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Abstract

Contributions of scientific papers highlight their novelty and key values, which are
essentially the core parts of every research work. Systems that are capable of identifying
the contributions of the papers precisely and organizing them into well-structured sum-
maries are valuable in aiding both automatic text processing and human comprehensions.
Though recent works have focused more on tasks dealing with the contributions of the
scientific documents, there is currently no large-scale dataset with high quality that can
facilitate the training of modern deep learning based models. To this end, we curate a
dataset consisting of 24K computer science papers with contributions explicitly listed by
the authors, which are further classified into different contribution types based on our
newly-introduced annotation scheme. Then we formally formulate the task of generating
disentangled contributions for scientific documents. We present fine-grained post-training
strategy leveraging abundant unsupervised data and the contribution types of both high-

light sentences in the source documents and the generation targets. Experimental results
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show that the proposed method outperforms competitive baselines and other post-training

strategies, demonstrating the effectiveness of our approach. Detailed analysis is also con-

ducted to study the characteristics and challenges of our dataset as well as the newly-

proposed task.

Keywords: Scholarly Document Processing, Abstractive Summarization, Research Con-

tribution Generation
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Chapter 1 Introduction

1.1 Background

The volume of the scientific literatures is growing at a rapid rate, especially in those
trending research fields. According to the statistics from arXiv', there were 76,578 sub-
missions dated back to 2011, while in 2021 the number increased to 181,630. If we focus
on submissions categorized into computer science only, the margin is even bigger — al-
most tenfold as the number grew from 7,581 to 66,254. At such high pace, it is nearly
impossible for the researchers to keep up with every latest finding. To address the is-
sue of information overload, automatic methods to process scientific documents become
compelling. With the growing popularity of digital archives providing rich resources for
constructing large-scale datasets as well as the huge advances in neural network based NLP
models, huge efforts have been put into the aforementioned topic recently, also known as
the field of scholarly document processing. Various tasks have been explored to facilitate
its development such as paper summarization, paper recommendation, citation intent clas-
sification, review generation and scientific knowledge graph construction. As the inter-
section of Natural Language Processing, Information Retrieval, Data Mining and Digital

Libraries, scholarly document processing differs from other research topics in that scien-

Thttps://arxiv.org/stats/monthly submissions

1 doi:10.6342/NTU202203034



tific documents exhibit unique properties that common web-based texts lack. First, they
are typically much longer and yet carefully organized into different sections, showcasing
the importance of the underlying discourse in a scientific paper that forms a comprehensive
picture of its complete research process. Second, scientific papers are often linked with
their related works through inline references, the resulting network formed by hundreds
of thousands of links between papers provide valuable overviews of their corresponding
research fields. Last but not least, the complicated structures and layouts of scientific pa-
pers pose challenges to the construction of machine-readable corpora compared with plain
texts. Section headers, paragraph breaks, footnotes, metadata, citation marks, figures, ta-
bles and their captions all need rigorous post-processing based on the formulation and the

need of downstream tasks.

As an interesting and indispensable element in every scientific literature, research
contributions and tasks related to it remain understudied. Contributions of a scientific re-
search highlight the novelty and key values that make it stand out from previous works.
They serve as important roles in various kinds of applications. For researchers who want to
quickly grasp the key points of papers and discern ones that worth digging into, contribu-
tions are of great values especially for those who are already familiar with the backgrounds
of the related research fields. For the process of paper reviewing, one may argue that the
evaluation of a scientific work is essentially the evaluation of what it contributes to the
research community. As a result, some venues stipulate that the reviewers should state
the contributions of the reviewed target in the review-rebuttal process, and authors also
start to explicitly list the contributions in the papers to highlight their work. For the field
of scholarly document processing, tasks like knowledge graph construction, entity extrac-

tion and paper recommendation are likely to benefit from it since contributions contain

P doi:10.6342/NTU202203034



the most salient information in the papers and thus provide alternatives to the lengthy and

complicated raw papers for automatic methods to build on.

1.2 Motivation and Contribution

Existing works in scientific paper summarization mainly consider abstracts of papers
as the reference summaries, since the role of the abstract in the whole paper structure
is indeed to provide a summary of the research work and it is also easily accessible in
nearly every scientific document. As a result, popular large-scale benchmark datasets
were built by automatically collecting papers and their abstracts from open-access digital
archives [ 1, 2]. However, from the application’s perspective, this might seem redundant as
human-written abstracts already exist. In addition, abstracts don’t necessarily contain key
contents in the research work only. For instance, authors often introduce the backgrounds
and closely-related works at the beginning of the abstract — information that is not likely
to be considered as primarily important by domain experts and experienced researchers.
Besides, abstracts may still be considered too lengthy for readers to quickly get to the
main points of the papers. Instead, they might prefer well-structured summaries [3] with
more concise writing styles that can hit the mark such as bullet point lists gathering and

organizing the principal information of the papers.

On the other hand, contributions, as mentioned in the background section, are per-
fect replacements for abstracts as the reference summaries in the task of scientific paper
summarization. However, due to the lack of automatic methods to acquire high-quality
research contributions, there is currently no large-scale dataset available in this regard.

Recent works over research contributions rely on human efforts to collect and annotate

3 doi:10.6342/NTU202203034



datasets [4—0]. This imposes significant costs as the annotation of scientific texts requires
knowledge from domain experts. In addition, the identification of contributions is likely
to be subject to personal judgement, making it tricky to establish a unified standard for the

annotation.

YOLOv4: Optimal Speed and Accuracy of Object Detection There are a huge number of features which are said to

improve Convolutional Meural Network (CNN) accuracy.

Alexey Bochkowskiy® Chien-Yao Wang® Hong-Yoam Mark Liso Practical tesling of combinations of such features on

alszeyasBilguail.con Institute of Information Science Instinue of Information Science . T
Acadermin Sinica, Taiwan Academia Sinica, Taiwan large datasets, and theoretical justification ctlfthe result,
binyasiis .t Liasiis .t is required. Some features operate on certain models
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M5 OOCO Object Detection . - . n
batch-normalization and residual-connections, are

applicable to the majority of models, tasks, and datasets.
o We assume that such universal features include

e Weighted-Residual-Connections (WRC),
Cross-Stage-Partial-connections (CSP), Cross
mini-Batch Mormalization (CmBHN),
Self-adversarial-training (SAT) and Mish-activation. We
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activation, Mosaic data augmentation, CmBMN, DropBlock
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speed of ~65 FPS on Tesla V100. Source code is at
https:/igithub.com/AlexeyAB/darknet.

2004.10934v1 [cs.CV] 23 Apr 2020

1. Introduction

)

arXiv:

The majority of CNN-based object detecions are largely
spplicable anly for recommesdation systerms. For exaple,
searching for free parking spuces via urban video camerss
s ewscuted by slow nccurate models, wheseas car colfsian

1. We develop an efficient and powerful object
detection model. It makes everyone can use a
1080 Ti or 2080 Ti GPU to train a super fast and

1+ Me devlope i fficca d powsrfl siet iecicn accurate object detector.
mi t m everyome cam use a 1080 Ti or 2 1l . .
GPL 10 raln & euper fast and accerie objest deseciar. 2. We verify the influence of state-of-the-art

2 W verify the influcece of ssaic-of-ho-er Bag-of- Bag-of-Freebies and Bag-of-Specials methods of
g e e i o of choca e object detection during the detector training.

3. We moddy smie.ofthe.an mechods and make shem 3. We modify state-of-the-art methods and make
e el T eyl lor anele B s them more efficient and suitable for single GPU
Including CHN [#9]), PAN [49], SAM [25), etc. . . N

training, including CBN [89], PAN [49], SAM [85],
efc.

Figure 1.1: One example paper’with its abstract marked in the blue box and explicitly
listed contributions by the authors in the brown box, highlighted texts in abstracts are not
contribution-related.

In this thesis, we aim to build a model capable of generating disentangled contribu-
tions for scientific documents. This new task’s goal is to summarize the research paper
into several key points that highlight the most important contributions made by the authors.
We observe that more and more researchers start to explicitly list their contributions in the
paper, especially in Al-related domains. Notably, there might be several contributions
presented in a paper and they probably represent different types of contributions as well.

Ideally, the desired system should be able to generate them separately yet sequentially

since they are closely related to each other. Figure 1.1 shows one example paper with

2Original paper: https:/arxiv.org/pdf/2004.10934.pdf
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its abstract presented in the blue box and explicitly listed contributions in the brown box.
These contributions serve as a better summary compared with the abstract as they mainly
focus on the authors’ research instead of the background and other related works. In terms
of writing skills, readers are provided with a more comprehensive and structured picture
as these contributions combined form a highlight story of the research process throughout

the paper.

To facilitate the development of automatic method tackling the proposed task as well
as other tasks related to research contributions, we present ContributionSum, a contri-
bution summarization dataset built on arXiv papers in computer science categories. In
comparison with previous works, we automatically collect contributions written by the
authors in the paper so that large-scale dataset is constructed minus the significant costs

of human labors as well as the potential errors result from the annotation adjudication.

Furthermore, we propose an annotation scheme for contribution type classification.
The predicted contribution type of each disentangled target serves as a dual role in our
work. From the perspective of potential applications, they provide further explanations
about the generated results to improve the comprehension of the readers with additional
clarity. The generated results along with their corresponding contribution types may also
benefit downstream tasks such as scientific knowledge graph construction and entity ex-
traction where the absence of human annotated datasets prevails. From the perspective
of model designs, these contribution types provide sketch supervisions that can guide the
summarization process and align with important sentences in the source documents, thus
improve model performances. Based our annotation scheme, we provide human annota-
tions of contributions in 1K papers and apply a data-driven approach to annotate all the

other contributions in our dataset.

5 doi:10.6342/NTU202203034



Built on the Gap Sentence Generation objective [7], we introduce a simple yet ef-
fective sentence masking strategy tailored to our task. Salient sentences in the abstract,
introduction and conclusion sections are masked based on their contribution type predic-
tions and heuristic rules, and the model is trained to generate them given the remaining
parts of the papers. Based on the proposed strategy, we exploit papers without contri-
butions written by the authors in our corpus to construct pseudo summaries and utilize
them as self-supervised data in the fine-grained post-training stage. For the model archi-
tecture, we leverage the powerful transformer-based models [¢] pretrained on large-scale
corpus [9, 10] and incorporate them with paper structures as well as highlight contribution
sentences. These models are then post-trained with our sentence masking strategy and
finally finetuned on our gold dataset to generate disentangled contributions for scientific

documents.

We conduct extensive experiments and the results of automatic metrics on both summary-
level and individual contribution-level evaluations demonstrate the improvement of our
proposed method over competitive baselines and other post-training strategies. We also
perform ablation study and detailed analysis to investigate the shortcomings of the existing

models, which can hopefully inspire future researches in this newly introduced task.

Our contributions in this thesis are summarized as follow:

* We introduce the task of generating disentangled contributions for scientific docu-
ments to build a better summarization system that benefits both researchers and the

field of scholarly document processing.

* A large-scale dataset is constructed by automatically collecting and extracting con-
tributions listed by the authors in computer science papers from arXiv.

6 doi:10.6342/NTU202203034



* We propose a novel post-training strategy and leverage the paper structures and

highlight contribution sentences to generate disentangled contributions.

» Experimental results demonstrate that our proposed method outperforms competi-
tive baselines in both summary-level and individual contribution-level evaluations.
A comprehensive analysis is also conducted to further investigate the shortcomings

of our model and the characteristics of the new task.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 summarizes the related
works of our research. Chapter 3 introduces the collection and annotation scheme of Con-
tributionSum. We also provide detailed analysis as well as comparisons with previous
datasets. In chapter 4, we present our novel post-training strategy and generation models.
Implementation details and main experimental results are shown in Chapter 5. Further
discussion and analysis of our models are presented in Chapter 6. Finally, we conclude

the thesis and discuss future works in Chapter 7.
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Chapter 2 Related Work

2.1 Scholarly Document Processing

With the increasing volume of scientific publications, the growing need of compu-
tational methods for enhancing applications such as summarization, search, and analy-
sis of scientific documents to serve human researchers has fostered the advances in the
field of scholarly document processing. On the other hand, driven by the adoptions of
neural network-based models, recent methods in Natural Language Processing (NLP) of-
ten require large amounts of supervised data. To this end, several online resources with
sheer amounts of scientific publications as well as other useful information like meta-
data have been utilized to construct large-scale corpora suitable for downstream tasks.
To name a few, papers from academic publishers and literature archives such as arXiv!,
PubMed?, ACL Anthology?, Semantic Scholar* and Emerald® have been collected to de-
velop datasets for paper summarization [ 1, 2, 1 1—13]. Online platforms for paper reviews

6

and rebuttals like OpenReview® are used to derive corpus for review generation and argu-

ment pair extraction with further annotations [14—19]. Other resources such as Microsoft

Thttps:/arxiv.org
Zhttps://www.ncbi.nlm.nih.gov/pmc
Shttps://www.aclweb.org/anthology
“https://www.semanticscholar.org/
Shttps:// www.emerald.com
Shttps://openreview.net
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Academic Graph [20] and the Semantic Scholar offer fine-grained scholarly contents and
enhanced contextual search results for various applications related to citation analysis and

knowledge graph construction [21, 22].

In this thesis, we focus on a rather understudied element as paper summarization
targets — research contributions in scientific documents. Recently, D’Souza et al.[4] pro-
posed a pipeline to automatically construct knowledge graphs from NLP papers: sentences
that describe the contributions of the paper are first extracted from the full text, then sci-
entific knowledge terms and predicates in the extracted sentences need to be identified,
finally, the system organizes these entities as triples to build the knowledge graph. They
defined an annotation scheme under which contributions are classified into 10 categories
and they annotated 442 papers in NLP domains. Similar to their work, Chen ef al.[6] in-
troduced a dataset with 5K sentences describing research contributions manually collected
from ACL Anthology and IP&M, as well as their fine-grained annotations with six cate-
gories of contribution types. For generation tasks, Hayashi et al.[5] proposed to generate
summaries discussing the contributions and the contexts of the papers separately. To tackle
this problem, they manually labeled abstracts of 400 papers from the S20ORC corpus [12]
with binary labels indicating whether a sentence is contribution-related or context-related.
These gold reference summaries are then used to finetune a sentence classifier which is
later applied to automatically generate reference labels for all other papers in the corpus.
He et al.[23] also explored the task of contribution generation for scientific papers to evalu-
ate their controllable summarization framework through zero-shot experiments. Different
from the above works, we are able to construct a large-scale dataset by applying automatic
methods to extract author-written contributions from computer science papers. In addi-

tion, we design a new annotation scheme for contribution type classification which is less

9 doi:10.6342/NTU202203034



challenging yet reasonable. Overall, our dataset can facilitate generation, classification

and other downstream tasks related to research contributions.

In addition to traditional scientific summarization datasets that treat the abstracts as
the generation targets, there are several works exploring other forms of reference sum-
maries for better application values. Cachola et al.[24] presented the task of TLDR gen-
eration and the associated dataset, they aimed to summarize the scientific papers in ex-
tremely short texts that highlight the key aspects concisely. Meng et al.[13] extended the
idea of facet summarization to scientific domains, they collected papers from Emerald
Publishing where summaries of the papers from four aspects — purpose, method, finding
and value are directly available. Collins et al.[25] introduced a extractive summariza-
tion dataset CSPubSum consisting of 10K computer science papers from ScienceDirect,
their generation targets are author-written highlight statements of the papers. Gidiotis et
al.[26] proposed the task of structured summarization for scientific papers by applying
a divide-and-conquer approach to generate parts of the abstracts describing certain as-
pects of the papers based on section matching. Similarly, Liu ef al.[27] presented the
dataset and methodology for generating structured summaries for groups of related aca-
demic documents to serve as the role of overviews or survey papers. Among all, our
dataset resembles to CSPubSum as both of our generation targets provide highlights of
the scientific papers. The main differences are that we focus on abstractive summariza-
tion and our reference summaries are formed by disentangled contributions of different
types based on our annotations while theirs are plain texts that can be only treated as a
whole. This characteristic also indicates that our dataset shares some common points with
facet summarization, in which models are trained to summarize the targets from differ-

ent aspects. Inspired by the facet-aware evaluation of extractive models[2&], we develop

10 doi:10.6342/NTU202203034



contribution-level evaluations and analysis to study the model performances in terms of

each disentangled contribution.

2.2 Abstractive Summarization

Our task of generating disentangled contributions for scientific documents is closely-
related to abstractive summarization. Abstractive summarization aims to condense the
source documents into concise summaries. Compared with extractive summarization, it
requires the model to organize important information from the source document and pro-

duce coherent texts in novel wordings instead of copying.

Neural network-based methods for abstractive summarization formulate the task as a
sequence-to-sequence problem. The encoder takes the source document as input and pro-
duce its representation through computation. The decoder then outputs a token distribution
for each time step autoregressively, conditioned on both the input document representation
and previous generation results. Recently, transformer-based models[&] have showcased
its performance superiority over other model architectures in generation tasks with the
ability of effectively capturing and encoding dependency across contexts by leveraging
the powerful attention mechanism [29-32]. Abstractive summarization is no exception.
Lewis et al.[9] proposed BART, a seq2seq model pretrained with a denoising objective
where input texts are corrupted based on special designs and the model is trained to re-
construct the original documents. Zhang et al.[7] presented a self-supervised pretraining
strategy called Gap Sentences Generation (GSG) for abstractive summarization. They
construct pseudo-summaries for large unsupervised corpus by selecting salient sentences

that maximize the ROUGE score between themselves and the remaining of the document.

11 doi:10.6342/NTU202203034



Both of these two pretrained models have achieved great results on many summarization
datasets and became strong baselines in this field. For long document summarization, in
order to address the issue of computational overload caused by the quadratic characteris-
tic of self-attention mechanism, recent works have proposed various modifications to the
vanilla transformer architecture. Kitaev et al.[33] reduced the computational complex-
ity by using locality-sensitive hash(LSH) to compute nearest neighbors as replacements
of the full self-attention. Wang et al. [34] approximate the self-attention mechanism by
a low-rank matrix and reduce the time and space complexity to linear forms. In addi-
tion, Longformer-Encoder-Decoder (LED) [10] and BigBird [35] are two popular long
document summarizers with a combination of global and local attentions as well as model
weights initialized from BART and PEGASUS respectively. PRIMERA [36], on the other
hand, is a multi-document summarization model built on LED that also achieves state-
of-the-art performance in scientific document summarization. It is trained with a post-
training strategy named Entity Pyramid Masking which selects sentences based on entity

importance across multiple documents and self-ROUGE scores as pseudo summaries.

Recent approaches for abstractive summarization also explore various guidance sig-
nals to either control the generation results or improve the model performances. Dou
et al.[37] developed a guided summarization framework that incorporates additional in-
formation with the input, including highlight sentences, keywords, triples and relevant
summaries in the training set. He ef al.[23] also proposed a generation framework that
can achieve entity-centric and length-controllable summarization mainly through manip-
ulating additional input keywords. Similarly, Narayan et al.[38] utilized entity chains
in output targets to improve summarization performances as well as faithfulness. Mao

et al.[39] explored the integration of keywords in the constrained decoding stage to im-

12 doi:10.6342/NTU202203034



prove the factual consistency of the generation results. In long document summarization,
content selection is utilized to explicitly reduce input length by filtering out unimportant
texts [40]. In addition to these commonly-used guidance signals, datasets and applications
in special domains also inspire the exploitation of other additional information. In opinion
summarization, aspect queries are used to control the summarization of opinions towards
certain targets [41]. In meta-review generation, Shen et al. [19] defined 9 categories of
intent roles for sentences in meta reviews and used them as controllers to guide the gen-
eration process. Our work also leverages contribution types of the target contributions
as guidance signals, in addition, we add contribution types to highlight sentences and the
section headers in the source papers to provide the model with the alignments between the

input documents and the output targets.
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Chapter 3 Datasets

In this chapter, we introduce the newly-proposed dataset in our work. Section 3.1 de-
scribes the details of constructing our dataset. Section 3.2 presents statistics of our dataset
and comparisons with other summarization datasets in scientific domains. Section 3.3

introduces our further annotation with the extracted contributions.

3.1 Dataset Collection

To develop models capable of generating disentangled contributions for scientific
documents, a desired dataset should consist of papers and corresponding contributions
summarizing their researches into several keypoints. However, due to the lack of auto-
mated methods in extracting contributions from scientific papers, existing datasets related

to our work are either at limited scales or lacks disentangled contributions.

The method of constructing our dataset is inspired by a trending writing style in recent
scientific publications. We observe that more and more authors start to explicitly list their
contributions in the papers, especially in Al-related fields. According to our pilot study of
100 papers from top conferences in computer vision, computational linguistic, machine
learning and artificial intelligence such as CVPR, ACL, ICLR and NeurIPS, 65 of them

contain the contributions stated by the authors. Moreover, most contributions locate in the
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end of introduction sections. They typically start with a prompt like ”’Our contributions are
summarized as follow:”. Then the authors state their contributions one by one in various
formats such as bullet point lists, hyphen lists and link words. We show some of the

common patterns in Figure 3.1.

Type Example

Contributions. This study makes the following contributions: (1)
We formally analyze the imperceptibility of arithmetic coding based
steganography algorithms; (2) We propose SAAC, a new nearimper-
ceptible linguistic steganography method that encodes secret messages
using self-adjusting arithmetic coding with a neural LM; and (3) Ex-
tensive experiments on four datasets demonstrate our approach can on
average outperform the previous state-of-the-art method by 15.3% and
38.9% in terms of bits/word and KL metrics, respectively.

Arabic Numerals

Contributions: This work makes the following contributions: (i)
We propose a unified framework DiscProReco to jointly perform CDP
and DPR, and show that these two tasks can benefit each other. (ii) We
construct a new large-scale dataset SPDPR (Section 4) which supports

Roman Numerals fair comparison across different methods and facilitates future research
onboth DPR and CDP. (1i1) We present experimental results which show
that DiscProReco with its joint learning mechanism realizes knowledge
sharing between its CDP and DPR components and results in improve-
ments for both tasks (Section 5).

Our contributions are summarized as follows: Firstly, we develop
an RL agent featured with question-guided task decomposition and ac-
Link Words tion space reduction. Secondly, we design a two-phase framework to
efficiently train the agent with limited data. Thirdly, we empirically
validate our method’ s effectiveness and robustness in complex games.

Our contributions include: * A multi-source label aggregator CHMM
with token-wise transition and emission probabilities for aggregating
multiple sets of NER labels from different weak labeling sources. « An
alternate-training method CHMM-ALT that trains CHMM and BERT-

Other Symbols NER in turn utilizing each other’ s outputs for multiple loops to opti-
mize the multi-source weakly supervised NER performance. « A com-
prehensive evaluation on four NER benchmarks from different domains
demonstrates that CHMM-ALT achieves a 4.83 average F1 score im-
provement over the strongest baseline models.

Figure 3.1: Examples of common patterns in which authors list their contributions explic-
itly

Another important issue is the collection of machine readable texts from scientific
documents. Our initial attempt is to directly extract contributions from the papers in
arXiv dataset [1] and the S20RC corpus [12], both of which are well-established and
widely-used resources in scientific document processing since they provide large amounts

of structured full text parse. However, we find that it is unsuitable to construct our dataset
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building on them. The main reason is that, to extract contributions in papers, we first
identify introduction sections, then search for the aforementioned contribution prompts
and specific patterns following disentangled contributions. Unfortunately, the parsed pa-
pers in these two datasets do not cater to our need in this task. For instance, identification
of section headers is too noisy to effectively locate introduction sections on a large scale,
not to mention symbols such as bullet points and hyphens need additional post-processing
to retain. Another reason is that since our extraction rules are based on observation on pa-
pers in computer science domains, they may not adapt to papers in other domains which
take up a large proportion in arXiv and S20RC. During manual inspection of our trial
experiment on S20RC, the extracted results are quite noisy for non-CS papers as their
writing styles are somewhat different. Our speculation over this issue is also advocated
by a previous work[23], where the authors were only able to extract 1,018 papers with

their contributions out of 67K papers from the arXiv database.

To this end, we decide to parse papers on our own instead of resorting to existing
resources. We focus on papers in CS-related fields and leave the expansion of a multi-
domain scientific dataset to future works. The first step is to download EKTgXsource files
from arXiv using arXiv API as the availability of I[fTEXsources enables us to extract struc-
tured and high quality body texts compared with using PDF files. Besides, we are able
to specifically target papers in computer science categories through the API. In detail, we
query papers in the following domains: cs.Al, ¢s.LG, c¢s.CV, cs.LR, cs.IR, cs.SI, cs.DL,
¢s.RO, and c¢s.HC. For more information about the definition of these categories, please
refer to the arXiv website!. Following previous works[42], we then convert IXTgXsources

into XML files and then extract structured information from them. Notably, several cus-

Uhttps:/arxiv.org/category taxonomy
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tomized cleaning rules are implemented to obtain high-quality paper texts, we list the main

ones as follow:

 Tables, figures and their captions are all removed since they are not important in
our task and it is extremely hard to arrange them in the plain text with reasonable
positions. Complicated formulas are also removed except for those containing only

numbers.

* Texts are retrieved while maintaining sections and subsections (only first order) as
we explicitly target introduction sections in the papers to extract contributions, also,
these structures serve as important roles in analyzing the discourse of the scientific

literature.

* Different from other works in which the parsed papers are used for citation-related
tasks so that reference resolution is necessary, we simply replace citation spans with
a special marker [REF]. Based on our hypothesized application scenario where the
desired summarization systems help readers quickly consume latest works, there is
supposed to be very few inbound citations. On the other hand, outbound citations
are also fairly irrelevant to our task since our goal is to summarize contributions

eschewing related works and contexts.

» We explicitly process texts in list forms of XTgXsyntax such as items and enumerates

because we find that many authors list their contributions in this way.

» Contents after conclusions such as appendixes and acknowledgements are omitted,
we also filter out parsed papers with outlying length or missing all of abstract, in-

troduction and conclusion sections.

17 doi:10.6342/NTU202203034



Following these steps, we are able to collect 110K papers in total. After the retrieval
of full texts, we target contribution prompts in introduction sections followed by disen-
tangled contributions based on the previously discussed patterns. If found, disentangled
contributions are extracted as our target summaries and they are removed from the full
texts. Meanwhile, papers that we are unable to find contributions in are also retained as
unlabeld data, which will be leveraged to construct pseudo-summaries in the post-training
stage. Last but not least, we further clean the extracted contributions by filtering out noisy
ones based on hand-crafted rules such as length limits, websites and the existence of non-

readable symbols.

Overall, the above procedures yield 24K papers and their extracted contributions
composing our final dataset. The ratio in our dataset between papers that explicitly state
their contributions and total papers are significantly lower than that in the pilot study. We
speculate that our rather strict cleaning rule is one of the cause, as the ratio before and after
final cleaning is 30% and 22% respectively. Also, papers submitted to top conferences
might have a higher tendency to list their contributions for benefiting the peer review

process.

3.2 Dataset Analysis

3.2.1 Dataset Statistics

Table 3.1 shows the basic statistics of our dataset. On average, each paper in our
dataset has 3.2 contributions with a length of 29. This roughly coincides with our pilot

study that most papers write 3 or 4 short contributions. Note that our dataset has smaller
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paper lengths and section numbers compared with the arXiv dataset mainly because we

omit extremely long papers and remove tables as well as figures.

# Papers Avg. Contribution Avg. Paper Length Avg. Summary Length Avg. Contribution Length  Avg. Sections
24130 3.2 3632 91 29 4.9

Table 3.1: Basic statistics of our dataset

3.2.2 Comparisons with Existing Datasets

Since our task is closely related to scientific paper summarization, we provide com-

parisons between ContributionSum and the following datasets.

arXiv [ 1] is a benchmark dataset for scientific paper summarization and long document

summarization.

SCITLDR [24] is a extreme summarization dataset containing both author-written and

expert-derived TLDRs for scientific papers

FacetSum [ ]3] is a facet summarization benchmark consisting of articles from Emerald
journals, they provide paper summaries from four aspects: purpose, method, finding and
value, we report the statistics in value aspect as it resembles to our task based on their

definition.

DisentangledSum [5] is extended from the S2ORC corpus by adding contribution-related
and context-related reference labels to sentences in abstracts, we report the statistics of

contribution-related sentences in their work.

Following previous work[24], we analyze the text length, compression ratio (source
length divided by target length) and percentage of novel words (words appear in the ref-

erence yet not in the source) of each dataset. As shown in Table 3.2, the summary length
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and the compression ratio of ContributionSum lies between arXiv and other scientific sum-
marization dataset, suggesting that our dataset provide an alternative for the community
other than abstract or extreme summarization. It is worth mentioning that although both
DisentangledSum and our dataset aim to generate contributions for scientific papers, their
average summary length is longer since they perform sentence-level extraction in abstract
to obtain the target and their dataset is mainly composed of silver summaries that are likely
to introduce noise, while ours consists of author-written contributions which are supposed

to be more abstractive.

1 0
Dataset # Papers Avg. Paper Avg. Summary Compression % Novel

Length Length Ratio  Words
arXiv 215K 49K 220 22.5 8.3
SCITLDR 3.2K 5K 21 238.1 15.2
FacetSum 60K 6.8K 47 144.7 NA
DisentangledSum 400 6.3K 136 46.3 NA
Ours 24K 3.6K 91 39.6 9.9

Table 3.2: Comparisons of ContributionSum with existing datasets, some statistics are not
available due to the absence of open-access datasets

3.2.3 Structural Alignments

Structure information is important in long document processing, especially for sci-
entific papers where the discourse is well-organized into sections as conventions. Among
all the possible sections, previous studies have found that the most salient information in
a paper for writing a summary is often found in the abstract, introduction, and conclu-
sion sections [43]. To analyze the importance of these three sections in our task, we first
leverage ROUGE-score[44] to study the lexical overlaps between the target contributions
and the texts in the abstract, introduction and conclusion sections. Specifically, we ran-

domly sample 1,000 papers that possess all three sections from our dataset, then calculate
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ROUGE-recall and ROUGE-f1 between targets and sections as well as targets and full
texts. A high ROUGE-recall indicate that more N-grams in the target are covered in the
source, and a high ROUGE-f1 suggests high similarity between source and target from

the lexical perspective.

As presented in Table 3.3, we can see that abstracts, introductions and conclusions
all have significantly more overlapped N-grams with the target summary than other sec-
tions based on the results of ROUGE-recall. Also, there is no surprise that they have
much higher ROUGE-f1 since they are already highly-summarized texts compared with
other sections. Among these three, abstract and conclusion are much shorter and closer to
our targets while introduction might elaborate more on the backgrounds, motivations and

technical details of the papers.

Section Source Length ROUGE-1/2 recall ROUGE-1/2 f1
Abstract 172 65.17/26.42 43.01/17.31
Introduction 613 76.1/29.97 21/7.8
Conclusion 183 58.27/22.18 41.61/16.02
Others 681 54/17.91 15.01/4.73
All (full paper) 3579 83.71/59.97 5.75/3.46

Table 3.3: ROUGE scores between targets and sections in our dataset

We further investigate the sentence-level alignments in these sections. We greed-
ily select sentences in the paper that maximize the sum or ROUGE-1 and ROUGE-2 f1
scores with each disentangled contribution in the references. We plot the relative posi-
tions of these selected sentences in their corresponding sections and present the result of
abstract, introduction, conclusion and other sections in Figure 3.2. For selected sentences
in abstracts and introductions, they tend to be positioned towards the end, since authors
might discuss the backgrounds and the motivations first when writing these two sections.

On the other hand, those in conclusions skew towards the beginnings, mostly because au-
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thors often quickly summarize their work first in conclusions and then state future works
later. In other sections, there is no clear pattern observed except for the potential lead bias.

Abstract Introduction Conclusion Others

0.0 e e ‘: e B . et S— e gz e
0.2
0.4
0.6

0.8

Figure 3.2: Relative positions in the associated sections of greedily extracted sentences
that maximize the ROUGE scores with the target contributions

3.3 Contribution Type Annotation

In this section, we describe our further annotation of contributions types in our dataset.
Although our main task is to generate disentangled contributions, which does not neces-
sarily requires contribution types, we argue that our annotation is still valuable. First,
recent works have studied the topic of contribution extraction and contribution type clas-
sification, yet due to the huge cost of manual annotation in scientific domain, they are
unable to construct large-scale datasets. On the other hand, our dataset provide significant
amounts of disentangled contributions, should they be paired with their corresponding
contribution types, it would benefit the aforementioned tasks a lot. Second, if we are able
to generate disentangled contributions with their contribution types, our generation results
can serve as valuable resources for downstream tasks such as scientific entity extraction
and knowledge graph construction. Last but not least, the presence of contribution types

can provide sketch supervisions to our main task, guiding the generation process to focus
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on certain types of contributions as well as aligning with highlight sentences in the source

documents. We will elaborate more on this point in Chapter 4.

3.3.1 Annotation Scheme

Previous works in contribution type classification have already proposed annotation
schemes for this task. However, their annotation schemes are too challenging to develop
automatic methods [4, 6]. As we want to apply a data driven approach to train a con-
tribution type classifier for automatic annotation of our full dataset, their designs are not
suitable for our work. To this end, we present a new annotation scheme tailored to our
dataset. We classify the contributions into the following four categories, detailed expla-

nations and examples are showed in Figure 3.3:

Approach and Method: Proposal of new methodology to an existing research problem,
since our dataset focuses on papers in computer science domain, this mostly refers to

models, systems, frameworks, algorithms and strategies.

Theory, Analysis and Finding: Detailed theoretical or empirical analysis of existing
works as motivation for future improvements or the proposed methodology such as abla-

tion studies.

Experiment Result: Evaluation of the proposed methodology, frequently accompanied

with comparisons with existing works.

New Topic or New Resource: Creation of new research topic, new task, or new datasets.
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Figure 3.3: Illustrations of our contribution type annotation scheme

3.3.2 Annotation Procedure and Results

We manually annotate 1K papers randomly sampled from our dataset. This results in
a total of 3,798 contributions. During the annotation process, we found that around 10%
of the contributions (339/3798) contains more than one type of contribution based on our
annotation scheme. Since the percentage is not very high, we omit these contributions and
leave the extension of multi-label contribution classification to future works. To obtain
contribution type labels for all of our dataset, we then finetune a sentence classifier using

our annotated data and utilize it to generate reference labels for other papers in our dataset.
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3.3.3 Analysis of Contribution Types

While the contributions types are labeled for each disentangled contribution, they are
not independent to each other. For instance, as most people would expect, contributions
about experiment results are very likely to appear after those describing the methods. To
study the relations between the contribution types, we present their transition matrix in

Figure 3.4.

Among all, contributions talking about new methods are the most likely to locate at
the beginning while experiment results are often positioned at the end. Notably, though
frequently followed by experiment results as expected, we observe that contributions about
approach and method can also appear in segments where authors divide their method into

components and list them separately. This also happened to contributions about analysis

and findings.
<start> - 0 0.2 0.11 0 0.6
Approach
and - 0 0.098 0.044 0.095 0.5
Method
E i t 0.4
KperTEE - 0 0.1 0.096  0.16 0.05 0.6
Theory, - 0.3
Analysis ¢ 026 012 = 025 0.043
Finding
New Topic -0.2
or
New 0 0.29 0.18 0.1 0.12 0.3
Resource
-0.1
<end> - 0 0 0 0 0 0
| 1 | 1 | | - 0.0
=start> Approach Experiment Theory, New Topic =end=
and Result Analysis ar
Method and New

Findina Resource

Figure 3.4: Transition matrix of different contribution types

During our annotation, we also observe some common patterns of papers in listing

their contributions as showed in Figure 3.5. This phenomenon suggests that the combi-
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nation of disentangled contributions is closely aligned with the paper structure, thus can
provide a more comprehensive summary for the readers in understanding the highlight
and story-line throughout the research process. In addition, since there are certain com-
mon templates, the presence of contribution types can serve as a summary sketch and

further guides the summarization process.
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Pattern Example

First, we propose Hierarchical Evidence Set Model-
ing, which consists of document retriever. multi-hop
evidence retriever, and claim verification.
Second, our multi-hop evidence retriever retrieves ev-
idence sentences and combines them as evidence sets.
Approach and Method — Experiment Result Our claim verification component conducts the hier-
archical verification based on each evidence set indi-
vidually and then based on all the evidence sets.
Finally, our experimental results show that our model
outperforms 7 state-of-the-art baselines in both the ev-
idence retrieval and claim verification.

First, We propose a simple and robust Syn-LSTM
model to better incorporate the structured information
conveyed by dependency trees. The output ofthe Syn-
LSTM cell is jointly determined by both contextual
and structured information. We adopt the classic con-
ditional random fields ( CRF) (Lafferty etal., 2001) on
top of the Syn-LSTM for NER.

Second, we conduct extensive experiments on several
standard datasets across four languages. The proposed
model significantly outperforms previous approaches
on these datasets.

Finally, we show that the proposed model can capture
long-distance interactions between entities. Our fur-
ther analysis statistically demonstrates the proposed
gating mechanism is able to aggregate the structured
information selectively

Approach and Method — Experiment Result - Theory, Analysis and Finding

First, we analyze partially correct predictions of a
SOTA English reader model, revealing a distribution
over three broad categories of errors.

Second, we show that an Answer Corrector model can
be trained to correct ervors in all three categories given
the question and the original prediction in context.
Finally, we further show that our approach general-
izes to other languages: our proposed answer correc-
tor vields statistically significant improvements over
strong RoBERTa and Multilingual BERT (mBERT)
(Devlin et al., 2019) baselines on both monolingual
and multilingual benchmarks.

Theory. Analysis and Finding — Approach and Method - Experiment Result

First, we examine the assumptions Baker et al. use
to operationalize economic policy uncertainty via
keyword-matching of newspaper articles. We demon-
strate that using keywords collapses some rich linguis-
tic phenomena such as semantic uncertainty,

Second, we also examine the causal assumptions of
Baker et al. through the lens of structural causal mod-
els (Pearl, 2009) and argue that readers’ perceptions
of economic policy uncertainty may be important to

capture.
Third, we conduct an annotation experiment by re-
Only Theory, Analysis and Finding annotating documents from Baker et al.. We find pre-

liminary evidence that disagreements in annotation
could be attributed to inherent ambiguity in the lan-
guage that expresses EPLUL

Finally, we replicate and extend Baker et al.' s
data pipeline with numerous measurement sensitiv-
ity extensions: filtering to US-only news, keyword-
matching versus supervised document classifiers, and
prevalence estimation approaches. We demonstrate
that a measure of external predictive validity, i.e.. cor-
relations with a stock-market volatility index (VIX), is
particularly sensitive to these decisions.

Figure 3.5: Examples of common contribution patterns
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Chapter 4 Methodology

In this chapter, we introduce our overall framework for generating disentangled con-
tributions. Our method can be divided into three parts: contribution type classification,
fine-tuning and post-training for disentangled contribution generation. In Section 4.1 we
describe how we leverage a pretrained language model to finetune a contribution type
classifier which will later be utilized in our generation model. In Section 4.2 we present
our generation model built on existing encoder-decoder architectures and a fine-grained
sentence masking strategy tailored to our task for the post-training stage so that we can

exploit self-supervised learning methods.

4.1 Contribution Type Classification

For contribution type classification, we fine-tune SciBERT [45] on our annotated
classification dataset which contains 3.3K contributions. SciBERT is a language model
pretrained on a large corpus of 1.14M scientific papers. While following the same ar-
chitecture as BERT[46] which is a transformer encoder, it uses a different vocabulary
constructed on their own corpus. To train a text classifier leveraging SciBERT, we take

the final hidden state h of the first token [CLS] as the representation of the whole sequence
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and add a feedforwad layer on top of it for classification:

y = softmax(W * hjcrs) + b) 4.1)

where hjcrg) is the final hidden state of the [CLS] token, W' € R4 and b € R are
trainable parameters of the additional classification layer, C' is the number of class which
is four in our work and d is the dimension of final output of SciBERT. The model is then

optimized with a cross-entropy loss.

After training, we apply the model to predict the contribution type labels for the target
contributions in all other papers without annotation in our dataset, which we will use in

the following generation model.

4.2 Disentangled Contribution Generation

4.2.1 Task Formulation and Model Architecture

We formulate our task of generating disentangled contributions for scientific docu-
ments as an abstractive summarization problem. The goal is to develop a model that takes
a scientific document as input and generate its disentangled contributions sequentially as

output:
S« g(D)
(4.2)
S = concat(Ch.,)
where ¢ is the mapping inferred from the model, D is the input document, C';,, represents

n disentangled contributions and the concatenation of them forms the desired output S.

Note that in order to achieve disentangled generation, the concatenation operation should
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add additional tokens to separate the contributions. The most simple solution is to add link
words such as first, second and finally. In our method, we use special tokens representing

different contribution types to serve as guidance signals for the generation process.

Recent advances in neural abstractive summarization mostly adopts a sequence-to-
sequence architecture to generate summaries. The encoder takes the document D as in-
put and produces the input representation Z. The decoder then outputs a token distri-
bution p(y,) for each time step ¢, conditioned on both Z and previous generation results
y1.+—1. Finally, the model is trained using a cross-entropy loss to minimize the negative
log-likelihood of the tokens in the reference summary g in a auto-regressive way using

teacher forcing:

Z = Encoder(D)

p(yt) = DeCOder(ylztfh Z) (43)

Loen = — Zt ¥ log p(y)

Among all model architectures, transformer-based approaches have achieved state-
of-the-art performances in many summarization tasks leveraging the power of attention
mechanisms. In a vanilla transformer model, the encoder uses self-attention to capture the
relations between input tokens and enrich their representations. On the decoder side, in
addition to self-attention, cross-attention is utilized to draw global dependencies between

input and output.

To leverage powerful pretrained transformer models, in this thesis, we use BART and
Longformer-Encoder-Decoder (LED) as our underlying architecture. BART is pre-trained
with a denoising objective where additional noise such as shuffling and masking of spans

of texts are imposed and the model learns to reconstruct the original text. On the other
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hand, LED is designed for generation task of long documents. Though initialized from
the parameters of BART, it extends the positional embeddings to fit long inputs and uses a
combination of sparse local and global attention mechanism in replacement of the encoder

self-attention for improving computational efficiency.

4.2.2 Finetune for Disentangled Contribution Generation

Built on existing encoder-decoder architectures, we focus on organizing input docu-
ments and output targets to finetune for disentangled contribution generation. In order to
provide guidance signals and structure alignments for the generation process, we create
special tokens representing different contribution types in both input documents and out-
put targets. Recall that we define four types of contributions that appear in our dataset:
Approach and Method, Theory, Analysis and Finding, Experiment Result and New Topic
or New Resource. We add a new token to the tokenizer representing each contribution
type. In the remaining part of this thesis, we abbreviated them to <Methodology>, <Anal-

ysis>, <Result> and <Resource> respectively.

Furthermore, following previous works [36, 47], we add a special token <Doc-Sep>
to separate the sections, adding structural signals of the paper to our model. We also assign
global attentions to these tokens which the model can use to share information across
different sections. The <Doc-Sep> token is randomly initialized while contribution type
tokens are initialized as the average of the token embeddings of the common keywords in

each contribution type.

To organize the scientific papers for model input, we first perform truncation to fit

in the input length limit of the model architectures. BART has an input length limit of
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1024, while LED can scale up to 16384, we use 4096 in our experiment for fair com-
parisons with previous works as well as computational efficiency. We perform different
truncation strategies for two model architectures. For BART, since the input length limit is
significantly smaller than the average paper length in our dataset (3.6K), we only include
title, abstract, introduction and conclusion sections of the papers in the input sequences
based on our previous analysis that indicates the importance of these sections in gener-
ating research contributions. Besides, results from previous works [ 13, 24] in scientific
paper summarization have proven that treating AIC (abstract+introduction+conclusion)
as the model input space can substantially reduce computational costs without sacrificing
performances. For LED, we retain title, abstract, introduction and conclusion sections as
in BART. Moreover, for every other section, we allocate input length for it based on the
remaining input length limit (original input length limit minus length of title and AIC)
multiplied by the ratio of current section length and total length of the remaining sections.
Analogously, if subsection structures exist in a section, we allocate length limit for each

subsection and perform truncation based on our allocation.

In addition to the truncation strategy, we add special tokens to highlight important
sentences and inform the model of high-level structural information of the paper discourse.
Our highlight sentences extraction algorithm is based on heuristic rules from our obser-
vation and the analysis of the dataset. Specifically, we first target sentences in abstract,
introduction and conclusion sections as they are of primary importance compared with
other sections. Then we use a heuristic rule to filter out sentences in these sections that
are not likely to discuss the contributions of the paper. Based on our analysis in sec-
tion 3.2 and manual inspections, sentences at the beginning of abstract and introduction

usually describes the background and the related works, whereas authors might list some
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directions for future works or acknowledgements at the end of conclusion. To this end,
we use a simple keyword matching approach to filter out the aforementioned sentences.
For abstract and introduction, we search for a predefined set of keywords like in this pa-
per” as starting signals and add all sentences after it as our candidate highlight sentences.
Similarly, for conclusion section we add sentences from the beginning sequentially to the
candidate list until keywords like ”future work™ are detected. If no keyword is matched,

we use a length threshold to filter out sentences instead.

After the filtering stage, we then feed each candidate sentence into our contribution
type classification model described in section 4.1. Sentences that have prediction scores
above a threshold 7 is selected as the highlight sentences since our classification model is
more confident that they are discussing certain type of contribution. Algorithm 1 shows
the overall procedure of highlight sentence extraction. The selected highlight sentences

will be prepended with the special token representing their contribution types.

Algorithm 1: Highlight Sentence Extraction

Input : Sentence sets for abstract .S,, introduction .S; and conclusion .S,
Input : A contribution type classification model g
Input : Predefined keyword sets K and K
Input : Length threshold I, and [., prediction score threshold 7
Output: Sets of highlight sentences H

1 H=1]]

2 for section in [a,i,c] do

3 start,end=True, False

4 if section in [a,i] then

5 | start=False

6 for idx,sentence in Sgection dO

7 if not start and (any(K; in sentence) or idx/len(Ssection) > Is) then

8 | start=True

9 if section is ¢ and not end and (any(K, in sentence) or idx/len(Ssection) > lo) then
10 | end=True
1 if start and not end and predict score_ (sentence) > 7 then
12 | H.append(sentence)

In addition to highlight sentences, we also match each section to certain contribution
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type and add corresponding special tokens in front of the section header. Similar to ex-
isting work [4&], the matching is done by heuristic keyword mappings of some common
keywords in the section header. Finally, we concatenate all the sections based on their

original sequences after the truncation and the additions of special tokens.

To incorporate contribution types in the output target, we simply add the correspond-
ing special token in front of each disentangled contribution based on their corresponding
contribution type. One example of our model input and output is showed in Figure 4.1.
In this example, the special tokens serve as additional guidance to the generation process
and they provide clear alignments between each of the reference target and their closely-

related highlight sentences in the source document extracted based on our algorithm.
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<DOC-SEP= title: VBridge: Connecting the Dots Between Features, Explanations, and Data for
Healthcare Models

<DOC-SEP= abstract: ...... <METHODOLOGY> Following an iterative design process, we fur-
ther designed and developed VBridge, a visual analytics tool that seamlessly incorporates ML
explanations into clinicians’ decision-making workflow ......

<DOC-SEP= Introduction: ......

<METHODOLOGY> These requirements and workflows
guided the overall design and development of VBridge, a Visualization system that Bridges the
gap between clinicians and ML models with tailored feature explanation algorithms and novel
interaction and visualization techniques ......

Input

<DOC-SEP= Conclusion:

<METHODOLOGY> We then
introduced VBridge - a visual analytics system designed according to the requirements identified
in a pilot study - to support clinicians using ML to make decisions with both forward and back-

ward analysis workflows. <ANALYSIS> We conducted two case studies and expert interviews

<METHODOLOGY> A visual analytics system that integrates novel explanation algorithms and
visualization and interaction techniques, to connect the dots between ML features, explanations,

Target

and health records for an improved clinicians’  decision-making workflow.

Figure 4.1: Organization of input and target from an example in our dataset
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4.2.3 Fine-grained Post-training

Recall that in our dataset construction process, we first download computer science
papers from arXiv and then extract papers with contributions explicitly listed by the au-
thors from the downloaded papers. This leaves a total of 90K papers treated as unsuper-
vised data in our task. To leverage this huge amount of in-domain data, we present a novel

post-training strategy tailored to our task.

In our fine-grained post-training stage, we propose to construct pseudo-summaries
similar to the concatenation of disentangled contributions as previously described. Again,
we resort to the highlight sentences in abstract, introduction and conclusion sections as in
the finetuning stage. To construct coherent pseudo-summaries where each disentangled
contribution discuss the efforts of the authors from a unique aspect yet combining them
provides a comprehensive picture of the complete research progress, we first choose can-
didate highlight sentences as backbones from either abstract or conclusion since they are
closer to the reference summaries based our analysis. We perform a simple check on the
sum of the length of the candidate highlight sentences to exclude outliers. If both of them
are qualified, we randomly choose one as the backbone. Next, for each sentence in the
backbone summary, we greedily select a sentence in the candidate set that shares the same
contribution type and maximize the ROUGE-1 and ROUGE-2 f1 with it. If this maximum
score exceeds certain replacement score threshold ¢, we replace the target sentence in the
backbone with this new candidate sentence. As a result, the usage of highlight sentences
in one section as backbone ensures that the pseudo-summary is coherent, yet the replace-
ments based on ROUGE-score matching encourages the model to reconstruct important

sentences in all of abstract, introduction and conclusion sections given the body text.
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After the selection, we mask out all the selected sentences in the input document
with a special token <mask>. Inspired from previous works [7, 36], we also randomly
masked out the remaining highlight sentences in AIC. Finally, we organize the input and
output as the same in the finetuning stage described previously. Figure 4.2 demonstrates
one example from our post-training dataset. In this example, the abstract is chose as the
backbone and extracted sentences are highlighted. Based on our sentence masking strat-
egy, the sentences highlighted in brown and green are replaced with similar statements in
conclusion and introduction respectively. In this way, the masked targets are not limited
to the backbone and the model is trained to leverage important contexts across multiple

sections without sacrificing the coherence of the pseudo-summary.

Overall, our generation method consists of a post-training stage and a finetuning
stage. We denote our method built on BART and LED as BART-FP and LED-FP (Fine-

grained Post-training) respectively.
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Music, speech, and acoustic scene sound are often handled separately in the audio
domain because of their different signal characteristics. However, as the image

domain grows rapidly by versatile image classification models, it is necessary to
study extensible classification models in the audio domain as well. [FHISSHdy

Abstract (Backbone)

We show that the
sample-level models reach state-of-the-art performance levels for the three dif-
ferent categories of sound.

<METHODOLOGY> We presented the two sample-level CNN models that di-
rectly take raw waveforms as input and have filters with small granularity.

Pseudo-Summar
Y <RESULT> We show that the sample-level models reach state-of-the-art perfor-

mance levels for the three different categories of sound.

<ANALY SIS> Furthermore, we visualize hierarchically learned filters for each
dataset in the waveform-based model to explain how they process sound differ-
ently.

Figure 4.2: Example of our fine-grained sentence masking strategy
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Chapter S Experiments

In this chapter we present the experiment results in our work. Section 5.1 describes
the training of our contribution type classifier and the classification results. Section 5.2
introduces the evaluation of disentangled contribution generation including experimental

setups, evaluation metrics and main results.

5.1 Contribution Type Classification

We first split our annotated dataset into a training set and a held-out test set of size
2750 and 709. The distribution of different contribution types is explicitly ensured to be
balanced across the training set and the test set. We finetune SciBERT for classification.
Specifically, we use the model checkpoint allenai/scibert scivocab_uncased in Hugging-
face library'. The learning rate is set to 2e-5 and we train the model with a batch size of
64 for 5 epochs. After fine-tuning, our model achieves 89.66 Macro-F1, 90.5 Micro-F1

on the held-out test set. The resulting confusion matrix is presented in Figure 5.1.

Compared with other annotation schemes for contribution type classification, the
overall results in our work are much better, indicating that our annotation scheme is less

challenging yet reasonable to develop automatic methods. The relative high classification

Thttps://huggingface.co/models

39 doi:10.6342/NTU202203034



Figure 5.1: Confusion matrix of contribution type classification
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accuracy also enables us to obtain high-quality labels for those unannotated contributions
in our dataset by applying the trained classifier. From the confusion matrix in Figure 5.1
we can see that the performance of our model in Theory, Analysis and Finding is the poor-
est among all categories mostly because the model cannot classify it with Approach and
Method or Experiment Result perfectly. We attribute this to the diversity of the semantic
meanings in this category where authors might discuss the analysis of their proposed ap-
proach, findings from their experiment results other than common evaluation metrics or
even the methods they utilize to perform the analysis, all posing challenges to the classi-

fication.

40 doi:10.6342/NTU202203034



5.2 Disentangled Contribution Generation

5.2.1 Experimental Setup

For training and evaluation, we split our dataset to a train/validation/test set with size
19434/2302/2393. The distribution of papers in different categories is explicitly ensured
to be balanced across the three sets. We also assign the 1K papers with manually annotated

contribution types to the validation set for further analysis.

We build our method on BART and LED. The input length limit for BART and LED
are set to 1024 and 4096 respectively, and the output length limit is 400 for both models.
We use the sentence tokenizer provided by the Natural Language Toolkit [49]. We first
post-train the models on our self-supervised dataset for 4 epochs then finetune on the
gold training set for another 4 epochs. With a warm-up ratio of 0.1, the learning rates for
BART and LED are 7e-5 and 4e-5, in addition, the effective batch size? is set to 64. At
inference time, we decode using beam search with a beam size of 5. The total training
time (training, validation and model saving) using 2 Nvidia V100 is roughly 4 days and

20 hours for post-training and finetuning with LED, or 1 day and 6 hours with BART.

Recall that in our highlight sentence extraction algorithm, we have several hyper-
parameters, namely length threshold [ and [., prediction score threshold 7. In our ex-
periments, /s and [, are set to 0.4 and 0.8, which is roughly the relative position of 90
percentile among the greedily extracted sentences in their associated sections as demon-
strated in Figure 3.2. The prediction score threshold 7 is set to 0.92 by a grid search on

the validation set. This results in 9.8 highlight sentences for each source document on

Zbatch size per device * number of devices * gradient accumulation steps
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average. In the process of pseudo-summary construction, the replacement score threshold
¢ is 0.6. The average number of sentences in the pseudo-summary is 5.1 and that of the
replaced sentences by our post-training strategy is 2.2. We also randomly mask out other

unselected highlight sentences with a probability of 0.3.

We compare our methods with the following well-known and competitive baselines
in document summarization and their corresponding initial model checkpoints in the Hug-

gingface library:

BART: facebook/bart-large

PEGASUS: google/pegasus-large

LED (Longformer Encoder Decoder): allenai/led-large-16384

PRIMERA: allenai/PRIMERA

In addition, we also perform oracle extraction [ 50] which can be treated as the upper-bound

of extractive methods.

5.2.2 [Evaluation Metrics

Our evaluation is based on four automatic metrics: ROUGE-1 fl, ROUGE-2 {1,
ROUGE-L f1 and BERTScore [51] f1°. Rouge scores measure the lexical similarity be-
tween the reference and the generation result by calculating unigram, bigram and longest
common subsequence overlaps while BERTScore measures the semantic similarity using
the embeddings of pre-trained language models. As recommended in the original paper,

we use microsoft/deberta-xlarge- mnli for our BERTScore calculation since it has the best

3Hash code: microsoft/deberta-xlarge-mnli_L40 no-idf version=0.3.10(hug_trans=4.13.0.dev0)
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correlation with human evaluations. For better visualization, our reported scores in the

following tables are original scores multiplied by 100.

Built on these automatic evaluation metrics, we perform our evaluation on two granu-
larity: summary-level and contribution-level. In summary-level evaluation, the references
and the generation results are both treated as a whole by concatenating all the disentangled
contributions. In this setting, we evaluate the overall quality of the generation, as we hy-
pothesize that the combination of all contributions should serve as a well-structured and
comprehensive summary for the scientific paper, this should includes the reasonable and
coherent organization of the disentangled contributions, possibly aligned with the paper
structures. On the other hand, inspired by the facet evaluation of extractive summarization
models [28], we evaluate the generation results on a contribution level since ideally each
generated contribution should discuss certain aspect of the paper and match with exactly
one contribution in the reference. Hence, for every test instance, we split the generation
result into disentangled contributions G = {G1, Gs......G,, } and map each contribution in
the reference R = { Ry, Rs......R,,} to a generated contribution by maximizing ROUGE
recall and BERTScore recall, where n and m are the number of contributions in the gen-
eration result and the reference respectively:

Ri — Gj ’ j = argmax erecall(sz’ Rz) + R2recall(sz’ Rz) + BSrecall(Gka Rz) (51)

ke[ln)

by this mean, every reference is matched with the generated one that covers itself the
most while there is no guarantee on the opposite side, which depends on the generation
quality. Finally, we calculate the aforementioned automatic metrics between the mapped
pairs. We choose to perform the matching based on the references because we are only

confident that the contents in the references are correct. While there might exist cases
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where the generated contribution is also factually correct but not presented in the reference,
we are unable to evaluate its quality given our current dataset. Thus in our contribution-
level evaluation, they are ignored. One potential drawback of our evaluation is that our
matching algorithm cannot penalize redundant generated contributions (not mapped to
any reference contribution) that are also not factually correct, yet we show in section 6.4

that these cases are not frequent. Figure 5.2 shows an example of the contribution-level

mapping.
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Figure 5.2: Example of contribution-level matching
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We highlight the matched pairs in the same color. We can see that the reference con-
tribution and the generation result align well both sequentially and semantically. However,
in other cases there might be noisy mapping resulted from poor generation results. For
example, several reference contributions might mapped to the same generated contribu-
tion if the generation result is less disentangled and covers many different points in one

contribution.

5.2.3 Main Results

Table 5.1 presents the results of summary level evaluation. Our methods outperform
competitive baselines across all automatic metrics. Since our methods are built on BART
and LED, we can directly observe the improvements brought by our finetuning leveraging
contribution types and paper structures as well as the fine-grained post-training strategy.
Compared with BART and LED, both BART-FP and LED-FP achieve improvements of
over 1 average ROUGE score. Our methods also work well in terms of BERTScore. This
indicates that our method is model-agnostic and can be incorporated with both the vanilla
transformer and the long transformer. The performance margin of BART is slightly larger
than LED, we hypothesize that the important contexts needed for generating research con-
tributions still mostly lie in abstracts, introductions and conclusions. As we focus on
adding special tokens for highlight sentences in these sections, the ability of encoding
dependencies between texts in other sections by the long transformers might not be of sig-
nificant values. Yet this may inspire future works to incorporate long transformers with

methods that can exploit valuable guidance signals in the body text other than AIC.

Table 5.2 presents the results of contribution level evaluation. The relative compar-

isons between different models are consistent with Table 5.1. However, the performances
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Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore

EXT-ORACLE 54.1 29.18 34.09 68.76
BART 48.45 20.16 30.46 68.33
PEGASUS 46.85 20.16 30.87 66.71
LED 48.61 21.21 31.78 68.37
PRIMERA 48.39 20.99 31.05 67.68
BART-FP (ours) _ 50.06 21.25 31.73 68.75
LED-FP (ours) 49.87 22.22 32.68 68.9

Table 5.1: Results of Summary Level Evaluation

of all models are significantly worse than that in summary level evaluation. This is no
surprise since that the reference become one contribution discussing specific aspect of the
research paper instead of concatenations of contributions that are much similar to a sum-
mary covering all aspects. Therefore, ideal generation results should be able to separate
and organize different contributions. Based on our experiment results, there is still room
for improvements for models to achieve better performances in disentangled generation.
Notably, PRIMERA performs worse than LED on our dataset. This is not expected as it
is further post-trained from the LED checkpoint and also achieves state-of-the-art results
in multi-document summarization and scientific paper summarization. The main reason
is that the generation results of PRIMERA are about 10% longer than the reference tar-
gets as well as the results of other models, both in summary level and contribution level

evaluations.

Though the performance of oracle extraction (which should be seen as the upper-
bound of extractive methods) is better than that of the abstractive summarization models.
We argue that extractive methods are not suited for our task. The most principal reason is
that our task aims to generate disentangled contributions, while current extractive meth-
ods perform sentence-level extraction to decide whether each sentence in the paper should

be included in the summary. This results in structure-less plain texts. Based on the ora-
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cle extraction result, the average number of sentence in the prediction is 5.13. Compared
with the number of contribution (3.2) in our dataset, this indicates that we cannot simply
treat each extracted sentence as a contribution since more than one sentence in the scien-
tific document are needed to cover the content of one contribution. To further justify this
point, we perform another oracle extraction by treating each disentangled contribution as
a reference. The average number of extracted sentence for each contribution is 1.94. In
addition, the average number of section where the extracted sentences locate in for each
contribution is 1.67. This shows that a divide-and-conquer approach by simply extract-
ing from each section and combine them as a resulting contribution might not work well.
Another reason is we find that some keywords addressing the contributions of the paper
is not presented in the source input, which is likely to be missed by the extractive meth-
ods. According to the statistics of novel words (words that exist in the reference target but
not in the source input), the most frequent (top-10) ones are: novel, propose, extensive,
demonstrate, introduce, new, develop, best, present and provide. Based on this observa-
tion, extractive methods might not be enough to conclude and emphasize the contributions

made by the authors instead of mainly coping narratives and statements in the paper.

Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore
EXT-ORACLE 40.23 20.42 31.4 68.39
BART 35.27 13.73 27.14 66.59
PEGASUS 35.18 14.29 27.6 66.26
LED 36.01 14.9 28.09 66.92
PRIMERA 34.99 14.61 26.77 65.89
BART-FP (ours) 36.02 14.93 28.08 66.98
LED-FP (ours) 36.69 15.65 28.48 67.04

Table 5.2: Results of Contribution Level Evaluation
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5.2.4 Comparisons with Other Post-training Strategies

We also compare our methods with other post-training strategies. For a fair compar-
ison, we start from the LED checkpoint and train on our self-supervised dataset with the

following post-training objectives.

* Gap Sentence Generation (GSG)[7]: a post-training objective tailored to abstractive

summarization proposed in PEGASUS.

* Pyramid Sentence Masking (PSM)[36]: a post-training objective built on GSG that

takes entity importance across multiple documents into account.

» Abstract: we explore a simple post-training strategy that simply trains the model to

generate the abstract given the paper.

The results are presented in Table 5.3. In both summary level and contribution level
settings, LED-FP outperforms all other post-training strategies. The margin in contribu-
tion level evaluations is larger since our method explicitly adds contribution type special
tokens in both source documents and reference targets to provide alignments between
them when generating certain types of contributions. In addition, the simple post-training
objective of generating abstracts actually perform on par with other tailored post-training

strategies.
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Summary-Level Contribution-Level

R-1 R-2 R-L BS R-1 R-2 R-L BS
Ours 49.87 22.22 32.68 68.9 36.69 15.65 28.48 67.04
GSG 49.54 21.85 3212 6844 359 15.18 2743 664
PSM 49.63 2191 3217 685 3587 15.15 2751 6639
Abstract 49.83 22 31.99 68.54 36.09 1534 27.61 66.46
LED 48.61 21.21 31.78 6837 36.01 149 28.09 66.92

Model

Table 5.3: Comparisons with other post-training strategies incorporated with LED
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Chapter 6 Discussion

In this chapter, we conduct further analysis and discussions of our methods. In section
6.1 we perform ablation study to investigate the components in our methodology. Section
6.2 presents the experiment results in low resource settings. Furthermore, We study the
experiment results grouped by contribution types in section 6.3. Finally, we elaborate on

the challenges of contribution-level generation performances in section 6.4.

6.1 Ablation Study

Our method consists of two main components: the utilization of contribution type
special tokens and the fine-grained post-training strategy. To investigate the effect of them
in terms of model performances, we conduct ablation study on LED-FP and the results are

presented in Table 6.1.

Model Summary-Level Contribution-Level
R-1 R-2 R-L BS R-1 R-2 R-L BS
Full model 49.87 22.22 32.68 68.9 36.69 15.65 28.48 67.04

w/o post-training 4852 21.57 3226 6839 36.16 1528 2836 67.22
w/o special tokens  49.5 21.79 31.72 6831 35.76 1521 27.43 66.27
LED 48.61 21.21 31.78 6837 36.01 149 28.09 66.92

Table 6.1: Ablation study of LED-FP

Based on the results, though both of our components contribute positively to the
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model performances, the effect of fine-grained post-training is larger than that of adding
special tokens in summary-level evaluations. This showcases the importance of exploiting
unlabeled in-domain data for self-supervised learning, also demonstrated widely in vari-
ous NLP tasks including abstractive summarization where general summary-level perfor-
mances are improved. [52—54]. On the other hand, for contribution-level performances,
the benefit brought by adding special tokens are more significant, indicating the effective-
ness of providing proper guidance signals in both source documents and reference targets
to encourage the model to focus on generating well-structured salient points instead of flat
general summaries. In contrast, our post-trained model without leveraging contribution
type special tokens performs worse than vanilla LED in contribution-level evaluations.
Last but not least, even without post-training, our finetuning method leveraging contribu-

tion type special tokens still outperforms the LED model with vanilla finetuning.

6.2 Experiment Results in Low Resource Setting

As discussed in previous sections, significant costs of annotations from domain ex-
perts have made it more difficult to acquire high-quality supervised datasets for scientific
documents than common web based texts. In this regard, models that generalize well

under low resource limitations become more important in scholarly document processing.

In this section, we present evaluations in zero-shot and few-shot settings where the
model is provided with 0 and 100 training examples. Since few-shot results might vary
according to the randomly sampled training data, we run the experiment five times (each
time the training data is shared among all models) and report the average scores. The

hyper-parameters are the same as that in fully-supervised experiments, except we train for
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20 epochs for each run in the few-shot settings. We compare our model (LED-FP) with

the previously-mentioned post-training strategies.

As showed in Table 6.2, our fine-grained post-training strategy outperforms other ap-
proaches significantly, since our method is tailored to our task, the improvement is larger
than that in the fully-supervised setting. In addition, we observe that the margin between
zero-shot or few-shot results and fully-supervised results are not as large as those in other
summarization datasets. We attribute this phenomenon to two causes. First, our post-
training is directly performed on in-domain data, namely computer science papers. The
extremely similar distribution between self-supervised data and fully-supervised data en-
ables our model to achieve surprisingly good results in low resource settings. Second,
we speculate that there is a performance upper-bound for the models due to writing style
variance in our dataset. Some authors prefer to write long statements describing their con-
tributions in detail while others tend to use concise wordings such as noun phrases. This
imposes challenges to the evaluation of our task as well as the generalization of the models

to the fully-supervised dataset.

Zero-Shot Few-Shot

R-1 R-2 R-L BS R-1 R-2 R-L BS
Ours 46.73 19.02 28.44 659 4793 205 31.38 67.66
GSG 43.08 1635 24.77 62.89 47.27 20.15 31.03 67.29
PSM 4486 17.53 2657 64.11 47.84 2032 3098 67.38
Abstract 42.87 16.47 24.19 63.57 47.86 2043 30.96 67.6

Model

Table 6.2: Results of zero-shot and few-shot experiments
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6.3 Results Based on Different Contribution Types

As our desired model should identify salient points in the paper and generate disen-
tangled contributions of different types based on our annotation scheme. We study the
performance of our model grouped by different contribution types. To ensure that the
contribution types in the references are of high qualities, we focus on the papers manually
annotated with their contribution types in the validation set. We then gather both the gen-
eration results and the references according to their contribution types, if their are multiple
ones of the same type, we concatenate them. We calculate the coverage of contribution
types between references and predictions using precision, recall and F1 scores. On top of
that, we evaluate the automatic metrics for the grouped pairs. In the case where contribu-
tions of a certain type are not presented in the generation results, we simply omit the pairs.

The results are presented in Table 6.3.

Contribution Type Automatic Evaluaton Coverage

R-1 R-2 R-L BS P R F1
Approach and Method 45.02 21.55 3337 68.7 948 95.08 94.94
Experiment Result 4331 2235 3422 709 7523 79.24 77.18

Theory, Analysis and Finding 37.47 15.66 28.01 65.52 7632 537 63.04
New Topic or New Resource  44.78 23.27 37.56 70.5 81.9 60.56 69.64

Table 6.3: Results based on different contribution types

Among all contribution types, the coverage of Approach and Method is the best since
it indeed takes up a large proportion in our annotation. In contrast, the generation results of
our model does not cover contributions in Theory, Analysis and Finding very well. Similar
to the case in contribution type classification, this type of contribution is rather compli-
cated and challenging. Besides, as the classification performances on Theory, Analysis

and Finding are already the worst among all the contribution types, the corresponding
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predicted special tokens are likely to bring more noises to the generation of this type of

contribution.

In terms of automatic metrics, surprisingly, model achieves higher scores in Exper-
iment Result and New Topic or New Resource. We attribute this to the observations that
the narratives of these two categories are more general than those in the other two cate-
gories. The key contents of them are more straightforward and easier to be identified in
the paper. For example, contributions discussing experiment results usually mention their
improvements over baselines or the state-of-the-art performances they achieve on certain
datasets. Those describing new topics or new resources might simply state the task or
dataset they present. On the other hand, contribution introducing methods or analysis re-
quires detailed elaborations on domain knowledge with diverse expressions, as well as the
ability of understanding and inferring to organize salient information to some extent. This

is clearly much more challenging for the model to comprehend and further summarize.

We demonstrate one example from our generation results in Figure 6.1. We can see
that the generation result does not state the contributions of type Analysis and Finding and
New Topic or New Resource. For the former one, our model actually mentions it partially
yet fails to distinguish it from the contribution of Experiment Result type. In addition, the
generation results discussing methodologies are directly copied from the paper and lacks

detailed descriptions.
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Reference

1. <sMETHODOLOGY=> We tackle the keyword mapping problem as a
sequence tagging problem and borrow state-of-the-art deep learning
approaches tailored for well-known NLP tasks.

2. <METHODOLOGY> We extend the neural structure for sequence
tagging, by utilizing multi-task learning and cross-skip connections
to exploit the observation we made in natural language query logs of
databases, that is, schema tags of keywords are highly correlated with
POS tags.

3. <RESOURCE> We manually annotate query logs from three publicly
available relational databases, and five different schemas belonging
to Spider dataset.

4. <RESULT> We evaluate DBTagger, with above-mentioned query
logs in two different setups. First, we compare DBTagger with un-
supervised baselines preferred in state-of-the-art NLIDBs. In the lat-
ter, we evaluate DBTagger architecture by comparing with different
supervised neural architectures. We report new state-of-the-art accu-
racy results for keyword mapping in all datasets.

5. <ANALYSIS> We provide comprehensive run time and memory us-
age analysis over the existing keyword mapping approaches. Our re-
sults show that, DBTagger is the most efficient and scalable approach
for both metrics.

Our Generation Result

1. <sMETHODOLOGY=> We propose DBTagger. a novel deep sequence
tagger architecture to solve the problem of keyword mapping in
NLIDBs.

2. <METHODOLOGY> DBTagger is an end-to-end and schema in-
dependent solution, which makes it practical for various relational
databases.

3. <RESULT> We evaluate our approach on eight different datasets, and
report new state-of-the-art accuracy results, on the average. Our re-
sults also indicate that DBTagger is faster than its counterparts up to
and scalable for bigger databases.

Figure 6.1: An example of our generation result, contribution type special tokens are
retained for illustrations and they are removed in evaluation
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6.4 Analysis of Contribution-Level Evaluations

In this section, we present further analysis to elaborate on the challenges of contribution-
level generation performances of our model. Recall that in our contribution-level evalua-
tions the matching process is based on the reference contributions, that is, every reference
contribution is guaranteed to be matched with one generated contribution that covers its
most contents. On the other hand, this also leaves possible generated contributions that are

not matched with any reference and those that are matched with more than one references.

To study the deficiency of our model in terms of contribution-level evaluations, we
first compare the number of disentangled contributions in each pair of our generation
results Nyeperatea and the test sets Nycference 1n Table 6.4. Overall, our model tends to
generate less contributions than the references. This indicates that there is still space for
improvements in regards of the model’s ability of identifying and organizing salient points
in the paper. The shortcoming becomes more obvious when we investigate the cases of
matching errors. We calculate the ratio between generated contributions that are mapped
to at least one reference contribution and the total number of generated contributions for
each instance in the test set, the resulting histogram is presented in Figure 6.2. Ideally, as
demonstrated in Figure 5.2, a good generation result should contain contributions that can
be evenly matched to the reference contributions and cover all of them if possible. How-
ever, the actual cases are far from satisfaction as showed in the histogram. On average,
the ratio of matched contributions is 63.59% and only 22.55% of our generation results
are perfectly matched. Considering that the numbers of generated contributions are al-
ready smaller, there are still significant amounts of redundant ones that are not mapped to

any reference in the generation results of our model, not to mention the quality of those
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repeatedly matched ones in our contribution-level evaluations.

Case Percentage
Ngenerated > Nrefe'rence 14.77%
Ngenerated = Nreference 51 39%
Ngenerated < Nreference 33.84%

Table 6.4: Comparisons of the contribution numbers in generation results and references
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Figure 6.2: Histogram of the ratios of matched contributions generated by our model

In addition, we also study the disentanglement of our generation results and the refer-
ence targets. Since each disentangled contribution is supposed to cover information sepa-
rately, it should have minimal overlap both lexically and semantically compared with other
ones. Following Hayashi et al. [5], we calculate the DisROUGE and the DisBERTScore
for each generated contribution. Specifically, for each instance, we pair every gener-
ated(reference) contribution C; € {C, Cs...... C,, } with another one C; that is most simi-

lar to it by maximizing the sum of ROUGE(1,2 and L) F1 and BERTScore F1. We report
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the complement scores of each automatic metrics:

(C;,C5) | 7 = argmax Score((C;, Cy))Vi € [1 : n]

ke([lin)

Score((Ci, Ck)) = R1p1(Cy, Ci) + R2p1(Cy, Ci) + RLp1 (Cr, C;) + BSF1(Cy, C)
D-i= 100—ROUGE-if (C;, C;)
D-BS= 100—BS(C;, C;)

(6.1)

The results are presented in Table 6.5. Compared with author-written references, the gen-
eration results of our model are less disentangled across all evaluation metrics. This is
consistent with our previous finding which indicates that our model still lacks human-
level capability to comprehend salient information covering different aspects of the scien-
tific researches and summarize them separately, which is crucial in generating structured

summaries.

Model/Reference D-1 D-2  D-L  D-BS
Reference 72.69 943 &0.13 3647
Ours 71.39 92.1 77.8 35.79

Table 6.5: Disentanglement scores of the references and the generation results of LED-FP

On top of numeric analysis, we provide an example in our test set to illustrate the
aforementioned issues in Figure 6.3. From the summary-level perspective, the generation
result is relatively descent as main points in the reference are mostly covered. However,
the model fails to organize the contributions concisely as the original authors did. Specif-
ically, the first generated contribution is actually the combination of the first two refer-
ence contributions. In contrast, the second and the third generated contributions are both
parts of the third reference contribution, as each of them states more details. As a result,

there are duplicate mappings for the first generated contribution while the third one is not
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mapped to any reference. This results in performance deterioration in contribution-level

evaluations.

Reference

3. An approach to unsupervised single-view object reconstruction that
exploits the structure of the fine-grained dataset to yield reconstruc-
tions of birds nearly on par with the method that uses supervised part
annotations.

Our Generation Result

2. We exploit the structure of the fine-grained dataset to create artifi-
cial correspondences for training this network in an unsupervised-dis-
criminative learning approach. The output of the network acts as a
spatial prior that allows generalization at test time to match real im-
ages across variations in appearance, viewpoint and articulation.

3. We demonstrate reconstructions that are nearly as good as those
obtained using supervised annotations and better than those from
appearance-only CNNs or unsupervised baselines such as deformable
spatial pyramids.

Figure 6.3: An example of our generation result, matched pairs are highlighted in the same
color
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Chapter 7 Conclusion

In this thesis, we introduce the task of generating disentangled research contribu-
tions for scientific documents. To tackle data scarcity and facilitate the development of
other tasks related to research contributions, we present ContributionSum, a contribution
summarization dataset built on arXiv papers in computer science categories with research
contributions explicitly listed by the authors. Furthermore, we design a new annotation
scheme for contribution type classification. Based our annotation scheme, we provide hu-
man annotations of contributions in 1K papers and apply a data-driven approach to anno-
tate all the contributions in our dataset. To build summarization systems tackling our task,
we propose a simple yet effective sentence masking strategy tailored to our task for fine-
grained post-training. We leverage existing pretrained models and incorporate them with
paper structures as well as highlight contribution sentences in both source documents and
reference targets. We conduct extensive experiments and the results of automatic evalua-
tion metrics on both summary-level and contribution-level demonstrate the effectiveness
of our proposed method as it outperforms competitive baselines and other post-training

strategies.

In light of our work, there are several future directions for extensions or improve-
ments. First, our dataset is solely made up of papers in computer science domains. Meth-
ods of automatically extracting contributions of papers in other research fields can be
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explored to extend our dataset for broader usages. Second, the definition of research con-
tributions is subject to researchers’ personal opinions and understandings. Though we
focus on contributions written by the authors themselves which ensures the quality of our
dataset, contributions from other sources are also valuable in real-world applications. For
example, the contributions stated by the reviewers can be leveraged to study the review
and rebuttal processes as authors and reviewers are likely to have different opinions on
the values and the contributions over one review target. Last but not least, while our
method built on existing pretrianed models outperforms commonly-used baselines, future
works can focus on designing better model architectures tailored to the task of disentan-
gled generation in order to improve the results in both summary level and contribution

level evaluations.
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