
doi:10.6342/NTU202400695

國立臺灣大學理學院物理學研究所

碩士論文

Department of Physics

College of Science

National Taiwan University

Master’s Thesis

以深度強化學習實現抗噪量子閘

Robust quantum gates by deep reinforcement learning

林晉揚

Chin-Yang Lin

指導教授：管希聖 博士

Advisor: Hsi-Sheng Goan, Ph.D.

中華民國 113 月 1 月

January, 2024

doi:10.6342/NTU202400695

 i

口試委員審定書

doi:10.6342/NTU202400695

 ii

摘要
量子計算在加密、金融、科學模擬等領域革新中深具潛力，然而現實世界中，

量子硬體的雜訊會嚴重地妨礙實行量子演算法，因此實現抗噪量子閘是使量子計

算發揮成效的重要前提。本文以創新的方法將量子控制問題整合進強化學習框架

中，並使用一種稱為近似策略最佳化的強化學習演算法配合深度神經網路，建立出

容錯量子計算所需的高保真、抗雜訊的量子閘。

關鍵字：強化學習、機器學習、神經網路、近似策略最佳化、量子控制、抗噪量子

閘

doi:10.6342/NTU202400695

 iii

Abstract

Quantum computing holds immense promise to revolutionize several industries such

as cryptography, finance, scientific simulations and so on. However, the real-world

application of quantum algorithms is severely hindered by the presence of noise in

quantum hardware. Achieving noise-robust quantum gates is an important prerequisite to

harness the power of quantum computing. This thesis presents an innovative way to

address the challenge by mapping the quantum gate control problem into the

reinforcement learning (RL) framework. Utilizing a RL algorithm called proximal policy

optimization equipped with deep neural networks, we achieve constructing high-fidelity

and robust single-qubit and two-qubit quantum gates in the presence of quasi-static noise,

paving the way for fault-tolerant quantum computation.

Keywords: Reinforcement learning, Machine learning, Neural networks, Proximal policy

optimization, Quantum control, Robust quantum gates

doi:10.6342/NTU202400695

 iv

Contents

口試委員審定書 ... i

摘要 .. ii

Abstract .. iii

Contents ... iv

List of figures .. vii

List of tables ... x

Chapter 1 Introduction .. 1

Chapter 2 Deep reinforcement learning .. 4

2.1 Reinforcement learning .. 4

2.2 Markov decision process .. 5

2.3 Proximal policy optimization ... 5

2.4 Value function ... 7

2.5 Advantage function ... 8

2.5.1 Temporal difference error ... 8

2.5.2 General advantage estimation ... 8

2.6 Deep neural network ... 10

Chapter 3 Quantum computing ... 12

3.1 Qubit ... 12

doi:10.6342/NTU202400695

 v

3.2 Quantum gate .. 13

3.3 Quantum control ... 13

3.3.1 Hamiltonian and propagator ... 13

3.3.2 Rotating wave approximation ... 14

3.3.3 Effective control Hamiltonian .. 16

3.3.4 Piecewise constant control .. 18

3.3.5 Exponential of Pauli vector .. 18

3.3.6 Dynamic decoupling ... 19

3.4 Gate infidelity ... 19

3.4.1 Definition of infidelity .. 19

3.4.2 Dyson expansion ... 20

3.5 Quasistatic noise model .. 22

3.6 Gate infidelity estimation ... 23

3.6.1 Noise contribution .. 23

3.6.2 Control deviation .. 24

Chapter 4 Integration ... 25

4.1 Framework mapping ... 25

4.2 Reward design .. 26

4.2.1 Sampling-based method ... 26

doi:10.6342/NTU202400695

 vi

4.2.2 Weighted infidelity ... 27

4.2.3 Hyperparameters 𝛾 and λ ... 28

4.3 Neural network design .. 28

4.3.1 Network size ... 28

4.3.2 Network initialization ... 29

4.4 Adaptive learning ... 30

Chapter 5 Result .. 31

5.1 𝑋 gate ... 31

5.1.1 Trivial case .. 32

5.1.2 Ideal and noisy cases .. 35

5.2 𝐻 gate .. 40

5.2.1 Trivial case .. 40

5.2.2 Ideal and noisy cases .. 43

5.3 CNOT gate .. 47

Chapter 6 Discussion ... 53

Chapter 7 Conclusion .. 59

Reference .. 61

doi:10.6342/NTU202400695

 vii

List of figures

Figure 5.1-1. The learning curves of trivial 𝑋 gates with and without the automatic

adaptive learning. .. 34

Figure 5.1-2. The one-step control pulses of trivial 𝑋 gates with and without the

automatic adaptive learning. ... 34

Figure 5.1-3. The ensemble infidelity versus noise standard deviation of trivial 𝑋 gates

with and without the automatic adaptive learning. 35

Figure 5.1-4. The learning curve of ideal 𝑋 gate. ... 38

Figure 5.1-5. The learning curves of noisy 𝑋 gate. These infidelities are defined in Sec.

4.2.2. ... 38

Figure 5.1-6. The control pulse of ideal and noisy 𝑋 gates. ... 39

Figure 5.1-7. The ensemble infidelity versus noise standard deviation of ideal and noisy

𝑋 gates. .. 39

Figure 5.2-1. The learning curve of trivial 𝐻 gate. ... 41

Figure 5.2-2. The control pulse of trivial 𝐻 gate. ... 42

Figure 5.2-3. The ensemble infidelity versus noise standard deviation of trivial 𝐻 gate.

 .. 42

Figure 5.2-4. The learning curve of ideal 𝐻 gate. .. 45

Figure 5.2-5. The learning curves of noisy 𝐻 gate. These infidelities are defined in Sec.

doi:10.6342/NTU202400695

 viii

4.2.2. ... 45

Figure 5.2-6. The control pulse of ideal and noisy 𝐻 gates. ... 46

Figure 5.2-7. The ensemble infidelity versus noise standard deviation of ideal and noisy

𝐻 gates. .. 46

Figure 5.3-1. The learning curve of ideal CNOT gate. .. 50

Figure 5.3-2. The learning curve of noisy CNOT gate. These infidelities are defined in

Sec. 4.2.2. ... 50

Figure 5.3-3. The control pulses of ideal and noisy CNOT gates. 51

Figure 5.3-4. The ensemble infidelity versus noise standard deviation of ideal and noisy

CNOT gates. ... 52

Figure 6-1. The control pulses of noisy 𝑋 gate before and after lowering the noisy weight.

 .. 55

Figure 6-2. The control pulses of noisy 𝐻 gate before and after lowering the noisy weight.

 .. 55

Figure 6-3. The control pulses of noisy CNOT gate before and after lowering the noisy

weight. .. 56

Figure 6-4. The ensemble infidelity versus noise standard deviation of noisy 𝑋 gates

before and after lowering the noisy weight. ... 57

Figure 6-5. The ensemble infidelity versus noise standard deviation of noisy 𝐻 gates

doi:10.6342/NTU202400695

 ix

before and after lowering the noisy weight. ... 57

Figure 6-6. The ensemble infidelity versus noise standard deviation of noisy CNOT gates

before and after lowering the noisy weight. ... 58

doi:10.6342/NTU202400695

 x

List of tables

Table 5.1-1. The setting of trivial 𝑋 gate. ... 33

Table 5.1-2. The common settings of ideal and noisy 𝑋 gates. 37

Table 5.1-3. The adaptive schedule of noisy 𝑋 gate. .. 37

Table 5.2-1. The setting of trivial one-step ideal 𝐻 gate. ... 41

Table 5.2-2. The common settings of ideal and noisy 𝐻 gates. 44

Table 5.2-3. The adaptive schedule of noisy 𝐻 gate. .. 44

Table 5.3-1. The common settings of ideal and noisy CNOT gates. 48

Table 5.3-2. The adaptive schedule of ideal CNOT gate. .. 49

Table 5.3-3. The adaptive schedule of noisy CNOT gate. ... 49

doi:10.6342/NTU202400695

 1

Chapter 1 Introduction

Quantum computing is a cutting-edge technology that leverages the laws of quantum

mechanics to process and store information. Unlike a classical computer which uses either

one of Boolean states to represent information, a quantum computer utilizes superposition

of states along with quantum entanglement. Several quantum algorithms have been

theoretically proved to outperform their classical counterparts for some problems. For

example, Shor’s algorithm factorizes integers within only polynomial time [1]. Grover’s

algorithm searches an unsorted database with a quadratic speed up [2]. Quantum

computing with fast and efficient quantum algorithms provides a paradigm shift that

promises to potentially impact numerous domains like cryptography, finance and drug

industry. To realize the power of quantum computing, it is important to build a set of high-

fidelity and noise-robust quantum gates in real-world quantum computers.

Recently, machine learning (ML) has been rapidly developed and widely applied in

many versatile domains. ML algorithms seek to identify patterns and make predictions

based on a large amount of data they have learned. There are three types of ML:

supervised learning, unsupervised learning and reinforcement learning (RL). We here

choose the RL method to address the challenge of constructing robust high-fidelity

quantum gates. Equipped with deep neural networks (DNN), deep reinforcement learning

(DRL) agents are able to plan policies or make estimations when interacting with the

doi:10.6342/NTU202400695

 2

environment. Mapping the quantum gate control problem into the RL framework, we use

a RL algorithm called proximal policy optimization (PPO) [3], to optimize the piecewise

constant (PWC) control pulses, generating a set of robust quantum gates with fidelities

beyond the fault-tolerant threshold of quantum error correction for generic qubit models

in the presence of quasi-static noise (QSN).

Some research groups have also applied the DRL method to the optimal control of

quantum gates in an ideal environment with infidelities around 10!" to 10!# [4][5][6].

Lin (2022) has constructed the ideal X, H and CNOT gates with the lowest ideal

infidelities as 10!$%, 10!$% and 10!$&, respectively by the same PPO DRL algorithm

[7]. Niu et al. (2019) have used the similar policy optimization DRL algorithm

to construct a two-qubit gates in a noisy environment, but they introduce the time-varying

noise into their deep neural network (DNN) model such that the output control pulses will

alter with the unknown noise, not giving the unique robust pulses [8]. In this thesis, we

give a preliminary attempt of applying the PPO DRL agent to perform robust high-fidelity

quantum gates in a noisy environment, and we have shown that it works for the

QSN. Moreover, most of these DRL approaches [4][8] use the quantum states of the qubit

systems as environment observations, requiring knowing the underlying quantum

dynamics. In contrast, the environment observations for our DRL agent are the control

pulse strengths, which are more feasible and practical for the realistic control

doi:10.6342/NTU202400695

 3

experiments.

We organize the thesis as follows. First, we introduce the DRL in Chapter 2. Next,

we describe the quantum gate control problem in Chapter 3. Then, we integrate the control

problem into the DRL framework in Chapter 4, and construct three iconic quantum gates,

namely X, H and CNOT gates, in the presence of noise in Chapter 5. Finally, we discuss

these results in Chapter 6, and finally we conclude our work in Chapter 7.

doi:10.6342/NTU202400695

 4

Chapter 2 Deep reinforcement learning

2.1 Reinforcement learning

Inspired by behavioral psychology, reinforcement learning focuses on training an

intelligent agent to act responses to its observations in order to maximize a cumulative

reward. We first introduce some terminologies and their relationships in RL:

State (𝑠): It is a representation of an environment at a certain time 𝑡. To be more specific,

information of state that is fully or partially observed by an agent is called an observation

𝑜. However, state 𝑠 and observation 𝑜 are usually interchangeable in the RL notation.

Action (𝑎): It is a decision made by an agent to interact with an environment.

Policy (𝜋): It is a deterministic or stochastic strategy that defines an agent's behavior,

mapping states to actions, 𝑎'~𝜋(⋅|𝑠').

State transition (𝑃): Given a current state 𝑠' and an agent’s action 𝑎', it tells how an

environment maps them to a next state 𝑠'($~𝑃(⋅ |𝑠' , 𝑎').

Reward (𝑟): It is a numerical value that an environment provides after each agent’s action,

serving as feedback.

RL is classified into two main taxonomies, model-based and model-free, by telling

whether a RL agent learns a model of environment or not. With a learned model, a model-

based RL owns sample efficiency and allows an agent to plan ahead. A famous example

doi:10.6342/NTU202400695

 5

of this kind is Google DeepMind’s AlphaZero [9]. However, model-learning is not an

easy task, a model-free RL agent is instead easier to train. A model-free RL agent can be

further classified into policy-based or value-based. A policy-based agent directly learns

policies to take responses, while a value-based one make decision according to its

estimation of options. We here choose the model-free approach, called proximal policy

optimization (PPO) with actor-critic style implementation which leverages both merits of

policy-based and value-based algorithms.

2.2 Markov decision process

Markov decision process (MDP) refers to a state transition 𝑃 of environment

obeying Markov property. It says that a future state of an environment depends only on a

current state and action, not on an entire history of states and actions. Though not being

a strict requirement, MDP is widely used in RL because it provides a well-defined

structure of environment.

2.3 Proximal policy optimization

 PPO is known for its stability, robustness, and ease of implementation. It is an on-

policy agent who updates its policy typically by taking several epochs of objective

doi:10.6342/NTU202400695

 6

maximization with a batch of data collected by its current policy,

𝜃)($ = argmax
*
𝔼+,-~/!"	[𝐿(𝑠, 𝑎, 𝜃) , 𝜃)]		, (2.3-1)

where 𝔼 is the expectation function, 𝜋 is PPO’s stochastic policy whose implicit

parameters are 𝜃 with the subscript index 𝑘 denoting generations of policies. The

objective function 𝐿(𝜃) is,

min H
𝜋*(𝑎|𝑠)
𝜋*"(𝑎|𝑠)

𝐴(𝑠, 𝑎), clip M
𝜋*(𝑎|𝑠)
𝜋*"(𝑎|𝑠)

, 1 − 𝜖, 1 + 𝜖Q𝐴(𝑠, 𝑎)R		, (2.3-2)

where clip is a function that clip the first argument between the second and the third

ones, 𝜖 is a small-value hyperparameter that limits updating policy parameters, 𝐴(𝑠, 𝑎)

is an advantage function that estimates how good an action 𝑎 is. To understand what 𝐿

is doing, we first define a ratio,

𝑟(𝑠, 𝑎, 𝜃) , 𝜃) =
𝜋*(𝑎|𝑠)
𝜋*"(𝑎|𝑠)

		. (2.3-3)

Taking a positive 𝐴(𝑠, 𝑎) as an example, we certainly hope that probability of taking the

action 𝑎 is as high as possible, that is, 𝑟 is far greater than one. However, a large update

from 𝜃) to 𝜃 can bring training instability, we clip 𝑟 by 1 + 𝜖 such that a new policy

does not benefit by going far away from the current one. The overall PPO algorithm is

shown in Algorithm 1.

doi:10.6342/NTU202400695

 7

2.4 Value function

To determine the design of advantage function 𝐴(𝑠, 𝑎), we recall the goal of RL is

to maximize the cumulative reward, or called return,

𝐺' =U𝛾) ⋅ 𝑟'()

0

)12

		, (2.4-1)

where 𝛾 ∈ [0, 1] introduced here is a future discount factor that reflects preference of an

immediate reward or is mathematically designed to avoid divergence of an infinite sum.

Nevertheless, PPO’s policy as well as the state transition function 𝑃 of an environment

is stochastic. We are not going to focus on only one trajectory of rewards but an expected

one,

𝔼+,-~/,3 WU𝛾) ⋅ 𝑟'()

0

)12

X		. (2.4-2)

Practically, it is still hardly possible to exactly calculate this expected value which

requires traversing all of attainable trajectories. Given an agent taking action by its policy

𝜋	and starting at the state 𝑠', we use an estimator called value function to approximate

the expected value,

𝑉(𝑠') = 𝔼+,-~/ WU𝛾) ⋅ 𝑟'()

0

)12

X		. (2.4-3)

With the value function 𝑉(𝑠') , we can estimate consequences of choosing different

actions. For example, starting at the state 𝑠2, there are two actions 𝑎$ and 𝑎& that lead

doi:10.6342/NTU202400695

 8

us to the states 𝑠$ and 𝑠& with the values 𝑣$ = 𝑉(𝑠$) and 𝑣& = 𝑉(𝑠&) respectively.

The PPO agent then updates the probabilities of these two actions according to their

consequent values.

2.5 Advantage function

2.5.1 Temporal difference error

Sometimes, we are not concerned about the goodness of actions in absolute sense

which directly consider the consequent value 𝑉(𝑠'($). Instead, we want to update a

policy such that it increases probability of better-than-average actions and decreases

opposite ones. We use temporal difference (TD) error,

𝛿'4 = 𝑟' + 𝛾 ⋅ 𝑉(𝑠'($) − 𝑉(𝑠')		, (2.5-1)

to be an advantage function estimation 𝐴'
($) of a one-step action 𝑎'. The first two terms

𝑟' + 𝛾 ⋅ 𝑉(𝑠'($) is the estimated value at the state 𝑠' when we intentionally choose the

action 𝑎', while the last term 𝑉(𝑠') is the overall estimated value at the state 𝑠'.

2.5.2 General advantage estimation

We can similarly calculate following advantage function estimations if we further

take actions 𝑎'($, 𝑎'(&, and all the way up to the final state,

doi:10.6342/NTU202400695

 9

𝐴'
($) = 𝛿'4 = −𝑉(𝑠') + 𝑟' + 𝑉(𝑠'($)		,	

𝐴'
(&) = 𝛿'4 + 𝛾 ⋅ 𝛿'($4 = −𝑉(𝑠') + 𝑟' + 𝛾 ⋅ 𝑟'($ + 𝛾& ⋅ 𝑉(𝑠'(&)		,	

𝐴'
(") = 𝛿'4 + 𝛾 ⋅ 𝛿'($4 + 𝛾& ⋅ 𝛿'(&4 = −𝑉(𝑠') + 𝑟' + 𝛾 ⋅ 𝑟'($ + 𝛾& ⋅ 𝑟'($ + 𝛾" ⋅ 𝑉(𝑠'(&)		,	

										⋮

𝐴'
()) =U𝛾) ⋅ 𝛿'()4

)!$

)12

= −𝑉(𝑠') + 𝑟' + 𝛾 ⋅ 𝑟'($ +⋯+ 𝛾)!$ ⋅ 𝑟'()!$ + 𝑉(𝑠'())		.

(2.5-2)

We use generalized advantage estimator 𝐴'
789(:,;) to be our final advantage function

estimator 𝐴/!"(𝑠, 𝑎), which is defined as exponentially-weighted average of these above

𝑘-step advantage function estimators,

𝐴'
789(:,;) = (1 − 𝜆)_U𝜆)!$ ⋅ 𝐴'

())
0

)1$

` =U(𝛾𝜆)< ⋅ 𝛿'(<4
0

<12

		, (2.5-3)

where the parameter 𝜆 ∈ [0,1] controls a bias-variance tradeoff by discounting future

TD errors 𝛿'(<4 [10].

 From Eq. (2.5-2), we know that a return 𝐺') with definite rewards up to the 𝑘-step

is 𝐴'
()) + 𝑉(𝑠'). Similarly, we define a more general return,

𝐺'; = 𝐴'
789(:,;) + 𝑉(𝑠')		, (2.5-4)

called 𝜆-return.

doi:10.6342/NTU202400695

 10

2.6 Deep neural network

The policy function 𝜋*(𝑎|𝑠) and the value function 𝑉(𝑠') of PPO require

sophisticated mechanisms to map a state (observation) into an action probability

distribution and an estimated value of expected return respectively. It is barely possible

to directly record every relation of state, action and value into a large lookup table. Instead,

we utilize two deep neural networks (DNN), called policy (actor) network and value

(critic) network, to approximate the policy function 𝜋*(𝑎|𝑠) and the value functions

𝑉(𝑠') . In a policy network, there is an embedded network called action projection

network which projects quasi output of policy network to final output action that satisfies

an action spec of environment.

doi:10.6342/NTU202400695

 11

Algorithm 1 PPO with GAE

1. Initialize a replay buffer, an optimizer with learning rate 𝑙𝑟, an action standard
deviation 𝜎- , a policy network 𝜋* 	 and a value network 𝑉= 	 with network

parameters 𝜃	 and 𝜙.

2. For iteration = 1, 2, …:

3. Clear the replay buffer.

4. For number of data collections = 1, 2, …:

5. Run 𝜋*" in the environment to get a trajectory

of (𝑠', 𝑎', 𝜋*"(𝑎'|𝑠'), 𝑟').

6. Get values 𝑣' = 𝑉=(𝑠') to compute 𝐴!
"#$(&,() in Eq. (2.5-3)

and 𝐺'; in Eq. (2.5-4).

7. Add data (𝑠', 𝑎', 𝜋*"(𝑎'|𝑠'), 𝐴!
"#$(&,(), 𝐺';) to the replay buffer.

8. For number of epochs = 1, 2, …:

9. Randomly sample a batch of data from the replay buffer.

10. Get 𝜋*(𝑎'|𝑠') and 𝑉=(𝑠').

11. Get 𝐿(𝜃) in Eq. (2.3-2).

12. Get mean squared error:

𝐿(𝜙) =Ud𝐺'; − 𝑉=(𝑠')e
&
		.

13. Update 𝜋* and 𝑉= with the optimizer:

𝜃 ← 𝜃 + 𝑙𝑟 ⋅ ∇*𝐿(𝜃)		, 𝜙 ← 𝜙 − 𝑙𝑟 ⋅ ∇=𝐿(𝜙)		.

14. If using adaptive learning:

15. Update 𝑙𝑟 and/or 𝜎- .

doi:10.6342/NTU202400695

 12

Chapter 3 Quantum computing

3.1 Qubit

A qubit, short for “quantum bit”, is a fundamental unit of quantum information in

quantum computing. Several kinds of quantum system can be implemented as a qubit

such as superconducting qubit, ion trap and semiconductor quantum dot. Unlike a

classical bit which represent information in either 0 or 1, a qubit can exist in a

superposition of both states,

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩		, (3.1-1)

where 𝛼, 𝛽 ∈ ℂ are probability amplitudes which require that |𝛼|& + |𝛽|& = 1, |𝑥⟩ is

a ket vector in Dirac bra-ket notation to represent a quantum state. They can also be

written in vector forms,

|0⟩ = n10o		 ,
|1⟩ = n01o		. (3.1-2)

For a more general 𝑛-qubit representation, we construct them by the tensor product of

each single qubit,

|𝜓⟩ = U 𝑐>$>%…>&

&&

>'12,$

|𝑏$⟩ ⊗ |𝑏&⟩ ⊗ …⊗ |𝑏@⟩	

= U 𝑐>$>%…>&

&&

>'12,$

|𝑏$𝑏&…𝑏@⟩		,

(3.1-3)

where the sum of these squared probability amplitudes is also required to be one.

doi:10.6342/NTU202400695

 13

3.2 Quantum gate

Quantum gates are mathematical operators that manipulate the qubits to perform

specific operations. Some common quantum gates and their matrix forms are shown

below,

𝑋 = n0 1
1 0o 		,			𝑌 = n0 −𝑖

𝑖 0 o 		,			𝑍 = n1 0
0 −1o 		,			𝐻 =

1
√2

n1 1
1 −1o		, (3.2-1)

CZ = {
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −1

|		 , CNOT = {
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

|		. (3.2-2)

X, Y and Z are Pauli gates which is also usually noted as 𝜎A, 𝜎B and 𝜎C. H is Hadamard

gate which plays an important role in making a superposition state. CZ and CNOT are

controlled gates that act on two qubits simultaneously to generate critical entangled states.

These gates are vital part of universal quantum gate sets to which any operation possible

on a quantum computer can be reduced.

3.3 Quantum control

3.3.1 Hamiltonian and propagator

Quantum control involves using external fields such as electromagnetic pulses or

laser beams to steer qubits. It is often described in terms of Hamiltonian ℋ(𝑡), which

represents system dynamic over time and how it responds to the external control fields.

doi:10.6342/NTU202400695

 14

It can be further decomposed into ideal and noisy parts,

ℋ(𝑡) = ℋD(𝑡) +ℋE(𝑡)		. (3.3-1)

If a system is ideal, then an ideal gate propagator over time 𝑡 is given as,

𝑈D(𝑡) = 𝒯 exp M−𝑖 � ℋD(𝑡F)𝑑𝑡F
'

2
Q		, (3.3-2)

where 𝒯 is the time-ordering operator, and we set ℏ = 1 throughout this thesis.

However, we get company from noise in reality, a total propagator should be,

𝑈(𝑡) = 𝑈D(𝑡)	𝒯 exp M−𝑖 � ℋ�E(𝑡F)𝑑𝑡F
'

2
Q		, (3.3-3)

where ℋ�E(𝑡F) = 𝑈D
G(𝑡)ℋE(𝑡)𝑈D(𝑡) is noisy Hamiltonian in the interaction picture

transformed by 𝑈D(𝑡). With a careful choice of control parameters by optimization or

machine learning, we can make a propagator to be any desire quantum gate we want.

3.3.2 Rotating wave approximation

The rotating wave approximation (RWA) is a common approximation used in

quantum optics. When applied electromagnetic field is near resonance with a qubit

transition frequency and its intensity is low, it neglects terms in Hamiltonian that oscillate

rapidly.

For simplicity, considering a two-level qubit with intrinsic transition frequency 𝜔2,

its Hamiltonian is,

doi:10.6342/NTU202400695

 15

ℋ2 =	
𝜔2
2 𝑍		. (3.3-4)

We drive the qubit with an external classical electric field 𝐸�⃗ = 𝐸�⃗ 2𝑒!HI(' + 𝐸�⃗ 2∗𝑒HI(' with

a driving frequency 𝜔K and ∗ denoting the complex conjugate. Under the dipole

approximation, the driving Hamiltonian is,

ℋK =	−𝑑 ⋅ 𝐸�⃗ 		, (3.3-5)

where 𝑑 is the dipole moment of the qubit. We assume that the qubit does not have a

dipole moment when it is in an eigenstate such that,

𝑑 = 	𝑑2𝜎(+ 𝑑2∗𝜎!		, (3.3-6)

where the 𝜎± = 𝑋 ± 𝑖𝑌. The driving Hamiltonian is then,

ℋK =	−�Ω𝑒!HI(' + Ω�𝑒HI('�𝜎(− �Ω�∗𝑒!HI(' + Ω∗𝑒HI('�𝜎!		, (3.3-7)

where Ω = 𝑑2 ⋅ 𝐸�⃗ 2 is the Rabi frequency and Ω� = 𝑑2 ⋅ 𝐸�⃗ 2∗ is counter-rotating frequency.

We consider the unitary transformation to the interaction picture,

ℋK.D = 𝑈2ℋK𝑈2
G		, (3.3-8)

where 𝑈2 = 𝑒!Hℋ)' and † is the conjugate transpose of matrix. With 𝑈2𝜎±𝑈2
G =

𝑒±HI)'𝜎±, Eq. (3.3-8) can be further deduced to,

ℋK.D = −�Ω𝑒!HO' + Ω�𝑒H(I)(I()'�𝜎(− �Ω�∗𝑒!H(I)(I()' + Ω∗𝑒HO'�𝜎!		, (3.3-9)

where Δ = 𝜔K − 𝜔2. This is the point where we apply the RWA. If the driving frequency

of electric field is near resonance with the qubit frequency, i.e., Δ ≪ 𝜔2 + 𝜔K ≈ 2𝜔2,

those complex exponentials multiplying counter-rotating frequency is considered to be

doi:10.6342/NTU202400695

 16

rapidly oscillating. Given an appreciate time scale, these oscillations average to 0 such

that Eq. (3.3-9) reduces to,

ℋK.D
PQ8 = −Ω𝑒!HO'𝜎(− Ω∗𝑒HO'𝜎!		. (3.3-10)

The approximation error is about Ω&𝑇/𝜔2 , where 𝑇 is the gate time [11]. We

transforming Eq. (3.3-10) back to the Schrödinger picture, while ℋ2 remains unaffected

by the RWA. The total Hamiltonian under the RWA is,

ℋPQ8 =
𝜔2
2 𝑍 − Ω𝑒!HI('𝜎(− Ω∗𝑒HI('𝜎!		. (3.3-11)

3.3.3 Effective control Hamiltonian

In the numerical simulation, we usually favor each coefficient in Hamiltonian to be

comparable. However, 𝜔2 is usually larger than Ω and Δ. We transform Eq. (3.3-11)

into the driving frame with 𝑈K = 𝑒!HI('R/& so that it becomes,

ℋ$T = 𝑈KℋPQ8𝑈K
G + 𝑖�̇�K𝑈K

G =
Δ
2 𝑍 − Ω𝜎(− Ω

∗𝜎!		. (3.3-12)

If we further assume a real driving such that Ω = Ω∗, Eq. (3.3-12) is simplified to,

ℋ$T =
Δ
2 𝑍 − Ω𝑋		,

(3.3-13)

which is the commonly used effective single-qubit control Hamiltonian. If the driving is

on-resonant (Δ = 0), it can generate 𝑋 gate whose gate time is determined by the Ω,

therefore the strength of the external field. In contrast, if the driving is off-resonant (Δ ≠

doi:10.6342/NTU202400695

 17

0), it can generate 𝐻 gate by carefully designing the Δ and Ω.

 For a two-qubit control Hamiltonian, we consider the Ising model that two qubits

are coupled by the ZZ interaction,

ℋ2 =
𝜔2,$
2 𝑍$ +

𝜔2,&
2 𝑍& +

𝐽
2𝑍$𝑍&		,

(3.3-14)

where 𝜔2,H is an intrinsic qubit frequency and 𝐽 is coupling strength between qubits,

subscript 1 and 2 denote the indices of qubits. The ZZ interaction is the natural generator

of 𝐶𝑁𝑂𝑇 gate up to one-qubit operations [12], which can be realized in many quantum

systems such as Transmons [13], flux qubits [14], trapped ions [15][16] and neutral atoms

[17]. Similarly, we can drive these two qubits independently with Eq. (3.3-7) such that

the total Hamiltonian is,

ℋ =
𝜔2,$
2 𝑍$ +ℋK,$�Ω$, 𝜔K,$� +

𝜔2,&
2 𝑍& +ℋK,$(Ω&, 𝜔K,&) +

𝐽
2𝑍$𝑍&		.

(3.3-15)

where ΩH and 𝜔K,H are Rabi and driving frequencies of the 𝑖-th qubit. Since Pauli

operators of different qubits are commute, we can apply the same RWA procedure in Sec.

3.3.2 and driving-frame transformation in the previous single-qubit case. Besides, we

assume both qubits have identical qubit and driving frequencies (𝜔2,$ = 𝜔2,& and

𝜔K,$ = 𝜔K,&) such that they have the same detuning Δ, obtaining our effective two-qubit

control Hamiltonian with comparable coefficients,

ℋ&T =
Δ
2 𝑍$ − Ω$𝑋$ +

Δ
2 𝑍& +−Ω&𝑋& +

𝐽
2𝑍$𝑍&		.

(3.3-16)

doi:10.6342/NTU202400695

 18

3.3.4 Piecewise constant control

Since the RL requires an environment to possess an episodic characteristic, we

choose PWC control pulse to build quantum gates. In the PWC control protocol, the

maximum gate time 𝑇 is predefined. Entire pulses are divided into 𝑁 step pulses with

equal step time 𝛿𝑡 = 𝑇/𝑁. During 𝑖-th time step in time interval (𝑖 − 1)𝛿𝑡 < 𝑡 < 𝑖𝛿𝑡

with 𝑖 ∈ ℕ and 𝑖 ≤ 𝑁, the control parameter vector 𝑝H is constant such that ℋ(𝑝H) is

time-independent, then the 𝑖-th unitary propagator is,

𝑈H(𝑝H) = exp(−𝑖ℋ(𝑝H)𝛿𝑡)		. (3.3-17)

The total propagator up to time 𝑖𝛿𝑡 can be determined iteratively,

𝑈(𝑖𝛿𝑡) = 𝑈H(𝑝H)𝑈�(𝑖 − 1)𝛿𝑡�		, (3.3-18)

with the initial propagator is identity, 𝑈(0) = 𝐼.

3.3.5 Exponential of Pauli vector

During a step pulse of PWC protocol in Sec. 3.3.4, if this constant control

Hamiltonian can be represented by combination of Pauli matrices,

ℋ = |�⃗�|�̂� ⋅ �⃗�		, (3.3-19)

where 𝑝 = �𝑝A , 𝑝B , 𝑝C� is the control vector, |�⃗�| is the norm of �⃗� so that �̂� = 𝑝/|�⃗�|,

and �⃗� = (𝑋, 𝑌, 𝑍) is a Pauli vector, we can rewrite the exponential form of unitary

doi:10.6342/NTU202400695

 19

propagator in Eq. (3.3-17) with sine and cosine functions,

𝑈(𝑝) = 𝐼 cos(|�⃗�|𝛿𝑡) − 𝑖(�̂� ⋅ �⃗�) sin(|�⃗�|𝛿𝑡)		, (3.3-20)

which avoids the computational burden of matrix exponential in numerical simulation.

3.3.6 Dynamic decoupling

The dynamic decoupling is a quantum control technique based on the concept of

Hahn spin echo [18], employed in quantum control to suppress decoherence with

sequences of carefully timed and tuned control pulses. The pulses often implement

periodic flip-flop operations at intervals shorter than characteristic timescale of

environmental noise to continuously refresh and protect quantum information [19].

3.4 Gate infidelity

3.4.1 Definition of infidelity

To have an idea how good our quantum gates are, we need a metric to determine a

gate infidelity. Given a target gate 𝑈U, final gate time 𝑡V and number of qubits 𝑛, the

gate infidelity is defined as,

𝕀 = 1 −
1
4@ ¥Tr¦𝑈U

G𝑈�𝑡V�§¥
&
		, (3.4-1)

doi:10.6342/NTU202400695

 20

where Tr is the trace operator.

3.4.2 Dyson expansion

Referring to the analysis of noise contribution in infidelity in [19], if the noise

strength is not too strong, we can expand the propagator 𝑈�𝑡V� in terms of ℋ�E(𝑡) in

Eq. (3.3-3) by Dyson series [21],

𝑈�𝑡V� = 𝑈D�𝑡V� {𝐼 +UΨW

0

W1$

|		, (3.4-2)

where ΨW is,

ΨW = (−𝑖)W� 𝑑𝑡$
'*

2
� 𝑑𝑡&
'$

2
…� ℋ�E(𝑡$)ℋ�E(𝑡&)…ℋ�E�𝑡W�𝑑𝑡W

'+,$

2
		. (3.4-3)

We substitute the expanded propagator back into the infidelity in Eq. (3.4-1),

𝕀 = 𝐽2 −
2
4@ ReªTr¦𝑈U

G𝑈D�𝑡V�§«
⋆
Tr {𝑈U

G𝑈D�𝑡V� ⋅UΨW

0

W1$

|

−
1
4@ ¬Tr {𝑈U

G𝑈D�𝑡V� ⋅UΨW

0

W1$

|¬

&

		,

(3.4-4)

where Re denotes taking the real part of the quantity. The first term 𝐽2 is exactly the

gate infidelity for the ideal system,

𝐽2 = 1 −
1
4@ ¥Tr¦𝑈U

G𝑈D�𝑡V�§¥
&
		. (3.4-5)

We then introduce an error shift matrix 𝑈Y of the ideal gate propagator 𝑈D�𝑡V� relative

from the target gate propagator 𝑈U up to a global phase 𝜙,

𝑈D�𝑡V� = 𝑒H=𝑈U(𝐼 + 𝑈Y)		. (3.4-6)

doi:10.6342/NTU202400695

 21

We substitute this back into the infidelity in Eq. (3.3-17),

𝕀 = 𝐽2 +U𝐽)

0

)1$

+ 𝜖		, (3.4-7)

where those 𝐽) are noisy terms without containing 𝑈Y 	with 𝑘 defined as noise orders,

and 𝜖 instead contains 𝑈Y,

𝜖 = −
1

2@!$ ReTr {𝑈YUΨW

0

W1$

|® −
2
4@ ReTr

[𝑈Y]⋆Tr {UΨW

0

W1$

|®

−
2
4@ ReTr {UΨW

0

W1$

|

⋆

Tr {𝑈YUΨW

0

W1$

|®

−
2
4@ ReTr

[𝑈Y]⋆Tr {𝑈YUΨW

0

W1$

|® −
1
4@ ¬Tr {𝑈YUΨW

0

W1$

|¬

&

		.

(3.4-8)

When 𝐽2 is small, the matrix elements of 𝑈Y are also small. Meanwhile, if noise

strength is not too strong such that |Ψ)($| ≪ |Ψ)|, we can neglect the effect of 𝜖. We

look into the first four noise order terms of 𝐽) ,

𝐽$ = −
1

2@!$ Re
[Tr(Ψ$)]		, (3.4-9)

𝐽& = −
1

2@!$ Re
[Tr(Ψ&)] −

1
4@
|Tr(Ψ$)|&		, (3.4-10)

𝐽" = −
1

2@!$ Re
[Tr(Ψ")] −

2
4@ Re

{Tr(Ψ$)Tr(Ψ&)⋆}		, (3.4-11)

𝐽# = −
1

2@!$ Re
[Tr(Ψ#)] −

1
4@
|Tr(Ψ&)|& −

2
4@ Re

{Tr(Ψ$)Tr(Ψ")⋆}. (3.4-12)

According to Eq. (3.4-3), the noisy Hamiltonian ℋ�E(𝑡) is a Hermitian operator, so the

real part of traced ΨW with odd 𝑗 are zero such that these odd noise order terms of 𝐽)

such as 𝐽$ and 𝐽" are all vanish. Since noise is stochastic, we use ensemble average of

doi:10.6342/NTU202400695

 22

infidelities,

⟨𝕀⟩ = 𝐽2 + ³U𝐽&)

0

)1$

´ + ⟨𝜖⟩		. (3.4-13)

Though we are not going to explicitly use the expanded infidelity as our loss function of

machine learning, the expansion gives us insights of which noise order terms dominate

(see the analysis in Sec. 3.6).

3.5 Quasistatic noise model

For an ideal quantum system, the ensemble infidelity ⟨𝕀⟩ is simply the ideal

infidelity 𝐽2. But for the noisy one, practically, we need to test our pulses several times

in the noisy environment and then average these result infidelities. To test our RL

approach, we here choose the quasistatic 𝑍 -noise (QSN) model which the noise is

constant during the gate time of each running, exerted on the 𝑍 component in

Hamiltonian. Its noise strength is sampled from the Gaussian distribution with a zero

mean and a noise standard deviation 𝜎E.

doi:10.6342/NTU202400695

 23

3.6 Gate infidelity estimation

3.6.1 Noise contribution

With the gate infidelity expansion introduced in Sec. 3.4.2, we can estimate noise

contribution of each order in a gate infidelity. Taking a single qubit gate in quasistatic 𝑍-

noise model (Sec. 3.5) as an example, the noisy Hamiltonian in the interaction picture

ℋ�E(𝑡F) is 𝑈D
G(𝑡)[𝛽 ⋅ 𝜔2 ⋅ 𝑍/2]𝑈D(𝑡), where 𝛽 is the sampled noise amplitude from the

Gaussian distribution. We substitute it into the Ψ) in Eq. (3.4-3),

ΨW = (−𝑖)W� 𝜔2𝑑𝑡$
'*

2
� 𝜔2𝑑𝑡&
'$

2
…� 𝜔2𝑑𝑡W

'+,$

2
	

																																																																				× 𝛽W𝑅R(𝑡$)𝑅R(𝑡&)…𝑅R(𝑡E)
(3.6-1)

where 𝑅R(𝑡) = 𝑈D
G(𝑡)[𝑍/2]𝑈D(𝑡). Since matrix element magnitudes of 𝑍 and 𝑈D(𝑡)

are all smaller than one, matrix element magnitudes of 𝑅R(𝑡$)𝑅R(𝑡&)…𝑅R(𝑡E) are also

smaller than one. The time integral ∫ 𝜔2𝑑𝑡$
'*
2 ∫ 𝜔2𝑑𝑡&

'$
2 …∫ 𝜔2𝑑𝑡W

'+,$
2 can be estimated

as �𝜔2𝑡V�
W/𝑗! and the 𝛽W can be estimated as the noise standard deviation 𝜎E

W . The

overall estimation of ΨW is �𝜔2𝑡V𝜎E�
W/𝑗! . Substituting the estimated ΨW into each

noise order 𝐽) with even 𝑘 such as Eq. (3.4-10) and Eq. (3.4-12), we get,

𝐽&	~�𝜔2𝑡V𝜎E�
& ⋅
1
2		 , 𝐽#~	�𝜔2𝑡V𝜎E�

⋅
5
48		.

(3.6-2)

Once we construct a control pulse, we can test them in a certain noise model with a series

of 𝜎E. From slopes between noise standard deviations and corresponding ensemble gate

doi:10.6342/NTU202400695

 24

infidelities, we can tell which noise order dominate an ensemble gate infidelity 〈𝕀〉. Given

𝜎E < 1, the higher the noise order dominates, the more robust a quantum gate is, because

the exponent on the noise standard deviation is greater.

3.6.2 Control deviation

The noise contribution estimation (Sec. 3.6.1) can also reflect a response of control

deviation. The control deviation can be thought as intentionally sampling a certain noise

strength 𝛽 into a perfect control pulse. Not considering a noise-robust quantum gate, we

know that 𝐽& usually dominates such that a gate infidelity 〈𝕀〉 will be around the order

of 𝛽& according to Eq. (3.6-2).

doi:10.6342/NTU202400695

 25

Chapter 4 Integration

4.1 Framework mapping

We are going to map the quantum control problem into the RL framework. There are

several options which can be designed as agent’s observations 𝑜 such as control pulse

vector, Hamiltonian, or unitary propagator. Though these options have same amount of

information, we choose pulse vector as observations because the last two terms need to

access information of quantum states which is unavailable in real quantum devices.

Instead of only one previous step pulse vector, we include an entire sequence of 𝑁-step

PWC pulse vectors as observations,

𝑞H = (𝑝$, 𝑝&, … , 𝑝H , 0, … ,0), (4.1-1)

where each pulse vector 𝑝H has 𝑀 control dimensions. It makes this RL task to hold the

merit of Markov decision process property, avoiding the situation that an agent may

confuse whether an observation of a previous step comes from the same pulse history or

not. The agent’s action 𝑎 is then intuitively the next step pulse vector 𝑝H($. To specify

this observation and action formulation, we take 𝑁 = 2 for example: The agent’s initial

observation is a sequence of zeros 𝑞2 = (0, 0), then it gives the first step pulse vector 𝑝$

as the action. The agent’s next observation is the first step pulse vector 𝑝$ followed with

doi:10.6342/NTU202400695

 26

zeros, 𝑞$ = (𝑝$, 0), then it gives the final action 𝑝& , leading to the final state 𝑞& =

(𝑝$, 𝑝&) that is no need to be observed.

4.2 Reward design

4.2.1 Sampling-based method

To get the ensemble infidelity ⟨𝕀⟩ in the QSN model (Sec. 3.5), we indeed do the

random sampling to calculate ⟨𝕀⟩ in a noise test. However, it requires large amount of

pulse data collection to train the agent. We instead use the sampling-based method [22]

which samples a small fixed set of noise strength to relieve the computational burden. We

attempt to use a set that includes {0, +𝜎E , −𝜎E}. This noise strength set has a zero mean

and a standard deviation ¿2/3𝜎E , which is not equal to the original Gaussian noise

standard deviation 𝜎E. We scale back this noise strength set to {0, +𝑘𝜎E , −𝑘𝜎E} with

𝑘 = ¿3 2⁄ such that the training and testing noise strength set has the same mean and

standard deviation.

doi:10.6342/NTU202400695

 27

4.2.2 Weighted infidelity

The RL agent’s performance really depends on the design of the reward function.

Though we assume the Gaussian quasistatic noise model in Sec. 3.5, we do not know the

noise standard deviation 𝜎E not to mention to adjust it. With an ideal infidelity redefined

as 𝕀D = 𝐽2, the smaller the true 𝜎E is, the smaller the noisy infidelity 𝕀E = ⟨𝕀⟩ − 𝕀D is

as a proportion of the reward function such that the agent may not aware it to learn a

robust quantum gate. We design an adjustable weighted infidelity,

𝕀Q = 𝑤D ⋅ 𝕀D +𝑤E ⋅ 𝕀E		. (4.2-1)

By assigning a different ratio between the ideal weight 𝑤D and noisy weight 𝑤E , we

can adjust the importance between ideal and noisy infidelities.

In practice of training our agent in noisy environment, an 𝕀D is given by testing its

control pulse in ideal environment, while a 𝕀E is given by subtracting the 𝕀D from the

⟨𝕀⟩ of sampling-based noises (Sec. 4.2.1). Since we require the agent achieve the target

gate 𝑈U right at the gate time 𝑇, the 𝑖-th step reward is design as,

𝑟H = Ã 0, 𝑖 ∈ {0, 1, … , 𝑁 − 1}
− log$2 𝕀Q , 𝑖 = 𝑁 , (4.2-2)

where we take the logarithm to increase the sensitivity of infidelity improvement.

doi:10.6342/NTU202400695

 28

4.2.3 Hyperparameters 𝜸 and 𝛌

Since our quantum gate control environment has a small number of time steps

𝑁~10$ and the high important final reward design in Eq. (4.2-2), we assign both future

discount factor 𝛾 and exponentially-weighted parameter 𝜆 introduced in Secs. 2.4 and

2.5 to be 1.

4.3 Neural network design

4.3.1 Network size

Our PPO agent possesses a policy network, a normal projection network and a value

network. For the value network, its input size is the size of flatten pulse sequence 𝑁 ×𝑀,

its number of hidden layers is 2 with their numbers of hidden neurons usually designed

to be at the order of its input size, and its output size is only 1. For the policy network, its

input size and hidden structure are the same as the value network, while its output size is

two times the size of pulse vector 2 ×𝑀. These outputs are then fed into an action

projection network, called normal projection network, to generate action means 𝜇- ,

action standard deviations 𝜎-, and action normal distributions which they are truncated

by given boundaries of pulse amplitude and renormalized. In the RL training phase, the

doi:10.6342/NTU202400695

 29

agent’s actions are finally sampled from these truncated action normal distributions, while

in our RL testing phase, we force agent to use the means of distributions as their actions.

4.3.2 Network initialization

According to the concept of dynamic decoupling in Sec. 3.3.6, a flip-flop pulse can

mitigate noise. To better incent an agent to generate the flip-flop pulse that across the zero

line, we intentionally set the initial network parameters of normal projection network to

be zeros such that it gives a flat pulse right at the zero line at the beginning. To show why

this design works, we take the Pauli 𝑋 gate to be the example: To achieve a low ideal

infidelity 𝕀H , it requires the area of control pulse on the 𝑋 direction to be the odd

multiples of 𝜋. However, due to the recursive nature of pulse generation in RL, we

usually get a nearly-flat pulse after training. If we do not set the initial pulse near the zero

line, the agent may generate a 3𝜋 or higher pulse area pulse that is away from the zero

line. Then, if we further want to get a robust 𝑋 gate which requires a flip-flop pulse

shape, the pulse that is away from the zero line is harder to achieve the goal.

doi:10.6342/NTU202400695

 30

4.4 Adaptive learning

To build a low infidelity quantum gate, the adaptive learning rate mechanism in the

commonly-used optimizer, Adam [23], is not enough. We additionally adjust a learning

rate 𝑙𝑟 and an action standard deviation 𝜎- according to a gate infidelity. In Sec. 3.6.2,

we know that an infidelity is roughly square of control deviation when an ideal infidelity

𝕀D is small. Hence, we automatically or manually assign a learning rate 𝑙𝑟 and an action

standard deviation 𝜎- to roughly be a square-root of infidelity 〈𝕀〉$/& every certain

number of training iterations. At the automatic mode, we will set initial 𝑙𝑟 and 𝜎- to

also play as the upper bounds of them. That is, taking a 𝑙𝑟 for example, a result 𝑙𝑟 will

be the smaller one between the initial 𝑙𝑟 and 〈𝕀〉$/&.

doi:10.6342/NTU202400695

 31

Chapter 5 Result

We here apply our method to construct three iconic quantum gates, 𝑋 , 𝐻 and

CNOT gates. For 𝑋 and 𝐻 gates. we begin with a trivial one-step pulse in ideal

environment to preliminarily verify the feasibility of our RL approach (Sec. 2.3), the

intentional flat pulse initialization (Sec. 4.3.2) and the efficiency of automatic adaptive

learning (Sec. 4.4). Then, we construct their multi-step versions in ideal and noisy

environments, where we set the same max gate time 𝑇 and step numbers 𝑁 within each

kind of gate to better compare the effect of noise learning.

We organize each test as follows. We first declare the target gate and our effective

control Hamiltonian. Next, we list a setting of control configuration, network sizes and

learning hyperparameters in a table. Finally, we show the results of training including

agents’ learning curves, control pulses as well as their noise test to recognize dominant

noise orders.

5.1 𝑿 gate

We first deal with the simplest 𝑋 gate to test our approach. Its matrix form is,

𝑋 = n0 1
1 0o		. (5.1-1)

According to Eq. (3.3-13) with an on-resonant driving field, our effective control

doi:10.6342/NTU202400695

 32

Hamiltonian is,

ℋ(𝑡) =
𝜋
2 Ω

(𝑡)𝑋		, (5.1-2)

where Ω(𝑡) ∈ {𝑝$, 𝑝&, … , 𝑝E} is in the PWC control protocol.

5.1.1 Trivial case

In the trivial case of 𝑋 gate, we will test the efficiency of automatic adaptive

learning which assigns a learning rate 𝑙𝑟 and an action standard deviation 𝜎- to be a

square root of infidelity after every training iteration. First, we train a PPO agent without

the automatic adaptive learning. An effective learning rate is fully determined by Adam

optimizer with the initial 𝑙𝑟 = 3 × 10!# and an action standard deviation is given by the

agent’s normal projection network. Later, we adopt the automatic adaptive learning with

the initial 𝑙𝑟 = 1 to speed up training. The common settings of these two are shown in

Table 5.1-1, where the batch size is set to “All” means that we use the whole collected

data instead of mini-batch of them in every gradient descent epoch. The comparison

results are shown from Figure 5.1-1 to Figure 5.1-3, where blue and green colors indicate

the learnings with and without the automatic adaptive learning respectively.

Comparing the learning curves in Figure 5.1-1, the blue one which adopts the

automatic adaptive learning easily reaches the lower bound double precision (10!$Z) at

doi:10.6342/NTU202400695

 33

the early 22-th iteration, while the other green one wobbles around 10!%	and touches the

10!$& just by chance. Moreover in Figure 5.1-2, the control deviation of the green pulse

is at the order of 10!% which is the square root of its infidelity, indeed consistent with

our control deviation analysis in Sec. 3.6.2. Besides, from the result that their pulse areas

are both equal to 1.0 but not 3.0 or higher odd values (note that our Hamiltonian contains

𝜋/2), we realize that our network initialization in Sec. 4.3.2 that intentionally sets initial

pulses to be flat around the zero truly works. Finally, when testing with the QSN model

in Figure 5.1-3, these 𝑋 gates are both mainly dominated by the Second order noise 𝐽&

since the agents trained in the ideal environment are unable to aware the characteristic of

noise.

Parameter Value
𝑇 1.0
𝑁 1

Pulse boundary [-4, 4]
Policy network size (4, 4)
Value network size (4, 4)

Number of collections 30
Number of epochs 10

Batch size All
Initial 𝑙𝑟 1 and 3 × 10!#
Initial 𝜎- 3 × 10!$

Table 5.1-1. The setting of trivial 𝑋 gate.

doi:10.6342/NTU202400695

 34

Figure 5.1-1. The learning curves of trivial 𝑋 gates with and without the automatic

adaptive learning.

Figure 5.1-2. The one-step control pulses of trivial 𝑋 gates with and without the

automatic adaptive learning.

doi:10.6342/NTU202400695

 35

Figure 5.1-3. The ensemble infidelity versus noise standard deviation of trivial 𝑋 gates

with and without the automatic adaptive learning.

5.1.2 Ideal and noisy cases

To construct a robust 𝑋 gate in the QSN environment with 𝜎E = 10!$, we need a

multi-step pulse to realize a flip-flop feature, so we increase step numbers 𝑁 to 8. In the

noisy case, we use the sampling-based method (Sec. 4.2.1) to get an effective ensemble

infidelity for an agent’s training. Also, we adopt the manual adaptive learning, starting

with larger 𝑙𝑟 and 𝜎- at the first stage. At this stage, it is crucial that the weighted ideal

and noisy infidelities should be comparable in magnitudes to let the agent aware of them

both. We then manually decrease 𝑙𝑟, 𝜎- and noisy weight 𝑤E after every training stage

once the agent learns a robust pulse with a low enough ideal infidelity, while an ideal

doi:10.6342/NTU202400695

 36

weight 𝑤D is always set to 1.0. We also do an ideal case in the same control configuration

except for still adopting the automatic adaptive learning. The common settings of two

cases are shown in Table 5.1-2, the adaptive schedule of noisy case is shown in Table

5.1-3, and the results are shown from Figure 5.1-4 to Figure 6-4.

Comparing the learning curves in Figure 5.1-4 and Figure 5.1-5, the ideal 𝑋 gate

adopting the automatic adaptive learning converges to 10!$Z in short iterations, while

the noisy 𝑋 gate takes a lot of time, especially trying to get a robust pulse at the stage-1

learning. We terminate this learning stage only when the agent learns a pulse that

possesses the 4th noise order behavior shown as the solid cyan curve in Figure 6-4. The

following stages are mainly served as decreasing the ideal infidelity while maintaining

the 4th noise order behavior. Finally, in Figure 5.1-6, in contrast with the flat pulse of

ideal 𝑋 gate, the robust pulse of noisy 𝑋 gate really behaves a flip-flop shape across

the zero line.

doi:10.6342/NTU202400695

 37

Parameter Value
𝑇 1.0
𝑁 8

Pulse boundary [-4, 4]
Policy network size (8, 8)
Value network size (8, 8)

Number of collections 30
Number of epochs 10

Batch size All
Initial 𝑙𝑟 3 × 10!#
Initial 𝜎- 3 × 10!$

Table 5.1-2. The common settings of ideal and noisy 𝑋 gates.

Stage
Number of
iterations

𝑤E Initial 𝑙𝑟 Initial 𝜎-

1 8427 1 3 × 10!# 3 × 10!$
2 99 10!$ 10!# 3 × 10!&
3 16 10!& 3 × 10!Z 10!&
4 938 10!" 10![10!"
5 29 10!# 10!\ 10!"
6 145 0 10!$2 10!%

Table 5.1-3. The adaptive schedule of noisy 𝑋 gate.

doi:10.6342/NTU202400695

 38

Figure 5.1-4. The learning curve of ideal 𝑋 gate.

Figure 5.1-5. The learning curves of noisy 𝑋 gate. These infidelities are defined in Sec.

4.2.2.

doi:10.6342/NTU202400695

 39

Figure 5.1-6. The control pulse of ideal and noisy 𝑋 gates.

Figure 5.1-7. The ensemble infidelity versus noise standard deviation of ideal and noisy

𝑋 gates.

doi:10.6342/NTU202400695

 40

5.2 𝑯 gate

The matrix form of target 𝐻 gate is,

𝐻 =
1
√2

n1 1
1 −1o		. (5.2-1)

According to an off-resonant driving field with a detuning Δ in Eq. (3.3-13), our

effective control Hamiltonian is,

ℋ(𝑡) =
𝜋
2
(Δ𝑍 + Ω(𝑡)𝑋)		, (5.2-2)

where Ω(𝑡) ∈ {𝑝$, 𝑝&, … , 𝑝E} is in the PWC control protocol. The all settings are similar

to those in the 𝑋 gate learning. However, the extra 𝑍 operator restricts the lower bound

of gate time and makes a control more difficult by requiring a coefficient match between

the 𝑍 and 𝑋 operators.

5.2.1 Trivial case

In the trivial case of 𝐻 gate, we as well adopt the automatic adaptive learning and

set 𝑇 to be the minimal required gate time 1/√2. The other settings shown in Table

5.2-1 are the same as the trivial 𝑋 gate in Sec. 5.1.1. The results shown from Figure 5.2-1

to Figure 5.2-3 are also similar to trivial 𝑋 gate.

doi:10.6342/NTU202400695

 41

Parameter Value
𝑇 1/√2
𝑁 1

Pulse boundary [-4, 4]
Policy network size (4, 4)
Value network size (4, 4)

Number of collections 30
Number of epochs 10

Batch size All
Initial 𝑙𝑟 102
Initial 𝜎- 3 × 10!$

Table 5.2-1. The setting of trivial one-step ideal 𝐻 gate.

Figure 5.2-1. The learning curve of trivial 𝐻 gate.

doi:10.6342/NTU202400695

 42

Figure 5.2-2. The control pulse of trivial 𝐻 gate.

Figure 5.2-3. The ensemble infidelity versus noise standard deviation of trivial 𝐻 gate.

doi:10.6342/NTU202400695

 43

5.2.2 Ideal and noisy cases

To construct a robust 𝐻 gate in the QSN environment with 𝜎E = 10!$, the

minimal gate time 1/√2 in the previous trivial case is no longer enough, so we set 𝑇 =

4. Furthermore, though a large 𝑁 may make the control more complicated, we set 𝑁 =

16 such that it provides more control degrees of freedom and effective higher pulse

frequencies to conquer the noise. We also enlarge network sizes to (32, 32) to tackle the

sophisticated control of the large 𝑁. Similar to the ideal and noisy 𝑋 gates in Sec. 5.1.2,

we adopt the automatic adaptive learning in the ideal 𝐻 gate, while manually adjust 𝑙𝑟,

𝜎- and 𝑤E in the noisy one. The common settings of two cases are shown in Table 5.2-2,

the adaptive schedule of noisy case is shown in Table 5.2-3, and the results are shown

from Figure 5.2-4 to Figure 6-5.

Comparing the learning curves in Figure 5.2-4 and Figure 5.2-5, the ideal case

adopting the automatic adaptive learning reaches 10!$Z in short iterations. The noisy

case takes most of the time at the stage-1 learning, trying to optimize the ideal and noisy

infidelities simultaneously. The two pulses in Figure 5.2-6 look very different with one

flat and the other wiggled. Finally, in Figure 5.2-7, though the noisy case sacrifices its

ideal infidelity as 5 × 10!$2, it owns the robust 4th noise order behavior in the large 𝜎E

region.

doi:10.6342/NTU202400695

 44

Parameter Value
𝑇 1.0
𝑁 8

Pulse boundary [-4, 4]
Policy network size (32, 32)
Value network size (32, 32)

Number of collections 30
Number of epochs 10

Batch size All
Initial 𝑙𝑟 3 × 10!#
Initial 𝜎- 3 × 10!$

Table 5.2-2. The common settings of ideal and noisy 𝐻 gates.

Stage
Number of
iterations

𝑤E Initial 𝑙𝑟 Initial 𝜎-

1 6845 1 3 × 10!# 3 × 10!$
2 1309 10!$ 10!% 5 × 10!$
3 201 10!& 10!% 10!&
4 45 10!" 10![10!&
5 403 10!# 10!\ 10!&
6 725 0 10!] 10!#

Table 5.2-3. The adaptive schedule of noisy 𝐻 gate.

doi:10.6342/NTU202400695

 45

Figure 5.2-4. The learning curve of ideal 𝐻 gate.

Figure 5.2-5. The learning curves of noisy 𝐻 gate. These infidelities are defined in Sec.

4.2.2.

doi:10.6342/NTU202400695

 46

Figure 5.2-6. The control pulse of ideal and noisy 𝐻 gates.

Figure 5.2-7. The ensemble infidelity versus noise standard deviation of ideal and noisy

𝐻 gates.

doi:10.6342/NTU202400695

 47

5.3 𝐂𝐍𝐎𝐓 gate

The matrix form of target CNOT gate is,

CNOT = {
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

|		. (5.3-1)

According to Eq. (3.3-16) with the same detuning Δ on qubits, our effective two-qubit

control Hamiltonian is,

ℋ(𝑡) =
𝜋
2
(Ω$(𝑡)𝑋$ + Δ𝑍$ + Ω&(𝑡)𝑋& + Δ𝑍& + 𝐽(𝑡)𝑍$𝑍&)		, (5.3-2)

where we define a 𝑀 = 3 pulse vector 𝑞(𝑡) = �Ω$(𝑡), Ω&(𝑡), 𝐽(𝑡)� ∈ {𝑝$, 𝑝&, … , 𝑝E}

with 𝑝H = �Ω$,H , Ω&,H , 𝐽H� in the PWC protocol. For CNOT gate, we conduct only the

ideal and noisy cases with 𝜎E = 10!&. Our Hamiltonian has two 𝑍 operators 𝑍$ and

𝑍& where we exert the noises on both of them in the QSN model. We set 𝑇 = 4 and

𝑁 = 16. The network sizes are enlarged to (128, 128) since an agent’s pulse sequence

observation is now as large as 48 with 𝑁 = 16 and 𝑀 = 3 . Besides, the control

problems get so difficult that we give up the automatic adaptive learning in the ideal case

and turn to the manual one in both cases. The common settings are shown in Table 5.3-1.

The common settings of ideal and noisy CNOT gates. The adaptive schedules of ideal

and noisy cases are respectively shown in Table 5.3-2 and Table 5.3-3. The comparisons

of noise learning are shown from Figure 5.3-1 to Figure 5.3-4.

 Comparing the learning curves in Figure 5.3-1 and Figure 5.3-2, without the merit

doi:10.6342/NTU202400695

 48

of automatic adaptive learning, two cases both reach the ideal infidelities around 10!$2

in long iterations, but the noisy one takes more longer to also optimize the noisy infidelity.

The pulses of noisy case wiggle strongly opposite to the ideal ones in Figure 5.3-3. These

robust pulses, though unable to possess the 4th noise order behavior like those in 𝑋 and

𝐻 gates, still reduce the two orders of magnitude in 2nd order noise from the ideal case

in Figure 5.3-4.

Parameter Value
𝑇 4.0
𝑁 16

Pulse boundary [-4, 4]
Policy network size (128, 128)
Value network size (128, 128)

Number of collections 30
Number of epochs 10

Batch size All

Table 5.3-1. The common settings of ideal and noisy CNOT gates.

doi:10.6342/NTU202400695

 49

Stage
Number of
iterations

Initial 𝑙𝑟 Initial 𝜎-

1 3901 3 × 10!# 10!$

2 1941 10!Z 3 × 10!"

3 10065 10!% 3 × 10!#

4 8130 10!] 3 × 10!Z

5 18747 3 × 10!$$ 3 × 10!%

Table 5.3-2. The adaptive schedule of ideal CNOT gate.

Stage
Number of
iterations

𝑤E Initial 𝑙𝑟 Initial 𝜎-

1 8597 10& 10!# 10!$
2 19905 10& 10!Z 10!&
3 14444 10$ 10!% 10!"
4 407 1 3 × 10![3 × 10!#
5 17422 10!$ 10![10!#
6 19522 10!& 10![10!#
7 1795 10!" 3 × 10!$2 10!Z

8 3078 10!# 3 × 10!$2 10!Z

9 9606 0 3 × 10!$2 10!Z

10 13995 0 3 × 10!$$ 3 × 10!%

Table 5.3-3. The adaptive schedule of noisy CNOT gate.

doi:10.6342/NTU202400695

 50

Figure 5.3-1. The learning curve of ideal CNOT gate.

Figure 5.3-2. The learning curve of noisy CNOT gate. These infidelities are defined in

Sec. 4.2.2.

doi:10.6342/NTU202400695

 51

Figure 5.3-3. The control pulses of ideal and noisy CNOT gates.

doi:10.6342/NTU202400695

 52

Figure 5.3-4. The ensemble infidelity versus noise standard deviation of ideal and noisy

CNOT gates.

doi:10.6342/NTU202400695

 53

Chapter 6 Discussion

In this Chapter, we discuss factors that could affect the control complexity for the

PPO agents. The first factor is the number of PWC steps 𝑁. For the trivial one-step 𝑋

and 𝐻 gates in Secs. 5.1.1 and 5.2.1, we set a really large initial learning rate 𝑙𝑟 = 1

such that these learnings take only within 40 iterations. As 𝑁 goes up to 8 or 16, we must

decrease the initial 𝑙𝑟 = 3 × 10!# to let the agents take their time to learn the relation

between each step. The second factor is the Hamiltonian. For the ideal cases of the 𝑋

and 𝐻 gates in Secs. 5.1.2 and 5.2.2, their Hamiltonians are simple, containing only one

control parameter. We are able to adopt the automatic adaptive learning which swiftly

converges the learning. For the Hamiltonian of two-qubit CNOT gate in Sec. 5.3, even

though the environment is ideal, the automatic adaptive learning fails. The final factor is

whether the environment is ideal or noisy. For these three gates in a noisy environment,

we all adopt the manual adaptive learning with a large number of learning iterations.

In the below comparisons of pulses and noise tests before and after lowering the

noisy weights 𝑤E	in their adaptive schedules of 𝑋, 𝐻 and CNOT gates from Figure

6-1 to Figure 6-6, we find that a pulse shape is determined at the very beginning of

learning for which the weighted ideal and noisy infidelities must be comparable.

Otherwise, an agent will incline to focus on learning the one with a larger weight in a

reward and be stuck in a sub-optimal control minimum. The learning stages later on where

doi:10.6342/NTU202400695

 54

we decrease noise weight 𝑤E are meant to lower the ideal infidelity while retaining a

robust behavior.

We attribute the success of constructing robust quantum gates to five reasons, all

introduced in Chapter 4. First, the environment observation of pulse sequence rather than

quantum states in Sec. 4.1 enables an agent to control a quantum gate without the need to

know the underlying quantum dynamic. Especially in a noisy case, if a sampled QSN

comes into an agent’s policy network, its output changes consequently after each episode,

and one could not get a unique robust pulse. Second, the sampling-based ensemble

infidelity in Sec. 4.2.1 reliefs the computational burden of introducing noise information

into a reward when training an agent. Third, the weighted infidelity in Sec. 4.2.2 makes

the ideal and noisy infidelities play comparable roles in a reward, though not knowing an

actual 𝜎E of the environment. Also, we can further adjust them when we want to, for

example, focus on lowering the ideal infidelity. Fourth, the zero-pulse initialization in Sec.

4.3.2 makes an agent get a flip-flop pulse more possible. Finally, the adaptive learning in

Sec. 4.4 serves as a strategy to converge a learning to a really low infidelity. All these

techniques work together to make constructing robust quantum gates by RL possible.

doi:10.6342/NTU202400695

 55

Figure 6-1. The control pulses of noisy 𝑋 gate before and after lowering the noisy weight.

Figure 6-2. The control pulses of noisy 𝐻 gate before and after lowering the noisy weight.

doi:10.6342/NTU202400695

 56

Figure 6-3. The control pulses of noisy CNOT gate before and after lowering the noisy

weight.

doi:10.6342/NTU202400695

 57

Figure 6-4. The ensemble infidelity versus noise standard deviation of noisy 𝑋 gates

before and after lowering the noisy weight.

Figure 6-5. The ensemble infidelity versus noise standard deviation of noisy 𝐻 gates

before and after lowering the noisy weight.

doi:10.6342/NTU202400695

 58

Figure 6-6. The ensemble infidelity versus noise standard deviation of noisy CNOT gates

before and after lowering the noisy weight.

doi:10.6342/NTU202400695

 59

Chapter 7 Conclusion

We give a brief summary of the thesis here. We have established an DRL control of

robust quantum gates in the presence of QSN. We have used the PPO algorithm with the

actor-critic model for the DRL agent to learn an optimal control policy under the policy

gradient framework. Our PPO DRL agent does not need to have prior knowledge of any

quantum system dynamics or noise information, but only a control pulse sequence as an

observation (Sec. 4.1). With the adaptive learning (Sec. 4.4), we have constructed the

ideal 𝑋 , 𝐻 and CNOT gates with lowest ideal infidelities of 10!$Z , 10!$Z and

10!$2 respectively, in contrast to those in [4][5][6], meeting the performance in [7].

As for the noise-learning, with our design of weighted infidelity (Sec. 4.2.2) and

zero-pulse initialization (Sec. 4.3.2), we have constructed robust quantum gates capable

of suppressing the 2nd to 4th order effects of the noise. Our RL method performs better

than other machine learning methods that deal with even the ideal noiseless case [8][24].

Even at a large standard deviation of the noise strength of 𝜎E = 10!$, ensemble gate

infidelities < 10!" , lower than the error threshold of surface code of quantum error

correction for fault-tolerant quantum computation [24], can still be achieved.

Though the performance of our RL method is not superior to the quantum optimal

control method employing classical optimization algorithms, such as the Nelder-Mead

optimization algorithm [14], in the noisy cases, our RL method generates a control policy

doi:10.6342/NTU202400695

 60

that does not rely on the detailed information of the noise properties and underlying

quantum system dynamics required in the quantum optimal control theory. Our study is a

preliminary attempt of applying the DRL agent to perform quantum gates in a noisy

environment, and we have shown that it works for the QSN. Future work is to extend the

applicability of our method from the QSN investigated here to other more general noises,

making it particularly useful for the system and noise models that are not exactly known.

In addition, our study so far has focused on constructing high-fidelity robust quantum

gates at the pulse level with a PPO DRL agent, and have not exploited the flexibility of

employing other possible ML algorithms. For example, the pulse sequence observation

in our study scales with the size of observation 𝑁, and we may use recurrent neural

networks as agent’s networks to overcome this problem. We also believe that it is

promising to apply the ML methods at the gate level for more general and broader

quantum control and quantum computing tasks.

doi:10.6342/NTU202400695

 61

Reference

[1] Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484-1509.

[2] Grover, L. K. (1996). A fast quantum mechanical algorithm for database search.

Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,

212-219.

[3] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017) Proximal

policy optimization algorithms. arXiv:1707.06347.

[4] An, Z. & Zhou, D. (2019). Deep reinforcement learning for quantum gate control.

Europhysics Letters, 126, 60002.

[5] Bukov, M., Day, A. G. R., Sels, D., Weinberg, P., Polkovnikov, A. & Mehta, P.

(2018). Reinforcement Learning in Different Phases of Quantum Control. Physical

Review X, 8, 031086.

[6] Daraeizadeh, S., Premaratne, S. P. & Matsuura, A. Y. (2020). Designing high-

fidelity multi-qubit gates for semiconductor quantum dots through deep

reinforcement learning. 2020 IEEE International Conference on Quantum

Computing and Engineering (QCE), 2020, 30-36.

[7] Lin, J. H. (2022). Simulation of Quantum Gate Control via Proximal Policy

Optimization Algorithm [master's thesis, National Taiwan University]. Airiti

doi:10.6342/NTU202400695

 62

Library. https://doi.org/10.6342/NTU202104530

[8] Niu, M. Y., Boixo, S., Smelyanskiy, V. N. & Neven, H. (2019). Universal quantum

control through deep reinforcement learning. NPJ Quantum Information, 5, 33.

[9] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,

M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K. & Hassabis, D.

(2017). Mastering chess and shogi by self-play with a general reinforcement

learning algorithm. arXiv:1712.01815.

[10] Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2018). High-

dimensional continuous control using generalized advantage estimation.

arXiv:1506.02438.

[11] Sarkar, S., Paruchuri, P. & Khaneja, N. (2021). Error Analysis of Rotating Wave

Approximation in Control of Spins in Nuclear Magnetic Resonance Spectroscopy.

60th IEEE Conference on Decision and Control (CDC), 2021, 605-610.

[12] Schuch, N. & Siewert, J. (2003). Natural two-qubit gate for quantum computation

using the XY interaction. Physical Review A, 67, 032301.

[13] Long, J., Zhao, T., Bal, M., Zhao, R., Barron, G. S., Ku, H. S., … Pappas, D. P.

(2021). A universal quantum gate set for transmon qubits with strong ZZ

interactions. arXiv:2103.12305.

[14] Orlando, T. P., Mooij, J. E., Tian, L., van der Wal, C. H., Levitov, L. S., Lloyd, S.,

doi:10.6342/NTU202400695

 63

& Mazo, J. J. (1999). Superconducting persistent-current qubit. Physics Review

B, 60, 15398.

[15] Porras, D. & Cirac, J. I. (2004). Effective Quantum Spin Systems with Trapped Ions.

Physics Review Letters, 92, 207901.

[16] Britton, J. W., Sawyer, B. C., Keith, A., Wang, C.-C. J., Freericks, J. K., Uys, H., …

Bollinger, J. J. (2012). Engineered two-dimensional Ising interactions in a trapped-

ion quantum simulator with hundreds of spins. Nature, 484, 489–492.

[17] Simon, J., Bakr, W. S., Ma, R., Tai, M. E., Preiss, P. M. & Greiner, M. (2011).

Quantum simulation of antiferromagnetic spin chains in an optical

lattice. Nature, 472, 307–312.

[18] Hahn, E. L. (1950). Spin echoes. Physical Review, 80, 580.

[19] Viola, L., Knill, E. & Lloyd, S. (1999). Dynamical Decoupling of Open Quantum

Systems. Physical Review Letters, 82(12), 2417-2421.

[20] Huang, C. H. & Goan, H. S. (2017). Robust quantum gates for stochastic time-

varying noise. Physical Review A, 95, 062325.

[21] Dyson, F. J. (1949). The radiation theories of Tomonaga, Schwinger, and Feynman.

Physical Review, 75, 486.

[22] Chen, C. L., Dong, D. Y., Long, R. X., Ian R. Petersen, I. R. & Rabitz, H. A. (2014).

Sampling-based learning control of inhomogeneous quantum ensembles. Physical

doi:10.6342/NTU202400695

 64

Review A, 89, 023402.

[23] Kingma, D. P. & Ba, J. (2014). Adam: A Method for Stochastic Optimization.

arXiv:1412.6980.

[24] Baum, Y., Amico, M., Howell, S., Hush, M., Maggie Liuzzi, M., Mundada, P.,

Merkh, T., Carvalho, A. R. R. & Biercuk, M. J. (2021). Experimental Deep

Reinforcement Learning for Error-Robust Gate-Set Design on a Superconducting

Quantum Computer. Physical Review X Quantum, 2, 040324.

[25] Gottesman, D. (2009). An introduction to quantum error correction and fault-

tolerant quantum computation. arXiv:0904.2557.

