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摘要 
量子計算在加密、金融、科學模擬等領域革新中深具潛力，然而現實世界中，

量子硬體的雜訊會嚴重地妨礙實行量子演算法，因此實現抗噪量子閘是使量子計

算發揮成效的重要前提。本文以創新的方法將量子控制問題整合進強化學習框架

中，並使用一種稱為近似策略最佳化的強化學習演算法配合深度神經網路，建立出

容錯量子計算所需的高保真、抗雜訊的量子閘。 

 

關鍵字：強化學習、機器學習、神經網路、近似策略最佳化、量子控制、抗噪量子

閘 

  



doi:10.6342/NTU202400695

 

 iii 

Abstract 

Quantum computing holds immense promise to revolutionize several industries such 

as cryptography, finance, scientific simulations and so on. However, the real-world 

application of quantum algorithms is severely hindered by the presence of noise in 

quantum hardware. Achieving noise-robust quantum gates is an important prerequisite to 

harness the power of quantum computing. This thesis presents an innovative way to 

address the challenge by mapping the quantum gate control problem into the 

reinforcement learning (RL) framework. Utilizing a RL algorithm called proximal policy 

optimization equipped with deep neural networks, we achieve constructing high-fidelity 

and robust single-qubit and two-qubit quantum gates in the presence of quasi-static noise, 

paving the way for fault-tolerant quantum computation. 

 

Keywords: Reinforcement learning, Machine learning, Neural networks, Proximal policy 

optimization, Quantum control, Robust quantum gates 
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Chapter 1 Introduction 

Quantum computing is a cutting-edge technology that leverages the laws of quantum 

mechanics to process and store information. Unlike a classical computer which uses either 

one of Boolean states to represent information, a quantum computer utilizes superposition 

of states along with quantum entanglement. Several quantum algorithms have been 

theoretically proved to outperform their classical counterparts for some problems. For 

example, Shor’s algorithm factorizes integers within only polynomial time [1]. Grover’s 

algorithm searches an unsorted database with a quadratic speed up [2]. Quantum 

computing with fast and efficient quantum algorithms provides a paradigm shift that 

promises to potentially impact numerous domains like cryptography, finance and drug 

industry. To realize the power of quantum computing, it is important to build a set of high-

fidelity and noise-robust quantum gates in real-world quantum computers. 

Recently, machine learning (ML) has been rapidly developed and widely applied in 

many versatile domains. ML algorithms seek to identify patterns and make predictions 

based on a large amount of data they have learned. There are three types of ML: 

supervised learning, unsupervised learning and reinforcement learning (RL). We here 

choose the RL method to address the challenge of constructing robust high-fidelity 

quantum gates. Equipped with deep neural networks (DNN), deep reinforcement learning 

(DRL) agents are able to plan policies or make estimations when interacting with the 
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environment. Mapping the quantum gate control problem into the RL framework, we use 

a RL algorithm called proximal policy optimization (PPO) [3], to optimize the piecewise 

constant (PWC) control pulses, generating a set of robust quantum gates with fidelities 

beyond the fault-tolerant threshold of quantum error correction for generic qubit models 

in the presence of quasi-static noise (QSN). 

Some research groups have also applied the DRL method to the optimal control of 

quantum gates in an ideal environment with infidelities around 10!" to 10!# [4][5][6]. 

Lin (2022) has constructed the ideal X, H and CNOT gates with the lowest ideal 

infidelities as 10!$%, 10!$% and 10!$&, respectively by the same PPO DRL algorithm 

[7]. Niu et al. (2019) have used the similar policy optimization DRL algorithm 

to construct a two-qubit gates in a noisy environment, but they introduce the time-varying 

noise into their deep neural network (DNN) model such that the output control pulses will 

alter with the unknown noise, not giving the unique robust pulses [8]. In this thesis, we 

give a preliminary attempt of applying the PPO DRL agent to perform robust high-fidelity 

quantum gates in a noisy environment, and we have shown that it works for the 

QSN. Moreover, most of these DRL approaches [4][8] use the quantum states of the qubit 

systems as environment observations, requiring knowing the underlying quantum 

dynamics. In contrast, the environment observations for our DRL agent are the control 

pulse strengths, which are more feasible and practical for the realistic control 
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experiments.  

We organize the thesis as follows. First, we introduce the DRL in Chapter 2. Next, 

we describe the quantum gate control problem in Chapter 3. Then, we integrate the control 

problem into the DRL framework in Chapter 4, and construct three iconic quantum gates, 

namely X, H and CNOT gates, in the presence of noise in Chapter 5. Finally, we discuss 

these results in Chapter 6, and finally we conclude our work in Chapter 7. 
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Chapter 2 Deep reinforcement learning 

2.1 Reinforcement learning 

Inspired by behavioral psychology, reinforcement learning focuses on training an 

intelligent agent to act responses to its observations in order to maximize a cumulative 

reward. We first introduce some terminologies and their relationships in RL: 

State (𝑠): It is a representation of an environment at a certain time 𝑡. To be more specific, 

information of state that is fully or partially observed by an agent is called an observation 

𝑜. However, state 𝑠 and observation 𝑜 are usually interchangeable in the RL notation. 

Action (𝑎): It is a decision made by an agent to interact with an environment. 

Policy (𝜋): It is a deterministic or stochastic strategy that defines an agent's behavior, 

mapping states to actions, 𝑎'~𝜋(⋅|𝑠'). 

State transition (𝑃): Given a current state 𝑠' and an agent’s action 𝑎', it tells how an 

environment maps them to a next state 𝑠'($~𝑃(⋅ |𝑠' , 𝑎'). 

Reward (𝑟): It is a numerical value that an environment provides after each agent’s action, 

serving as feedback. 

RL is classified into two main taxonomies, model-based and model-free, by telling 

whether a RL agent learns a model of environment or not. With a learned model, a model-

based RL owns sample efficiency and allows an agent to plan ahead. A famous example 
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of this kind is Google DeepMind’s AlphaZero [9]. However, model-learning is not an 

easy task, a model-free RL agent is instead easier to train. A model-free RL agent can be 

further classified into policy-based or value-based. A policy-based agent directly learns 

policies to take responses, while a value-based one make decision according to its 

estimation of options. We here choose the model-free approach, called proximal policy 

optimization (PPO) with actor-critic style implementation which leverages both merits of 

policy-based and value-based algorithms. 

 

2.2 Markov decision process 

Markov decision process (MDP) refers to a state transition 𝑃  of environment 

obeying Markov property. It says that a future state of an environment depends only on a 

current state and action, not on an entire history of states and actions. Though not being 

a strict requirement, MDP is widely used in RL because it provides a well-defined 

structure of environment. 

 

2.3 Proximal policy optimization 

 PPO is known for its stability, robustness, and ease of implementation. It is an on-

policy agent who updates its policy typically by taking several epochs of objective 
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maximization with a batch of data collected by its current policy, 

𝜃)($ = argmax
*
𝔼+,-~/!"	[𝐿(𝑠, 𝑎, 𝜃) , 𝜃)]		, (2.3-1) 

where 𝔼  is the expectation function, 𝜋  is PPO’s stochastic policy whose implicit 

parameters are 𝜃  with the subscript index 𝑘  denoting generations of policies. The 

objective function 𝐿(𝜃) is, 

min H
𝜋*(𝑎|𝑠)
𝜋*"(𝑎|𝑠)

𝐴(𝑠, 𝑎), clip M
𝜋*(𝑎|𝑠)
𝜋*"(𝑎|𝑠)

, 1 − 𝜖, 1 + 𝜖Q𝐴(𝑠, 𝑎)R		, (2.3-2) 

where clip is a function that clip the first argument between the second and the third 

ones, 𝜖 is a small-value hyperparameter that limits updating policy parameters, 𝐴(𝑠, 𝑎) 

is an advantage function that estimates how good an action 𝑎 is. To understand what 𝐿 

is doing, we first define a ratio, 

𝑟(𝑠, 𝑎, 𝜃) , 𝜃) =
𝜋*(𝑎|𝑠)
𝜋*"(𝑎|𝑠)

		. (2.3-3) 

Taking a positive 𝐴(𝑠, 𝑎) as an example, we certainly hope that probability of taking the 

action 𝑎 is as high as possible, that is, 𝑟 is far greater than one. However, a large update 

from 𝜃) to 𝜃 can bring training instability, we clip 𝑟 by 1 + 𝜖 such that a new policy 

does not benefit by going far away from the current one. The overall PPO algorithm is 

shown in Algorithm 1. 
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2.4 Value function 

To determine the design of advantage function 𝐴(𝑠, 𝑎), we recall the goal of RL is 

to maximize the cumulative reward, or called return, 

𝐺' =U𝛾) ⋅ 𝑟'()

0

)12

		, (2.4-1) 

where 𝛾 ∈ [0, 1] introduced here is a future discount factor that reflects preference of an 

immediate reward or is mathematically designed to avoid divergence of an infinite sum. 

Nevertheless, PPO’s policy as well as the state transition function 𝑃 of an environment 

is stochastic. We are not going to focus on only one trajectory of rewards but an expected 

one, 

𝔼+,-~/,3 WU𝛾) ⋅ 𝑟'()

0

)12

X		. (2.4-2) 

Practically, it is still hardly possible to exactly calculate this expected value which 

requires traversing all of attainable trajectories. Given an agent taking action by its policy 

𝜋	and starting at the state 𝑠', we use an estimator called value function to approximate 

the expected value, 

𝑉(𝑠') = 𝔼+,-~/ WU𝛾) ⋅ 𝑟'()

0

)12

X		. (2.4-3) 

With the value function 𝑉(𝑠') , we can estimate consequences of choosing different 

actions. For example, starting at the state 𝑠2, there are two actions 𝑎$ and 𝑎& that lead 
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us to the states 𝑠$ and 𝑠& with the values 𝑣$ = 𝑉(𝑠$) and 𝑣& = 𝑉(𝑠&) respectively. 

The PPO agent then updates the probabilities of these two actions according to their 

consequent values. 

 

2.5 Advantage function 

2.5.1 Temporal difference error 

Sometimes, we are not concerned about the goodness of actions in absolute sense 

which directly consider the consequent value 𝑉(𝑠'($). Instead, we want to update a 

policy such that it increases probability of better-than-average actions and decreases 

opposite ones. We use temporal difference (TD) error, 

𝛿'4 = 𝑟' + 𝛾 ⋅ 𝑉(𝑠'($) − 𝑉(𝑠')		, (2.5-1) 

to be an advantage function estimation 𝐴'
($) of a one-step action 𝑎'. The first two terms 

𝑟' + 𝛾 ⋅ 𝑉(𝑠'($) is the estimated value at the state 𝑠' when we intentionally choose the 

action 𝑎', while the last term 𝑉(𝑠') is the overall estimated value at the state 𝑠'. 

2.5.2 General advantage estimation 

We can similarly calculate following advantage function estimations if we further 

take actions 𝑎'($, 𝑎'(&, and all the way up to the final state, 
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𝐴'
($) = 𝛿'4 = −𝑉(𝑠') + 𝑟' + 𝑉(𝑠'($)		,	

𝐴'
(&) = 𝛿'4 + 𝛾 ⋅ 𝛿'($4 = −𝑉(𝑠') + 𝑟' + 𝛾 ⋅ 𝑟'($ + 𝛾& ⋅ 𝑉(𝑠'(&)		,	

𝐴'
(") = 𝛿'4 + 𝛾 ⋅ 𝛿'($4 + 𝛾& ⋅ 𝛿'(&4 = −𝑉(𝑠') + 𝑟' + 𝛾 ⋅ 𝑟'($ + 𝛾& ⋅ 𝑟'($ + 𝛾" ⋅ 𝑉(𝑠'(&)		,	

										⋮ 

𝐴'
()) =U𝛾) ⋅ 𝛿'()4

)!$

)12

= −𝑉(𝑠') + 𝑟' + 𝛾 ⋅ 𝑟'($ +⋯+ 𝛾)!$ ⋅ 𝑟'()!$ + 𝑉(𝑠'())		. 

(2.5-2) 

We use generalized advantage estimator 𝐴'
789(:,;) to be our final advantage function 

estimator 𝐴/!"(𝑠, 𝑎), which is defined as exponentially-weighted average of these above 

𝑘-step advantage function estimators, 

𝐴'
789(:,;) = (1 − 𝜆)_U𝜆)!$ ⋅ 𝐴'

())
0

)1$

` =U(𝛾𝜆)< ⋅ 𝛿'(<4
0

<12

		, (2.5-3) 

where the parameter 𝜆 ∈ [0,1] controls a bias-variance tradeoff by discounting future 

TD errors 𝛿'(<4  [10]. 

 From Eq. (2.5-2), we know that a return 𝐺') with definite rewards up to the 𝑘-step 

is 𝐴'
()) + 𝑉(𝑠'). Similarly, we define a more general return, 

𝐺'; = 𝐴'
789(:,;) + 𝑉(𝑠')		, (2.5-4) 

called 𝜆-return. 
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2.6 Deep neural network 

The policy function 𝜋*(𝑎|𝑠)  and the value function 𝑉(𝑠')  of PPO require 

sophisticated mechanisms to map a state (observation) into an action probability 

distribution and an estimated value of expected return respectively. It is barely possible 

to directly record every relation of state, action and value into a large lookup table. Instead, 

we utilize two deep neural networks (DNN), called policy (actor) network and value 

(critic) network, to approximate the policy function 𝜋*(𝑎|𝑠) and the value functions 

𝑉(𝑠') . In a policy network, there is an embedded network called action projection 

network which projects quasi output of policy network to final output action that satisfies 

an action spec of environment. 
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Algorithm 1 PPO with GAE 

1. Initialize a replay buffer, an optimizer with learning rate 𝑙𝑟, an action standard 
deviation 𝜎- , a policy network 𝜋* 	 and a value network 𝑉= 	 with network 

parameters 𝜃	 and 𝜙. 

2. For iteration = 1, 2, …: 

3.  Clear the replay buffer. 

4.  For number of data collections = 1, 2, …: 

5.   Run 𝜋*" in the environment to get a trajectory 

of (𝑠', 𝑎', 𝜋*"(𝑎'|𝑠'), 𝑟'). 

6.   Get values 𝑣' = 𝑉=(𝑠') to compute 𝐴!
"#$(&,() in Eq. (2.5-3) 

and 𝐺'; in Eq. (2.5-4). 

7.   Add data (𝑠', 𝑎', 𝜋*"(𝑎'|𝑠'), 𝐴!
"#$(&,(), 𝐺';) to the replay buffer. 

8.  For number of epochs = 1, 2, …: 

9.   Randomly sample a batch of data from the replay buffer. 

10.   Get 𝜋*(𝑎'|𝑠') and 𝑉=(𝑠'). 

11.   Get 𝐿(𝜃) in Eq. (2.3-2). 

12.   Get mean squared error: 

𝐿(𝜙) =Ud𝐺'; − 𝑉=(𝑠')e
&
		. 

13.   Update 𝜋* and 𝑉= with the optimizer: 

𝜃 ← 𝜃 + 𝑙𝑟 ⋅ ∇*𝐿(𝜃)		, 𝜙 ← 𝜙 − 𝑙𝑟 ⋅ ∇=𝐿(𝜙)		. 

14.  If using adaptive learning: 

15.   Update 𝑙𝑟 and/or 𝜎- . 
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Chapter 3 Quantum computing 

3.1 Qubit 

A qubit, short for “quantum bit”, is a fundamental unit of quantum information in 

quantum computing. Several kinds of quantum system can be implemented as a qubit 

such as superconducting qubit, ion trap and semiconductor quantum dot. Unlike a 

classical bit which represent information in either 0 or 1, a qubit can exist in a 

superposition of both states, 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩		, (3.1-1) 

where 𝛼, 𝛽 ∈ ℂ are probability amplitudes which require that |𝛼|& + |𝛽|& = 1, |𝑥⟩ is 

a ket vector in Dirac bra-ket notation to represent a quantum state. They can also be 

written in vector forms, 

|0⟩ = n10o		 ,
|1⟩ = n01o		. (3.1-2) 

For a more general 𝑛-qubit representation, we construct them by the tensor product of 

each single qubit, 

|𝜓⟩ = U 𝑐>$>%…>&

&&

>'12,$

|𝑏$⟩ ⊗ |𝑏&⟩ ⊗ …⊗ |𝑏@⟩	

= U 𝑐>$>%…>&

&&

>'12,$

|𝑏$𝑏&…𝑏@⟩		, 

(3.1-3) 

where the sum of these squared probability amplitudes is also required to be one. 
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3.2 Quantum gate 

Quantum gates are mathematical operators that manipulate the qubits to perform 

specific operations. Some common quantum gates and their matrix forms are shown 

below, 

𝑋 = n0 1
1 0o 		,			𝑌 = n0 −𝑖

𝑖 0 o 		,			𝑍 = n1 0
0 −1o 		,			𝐻 =

1
√2

n1 1
1 −1o		, (3.2-1) 

CZ = {
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −1

|		 , CNOT = {
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

|		. (3.2-2) 

X, Y and Z are Pauli gates which is also usually noted as 𝜎A, 𝜎B and 𝜎C. H is Hadamard 

gate which plays an important role in making a superposition state. CZ and CNOT are 

controlled gates that act on two qubits simultaneously to generate critical entangled states. 

These gates are vital part of universal quantum gate sets to which any operation possible 

on a quantum computer can be reduced.  

 

3.3 Quantum control 

3.3.1 Hamiltonian and propagator 

Quantum control involves using external fields such as electromagnetic pulses or 

laser beams to steer qubits. It is often described in terms of Hamiltonian ℋ(𝑡), which 

represents system dynamic over time and how it responds to the external control fields. 
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It can be further decomposed into ideal and noisy parts, 

ℋ(𝑡) = ℋD(𝑡) +ℋE(𝑡)		. (3.3-1) 

If a system is ideal, then an ideal gate propagator over time 𝑡 is given as, 

𝑈D(𝑡) = 𝒯 exp M−𝑖 � ℋD(𝑡F)𝑑𝑡F
'

2
Q		, (3.3-2) 

where 𝒯  is the time-ordering operator, and we set ℏ = 1  throughout this thesis. 

However, we get company from noise in reality, a total propagator should be, 

𝑈(𝑡) = 𝑈D(𝑡)	𝒯 exp M−𝑖 � ℋ�E(𝑡F)𝑑𝑡F
'

2
Q		, (3.3-3) 

where ℋ�E(𝑡F) = 𝑈D
G(𝑡)ℋE(𝑡)𝑈D(𝑡)  is noisy Hamiltonian in the interaction picture 

transformed by 𝑈D(𝑡). With a careful choice of control parameters by optimization or 

machine learning, we can make a propagator to be any desire quantum gate we want. 

 

3.3.2 Rotating wave approximation 

The rotating wave approximation (RWA) is a common approximation used in 

quantum optics. When applied electromagnetic field is near resonance with a qubit 

transition frequency and its intensity is low, it neglects terms in Hamiltonian that oscillate 

rapidly. 

For simplicity, considering a two-level qubit with intrinsic transition frequency 𝜔2, 

its Hamiltonian is, 
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ℋ2 =	
𝜔2
2 𝑍		. (3.3-4) 

We drive the qubit with an external classical electric field 𝐸�⃗ = 𝐸�⃗ 2𝑒!HI(' + 𝐸�⃗ 2∗𝑒HI(' with 

a driving frequency 𝜔K  and ∗  denoting the complex conjugate. Under the dipole 

approximation, the driving Hamiltonian is, 

ℋK =	−𝑑 ⋅ 𝐸�⃗ 		, (3.3-5) 

where 𝑑 is the dipole moment of the qubit. We assume that the qubit does not have a 

dipole moment when it is in an eigenstate such that, 

𝑑 = 	𝑑2𝜎( + 𝑑2∗𝜎!		, (3.3-6) 

where the 𝜎± = 𝑋 ± 𝑖𝑌. The driving Hamiltonian is then, 

ℋK =	−�Ω𝑒!HI(' + Ω�𝑒HI('�𝜎( − �Ω�∗𝑒!HI(' + Ω∗𝑒HI('�𝜎!		, (3.3-7) 

where Ω = 𝑑2 ⋅ 𝐸�⃗ 2 is the Rabi frequency and Ω� = 𝑑2 ⋅ 𝐸�⃗ 2∗ is counter-rotating frequency. 

We consider the unitary transformation to the interaction picture, 

ℋK.D = 𝑈2ℋK𝑈2
G		, (3.3-8) 

where 𝑈2 = 𝑒!Hℋ)'  and †  is the conjugate transpose of matrix. With 𝑈2𝜎±𝑈2
G =

𝑒±HI)'𝜎±, Eq. (3.3-8) can be further deduced to, 

ℋK.D = −�Ω𝑒!HO' + Ω�𝑒H(I)(I()'�𝜎( − �Ω�∗𝑒!H(I)(I()' + Ω∗𝑒HO'�𝜎!		, (3.3-9) 

where Δ = 𝜔K − 𝜔2. This is the point where we apply the RWA. If the driving frequency 

of electric field is near resonance with the qubit frequency, i.e., Δ ≪ 𝜔2 + 𝜔K ≈ 2𝜔2, 

those complex exponentials multiplying counter-rotating frequency is considered to be 
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rapidly oscillating. Given an appreciate time scale, these oscillations average to 0 such 

that Eq. (3.3-9) reduces to, 

ℋK.D
PQ8 = −Ω𝑒!HO'𝜎( − Ω∗𝑒HO'𝜎!		. (3.3-10) 

The approximation error is about Ω&𝑇/𝜔2 , where 𝑇  is the gate time [11]. We 

transforming Eq. (3.3-10) back to the Schrödinger picture, while ℋ2 remains unaffected 

by the RWA. The total Hamiltonian under the RWA is, 

ℋPQ8 =
𝜔2
2 𝑍 − Ω𝑒!HI('𝜎( − Ω∗𝑒HI('𝜎!		. (3.3-11) 

 

3.3.3 Effective control Hamiltonian 

In the numerical simulation, we usually favor each coefficient in Hamiltonian to be 

comparable. However, 𝜔2 is usually larger than Ω and Δ. We transform Eq. (3.3-11) 

into the driving frame with 𝑈K = 𝑒!HI('R/& so that it becomes, 

ℋ$T = 𝑈KℋPQ8𝑈K
G + 𝑖�̇�K𝑈K

G =
Δ
2 𝑍 − Ω𝜎( − Ω

∗𝜎!		. (3.3-12) 

If we further assume a real driving such that Ω = Ω∗, Eq. (3.3-12) is simplified to, 

ℋ$T =
Δ
2 𝑍 − Ω𝑋		, 

(3.3-13) 

which is the commonly used effective single-qubit control Hamiltonian. If the driving is 

on-resonant (Δ = 0), it can generate 𝑋 gate whose gate time is determined by the Ω, 

therefore the strength of the external field. In contrast, if the driving is off-resonant (Δ ≠
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0), it can generate 𝐻 gate by carefully designing the Δ and Ω. 

 For a two-qubit control Hamiltonian, we consider the Ising model that two qubits 

are coupled by the ZZ interaction, 

ℋ2 =
𝜔2,$
2 𝑍$ +

𝜔2,&
2 𝑍& +

𝐽
2𝑍$𝑍&		, 

(3.3-14) 

where 𝜔2,H is an intrinsic qubit frequency and 𝐽 is coupling strength between qubits, 

subscript 1 and 2 denote the indices of qubits. The ZZ interaction is the natural generator 

of 𝐶𝑁𝑂𝑇 gate up to one-qubit operations [12], which can be realized in many quantum 

systems such as Transmons [13], flux qubits [14], trapped ions [15][16] and neutral atoms 

[17]. Similarly, we can drive these two qubits independently with Eq. (3.3-7) such that 

the total Hamiltonian is, 

ℋ =
𝜔2,$
2 𝑍$ +ℋK,$�Ω$, 𝜔K,$� +

𝜔2,&
2 𝑍& +ℋK,$(Ω&, 𝜔K,&) +

𝐽
2𝑍$𝑍&		. 

(3.3-15) 

where ΩH  and 𝜔K,H  are Rabi and driving frequencies of the 𝑖-th qubit. Since Pauli 

operators of different qubits are commute, we can apply the same RWA procedure in Sec. 

3.3.2 and driving-frame transformation in the previous single-qubit case. Besides, we 

assume both qubits have identical qubit and driving frequencies (𝜔2,$ = 𝜔2,&  and 

𝜔K,$ = 𝜔K,&) such that they have the same detuning Δ, obtaining our effective two-qubit 

control Hamiltonian with comparable coefficients, 

ℋ&T =
Δ
2 𝑍$ − Ω$𝑋$ +

Δ
2 𝑍& +−Ω&𝑋& +

𝐽
2𝑍$𝑍&		. 

(3.3-16) 
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3.3.4 Piecewise constant control 

Since the RL requires an environment to possess an episodic characteristic, we 

choose PWC control pulse to build quantum gates. In the PWC control protocol, the 

maximum gate time 𝑇 is predefined. Entire pulses are divided into 𝑁 step pulses with 

equal step time 𝛿𝑡 = 𝑇/𝑁. During 𝑖-th time step in time interval (𝑖 − 1)𝛿𝑡 < 𝑡 < 𝑖𝛿𝑡 

with 𝑖 ∈ ℕ and 𝑖 ≤ 𝑁, the control parameter vector 𝑝H is constant such that ℋ(𝑝H) is 

time-independent, then the 𝑖-th unitary propagator is, 

𝑈H(𝑝H) = exp(−𝑖ℋ(𝑝H)𝛿𝑡)		. (3.3-17) 

The total propagator up to time 𝑖𝛿𝑡 can be determined iteratively, 

𝑈(𝑖𝛿𝑡) = 𝑈H(𝑝H)𝑈�(𝑖 − 1)𝛿𝑡�		, (3.3-18) 

with the initial propagator is identity, 𝑈(0) = 𝐼. 

 

3.3.5 Exponential of Pauli vector 

During a step pulse of PWC protocol in Sec. 3.3.4, if this constant control 

Hamiltonian can be represented by combination of Pauli matrices, 

ℋ = |�⃗�|�̂� ⋅ �⃗�		, (3.3-19) 

where 𝑝 = �𝑝A , 𝑝B , 𝑝C� is the control vector, |�⃗�| is the norm of �⃗� so that �̂� = 𝑝/|�⃗�|, 

and �⃗� = (𝑋, 𝑌, 𝑍) is a Pauli vector, we can rewrite the exponential form of unitary 
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propagator in Eq. (3.3-17) with sine and cosine functions, 

𝑈(𝑝) = 𝐼 cos(|�⃗�|𝛿𝑡) − 𝑖(�̂� ⋅ �⃗�) sin(|�⃗�|𝛿𝑡)		, (3.3-20) 

which avoids the computational burden of matrix exponential in numerical simulation. 

 

3.3.6 Dynamic decoupling 

The dynamic decoupling is a quantum control technique based on the concept of 

Hahn spin echo [18], employed in quantum control to suppress decoherence with 

sequences of carefully timed and tuned control pulses. The pulses often implement 

periodic flip-flop operations at intervals shorter than characteristic timescale of 

environmental noise to continuously refresh and protect quantum information [19]. 

 

3.4 Gate infidelity 

3.4.1 Definition of infidelity 

To have an idea how good our quantum gates are, we need a metric to determine a 

gate infidelity. Given a target gate 𝑈U, final gate time 𝑡V and number of qubits 𝑛, the 

gate infidelity is defined as, 

𝕀 = 1 −
1
4@ ¥Tr¦𝑈U

G𝑈�𝑡V�§¥
&
		, (3.4-1) 
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where Tr is the trace operator. 

3.4.2 Dyson expansion 

Referring to the analysis of noise contribution in infidelity in [19], if the noise 

strength is not too strong, we can expand the propagator 𝑈�𝑡V� in terms of ℋ�E(𝑡) in 

Eq. (3.3-3) by Dyson series [21], 

𝑈�𝑡V� = 𝑈D�𝑡V� {𝐼 +UΨW

0

W1$

|		, (3.4-2) 

where ΨW is, 

ΨW = (−𝑖)W� 𝑑𝑡$
'*

2
� 𝑑𝑡&
'$

2
…� ℋ�E(𝑡$)ℋ�E(𝑡&)…ℋ�E�𝑡W�𝑑𝑡W

'+,$

2
		. (3.4-3) 

We substitute the expanded propagator back into the infidelity in Eq. (3.4-1), 

𝕀 = 𝐽2 −
2
4@ ReªTr¦𝑈U

G𝑈D�𝑡V�§«
⋆
Tr {𝑈U

G𝑈D�𝑡V� ⋅UΨW

0

W1$

|

−
1
4@ ¬Tr {𝑈U

G𝑈D�𝑡V� ⋅UΨW

0

W1$

|¬

&

		, 

(3.4-4) 

where Re denotes taking the real part of the quantity. The first term 𝐽2 is exactly the 

gate infidelity for the ideal system, 

𝐽2 = 1 −
1
4@ ¥Tr¦𝑈U

G𝑈D�𝑡V�§¥
&
		. (3.4-5) 

We then introduce an error shift matrix 𝑈Y of the ideal gate propagator 𝑈D�𝑡V� relative 

from the target gate propagator 𝑈U up to a global phase 𝜙,  

𝑈D�𝑡V� = 𝑒H=𝑈U(𝐼 + 𝑈Y)		. (3.4-6) 
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We substitute this back into the infidelity in Eq. (3.3-17), 

𝕀 = 𝐽2 +U𝐽)

0

)1$

+ 𝜖		, (3.4-7) 

where those 𝐽) are noisy terms without containing 𝑈Y 	with 𝑘 defined as noise orders, 

and 𝜖 instead contains 𝑈Y, 

𝜖 = −
1

2@!$ ReTr {𝑈YUΨW

0

W1$

|® −
2
4@ ReTr

[𝑈Y]⋆Tr {UΨW

0

W1$

|®

−
2
4@ ReTr {UΨW

0

W1$

|

⋆

Tr {𝑈YUΨW

0

W1$

|®

−
2
4@ ReTr

[𝑈Y]⋆Tr {𝑈YUΨW

0

W1$

|® −
1
4@ ¬Tr {𝑈YUΨW

0

W1$

|¬

&

		. 

(3.4-8) 

When 𝐽2  is small, the matrix elements of 𝑈Y  are also small. Meanwhile, if noise 

strength is not too strong such that |Ψ)($| ≪ |Ψ)|, we can neglect the effect of 𝜖. We 

look into the first four noise order terms of 𝐽) , 

𝐽$ = −
1

2@!$ Re
[Tr(Ψ$)]		, (3.4-9) 

𝐽& = −
1

2@!$ Re
[Tr(Ψ&)] −

1
4@
|Tr(Ψ$)|&		, (3.4-10) 

𝐽" = −
1

2@!$ Re
[Tr(Ψ")] −

2
4@ Re

{Tr(Ψ$)Tr(Ψ&)⋆}		, (3.4-11) 

𝐽# = −
1

2@!$ Re
[Tr(Ψ#)] −

1
4@
|Tr(Ψ&)|& −

2
4@ Re

{Tr(Ψ$)Tr(Ψ")⋆}. (3.4-12) 

According to Eq. (3.4-3), the noisy Hamiltonian ℋ�E(𝑡) is a Hermitian operator, so the 

real part of traced ΨW with odd 𝑗 are zero such that these odd noise order terms of 𝐽) 

such as 𝐽$ and 𝐽" are all vanish. Since noise is stochastic, we use ensemble average of 



doi:10.6342/NTU202400695

 

 22 

infidelities, 

⟨𝕀⟩ = 𝐽2 + ³U𝐽&)

0

)1$

´ + ⟨𝜖⟩		. (3.4-13) 

Though we are not going to explicitly use the expanded infidelity as our loss function of 

machine learning, the expansion gives us insights of which noise order terms dominate 

(see the analysis in Sec. 3.6). 

 

3.5 Quasistatic noise model 

For an ideal quantum system, the ensemble infidelity ⟨𝕀⟩  is simply the ideal 

infidelity 𝐽2. But for the noisy one, practically, we need to test our pulses several times 

in the noisy environment and then average these result infidelities. To test our RL 

approach, we here choose the quasistatic 𝑍 -noise (QSN) model which the noise is 

constant during the gate time of each running, exerted on the 𝑍  component in 

Hamiltonian. Its noise strength is sampled from the Gaussian distribution with a zero 

mean and a noise standard deviation 𝜎E. 
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3.6 Gate infidelity estimation 

3.6.1 Noise contribution 

With the gate infidelity expansion introduced in Sec. 3.4.2, we can estimate noise 

contribution of each order in a gate infidelity. Taking a single qubit gate in quasistatic 𝑍-

noise model (Sec. 3.5) as an example, the noisy Hamiltonian in the interaction picture 

ℋ�E(𝑡F) is 𝑈D
G(𝑡)[𝛽 ⋅ 𝜔2 ⋅ 𝑍/2]𝑈D(𝑡), where 𝛽 is the sampled noise amplitude from the 

Gaussian distribution. We substitute it into the Ψ) in Eq. (3.4-3), 

ΨW = (−𝑖)W� 𝜔2𝑑𝑡$
'*

2
� 𝜔2𝑑𝑡&
'$

2
…� 𝜔2𝑑𝑡W

'+,$

2
	

																																																																				× 𝛽W𝑅R(𝑡$)𝑅R(𝑡&)…𝑅R(𝑡E) 
(3.6-1) 

where 𝑅R(𝑡) = 𝑈D
G(𝑡)[𝑍/2]𝑈D(𝑡). Since matrix element magnitudes of 𝑍  and 𝑈D(𝑡) 

are all smaller than one, matrix element magnitudes of 𝑅R(𝑡$)𝑅R(𝑡&)…𝑅R(𝑡E) are also 

smaller than one. The time integral ∫ 𝜔2𝑑𝑡$
'*
2 ∫ 𝜔2𝑑𝑡&

'$
2 …∫ 𝜔2𝑑𝑡W

'+,$
2  can be estimated 

as �𝜔2𝑡V�
W/𝑗! and the 𝛽W  can be estimated as the noise standard deviation 𝜎E

W . The 

overall estimation of ΨW  is �𝜔2𝑡V𝜎E�
W/𝑗! . Substituting the estimated ΨW  into each 

noise order 𝐽) with even 𝑘 such as Eq. (3.4-10) and Eq. (3.4-12), we get, 

𝐽&	~�𝜔2𝑡V𝜎E�
& ⋅
1
2		 , 𝐽#~	�𝜔2𝑡V𝜎E�

# ⋅
5
48		. 

(3.6-2) 

Once we construct a control pulse, we can test them in a certain noise model with a series 

of 𝜎E. From slopes between noise standard deviations and corresponding ensemble gate 
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infidelities, we can tell which noise order dominate an ensemble gate infidelity 〈𝕀〉. Given 

𝜎E < 1, the higher the noise order dominates, the more robust a quantum gate is, because 

the exponent on the noise standard deviation is greater. 

 

3.6.2 Control deviation 

The noise contribution estimation (Sec. 3.6.1) can also reflect a response of control 

deviation. The control deviation can be thought as intentionally sampling a certain noise 

strength 𝛽 into a perfect control pulse. Not considering a noise-robust quantum gate, we 

know that 𝐽& usually dominates such that a gate infidelity 〈𝕀〉 will be around the order 

of 𝛽& according to Eq. (3.6-2). 
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Chapter 4 Integration 

 

4.1 Framework mapping 

We are going to map the quantum control problem into the RL framework. There are 

several options which can be designed as agent’s observations 𝑜 such as control pulse 

vector, Hamiltonian, or unitary propagator. Though these options have same amount of 

information, we choose pulse vector as observations because the last two terms need to 

access information of quantum states which is unavailable in real quantum devices. 

Instead of only one previous step pulse vector, we include an entire sequence of 𝑁-step 

PWC pulse vectors as observations, 

𝑞H = (𝑝$, 𝑝&, … , 𝑝H , 0, … ,0), (4.1-1) 

where each pulse vector 𝑝H has 𝑀 control dimensions. It makes this RL task to hold the 

merit of Markov decision process property, avoiding the situation that an agent may 

confuse whether an observation of a previous step comes from the same pulse history or 

not. The agent’s action 𝑎 is then intuitively the next step pulse vector 𝑝H($. To specify 

this observation and action formulation, we take 𝑁 = 2 for example: The agent’s initial 

observation is a sequence of zeros 𝑞2 = (0, 0), then it gives the first step pulse vector 𝑝$ 

as the action. The agent’s next observation is the first step pulse vector 𝑝$ followed with 
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zeros, 𝑞$ = (𝑝$, 0), then it gives the final action 𝑝& , leading to the final state 𝑞& =

(𝑝$, 𝑝&) that is no need to be observed. 

 

4.2 Reward design 

4.2.1 Sampling-based method 

To get the ensemble infidelity ⟨𝕀⟩ in the QSN model (Sec. 3.5), we indeed do the 

random sampling to calculate ⟨𝕀⟩ in a noise test. However, it requires large amount of 

pulse data collection to train the agent. We instead use the sampling-based method [22] 

which samples a small fixed set of noise strength to relieve the computational burden. We 

attempt to use a set that includes {0, +𝜎E , −𝜎E}. This noise strength set has a zero mean 

and a standard deviation ¿2/3𝜎E , which is not equal to the original Gaussian noise 

standard deviation 𝜎E. We scale back this noise strength set to {0, +𝑘𝜎E , −𝑘𝜎E} with 

𝑘 = ¿3 2⁄  such that the training and testing noise strength set has the same mean and 

standard deviation. 
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4.2.2 Weighted infidelity 

The RL agent’s performance really depends on the design of the reward function. 

Though we assume the Gaussian quasistatic noise model in Sec. 3.5, we do not know the 

noise standard deviation 𝜎E not to mention to adjust it. With an ideal infidelity redefined 

as 𝕀D = 𝐽2, the smaller the true 𝜎E is, the smaller the noisy infidelity 𝕀E = ⟨𝕀⟩ − 𝕀D is 

as a proportion of the reward function such that the agent may not aware it to learn a 

robust quantum gate. We design an adjustable weighted infidelity, 

𝕀Q = 𝑤D ⋅ 𝕀D +𝑤E ⋅ 𝕀E		. (4.2-1) 

By assigning a different ratio between the ideal weight 𝑤D and noisy weight 𝑤E , we 

can adjust the importance between ideal and noisy infidelities.  

In practice of training our agent in noisy environment, an 𝕀D is given by testing its 

control pulse in ideal environment, while a 𝕀E is given by subtracting the 𝕀D from the 

⟨𝕀⟩ of sampling-based noises (Sec. 4.2.1). Since we require the agent achieve the target 

gate 𝑈U right at the gate time 𝑇, the 𝑖-th step reward is design as, 

𝑟H = Ã 0, 𝑖 ∈ {0, 1, … , 𝑁 − 1}
− log$2 𝕀Q , 𝑖 = 𝑁 , (4.2-2) 

where we take the logarithm to increase the sensitivity of infidelity improvement. 
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4.2.3 Hyperparameters 𝜸 and 𝛌 

Since our quantum gate control environment has a small number of time steps 

𝑁~10$ and the high important final reward design in Eq. (4.2-2), we assign both future 

discount factor 𝛾 and exponentially-weighted parameter 𝜆 introduced in Secs. 2.4 and 

2.5 to be 1. 

 

4.3 Neural network design 

4.3.1 Network size 

Our PPO agent possesses a policy network, a normal projection network and a value 

network. For the value network, its input size is the size of flatten pulse sequence 𝑁 ×𝑀, 

its number of hidden layers is 2 with their numbers of hidden neurons usually designed 

to be at the order of its input size, and its output size is only 1. For the policy network, its 

input size and hidden structure are the same as the value network, while its output size is 

two times the size of pulse vector 2 ×𝑀. These outputs are then fed into an action 

projection network, called normal projection network, to generate action means 𝜇- , 

action standard deviations 𝜎-, and action normal distributions which they are truncated 

by given boundaries of pulse amplitude and renormalized. In the RL training phase, the 
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agent’s actions are finally sampled from these truncated action normal distributions, while 

in our RL testing phase, we force agent to use the means of distributions as their actions. 

 

4.3.2 Network initialization 

According to the concept of dynamic decoupling in Sec. 3.3.6, a flip-flop pulse can 

mitigate noise. To better incent an agent to generate the flip-flop pulse that across the zero 

line, we intentionally set the initial network parameters of normal projection network to 

be zeros such that it gives a flat pulse right at the zero line at the beginning. To show why 

this design works, we take the Pauli 𝑋 gate to be the example: To achieve a low ideal 

infidelity 𝕀H , it requires the area of control pulse on the 𝑋  direction to be the odd 

multiples of 𝜋. However, due to the recursive nature of pulse generation in RL, we 

usually get a nearly-flat pulse after training. If we do not set the initial pulse near the zero 

line, the agent may generate a 3𝜋 or higher pulse area pulse that is away from the zero 

line. Then, if we further want to get a robust 𝑋 gate which requires a flip-flop pulse 

shape, the pulse that is away from the zero line is harder to achieve the goal. 
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4.4 Adaptive learning 

To build a low infidelity quantum gate, the adaptive learning rate mechanism in the 

commonly-used optimizer, Adam [23], is not enough. We additionally adjust a learning 

rate 𝑙𝑟 and an action standard deviation 𝜎- according to a gate infidelity. In Sec. 3.6.2, 

we know that an infidelity is roughly square of control deviation when an ideal infidelity 

𝕀D is small. Hence, we automatically or manually assign a learning rate 𝑙𝑟 and an action 

standard deviation 𝜎-  to roughly be a square-root of infidelity 〈𝕀〉$/&  every certain 

number of training iterations. At the automatic mode, we will set initial 𝑙𝑟 and 𝜎- to 

also play as the upper bounds of them. That is, taking a 𝑙𝑟 for example, a result 𝑙𝑟 will 

be the smaller one between the initial 𝑙𝑟 and 〈𝕀〉$/&. 
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Chapter 5 Result 

We here apply our method to construct three iconic quantum gates, 𝑋 , 𝐻  and 

CNOT  gates. For 𝑋  and 𝐻  gates. we begin with a trivial one-step pulse in ideal 

environment to preliminarily verify the feasibility of our RL approach (Sec. 2.3), the 

intentional flat pulse initialization (Sec. 4.3.2) and the efficiency of automatic adaptive 

learning (Sec. 4.4). Then, we construct their multi-step versions in ideal and noisy 

environments, where we set the same max gate time 𝑇 and step numbers 𝑁 within each 

kind of gate to better compare the effect of noise learning. 

We organize each test as follows. We first declare the target gate and our effective 

control Hamiltonian. Next, we list a setting of control configuration, network sizes and 

learning hyperparameters in a table. Finally, we show the results of training including 

agents’ learning curves, control pulses as well as their noise test to recognize dominant 

noise orders. 

 

5.1 𝑿 gate 

We first deal with the simplest 𝑋 gate to test our approach. Its matrix form is, 

𝑋 = n0 1
1 0o		. (5.1-1) 

According to Eq. (3.3-13) with an on-resonant driving field, our effective control 
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Hamiltonian is, 

ℋ(𝑡) =
𝜋
2 Ω

(𝑡)𝑋		, (5.1-2) 

where Ω(𝑡) ∈ {𝑝$, 𝑝&, … , 𝑝E} is in the PWC control protocol. 

 

5.1.1 Trivial case 

In the trivial case of 𝑋  gate, we will test the efficiency of automatic adaptive 

learning which assigns a learning rate 𝑙𝑟 and an action standard deviation 𝜎- to be a 

square root of infidelity after every training iteration. First, we train a PPO agent without 

the automatic adaptive learning. An effective learning rate is fully determined by Adam 

optimizer with the initial 𝑙𝑟 = 3 × 10!# and an action standard deviation is given by the 

agent’s normal projection network. Later, we adopt the automatic adaptive learning with 

the initial 𝑙𝑟 = 1 to speed up training. The common settings of these two are shown in 

Table 5.1-1, where the batch size is set to “All” means that we use the whole collected 

data instead of mini-batch of them in every gradient descent epoch. The comparison 

results are shown from Figure 5.1-1 to Figure 5.1-3, where blue and green colors indicate 

the learnings with and without the automatic adaptive learning respectively. 

Comparing the learning curves in Figure 5.1-1, the blue one which adopts the 

automatic adaptive learning easily reaches the lower bound double precision (10!$Z) at 
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the early 22-th iteration, while the other green one wobbles around 10!%	and touches the 

10!$& just by chance. Moreover in Figure 5.1-2, the control deviation of the green pulse 

is at the order of 10!% which is the square root of its infidelity, indeed consistent with 

our control deviation analysis in Sec. 3.6.2. Besides, from the result that their pulse areas 

are both equal to 1.0 but not 3.0 or higher odd values (note that our Hamiltonian contains 

𝜋/2), we realize that our network initialization in Sec. 4.3.2 that intentionally sets initial 

pulses to be flat around the zero truly works. Finally, when testing with the QSN model 

in Figure 5.1-3, these 𝑋 gates are both mainly dominated by the Second order noise 𝐽& 

since the agents trained in the ideal environment are unable to aware the characteristic of 

noise. 

 

Parameter Value 
𝑇 1.0 
𝑁 1 

Pulse boundary [-4, 4] 
Policy network size (4, 4) 
Value network size (4, 4) 

Number of collections 30 
Number of epochs 10 

Batch size All 
Initial 𝑙𝑟 1 and 3 × 10!# 
Initial 𝜎- 3 × 10!$ 

Table 5.1-1. The setting of trivial 𝑋 gate.  
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Figure 5.1-1. The learning curves of trivial 𝑋  gates with and without the automatic 

adaptive learning. 

 

Figure 5.1-2. The one-step control pulses of trivial 𝑋  gates with and without the 

automatic adaptive learning. 
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Figure 5.1-3. The ensemble infidelity versus noise standard deviation of trivial 𝑋 gates 

with and without the automatic adaptive learning. 

 

5.1.2 Ideal and noisy cases 

To construct a robust 𝑋 gate in the QSN environment with 𝜎E = 10!$, we need a 

multi-step pulse to realize a flip-flop feature, so we increase step numbers 𝑁 to 8. In the 

noisy case, we use the sampling-based method (Sec. 4.2.1) to get an effective ensemble 

infidelity for an agent’s training. Also, we adopt the manual adaptive learning, starting 

with larger 𝑙𝑟 and 𝜎- at the first stage. At this stage, it is crucial that the weighted ideal 

and noisy infidelities should be comparable in magnitudes to let the agent aware of them 

both. We then manually decrease 𝑙𝑟, 𝜎- and noisy weight 𝑤E after every training stage 

once the agent learns a robust pulse with a low enough ideal infidelity, while an ideal 
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weight 𝑤D is always set to 1.0. We also do an ideal case in the same control configuration 

except for still adopting the automatic adaptive learning. The common settings of two 

cases are shown in Table 5.1-2, the adaptive schedule of noisy case is shown in Table 

5.1-3, and the results are shown from Figure 5.1-4 to Figure 6-4. 

Comparing the learning curves in Figure 5.1-4 and Figure 5.1-5, the ideal 𝑋 gate 

adopting the automatic adaptive learning converges to 10!$Z in short iterations, while 

the noisy 𝑋 gate takes a lot of time, especially trying to get a robust pulse at the stage-1 

learning. We terminate this learning stage only when the agent learns a pulse that 

possesses the 4th noise order behavior shown as the solid cyan curve in Figure 6-4. The 

following stages are mainly served as decreasing the ideal infidelity while maintaining 

the 4th noise order behavior. Finally, in Figure 5.1-6, in contrast with the flat pulse of 

ideal 𝑋 gate, the robust pulse of noisy 𝑋 gate really behaves a flip-flop shape across 

the zero line.  
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Parameter Value 
𝑇 1.0 
𝑁 8 

Pulse boundary [-4, 4] 
Policy network size (8, 8) 
Value network size (8, 8) 

Number of collections 30 
Number of epochs 10 

Batch size All 
Initial 𝑙𝑟 3 × 10!# 
Initial 𝜎- 3 × 10!$ 

Table 5.1-2. The common settings of ideal and noisy 𝑋 gates. 

 

Stage 
Number of 
iterations 

𝑤E Initial 𝑙𝑟 Initial 𝜎- 

1 8427 1 3 × 10!# 3 × 10!$ 
2 99 10!$ 10!# 3 × 10!& 
3 16 10!& 3 × 10!Z 10!& 
4 938 10!" 10![ 10!" 
5 29 10!# 10!\ 10!" 
6 145 0 10!$2 10!% 

Table 5.1-3. The adaptive schedule of noisy 𝑋 gate. 
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Figure 5.1-4. The learning curve of ideal 𝑋 gate. 

 

Figure 5.1-5. The learning curves of noisy 𝑋 gate. These infidelities are defined in Sec. 

4.2.2. 
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Figure 5.1-6. The control pulse of ideal and noisy 𝑋 gates. 

 

Figure 5.1-7. The ensemble infidelity versus noise standard deviation of ideal and noisy 

𝑋 gates. 
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5.2 𝑯 gate 

The matrix form of target 𝐻 gate is, 

𝐻 =
1
√2

n1 1
1 −1o		. (5.2-1) 

According to an off-resonant driving field with a detuning Δ  in Eq. (3.3-13), our 

effective control Hamiltonian is, 

ℋ(𝑡) =
𝜋
2
(Δ𝑍 + Ω(𝑡)𝑋)		, (5.2-2) 

where Ω(𝑡) ∈ {𝑝$, 𝑝&, … , 𝑝E} is in the PWC control protocol. The all settings are similar 

to those in the 𝑋 gate learning. However, the extra 𝑍 operator restricts the lower bound 

of gate time and makes a control more difficult by requiring a coefficient match between 

the 𝑍 and 𝑋 operators. 

 
 

5.2.1 Trivial case 

In the trivial case of 𝐻 gate, we as well adopt the automatic adaptive learning and 

set 𝑇 to be the minimal required gate time 1/√2. The other settings shown in Table 

5.2-1 are the same as the trivial 𝑋 gate in Sec. 5.1.1. The results shown from Figure 5.2-1 

to Figure 5.2-3 are also similar to trivial 𝑋 gate. 
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Parameter Value 
𝑇 1/√2 
𝑁 1 

Pulse boundary [-4, 4] 
Policy network size (4, 4) 
Value network size (4, 4) 

Number of collections 30 
Number of epochs 10 

Batch size All 
Initial 𝑙𝑟 102 
Initial 𝜎- 3 × 10!$ 

Table 5.2-1. The setting of trivial one-step ideal 𝐻 gate. 

 

Figure 5.2-1. The learning curve of trivial 𝐻 gate. 
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Figure 5.2-2. The control pulse of trivial 𝐻 gate. 

 

 

Figure 5.2-3. The ensemble infidelity versus noise standard deviation of trivial 𝐻 gate. 
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5.2.2 Ideal and noisy cases 

To construct a robust 𝐻  gate in the QSN environment with 𝜎E = 10!$ , the 

minimal gate time 1/√2 in the previous trivial case is no longer enough, so we set 𝑇 =

4. Furthermore, though a large 𝑁 may make the control more complicated, we set 𝑁 =

16 such that it provides more control degrees of freedom and effective higher pulse 

frequencies to conquer the noise. We also enlarge network sizes to (32, 32) to tackle the 

sophisticated control of the large 𝑁. Similar to the ideal and noisy 𝑋 gates in Sec. 5.1.2, 

we adopt the automatic adaptive learning in the ideal 𝐻 gate, while manually adjust 𝑙𝑟, 

𝜎- and 𝑤E in the noisy one. The common settings of two cases are shown in Table 5.2-2, 

the adaptive schedule of noisy case is shown in Table 5.2-3, and the results are shown 

from Figure 5.2-4 to Figure 6-5. 

Comparing the learning curves in Figure 5.2-4 and Figure 5.2-5, the ideal case 

adopting the automatic adaptive learning reaches 10!$Z in short iterations. The noisy 

case takes most of the time at the stage-1 learning, trying to optimize the ideal and noisy 

infidelities simultaneously. The two pulses in Figure 5.2-6 look very different with one 

flat and the other wiggled. Finally, in Figure 5.2-7, though the noisy case sacrifices its 

ideal infidelity as 5 × 10!$2, it owns the robust 4th noise order behavior in the large 𝜎E 

region. 
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Parameter Value 
𝑇 1.0 
𝑁 8 

Pulse boundary [-4, 4] 
Policy network size (32, 32) 
Value network size (32, 32) 

Number of collections 30 
Number of epochs 10 

Batch size All 
Initial 𝑙𝑟 3 × 10!# 
Initial 𝜎- 3 × 10!$ 

Table 5.2-2. The common settings of ideal and noisy 𝐻 gates. 

 

 

Stage 
Number of 
iterations 

𝑤E Initial 𝑙𝑟 Initial 𝜎- 

1 6845 1 3 × 10!# 3 × 10!$ 
2 1309 10!$ 10!% 5 × 10!$ 
3 201 10!& 10!% 10!& 
4 45 10!" 10![ 10!& 
5 403 10!# 10!\ 10!& 
6 725 0 10!] 10!# 

Table 5.2-3. The adaptive schedule of noisy 𝐻 gate. 



doi:10.6342/NTU202400695

 

 45 

  

Figure 5.2-4. The learning curve of ideal 𝐻 gate. 

 

Figure 5.2-5. The learning curves of noisy 𝐻 gate. These infidelities are defined in Sec. 

4.2.2. 
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Figure 5.2-6. The control pulse of ideal and noisy 𝐻 gates. 

 

  

Figure 5.2-7. The ensemble infidelity versus noise standard deviation of ideal and noisy 

𝐻 gates. 
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5.3 𝐂𝐍𝐎𝐓 gate 

The matrix form of target CNOT gate is, 

CNOT = {
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

|		. (5.3-1) 

According to Eq. (3.3-16) with the same detuning Δ on qubits, our effective two-qubit 

control Hamiltonian is, 

ℋ(𝑡) =
𝜋
2
(Ω$(𝑡)𝑋$ + Δ𝑍$ + Ω&(𝑡)𝑋& + Δ𝑍& + 𝐽(𝑡)𝑍$𝑍&)		, (5.3-2) 

where we define a 𝑀 = 3 pulse vector 𝑞(𝑡) = �Ω$(𝑡), Ω&(𝑡), 𝐽(𝑡)� ∈ {𝑝$, 𝑝&, … , 𝑝E} 

with 𝑝H = �Ω$,H , Ω&,H , 𝐽H� in the PWC protocol. For CNOT gate, we conduct only the 

ideal and noisy cases with 𝜎E = 10!&. Our Hamiltonian has two 𝑍 operators 𝑍$ and 

𝑍& where we exert the noises on both of them in the QSN model. We set 𝑇 = 4 and 

𝑁 = 16. The network sizes are enlarged to (128, 128) since an agent’s pulse sequence 

observation is now as large as 48 with 𝑁 = 16  and 𝑀 = 3 . Besides, the control 

problems get so difficult that we give up the automatic adaptive learning in the ideal case 

and turn to the manual one in both cases. The common settings are shown in Table 5.3-1. 

The common settings of ideal and noisy CNOT gates. The adaptive schedules of ideal 

and noisy cases are respectively shown in Table 5.3-2 and Table 5.3-3. The comparisons 

of noise learning are shown from Figure 5.3-1 to Figure 5.3-4. 

 Comparing the learning curves in Figure 5.3-1 and Figure 5.3-2, without the merit 
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of automatic adaptive learning, two cases both reach the ideal infidelities around 10!$2 

in long iterations, but the noisy one takes more longer to also optimize the noisy infidelity. 

The pulses of noisy case wiggle strongly opposite to the ideal ones in Figure 5.3-3. These 

robust pulses, though unable to possess the 4th noise order behavior like those in 𝑋 and 

𝐻 gates, still reduce the two orders of magnitude in 2nd order noise from the ideal case 

in Figure 5.3-4. 

 

Parameter Value 
𝑇 4.0 
𝑁 16 

Pulse boundary [-4, 4] 
Policy network size (128, 128) 
Value network size (128, 128) 

Number of collections 30 
Number of epochs 10 

Batch size All 

Table 5.3-1. The common settings of ideal and noisy CNOT gates. 
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Stage 
Number of 
iterations 

Initial 𝑙𝑟 Initial 𝜎- 

1 3901 3 × 10!# 10!$ 

2 1941 10!Z 3 × 10!" 

3 10065 10!% 3 × 10!# 

4 8130 10!] 3 × 10!Z 

5 18747 3 × 10!$$ 3 × 10!% 

Table 5.3-2. The adaptive schedule of ideal CNOT gate. 

 

Stage 
Number of 
iterations 

𝑤E Initial 𝑙𝑟 Initial 𝜎- 

1 8597 10& 10!# 10!$ 
2 19905 10& 10!Z 10!& 
3 14444 10$ 10!% 10!" 
4 407 1 3 × 10![ 3 × 10!# 
5 17422 10!$ 10![ 10!# 
6 19522 10!& 10![ 10!# 
7 1795 10!" 3 × 10!$2 10!Z 

8 3078 10!# 3 × 10!$2 10!Z 

9 9606 0 3 × 10!$2 10!Z 

10 13995 0 3 × 10!$$ 3 × 10!% 

Table 5.3-3. The adaptive schedule of noisy CNOT gate. 
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Figure 5.3-1. The learning curve of ideal CNOT gate. 

 

Figure 5.3-2. The learning curve of noisy CNOT gate. These infidelities are defined in 

Sec. 4.2.2. 
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Figure 5.3-3. The control pulses of ideal and noisy CNOT gates. 
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Figure 5.3-4. The ensemble infidelity versus noise standard deviation of ideal and noisy 

CNOT gates. 
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Chapter 6 Discussion 

In this Chapter, we discuss factors that could affect the control complexity for the 

PPO agents. The first factor is the number of PWC steps 𝑁. For the trivial one-step 𝑋 

and 𝐻 gates in Secs. 5.1.1 and 5.2.1, we set a really large initial learning rate 𝑙𝑟 = 1 

such that these learnings take only within 40 iterations. As 𝑁 goes up to 8 or 16, we must 

decrease the initial 𝑙𝑟 = 3 × 10!# to let the agents take their time to learn the relation 

between each step. The second factor is the Hamiltonian. For the ideal cases of the 𝑋 

and 𝐻 gates in Secs. 5.1.2 and 5.2.2, their Hamiltonians are simple, containing only one 

control parameter. We are able to adopt the automatic adaptive learning which swiftly 

converges the learning. For the Hamiltonian of two-qubit CNOT gate in Sec. 5.3, even 

though the environment is ideal, the automatic adaptive learning fails. The final factor is 

whether the environment is ideal or noisy. For these three gates in a noisy environment, 

we all adopt the manual adaptive learning with a large number of learning iterations. 

In the below comparisons of pulses and noise tests before and after lowering the 

noisy weights 𝑤E	in their adaptive schedules of 𝑋, 𝐻 and CNOT gates from Figure 

6-1 to Figure 6-6, we find that a pulse shape is determined at the very beginning of 

learning for which the weighted ideal and noisy infidelities must be comparable. 

Otherwise, an agent will incline to focus on learning the one with a larger weight in a 

reward and be stuck in a sub-optimal control minimum. The learning stages later on where 
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we decrease noise weight 𝑤E are meant to lower the ideal infidelity while retaining a 

robust behavior. 

We attribute the success of constructing robust quantum gates to five reasons, all 

introduced in Chapter 4. First, the environment observation of pulse sequence rather than 

quantum states in Sec. 4.1 enables an agent to control a quantum gate without the need to 

know the underlying quantum dynamic. Especially in a noisy case, if a sampled QSN 

comes into an agent’s policy network, its output changes consequently after each episode, 

and one could not get a unique robust pulse. Second, the sampling-based ensemble 

infidelity in Sec. 4.2.1 reliefs the computational burden of introducing noise information 

into a reward when training an agent. Third, the weighted infidelity in Sec. 4.2.2 makes 

the ideal and noisy infidelities play comparable roles in a reward, though not knowing an 

actual 𝜎E of the environment. Also, we can further adjust them when we want to, for 

example, focus on lowering the ideal infidelity. Fourth, the zero-pulse initialization in Sec. 

4.3.2 makes an agent get a flip-flop pulse more possible. Finally, the adaptive learning in 

Sec. 4.4 serves as a strategy to converge a learning to a really low infidelity. All these 

techniques work together to make constructing robust quantum gates by RL possible. 
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Figure 6-1. The control pulses of noisy 𝑋 gate before and after lowering the noisy weight. 

 

Figure 6-2. The control pulses of noisy 𝐻 gate before and after lowering the noisy weight. 
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Figure 6-3. The control pulses of noisy CNOT gate before and after lowering the noisy 

weight. 
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Figure 6-4. The ensemble infidelity versus noise standard deviation of noisy 𝑋 gates 

before and after lowering the noisy weight. 

 

Figure 6-5. The ensemble infidelity versus noise standard deviation of noisy 𝐻 gates 

before and after lowering the noisy weight. 
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Figure 6-6. The ensemble infidelity versus noise standard deviation of noisy CNOT gates 

before and after lowering the noisy weight. 
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Chapter 7 Conclusion 

We give a brief summary of the thesis here. We have established an DRL control of 

robust quantum gates in the presence of QSN. We have used the PPO algorithm with the 

actor-critic model for the DRL agent to learn an optimal control policy under the policy 

gradient framework. Our PPO DRL agent does not need to have prior knowledge of any 

quantum system dynamics or noise information, but only a control pulse sequence as an 

observation (Sec. 4.1). With the adaptive learning (Sec. 4.4), we have constructed the 

ideal 𝑋 , 𝐻  and CNOT  gates with lowest ideal infidelities of 10!$Z , 10!$Z  and 

10!$2 respectively, in contrast to those in [4][5][6], meeting the performance in [7]. 

As for the noise-learning, with our design of weighted infidelity (Sec. 4.2.2) and 

zero-pulse initialization (Sec. 4.3.2), we have constructed robust quantum gates capable 

of suppressing the 2nd to 4th order effects of the noise. Our RL method performs better 

than other machine learning methods that deal with even the ideal noiseless case [8][24]. 

Even at a large standard deviation of the noise strength of 𝜎E = 10!$, ensemble gate 

infidelities < 10!" , lower than the error threshold of surface code of quantum error 

correction for fault-tolerant quantum computation [24], can still be achieved. 

Though the performance of our RL method is not superior to the quantum optimal 

control method employing classical optimization algorithms, such as the Nelder-Mead 

optimization algorithm [14], in the noisy cases, our RL method generates a control policy 
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that does not rely on the detailed information of the noise properties and underlying 

quantum system dynamics required in the quantum optimal control theory. Our study is a 

preliminary attempt of applying the DRL agent to perform quantum gates in a noisy 

environment, and we have shown that it works for the QSN. Future work is to extend the 

applicability of our method from the QSN investigated here to other more general noises, 

making it particularly useful for the system and noise models that are not exactly known. 

In addition, our study so far has focused on constructing high-fidelity robust quantum 

gates at the pulse level with a PPO DRL agent, and have not exploited the flexibility of 

employing other possible ML algorithms. For example, the pulse sequence observation 

in our study scales with the size of observation 𝑁, and we may use recurrent neural 

networks as agent’s networks to overcome this problem. We also believe that it is 

promising to apply the ML methods at the gate level for more general and broader 

quantum control and quantum computing tasks.  
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