomness beacon (PRB). Lastly, we will introduce a new

cryptographic primitive called functional commitment (FC).

2.1 Regulations on loot box around the world

As of now, several countries have implemented regulations concerning loot boxes.

However, the existing regulatory approaches differ significantly. Certain countries clas-

sify loot boxes as a form of gambling, while others only mandate the disclosure of proba-

bilities [38].

Belgium In 2018, the Belgian Gaming Commission stated that loot box mechanisms are

considered gambling under current legislation and has effectively prohibited loot boxes

by enforcing gambling laws. Game companies that implement paid loot boxes without

a gambling license may face criminal prosecution. However, a recent study showed that

82% among the 100 highest-grossing Belgian iPhone games had loot box features [37].

5

doi:10.6342/NTU202301027

China In 2017, the People’s Republic of China (PRC) is the first country that legally

mandates game companies to disclose the probabilities of receiving randomized loot box

rewards [39].

Japan In 2012, the Consumer Affairs Agency (CAA) in Japan banned the “complete

gacha”, which involves the player needing to collect a series of items before having the

chance to obtain a specific rare item. The requirement for disclosing probabilities is

achieved through self-regulation in Japan. In 2016, the Computer Entertainment Sup-

plier’s Association (CESA) announced a guideline for gacha probability and pricing, which

obligated its members to complywith these guidelines. A study on Japanese game players’

attitudes towards loot box probability statements [21] revealed that despite regulations and

self-regulating guidelines, the majority of players did not trust the probability announce-

ment.

Netherlands In 2018, a report by the Netherlands Gambling Authority [3] found that

loot boxes offering tradable items are illegal and, hence, the underlying games cannot be

sold without an appropriate license.

South Korea South Korea has previously adopted a self-regulatory approach to loot

box games through the leadership of the Korean Association of the Game Industry (K-

GAMES). However, recently in February 2023, the National Assembly of South Korea

collaborated with K-GAMES to pass a new amendment that mandates loot box probability

disclosure [28].

Apart from national regulations on loot box games, Apple app store and Google play

6

doi:10.6342/NTU202301027

store and also have some policies on loot box games.

Apple App Store In 2017, Apple changed their developer guidelines. According to App

Store Review Guidelines, “Apps offering loot boxes or other mechanisms that provide

randomized virtual items for purchase must disclose the odds of receiving each type of

item to customers prior to purchase.” [2].

Google Play Store In 2019, Google announced their new policy to loot box, stating that

“Apps and games offering mechanisms to receive randomized virtual items from a pur-

chase including, but not limited to, loot boxes must clearly disclose the odds of receiving

those items in advance of, and in close and timely proximity to, that purchase.” [20].

2.2 Regulation on loot box in Taiwan

In June 2021, an online player named Paul started a petition on a public policy par-

ticipation platform to promote the Taiwanese government to formulate regulations on

“Gacha” mechanics. The petition received support from 6,560 people [29]. Addition-

ally, there have been several incidents of unfair loot box practices. In the following, we

will discuss two such incidents.

In September 2021, a popular Taiwanese streamer named Dinter accused the game

company behind “Lineage M” of manipulating the probability of loot boxes in the online

game [1]. Prior to this incident, the game company had stated that the probability of

obtaining a particular item in the Taiwanese version was equivalent to that of the Korean

version, which was 10%. However, despite spending more than 4 million TWD, Dinter

7

doi:10.6342/NTU202301027

only succeeded 11 times out of 475 attempts, resulting in a success rate of approximately

2.3%.

Upon receiving Dinter’s appeal, the Fair Trade Commission initiated an investiga-

tion. The investigation revealed that, based on the game company’s internal communica-

tion records, the actual probability of obtaining the item in question was 5%, which was

clearly inconsistent with their previous claim. Consequently, the commission imposed a

fine of 2 million TWD on the game company, citing violation of the Fair Trade Act. This

incident also promoted public discussion on the revision of loot box regulation.

In addition to Dinter’s incident, an anonymous player of “Arena of Valor” claimed

to be an employee of the game’s company and revealed that the probability of obtaining

items from loot boxes differed for each player, depending on how much they had spent in

the game [26]. The player also presented modified source code as evidence to support his

claim. The anonymous player’s disclosure led to widespread discussion and highlighted

the growing distrust between players and the game company.

Following the incidents and extensive discussions between players, game compa-

nies, and the government, the Consumer Protection Committee announced revisions to

regulations in 2022. The revisions included the following points [14]:

1. Game companies should disclose the probability of randomized virtual item

2. The winning probability should be clearly defined

3. The scope of winning probability disclosure should be clearly defined

4. The manner in which winning probability is disclosed should be clearly defined

After discussing the regulations on loot boxes and considering recent events world-

8

doi:10.6342/NTU202301027

wide, we will now explore two important cryptographic tools that are critical building

blocks of our protocol.

2.3 Public randomness beacon (PRB)

A public randomness beacon is a service that produces and publishes unpredictable

and bias-resistant randomness at fixed intervals. The main goal of a randomness beacon

is to provide a reliable source of randomness that cannot be predicted or manipulated by

any party, including the service provider.

We surveyed several publicly-verifiable randomness beacon constructions, includ-

ing public verifiable secret sharing (PVSS) based [10] [31] [11], verifiable random func-

tion (VRF) based [18], BFT state machine replication based [4], homomorphic encryption

based [12] and verifiable delay function (VDF) based [30] [24]. We opted to use the Head-

Start randomness beacon [24] because it is a participatory scheme, enabling the public to

contribute their randomness and verify its inclusion in the process. We also made some

modifications to reduce the complexity regarding the number of contributions, which is

better suited to the requirements of the loot box scenario. Furthermore, a HeadStart ran-

domness beacon can be utilized as a shared source of randomness across various loot box

games. This enhances usability, as players need only contribute once and can use the

following randomness for multiple loot box games.

PRB can be utilized as a random source to generate test data for loot box probabil-

ity verification. The main benefit is that it guarantees unpredictable and bias-resistance,

which means the game companies cannot manipulate or predict the test data to bias the

winning probability of the underlying function.

9

doi:10.6342/NTU202301027

2.4 Functional Commitment

A functional commitment scheme allows a committer to make a commitment to a

secret function f , and subsequently prove that y = f(x) for public x and y while keeping

all other details about f concealed [7]. In the loot box scenario, functional commitment

makes it possible for game companies to demonstrate that the loot box opening procedure

is being applied uniformly and correctly for all individuals.

In 2021, Boneh et al. proposed an efficient functional commitment construction. This

functional commitment is constructed using some special kinds of zk-SNARKs (Marlin

[13] and Plonk [17]) as a building block and is extended with a “proof of function rela-

tion” to create a succinct functional commitment. We provide a formal definition of this

construction in more detail in section 3.4.

In addition to its succinctness, functional commitment can compel game companies

to disclose all the input parameters used in the loot box algorithm, and guarantees that each

player is treated fairly with the same algorithm. This feature addresses the concerns raised

by players about the game company potentially using different algorithms for Korean and

Taiwanese players [1], as well as the controversy that the game company was secretly

using players’ consumption amounts as a hidden input [26].

10

doi:10.6342/NTU202301027

Chapter 3 Preliminaries

In this section, we will introduce the cryptographic primitives that we utilize in our

loot box verification protocols. We first introduce the verifiable delay function (VDF)

and cryptographic accumulator. Then, we define the notion of public randomness beacon

(PRB). Finally, we describe how we leverage a cryptographic accumulator to improve one

of the PRB construction known as HeadStart.

3.1 Verifiable Delay Function

The Verifiable Delay Function (VDF) was formally defined in [5]. It is a crypto-

graphic function that is moderately difficult to compute, yet its results can be efficiently

verified. A VDF consists of the following three algorithms:

• VDF.Setup(1λ, T)→ pp: Given the security parameter 1λ and a time parameter T ,

outputs public parameters pp. This should be a randomized algorithm.

• VDF.Eval(x)→ (y, π): Given an input x, outputs the result y along with a proof π

and must run in parallel time T . This should be a deterministic algorithm.

• VDF.Verify(x, y, π) → {0, 1}: Given input x, claimed output evaluation value y,

and proof π, outputs decision bit {0, 1}. The Verify algorithm, which is much faster

11

doi:10.6342/NTU202301027

than Eval, must run in total time log (T).

In addition, a VDF must satisfy the following properties:

1. Correctness: The algorithm VDF.Verify(x, y) must return 1 if (y, π) is actually

generated by VDF.Eval(x).

2. Soundness: For any polynomial time adversaryAwho generates (x, y, π), the prob-

ability of VDF.Verify(x, y, π) = 1 but y "= VDF.Eval(x) is negligible.

3. σ-sequentiality: There is no randomized algorithmwith poly(T,λ) parallel proces-

sors can evaluate VDF.Eval with non-negligible probability before time σ(T).

With σ-sequentiality, we can ensure that no one is able to obtain the result of Eval

before σ(T) from the start. Although a perfect VDF would achieve σ(T) = T , such

a requirement is unrealistic. In practice, it suffices to use a VDF that ensures σ(T) is

approximately T − o(T), or even σ(T) = T − εT with a small ε.

In practice, we choose to use Wesolowski’s VDF [35], which is based on the hidden

order group. More precisely, this VDF construction can be reduced to “adaptive root

assumption”, which means that the adversary cannot compute the order of any non-trivial

element in the group.

3.2 Cryptographic Accumulator

A cryptographic accumulator scheme generates a value that accumulates a set of val-

ues and creates a proof for each value in the set. With the accumulated value and the proof,

anyone can verify if a particular value belongs to the set.

12

doi:10.6342/NTU202301027

Formally speaking, for a set of n values X = {x1, ..., xn}, a cryptographic accumu-

lator consists of the following algorithms:

• ACC.Setup(1λ, n) → pp: Given the security parameter λ and upper limit of set

size, return public parameters pp.

• ACC.Eval(pp,X) → xacc: Given public parameters and a set X, returns an accu-

mulated value xacc for the set X.

• ACC.CreateWit(pp, xacc, xi,X) → wi: Given public parameters, accumulated

value xacc, a set X and an element xi in X, returns a witness wi if xi ∈ X, oth-

erwise, returns ⊥.

• ACC.Verify(pp, xacc, xi, wi) → {0, 1}: Given public parameters, accumulated

value xacc, a value xi, and a witness wi, returns 1 if xi is indeed accumulated in

xacc, otherwise, returns 0.

Several accumulator schemes have been proposed, and the Merkle tree is one of the

simplest among them [27]. However, when the size of the underlying set is large, the

verification complexity of the Merkle tree’s inclusion proof, which is O(logn), may not

be ideal. On the other hand, a new accumulator construction using a hidden order group

can achieve a verification complexity of O(1) [6]. Since this construction uses the same

technique introduced by Wesolowski [35], it also needs the “adaptive root assumption” of

the underlying group.

13

doi:10.6342/NTU202301027

3.3 Public Randomness Beacon

A public randomness beacon (PRB) is a service that generates and publishes unpre-

dictable, bias-resistant, and publicly verifiable random values at regular intervals.

For ease of describing the use of PRB in the following sections, we model PRB as

follows:

• PRB.Setup(1λ, I) → pp: Given the security parameter λ and beacon interval I ,

outputs public parameters pp. This should be a randomized algorithm.

• PRB.Contribute(pp, x): Given a public parameter pp, and a local randomness x,

this algorithm inserts x to the upcoming randomness beacon outputs.

• PRB.Eval(pp, {x1, ..., xn}) → r: Given pp, a set of randomness contributions

{x1, ..., xn}, outputs r as the outcome of this beacon interval.

• PRB.Verify(pp, xi, r) → {0, 1}: Given pp, a randomness contribution xi and

randomness outcome r, outputs decision bit {0, 1}.

In addition, a public randomness beacon should possess the following properties:

1. Unpredictability: Before PRB.Eval returns, it is computationally infeasible to pre-

dict the output of PRB.Eval

2. Bias-Resistance: There is no adversary that can manipulate the output of PRB.Eval

for its own advantage.

3. Verifiability: Honest contributors can verify the output is unpredictable and bias-

resistant.

14

doi:10.6342/NTU202301027

As we surveyed in section 2.3, there are many constructions of PRB with different

assumptions and different cryptographic primitives. In particular, we choose the Head-

Start beacon [24], which allows any contributors to verify the unpredictability and boas-

resistance without other assumptions. We also make some improvement to reduce the

complexity regarding the number of contribution. In the origin HeadStart beacon, the ver-

ification complexity is O(L × polylog(T) + logC), where L is the number of beacon

outcomes after your contribution and T is the period of each beacon outcome. However,

in the loot box scenario, the number of contributions may be quite large since there might

be various loot box events, and we can also use the same PRB across different games. We

further reduce the complexity to O(L× polylog(T)) by using cryptographic accumulator

to replace the Merkle tree used in HeadStart beacon.

3.4 Functional Commitment

As defined in [7], a functional commitment scheme enables a committer to commit

to a secret function and provides proofs of evaluations of that function at specific points.

In this paper, we briefly revise the notation used in [7], and make the evaluation

protocol non-interactive using the Fiat-Shamir heuristic.

• FC.Setup(1λ, N) → pp: Given the security parameter λ and upper limit of gates

number N , outputs public parameters pp. This should be a randomized algorithm.

• FC.Commit(pp, f, r) → c: Given a public parameter pp, a secret function f , and

randomness r, outputs a commitment c to f . This should be a deterministic algo-

rithm.

15

doi:10.6342/NTU202301027

• FC.Eval(pp, f, r, x, y)→ π: Given pp, a function f , another randomness r, eval-

uation point x, and claimed evaluation value y, outputs a proof π that convince

verifier that f(x) = y.

• FC.Verify(pp, c, x, y, π)→ {0, 1}: Given pp, a function f , a commitment c, eval-

uation point x, claimed evaluation value y, and a proof π, outputs decision bit {0, 1}.

Following the definition in [7], we briefly restate the notation and switch to the non-

interactive version of functional commitment.

A secure functional commitment should possess the following properties:

1. Binding: It is computationally infeasible to find distinct functions f1, f2 such that

FC.Commit(pp, f1, r1) = FC.Commit(pp, f2, r2) for some pp, r1 and r2.

2. Hiding: For commitments c1, c2 derived from two distinct functions, it is computa-

tionally indistinguishable between c1 and c2.

3. Completeness: For all commitment c generated by FC.Eval, the verification FC.Verify

always return 1.

4. Evaluation zero-knowledge: The proof π reveals nothing other than the evaluation

f(x) = y.

5. Knowledge soundness: A valid evaluation proof can only be produced by provers

possessing knowledge of the secret function f .

6. Evaluation Binding: It is computationally infeasible to construct valid evaluation

proofs for different evaluation values y1 "= y2 on the same input x.

16

doi:10.6342/NTU202301027

Boneh et al. [13] introduced two constructions of general arithmetic circuit func-

tional commitment from preprocessing zk-SNARK [7], namely Marlin and Plonk [17].

In our scenario, the Hiding property is the most important since it ensures that the func-

tional commitment scheme does not disclose any information regarding the secret func-

tion, which is frequently considered a trade secret.

17

doi:10.6342/NTU20230102718

doi:10.6342/NTU202301027

Chapter 4 Problem Formulation

This section formally defines the abstraction of our problem, along with the assump-

tions we made and the threat model. After that, we formally define the objectives of our

protocols.

We denote the loot box opening function as f(r, others), where r represents the

random source and others denotes the input parameters excluding the random source.

Formally speaking, let R be the random space, O be the domain space for others,

and {0,1} denote the event of a player winning the loot box. The loot box opening function

is defined by

f : R×O→ {0, 1}

When the game company stated that their winning probability is p0, we test whether

the probability is greater than p0, for both the domain R and D.

Pr



f(r, others) = 1

∣∣∣∣∣∣∣∣

r ∈ R

others ∈ O



 ≥ p0

Specific loot box mechanisms may have different probabilities for different others

input parameters. In this case, we should conduct separate testing for each input param-

19

doi:10.6342/NTU202301027

eter. For example, some games with a “guarantee mechanism” use count as an input

parameter representing the number of attempts made by the player. As count gets higher,

the probability increases linearly to 100% when it reaches the “guaranteed count”. For

such a loot box design, we can do the probability testing for each count to verify whether

the actual probability is equal to or higher than the claimed probability.

In the following context, we refer to the game player as the client and the game

company as the server.

4.1 Assumptions

In our protocols, we made the following assumptions:

• The server does not abort, even though it knows the outcome before responding to

the client.

• There is a publicly accessible append-only bulletin board that allows everyone to

read and write data.

• Neither the server nor the client can predict or bias the randomness sampled by the

other party.

• There is an authenticated communication channel between the server and the client

• There is at least one honest contributor in the public randomness beacon.

20

doi:10.6342/NTU202301027

4.2 Threat Model

In the probability verification protocol, the adversary’s objective is to deceive the

client by announcing a false probability statement higher than the actual probability. The

adversary can also contribute to the public randomness beacon, but they cannot manipulate

or predict the randomness contribution of all the clients.

On the other hand, in the loot box opening protocol, the adversary’s objective is

to decrease the winning probabilities of the clients. They may attempt to choose from

different setups but cannot manipulate or predict the randomness generated by the clients.

Since we assume an authenticated communication channel between the server and

the client, all the messages are non-repudiable. This means that if the server responds

with a fake result and the client fails to verify the result, a third party can verify that the

server is indeed sending a fake response.

4.3 Objectives

The objectives of our protocol are as follows:

1. Correctness & Soundness: The probability verification protocol succeeded if and

only if the actual winning probability of f is greater than or equal to p.

2. Public Verifiability: The probability verification protocol allows anyone to verify

the correctness of the probability statement.

3. Individual Verifiability: The loot box opening protocol allows the client to verify

that the winning probability is not biased by the server.

21

doi:10.6342/NTU202301027

4. Input Transparency: The opening function f should use only transparent input

parameters, meaning that there should be no hidden inputs involved.

5. Algorithmic Hiding: The protocol should only reveal the evaluation points of f

and should not disclose any other information about f .

22

doi:10.6342/NTU202301027

Chapter 5 Proposed Protocols

This section proposes two protocols: a probability verification protocol and a loot

box opening protocol. The probability verification protocol allows players to verify the

winning probability of loot boxes using publicly variable random sources. On the other

hand, the loot box opening protocol establishes a mechanism for the game servers and

players to agree on a randomness input, ensuring that neither party can manipulate the

outcome.

5.1 Probability Verification Protocol

We have proposed four methods for verifying the loot box probability statement.

Each method can meet different criteria for verifiability, depending on the assumptions

and trade-offs involved.

5.1.1 Probability Verification Through Public Randomness Beacon

In this verification method, the public randomness beacon serves as the source of

randomness to generate test data. Players who are interested or skeptical about the test

data can provide their own random source to the public randomness beacon and then verify

it.

23

doi:10.6342/NTU202301027

We have divided this verification process into four phases, and we describe each

phase in detail below. For a summary, please refer to Figure 5.4.

Setup In this phase, the server first runs the setup algorithm for each cryptographic prim-

itive, including PRB.Setup and FC.Setup. Secondly, the server designates the number of

beacon intervals, denoted by n, indicating that it will utilize the random output generated

after n intervals from the moment it publishes the commitment. Thirdly, the server desig-

nates how the randomness is mapped to test data, denoted as mapping function M . This

mapping function takes public randomness r as input and generates the corresponding test

data as output. Formally,

M(r)→ {(r1, o1), ..., (rm, om)}

where ri ∈ R and oi ∈ O for 1 ≤ i ≤ m.

Last, the server commits the loot box opening function f to a commitment c by

FC.Commit(pp, f, r) → c, where pp is generated by FC.Setup and r is sampled from

random. Subsequently, the server publishes the public parameters, the interval number

n, the mapping function M , and the commitment c on the bulletin board. For a concise

flowchart, please refer to Fig. 5.1.

Randomness Contribution In this phase, the clients examine the validity of the setup

data published by the server, including public parameters, n,M , and c. Then, interested or

skeptical clients can sample their local randomness and contribute through PRB.Contribute.

It is important to note that clients who have already contributed their local randomness can

skip this step, as the PRB protocol ensures unpredictability and bias-resistance for such

24

doi:10.6342/NTU202301027

Figure 5.1: The flowchart of setup phase in probability verification protocol

clients. We illustrate this phase in Fig. 5.2.

Evaluation In this phase, the server first gets the randomness outcome r of the nth ran-

domness beacon counted from the setup phase. Secondly, the server uses the mapping

functionM to obtain test data, i.e.

M(r)→ {(r1, o1), ..., (rm, om)}

where ri ∈ R and oi ∈ O for 1 ≤ i ≤ m.

Then, the server computes the outputs of the function f and evaluation proofs

f(ri, oi)→ yi

FC.Eval(pp, f, (ri, oi), yi)→ πi

for 1 ≤ i ≤ m.

25

doi:10.6342/NTU202301027

Figure 5.2: The flowchart of randomness contribution phase in probability verification
protocol

Last, the server publishes the evaluation and proofs (y1,π1), ..., (ym,πm) on the bul-

letin board.

Verification In this phase, the client first retrieves the randomness r from the random-

ness beacon and invokes PRB.Verify to verify the validity of the randomness outcome.

If the verification fails, the client aborts. Secondly, the client maps r to test data using

the mapping function M , and obtains (r1, o1), ..., (rm, om). Then, the client retrieves the

evaluations from the bulletin board and verifies them via

FC.Verify(c, (ri, oi), yi,πi)
?
= 1

for 1 ≤ i ≤ m

Last, the client can use those verified evaluations to determine the accuracy of the

probability statement. We illustrate the last two phases in Fig. 5.3 and summarize the

whole protocol in Fig. 5.4.

26

doi:10.6342/NTU202301027

Figure 5.3: The flowchart of evaluation and probability verification phase in probability
verification protocol

5.1.2 Probability Verification Through Dry-Run API

Although a public randomness beacon can be used to sample test data, the others

parameter cannot be customized for each player. For example, suppose that others in-

cludes the amount of money a player has been paid, such as 100. In this case, there may

not be any test data that maps others to 100, making it impossible for the player to verify

the probability for the exact same situation.

One possible solution to address this issue is to introduce a “dry-run API” that allows

players to test loot box openings without spending real money. Dry-run API provides the

same functionality as the loot box opening protocol (details will be discussed in section

5.2) but without requiring any payment for the opening requests. We illustrate this dry-run

API verification in Fig. 5.5.

The reason this approach works is that functional commitment ensures that the dry-

run and real APIs both use the same function. If the functional commitment were not used,

27

doi:10.6342/NTU202301027

Protocol 1

Setup

• Setup the parameters of cryptographic primitives, including public random-
ness generation and functional commitment.

• The server designates the number of beacon intervals to be counted from the
present time, denoted as n.

• The server designates the mapping function M , which maps the public ran-
domness to the test data.

• The server commits f to a functional commitment, denoted as c.

• The server publishes the public parameters, the interval number n, the map-
ping functionM , and the commitment c on the bulletin board.

Randomness Contribution

• The clients examine the validity of the setup data published by the server,
including public parameters, n,M , and c

• The clients sample their local randomness and contribute through
PRB.Contribute.

Evaluation

• After n beacon intervals, the server obtains the outcome of the nth random-
ness beacon, denoted as r.

• The server maps r tom test data

M(r)→ {(r1, o1), ..., (rm, om)}

where ri ∈ R and oi ∈ O for 1 ≤ i ≤ m.

• The server evaluates the function f on the test data and creates the evalua-
tion proofs, denoted by (y1,π1), ..., (ym,πm). After that, publish them on the
bulletin board.

Probability Verification

• The client retrieves the randomness r, and invokes PRB.Verify. If the veri-
fication fails, the client aborts.

• The client maps r to test data (r1, o1), ..., (rm, om), and verifies the evaluation
via FC.Verify(c, (ri, oi), yi,πi) for 1 ≤ i ≤ m. If the verification fails, the
client aborts.

• The verified evaluation can now be used by the client to determine the accu-
racy of the probability statement.

Figure 5.4: Protocol 1: Probability Verification Through Public Randomness Beacon

28

doi:10.6342/NTU202301027

Figure 5.5: The flowchart of probability verification through dry-run API

the server could potentially use different functions for the dry-run API, leading the client

to believe in a higher probability statement that may not be accurate.

In practice, allowing toomany dry-runs can risk exposing information about the func-

tion f . While players previously had to spend a significant amount of money to gather

information about the function, it now comes at no cost. The number of attempts allowed

for players is determined by the game companies, whomust find a trade-off between trans-

parency and the need to protect their trade secrets.

5.1.3 Probability Verification Through Public Bulletin Board

Both of the verificationmethodsmentioned above rely on the game companies, which

may have motivations to reduce the number of test data. To address this issue, we propose

a method that utilizes the power of the crowd. This method allows the players to upload

their loot box opening records onto a public bulletin board, from which other players can

download the records, verify them and calculate the probability distribution.

29

doi:10.6342/NTU202301027

This approach is similar to that of the 3rd-party verification platform we survey in

[19]. However, we can programmatically verify the authenticity of the uploaded records

using FC.Verify. This approach not only requires much less storage space but also guar-

antees 100% authenticity of the data.

Unfortunately, the issue of selective data uploading cannot be completely resolved,

as servers can impersonate clients and choose to upload only advantageous records. Sim-

ilarly, clients can also selectively upload records with lower winning probabilities.

However, this approach can still be a viable option for players who wish to collect

more information from the public and are willing to accept some degree of inaccurate or

false data.

5.1.4 Probability Verification Through Third-Party Auditing

While the three aforementioned verification methods are publicly-verifiable, they are

still subject to server restrictions. These restrictions may include reducing the number of

test data or dry-runs, or selectively uploading winning records to the bulletin board. There

is inherently a trade-off between transparency and trade secrets.

By utilizing a trusted third-party auditor, such as the Fair Trade Commission or a

company specializing in code review, game companies could confidentially transfer their

source code to the auditor for a thorough review to verify the accuracy of the probability

statement. If the verification process is successful, the auditor can then sign the functional

commitment c, which enables clients to ensure that the server is using the same function

that was reviewed and signed by the auditor. In practice, game companies may request

multiple auditors to sign the commitment, allowing clients to choose the auditor they trust

30

doi:10.6342/NTU202301027

the most.

In conclusion, utilizing a trusted third-party auditor can result in a higher level of

accuracy when verifying probability statements, while still allowing game companies to

retain more trade secrets.

5.2 Loot Box Opening Protocol

Once the client has completed the probability verification protocol and determined

the actual winning probability p of f , the objective of the loot box opening protocol is to

provide individual verifiability. This means that during the result verification phase, each

client can confirm that the server has not biased the winning probability in any way.

The protocol comprises three phases: setup, evaluation, and result verification. Each

phase is described in detail in the following paragraphs. Alternatively, a summary of the

protocol can be found in Figure 5.6, and a flow chart can be found in Figure 5.7.

Setup In the setup phase, the server samples a randomnessα0 and generates a hash chain

the length N .

{αi|αi ← H i(α0), 1 ≤ i ≤ N}

where H is a cryptographic hash function.

The server then sends the last element αN of the hash chain to the client.

Evaluation In the evaluation phase, the client first samples a local randomness β and

prepares input parameters others, which may include metadata about the player such as

31

doi:10.6342/NTU202301027

game level, number of loot box openings, etc. The client then sends (β, others) to the

server.

Assuming that the last opened hash chain position is αi, the server uses αi−1 ‖ β as

the random source. Namely, the server evaluates

f(αi−1 ‖ β, others)→ y

The server then generates the evaluation proof:

FC.Eval(pp, (αi−1 ‖ β, others), y)→ π

Last, the server sends back (αi−1, y, π) to the client.

Result Verification After receiving (αi−1, y, π) from the server, the client first verifies

the validity of αi−1:

H(αi−1)
?
= αi

Then, the client verifies the validity of the evaluation proof:

FC.Verify(pp, (αi−1 ‖ β, others), y, π) ?
= 1

If both of the above verification pass, the client can be confident that the server has not

biased the winning probability of this loot box opening.

In this protocol, we use a hash chain to ensure that the server cannot manipulate

the randomness after the setup phase. On the other hand, using a hash chain enables the

server to provide randomness unpredictable from the client, which prevents clients with

32

doi:10.6342/NTU202301027

Loot Box Opening Protocol

Setup

• The server samples a randomness α0, and generate a hash chain

{αi|αi ← H i(α0), 1 ≤ i ≤ N}

The server sends the last element αN to the client.

Evaluation

• The client generates the local randomness β, prepares the input data others,
and sends both to the server.

• Assuming the last opened hash chain position is αi, the server uses αi−1 ‖ β
as the random source. Namely, the server evaluates

f(αi−1 ‖ β, others)→ y

• The server also computes FC.Eval, and obtain the evaluation proof π.

• The server sends back (αi−1, y, π) to the client.

Result Verification

• The client verifies the hash chain via H(αi−1)
?
= αi

• The client verifies the evaluation proof via FC.Verify.

Figure 5.6: Loot Box Opening Protocol

knowledge of the function from biasing the probability.

One practical concern is that the server may need to repeat the setup phase if the hash

chain is exhausted. While increasing N can reduce the likelihood of this happening, it

also leads to higher space usage. To address this, the server can choose to store only the

initial element α1 and compute αi ← H i(α0) on demand when a client requests a loot box

opening. Another approach is to save a subset of breakpoints, such as {α1,α101,α201, . . . },

to balance computational and storage requirements.

33

doi:10.6342/NTU202301027

Figure 5.7: The flowchart of loot box opening protocol

34

doi:10.6342/NTU202301027

Chapter 6 Discussion

6.1 Hypothesis test

To test whether the probability statement is true given some evaluation of test data, we

can utilize the concept of a hypothesis test. First, we specify a null hypothesis H0 and an

alternative hypothesis H1. In our scenario, the null hypothesis is defined as the condition

where the claimed probability holds true, while the alternative hypothesis is defined as the

condition where the claimed probability does not hold true.

H0 : p ≥ p0

H1 : p < p0

Given a significance level α and the results of a hypothesis test on the test data, our

goal is to calculate the probability of observing the test results under the assumption that

the null hypothesis is true. If this probability is less than the chosen significance level α,

we reject the null hypothesis. This implies that the sample data provides strong support

for the alternative hypothesis, which suggests that the actual winning probability is very

likely to be lower than the claimed probability.

35

doi:10.6342/NTU202301027

From the central limit theorem, the sample mean of i.i.d random variables will con-

verge to a normal distribution. Assume that the loot box results are i.i.d binomial distri-

bution. The sample mean we have the following approximation:

X =
X1 + ...+Xn

n
∼ N(p0,

√
p0(1− p0)

n
)

where Xi is the random variable of each sample result for each 1 ≤ i ≤ n. To calculate

the critical value when we reject the null hypothesis, we can use the z-score table to find

zα such that

Pr(p̂ ≤ p0 − zα

√
p0(1− p0)

n
) < α

where p̂ is the winning probability of sample data. We call pL = p0 − zα

√
p0(1−p0)

n the

critical value for the this hypothesis test.

For example, assume the claimed probability p0 = 0.3, sample size n = 200, signif-

icance level α = 5%, then zα = 1.645 by looking up to the z-score table. We calculate

the critical value

pL = p0 − zα

√
p0(1− p0)

n
= 0.3− 1.645

√
0.3 ∗ 0.7
200

= 0.247

In other words, if the sample winning probability p̂ ≤ pL = 0.247, we reject the null

hypothesis, which means we have strong support that the claimed probability is wrong.

6.2 Determine the number of test inputs

To determine the proper number of test data (sample size), we can utilize statistical

power analysis. Given the null hypothesis and the alternative hypothesis defined in the

36

doi:10.6342/NTU202301027

previous section, we now estimate the false-negative probability given an instance of the

alternative hypothesis. Assuming the real winning probability is p1 < p0, we calculate the

probability of rejecting the null hypothesis, called statistical power (1 − β). Usually, we

expect the statistical power to be greater than 80%, i.e. β < 20%. To achieve this, we use

the z-score table again to find zβ corresponding to 1 − β. Precisely, we find n satisfying

the following inequality:

p1 + zβ

√
p1(1− p1)

n
≤ pL = p0 − zα

√
p0(1− p0)

n

where L.H.S is of the accumulative probability 1−β of the sample mean random variable

with Bernoulli distribution of probability p1.

For example, assume the claimed probability p0 = 0.3, actual probability p1 = 0.2,

α = 0.05, β = 0.2. We first look up the z-score table and find zα = 1.645, zβ = 0.845.

The above inequality becomes:

0.2 + 0.845

√
0.2 ∗ 0.8

n
≤ 0.3− 1.645

√
0.3 ∗ 0.7

n

n ≥ 115.2

In other words, if the sample size is larger than 115.2, we have more than 80% probability

to reject the null hypothesis given the actual probability p1 = 0.2 and claimed probability

0.3. In real-world circumstances, a consensus can be reached to select a specific value

for p1, such as p1 = 0.9p0. This consensus can be established through the efforts of

self-regulation associations, government intervention, or the collaboration of the player

community.

37

doi:10.6342/NTU20230102738

doi:10.6342/NTU202301027

Chapter 7 Security Analysis

7.1 Correctness & Soundness

Assuming that the server provides an adequate amount of test inputs according to the

calculation discussed in Section 6.2, the correctness of the protocol is guaranteed with a

high probability, as indicated by the parameter β.

On the other hand, by the properties of PRB, it is guaranteed that the test inputs is

sampled from unpredictable and bias-resistant random sources. By the Evaluation Bind-

ing property of FC, it is guaranteed that the server is infeasible to find different evaluation

outcomes for a single input. As a result, the soundness is satisfied after the client success-

fully rejects the null hypothesis we discussed in Section 6.1.

7.2 Public Verifiability

Every player in the public can contribute their randomness to PRB and verify the

unpredictability and bias-resistance of the randomness outcome after n beacon intervals.

Additionally, every player from the public can also verify the correctness of FC evalua-

tions. Thus, the probability verification protocol satisfies public verifiability.

39

doi:10.6342/NTU202301027

7.3 Individual Verifiability

Using a hash chain as a random source can prevent the server from manipulating

the randomness to its own advantage since the hash function is collision-resistant. On the

other hand, since we assume that the server cannot predict or bias the randomness sampled

by the client and the client generates its randomness β every time it does the evaluation,

we can ensure that the randomness input αi−1 ‖ β is unpredictable and unbiased by the

server. As a result, after the verification of the loot box opening protocol, it is guaranteed

that the server does not bias the winning probability.

7.4 Input Transparency

Input transparency means that there is no hidden input to the loot box opening func-

tion. This property is followed by the evaluation binding property of functional commit-

ment, where it is guaranteed that given input x, it is infeasible to function distinct evalu-

ation values y1 "= y2 that satisfy the verification of f(x) = y1 and f(x) = y2. In order to

verify the evaluation proof, the client must also possess knowledge of all input parame-

ters of the loot box opening function. This ensures transparency for all input parameters

involved in the process.

7.5 Algorithmic Hiding

Algorithmic hiding is achieved by the hiding and evaluation zero-knowledge proper-

ties of functional commitment. In Section 3.4, we gave the full definition of these two

40

doi:10.6342/NTU202301027

properties. In short, hiding guarantees the indistinguishability of commitment c, and

evaluation zero-knowledge guarantees that the evaluation reveals nothing but an evalu-

ation point. In our probability verification protocol, we only reveal m evaluation points,

wherem is the number of test inputs, specified by the server. It is up to the server to trade

off between evaluation leakage and reducing the probability of type-II error. Overall, our

protocol guarantees minimal information leakage, i.e. it achieves algorithmic hiding.

41

doi:10.6342/NTU20230102742

doi:10.6342/NTU202301027

Chapter 8 Evaluation

In this section, we sketch our implementation of the probability verification protocol

and the loot box opening protocol. We begin by examining the computational complexity

of our implementation, followed by a comparison of the execution times across various

setups. Our experiments were conducted on a Macbook Pro 2021 with the M1 Pro chip.

8.1 Implementation

We implement KZG10 [22] as a special case of a functional commitment scheme.

KZG10 is, in fact, a polynomial commitment scheme and serves as a submodule in the

construction of [7]. While a polynomial commitment scheme meets all the definitions

outlined in section 3.4, it only supports f to be a polynomial. Supporting general circuits

in the functional commitment is considered a future work in our current development since

the construction in [7] does not provide their implementation.

The source code of our implementation can be accessed on Github [34]. Specifically,

we implement our protocols using Python and import the module py_ecc implemented by

Ethereum [16] to support elliptic curve operations.

43

doi:10.6342/NTU202301027

8.2 Complexity Analysis

The complexity of generating the commitment of KZG10 is O(t), where t is the

degree of the underlying polynomial. The complexity of generating evaluation proof is

alsoO(t). Finally, the verification complexity isO(1), which consists of two elliptic curve

pairing operations.

8.3 Execution Time Analysis

We first analyze the execution times of setup, evaluation, and verification phases in

our probability verification protocol over different polynomial degrees. We set sample

size = 30, i.e. there are 30 test instances in this experiment. The result is shown in Figure

8.1. As we analyzed in the previous section, the setup and evaluation grows linearly with

the polynomial degree and the verification time is constant.

The polynomial degree is about 3 times the number of gates for general circuit con-

struction [17]. Our experiment shows that the evaluation time is practical given a polyno-

mial of degree 100-200 (gate number 30-60).

On the other hand, we also measure the execution time for different sample sizes.

With fixed polynomial degree 150, the result is shown in Figure 8.2. As expected, the

execution time for both evaluation and verification grows linearly with the sample size.

In conclusion, the execution time of the implemented algorithm is practical for poly-

nomials with degrees ranging from 100 to 200 (30-60 gates for general circuits). For larger

degrees, since the execution time grows linearly it can still be considered acceptable de-

44

doi:10.6342/NTU202301027

Figure 8.1: The execution time of probability verification protocol over different polyno-
mial degrees

Figure 8.2: The execution time of probability verification protocol over different sample
sizes

45

doi:10.6342/NTU202301027

pending on the specific requirements and constraints of the application.

46

doi:10.6342/NTU202301027

Chapter 9 Conclusion

In this work, we proposed the probability verification protocol and the loot box open-

ing protocol. The probability verification protocol leverages the public randomness bea-

con as a verifiable random source while using the functional commitment to verify the

correctness of the evaluation result without disclosing the underlying source code. The

loot box opening protocol allows the server and the client to agree on a random input,

ensuring that neither party can manipulate the outcome. We also introduce hypothesis test

and statistical power analysis. Hypothesis testing allows us to determine the truthfulness

of the probability statement based on the significance level and the evaluation results of

sample inputs. On the other hand, statistical power analysis helps us determine the opti-

mal sample size needed to achieve the desired level of statistical power. Lastly, evaluate

our protocols with different settings, demonstrating their efficiency and practicality.

47

doi:10.6342/NTU20230102748

doi:10.6342/NTU202301027

References

[1] Anny. Understand in one article the legal battle between dinter, gamania, and

the enactment of gacha regulation. https://www.inside.com.tw/article/

30725-DinTer-Gamania-Lineage-M-Lawfare, 2023.

[2] Apple. App store review guidelines. https://developer.apple.com/

app-store/review/guidelines/, 2023.

[3] N. G. Authority. Study into loot boxes: A treasure or a burden? Amsterdam,

Netherlands, 10, 2018.

[4] A. Bhat, N. Shrestha, Z. Luo, A. Kate, and K. Nayak. Randpiper–reconfiguration-

friendly random beacons with quadratic communication. In Proceedings of the

2021 ACM SIGSAC Conference on Computer and Communications Security, pages

3502–3524, 2021.

[5] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In

Advances in Cryptology–CRYPTO 2018: 38th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part I,

pages 757–788. Springer, 2018.

[6] D. Boneh, B. Bünz, and B. Fisch. Batching techniques for accumulators with ap-

plications to iops and stateless blockchains. In Advances in Cryptology–CRYPTO

49

https://www.inside.com.tw/article/30725-DinTer-Gamania-Lineage-M-Lawfare
https://www.inside.com.tw/article/30725-DinTer-Gamania-Lineage-M-Lawfare
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/

doi:10.6342/NTU202301027

2019: 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,

August 18–22, 2019, Proceedings, Part I 39, pages 561–586. Springer, 2019.

[7] D. Boneh, W. Nguyen, and A. Ozdemir. Efficient functional commitments: How to

commit to a private function. Cryptology ePrint Archive, 2021.

[8] G. A. Brooks and L. Clark. Associations between loot box use, problematic gaming

and gambling, and gambling-related cognitions. Addictive behaviors, 96:26–34,

2019.

[9] A. Carvalho. Bringing transparency and trustworthiness to loot boxes with

blockchain and smart contracts. Decision Support Systems, 144:113508, 2021.

[10] I. Cascudo and B. David. Scrape: Scalable randomness attested by public entities. In

Applied Cryptography and Network Security: 15th International Conference, ACNS

2017, Kanazawa, Japan, July 10-12, 2017, Proceedings 15, pages 537–556. Springer,

2017.

[11] I. Cascudo, B. David, O. Shlomovits, and D. Varlakov. Mt. random: Multi-tiered

randomness beacons. Cryptology ePrint Archive, 2021.

[12] A. Cherniaeva, I. Shirobokov, and O. Shlomovits. Homomorphic encryption random

beacon. Cryptology ePrint Archive, 2019.

[13] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. Mar-

lin: Preprocessing zksnarks with universal and updatable srs. In Advances in

Cryptology–EUROCRYPT 2020: 39th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–14,

2020, Proceedings, Part I 39, pages 738–768. Springer, 2020.

50

doi:10.6342/NTU202301027

[14] T. E. Y. Department of Consumer Protection. Disclosing loot box odds to

protect gamers＇interests. https://cpc.ey.gov.tw/en/4212D8C5A29ACA5F/

61e3c731-23e9-41af-abd0-d12f2912e31c, 2022.

[15] A. Drummond and J. D. Sauer. Video game loot boxes are psychologically akin to

gambling. Nature human behaviour, 2(8):530–532, 2018.

[16] Ethereum. Elliptic curve crypto in python. https://github.com/ethereum/py_

ecc/, 2023.

[17] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. Plonk: Permutations over lagrange-

bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint

Archive, 2019.

[18] D. Galindo, J. Liu, M. Ordean, and J.-M. Wong. Fully distributed verifiable ran-

dom functions and their application to decentralised random beacons. In 2021 IEEE

European Symposium on Security and Privacy (EuroS&P), pages 88–102. IEEE,

2021.

[19] N. T. U. o. S. Gamelab and Technology. Third-party probability verification plat-

form. https://gacha.gamelab.com.tw/, 2023.

[20] Google. Policy center. https://support.google.com/googleplay/

android-developer/topic/9858052?hl=en, 2023.

[21] A. Hiramatsu. A research of social game users’ attitude to“ gacha” probability an-

nouncement. In 2019 8th International Congress on Advanced Applied Informatics

(IIAI-AAI), pages 115–120. IEEE, 2019.

51

https://cpc.ey.gov.tw/en/4212D8C5A29ACA5F/61e3c731-23e9-41af-abd0-d12f2912e31c
https://cpc.ey.gov.tw/en/4212D8C5A29ACA5F/61e3c731-23e9-41af-abd0-d12f2912e31c
https://github.com/ethereum/py_ecc/
https://github.com/ethereum/py_ecc/
https://gacha.gamelab.com.tw/
https://support.google.com/googleplay/android-developer/topic/9858052?hl=en
https://support.google.com/googleplay/android-developer/topic/9858052?hl=en

doi:10.6342/NTU202301027

[22] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to poly-

nomials and their applications. In Advances in Cryptology-ASIACRYPT 2010:

16th International Conference on the Theory and Application of Cryptology and

Information Security, Singapore, December 5-9, 2010. Proceedings 16, pages 177–

194. Springer, 2010.

[23] S. Kristiansen and M. C. Severin. Loot box engagement and problem gambling

among adolescent gamers: Findings from a national survey. Addictive Behaviors,

103:106254, 2020.

[24] H. Lee, Y. Hsu, J.-J. Wang, H. C. Yang, Y.-H. Chen, Y.-C. Hu, and H.-C. Hsiao.

Headstart: Efficiently verifiable and low-latency participatory randomness genera-

tion at scale. Network and Distributed System Security Symposium (NDSS), 2022.

[25] W. Li, D. Mills, and L. Nower. The relationship of loot box purchases to problem

video gaming and problem gambling. Addictive behaviors, 97:27–34, 2019.

[26] LiLi0719. Internal news - the real situation about gacha probability.“. https://

forum.gamer.com.tw/C.php?bsn=30518&snA=47974, 2021.

[27] R. C. Merkle. A digital signature based on a conventional encryption function. In

Advances in Cryptology—CRYPTO＇87: Proceedings 7, pages 369–378. Springer,

1988.

[28] E. Obedkov. South korea passes new amendment on loot box prob-

ability disclosure. https://gameworldobserver.com/2023/02/28/

south-korea-loot-boxes-probability-disclosure-law, 2023.

[29] Paul. Promotion of taiwan’s online game gacha regulation. https://join.gov.

tw/idea/detail/ee5dd8b8-bdeb-4d5e-8315-bb0601169d68, 2021.

52

https://forum.gamer.com.tw/C.php?bsn=30518&snA=47974
https://forum.gamer.com.tw/C.php?bsn=30518&snA=47974
https://gameworldobserver.com/2023/02/28/south-korea-loot-boxes-probability-disclosure-law
https://gameworldobserver.com/2023/02/28/south-korea-loot-boxes-probability-disclosure-law
https://join.gov.tw/idea/detail/ee5dd8b8-bdeb-4d5e-8315-bb0601169d68
https://join.gov.tw/idea/detail/ee5dd8b8-bdeb-4d5e-8315-bb0601169d68

doi:10.6342/NTU202301027

[30] P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. Weippl. Randrunner: Dis-

tributed randomness from trapdoor vdfs with strong uniqueness. 2021.

[31] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl. Hydrand: Efficient continuous

distributed randomness. In 2020 IEEE Symposium on Security and Privacy (SP),

pages 73–89. IEEE, 2020.

[32] R. Valentine. Digital games spending reached $127

billion in 2020. https://www.gamesindustry.biz/

digital-games-spending-reached-usd127-billion-in-2020/, 2020.

[33] M. von Meduna, F. Steinmetz, L. Ante, J. Reynolds, and I. Fiedler. Loot boxes are

gambling-like elements in video games with harmful potential: Results from a large-

scale population survey. Technology in Society, 63:101395, 2020.

[34] J. J. Wang. Loot box verification protocols implemented in python. https:

//github.com/WangJ509/LootBoxVerification, 2023.

[35] B. Wesolowski. Efficient verifiable delay functions. In Advances in

Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May

19–23, 2019, Proceedings, Part III 38, pages 379–407. Springer, 2019.

[36] L. Y. Xiao. Regulating loot boxes as gambling? towards a combined legal and self-

regulatory consumer protection approach. Interactive Entertainment Law Review,

4(1):27–47, 2021.

[37] L. Y. Xiao. Breaking ban: Belgium＇s ineffective gambling law regulation of video

game loot boxes. Collabra: Psychology, 9(1), 2023.

53

https://www.gamesindustry.biz/digital-games-spending-reached-usd127-billion-in-2020/
https://www.gamesindustry.biz/digital-games-spending-reached-usd127-billion-in-2020/
https://github.com/WangJ509/LootBoxVerification
https://github.com/WangJ509/LootBoxVerification

doi:10.6342/NTU202301027

[38] L. Y. Xiao, L. L. Henderson, R. K. Nielsen, and P. W. Newall. Regulating

gambling-like video game loot boxes: A public health framework comparing in-

dustry self-regulation, existing national legal approaches, and other potential ap-

proaches. Current Addiction Reports, 9(3):163–178, 2022.

[39] L. Y. Xiao, L. L. Henderson, Y. Yang, and P. W. Newall. Gaming the system:

suboptimal compliance with loot box probability disclosure regulations in china.

Behavioural Public Policy, pages 1–27, 2021.

54

	Verification Letter from the Oral Examination Committee
	摘要
	Abstract
	Contents
	Introduction
	What is a loot box
	Current verification of loot box probability statement

	Background
	Regulations on loot box around the world
	Regulation on loot box in Taiwan
	Public randomness beacon (PRB)
	Functional Commitment

	Preliminaries
	Verifiable Delay Function
	Cryptographic Accumulator
	Public Randomness Beacon
	Functional Commitment

	Problem Formulation
	Assumptions
	Threat Model
	Objectives

	Proposed Protocols
	Probability Verification Protocol
	Probability Verification Through Public Randomness Beacon
	Probability Verification Through Dry-Run API
	Probability Verification Through Public Bulletin Board
	Probability Verification Through Third-Party Auditing

	Loot Box Opening Protocol

	Discussion
	Hypothesis test
	Determine the number of test inputs

	Security Analysis
	Correctness & Soundness
	Public Verifiability
	Individual Verifiability
	Input Transparency
	Algorithmic Hiding

	Evaluation
	Implementation
	Complexity Analysis
	Execution Time Analysis

	Conclusion
	References

