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摘要

本研究探討以協程 (coroutine)實現軟體事務性記憶體 (Software Transactional

Memory)的運算排程，透過在協程間切換來提升其運算效能及可擴展性，軟體事

務性記憶體用於處理協調衝突的方法，能夠大致區分為兩種架構：專注於衝突解

決的衝突管理器 (Contention Manager)或者是專注於衝突避免的排程器 (scheduler)，

衝突管理器根據衝突解決策略決定衝突的事務 (transaction)該中止或繼續執行，而

排程器則透過排程來防止衝突再次發生，然而兩者都對可擴展性造成了極大的限

制，許多文獻探討的機制將導致執行緒進行無謂的閒置，或者進行無效工作最終

被中止，從而低效地利用計算資源。

本文提出了一種新穎的計算框架，稱為切換性軟體事務性記憶體 (switch-

STM)，將任務封裝為協程進行計算。當發生衝突時，切換協程以繼續計算，防止

執行緒不必要地閒置。該框架不受任務排程限制，並具有高度的可擴展性。此外，

它與衝突管理器兼容，可同時使用進一步提升計算效率。本文提出了三種協程切

換策略，通過探索這些切換策略，推進軟體事務性記憶體計算框架的可擴展性和

性能。

關鍵字：事務性記憶體、運算架構、排程、平行運算、平行編程
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Abstract

This study explores the computational scheduling of Software TransactionalMemory

(STM) using coroutines, aiming to enhance its computational efficiency and scalability

by switching between coroutines. Methods employed by STM to handle coordination

conflicts can be broadly classified into two architectures: the Contention Manager, which

focuses on conflict resolution, and the Scheduler, which focuses on conflict avoidance.

While ContentionManager determines whether conflicting transactions should proceed or

halt based on conflict resolution policies, Scheduler prevents conflicts from reoccurring

by scheduling. However, both architectures impose significant limitations on scalability.

Many existing mechanisms result in thread idleness or futile work that will ultimately be

terminated, thereby inefficiently utilizing computational resources.

This paper proposes a novel computational framework called Switchable Software

TransactionalMemory (SwitchSTM), which encapsulates tasks into coroutines for compu-

tation. When conflicts arise, coroutines are switched to continue computation, preventing

vii

http://dx.doi.org/10.6342/NTU202401498


doi:10.6342/NTU202401498

unnecessary thread idling. This framework is not constrained by task scheduling limita-

tions and exhibits high scalability. Additionally, it is compatible with Contention Man-

ager, further enhancing computational efficiency. Three coroutine-switching strategies

are proposed in the paper, advancing the scalability and performance of STM computa-

tional frameworks through the exploration of these switching strategies.

Keywords: transnational memory, computing architecture, scheduling, Parallel Comput-

ing, Parallel Programming
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Chapter 1 Introduction

Software Transactional Memory (STM)[13] [16] is a technique used in parallel com-

puting to manage shared resources. In multi-threaded programming, simultaneous access

to shared resources can lead to issues like race conditions and deadlocks. STM offers

a high-level abstraction to address these problems, allowing programmers to implement

parallel programs in a simpler manner without needing to consider the low-level logic of

implementation. In STM, programmers mark program blocks requiring atomic operations

as transactions, and the STM system is responsible for managing the execution of these

transactions. When multiple transactions are executed concurrently, STM tracks their

interactions and performs undo operations, reverting modifications to system data when

necessary to ensure resource consistency, or maintains a redo log to apply transactional

operations to the system at the appropriate time. Compared to traditional locking mecha-

nisms, STM provides higher code readability and scalability while reducing the complex-

ity of errors and debugging. Software Transactional Memory offers a more flexible and

convenient approach to parallel programming, enabling developers to more effectively

leverage the potential of multi-core processors and distributed systems.

However, STM also faces challenges such as performance overhead and memory us-

age, making careful evaluation and optimization necessary in practical applications. There

are various methods to address the performance loss caused by aborts, which can be cat-
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egorized into two main frameworks: contention manager, primarily focusing on conflict

resolution, and scheduler, mainly concentrating on conflict avoidance. However, both

frameworks have certain scalability limitations.

Under the contention manager framework[2], the emphasis lies in resolving con-

flicts between transactions to ensure minimal overhead in advancing computation progress

while avoiding recurring conflicts. Several common conflict resolution strategies include

suicide, aggressive, polite, delay, karma, polka[12], among others. While these strategies

can reduce conflicts and transaction aborts to some extent, they may also lead to increased

system overhead and complexity, resulting in reduced scalability.

On the other hand, under the scheduler framework, the primary focus is on avoiding

conflicts by dynamically adjusting the execution order of transactions or resource alloca-

tion. The goal of this approach is to minimize the occurrence of conflicts during runtime,

thereby reducing the likelihood of transaction aborts. However, implementing this method

often requires complex scheduling or limiting the number of threads to reduce conflicts,

whichmay inadvertently decrease concurrency[10], making system resources inefficiently

utilized and thus limiting scalability.

While both contention manager and scheduler methods have shown some effective-

ness in reducing STM performance loss, they exhibit certain limitations in scalability[5].

To address this issue, this study proposes a novel computational framework aimed at en-

suring program correctness while efficiently utilizing system resources. The key to this

new approach lies in wrapping STM tasks as coroutines[11] to execute. When a transac-

tion aborts, the system automatically switches to other coroutines for computation. This

design leverages system resources that contention managers or schedulers cannot fully uti-

2
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lize, further enhancing computational efficiency. Additionally, three coroutine switching

strategies are proposed, allowing developers to choose existing strategies based on their

requirements or develop their own. By combining STM tasks with coroutines, this ap-

proach not only enables more efficient utilization of system resources but also simplifies

the design and testing process of parallel programs, thus improving system performance

and stability.

The remaining chapters of this paper mainly cover background to existing research

and detailed analyses of the proposed new computational framework. Chapter 2 will in-

troduce the existing research background, including the use of tinySTM for developing

computational frameworks. Chapter 3 discusses the mechanisms currently used to im-

prove STMperformance, including the ContentionManager focused on conflict resolution

and the Scheduler focused on conflict avoidance, while also questioning their scalability

limitations. Chapter 4 explains the tool, coroutine, used to implement transaction switch-

ing functionality. Chapter 5 will present the new computational framework proposed in

this paper, SwitchSTM, along with its implementation details. Chapter 6 will explore the

performance of SwitchSTM and compare it with past research cases to validate its perfor-

mance advantages. Finally, Chapter 7 will summarize the research findings of the entire

paper and draw conclusions, proposing possible future research directions.

3

http://dx.doi.org/10.6342/NTU202401498


doi:10.6342/NTU2024014984

http://dx.doi.org/10.6342/NTU202401498


doi:10.6342/NTU202401498

Chapter 2 Background

This section introduces the research background of parallel computing, provides con-

textualized explanations of the evolution of parallel computing, and the emergence of

STM. It briefly describes the computational architecture of STM and introduces TinySTM,

which we use as the development framework.

2.1 Parallel computing

Parallel computing is a computational approach that divides computational tasks into

multiple independent parts and executes these parts simultaneously onmultiple processing

units. This approach greatly enhances computational efficiency and performance, espe-

cially in fields such as big data processing, scientific computing, and machine learning.

However, parallel computing also presents challenges, one of which is ensuring synchro-

nization among multiple processing units and correct access to shared resources.

Failure to properly allocate resource access among multiple processing units can lead

to race conditions or resource contention. A race condition[6] occurs when two or more

threads or processes attempt to access or modify a shared resource simultaneously, with

the final outcome depending on the execution order or timing. Due to the uncertainty of

execution order, the final outcome may not be the expected value. Resource contention

5
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arises when multiple threads or processes simultaneously request access to a particular

resource, potentially causing some threads to be blocked or waiting for the resource to be

released, resulting in performance degradation, system congestion, or deadlock issues.

In parallel computing, when multiple processing units simultaneously access shared

resources, race conditions and resource contention problems can arise. This is where the

concept of the ”critical section” comes into play. A critical section[15] is a segment of

code where only one processing unit can execute at a time. By ensuring that only one pro-

cessing unit can enter this section of code at any given time, race conditions and resource

contention problems can be avoided.

To implement a critical section, various synchronization mechanisms are commonly

used, including locks, semaphores, and condition variables. Locks are the most basic

synchronization mechanism, allowing a processing unit to lock it before entering the crit-

ical section, thereby preventing other processing units from entering. However, locks are

prone to deadlocks[1] and lock contention issues, and they cannot support advanced syn-

chronization requirements. Semaphores are a more complex synchronization mechanism

that allows limiting the number of processing units entering the critical section simultane-

ously, but they can suffer from inefficiency and high complexity issues. Finally, condition

variables provide a mechanism for entering the critical section based on specific condi-

tions, but they may also introduce deadlocks and complexity issues.

These synchronization mechanisms for implementing the critical section often in-

volve dealing withmany low-level details and complexities. While they ensure safe access

to shared resources, they lack sufficient abstraction, requiring programmers to consider

many low-level implementation details when building programs. This often increases the

6
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complexity and difficulty of development.

To address these challenges, various synchronization mechanisms in computational

frameworks have been researched and developed. One significant synchronization mech-

anism is Software Transactional Memory (STM)[13]. STM offers a higher level of ab-

straction, allowing programmers to express concurrent control logic more naturally with-

out worrying about low-level synchronization details.

STM is based on the concept of transactions, allowing programmers to bundle a series

of operations into a transaction. This transaction corresponds to the critical section in the

original computational framework, and it executes atomically, meaning that all the code

within the transactionmust either succeed or fail entirely—it does not allow for partial suc-

cess or failure. If the transaction successfully completes, the changes to shared resources

are permanently committed. However, in case of conflicts or errors, the transaction is

rolled back to its initial state, allowing for retries or other handling. The STM system

orchestrates the execution of transactions to ensure the progress of the entire program.

Its emergence provides programmers with a higher level of abstraction, making it eas-

ier and more intuitive to implement concurrent control in multi-threaded or multi-process

environments. It helps reduce dependence on low-level synchronization mechanisms, im-

proves code readability and maintainability, and enables programmers to build parallel

computing programs more efficiently.

2.2 Software Transactional Memory

Software Transactional Memory (STM) is a parallel programming technique that

achieves correct execution of concurrent programs by managing the execution of transac-

7
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tions. In STM, a segment of code in a program is encapsulated into a transaction, which

is executed atomically, similar to executing a transaction in a database. Transactions can

include a series of operations such as reads, writes, commits, and aborts to ensure safe

access and modification of shared resources.

Transactions in STM include four basic operations:

• Read. The Read operation is used to read the value of shared resources. When a

transaction wants to read a shared resource, it reads the value of that resource into

the transaction’s workspace for subsequent operations to use.

• Write. The Write operation is used to modify the value of shared resources. When

a transaction wants to modify a shared resource, it writes the new value into the

transaction’s workspace. However, this modification is only visible within the scope

of the transaction and has not been committed.

• Commit. The Commit operation[8] is used to commit the read and write opera-

tions of a transaction, making its changes to system resources permanent. When a

transaction successfully completes its operations without conflicts with other trans-

actions, it can be committed, causing the modifications made by the transaction to

become visible to other transactions.

• Abort. The Abort operation is used to cancel the operations of a transaction, rolling

it back to its initial state. When a transaction encounters conflicts with other trans-

actions or encounters other error conditions, it aborts, causing its read and write

operations to have no effect on other transactions. The abort operation does not

affect the execution of other transactions and allows system resources to revert to a

consistent state.

8
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Figure 2.1: Transaction Execution

Through these four basic operations, STM can achieve the safe execution of concur-

rent programs. Each transaction can freely read and modify shared resources, while STM

is responsible for managing the commit and rollback of transactions to ensure resource

consistency and reliability. In this way, STM provides a high level of abstraction, making

the development of concurrent programs easier and more intuitive.

Figure 2.1 illustrates the scenarios of several transactions. On the left side are exam-

ples where both transactions commit successfully. Two transactions executed on different

threads perform read and write operations on data D0 and D1 respectively. As there are

no conflicts, both transactions are allowed to commit by the system.

On the right side is an example where a conflict occurs, leading to an abort. Both

transactions attempt to read and write data D1. Since the transaction on Thread 0 com-

pletes its write and commits first, the transaction on Thread 1 encounters inconsistency

when attempting to commit. Consequently, it aborts and restarts, performing read and

write operations on D1 again. This time, without conflicts with other transactions, the

system allows the transaction to commit.

9
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2.3 TinySTM

TinySTM[7] is an open-source STM implementation. It provides a lightweight and

easily extensible STM framework, enabling developers to effortlessly utilize TinySTM

for researching and testing new STM architectures.

Key features of TinySTM include:

• Lightweight. TinySTM is designed with a minimalist approach, consuming mini-

mal system resources and exhibiting lower runtime overhead, making it suitable for

resource-constrained environments or high-performance applications.

• Ease of Use. TinySTM offers a simple and intuitive interface, allowing program-

mers to seamlessly integrate transactionalmemory into their applications and quickly

get started.

• Ease of Development and Extension. With its modular architecture, TinySTM

is easy to extend and customize. Programmers can modify and extend TinySTM

according to their specific requirements, adapting it to various application scenarios

and needs.

Due to these advantages, many research projects are based on TinySTM for devel-

opment. For instance, SwitchSTM, proposed in this study, is built upon the foundation of

TinySTM. TinySTM provides a stable and reliable base, allowing researchers to focus on

developing new parallel computing models or optimization techniques without worrying

about the underlying STM implementation details. This has made TinySTM one of the

widely-used STM implementations in the academic community.

10
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Chapter 3 Performance Improvement

This section begins by discussing the impact of conflicts on the performance and

throughput of STM systems, and introduces two mechanism frameworks provided by ex-

isting research to reduce the overhead caused by conflicts. Subsequently, it explores the

scalability issues that these existing mechanisms may encounter. Finally, it presents the

main approach of this study, attempting to propose a new method that can overcome the

limitations of existing mechanisms.

3.1 Conflict

In software transactional memory (STM) systems, system performance faces nu-

merous challenges, with one of the most significant being the resolution or avoidance

of conflicts. A conflict refers to the competition or clash that arises when two or more

transactions simultaneously operate on shared resources. This can lead to performance

degradation, data consistency issues, and even system crashes.

Common types of conflicts in STM systems include:

• Read-Read Conflict. Two transactions simultaneously attempt to read data from

a shared resource. Read operations typically do not modify the resource, so mul-

11
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tiple transactions reading from the same resource simultaneously will not result in

inconsistent or erroneous outcomes unless one of the transactions modifies the re-

source, leading to a Read-Write or Write-Read conflict. Some systems may choose

to allowmultiple transactions to read concurrently to improve concurrency and effi-

ciency, while others may choose to limit the concurrency of read operations to avoid

subsequent Read-Write or Write-Read conflicts and ensure resource consistency.

• Read-Write Conflict. One transaction is trying to read data from a shared resource

while another transaction is performing a write operation. In this scenario, if the

transaction performing the read operation completes before the transaction perform-

ing the write operation modifies the value of the resource and commits first, it will

result in the read operation obtaining outdated data that is not allowed to be com-

mitted by the system. This conflict typically leads to the rollback or retry of the

transaction performing the read operation to ensure it does not read inconsistent or

outdated data.

• Write-Read Conflict. Similar to the Read-Write conflict, one transaction is at-

tempting to perform a write operation on a shared resource while another transac-

tion is executing a read operation. If the read operation does not complete before the

write operation is committed, it may result in the read operation obtaining outdated

or inconsistent values, leading to the termination of the read operation and causing

the transaction to rollback and retry.

• Write-Write Conflict. Write-Write conflicts typically occur when multiple trans-

actions are concurrently modifying the same resource. When two or more trans-

actions attempt to write to the same resource simultaneously, a race condition may

occur where the write operation of one transaction may override the write result of
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another transaction, resulting in the discard or overwrite of one transaction’s opera-

tion. This conflict typically leads to the rollback or retry of one or more transactions

to ensure the consistency and atomicity of the write operations.

The figure 2.1 in the previous section illustrates an example of aWrite-Write conflict,

where two transactions simultaneously attempt to write to the same data. Without proper

synchronizationmechanisms, these two transactionsmay interfere with each other, leading

to data inconsistency or incorrect results. This competitive scenario is an example of a

conflict.

Conflicts often result in the termination of transactions, rendering the work done by

the aborted transactions wasteful and meaningless for the system. Therefore, conflicts

are a major factor contributing to poor system performance. To address the impact of

conflicts on STM system performance, some research has proposed effective conflict res-

olution mechanisms[9][12][14]. These solutions typically involve optimizing conflict de-

tection and resolution strategies in STM systems to minimize the overhead incurred when

conflicts occur.

On the other hand, some research suggests that instead of waiting until conflicts oc-

cur to resolve them, efforts should be made to prevent these conflicts from happening in

the first place[4]. These studies often focus on transaction scheduling strategies in STM

systems to reduce the occurrence of conflicts and improve system performance.

These two approaches can be classified as contention managers and schedulers. Con-

tention managers focus on handling conflicts after they occur, while schedulers aim to take

measures to avoid conflicts before they happen. Both resolving and avoiding conflicts are

crucial for achieving efficient STM. They can reduce system overhead and latency, thereby
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enhancing system throughput and efficiency, enabling STM systems to better cope with

high concurrency and large-scale parallel computing demands.

3.2 Contention manager

A contention manager is focused on conflict resolution. It is primarily responsi-

ble for monitoring, detecting, and resolving conflicts when multiple transactions access

shared resources simultaneously and conflicts occur, to ensure the correct execution of

transactions. The main tasks of a contention manager include conflict detection, conflict

resolution, and transaction rollback.

Firstly, the contention manager monitors the conflicts among transactions. When

multiple transactions operate on the same resource, it detects the existence of these con-

flicts. Subsequently, based on predefined policies such as transaction priority or other

relevant criteria, the contention manager resolves conflicts. This may involve determin-

ing which transaction should continue execution and which transaction needs to be rolled

back and retried. Finally, if necessary, the contention manager coordinates the rollback

operations of transactions to ensure system consistency and correctness.

When handling conflicts, a contention manager typically operates on the behavior of

transactions, which can be classified into the following actions:

• Kill self. The contention manager marks the transaction it belongs to as needing

to be aborted. This means that when a conflict occurs, the transaction is forced to

abandon its current operation and undergo rollback or termination. This is usually

done to ensure system consistency and integrity, avoiding inconsistent states.
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• Kill other. This indicates that the contention manager marks other related trans-

actions as needing to be aborted. When a conflict occurs, the contention manager

chooses to abort other transactions to prioritize specific transactions or ensure sys-

tem stability. This is often based on transaction priorities or other strategies.

• Halt. In some cases, the contention manager chooses to suspend the execution of

all related transactions to wait for conflict resolution or for the system to return to a

safe state. This prevents conflicts from further escalating or leading to more severe

consequences.

• Restart. The contention manager rolls back the transactions involved in the conflict

to their previous states and then restarts these transactions to re-execute their opera-

tions. This action is typically used to restore transaction consistency and correctness

after resolving conflicts, allowing the system to continue operation.

These actions are the basic behaviors that a contention manager can take when handling

conflicts, and their selection and implementation depend on the system’s design and re-

quirements to ensure performance, consistency, and reliability.

Figure 3.1 illustrations showcase several examples of different conflict managers. In

the Suicide conflict manager, when a transaction conflicts with others, the conflict man-

ager commands that transaction to execute the ”kill self” operation. The Aggressive con-

flict manager, on the other hand, chooses to restart other transactions when conflicts occur.

The Backoff conflict manager combines ”kill self” with ”halt,” similar to Suicide, but it

requires the transaction to pause for a random period before restarting to avoid conflicting

again with the same transactions, leading to another termination and restart.

Besides deciding whether to abort or continue transactions based on conflict situa-
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Figure 3.1: Contention Manager actions

tions, conflict managers can also make decisions based on specific decision-making strate-

gies. Karma is a decision-making strategy used by a conflict manager, where transactions

are terminated based on the amount of work completed. This means transactions that have

completed less work might be terminated to increase the chances of executing transactions

that have completed more work, thereby minimizing work wastage caused by conflicts.

Polka combines the advantages of Karma and backoff. Similar to Karma, Polka also

decides which transaction to terminate based on the amount of work completed. However,

the terminated transaction needs to pause for a period, which is exponentially proportional

to thework done. This operation aims to enhance system efficiency, making the terminated

transaction more likely to succeed in submission after restarting.

Timestamp is another decision-making strategy that tends to abort younger transac-

tions to ensure the oldest transactions have the highest priority for execution. The purpose

is to ensure the system can quickly process the oldest transactions, thereby reducing over-

all latency and maximizing system performance.

The primary goal of a conflict manager is to minimize the overhead caused by con-
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Figure 3.2: Scheduler actions

flicts to maximize system performance and throughput. To achieve this goal, it can utilize

various conflict resolution strategies. These strategies help the conflict manager make the

most appropriate decisions when facing conflicts, effectively enhancing system perfor-

mance and reliability.

3.3 Scheduler

The scheduler[4] focuses on taking measures to prevent conflicts before they oc-

cur. It is responsible for scheduling and executing transactions to minimize the likelihood

of conflicts. The scheduler typically devises appropriate scheduling strategies based on

transaction attributes and system state. These strategies may include adjusting the order

of transactions and optimizing resource allocation.

Figure 3.2 examples illustrate various behaviors of schedulers, where the system

takes different measures when faced with high conflict rates or specific decision logics.

In the Serialization scenario, the system transforms transactions that could initially

run simultaneously into sequential execution. This means that at any given time, the sys-
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tem allows only one transaction to execute, typically implemented using locks to achieve

serialization. When a transaction needs to execute, it must acquire the lock before starting

execution, ensuring that the currently executing transaction does not conflict with others.

Shrink is an example of a scheduler adopting Serialization behavior, predicting the data

that the next transaction may access based on the transaction’s past read or write sets. If

this data is being accessed by other transactions, the scheduler may require the transaction

to execute serially.

Thread pool management, on the other hand, is an example of resource allocation. In

this scenario, the system decides to suspend the use of certain resources (such as pausing

some threads), reducing the number of concurrent transactions to decrease the probabil-

ity of conflicts. F2C2-STM exemplifies Thread pool management behavior, dynamically

observing the relationship between available thread count and throughput during program

execution and adjusting thread count in the system to maximize throughput. By adjusting

resource utilization, the system can more effectively manage conflicts, thereby enhancing

overall performance and reliability.

The goal of a scheduler is to identify potential conflict points in advance and take

preventivemeasures to reduce system overhead and improve performance. The design and

implementation of schedulers often need to consider system complexity and scalability to

ensure their applicability in different use cases.

The selection and implementation of these schedulers depend on the system’s require-

ments, characteristics, and goals. Whether adopting Serialization or Thread pool manage-

ment strategies, the aim is to optimize system performance and reliability. Through proper

design and tuning of schedulers, the system can more effectively manage conflicts, im-
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prove overall performance, and ensure smooth execution of various tasks.

3.4 Scalability Issue

Scalability refers to the ability of a system to maintain or improve overall perfor-

mance and throughput when increasing available resources, such as the number of threads.

However, contention managers and schedulers often encounter scalability issues when

facing high conflict rates.

Figure 3.3: Comparison of methods for performance improvement

In some cases within the contention manager, actions such as halting or arbitrarily

restarting transactions may result in ineffective work execution or resource wastage. As

system resources increase, these issues can exacerbate, as more conflicts and competition

lead to a higher number of transactions being aborted or restarted, consequently diminish-

ing system performance and throughput.
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Serialization is a common behavior in schedulers where only one thread can execute

a transaction at a time, leaving other threads waiting and leading to resource wastage.

With an increase in the number of threads, the wasted resources correspondingly increase,

thereby affecting system scalability and performance.

Typically, wasted system resources are proportional to the overall system resources.

However, within the frameworks of contention managers and schedulers, the utilization of

resources gradually decreases as system resources increase, raising concerns about scal-

ability. Effectively utilizing these eventually wasted system resources can contribute to

improving system performance.

Based on this premise, this study proposes a novel architecture, SwitchSTM. When

conflicts arise, this architecture switches to another transaction. If this new transaction

does not conflict with the currently executing transaction, it can effectively perform work,

advancing the overall progress of the program. Such an architecture enhances system

throughput and resource utilization.
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Chapter 4 Coroutine

To achieve the functionality of switching transactions, specific mechanisms need to

be designed. This chapter introduces coroutines used to implement transaction switching

functionality, along with the coroutine library Libaco that we have adopted.

4.1 Concepts of coroutine

In programming, a coroutine[11] is a special function construct that can pause its

execution and resume at a later point in time. Unlike regular functions, coroutines have

the ability to suspend and resume execution multiple times within the function without

starting from the beginning, which sets them apart from regular functions. This feature

makes coroutines particularly useful for tasks that require interleaved execution, such as

asynchronous operations, event handling, and multitasking.

The advantage of coroutines lies in their ability to improve program efficiency and

performance. Compared to traditional threads, coroutines allow for fast switching between

different tasks. Traditionally, a thread can only execute one task within a specific time

frame before moving on to the next. However, with coroutines, multiple coroutines can

be executed simultaneously within a single thread, and quick switching between these

coroutines enables the interleaved execution of multiple tasks.

21

http://dx.doi.org/10.6342/NTU202401498


doi:10.6342/NTU202401498

Figure 4.1: function vs. coroutine
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This capability makes coroutines particularly useful for handling tasks that require

interleaved execution. For example, in a network server, a single thread can use coroutines

to handlemultiple client requests without needing to start a new thread for each client. This

helps save system resources and improves the server’s efficiency. Another example is in

game engines, where coroutines can be utilized. Games often need to handle various tasks

such as rendering graphics, processing input, and computing game logic. With coroutines,

a game engine can quickly switch between these tasks within the same thread, enabling

smooth game execution and efficient resource utilization.

In practical applications, coroutines can be implemented through libraries or frame-

works. For instance, the asyncio module in Python provides built-in coroutine support,

making it easier to write asynchronous programs. Similarly, many other programming

languages and platforms offer similar coroutine support, such as JavaScript’s Promise and

async/await, as well as C’s c-coroutine and Libaco. In the STM architecture proposed in

this study, the Libaco library is used to construct the transaction-switching functionality.

4.2 Symmetric Coroutine vs. Asymmetric Coroutine

Coroutines can be classified into symmetric coroutines and asymmetric coroutines[3],

which are two different types of coroutines with notable differences in design and usage:

• Symmetric Coroutine:

In symmetric coroutines, all coroutines have equal rights and capabilities. This

means that any coroutine can voluntarily yield control to other coroutines and re-

gain control when needed. Under this framework, the switching between coroutines

is symmetric, and each coroutine has the potential to control execution. Symmet-
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ric coroutines are typically used in cooperative multitasking, where each task can

independently decide when to yield control to other tasks.

• Asymmetric Coroutine:

In asymmetric coroutines, there is a clear relationship between a main coroutine and

non-main coroutines. Typically, the main coroutine holds the control and can ac-

tively transfer execution control to non-main coroutines, while non-main coroutines

passively wait for control transfer. In other words, in asymmetric coroutines, con-

trol of execution is unidirectional. Asymmetric coroutines are often used to repre-

sent two different roles, such as producers and consumers in the producer-consumer

model, where producers are responsible for generating data and consumers are re-

sponsible for consuming data.

In summary, symmetric coroutines allow for equal switching and control among all

participants, while asymmetric coroutines involve a clear master-slave relationship, where

one coroutine controls the execution of others.

4.3 Libaco

Libaco is an efficient and lightweight C library for asymmetric coroutines, with its

name derived from ”asymmetric coroutine”. Despite its core implementation being less

than 700 lines of code, Libaco encompasses all necessary functionalities of a coroutine li-

brary. In addition to providing a production-grade implementation of C coroutines, Libaco

also offers comprehensive documentation covering the implementation of fast and correct

coroutine libraries, including rigorous mathematical proofs.
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Figure 4.2: Libaco API
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Libaco boasts extremely high performance and memory usage efficiency. Accord-

ing to performance test results, context switching between two coroutines takes only 10

nanoseconds on an AWS c5d.large instance (with independent execution stacks). Even

with ten million coroutines concurrently executing, Libaco consumes only 2.8GB of phys-

ical memory (using tcmalloc, with each coroutine utilizing a 120B copied stack). Users

have the option to create new coroutines with either independent execution stacks or to

share one execution stack with any number of other coroutines.

In our research, we chose to use Libaco to build our STM system due to its lightweight

and efficient capabilities, as well as its simple and understandable API as shown in the

figure. The efficiency of Libaco allows us to implement fast coroutine switching in the

system, which is crucial for achieving rapid switching between transactions. Addition-

ally, the straightforward and user-friendly API provided by Libaco makes it easy for us

to integrate and use, thereby accelerating the development and deployment process of the

system. Overall, Libaco provides us with an efficient, reliable, and easy-to-use method

for coroutine switching.
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Chapter 5 SwitchSTM

This chapter presents the implementation of SwitchSTM. Firstly, we explain the ar-

chitecture of Task Iterative STM, followed by an explanation of how coroutine integration

facilitates the implementation of SwitchSTM. Furthermore, we delve into the details and

correctness of the approach.

5.1 Task Iterative STM

The computational framework of STM encompasses various types. The SwitchSTM

proposed in this study primarily targets the optimization of task iterative computational

frameworks. This section will elucidate the fundamental structure of task iterative STM

and illustrate how this framework interacts with the program through pseudo code.

5.1.1 Task Iterative STM system architecture

The Task Iterative STM architecture is a parallel program execution model based on

tasks, where tasks serve as the fundamental units of execution within the system. Each task

consists of multiple transactions, representing different sequences of operations within the

task. In addition to transactions, tasks may also include non-transactional parts, typically

representing tasks that do not require transactional processing.
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Figure 5.1: Task Iterative STM

The arguments for these tasks, which need to be iterated upon, are stored in a shared

task structure, which may exist explicitly or implicitly within the system. STM systems

typically allocate a task argument for each thread and enable these threads to interact with

the shared task structure for iterative task execution, as illustrated on the right side of

Figure 5.1.

The Task Iterative STM architecture comprises the following elements:

• Task. As depicted on the left side of Figure 5.1, in Task Iterative STM, a task

encompasses a series of operations, which may include multiple transactions as well

as other non-transactional operations. Each thread can execute only one task at a
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time and iterates through these tasks as needed.

• Task Argument. Task Argument refers to the parameters or data used to specify

the execution context of a task. When executing a task, each thread determines its

specific execution content based on the Task Argument it receives. Task Arguments

typically contain the initial data, parameters, and other relevant information required

by the task.

• Shared Task Structure. The Shared Task Structure is a system-wide structure for

storing tasks, which may exist explicitly or implicitly within the system. This struc-

ture stores all pending task arguments, and each thread needs to retrieve task argu-

ments from this structure to execute tasks.

• Thread. Threads are the smallest units of execution in an operating system, respon-

sible for executing tasks or operations. In the Task Iterative STM architecture, each

thread is responsible for executing tasks within the system. Threads retrieve tasks

from the shared task structure based on the Task Argument they receive and proceed

with execution. Through the concurrent execution of multiple threads, the system

achieves more efficient task processing and computation.

In Task Iterative STM, each thread interacts with the Shared Task Structure to re-

trieve task arguments for iteration. Threads sequentially execute transactions and non-

transactional parts of each task until either all tasks are completed or convergence goals

are achieved. When convergence goals are met or all tasks are executed, the program’s

execution is completed.
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5.1.2 Task Iterative STM Interaction

The development framework adopted in this research is TinySTM,which employs the

Task Iterative STM architecture. Using pseudo code, we illustrate the process as depicted

in Figure 5.2.

During the initialization phase, the system initializes STM system and the shared

task structure through STM_init() and Task_structure_init(), respectively. Subse-

quently, the program enters the parallel region, where TM_THREAD_ENTER() indicate the

beginning and TM_THREAD_EXIT() indicate the end of the parallel code region. Within the

parallel code region, each thread continuously retrieves task parameters from the shared

task structure until there are no remaining task parameters available for execution. Finally,

the system is closed via STM_exit().

Figure 5.2: Task Iterative STM
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5.2 Core design of SwitchSTM

This section will provide a detailed explanation of the implementation details of

SwitchSTM. We will start by introducing the overall system implementation of Switch-

STM, followed by a thorough exploration of the executionmethod of transaction switching

and the implementation approach of the Switcher. Finally, we will explain the correctness

of the underlying logic for switching transaction execution.

5.2.1 SwitchSTM system architecture

The system architecture of SwitchSTM is illustrated in Figure 5.3. Its core concept

lies in utilizing coroutines to encapsulate tasks, enabling dynamic scheduling of task exe-

cution. This allows the system to efficiently switch between multiple transactions, thereby

better addressing the challenges posed by concurrent environments and enhancing overall

parallel execution performance.

In SwitchSTM, each thread executes tasks by running coroutines, where these tasks

may comprise multiple transactions. The presence of coroutines ensures that the thread’s

state is maintained during task switches, thus avoiding the overhead associated with con-

ventional thread context switching. Whenever a task completes execution within a corou-

tine, the coroutine requests a new task argument from the Shared Task Structure to con-

tinue executing the next task.

When conflicts arise between transactions in SwitchSTM, the system provides a

mechanism to allow the currently executing task to switch to another task for continued

execution. This switching behavior is facilitated by the Switcher, which is one of the
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Figure 5.3: SwitchSTM system architecture

core modules of SwitchSTM. When conflicts occur, the transaction relinquishes control

to the Switcher, which then determines whether to initiate a switch based on the system’s

state and predefined policies, or to choose other appropriate actions. This flexibility en-

ables SwitchSTM to dynamically switch to other tasks when handling conflicts, thereby

enhancing system efficiency and performance.

SwitchSTM is designed to maximize parallel execution performance. Through the

combination of coroutines and the Switcher, the system can swiftly and flexibly schedule

task execution, effectively addressing the challenges posed by concurrent environments.

The implementation details of SwitchSTM involve in-depth exploration of the execution

mechanism of transaction switch and the implementation of the Switcher, which will be

elaborated upon in the following sections.
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5.2.2 Transaction switching execution

In our system architecture, the execution behavior of transactions is closely related to

and highly integrated with coroutines. We have made some adjustments to the execution

behavior of transactions to enable switching functionality.

Figure 5.4: Transaction switching execution

As shown in the diagram on the right in Figure 5.4, each transaction sets a check-

point at the beginning of its execution to record the system environment at that point.

This ensures accurate tracking of the execution state during runtime. If a transaction suc-

cessfully executes and commits, it proceeds to execute the subsequent code in the task or

the next transaction to fulfill its corresponding tasks. However, if a transaction is aborted

for any reason, a rollback operation is performed. The purpose of rollback is to completely

eliminate any traces of the transaction’s execution and initialize its state for subsequent

operations.

Typically, after a transaction is rolled back, it attempts to restart by returning to the

initial checkpoint to re-execute the transaction. However, in our system architecture, inter-
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rupted transactions must yield control to the switcher via aco_yield(). If any interrupted

transaction is selected by the switcher for execution, the system continues execution from

the line of code immediately after the aco_yield() in that transaction, effectively return-

ing to the initial checkpoint. This design ensures that interrupted transactions can resume

execution from the appropriate execution point after switching, thereby guaranteeing the

correctness and reliability of the system.

During execution, a transaction uses read sets and write sets to record the addresses

it reads from and writes to. In SwitchSTM, each time a transaction aborts, its read set

and write set are recorded in a previous set. When a transaction is re-executed, it might

access these addresses again, which has a high likelihood of causing a conflict and an-

other abort. Therefore, before switching to a transaction, we first check if the addresses

in its previous set are currently being used by other transactions. If other transactions are

accessing these addresses, the transaction is marked as unswitchable, and control is re-

turned to the switcher to attempt another switch. This design effectively avoids frequent

conflicts, thereby enhancing the overall efficiency and performance of the system.

We utilized the Libaco library introduced in section 4.3 to implement the transac-

tion switching functionality. Libaco is an asynchronous coroutine library with a Main

coroutine responsible for scheduling the execution of non-main coroutines. When a con-

flict occurs, indicating the need for transaction switching, the coroutine encapsulating that

transaction (i.e., non-main coroutine) yields control to the Main coroutine, known as the

Switcher. The Switcher then determines the next course of action based on the system’s

state and predefined policies. If a task completes execution and there are no more task pa-

rameters available in the Shared Task Structure, the corresponding coroutine also yields

control back to the Switcher.
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Figure 5.5: Switcher architecture

5.2.3 Switcher implementation

The implementation of the Switcher essentially functions as a main coroutine respon-

sible for managing and scheduling the execution of other coroutines. When a transaction

needs to switch, the corresponding coroutine yields control to the Switcher. This enables

the Switcher to determine the next course of action based on the system’s state and prede-

fined policies.

The Switcher operates using a two-stage switching mechanism. In the first stage, it

can switch to any coroutine. In the second stage, it avoids switching to coroutines that

have exited execution. When a coroutine completes the execution of a task and the shared

task structure becomes empty, indicating that there are no more task parameters available

for execution, that coroutine is marked as exited. Whenever control is yielded back to the
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Switcher, it first checks if the shared task structure is empty. If it is not, it switches based

on the defined switching policy. However, if it is empty, it executes the second stage of

the switching mechanism.

In our current implementation, we assume that there is no priority among all trans-

actions, making the choices for switching equivalent. The Switcher can select coroutine

to resume without considering priority levels. We adopted three switching strategies:

• Random Switching Strategy. Under the random switching strategy, the Switcher

randomly selects an available coroutine for execution without being constrained

by other factors. This strategy is the simplest and most basic, suitable for scenar-

ios where execution order or specific conditions are not considered. The random

switching strategy helps achieve more uniform task distribution because it does not

favor any specific coroutine but rather selects the next one to execute randomly.

• Sequential Switching Strategy. The sequential switching strategy selects the next

coroutine for execution based on its numbering. In other words, each switch chooses

the coroutine that has been least recently executed, potentially selecting the one that

has been idle for the longest time. This strategy aims to minimize the likelihood of

conflicts between the coroutine being switched to and the one currently executing,

reducing the likelihood of conflicts with the current transaction.

• Least Aborts Priority Strategy The least aborts priority strategy considers the

number of times each coroutine’s transactions have been aborted. Under this strat-

egy, the Switcher prioritizes coroutines with fewer aborts for execution to minimize

the overhead caused by aborts. This strategy is suitable for scenarios where min-

imizing the total number of aborts in the system is desired, effectively improving
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system performance.

These switching strategies can be chosen based on the system’s needs and character-

istics to achieve optimal performance and efficiency. In addition to considering different

switching strategies, it is also important to pay attention to the current level of contention

in the system. Our experience shows that performing switches when the system’s con-

tention rate is high can more effectively enhance overall system performance. This is

mainly due to conflict affinity.

Therefore, we introduced contention intensity (CI) to dynamically measure the cur-

rent level of contention in the system. During the operation of the STM system, contention

intensity (CI) is an indicator that reflects the degree of contention in the system. The CI

value is directly proportional to the current level of contention in the system; in other

words, the more conflicts there are, the higher the CI value. We will only perform switch

operations when the CI value exceeds a certain threshold. This design ensures that in se-

vere contention situations, the switching strategy can better optimize system performance

and avoid the extra overhead of unnecessary switch operations. This dynamic adjust-

ment mechanism allows us to respond flexibly to different operating conditions, achieving

higher efficiency and better performance.

The main functionalities of Switcher include receiving and handling control from

other coroutines, determining coroutine switching behavior based on switching strategies,

and deciding whether to execute a switch or perform restart. Since Switcher itself is a

coroutine, it can utilize the functionalities provided by the Libaco library for highly ef-

ficient coroutine scheduling and switching. The implementation of Switcher enables the

system to flexibly manage switches between transactions, thereby enhancing system per-
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formance and efficiency.

5.2.4 Correctness of switching

When switching transactions between coroutines, ensuring correctness is crucial.

Each coroutine represents an independent task and needs its own local storage to cor-

rectly save and restore its state during switches. This local storage includes variables and

state information required for each transaction’s execution. Shared local storage can lead

to state confusion or data corruption when transactions switch between coroutines.

Referencing the example illustrated in Figure 5.6, when executing transaction A on

coroutine 0, it may be forced to abort due to certain conflicts or conditions, and then switch

to coroutine 1 to execute transaction B. Assuming transaction B is successfully committed

and modifies the storage, the system then switches back to coroutine 0 to continue exe-

cuting transaction A. At this point, if coroutine 0 and coroutine 1 share the same storage

space, transaction A may be affected by the storage modified by transaction B. This could

result in incorrect or undefined behavior for transaction A because the environment in

which transaction A initially executed has been altered by transaction B, making it unable

to anticipate the original state, thus leading to erroneous execution results. This high-

lights the importance of ensuring that each coroutine has its own local storage to maintain

transaction consistency and correctness during transaction switches.

Figure 5.6: Correctness issue: transaction switch example
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Chapter 6 Evaluation

In this chapter, we will evaluate the performance of SwitchSTM. First, we will intro-

duce the system configuration and the STAMP benchmarks used in our tests. Finally, we

will compare the performance of SwitchSTM with several methods designed to enhance

STM efficiency.

6.1 Configuration

The experiments in this study were conducted on a server equipped with dual Xeon

Silver 4208 CPUs running at 2.1GHz, with 32GB of DDR4 RAM. The server ran on

the Linux kernel version 5.11.0 and utilized GCC 9.4.0 for compilation. The STM library

used was TinySTM version 1.0.5, and the benchmark suite employed was STAMP version

0.9.10. Based on experience, we set up five coroutines for each thread and calculate the

Contention Intensity (CI) using the formula CIn = α × CIn−1 + (1 − α) × CC. The

Contention Intensity is calculated at each commit or abort. When committing, CC is 0,

and when aborting, CC is 1, α is an adjustable parameter, and in our design, we chose 0.5.

Throughout this study, we adhere to the standard STAMP configuration for each

benchmark. Detailed parameters can be found in Table 6.1.
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Table 6.1: The configuration of STAMP benchmark.

Name Configurations
bayes bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1
genome genome -g16384 -s64 -n16777216
intruder intruder -a10 -l128 -n262144 -s1
kmeans-low kmeans -m40 -n40 -t0.00001 -i random-n65536-d32-c16.txt
kmeans-high kmeans -m15 -n15 -t0.00001 -i random-n65536-d32-c16.txt
labyrinth labyrinth -i random-x512-y512-z7-n512.txt
ssca2 ssca2 -s20 -i1.0 -u1.0 -l3 -p3
vacation-low vacation -n2 -q90 -u98 -r1048576 -t4194304
vacation-high vacation -n4 -q60 -u90 -r1048576 -t4194304
yada yada -a15 -i ttimeu1000000.2

6.2 Performance comparison with basic STM

First, we compared the three switching strategies of SwitchSTM with the most ba-

sic STM, which uses the suicide contention manager. Under the condition of 32 threads,

SwitchSTM achieved an average speedup of 6.41 times. As shown in the figure, as the

number of threads increases, the performance of SwitchSTM gradually improves. In con-

trast, when the number of threads increases, the suicide strategy experiences a rapid de-

cline in throughput due to high conflict rates. However, SwitchSTM can switch to execute

other transactions, thereby avoiding performance losses caused by conflicts. The three

switching strategies of SwitchSTM show significant performance improvements in most

test cases.

Figure 6.1 illustrates the performance improvements of the three switching strategies

of SwitchSTM across different test cases, normalized relative to the basic STM. In the

test cases, genome and SSCA2 are not task iterative types, so SwitchSTM does not per-

form switching in these two cases, and its performance is roughly the same as the suicide

strategy. For the Labyrinth algorithm, the conflict rate between transactions is very low,

resulting in a slight performance decrease for SwitchSTM at lower thread counts due to
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Figure 6.1: Performance improvement comparison of SwitchSTM

system overhead. It is only when the number of threads increases to 128 that a modest

performance improvement is observed.

In the bayes test case, it can be seen that as the number of threads increases, the over-

all performance of SwitchSTM is superior to that of the basic STM. In the yada, Intruder,

and kmeans test cases, the advantage of SwitchSTM is more pronounced, with significant

performance improvements compared to the basic STM. In the vacation algorithm, notice-

able performance improvements are observed only when the number of threads increases

to 64 and 128, due to the nature of the algorithm itself.

In summary, SwitchSTM demonstrates excellent performance in most test cases, es-

pecially under high concurrency conditions. All three switching strategies effectively en-

hance system performance. These results indicate that SwitchSTM can efficiently manage

and reduce conflicts in high-conflict environments, thereby improving overall system per-

formance.
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Figure 6.2: Performance improvement comparison with prior work

6.3 Performance comparison with prior work

When comparing the performance of SwitchSTMwith other STM systems, we chose

the SwitchSTM with a random switching strategy as the representative and conducted a

detailed comparison with the Polka contention manager and the Shrink scheduler. The

test results showed that although Polka and Shrink both provided some performance im-

provements over the basic STM, SwitchSTM still performed better overall. In many test

cases, SwitchSTM delivered the best performance optimization. Figure 6.2 illustrates the

performance improvement comparison.

Specifically, in most test scenarios, SwitchSTM not only managed conflicts between

transactions more effectively but also significantly increased the overall system through-

put. For example, in the execution of the Intruder algorithm with 8 threads, Switch-

STM achieved a 2.75× improvement, whereas Shrink and Polka only reached 2.63×

and 2.41× improvements, respectively. Similarly, when running the yada algorithm with
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16 threads, SwitchSTM attained a 5.5× improvement, while Shrink and Polka achieved

4.78× and 3.89× improvements, respectively. This superior performance is primarily be-

cause SwitchSTM can switch to execute other transactions when conflicts occur, prevent-

ing system stagnation due to conflicts within a single transaction. Additionally, Switch-

STM avoids repeatedly switching to transactions that are highly likely to abort again,

further reducing the likelihood of recurring conflicts and thus enhancing system perfor-

mance.

In high-concurrency environments, this flexible switching strategy of SwitchSTM ef-

fectively reduces the impact of conflicts on system performance, demonstrating significant

performance advantages. Regardless of whether the conflict rate is high or low, Switch-

STM consistently maintains stable and excellent performance. This makes it a more ideal

choice for managing concurrent transactions in most scenarios.

6.4 Abort ratio comparison with prior work

When comparing the abort ratio of these STM systems, we selected the random

switching strategy as the representative for SwitchSTM and compared it with the Polka

contention manager and the Shrink scheduler. The abort ratio is a crucial performance

metric for STM systems, calculated by dividing the number of aborted transactions by

the number of committed transactions. This metric reflects the system’s efficiency in han-

dling conflicts: the lower the abort ratio, the less computational resources are wasted, thus

enhancing overall performance.

Figure 6.3 illustrates the abort ratio comparison.The results show that in most task-

iterative test cases, SwitchSTM exhibits the smallest increase in abort ratio as the number
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Figure 6.3: Abort ratio comparison with prior work

of threads increases (note that Genome and SSCA2 do not conform to the task-iterative

form, and SwitchSTM does not effectively operate in these test cases). This indicates that

in high-concurrency environments, SwitchSTM can more effectively reduce the number

of transaction aborts. Specifically, as the concurrency level within the system rises, the

abort ratio for Polka and Shrink increases significantly, leading to resource wastage and

performance degradation. In contrast, SwitchSTM, through its effective switching strat-

egy, avoids switching to transactions that are highly likely to abort again, thereby main-

taining a lower abort ratio.

Additionally, SwitchSTM’s design enables it to efficiently manage transactions in

high-conflict environments, reducing the number of aborts. This not only improves the

overall system throughput but also minimizes the computational resource waste resulting

from transaction aborts. These results indicate that SwitchSTM outperforms other STM

systems across various test scenarios, especially in handling high concurrency and high-

conflict situations, where its performance advantages are even more pronounced.
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Chapter 7 Conclusion

This paper presents a SwitchSTM system based on the coroutine architecture, achiev-

ing flexible task execution switching. In the event of a conflict, SwitchSTM records the

resources causing the conflict and immediately switches to the transaction of another task

for execution. Whenever a transaction switch is required, the system checks the previ-

ously recorded conflicting resources to avoid switching to transactions that are likely to

abort again. This design significantly enhances the overall performance and stability of

the system, reducing performance losses caused by repeated conflicts.

SwitchSTM is designed to address the problem of transaction conflicts in highly con-

current environments. Specifically, SwitchSTM packages tasks as coroutines and utilizes

the flexible switching capabilities of coroutines. This allows each transaction to pause

when encountering a conflict and then switch to another coroutine for execution. This ap-

proach enables the system to use resources more efficiently, reducing performance degra-

dation caused by conflicts. Additionally, through the flexible coroutine switching mech-

anism, SwitchSTM can quickly resume normal operations, minimizing the computational

resources wasted due to transaction aborts.

This study comprehensively compares SwitchSTMwith STM systems based on con-

flict manager (CM) architectures and scheduler-based STM architectures. The test results
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show that, in most cases, SwitchSTM performs exceptionally well across various test sce-

narios in the STAMP benchmark. Particularly in high concurrency situations, SwitchSTM

can significantly reduce the transaction abort rate, thereby increasing system throughput

and efficiency. This indicates that SwitchSTM’s ability to handle transaction conflicts in

high concurrency environments is superior to other STM systems, and its performance

improvements have been validated in most test cases.

In summary, SwitchSTM demonstrates outstanding competitiveness in managing

transaction conflicts and improving system performance. Compared to other STM sys-

tems, SwitchSTM performs better in high concurrency environments, proving its potential

and advantages in practical applications. The flexible switching mechanism and efficient

conflict handling capability of SwitchSTM make it an ideal choice for managing transac-

tions in future high concurrency systems. By effectively reducing transaction abort rates

and improving system resource utilization, SwitchSTM not only enhances overall perfor-

mance but also provides a more reliable and efficient solution for concurrent computing.
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Chapter 8 Future Work

This study proposes a computation framework based on switching transaction exe-

cution. Building on this foundation, we believe there are several areas of work that can

further enhance the performance of SwitchSTM. In the following sections, wewill provide

detailed explanations of these future works.

• Dynamic switching strategy optimization. Future work can focus on developing

more advanced dynamic switching strategies to further enhance the performance of

SwitchSTM. Currently, SwitchSTM provides three basic switching strategies, but

dynamically adjusting strategies based on runtime environment and load can opti-

mize switching behavior in real time. For example, machine learning algorithms

can be introduced to analyze the current system state, predict future conflicts and

performance bottlenecks, and select the most appropriate switching strategy accord-

ingly. This will make SwitchSTM more flexible and efficient, capable of adapting

to different application scenarios and varying workloads.

• Improved transaction identification. Enhancing the performance of SwitchSTM

can also be achieved by more intelligently identifying and handling transactions

that have a high likelihood of aborting. This work can include developing advanced

prediction models that use historical data and runtime information to predict which
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transactions are at higher risk of aborting. These models can consider various fac-

tors, such as the read and write sets of transactions, past conflict records, and current

system load. By identifying high-risk transactions in advance, SwitchSTM can pri-

oritize other, more stable transactions for execution, thereby reducing the number

of aborts and improving overall system performance.

• Expanding tomore STM systems. Future research can also focus on extending the

SwitchSTM technology to a wider variety of STM systems. Currently, SwitchSTM

is primarily optimized for specific STM architectures (task iterative), but different

STM systems may have different designs and requirements. By adapting Switch-

STM technology to these diverse STM systems, its applicability and effectiveness

can be further validated, enabling its implementation in a broader range of applica-

tions.

• Integration with other methods. Combining SwitchSTM with other performance

optimization strategies is also an important direction for future work. STM perfor-

mance optimization can come frommultiple areas, and exploring how to organically

integrate SwitchSTMwith these strategies can further enhance system performance.

For example, we can investigate combining SwitchSTM＇s switching mechanism

with contention management, allowing SwitchSTM to decide which transaction to

abort in case of a conflict, rather than simply resorting to suicide. Additionally, inte-

grating efficient garbage collection algorithms could maximize system throughput

and response speed while ensuring data consistency. These comprehensive opti-

mization strategies will make SwitchSTM more robust and practical.
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