A S P = e R B R

78+ 3 3L
Department of Physics

College of Science

National Taiwan University

Master’s Thesis

LR E B2 E BRI E T

Robust quantum gates by deep reinforcement learning

ANEE]

Chin-Yang Lin
BEHKREAE BHE
Advisor: Hsi-Sheng Goan, Ph.D.
TERE 113 A 1 A
January, 2024

doi:10.6342/NTU202400695

1A) (English_titl

doi:10.6342/NTU202400695

#HE
EFHEANE 2R HEEBREARENTREE N AMRATHRF
EFRBOBATREMGRETTEFHE X HULTRARRETHMALE T3
HEERAG ERATR o RAXALIF O 22 T AESEBICETIER
oo 345 — AR A AL RS AR R R B R B AR AR AT B L

BEETFHEAMENIIRE FUBMBGETH -

st LB MBBY e Es AR RE - BT T

i

i

doi:10.6342/NTU202400695

Abstract

Quantum computing holds immense promise to revolutionize several industries such
as cryptography, finance, scientific simulations and so on. However, the real-world
application of quantum algorithms is severely hindered by the presence of noise in
quantum hardware. Achieving noise-robust quantum gates is an important prerequisite to
harness the power of quantum computing. This thesis presents an innovative way to
address the challenge by mapping the quantum gate control problem into the
reinforcement learning (RL) framework. Utilizing a RL algorithm called proximal policy
optimization equipped with deep neural networks, we achieve constructing high-fidelity
and robust single-qubit and two-qubit quantum gates in the presence of quasi-static noise,

paving the way for fault-tolerant quantum computation.

Keywords: Reinforcement learning, Machine learning, Neural networks, Proximal policy

optimization, Quantum control, Robust quantum gates

il

doi:10.6342/NTU202400695

Contents

D3R B B ettt i
BB B ettt bt et b b s st b bbb a et b et et e s et s st etnnn st esebens i
ADSTIACE . ..ttt ettt et b et ea e bttt eh e bt et eatenas il
COMEENES ..ttt ettt ettt e be et s bt e bt et e ebt e s bt et e sbtesb e e st e eaeesbeenbesaeenaeennens v
LSt OF FIUIES. ..ottt ettt ettt et e st e e beeenbeebeesaseeneeas vii
LSt O tADIES ..ottt bt X
Chapter 1 INtrodUCLIONeovuiieiiiiieeiieeie ettt ettt aee e et eseaeebee e 1
Chapter 2 Deep reinforcement 1€arningcccecueeveeeiierieniienieeieeie e 4
2.1 Reinforcement 1€arningcccueevueerieeiiienieeiieie et 4

2.2 Markov deCISION PIOCESSeervrrerieiieeiieniieeieeiieeteenteesteeseessreeseesnseenseennns 5

2.3 Proximal policy optimizationccceceerieeiiienieeiieie e 5

2.4 Value fUNCHON....oouiiiiiiiiciieeeeee ettt 7

2.5 Advantage fUNCLION..........ccciiiiieiiieiieeieeee ettt e 8
2.5.1 Temporal difference error..........cueecveerieeciierieeieeieee e 8

2.5.2 General advantage estimation............cceeeveeeuienieenienieeniieeie e 8

2.6 Deep neural NEtWOTK.........cccueeiuieriieiieieeiieeee ettt 10
Chapter 3 Quantum COMPULINEccveeruieeiieriieeiienieeiee e eieesreereeseeeebeesaaeebeeseneeneeas 12
3.1 QUDIE -ttt ettt b ene 12

v

doi:10.6342/NTU202400695

3.2 QUANTUIM GALE.....eeiiieiiiie ettt ettt e e iae s st bt e e e nensseessanee 13

33 QUANTUM CONLIOL......iiiiiiiiiii ettt st e e tae e veeeeene 13
3.3.1 Hamiltonian and propagatorcccceeeveerieenieeniienieeiee e 13
332 Rotating wave approXimation............ccceeeveerieereeenieeneeeseeseeenneennns 14
3.33 Effective control Hamiltonianc.ccoceevevieniniiniencnienieene, 16
334 Piecewise constant CONtrol.........cceecveviererienieniienienienenieseeeeen 18
3.35 Exponential of Pauli VECTOTcoocvieiiieiiiiiieieciece e 18
3.3.6 Dynamic deCOUPliNg........ccuvevireiiiiniieiieeie et 19

34 Gate INFIACIILY c..eeeiieiieciiceeeee e 19
34.1 Definition of infidelity........ccceeiieniieiiiniiiieeeee e 19
342 DySON €XPANSION....cc.veeruieeiieriieeiieniieeieeeeeeieeseteeseesaeeeeeseeeeseenens 20

3.5 Quasistatic N0ISE MOAE]........cccueieiuiiiiiiiieiie e 22

3.6 Gate infidelity eStMAtIONccvieiieiiieiieeieeiie et 23
3.6.1 NOISE CONIITDULION «..viiiiiieiicieeciee e 23
3.6.2 Control deVIationcc.eevuieierierieriesieeieet et 24

Chapter 4 INteGratioN.......cceeiuieiiiieiieeie ettt ettt ettt e et eseeeebeesabeenbeeseneeneees 25

4.1 Framework Mapping........ccceeveeeiieeriieiiienie ettt 25

4.2 ReWard deSIZNcccuieiuiieiiiiieeiieeie ettt ettt 26
4.2.1 Sampling-based methodcccoeviieiiiniiiiieie e 26

A%

doi:10.6342/NTU202400695

422 Weighted infidelityccoeeevieniiiiieiee et e 27

423 Hyperparameters y and A........cccooceeiieniiiiniienieciieeeesie s 28

4.3 Neural network deSi@N.......ccceeeieriieiieiiieieee et 28
43.1 NEIWOTK S1Z€ ...ttt 28

432 Network initializationcoeveevierieneriinieeceeeee e 29

4.4 Adaptive 1@AIMINGcoevviiiiieiieeiie ettt ettt ettt eeeneeneees 30
Chapter 5 RESUIL....coouiiiiiiiecee ettt et et 31
5.1 D G < 1 1O OSSPSR PRSP 31
5.1.1 TTIVIAL CASC...eviiiieiiiciteieee et 32

5.1.2 Ideal and NOISY CASESveevuvieiieeiieiie ettt 35

5.2 H ZALE .ottt e 40
5.2.1 TTIVIAL CASC...eviiiieiiieiteieet ettt 40

522 Ideal and NOISY CASES ..c.vveeuvieriieeiieiieeieeeie ettt 43

53 CNOT AL..eeiuiiieiiiieiie ettt ettt sttt e e e e sabeeeeens 47
Chapter 6 DiISCUSSION......eeiuiiiiieiieeiieeiieetteeiee et et e teesereebeesaeeesbeessaeenseessseenseassneenseas 53
Chapter 7 CONCIUSIONcccuiiiiieiieeiieiie ettt ettt ettt e sabeebeeseeeeneeas 59
RETETEICE ...ttt sttt 61
vi

doi:10.6342/NTU202400695

List of figures

Figure 5.1-1. The learning curves of trivial X gates with and without the automatic
Adaptive LEArNING.......cccuiiiiieiieiie ettt et ens 34
Figure 5.1-2. The one-step control pulses of trivial X gates with and without the
automatic adaptive 1€arning.cceeceeevvierieeiiienieeieeie et 34
Figure 5.1-3. The ensemble infidelity versus noise standard deviation of trivial X gates
with and without the automatic adaptive learning.............ccccecveevvennennen. 35
Figure 5.1-4. The learning curve of ideal X gate.......ccocceviiviiiiniiiniiiiiieceee 38
Figure 5.1-5. The learning curves of noisy X gate. These infidelities are defined in Sec.
B.2.20 ettt 38
Figure 5.1-6. The control pulse of ideal and noisy X gates.ccccoveeveriineenennennnn 39

Figure 5.1-7. The ensemble infidelity versus noise standard deviation of ideal and noisy

X BALES. ittt ettt st et e et e e eabeeeeaas 39
Figure 5.2-1. The learning curve of trivial H gate.......ccccoooiviiviniinienenicnccieeeeee 41
Figure 5.2-2. The control pulse of trivial H gate......c.ccocceviiviininiiniinienieneeieeeeneee 42

Figure 5.2-3. The ensemble infidelity versus noise standard deviation of trivial H gate.

Figure 5.2-4. The learning curve of ideal H gate.ccceviiviiiiiniiniiniiiieeceeeee 45

Figure 5.2-5. The learning curves of noisy H gate. These infidelities are defined in Sec.
vii

doi:10.6342/NTU202400695

220 cooiiiiiiiiiiiicniiniitieiassiseississsesssssasessessssses s ST S ooy Hosrogne 45

Figure 5.2-6. The control pulse of ideal and noisy H gates........cccccvceeverieniierenienneenn. 46

Figure 5.2-7. The ensemble infidelity versus noise standard deviation of ideal and noisy

H ALES. .ot 46

Figure 5.3-1. The learning curve of ideal CNOT gate.........ccoceevueriinieneniinieicrienen 50

Figure 5.3-2. The learning curve of noisy CNOT gate. These infidelities are defined in

S . 4.2 ettt aateraa—— 50

Figure 5.3-3. The control pulses of ideal and noisy CNOT gates.cceceveerreruennnnne 51

Figure 5.3-4. The ensemble infidelity versus noise standard deviation of ideal and noisy

CINOT ZALES. ..ottt sttt 52

Figure 6-1. The control pulses of noisy X gate before and after lowering the noisy weight.

Figure 6-3. The control pulses of noisy CNOT gate before and after lowering the noisy

WEIZNE. Lottt 56

Figure 6-4. The ensemble infidelity versus noise standard deviation of noisy X gates

before and after lowering the noisy weight.cccoocieiiiiiiinieniieene, 57

Figure 6-5. The ensemble infidelity versus noise standard deviation of noisy H gates
viii

doi:10.6342/NTU202400695

before and after lowering the noisy weight.cccoocoeviiiiiiiiinic e, 57

Figure 6-6. The ensemble infidelity versus noise standard deviation of noisy CNOT gates

before and after lowering the noisy weight.cccoocivviiiiiiinieniieene, 58

X

doi:10.6342/NTU202400695

List of tables

Table 5.1-1. The setting of trivial X gate.cccooieiiiiiieniiiiee s 33
Table 5.1-2. The common settings of ideal and noisy X gates.ccccevveeviveruieneennnen. 37
Table 5.1-3. The adaptive schedule of noisy X gate........cccoooeeviieiieniiienieniieieeieee, 37
Table 5.2-1. The setting of trivial one-step ideal H gate.ccceeeeeiienveecieeniieeieenen. 41
Table 5.2-2. The common settings of ideal and noisy H gates.........cccceceeevvvenuienneennnen. 44
Table 5.2-3. The adaptive schedule of noisy H gate........cccccceeviieriieniienieniieieeee e 44
Table 5.3-1. The common settings of ideal and noisy CNOT gates.ccceevuveeneennnen. 48
Table 5.3-2. The adaptive schedule of ideal CNOT gate........cccoeceeveiiinieninienieenee, 49
Table 5.3-3. The adaptive schedule of noisy CNOT gate.........cccoeeveeviieiieniieniienieenen. 49

X

doi:10.6342/NTU202400695

Chapter 1 Introduction

Quantum computing is a cutting-edge technology that leverages the laws of quantum
mechanics to process and store information. Unlike a classical computer which uses either
one of Boolean states to represent information, a quantum computer utilizes superposition
of states along with quantum entanglement. Several quantum algorithms have been
theoretically proved to outperform their classical counterparts for some problems. For
example, Shor’s algorithm factorizes integers within only polynomial time [1]. Grover’s
algorithm searches an unsorted database with a quadratic speed up [2]. Quantum
computing with fast and efficient quantum algorithms provides a paradigm shift that
promises to potentially impact numerous domains like cryptography, finance and drug
industry. To realize the power of quantum computing, it is important to build a set of high-
fidelity and noise-robust quantum gates in real-world quantum computers.

Recently, machine learning (ML) has been rapidly developed and widely applied in
many versatile domains. ML algorithms seek to identify patterns and make predictions
based on a large amount of data they have learned. There are three types of ML:
supervised learning, unsupervised learning and reinforcement learning (RL). We here
choose the RL method to address the challenge of constructing robust high-fidelity
quantum gates. Equipped with deep neural networks (DNN), deep reinforcement learning

(DRL) agents are able to plan policies or make estimations when interacting with the

1

doi:10.6342/NTU202400695

environment. Mapping the quantum gate control problem into the RL framework, we use
a RL algorithm called proximal policy optimization (PPO) [3], to optimize the piecewise
constant (PWC) control pulses, generating a set of robust quantum gates with fidelities
beyond the fault-tolerant threshold of quantum error correction for generic qubit models
in the presence of quasi-static noise (QSN).

Some research groups have also applied the DRL method to the optimal control of
quantum gates in an ideal environment with infidelities around 1073 to 10~* [4][5][6].
Lin (2022) has constructed the ideal X, H and CNOT gates with the lowest ideal
infidelities as 1076, 1071® and 1072, respectively by the same PPO DRL algorithm
[7]. Niu et al. (2019) have used the similar policy optimization DRL algorithm
to construct a two-qubit gates in a noisy environment, but they introduce the time-varying
noise into their deep neural network (DNN) model such that the output control pulses will
alter with the unknown noise, not giving the unique robust pulses [8]. In this thesis, we
give a preliminary attempt of applying the PPO DRL agent to perform robust high-fidelity
quantum gates in a noisy environment, and we have shown that it works for the
QSN. Moreover, most of these DRL approaches [4][8] use the quantum states of the qubit
systems as environment observations, requiring knowing the underlying quantum
dynamics. In contrast, the environment observations for our DRL agent are the control

pulse strengths, which are more feasible and practical for the realistic control

2

doi:10.6342/NTU202400695

experiments.

We organize the thesis as follows. First, we introduce the DRL in Chapter 2. Next,

we describe the quantum gate control problem in Chapter 3. Then, we integrate the control

problem into the DRL framework in Chapter 4, and construct three iconic quantum gates,

namely X, H and CNOT gates, in the presence of noise in Chapter 5. Finally, we discuss

these results in Chapter 6, and finally we conclude our work in Chapter 7.

doi:10.6342/NTU202400695

Chapter 2 Deep reinforcement learning
2.1 Reinforcement learning

Inspired by behavioral psychology, reinforcement learning focuses on training an
intelligent agent to act responses to its observations in order to maximize a cumulative
reward. We first introduce some terminologies and their relationships in RL:

State (s): It is a representation of an environment at a certain time t. To be more specific,
information of state that is fully or partially observed by an agent is called an observation
o. However, state s and observation o are usually interchangeable in the RL notation.
Action (a): It is a decision made by an agent to interact with an environment.

Policy (m): It is a deterministic or stochastic strategy that defines an agent's behavior,
mapping states to actions, a;~m(-|s;).

State transition (P): Given a current state s, and an agent’s action a, it tells how an
environment maps them to a next state s;,;~P (- |s;, az).

Reward (7): It is a numerical value that an environment provides after each agent’s action,
serving as feedback.

RL is classified into two main taxonomies, model-based and model-free, by telling
whether a RL agent learns a model of environment or not. With a learned model, a model-

based RL owns sample efficiency and allows an agent to plan ahead. A famous example

doi:10.6342/NTU202400695

of this kind is Google DeepMind’s AlphaZero [9]. However, model-learning is not an
easy task, a model-free RL agent is instead easier to train. A model-free RL agent can be
further classified into policy-based or value-based. A policy-based agent directly learns
policies to take responses, while a value-based one make decision according to its
estimation of options. We here choose the model-free approach, called proximal policy
optimization (PPO) with actor-critic style implementation which leverages both merits of

policy-based and value-based algorithms.

2.2 Markov decision process

Markov decision process (MDP) refers to a state transition P of environment
obeying Markov property. It says that a future state of an environment depends only on a
current state and action, not on an entire history of states and actions. Though not being
a strict requirement, MDP is widely used in RL because it provides a well-defined

structure of environment.

2.3 Proximal policy optimization

PPO is known for its stability, robustness, and ease of implementation. It is an on-

policy agent who updates its policy typically by taking several epochs of objective

5

doi:10.6342/NTU202400695

maximization with a batch of data collected by its current policy,

Or1 = argmax Esqry [L(s,a,6,,0)], (2.3-1)
where E is the expectation function, m is PPO’s stochastic policy whose implicit
parameters are 6 with the subscript index k denoting generations of policies. The
objective function L(0) is,

g (als)

mo(als) A(s,a),clip <m 1-¢1+ e)A(S, a)l , (23-2)
Ok

1, (als)

where clip is a function that clip the first argument between the second and the third
ones, € is a small-value hyperparameter that limits updating policy parameters, A(s,a)
is an advantage function that estimates how good an action a is. To understand what L

is doing, we first define a ratio,

mg(als)

T'(S, a, Hk,Q) = m .
k

(2.3-3)

Taking a positive A(s,a) asan example, we certainly hope that probability of taking the
action a is as high as possible, thatis, r is far greater than one. However, a large update
from 6, to 6 can bring training instability, we clip r by 1 + € such that a new policy

does not benefit by going far away from the current one. The overall PPO algorithm is

shown in Algorithm 1.

doi:10.6342/NTU202400695

2.4 Value function

To determine the design of advantage function A(s, a), we recall the goal of RL is

to maximize the cumulative reward, or called return,

Ge= D ¥ Tk (2.4-1)
k=0

where y € [0,1] introduced here is a future discount factor that reflects preference of an
immediate reward or is mathematically designed to avoid divergence of an infinite sum.
Nevertheless, PPO’s policy as well as the state transition function P of an environment
is stochastic. We are not going to focus on only one trajectory of rewards but an expected

one,

IIE:s,a~7'r,P [Z yk : rt+k] . (24-2)
k=0

Practically, it is still hardly possible to exactly calculate this expected value which
requires traversing all of attainable trajectories. Given an agent taking action by its policy
m and starting at the state s;, we use an estimator called value function to approximate

the expected value,

V(St) = IEs,a~1‘t [yk 'rt+k] . (24'3)

With the value function V(s;), we can estimate consequences of choosing different

actions. For example, starting at the state s, there are two actions a; and a, thatlead

7

doi:10.6342/NTU202400695

us to the states s; and s, with the values v; = V(s;) and v, = V(s;) respectively.
The PPO agent then updates the probabilities of these two actions according to their

consequent values.

2.5 Advantage function

2.5.1 Temporal difference error

Sometimes, we are not concerned about the goodness of actions in absolute sense
which directly consider the consequent value V(s;,,). Instead, we want to update a
policy such that it increases probability of better-than-average actions and decreases
opposite ones. We use temporal difference (TD) error,

8 =1 +v - V(seer) =V(sp) , (2.5-1)
to be an advantage function estimation Agl) of a one-step action a;. The first two terms
1. + v - V(st41) is the estimated value at the state s; when we intentionally choose the

action a;, while the last term V(s;) is the overall estimated value at the state s;.
2.5.2 General advantage estimation

We can similarly calculate following advantage function estimations if we further

take actions a;,q, 42, and all the way up to the final state,

doi:10.6342/NTU202400695

Ai(-_l) = 62{ = _V(st) + rt + V(st+1))
Aj(:Z) =68/ +y -6l =-V(E)+r+y T +¥2-V(ses2)

A.(f3) = 62/ +y- 5¥+1 +y?- 5¥+2 = V() +1e+vy T +¥2 11 72 V(St42)

k-1
k
A:(t) = zyk'6¥+k
k=0 (2.5-2)

==V +1e+V Tepr + o+ ¥ rems + V(Sear) -

. . GAE(y,A) .
We use generalized advantage estimator A, to be our final advantage function
estimator A"k (s, a), which is defined as exponentially-weighted average of these above

k-step advantage function estimators,

ATEOD) (1 7) (Z e -Ai’”) = N6t (2.:53)
k=1 =0

where the parameter A € [0,1] controls a bias-variance tradeoff by discounting future
TD errors &/,; [10].
From Eq. (2.5-2), we know that a return GX with definite rewards up to the k-step
is Agk) + V(s;). Similarly, we define a more general return,
G} = ATEXD L y(s) (2.5-4)

called A-return.

doi:10.6342/NTU202400695

2.6 Deep neural network

The policy function mg(a|s) and the value function V(s;) of PPO require
sophisticated mechanisms to map a state (observation) into an action probability
distribution and an estimated value of expected return respectively. It is barely possible
to directly record every relation of state, action and value into a large lookup table. Instead,
we utilize two deep neural networks (DNN), called policy (actor) network and value
(critic) network, to approximate the policy function mg(a|s) and the value functions
V(s;). In a policy network, there is an embedded network called action projection
network which projects quasi output of policy network to final output action that satisfies

an action spec of environment.

10

doi:10.6342/NTU202400695

Algorithm 1 PPO with GAE

1.

A

10.
I1.
12.

13.

14.
15.

Initialize a replay buffer, an optimizer with learning rate Ir, an action standard
deviation g,, a policy network 7y and a value network V, with network
parameters 8 and ¢.
For iteration=1, 2, ...:
Clear the replay buffer.
For number of data collections =1, 2, ...:
Run 7y, in the environment to get a trajectory
of (st, ar, mg, (ac|se), 1)
Get values v, = Vg (s¢) to compute AfAE(V”D in Eq. (2.5-3)
and G/ in Eq. (2.5-4).
Add data (s¢, a;, mg, (a;|se), AGAEDD G2y 1o the replay buffer.
For number of epochs =1, 2, ...:
Randomly sample a batch of data from the replay buffer.
Get mg(ac|s,) and Vy(se).
Get L(6) inEq. (2.3-2).

Get mean squared error:

L) =Y (62 =Vy(s0)

Update my and V, with the optimizer:
0 <—0+Ir-VyL(@O) , ¢ —Ir-VuL(9) .
If using adaptive learning:

Update Ir and/or a,.

11

doi:10.6342/NTU202400695

Chapter 3 Quantum computing
3.1 Qubit

A qubit, short for “quantum bit”, is a fundamental unit of quantum information in
quantum computing. Several kinds of quantum system can be implemented as a qubit
such as superconducting qubit, ion trap and semiconductor quantum dot. Unlike a
classical bit which represent information in either 0 or 1, a qubit can exist in a
superposition of both states,

[) = al0) + B1) , (3.1-1)
where a, 8 € C are probability amplitudes which require that |a|? + |B]? = 1, |x) is
a ket vector in Dirac bra-ket notation to represent a quantum state. They can also be
written in vector forms,

10) = [(1)] ,)= [(1’] . (3.1-2)
For a more general n-qubit representation, we construct them by the tensor product of

each single qubit,

)= D Coppyn, 1) D 162) ® . @ [By)
e (3.1-3)

zn

= Z Cyby..by |D1D2 - D)
b;i=0,1

where the sum of these squared probability amplitudes is also required to be one.

12

doi:10.6342/NTU202400695

3.2 Quantum gate

Quantum gates are mathematical operators that manipulate the qubits to perform

specific operations. Some common quantum gates and their matrix forms are shown

below,
[0 1 [0 —i 1L o 1o
X_[1 0 'Y_[i 0 'Z_[o —1]'H_\/§[1 —1]' (3.2-1)
10 0 0 10 0 0
_fo1 0 o0 o1 0 0
CZ=|y 0 1 o+ CNOT=[5 4 o 1‘. (3.2-2)
0 00 -1 001 0

X, Y and Z are Pauli gates which is also usually noted as o, g, and o,. H is Hadamard
gate which plays an important role in making a superposition state. CZ and CNOT are
controlled gates that act on two qubits simultaneously to generate critical entangled states.
These gates are vital part of universal quantum gate sets to which any operation possible

on a quantum computer can be reduced.

3.3 Quantum control

3.3.1 Hamiltonian and propagator

Quantum control involves using external fields such as electromagnetic pulses or
laser beams to steer qubits. It is often described in terms of Hamiltonian F (t), which

represents system dynamic over time and how it responds to the external control fields.

13

doi:10.6342/NTU202400695

It can be further decomposed into ideal and noisy parts,
H(t) = H,;(t) + Hy(t) . (3.3-1)
If a system is ideal, then an ideal gate propagator over time ¢t is given as,
t
U;(t) =T exp (—if 7—[,(t’)dt’> , (3.3-2)
0
where T is the time-ordering operator, and we set A =1 throughout this thesis.
However, we get company from noise in reality, a total propagator should be,
t ~
U(t) = U;(t) T exp (—if }[N(t’)dt’> , (3.3-3)
0
where Hy(t') = U;L ()Hy (@)U, (t) is noisy Hamiltonian in the interaction picture
transformed by U, (t). With a careful choice of control parameters by optimization or

machine learning, we can make a propagator to be any desire quantum gate we want.

3.3.2 Rotating wave approximation

The rotating wave approximation (RWA) is a common approximation used in
quantum optics. When applied electromagnetic field is near resonance with a qubit
transition frequency and its intensity is low, it neglects terms in Hamiltonian that oscillate
rapidly.

For simplicity, considering a two-level qubit with intrinsic transition frequency wy,
its Hamiltonian is,

14

doi:10.6342/NTU202400695

Hy = 72 . (3.3-4)
We drive the qubit with an external classical electric field E = Eoe_iwdt + ES et®at yith

a driving frequency w,; and * denoting the complex conjugate. Under the dipole

approximation, the driving Hamiltonian is,

-

Hy=—d-E, (3.3-5)
where d is the dipole moment of the qubit. We assume that the qubit does not have a
dipole moment when it is in an eigenstate such that,
d= dyo, +djo_, (3.3-6)
where the o, = X + iY. The driving Hamiltonian is then,
Hy = —(Qei@dt + Qelwat)g, — (Qre~i@dt + Qelwat)g_ (3.3-7)
where () = c_i)o . EO is the Rabi frequency and Q = cfo . E')(‘; is counter-rotating frequency.
We consider the unitary transformation to the interaction picture,

Hay = UgH,UT (3.3-8)

~tHot and t is the conjugate transpose of matrix. With aniUg =

where U, = e
eti@ols, Eq. (3.3-8) can be further deduced to,

Hyy = —(Qe~i8 + Qellwotedt)g, — (Qre~i@otwdt + greidt)g | (3.3-9)
where A = wy — w,. This is the point where we apply the RWA. If the driving frequency

of electric field is near resonance with the qubit frequency, i.e., A K wy + wg = 2w,

those complex exponentials multiplying counter-rotating frequency is considered to be

15

doi:10.6342/NTU202400695

rapidly oscillating. Given an appreciate time scale, these oscillations average to 0 such
that Eq. (3.3-9) reduces to,

HEWVA = —Qe~ibtg, — Qrelblo_ . (3.3-10)
The approximation error is about Q?T/w,, where T is the gate time [11]. We
transforming Eq. (3.3-10) back to the Schrodinger picture, while H, remains unaffected
by the RWA. The total Hamiltonian under the RWA is,

w , .
HRWA — 702 —_ Qe—lwdto-+ — OFfelwdty (33-11)

3.3.3 [Effective control Hamiltonian

In the numerical simulation, we usually favor each coefficient in Hamiltonian to be

comparable. However, w, is usually larger than (0 and A. We transform Eq. (3.3-11)

~lwatZ/2 g4 that it becomes,

into the driving frame with U; = e
RwArrt o o7 17t A *
Hig =UsH U, +iU0,U0,; = EZ —Qo, —Q'o_ . (3.3-12)
If we further assume a real driving such that 0 = Q*, Eq. (3.3-12) is simplified to,
A
Hiq = EZ - QX , (3.3-13)
which is the commonly used effective single-qubit control Hamiltonian. If the driving is

on-resonant (A = 0), it can generate X gate whose gate time is determined by the Q,

therefore the strength of the external field. In contrast, if the driving is off-resonant (A #

16

doi:10.6342/NTU202400695

0), it can generate H gate by carefully designing the A and Q.
For a two-qubit control Hamiltonian, we consider the Ising model that two qubits

are coupled by the ZZ interaction,

w w
}[0 :%Zl +%Zz +

éZlZZ , (3.3-14)
where wg; is an intrinsic qubit frequency and] is coupling strength between qubits,
subscript 1 and 2 denote the indices of qubits. The ZZ interaction is the natural generator
of CNOT gate up to one-qubit operations [12], which can be realized in many quantum
systems such as Transmons [13], flux qubits [14], trapped ions [15][16] and neutral atoms

[17]. Similarly, we can drive these two qubits independently with Eq. (3.3-7) such that

the total Hamiltonian is,

w W
H =202+ Haa (O, 040) + 5725 + Haa (0, 042) + élez . (3.3-15)

where (); and wg,; are Rabi and driving frequencies of the i-th qubit. Since Pauli
operators of different qubits are commute, we can apply the same RWA procedure in Sec.
3.3.2 and driving-frame transformation in the previous single-qubit case. Besides, we
assume both qubits have identical qubit and driving frequencies (wg; = wp, and
Wq1 = Wgq) such that they have the same detuning A, obtaining our effective two-qubit
control Hamiltonian with comparable coefficients,

J

A A
}[Zq = EZl - lel + EZZ + _Qz){z + EZlZZ . (3.3'16)

17

doi:10.6342/NTU202400695

3.3.4 Piecewise constant control

Since the RL requires an environment to possess an episodic characteristic, we
choose PWC control pulse to build quantum gates. In the PWC control protocol, the
maximum gate time T is predefined. Entire pulses are divided into N step pulses with
equal step time 6t = T/N. During i-th time step in time interval (i — 1)8t <t < idt
with i € N and i < N, the control parameter vector p; is constant such that H (p;) is
time-independent, then the i-th unitary propagator is,

U;(p;) = exp(—i%H (p;)dt) . (3.3-17)
The total propagator up to time idt can be determined iteratively,
U(ist) = U(p)U((i — 1)ét) , (3.3-18)

with the initial propagator is identity, U(0) = I.

3.3.5 Exponential of Pauli vector

During a step pulse of PWC protocol in Sec. 3.3.4, if this constant control
Hamiltonian can be represented by combination of Pauli matrices,
H=|plp-a, (3.3-19)
where p = (py,py,p,) is the control vector, || is the norm of p so that p = g/|pl,

and ¢ = (X,Y,Z) is a Pauli vector, we can rewrite the exponential form of unitary

18

doi:10.6342/NTU202400695

propagator in Eq. (3.3-17) with sine and cosine functions,
U(p) = I cos(|pl6t) — i(p - ¢) sin(|pl6t) , (3.3-20)

which avoids the computational burden of matrix exponential in numerical simulation.

3.3.6 Dynamic decoupling

The dynamic decoupling is a quantum control technique based on the concept of
Hahn spin echo [18], employed in quantum control to suppress decoherence with
sequences of carefully timed and tuned control pulses. The pulses often implement
periodic flip-flop operations at intervals shorter than characteristic timescale of

environmental noise to continuously refresh and protect quantum information [19].

3.4 Gate infidelity

3.4.1 Definition of infidelity

To have an idea how good our quantum gates are, we need a metric to determine a
gate infidelity. Given a target gate Uy, final gate time t; and number of qubits n, the

gate infidelity is defined as,

1
1=1-[m[ufu)]” (3.4-1)

19

doi:10.6342/NTU202400695

where Tr is the trace operator.

3.4.2 Dyson expansion

Referring to the analysis of noise contribution in infidelity in [19], if the noise
strength is not too strong, we can expand the propagator U (tf) in terms of Hy(t) in

Eq. (3.3-3) by Dyson series [21],

u(ey) = Ui(e) |1+) |, (3.4-2)
j=1
where ¥; is,
) tf tq tj—l . N -
Y, = (—i)ff dtlf dt, f Hy(t)Hy (t2) ... Hy(t)de; (3.4-3)
0 0 0

We substitute the expanded propagator back into the infidelity in Eq. (3.4-1),

2) C
I=J,— 4—nRe{Tr[U7TU,(tf)]} Tr|ULU,(¢f) - Z ¥
j=1

(3.4-4)
——|tr|viu(t) - Z
where Re denotes taking the real part of the quantity. The first term J, is exactly the
gate infidelity for the ideal system,
1 ¥ 2 4

Jo=1-5 |Tr[Ur U, (t)]| - (3.4-5)
We then introduce an error shift matrix U, of the ideal gate propagator U ,(tf) relative
from the target gate propagator Uz up to a global phase ¢,

Uy(t) = e®Ur(I+ U,) . (3.4-6)

20

doi:10.6342/NTU202400695

We substitute this back into the infidelity in Eq. (3.3-17),

11=/0+Z]k+e, (3.4-7)

where those J, are noisy terms without containing U, with k defined as noise orders,

and € instead contains U,,

1 C 2 C
€= o Re< Tr UEZ‘PJ- - 4—nRe Tr[U.]*Tr Z‘P]
=1 j=1

*

2 (00] (00]
—RedTr Y Wl U Y (3.4-8)

2 (e}
—ERe Tr[U.]* z ——|Tr|U z

j=1

When J, is small, the matrix elements of U, are also small. Meanwhile, if noise
strength is not too strong such that |W, ;| < |Wx|, we can neglect the effect of €. We

look into the first four noise order terms of J,

h = =g RelTr(¥))] (3.4-9)
J> = = gy RelTr(¥)] — 4111 ITr(¥)|? , (3.4-10)
Js = =Sy Re[Tr(¥;)] - %Re{Tr(‘Pl)Tr(‘PZ)*} , (3.4-11)
Ja=— or= Re[Tr(¥,)] — 4—111 |Tr(¥,)|? — f—nRe{Tr(‘{Jl)Tr(‘P3)*}. (3.4-12)

According to Eq. (3.4-3), the noisy Hamiltonian Hy(t) is a Hermitian operator, so the

real part of traced ¥; with odd j are zero such that these odd noise order terms of J

such as J; and J; are all vanish. Since noise is stochastic, we use ensemble average of

21

doi:10.6342/NTU202400695

infidelities,

M =Jo+ <Z 12k> e . (3:4-13)
k=1

Though we are not going to explicitly use the expanded infidelity as our loss function of
machine learning, the expansion gives us insights of which noise order terms dominate

(see the analysis in Sec. 3.6).

3.5 Quasistatic noise model

For an ideal quantum system, the ensemble infidelity (I) is simply the ideal
infidelity J,. But for the noisy one, practically, we need to test our pulses several times
in the noisy environment and then average these result infidelities. To test our RL
approach, we here choose the quasistatic Z-noise (QSN) model which the noise is
constant during the gate time of each running, exerted on the Z component in
Hamiltonian. Its noise strength is sampled from the Gaussian distribution with a zero

mean and a noise standard deviation gy .

22

doi:10.6342/NTU202400695

3.6 Gate infidelity estimation

3.6.1 Noise contribution

With the gate infidelity expansion introduced in Sec. 3.4.2, we can estimate noise
contribution of each order in a gate infidelity. Taking a single qubit gate in quasistatic Z-
noise model (Sec. 3.5) as an example, the noisy Hamiltonian in the interaction picture
Hy(t)) is U;L ®[B - wy - Z/2]U,(t), where B is the sampled noise amplitude from the
Gaussian distribution. We substitute it into the W), in Eq. (3.4-3),

(b t ti-1
l'IJj = (_l)Jf wodtlf wodtz ...f (Uodt]
0 0 0 (3.6-1)
X BIRz(t)Rz(t5) ... Rz (tn)
where R,(t) = U;r ()[Z/2]U,(t). Since matrix element magnitudes of Z and U,(t)
are all smaller than one, matrix element magnitudes of R,(t;)R;(t;) ... R;(ty) are also
smaller than one. The time integral | Otf wodty [0t1 wodt, ... fotj “twodt; can be estimated
as (wotf)j /j! and the B’ can be estimated as the noise standard deviation 016. The

overall estimation of W¥; is (wotfaN)J /j!. Substituting the estimated ¥; into each

noise order J, with even k such as Eq. (3.4-10) and Eq. (3.4-12), we get,

1
2)

5

Ja~ (wotron)* - — . (3.62)

J2 "“(wothN)z . 48

Once we construct a control pulse, we can test them in a certain noise model with a series

of ay. From slopes between noise standard deviations and corresponding ensemble gate

23

doi:10.6342/NTU202400695

infidelities, we can tell which noise order dominate an ensemble gate infidelity (II). Given
oy < 1, the higher the noise order dominates, the more robust a quantum gate is, because

the exponent on the noise standard deviation is greater.

3.6.2 Control deviation

The noise contribution estimation (Sec. 3.6.1) can also reflect a response of control
deviation. The control deviation can be thought as intentionally sampling a certain noise
strength f into a perfect control pulse. Not considering a noise-robust quantum gate, we
know that J, usually dominates such that a gate infidelity (I) will be around the order

of B? according to Eq. (3.6-2).

24

doi:10.6342/NTU202400695

Chapter 4 Integration

4.1 Framework mapping

We are going to map the quantum control problem into the RL framework. There are
several options which can be designed as agent’s observations o such as control pulse
vector, Hamiltonian, or unitary propagator. Though these options have same amount of
information, we choose pulse vector as observations because the last two terms need to
access information of quantum states which is unavailable in real quantum devices.
Instead of only one previous step pulse vector, we include an entire sequence of N-step
PWC pulse vectors as observations,

q; = (p1, P2, -, 01,0, ...,0), (4.1-1)
where each pulse vector p; has M control dimensions. It makes this RL task to hold the
merit of Markov decision process property, avoiding the situation that an agent may
confuse whether an observation of a previous step comes from the same pulse history or
not. The agent’s action a is then intuitively the next step pulse vector p;,;. To specify
this observation and action formulation, we take N = 2 for example: The agent’s initial
observation is a sequence of zeros q, = (0, 0), then it gives the first step pulse vector p,
as the action. The agent’s next observation is the first step pulse vector p; followed with

25

doi:10.6342/NTU202400695

zeros, q; = (p1,0), then it gives the final action p,, leading to the final state g, =

(p1,p2) that is no need to be observed.

4.2 Reward design

4.2.1 Sampling-based method

To get the ensemble infidelity (I) in the QSN model (Sec. 3.5), we indeed do the
random sampling to calculate (I) in a noise test. However, it requires large amount of
pulse data collection to train the agent. We instead use the sampling-based method [22]
which samples a small fixed set of noise strength to relieve the computational burden. We
attempt to use a set that includes {0, +ay, —oy}. This noise strength set has a zero mean
and a standard deviation /2/30y, which is not equal to the original Gaussian noise
standard deviation oy. We scale back this noise strength set to {0, +kaoy, —koy} with

k =./3/2 such that the training and testing noise strength set has the same mean and

standard deviation.

26

doi:10.6342/NTU202400695

4.2.2 Weighted infidelity

The RL agent’s performance really depends on the design of the reward function.
Though we assume the Gaussian quasistatic noise model in Sec. 3.5, we do not know the
noise standard deviation oy not to mention to adjust it. With an ideal infidelity redefined
as II; = J,, the smaller the true oy is, the smaller the noisy infidelity Iy = (I) —1I, is
as a proportion of the reward function such that the agent may not aware it to learn a
robust quantum gate. We design an adjustable weighted infidelity,

Iy =w;-I; +wy -1y . (4.2-1)
By assigning a different ratio between the ideal weight w; and noisy weight wy, we
can adjust the importance between ideal and noisy infidelities.

In practice of training our agent in noisy environment, an [; is given by testing its
control pulse in ideal environment, while a I is given by subtracting the [; from the
(I) of sampling-based noises (Sec. 4.2.1). Since we require the agent achieve the target

gate Ur right at the gate time T, the i-th step reward is design as,

_{ 0, i€f0,1,.. N—1}
i —)

- 10g10 HW) i=N (4.2-2)

where we take the logarithm to increase the sensitivity of infidelity improvement.

27

doi:10.6342/NTU202400695

4.2.3 Hyperparameters ¥ and A

Since our quantum gate control environment has a small number of time steps
N~10! and the high important final reward design in Eq. (4.2-2), we assign both future
discount factor y and exponentially-weighted parameter A introduced in Secs. 2.4 and

2.5tobe 1.

4.3 Neural network design

4.3.1 Network size

Our PPO agent possesses a policy network, a normal projection network and a value
network. For the value network, its input size is the size of flatten pulse sequence N X M,
its number of hidden layers is 2 with their numbers of hidden neurons usually designed
to be at the order of its input size, and its output size is only 1. For the policy network, its
input size and hidden structure are the same as the value network, while its output size is
two times the size of pulse vector 2 X M. These outputs are then fed into an action
projection network, called normal projection network, to generate action means p,,
action standard deviations o,, and action normal distributions which they are truncated
by given boundaries of pulse amplitude and renormalized. In the RL training phase, the

28

doi:10.6342/NTU202400695

agent’s actions are finally sampled from these truncated action normal distributions, while

in our RL testing phase, we force agent to use the means of distributions as their actions.

4.3.2 Network initialization

According to the concept of dynamic decoupling in Sec. 3.3.6, a flip-flop pulse can

mitigate noise. To better incent an agent to generate the flip-flop pulse that across the zero

line, we intentionally set the initial network parameters of normal projection network to

be zeros such that it gives a flat pulse right at the zero line at the beginning. To show why

this design works, we take the Pauli X gate to be the example: To achieve a low ideal

infidelity I;, it requires the area of control pulse on the X direction to be the odd

multiples of m. However, due to the recursive nature of pulse generation in RL, we

usually get a nearly-flat pulse after training. If we do not set the initial pulse near the zero

line, the agent may generate a 3w or higher pulse area pulse that is away from the zero

line. Then, if we further want to get a robust X gate which requires a flip-flop pulse

shape, the pulse that is away from the zero line is harder to achieve the goal.

29

doi:10.6342/NTU202400695

4.4 Adaptive learning

To build a low infidelity quantum gate, the adaptive learning rate mechanism in the
commonly-used optimizer, Adam [23], is not enough. We additionally adjust a learning
rate [r and an action standard deviation o, according to a gate infidelity. In Sec. 3.6.2,
we know that an infidelity is roughly square of control deviation when an ideal infidelity
[; is small. Hence, we automatically or manually assign a learning rate {r and an action
standard deviation o, to roughly be a square-root of infidelity (I)'/? every certain
number of training iterations. At the automatic mode, we will set initial {r and g, to
also play as the upper bounds of them. That is, taking a Ir for example, a result Ir will

be the smaller one between the initial Ir and (I)Y/2.

30

doi:10.6342/NTU202400695

Chapter 5 Result

We here apply our method to construct three iconic quantum gates, X, H and
CNOT gates. For X and H gates. we begin with a trivial one-step pulse in ideal
environment to preliminarily verify the feasibility of our RL approach (Sec. 2.3), the
intentional flat pulse initialization (Sec. 4.3.2) and the efficiency of automatic adaptive
learning (Sec. 4.4). Then, we construct their multi-step versions in ideal and noisy
environments, where we set the same max gate time T and step numbers N within each
kind of gate to better compare the effect of noise learning.

We organize each test as follows. We first declare the target gate and our effective
control Hamiltonian. Next, we list a setting of control configuration, network sizes and
learning hyperparameters in a table. Finally, we show the results of training including
agents’ learning curves, control pulses as well as their noise test to recognize dominant

noise orders.

5.1 X gate

We first deal with the simplest X gate to test our approach. Its matrix form is,

0 1

X:[1 ol -

(5.1-1)

According to Eq. (3.3-13) with an on-resonant driving field, our effective control

31

doi:10.6342/NTU202400695

Hamiltonian is,
T
H() = EQ(t)X , (5.1-2)

where Q(t) € {p;, 2, ..., pn} is in the PWC control protocol.

5.1.1 Trivial case

In the trivial case of X gate, we will test the efficiency of automatic adaptive
learning which assigns a learning rate [r and an action standard deviation o, to be a
square root of infidelity after every training iteration. First, we train a PPO agent without
the automatic adaptive learning. An effective learning rate is fully determined by Adam
optimizer with the initial Ir = 3 X 10™* and an action standard deviation is given by the
agent’s normal projection network. Later, we adopt the automatic adaptive learning with
the initial Ir = 1 to speed up training. The common settings of these two are shown in
Table 5.1-1, where the batch size is set to “All” means that we use the whole collected
data instead of mini-batch of them in every gradient descent epoch. The comparison
results are shown from Figure 5.1-1 to Figure 5.1-3, where blue and green colors indicate
the learnings with and without the automatic adaptive learning respectively.

Comparing the learning curves in Figure 5.1-1, the blue one which adopts the
automatic adaptive learning easily reaches the lower bound double precision (1071°) at

32

doi:10.6342/NTU202400695

the early 22-th iteration, while the other green one wobbles around 107 and touches the
10712 just by chance. Moreover in Figure 5.1-2, the control deviation of the green pulse
is at the order of 107® which is the square root of its infidelity, indeed consistent with
our control deviation analysis in Sec. 3.6.2. Besides, from the result that their pulse areas
are both equal to 1.0 but not 3.0 or higher odd values (note that our Hamiltonian contains
m/2), we realize that our network initialization in Sec. 4.3.2 that intentionally sets initial
pulses to be flat around the zero truly works. Finally, when testing with the QSN model
in Figure 5.1-3, these X gates are both mainly dominated by the Second order noise J,
since the agents trained in the ideal environment are unable to aware the characteristic of

noise.

Parameter Value
T 1.0
N 1
Pulse boundary [-4, 4]
Policy network size 4,4)
Value network size 4,4)
Number of collections 30
Number of epochs 10
Batch size All
Initial Ir 1 and 3x107*
Initial o, 3x1071

Table 5.1-1. The setting of trivial X gate.

33

doi:10.6342/NTU202400695

Infidelity

10 — No adapt.
— Adapt.

10° 10" 10° 10°
Iteration

Figure 5.1-1. The learning curves of trivial X gates with and without the automatic

adaptive learning.

—6
Lo X107+
—— No adapt.
0.5 — Adapt.
c 0.0
-0.5
~1L0= 0.2 0.4 0.6 0.8 1.0

Gate time

Figure 5.1-2. The one-step control pulses of trivial X gates with and without the

automatic adaptive learning.

34

doi:10.6342/NTU202400695

10’
......... ESt. j2
B 1071 === Est. /4
,% ol T No adapt.
g 10 | —— Adapt.
o
s 10 ¥
2 /
Mt
10 L —= | = | |
10° 10° 10~ 107 10"

Noise standard deviation

Figure 5.1-3. The ensemble infidelity versus noise standard deviation of trivial X gates

with and without the automatic adaptive learning.

5.1.2 Ideal and noisy cases

To construct a robust X gate in the QSN environment with gy = 1071, we need a

multi-step pulse to realize a flip-flop feature, so we increase step numbers N to 8. In the

noisy case, we use the sampling-based method (Sec. 4.2.1) to get an effective ensemble

infidelity for an agent’s training. Also, we adopt the manual adaptive learning, starting

with larger [r and o, at the first stage. At this stage, it is crucial that the weighted ideal

and noisy infidelities should be comparable in magnitudes to let the agent aware of them

both. We then manually decrease Ilr, o, andnoisy weight wy after every training stage

once the agent learns a robust pulse with a low enough ideal infidelity, while an ideal

35

doi:10.6342/NTU202400695

weight w; isalways set to 1.0. We also do an ideal case in the same control configuration
except for still adopting the automatic adaptive learning. The common settings of two
cases are shown in Table 5.1-2, the adaptive schedule of noisy case is shown in Table
5.1-3, and the results are shown from Figure 5.1-4 to Figure 6-4.

Comparing the learning curves in Figure 5.1-4 and Figure 5.1-5, the ideal X gate
adopting the automatic adaptive learning converges to 1071° in short iterations, while
the noisy X gate takes a lot of time, especially trying to get a robust pulse at the stage-1
learning. We terminate this learning stage only when the agent learns a pulse that
possesses the 4th noise order behavior shown as the solid cyan curve in Figure 6-4. The
following stages are mainly served as decreasing the ideal infidelity while maintaining
the 4th noise order behavior. Finally, in Figure 5.1-6, in contrast with the flat pulse of
ideal X gate, the robust pulse of noisy X gate really behaves a flip-flop shape across

the zero line.

36

doi:10.6342/NTU202400695

Parameter Value
T 1.0
N 8
Pulse boundary [-4, 4]
Policy network size (8, 8)
Value network size (8, 8)
Number of collections 30
Number of epochs 10
Batch size All
Initial Ir 3x107*
Initial o, 3x1071

Table 5.1-2. The common settings of ideal and noisy X gates.

Number of . o
Stage .) Wy Initial Ir | Initial o,
1terations
1 8427 1 3x107* | 3x107?
2 99 1071 107 3x1072
3 16 1072 3x10°° 1072
4 938 1073 1077 1073
5 29 107 1078 1073
6 145 0 10710 107¢

Table 5.1-3. The adaptive schedule of noisy X gate.

37

doi:10.6342/NTU202400695

Infidelity

0 100

200
Iteration

Figure 5.1-4. The learning curve of ideal X gate.

Infidelity
=)

300 400

T T I T

il

— Ideal “

— Noisy

— Weighted

0 2000 4000 8000 10000
Iteration

Figure 5.1-5. The learning curves of noisy X gate. These infidelities are defined in Sec.

4.2.2.

38

doi:10.6342/NTU202400695

—— Ideal
—— Noisy

=3 _‘_|—

0.0 0.2 0.4 0.6 0.8 1.0
Gate time

Figure 5.1-6. The control pulse of ideal and noisy X gates.

Ensemble infidelity

10 10 10" 102 10"
Noise standard deviation

Figure 5.1-7. The ensemble infidelity versus noise standard deviation of ideal and noisy

X gates.

39

doi:10.6342/NTU202400695

5.2 H gate

The matrix form of target H gate is,

! [1 1] (5.2-1)

— 2l -1

According to an off-resonant driving field with a detuning A in Eq. (3.3-13), our
effective control Hamiltonian is,
T
H(t) = 5 Az +a®)X) , (5.2-2)
where Q(t) € {py, Pz, .., n} is in the PWC control protocol. The all settings are similar
to those in the X gate learning. However, the extra Z operator restricts the lower bound
of gate time and makes a control more difficult by requiring a coefficient match between

the Z and X operators.

5.2.1 Trivial case

In the trivial case of H gate, we as well adopt the automatic adaptive learning and
set T to be the minimal required gate time 1/+/2. The other settings shown in Table
5.2-1 are the same as the trivial X gate in Sec. 5.1.1. The results shown from Figure 5.2-1

to Figure 5.2-3 are also similar to trivial X gate.

40

doi:10.6342/NTU202400695

Parameter Value
T 1/V2
N 1
Pulse boundary [-4, 4]
Policy network size (4,4)
Value network size 4,4)
Number of collections 30
Number of epochs 10
Batch size All
Initial Ir 100
Initial o, 3x1071

Table 5.2-1. The setting of trivial one-step ideal H gate.

Infidelity

0 5 10 15 20 25 30 35
Iteration

Figure 5.2-1. The learning curve of trivial H gate.

41

doi:10.6342/NTU202400695

X10 +1

1.0

0T 01 02 03 04 05 06 07
Gate time

Figure 5.2-2. The control pulse of trivial H gate.

[—
(=)
(=)

._.
o
B8

Ensemble infidelity
=

10" 10° 10" 102 10°

Noise standard deviation

Figure 5.2-3. The ensemble infidelity versus noise standard deviation of trivial H gate.

42

doi:10.6342/NTU202400695

5.2.2 Ideal and noisy cases

To construct a robust H gate in the QSN environment with gy = 1071, the
minimal gate time 1/4/2 in the previous trivial case is no longer enough, so we set T =
4. Furthermore, though a large N may make the control more complicated, we set N =
16 such that it provides more control degrees of freedom and effective higher pulse
frequencies to conquer the noise. We also enlarge network sizes to (32, 32) to tackle the
sophisticated control of the large N. Similar to the ideal and noisy X gates in Sec. 5.1.2,
we adopt the automatic adaptive learning in the ideal H gate, while manually adjust Ir,
o, and wy in the noisy one. The common settings of two cases are shown in Table 5.2-2,
the adaptive schedule of noisy case is shown in Table 5.2-3, and the results are shown
from Figure 5.2-4 to Figure 6-5.

Comparing the learning curves in Figure 5.2-4 and Figure 5.2-5, the ideal case
adopting the automatic adaptive learning reaches 10~1° in short iterations. The noisy
case takes most of the time at the stage-1 learning, trying to optimize the ideal and noisy
infidelities simultaneously. The two pulses in Figure 5.2-6 look very different with one
flat and the other wiggled. Finally, in Figure 5.2-7, though the noisy case sacrifices its
ideal infidelity as 5 X 10710, it owns the robust 4th noise order behavior in the large ay
region.

43

doi:10.6342/NTU202400695

Table 5.2-2. The common settings of ideal and noisy H gates.

Parameter Value
T 1.0
N 8
Pulse boundary [-4, 4]
Policy network size (32, 32)
Value network size (32, 32)
Number of collections 30
Number of epochs 10
Batch size All
Initial Ir 3x107*
Initial o, 3x1071

Number of . o
Stage .) Wy Initial Ir | Initial o,
1terations
1 6845 1 3x107* | 3x107?
2 1309 1071 107° 5x 1071
3 201 1072 107° 1072
4 45 1073 1077 1072
5 403 107 1078 1072
6 725 0 107° 1074

Table 5.2-3. The adaptive schedule of noisy H gate.

44

doi:10.6342/NTU202400695

Infidelity

Figure 5.2-4. The learning curve of ideal H gate.

0 250 500

750

1000
Iteration

1250

1500

10°
-3
10
2
S
o
R
10 —— Ideal
— Noisy
10° —— Weighted
0 2000 4000 6000 8000
Iteration

10000

Figure 5.2-5. The learning curves of noisy H gate. These infidelities are defined in Sec.

4.2.2.

45

doi:10.6342/NTU202400695

4
3 —— Ideal
5] — Noisy
1

c 0
-2
400 0.2 0.4 0.6 0.8 1.0

Gate time

Figure 5.2-6. The control pulse of ideal and noisy H gates.

Ensemble infidelity

10 10 10" 102 10°
Noise standard deviation

Figure 5.2-7. The ensemble infidelity versus noise standard deviation of ideal and noisy

H gates.

46

doi:10.6342/NTU202400695

5.3 CNOT gate

The matrix form of target CNOT gate is,

100 0
_lo 1 0 o0

CNOT=|5 o o 1 (5.3-1)
001 0

According to Eq. (3.3-16) with the same detuning A on qubits, our effective two-qubit
control Hamiltonian is,

H(®) = 5 (0 (OX, + 02, + 0,(0X, + 82, + (D47, | (5.3-2)
where we define a M = 3 pulse vector q(t) = (Ql(t),ﬂz(t),](t)) € {p1, P2 -, 0N}
with p; = (Qu; Oy,]l-) in the PWC protocol. For CNOT gate, we conduct only the
ideal and noisy cases with oy = 1072. Our Hamiltonian has two Z operators Z; and
Z, where we exert the noises on both of them in the QSN model. We set T = 4 and
N = 16. The network sizes are enlarged to (128, 128) since an agent’s pulse sequence
observation is now as large as 48 with N =16 and M = 3. Besides, the control
problems get so difficult that we give up the automatic adaptive learning in the ideal case
and turn to the manual one in both cases. The common settings are shown in Table 5.3-1.
The common settings of ideal and noisy CNOT gates. The adaptive schedules of ideal
and noisy cases are respectively shown in Table 5.3-2 and Table 5.3-3. The comparisons
of noise learning are shown from Figure 5.3-1 to Figure 5.3-4.

Comparing the learning curves in Figure 5.3-1 and Figure 5.3-2, without the merit

47

doi:10.6342/NTU202400695

of automatic adaptive learning, two cases both reach the ideal infidelities around 1071°

in long iterations, but the noisy one takes more longer to also optimize the noisy infidelity.

The pulses of noisy case wiggle strongly opposite to the ideal ones in Figure 5.3-3. These

robust pulses, though unable to possess the 4th noise order behavior like those in X and

H gates, still reduce the two orders of magnitude in 2nd order noise from the ideal case

in Figure 5.3-4.

Parameter Value
T 4.0
N 16
Pulse boundary [-4, 4]
Policy network size (128, 128)
Value network size (128, 128)
Number of collections 30
Number of epochs 10
Batch size All

Table 5.3-1. The common settings of ideal and noisy CNOT gates.

48

doi:10.6342/NTU202400695

Number of . ..
Stage)) Initial Ir | Initial o,
1terations
1 3901 3x107* 1071
2 1941 10~5 3x10°3
3 10065 10°° 3x107*
4 8130 107° 3x107°
5 18747 3x10711 | 3x10°°

Table 5.3-2. The adaptive schedule of ideal CNOT gate.

Stage I\‘Iumb'er of Wy Initial Ir | Initial o,
1terations
1 8597 102 1074 1071
2 19905 102 1075 1072
3 14444 10t 107¢ 1073
4 407 1 3x1077 | 3x107*
5 17422 1071 1077 1074
6 19522 1072 1077 1074
7 1795 1073 3x10710 1075
8 3078 1074 3x10710 1075
9 9606 0 3x10710 1075
10 13995 0 3x10711 | 3x107°

Table 5.3-3. The adaptive schedule of noisy CNOT gate.

49

doi:10.6342/NTU202400695

10

._.
S
B

Infidelity
|

—
o

10

10000

20000

Iteration

30000 40000

Figure 5.3-1. The learning curve of ideal CNOT gate.

Infidelity

— Ideal
—— Noisy

—— Weighted

20000

40000
Iteration

80000 100000

Figure 5.3-2. The learning curve of noisy CNOT gate. These infidelities are defined in

Sec. 4.2.2.

50

doi:10.6342/NTU202400695

—— Ideal
2 —— Noisy
S 0
4700 0.2 0.4 0.6 0.8 1.0
Gate time
4
z L
a 0
-2
400 0.2 0.4 0.6 0.8 1.0
Gate time
4
2
- 0 :lfzzé— H
-2
400 0.2 0.4 0.6 0.8 1.0
Gate time

Figure 5.3-3. The control pulses of ideal and noisy CNOT gates.

51

doi:10.6342/NTU202400695

[—
(=)
(=)

[—
oI
ro

Ensemble infidelity
5]
ey

10 10 107" 10 10
Noise standard deviation

Figure 5.3-4. The ensemble infidelity versus noise standard deviation of ideal and noisy

CNOT gates.

52

doi:10.6342/NTU202400695

Chapter 6 Discussion

In this Chapter, we discuss factors that could affect the control complexity for the
PPO agents. The first factor is the number of PWC steps N. For the trivial one-step X
and H gates in Secs. 5.1.1 and 5.2.1, we set a really large initial learning rate Ir = 1
such that these learnings take only within 40 iterations. As N goes up to 8 or 16, we must
decrease the initial [r = 3 X 10™* to let the agents take their time to learn the relation
between each step. The second factor is the Hamiltonian. For the ideal cases of the X
and H gates in Secs. 5.1.2 and 5.2.2, their Hamiltonians are simple, containing only one
control parameter. We are able to adopt the automatic adaptive learning which swiftly
converges the learning. For the Hamiltonian of two-qubit CNOT gate in Sec. 5.3, even
though the environment is ideal, the automatic adaptive learning fails. The final factor is
whether the environment is ideal or noisy. For these three gates in a noisy environment,
we all adopt the manual adaptive learning with a large number of learning iterations.

In the below comparisons of pulses and noise tests before and after lowering the
noisy weights wy in their adaptive schedules of X, H and CNOT gates from Figure
6-1 to Figure 6-6, we find that a pulse shape is determined at the very beginning of
learning for which the weighted ideal and noisy infidelities must be comparable.
Otherwise, an agent will incline to focus on learning the one with a larger weight in a

reward and be stuck in a sub-optimal control minimum. The learning stages later on where

53

doi:10.6342/NTU202400695

we decrease noise weight wy are meant to lower the ideal infidelity while retaining a

robust behavior.

We attribute the success of constructing robust quantum gates to five reasons, all

introduced in Chapter 4. First, the environment observation of pulse sequence rather than

quantum states in Sec. 4.1 enables an agent to control a quantum gate without the need to

know the underlying quantum dynamic. Especially in a noisy case, if a sampled QSN

comes into an agent’s policy network, its output changes consequently after each episode,

and one could not get a unique robust pulse. Second, the sampling-based ensemble

infidelity in Sec. 4.2.1 reliefs the computational burden of introducing noise information

into a reward when training an agent. Third, the weighted infidelity in Sec. 4.2.2 makes

the ideal and noisy infidelities play comparable roles in a reward, though not knowing an

actual oy of the environment. Also, we can further adjust them when we want to, for

example, focus on lowering the ideal infidelity. Fourth, the zero-pulse initialization in Sec.

4.3.2 makes an agent get a flip-flop pulse more possible. Finally, the adaptive learning in

Sec. 4.4 serves as a strategy to converge a learning to a really low infidelity. All these

techniques work together to make constructing robust quantum gates by RL possible.

54

doi:10.6342/NTU202400695

4

3| = Before

5 — After

1 —=
c 0

-1

-2

-3 I.——-.‘___q-_-

400 0.2 0.4 0.6 0.8 1.0

Gate time

Figure 6-1. The control pulses of noisy X gate before and after lowering the noisy weight.

4
3 == == Before
5 — After
1
c 0
1 .
b aa
-3
00 0.2 0.4 0.6 0.8 1.0

Gate time

Figure 6-2. The control pulses of noisy H gate before and after lowering the noisy weight.

55

doi:10.6342/NTU202400695

| — = Bef
o I L = ==} __ A;:rre
g o r_r—’—-

-2
700 0.2 0.4 0.6 0.8 1.0
Gate time
4 1
N
4700 0.2 0.4 0.6 0.8 1.0
Gate time
4
2_
=0 -—l—‘_r"—'—‘——‘ o =
-1
400 0.2 0.4 0.6 0.8 1.0
Gate time

Figure 6-3. The control pulses of noisy CNOT gate before and after lowering the noisy

weight.

56

doi:10.6342/NTU202400695

—_
(=)
=

._.
o
ds

._.
o
EN

._.
o
&

Ensemble infidelity

—_

o I
—
ro

|
w

—_
o

10 10 10 10 10
Noise standard deviation

Figure 6-4. The ensemble infidelity versus noise standard deviation of noisy X gates

before and after lowering the noisy weight.

10

|
=~

Ensemble infidelity
=)

) S Est. Ja
I,’ Before
- J —— After
1 0_1 0 ! ! ! /I | [
10" 10° 107 10 10"

Noise standard deviation

Figure 6-5. The ensemble infidelity versus noise standard deviation of noisy H gates

before and after lowering the noisy weight.

57

doi:10.6342/NTU202400695

10°
>
S
S . 4
E 10
©
s
2 107 am— Est. Ja
= Before
— After
1001 — | , '
10" 10° 10 102 10°

Noise standard deviation

Figure 6-6. The ensemble infidelity versus noise standard deviation of noisy CNOT gates

before and after lowering the noisy weight.

58

doi:10.6342/NTU202400695

Chapter 7 Conclusion

We give a brief summary of the thesis here. We have established an DRL control of
robust quantum gates in the presence of QSN. We have used the PPO algorithm with the
actor-critic model for the DRL agent to learn an optimal control policy under the policy
gradient framework. Our PPO DRL agent does not need to have prior knowledge of any
quantum system dynamics or noise information, but only a control pulse sequence as an
observation (Sec. 4.1). With the adaptive learning (Sec. 4.4), we have constructed the
ideal X, H and CNOT gates with lowest ideal infidelities of 10715, 107> and
10719 respectively, in contrast to those in [4][5][6], meeting the performance in [7].

As for the noise-learning, with our design of weighted infidelity (Sec. 4.2.2) and
zero-pulse initialization (Sec. 4.3.2), we have constructed robust quantum gates capable
of suppressing the 2nd to 4th order effects of the noise. Our RL method performs better
than other machine learning methods that deal with even the ideal noiseless case [8][24].
Even at a large standard deviation of the noise strength of gy = 107!, ensemble gate
infidelities < 1073, lower than the error threshold of surface code of quantum error
correction for fault-tolerant quantum computation [24], can still be achieved.

Though the performance of our RL method is not superior to the quantum optimal
control method employing classical optimization algorithms, such as the Nelder-Mead

optimization algorithm [14], in the noisy cases, our RL method generates a control policy

59

doi:10.6342/NTU202400695

that does not rely on the detailed information of the noise properties and underlying

quantum system dynamics required in the quantum optimal control theory. Our study is a

preliminary attempt of applying the DRL agent to perform quantum gates in a noisy

environment, and we have shown that it works for the QSN. Future work is to extend the

applicability of our method from the QSN investigated here to other more general noises,

making it particularly useful for the system and noise models that are not exactly known.

In addition, our study so far has focused on constructing high-fidelity robust quantum

gates at the pulse level with a PPO DRL agent, and have not exploited the flexibility of

employing other possible ML algorithms. For example, the pulse sequence observation

in our study scales with the size of observation N, and we may use recurrent neural

networks as agent’s networks to overcome this problem. We also believe that it is

promising to apply the ML methods at the gate level for more general and broader

quantum control and quantum computing tasks.

60

doi:10.6342/NTU202400695

Reference

[1] Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484-1509.

[2] Grover, L. K. (1996). A fast quantum mechanical algorithm for database search.
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
212-219.

[3] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017) Proximal
policy optimization algorithms. arXiv:1707.06347.

[4] An, Z. & Zhou, D. (2019). Deep reinforcement learning for quantum gate control.
Europhysics Letters, 126, 60002.

[5] Bukov, M., Day, A. G. R., Sels, D., Weinberg, P., Polkovnikov, A. & Mehta, P.
(2018). Reinforcement Learning in Different Phases of Quantum Control. Physical
Review X, 8, 031086.

[6] Daraeizadeh, S., Premaratne, S. P. & Matsuura, A. Y. (2020). Designing high-
fidelity multi-qubit gates for semiconductor quantum dots through deep
reinforcement learning. 2020 [EEE International Conference on Quantum
Computing and Engineering (QCE), 2020, 30-36.

[7] Lin, J. H. (2022). Simulation of Quantum Gate Control via Proximal Policy

Optimization Algorithm [master's thesis, National Taiwan University]. Airiti

61

doi:10.6342/NTU202400695

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Library. https://doi.org/10.6342/NTU202104530

Niu, M. Y., Boixo, S., Smelyanskiy, V. N. & Neven, H. (2019). Universal quantum

control through deep reinforcement learning. NPJ Quantum Information, 5, 33.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, 1., Lai, M., Guez, A., Lanctot,

M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K. & Hassabis, D.

(2017). Mastering chess and shogi by self-play with a general reinforcement

learning algorithm. arXiv:1712.01815.

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2018). High-

dimensional continuous control using generalized advantage estimation.

arXiv:1506.02438.

Sarkar, S., Paruchuri, P. & Khaneja, N. (2021). Error Analysis of Rotating Wave

Approximation in Control of Spins in Nuclear Magnetic Resonance Spectroscopy.

60th IEEE Conference on Decision and Control (CDC), 2021, 605-610.

Schuch, N. & Siewert, J. (2003). Natural two-qubit gate for quantum computation

using the XY interaction. Physical Review A, 67, 032301.

Long, J., Zhao, T., Bal, M., Zhao, R., Barron, G. S., Ku, H. S., ... Pappas, D. P.

(2021). A universal quantum gate set for transmon qubits with strong ZZ

interactions. arXiv:2103.12305.

Orlando, T. P., Mooij, J. E., Tian, L., van der Wal, C. H., Levitov, L. S., Lloyd, S.,

62

doi:10.6342/NTU202400695

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

& Mazo, J. J. (1999). Superconducting persistent-current qubit. Physics Review

B, 60, 15398.

Porras, D. & Cirac, J. I. (2004). Effective Quantum Spin Systems with Trapped lons.

Physics Review Letters, 92, 207901.

Britton, J. W., Sawyer, B. C., Keith, A., Wang, C.-C. J., Freericks, J. K., Uys, H,, ...

Bollinger, J. J. (2012). Engineered two-dimensional Ising interactions in a trapped-

ion quantum simulator with hundreds of spins. Nature, 484, 489—492.

Simon, J., Bakr, W. S., Ma, R., Tai, M. E., Preiss, P. M. & Greiner, M. (2011).

Quantum simulation of antiferromagnetic spin chains in an optical

lattice. Nature, 472, 307-312.

Hahn, E. L. (1950). Spin echoes. Physical Review, 80, 580.

Viola, L., Knill, E. & Lloyd, S. (1999). Dynamical Decoupling of Open Quantum

Systems. Physical Review Letters, 82(12), 2417-2421.

Huang, C. H. & Goan, H. S. (2017). Robust quantum gates for stochastic time-

varying noise. Physical Review A, 95, 062325.

Dyson, F. J. (1949). The radiation theories of Tomonaga, Schwinger, and Feynman.

Physical Review, 75, 486.

Chen, C. L., Dong, D. Y.,Long, R. X, Ian R. Petersen, I. R. & Rabitz, H. A. (2014).

Sampling-based learning control of inhomogeneous quantum ensembles. Physical

63

doi:10.6342/NTU202400695

Review A4, 89, 023402.

[23] Kingma, D. P. & Ba, J. (2014). Adam: A Method for Stochastic Optimization.

arXiv:1412.6980.

[24] Baum, Y., Amico, M., Howell, S., Hush, M., Maggie Liuzzi, M., Mundada, P.,

Merkh, T., Carvalho, A. R. R. & Biercuk, M. J. (2021). Experimental Deep

Reinforcement Learning for Error-Robust Gate-Set Design on a Superconducting

Quantum Computer. Physical Review X Quantum, 2, 040324.

[25] Gottesman, D. (2009). An introduction to quantum error correction and fault-

tolerant quantum computation. arXiv:0904.2557.

64

doi:10.6342/NTU202400695

